1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/smr.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_domainset.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_param.h> 90 #include <vm/vm_phys.h> 91 #include <vm/vm_pagequeue.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/uma.h> 96 #include <vm/uma_int.h> 97 #include <vm/uma_dbg.h> 98 99 #include <ddb/ddb.h> 100 101 #ifdef DEBUG_MEMGUARD 102 #include <vm/memguard.h> 103 #endif 104 105 #include <machine/md_var.h> 106 107 #ifdef INVARIANTS 108 #define UMA_ALWAYS_CTORDTOR 1 109 #else 110 #define UMA_ALWAYS_CTORDTOR 0 111 #endif 112 113 /* 114 * This is the zone and keg from which all zones are spawned. 115 */ 116 static uma_zone_t kegs; 117 static uma_zone_t zones; 118 119 /* 120 * On INVARIANTS builds, the slab contains a second bitset of the same size, 121 * "dbg_bits", which is laid out immediately after us_free. 122 */ 123 #ifdef INVARIANTS 124 #define SLAB_BITSETS 2 125 #else 126 #define SLAB_BITSETS 1 127 #endif 128 129 /* 130 * These are the two zones from which all offpage uma_slab_ts are allocated. 131 * 132 * One zone is for slab headers that can represent a larger number of items, 133 * making the slabs themselves more efficient, and the other zone is for 134 * headers that are smaller and represent fewer items, making the headers more 135 * efficient. 136 */ 137 #define SLABZONE_SIZE(setsize) \ 138 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 139 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 140 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 141 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 142 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 143 static uma_zone_t slabzones[2]; 144 145 /* 146 * The initial hash tables come out of this zone so they can be allocated 147 * prior to malloc coming up. 148 */ 149 static uma_zone_t hashzone; 150 151 /* The boot-time adjusted value for cache line alignment. */ 152 int uma_align_cache = 64 - 1; 153 154 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 155 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 156 157 /* 158 * Are we allowed to allocate buckets? 159 */ 160 static int bucketdisable = 1; 161 162 /* Linked list of all kegs in the system */ 163 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 164 165 /* Linked list of all cache-only zones in the system */ 166 static LIST_HEAD(,uma_zone) uma_cachezones = 167 LIST_HEAD_INITIALIZER(uma_cachezones); 168 169 /* This RW lock protects the keg list */ 170 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 171 172 /* 173 * First available virual address for boot time allocations. 174 */ 175 static vm_offset_t bootstart; 176 static vm_offset_t bootmem; 177 178 static struct sx uma_reclaim_lock; 179 180 /* 181 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 182 * allocations don't trigger a wakeup of the reclaim thread. 183 */ 184 unsigned long uma_kmem_limit = LONG_MAX; 185 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 186 "UMA kernel memory soft limit"); 187 unsigned long uma_kmem_total; 188 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 189 "UMA kernel memory usage"); 190 191 /* Is the VM done starting up? */ 192 static enum { 193 BOOT_COLD, 194 BOOT_KVA, 195 BOOT_PCPU, 196 BOOT_RUNNING, 197 BOOT_SHUTDOWN, 198 } booted = BOOT_COLD; 199 200 /* 201 * This is the handle used to schedule events that need to happen 202 * outside of the allocation fast path. 203 */ 204 static struct callout uma_callout; 205 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 206 207 /* 208 * This structure is passed as the zone ctor arg so that I don't have to create 209 * a special allocation function just for zones. 210 */ 211 struct uma_zctor_args { 212 const char *name; 213 size_t size; 214 uma_ctor ctor; 215 uma_dtor dtor; 216 uma_init uminit; 217 uma_fini fini; 218 uma_import import; 219 uma_release release; 220 void *arg; 221 uma_keg_t keg; 222 int align; 223 uint32_t flags; 224 }; 225 226 struct uma_kctor_args { 227 uma_zone_t zone; 228 size_t size; 229 uma_init uminit; 230 uma_fini fini; 231 int align; 232 uint32_t flags; 233 }; 234 235 struct uma_bucket_zone { 236 uma_zone_t ubz_zone; 237 const char *ubz_name; 238 int ubz_entries; /* Number of items it can hold. */ 239 int ubz_maxsize; /* Maximum allocation size per-item. */ 240 }; 241 242 /* 243 * Compute the actual number of bucket entries to pack them in power 244 * of two sizes for more efficient space utilization. 245 */ 246 #define BUCKET_SIZE(n) \ 247 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 248 249 #define BUCKET_MAX BUCKET_SIZE(256) 250 #define BUCKET_MIN 2 251 252 struct uma_bucket_zone bucket_zones[] = { 253 /* Literal bucket sizes. */ 254 { NULL, "2 Bucket", 2, 4096 }, 255 { NULL, "4 Bucket", 4, 3072 }, 256 { NULL, "8 Bucket", 8, 2048 }, 257 { NULL, "16 Bucket", 16, 1024 }, 258 /* Rounded down power of 2 sizes for efficiency. */ 259 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 260 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 261 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 262 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 263 { NULL, NULL, 0} 264 }; 265 266 /* 267 * Flags and enumerations to be passed to internal functions. 268 */ 269 enum zfreeskip { 270 SKIP_NONE = 0, 271 SKIP_CNT = 0x00000001, 272 SKIP_DTOR = 0x00010000, 273 SKIP_FINI = 0x00020000, 274 }; 275 276 /* Prototypes.. */ 277 278 void uma_startup1(vm_offset_t); 279 void uma_startup2(void); 280 281 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 282 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 283 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 284 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 285 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 286 static void page_free(void *, vm_size_t, uint8_t); 287 static void pcpu_page_free(void *, vm_size_t, uint8_t); 288 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 289 static void cache_drain(uma_zone_t); 290 static void bucket_drain(uma_zone_t, uma_bucket_t); 291 static void bucket_cache_reclaim(uma_zone_t zone, bool); 292 static int keg_ctor(void *, int, void *, int); 293 static void keg_dtor(void *, int, void *); 294 static int zone_ctor(void *, int, void *, int); 295 static void zone_dtor(void *, int, void *); 296 static inline void item_dtor(uma_zone_t zone, void *item, int size, 297 void *udata, enum zfreeskip skip); 298 static int zero_init(void *, int, int); 299 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 300 int itemdomain, bool ws); 301 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 302 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 303 static void zone_timeout(uma_zone_t zone, void *); 304 static int hash_alloc(struct uma_hash *, u_int); 305 static int hash_expand(struct uma_hash *, struct uma_hash *); 306 static void hash_free(struct uma_hash *hash); 307 static void uma_timeout(void *); 308 static void uma_shutdown(void); 309 static void *zone_alloc_item(uma_zone_t, void *, int, int); 310 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 311 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 312 static void zone_free_limit(uma_zone_t zone, int count); 313 static void bucket_enable(void); 314 static void bucket_init(void); 315 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 316 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 317 static void bucket_zone_drain(void); 318 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 319 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 320 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 321 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 322 uma_fini fini, int align, uint32_t flags); 323 static int zone_import(void *, void **, int, int, int); 324 static void zone_release(void *, void **, int); 325 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 326 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 327 328 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 329 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 330 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 331 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 332 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 333 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 334 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 335 336 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 337 338 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 339 "Memory allocation debugging"); 340 341 #ifdef INVARIANTS 342 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 343 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 344 345 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 346 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 347 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 348 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 349 350 static u_int dbg_divisor = 1; 351 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 352 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 353 "Debug & thrash every this item in memory allocator"); 354 355 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 356 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 357 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 358 &uma_dbg_cnt, "memory items debugged"); 359 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 360 &uma_skip_cnt, "memory items skipped, not debugged"); 361 #endif 362 363 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 364 "Universal Memory Allocator"); 365 366 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 367 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 368 369 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 370 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 371 372 static int zone_warnings = 1; 373 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 374 "Warn when UMA zones becomes full"); 375 376 static int multipage_slabs = 1; 377 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 378 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 379 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 380 "UMA may choose larger slab sizes for better efficiency"); 381 382 /* 383 * Select the slab zone for an offpage slab with the given maximum item count. 384 */ 385 static inline uma_zone_t 386 slabzone(int ipers) 387 { 388 389 return (slabzones[ipers > SLABZONE0_SETSIZE]); 390 } 391 392 /* 393 * This routine checks to see whether or not it's safe to enable buckets. 394 */ 395 static void 396 bucket_enable(void) 397 { 398 399 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 400 bucketdisable = vm_page_count_min(); 401 } 402 403 /* 404 * Initialize bucket_zones, the array of zones of buckets of various sizes. 405 * 406 * For each zone, calculate the memory required for each bucket, consisting 407 * of the header and an array of pointers. 408 */ 409 static void 410 bucket_init(void) 411 { 412 struct uma_bucket_zone *ubz; 413 int size; 414 415 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 416 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 417 size += sizeof(void *) * ubz->ubz_entries; 418 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 419 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 420 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 421 UMA_ZONE_FIRSTTOUCH); 422 } 423 } 424 425 /* 426 * Given a desired number of entries for a bucket, return the zone from which 427 * to allocate the bucket. 428 */ 429 static struct uma_bucket_zone * 430 bucket_zone_lookup(int entries) 431 { 432 struct uma_bucket_zone *ubz; 433 434 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 435 if (ubz->ubz_entries >= entries) 436 return (ubz); 437 ubz--; 438 return (ubz); 439 } 440 441 static struct uma_bucket_zone * 442 bucket_zone_max(uma_zone_t zone, int nitems) 443 { 444 struct uma_bucket_zone *ubz; 445 int bpcpu; 446 447 bpcpu = 2; 448 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 449 /* Count the cross-domain bucket. */ 450 bpcpu++; 451 452 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 453 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 454 break; 455 if (ubz == &bucket_zones[0]) 456 ubz = NULL; 457 else 458 ubz--; 459 return (ubz); 460 } 461 462 static int 463 bucket_select(int size) 464 { 465 struct uma_bucket_zone *ubz; 466 467 ubz = &bucket_zones[0]; 468 if (size > ubz->ubz_maxsize) 469 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 470 471 for (; ubz->ubz_entries != 0; ubz++) 472 if (ubz->ubz_maxsize < size) 473 break; 474 ubz--; 475 return (ubz->ubz_entries); 476 } 477 478 static uma_bucket_t 479 bucket_alloc(uma_zone_t zone, void *udata, int flags) 480 { 481 struct uma_bucket_zone *ubz; 482 uma_bucket_t bucket; 483 484 /* 485 * Don't allocate buckets early in boot. 486 */ 487 if (__predict_false(booted < BOOT_KVA)) 488 return (NULL); 489 490 /* 491 * To limit bucket recursion we store the original zone flags 492 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 493 * NOVM flag to persist even through deep recursions. We also 494 * store ZFLAG_BUCKET once we have recursed attempting to allocate 495 * a bucket for a bucket zone so we do not allow infinite bucket 496 * recursion. This cookie will even persist to frees of unused 497 * buckets via the allocation path or bucket allocations in the 498 * free path. 499 */ 500 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 501 udata = (void *)(uintptr_t)zone->uz_flags; 502 else { 503 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 504 return (NULL); 505 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 506 } 507 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 508 flags |= M_NOVM; 509 ubz = bucket_zone_lookup(zone->uz_bucket_size); 510 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 511 ubz++; 512 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 513 if (bucket) { 514 #ifdef INVARIANTS 515 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 516 #endif 517 bucket->ub_cnt = 0; 518 bucket->ub_entries = ubz->ubz_entries; 519 bucket->ub_seq = SMR_SEQ_INVALID; 520 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 521 zone->uz_name, zone, bucket); 522 } 523 524 return (bucket); 525 } 526 527 static void 528 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 529 { 530 struct uma_bucket_zone *ubz; 531 532 if (bucket->ub_cnt != 0) 533 bucket_drain(zone, bucket); 534 535 KASSERT(bucket->ub_cnt == 0, 536 ("bucket_free: Freeing a non free bucket.")); 537 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 538 ("bucket_free: Freeing an SMR bucket.")); 539 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 540 udata = (void *)(uintptr_t)zone->uz_flags; 541 ubz = bucket_zone_lookup(bucket->ub_entries); 542 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 543 } 544 545 static void 546 bucket_zone_drain(void) 547 { 548 struct uma_bucket_zone *ubz; 549 550 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 551 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 552 } 553 554 /* 555 * Acquire the domain lock and record contention. 556 */ 557 static uma_zone_domain_t 558 zone_domain_lock(uma_zone_t zone, int domain) 559 { 560 uma_zone_domain_t zdom; 561 bool lockfail; 562 563 zdom = ZDOM_GET(zone, domain); 564 lockfail = false; 565 if (ZDOM_OWNED(zdom)) 566 lockfail = true; 567 ZDOM_LOCK(zdom); 568 /* This is unsynchronized. The counter does not need to be precise. */ 569 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 570 zone->uz_bucket_size++; 571 return (zdom); 572 } 573 574 /* 575 * Search for the domain with the least cached items and return it if it 576 * is out of balance with the preferred domain. 577 */ 578 static __noinline int 579 zone_domain_lowest(uma_zone_t zone, int pref) 580 { 581 long least, nitems, prefitems; 582 int domain; 583 int i; 584 585 prefitems = least = LONG_MAX; 586 domain = 0; 587 for (i = 0; i < vm_ndomains; i++) { 588 nitems = ZDOM_GET(zone, i)->uzd_nitems; 589 if (nitems < least) { 590 domain = i; 591 least = nitems; 592 } 593 if (domain == pref) 594 prefitems = nitems; 595 } 596 if (prefitems < least * 2) 597 return (pref); 598 599 return (domain); 600 } 601 602 /* 603 * Search for the domain with the most cached items and return it or the 604 * preferred domain if it has enough to proceed. 605 */ 606 static __noinline int 607 zone_domain_highest(uma_zone_t zone, int pref) 608 { 609 long most, nitems; 610 int domain; 611 int i; 612 613 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 614 return (pref); 615 616 most = 0; 617 domain = 0; 618 for (i = 0; i < vm_ndomains; i++) { 619 nitems = ZDOM_GET(zone, i)->uzd_nitems; 620 if (nitems > most) { 621 domain = i; 622 most = nitems; 623 } 624 } 625 626 return (domain); 627 } 628 629 /* 630 * Safely subtract cnt from imax. 631 */ 632 static void 633 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt) 634 { 635 long new; 636 long old; 637 638 old = zdom->uzd_imax; 639 do { 640 if (old <= cnt) 641 new = 0; 642 else 643 new = old - cnt; 644 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0); 645 } 646 647 /* 648 * Set the maximum imax value. 649 */ 650 static void 651 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 652 { 653 long old; 654 655 old = zdom->uzd_imax; 656 do { 657 if (old >= nitems) 658 break; 659 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 660 } 661 662 /* 663 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 664 * zone's caches. If a bucket is found the zone is not locked on return. 665 */ 666 static uma_bucket_t 667 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 668 { 669 uma_bucket_t bucket; 670 int i; 671 bool dtor = false; 672 673 ZDOM_LOCK_ASSERT(zdom); 674 675 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 676 return (NULL); 677 678 /* SMR Buckets can not be re-used until readers expire. */ 679 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 680 bucket->ub_seq != SMR_SEQ_INVALID) { 681 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 682 return (NULL); 683 bucket->ub_seq = SMR_SEQ_INVALID; 684 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 685 if (STAILQ_NEXT(bucket, ub_link) != NULL) 686 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 687 } 688 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 689 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 690 zdom->uzd_nitems -= bucket->ub_cnt; 691 692 /* 693 * Shift the bounds of the current WSS interval to avoid 694 * perturbing the estimate. 695 */ 696 if (reclaim) { 697 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 698 zone_domain_imax_sub(zdom, bucket->ub_cnt); 699 } else if (zdom->uzd_imin > zdom->uzd_nitems) 700 zdom->uzd_imin = zdom->uzd_nitems; 701 702 ZDOM_UNLOCK(zdom); 703 if (dtor) 704 for (i = 0; i < bucket->ub_cnt; i++) 705 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 706 NULL, SKIP_NONE); 707 708 return (bucket); 709 } 710 711 /* 712 * Insert a full bucket into the specified cache. The "ws" parameter indicates 713 * whether the bucket's contents should be counted as part of the zone's working 714 * set. The bucket may be freed if it exceeds the bucket limit. 715 */ 716 static void 717 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 718 const bool ws) 719 { 720 uma_zone_domain_t zdom; 721 722 /* We don't cache empty buckets. This can happen after a reclaim. */ 723 if (bucket->ub_cnt == 0) 724 goto out; 725 zdom = zone_domain_lock(zone, domain); 726 727 /* 728 * Conditionally set the maximum number of items. 729 */ 730 zdom->uzd_nitems += bucket->ub_cnt; 731 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 732 if (ws) 733 zone_domain_imax_set(zdom, zdom->uzd_nitems); 734 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 735 zdom->uzd_seq = bucket->ub_seq; 736 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 737 ZDOM_UNLOCK(zdom); 738 return; 739 } 740 zdom->uzd_nitems -= bucket->ub_cnt; 741 ZDOM_UNLOCK(zdom); 742 out: 743 bucket_free(zone, bucket, udata); 744 } 745 746 /* Pops an item out of a per-cpu cache bucket. */ 747 static inline void * 748 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 749 { 750 void *item; 751 752 CRITICAL_ASSERT(curthread); 753 754 bucket->ucb_cnt--; 755 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 756 #ifdef INVARIANTS 757 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 758 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 759 #endif 760 cache->uc_allocs++; 761 762 return (item); 763 } 764 765 /* Pushes an item into a per-cpu cache bucket. */ 766 static inline void 767 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 768 { 769 770 CRITICAL_ASSERT(curthread); 771 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 772 ("uma_zfree: Freeing to non free bucket index.")); 773 774 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 775 bucket->ucb_cnt++; 776 cache->uc_frees++; 777 } 778 779 /* 780 * Unload a UMA bucket from a per-cpu cache. 781 */ 782 static inline uma_bucket_t 783 cache_bucket_unload(uma_cache_bucket_t bucket) 784 { 785 uma_bucket_t b; 786 787 b = bucket->ucb_bucket; 788 if (b != NULL) { 789 MPASS(b->ub_entries == bucket->ucb_entries); 790 b->ub_cnt = bucket->ucb_cnt; 791 bucket->ucb_bucket = NULL; 792 bucket->ucb_entries = bucket->ucb_cnt = 0; 793 } 794 795 return (b); 796 } 797 798 static inline uma_bucket_t 799 cache_bucket_unload_alloc(uma_cache_t cache) 800 { 801 802 return (cache_bucket_unload(&cache->uc_allocbucket)); 803 } 804 805 static inline uma_bucket_t 806 cache_bucket_unload_free(uma_cache_t cache) 807 { 808 809 return (cache_bucket_unload(&cache->uc_freebucket)); 810 } 811 812 static inline uma_bucket_t 813 cache_bucket_unload_cross(uma_cache_t cache) 814 { 815 816 return (cache_bucket_unload(&cache->uc_crossbucket)); 817 } 818 819 /* 820 * Load a bucket into a per-cpu cache bucket. 821 */ 822 static inline void 823 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 824 { 825 826 CRITICAL_ASSERT(curthread); 827 MPASS(bucket->ucb_bucket == NULL); 828 MPASS(b->ub_seq == SMR_SEQ_INVALID); 829 830 bucket->ucb_bucket = b; 831 bucket->ucb_cnt = b->ub_cnt; 832 bucket->ucb_entries = b->ub_entries; 833 } 834 835 static inline void 836 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 837 { 838 839 cache_bucket_load(&cache->uc_allocbucket, b); 840 } 841 842 static inline void 843 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 844 { 845 846 cache_bucket_load(&cache->uc_freebucket, b); 847 } 848 849 #ifdef NUMA 850 static inline void 851 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 852 { 853 854 cache_bucket_load(&cache->uc_crossbucket, b); 855 } 856 #endif 857 858 /* 859 * Copy and preserve ucb_spare. 860 */ 861 static inline void 862 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 863 { 864 865 b1->ucb_bucket = b2->ucb_bucket; 866 b1->ucb_entries = b2->ucb_entries; 867 b1->ucb_cnt = b2->ucb_cnt; 868 } 869 870 /* 871 * Swap two cache buckets. 872 */ 873 static inline void 874 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 875 { 876 struct uma_cache_bucket b3; 877 878 CRITICAL_ASSERT(curthread); 879 880 cache_bucket_copy(&b3, b1); 881 cache_bucket_copy(b1, b2); 882 cache_bucket_copy(b2, &b3); 883 } 884 885 /* 886 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 887 */ 888 static uma_bucket_t 889 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 890 { 891 uma_zone_domain_t zdom; 892 uma_bucket_t bucket; 893 894 /* 895 * Avoid the lock if possible. 896 */ 897 zdom = ZDOM_GET(zone, domain); 898 if (zdom->uzd_nitems == 0) 899 return (NULL); 900 901 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 902 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 903 return (NULL); 904 905 /* 906 * Check the zone's cache of buckets. 907 */ 908 zdom = zone_domain_lock(zone, domain); 909 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 910 KASSERT(bucket->ub_cnt != 0, 911 ("cache_fetch_bucket: Returning an empty bucket.")); 912 return (bucket); 913 } 914 ZDOM_UNLOCK(zdom); 915 916 return (NULL); 917 } 918 919 static void 920 zone_log_warning(uma_zone_t zone) 921 { 922 static const struct timeval warninterval = { 300, 0 }; 923 924 if (!zone_warnings || zone->uz_warning == NULL) 925 return; 926 927 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 928 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 929 } 930 931 static inline void 932 zone_maxaction(uma_zone_t zone) 933 { 934 935 if (zone->uz_maxaction.ta_func != NULL) 936 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 937 } 938 939 /* 940 * Routine called by timeout which is used to fire off some time interval 941 * based calculations. (stats, hash size, etc.) 942 * 943 * Arguments: 944 * arg Unused 945 * 946 * Returns: 947 * Nothing 948 */ 949 static void 950 uma_timeout(void *unused) 951 { 952 bucket_enable(); 953 zone_foreach(zone_timeout, NULL); 954 955 /* Reschedule this event */ 956 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 957 } 958 959 /* 960 * Update the working set size estimate for the zone's bucket cache. 961 * The constants chosen here are somewhat arbitrary. With an update period of 962 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 963 * last 100s. 964 */ 965 static void 966 zone_domain_update_wss(uma_zone_domain_t zdom) 967 { 968 long wss; 969 970 ZDOM_LOCK(zdom); 971 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 972 wss = zdom->uzd_imax - zdom->uzd_imin; 973 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 974 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 975 ZDOM_UNLOCK(zdom); 976 } 977 978 /* 979 * Routine to perform timeout driven calculations. This expands the 980 * hashes and does per cpu statistics aggregation. 981 * 982 * Returns nothing. 983 */ 984 static void 985 zone_timeout(uma_zone_t zone, void *unused) 986 { 987 uma_keg_t keg; 988 u_int slabs, pages; 989 990 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 991 goto update_wss; 992 993 keg = zone->uz_keg; 994 995 /* 996 * Hash zones are non-numa by definition so the first domain 997 * is the only one present. 998 */ 999 KEG_LOCK(keg, 0); 1000 pages = keg->uk_domain[0].ud_pages; 1001 1002 /* 1003 * Expand the keg hash table. 1004 * 1005 * This is done if the number of slabs is larger than the hash size. 1006 * What I'm trying to do here is completely reduce collisions. This 1007 * may be a little aggressive. Should I allow for two collisions max? 1008 */ 1009 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1010 struct uma_hash newhash; 1011 struct uma_hash oldhash; 1012 int ret; 1013 1014 /* 1015 * This is so involved because allocating and freeing 1016 * while the keg lock is held will lead to deadlock. 1017 * I have to do everything in stages and check for 1018 * races. 1019 */ 1020 KEG_UNLOCK(keg, 0); 1021 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1022 KEG_LOCK(keg, 0); 1023 if (ret) { 1024 if (hash_expand(&keg->uk_hash, &newhash)) { 1025 oldhash = keg->uk_hash; 1026 keg->uk_hash = newhash; 1027 } else 1028 oldhash = newhash; 1029 1030 KEG_UNLOCK(keg, 0); 1031 hash_free(&oldhash); 1032 goto update_wss; 1033 } 1034 } 1035 KEG_UNLOCK(keg, 0); 1036 1037 update_wss: 1038 for (int i = 0; i < vm_ndomains; i++) 1039 zone_domain_update_wss(ZDOM_GET(zone, i)); 1040 } 1041 1042 /* 1043 * Allocate and zero fill the next sized hash table from the appropriate 1044 * backing store. 1045 * 1046 * Arguments: 1047 * hash A new hash structure with the old hash size in uh_hashsize 1048 * 1049 * Returns: 1050 * 1 on success and 0 on failure. 1051 */ 1052 static int 1053 hash_alloc(struct uma_hash *hash, u_int size) 1054 { 1055 size_t alloc; 1056 1057 KASSERT(powerof2(size), ("hash size must be power of 2")); 1058 if (size > UMA_HASH_SIZE_INIT) { 1059 hash->uh_hashsize = size; 1060 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1061 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1062 } else { 1063 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1064 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1065 UMA_ANYDOMAIN, M_WAITOK); 1066 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1067 } 1068 if (hash->uh_slab_hash) { 1069 bzero(hash->uh_slab_hash, alloc); 1070 hash->uh_hashmask = hash->uh_hashsize - 1; 1071 return (1); 1072 } 1073 1074 return (0); 1075 } 1076 1077 /* 1078 * Expands the hash table for HASH zones. This is done from zone_timeout 1079 * to reduce collisions. This must not be done in the regular allocation 1080 * path, otherwise, we can recurse on the vm while allocating pages. 1081 * 1082 * Arguments: 1083 * oldhash The hash you want to expand 1084 * newhash The hash structure for the new table 1085 * 1086 * Returns: 1087 * Nothing 1088 * 1089 * Discussion: 1090 */ 1091 static int 1092 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1093 { 1094 uma_hash_slab_t slab; 1095 u_int hval; 1096 u_int idx; 1097 1098 if (!newhash->uh_slab_hash) 1099 return (0); 1100 1101 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1102 return (0); 1103 1104 /* 1105 * I need to investigate hash algorithms for resizing without a 1106 * full rehash. 1107 */ 1108 1109 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1110 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1111 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1112 LIST_REMOVE(slab, uhs_hlink); 1113 hval = UMA_HASH(newhash, slab->uhs_data); 1114 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1115 slab, uhs_hlink); 1116 } 1117 1118 return (1); 1119 } 1120 1121 /* 1122 * Free the hash bucket to the appropriate backing store. 1123 * 1124 * Arguments: 1125 * slab_hash The hash bucket we're freeing 1126 * hashsize The number of entries in that hash bucket 1127 * 1128 * Returns: 1129 * Nothing 1130 */ 1131 static void 1132 hash_free(struct uma_hash *hash) 1133 { 1134 if (hash->uh_slab_hash == NULL) 1135 return; 1136 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1137 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1138 else 1139 free(hash->uh_slab_hash, M_UMAHASH); 1140 } 1141 1142 /* 1143 * Frees all outstanding items in a bucket 1144 * 1145 * Arguments: 1146 * zone The zone to free to, must be unlocked. 1147 * bucket The free/alloc bucket with items. 1148 * 1149 * Returns: 1150 * Nothing 1151 */ 1152 static void 1153 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1154 { 1155 int i; 1156 1157 if (bucket->ub_cnt == 0) 1158 return; 1159 1160 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1161 bucket->ub_seq != SMR_SEQ_INVALID) { 1162 smr_wait(zone->uz_smr, bucket->ub_seq); 1163 bucket->ub_seq = SMR_SEQ_INVALID; 1164 for (i = 0; i < bucket->ub_cnt; i++) 1165 item_dtor(zone, bucket->ub_bucket[i], 1166 zone->uz_size, NULL, SKIP_NONE); 1167 } 1168 if (zone->uz_fini) 1169 for (i = 0; i < bucket->ub_cnt; i++) 1170 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1171 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1172 if (zone->uz_max_items > 0) 1173 zone_free_limit(zone, bucket->ub_cnt); 1174 #ifdef INVARIANTS 1175 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1176 #endif 1177 bucket->ub_cnt = 0; 1178 } 1179 1180 /* 1181 * Drains the per cpu caches for a zone. 1182 * 1183 * NOTE: This may only be called while the zone is being torn down, and not 1184 * during normal operation. This is necessary in order that we do not have 1185 * to migrate CPUs to drain the per-CPU caches. 1186 * 1187 * Arguments: 1188 * zone The zone to drain, must be unlocked. 1189 * 1190 * Returns: 1191 * Nothing 1192 */ 1193 static void 1194 cache_drain(uma_zone_t zone) 1195 { 1196 uma_cache_t cache; 1197 uma_bucket_t bucket; 1198 smr_seq_t seq; 1199 int cpu; 1200 1201 /* 1202 * XXX: It is safe to not lock the per-CPU caches, because we're 1203 * tearing down the zone anyway. I.e., there will be no further use 1204 * of the caches at this point. 1205 * 1206 * XXX: It would good to be able to assert that the zone is being 1207 * torn down to prevent improper use of cache_drain(). 1208 */ 1209 seq = SMR_SEQ_INVALID; 1210 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1211 seq = smr_advance(zone->uz_smr); 1212 CPU_FOREACH(cpu) { 1213 cache = &zone->uz_cpu[cpu]; 1214 bucket = cache_bucket_unload_alloc(cache); 1215 if (bucket != NULL) 1216 bucket_free(zone, bucket, NULL); 1217 bucket = cache_bucket_unload_free(cache); 1218 if (bucket != NULL) { 1219 bucket->ub_seq = seq; 1220 bucket_free(zone, bucket, NULL); 1221 } 1222 bucket = cache_bucket_unload_cross(cache); 1223 if (bucket != NULL) { 1224 bucket->ub_seq = seq; 1225 bucket_free(zone, bucket, NULL); 1226 } 1227 } 1228 bucket_cache_reclaim(zone, true); 1229 } 1230 1231 static void 1232 cache_shrink(uma_zone_t zone, void *unused) 1233 { 1234 1235 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1236 return; 1237 1238 zone->uz_bucket_size = 1239 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1240 } 1241 1242 static void 1243 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1244 { 1245 uma_cache_t cache; 1246 uma_bucket_t b1, b2, b3; 1247 int domain; 1248 1249 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1250 return; 1251 1252 b1 = b2 = b3 = NULL; 1253 critical_enter(); 1254 cache = &zone->uz_cpu[curcpu]; 1255 domain = PCPU_GET(domain); 1256 b1 = cache_bucket_unload_alloc(cache); 1257 1258 /* 1259 * Don't flush SMR zone buckets. This leaves the zone without a 1260 * bucket and forces every free to synchronize(). 1261 */ 1262 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1263 b2 = cache_bucket_unload_free(cache); 1264 b3 = cache_bucket_unload_cross(cache); 1265 } 1266 critical_exit(); 1267 1268 if (b1 != NULL) 1269 zone_free_bucket(zone, b1, NULL, domain, false); 1270 if (b2 != NULL) 1271 zone_free_bucket(zone, b2, NULL, domain, false); 1272 if (b3 != NULL) { 1273 /* Adjust the domain so it goes to zone_free_cross. */ 1274 domain = (domain + 1) % vm_ndomains; 1275 zone_free_bucket(zone, b3, NULL, domain, false); 1276 } 1277 } 1278 1279 /* 1280 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1281 * This is an expensive call because it needs to bind to all CPUs 1282 * one by one and enter a critical section on each of them in order 1283 * to safely access their cache buckets. 1284 * Zone lock must not be held on call this function. 1285 */ 1286 static void 1287 pcpu_cache_drain_safe(uma_zone_t zone) 1288 { 1289 int cpu; 1290 1291 /* 1292 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1293 */ 1294 if (zone) 1295 cache_shrink(zone, NULL); 1296 else 1297 zone_foreach(cache_shrink, NULL); 1298 1299 CPU_FOREACH(cpu) { 1300 thread_lock(curthread); 1301 sched_bind(curthread, cpu); 1302 thread_unlock(curthread); 1303 1304 if (zone) 1305 cache_drain_safe_cpu(zone, NULL); 1306 else 1307 zone_foreach(cache_drain_safe_cpu, NULL); 1308 } 1309 thread_lock(curthread); 1310 sched_unbind(curthread); 1311 thread_unlock(curthread); 1312 } 1313 1314 /* 1315 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1316 * requested a drain, otherwise the per-domain caches are trimmed to either 1317 * estimated working set size. 1318 */ 1319 static void 1320 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1321 { 1322 uma_zone_domain_t zdom; 1323 uma_bucket_t bucket; 1324 long target; 1325 int i; 1326 1327 /* 1328 * Shrink the zone bucket size to ensure that the per-CPU caches 1329 * don't grow too large. 1330 */ 1331 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1332 zone->uz_bucket_size--; 1333 1334 for (i = 0; i < vm_ndomains; i++) { 1335 /* 1336 * The cross bucket is partially filled and not part of 1337 * the item count. Reclaim it individually here. 1338 */ 1339 zdom = ZDOM_GET(zone, i); 1340 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1341 ZONE_CROSS_LOCK(zone); 1342 bucket = zdom->uzd_cross; 1343 zdom->uzd_cross = NULL; 1344 ZONE_CROSS_UNLOCK(zone); 1345 if (bucket != NULL) 1346 bucket_free(zone, bucket, NULL); 1347 } 1348 1349 /* 1350 * If we were asked to drain the zone, we are done only once 1351 * this bucket cache is empty. Otherwise, we reclaim items in 1352 * excess of the zone's estimated working set size. If the 1353 * difference nitems - imin is larger than the WSS estimate, 1354 * then the estimate will grow at the end of this interval and 1355 * we ignore the historical average. 1356 */ 1357 ZDOM_LOCK(zdom); 1358 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1359 zdom->uzd_imin); 1360 while (zdom->uzd_nitems > target) { 1361 bucket = zone_fetch_bucket(zone, zdom, true); 1362 if (bucket == NULL) 1363 break; 1364 bucket_free(zone, bucket, NULL); 1365 ZDOM_LOCK(zdom); 1366 } 1367 ZDOM_UNLOCK(zdom); 1368 } 1369 } 1370 1371 static void 1372 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1373 { 1374 uint8_t *mem; 1375 int i; 1376 uint8_t flags; 1377 1378 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1379 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1380 1381 mem = slab_data(slab, keg); 1382 flags = slab->us_flags; 1383 i = start; 1384 if (keg->uk_fini != NULL) { 1385 for (i--; i > -1; i--) 1386 #ifdef INVARIANTS 1387 /* 1388 * trash_fini implies that dtor was trash_dtor. trash_fini 1389 * would check that memory hasn't been modified since free, 1390 * which executed trash_dtor. 1391 * That's why we need to run uma_dbg_kskip() check here, 1392 * albeit we don't make skip check for other init/fini 1393 * invocations. 1394 */ 1395 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1396 keg->uk_fini != trash_fini) 1397 #endif 1398 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1399 } 1400 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1401 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1402 NULL, SKIP_NONE); 1403 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1404 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1405 } 1406 1407 /* 1408 * Frees pages from a keg back to the system. This is done on demand from 1409 * the pageout daemon. 1410 * 1411 * Returns nothing. 1412 */ 1413 static void 1414 keg_drain(uma_keg_t keg) 1415 { 1416 struct slabhead freeslabs; 1417 uma_domain_t dom; 1418 uma_slab_t slab, tmp; 1419 int i, n; 1420 1421 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1422 return; 1423 1424 for (i = 0; i < vm_ndomains; i++) { 1425 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1426 keg->uk_name, keg, i, dom->ud_free_items); 1427 dom = &keg->uk_domain[i]; 1428 LIST_INIT(&freeslabs); 1429 1430 KEG_LOCK(keg, i); 1431 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1432 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 1433 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1434 } 1435 n = dom->ud_free_slabs; 1436 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1437 dom->ud_free_slabs = 0; 1438 dom->ud_free_items -= n * keg->uk_ipers; 1439 dom->ud_pages -= n * keg->uk_ppera; 1440 KEG_UNLOCK(keg, i); 1441 1442 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1443 keg_free_slab(keg, slab, keg->uk_ipers); 1444 } 1445 } 1446 1447 static void 1448 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1449 { 1450 1451 /* 1452 * Set draining to interlock with zone_dtor() so we can release our 1453 * locks as we go. Only dtor() should do a WAITOK call since it 1454 * is the only call that knows the structure will still be available 1455 * when it wakes up. 1456 */ 1457 ZONE_LOCK(zone); 1458 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1459 if (waitok == M_NOWAIT) 1460 goto out; 1461 msleep(zone, &ZDOM_GET(zone, 0)->uzd_lock, PVM, "zonedrain", 1462 1); 1463 } 1464 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1465 ZONE_UNLOCK(zone); 1466 bucket_cache_reclaim(zone, drain); 1467 1468 /* 1469 * The DRAINING flag protects us from being freed while 1470 * we're running. Normally the uma_rwlock would protect us but we 1471 * must be able to release and acquire the right lock for each keg. 1472 */ 1473 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1474 keg_drain(zone->uz_keg); 1475 ZONE_LOCK(zone); 1476 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1477 wakeup(zone); 1478 out: 1479 ZONE_UNLOCK(zone); 1480 } 1481 1482 static void 1483 zone_drain(uma_zone_t zone, void *unused) 1484 { 1485 1486 zone_reclaim(zone, M_NOWAIT, true); 1487 } 1488 1489 static void 1490 zone_trim(uma_zone_t zone, void *unused) 1491 { 1492 1493 zone_reclaim(zone, M_NOWAIT, false); 1494 } 1495 1496 /* 1497 * Allocate a new slab for a keg and inserts it into the partial slab list. 1498 * The keg should be unlocked on entry. If the allocation succeeds it will 1499 * be locked on return. 1500 * 1501 * Arguments: 1502 * flags Wait flags for the item initialization routine 1503 * aflags Wait flags for the slab allocation 1504 * 1505 * Returns: 1506 * The slab that was allocated or NULL if there is no memory and the 1507 * caller specified M_NOWAIT. 1508 */ 1509 static uma_slab_t 1510 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1511 int aflags) 1512 { 1513 uma_domain_t dom; 1514 uma_alloc allocf; 1515 uma_slab_t slab; 1516 unsigned long size; 1517 uint8_t *mem; 1518 uint8_t sflags; 1519 int i; 1520 1521 KASSERT(domain >= 0 && domain < vm_ndomains, 1522 ("keg_alloc_slab: domain %d out of range", domain)); 1523 1524 allocf = keg->uk_allocf; 1525 slab = NULL; 1526 mem = NULL; 1527 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1528 uma_hash_slab_t hslab; 1529 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1530 domain, aflags); 1531 if (hslab == NULL) 1532 goto fail; 1533 slab = &hslab->uhs_slab; 1534 } 1535 1536 /* 1537 * This reproduces the old vm_zone behavior of zero filling pages the 1538 * first time they are added to a zone. 1539 * 1540 * Malloced items are zeroed in uma_zalloc. 1541 */ 1542 1543 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1544 aflags |= M_ZERO; 1545 else 1546 aflags &= ~M_ZERO; 1547 1548 if (keg->uk_flags & UMA_ZONE_NODUMP) 1549 aflags |= M_NODUMP; 1550 1551 /* zone is passed for legacy reasons. */ 1552 size = keg->uk_ppera * PAGE_SIZE; 1553 mem = allocf(zone, size, domain, &sflags, aflags); 1554 if (mem == NULL) { 1555 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1556 zone_free_item(slabzone(keg->uk_ipers), 1557 slab_tohashslab(slab), NULL, SKIP_NONE); 1558 goto fail; 1559 } 1560 uma_total_inc(size); 1561 1562 /* For HASH zones all pages go to the same uma_domain. */ 1563 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1564 domain = 0; 1565 1566 /* Point the slab into the allocated memory */ 1567 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1568 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1569 else 1570 slab_tohashslab(slab)->uhs_data = mem; 1571 1572 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1573 for (i = 0; i < keg->uk_ppera; i++) 1574 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1575 zone, slab); 1576 1577 slab->us_freecount = keg->uk_ipers; 1578 slab->us_flags = sflags; 1579 slab->us_domain = domain; 1580 1581 BIT_FILL(keg->uk_ipers, &slab->us_free); 1582 #ifdef INVARIANTS 1583 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1584 #endif 1585 1586 if (keg->uk_init != NULL) { 1587 for (i = 0; i < keg->uk_ipers; i++) 1588 if (keg->uk_init(slab_item(slab, keg, i), 1589 keg->uk_size, flags) != 0) 1590 break; 1591 if (i != keg->uk_ipers) { 1592 keg_free_slab(keg, slab, i); 1593 goto fail; 1594 } 1595 } 1596 KEG_LOCK(keg, domain); 1597 1598 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1599 slab, keg->uk_name, keg); 1600 1601 if (keg->uk_flags & UMA_ZFLAG_HASH) 1602 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1603 1604 /* 1605 * If we got a slab here it's safe to mark it partially used 1606 * and return. We assume that the caller is going to remove 1607 * at least one item. 1608 */ 1609 dom = &keg->uk_domain[domain]; 1610 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1611 dom->ud_pages += keg->uk_ppera; 1612 dom->ud_free_items += keg->uk_ipers; 1613 1614 return (slab); 1615 1616 fail: 1617 return (NULL); 1618 } 1619 1620 /* 1621 * This function is intended to be used early on in place of page_alloc() so 1622 * that we may use the boot time page cache to satisfy allocations before 1623 * the VM is ready. 1624 */ 1625 static void * 1626 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1627 int wait) 1628 { 1629 vm_paddr_t pa; 1630 vm_page_t m; 1631 void *mem; 1632 int pages; 1633 int i; 1634 1635 pages = howmany(bytes, PAGE_SIZE); 1636 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1637 1638 *pflag = UMA_SLAB_BOOT; 1639 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1640 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1641 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1642 if (m == NULL) 1643 return (NULL); 1644 1645 pa = VM_PAGE_TO_PHYS(m); 1646 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1647 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1648 defined(__riscv) || defined(__powerpc64__) 1649 if ((wait & M_NODUMP) == 0) 1650 dump_add_page(pa); 1651 #endif 1652 } 1653 /* Allocate KVA and indirectly advance bootmem. */ 1654 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1655 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1656 if ((wait & M_ZERO) != 0) 1657 bzero(mem, pages * PAGE_SIZE); 1658 1659 return (mem); 1660 } 1661 1662 static void 1663 startup_free(void *mem, vm_size_t bytes) 1664 { 1665 vm_offset_t va; 1666 vm_page_t m; 1667 1668 va = (vm_offset_t)mem; 1669 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1670 pmap_remove(kernel_pmap, va, va + bytes); 1671 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1672 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1673 defined(__riscv) || defined(__powerpc64__) 1674 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1675 #endif 1676 vm_page_unwire_noq(m); 1677 vm_page_free(m); 1678 } 1679 } 1680 1681 /* 1682 * Allocates a number of pages from the system 1683 * 1684 * Arguments: 1685 * bytes The number of bytes requested 1686 * wait Shall we wait? 1687 * 1688 * Returns: 1689 * A pointer to the alloced memory or possibly 1690 * NULL if M_NOWAIT is set. 1691 */ 1692 static void * 1693 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1694 int wait) 1695 { 1696 void *p; /* Returned page */ 1697 1698 *pflag = UMA_SLAB_KERNEL; 1699 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1700 1701 return (p); 1702 } 1703 1704 static void * 1705 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1706 int wait) 1707 { 1708 struct pglist alloctail; 1709 vm_offset_t addr, zkva; 1710 int cpu, flags; 1711 vm_page_t p, p_next; 1712 #ifdef NUMA 1713 struct pcpu *pc; 1714 #endif 1715 1716 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1717 1718 TAILQ_INIT(&alloctail); 1719 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1720 malloc2vm_flags(wait); 1721 *pflag = UMA_SLAB_KERNEL; 1722 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1723 if (CPU_ABSENT(cpu)) { 1724 p = vm_page_alloc(NULL, 0, flags); 1725 } else { 1726 #ifndef NUMA 1727 p = vm_page_alloc(NULL, 0, flags); 1728 #else 1729 pc = pcpu_find(cpu); 1730 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1731 p = NULL; 1732 else 1733 p = vm_page_alloc_domain(NULL, 0, 1734 pc->pc_domain, flags); 1735 if (__predict_false(p == NULL)) 1736 p = vm_page_alloc(NULL, 0, flags); 1737 #endif 1738 } 1739 if (__predict_false(p == NULL)) 1740 goto fail; 1741 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1742 } 1743 if ((addr = kva_alloc(bytes)) == 0) 1744 goto fail; 1745 zkva = addr; 1746 TAILQ_FOREACH(p, &alloctail, listq) { 1747 pmap_qenter(zkva, &p, 1); 1748 zkva += PAGE_SIZE; 1749 } 1750 return ((void*)addr); 1751 fail: 1752 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1753 vm_page_unwire_noq(p); 1754 vm_page_free(p); 1755 } 1756 return (NULL); 1757 } 1758 1759 /* 1760 * Allocates a number of pages from within an object 1761 * 1762 * Arguments: 1763 * bytes The number of bytes requested 1764 * wait Shall we wait? 1765 * 1766 * Returns: 1767 * A pointer to the alloced memory or possibly 1768 * NULL if M_NOWAIT is set. 1769 */ 1770 static void * 1771 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1772 int wait) 1773 { 1774 TAILQ_HEAD(, vm_page) alloctail; 1775 u_long npages; 1776 vm_offset_t retkva, zkva; 1777 vm_page_t p, p_next; 1778 uma_keg_t keg; 1779 1780 TAILQ_INIT(&alloctail); 1781 keg = zone->uz_keg; 1782 1783 npages = howmany(bytes, PAGE_SIZE); 1784 while (npages > 0) { 1785 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1786 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1787 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1788 VM_ALLOC_NOWAIT)); 1789 if (p != NULL) { 1790 /* 1791 * Since the page does not belong to an object, its 1792 * listq is unused. 1793 */ 1794 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1795 npages--; 1796 continue; 1797 } 1798 /* 1799 * Page allocation failed, free intermediate pages and 1800 * exit. 1801 */ 1802 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1803 vm_page_unwire_noq(p); 1804 vm_page_free(p); 1805 } 1806 return (NULL); 1807 } 1808 *flags = UMA_SLAB_PRIV; 1809 zkva = keg->uk_kva + 1810 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1811 retkva = zkva; 1812 TAILQ_FOREACH(p, &alloctail, listq) { 1813 pmap_qenter(zkva, &p, 1); 1814 zkva += PAGE_SIZE; 1815 } 1816 1817 return ((void *)retkva); 1818 } 1819 1820 /* 1821 * Allocate physically contiguous pages. 1822 */ 1823 static void * 1824 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1825 int wait) 1826 { 1827 1828 *pflag = UMA_SLAB_KERNEL; 1829 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 1830 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 1831 } 1832 1833 /* 1834 * Frees a number of pages to the system 1835 * 1836 * Arguments: 1837 * mem A pointer to the memory to be freed 1838 * size The size of the memory being freed 1839 * flags The original p->us_flags field 1840 * 1841 * Returns: 1842 * Nothing 1843 */ 1844 static void 1845 page_free(void *mem, vm_size_t size, uint8_t flags) 1846 { 1847 1848 if ((flags & UMA_SLAB_BOOT) != 0) { 1849 startup_free(mem, size); 1850 return; 1851 } 1852 1853 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 1854 ("UMA: page_free used with invalid flags %x", flags)); 1855 1856 kmem_free((vm_offset_t)mem, size); 1857 } 1858 1859 /* 1860 * Frees pcpu zone allocations 1861 * 1862 * Arguments: 1863 * mem A pointer to the memory to be freed 1864 * size The size of the memory being freed 1865 * flags The original p->us_flags field 1866 * 1867 * Returns: 1868 * Nothing 1869 */ 1870 static void 1871 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1872 { 1873 vm_offset_t sva, curva; 1874 vm_paddr_t paddr; 1875 vm_page_t m; 1876 1877 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1878 1879 if ((flags & UMA_SLAB_BOOT) != 0) { 1880 startup_free(mem, size); 1881 return; 1882 } 1883 1884 sva = (vm_offset_t)mem; 1885 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1886 paddr = pmap_kextract(curva); 1887 m = PHYS_TO_VM_PAGE(paddr); 1888 vm_page_unwire_noq(m); 1889 vm_page_free(m); 1890 } 1891 pmap_qremove(sva, size >> PAGE_SHIFT); 1892 kva_free(sva, size); 1893 } 1894 1895 1896 /* 1897 * Zero fill initializer 1898 * 1899 * Arguments/Returns follow uma_init specifications 1900 */ 1901 static int 1902 zero_init(void *mem, int size, int flags) 1903 { 1904 bzero(mem, size); 1905 return (0); 1906 } 1907 1908 #ifdef INVARIANTS 1909 static struct noslabbits * 1910 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1911 { 1912 1913 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1914 } 1915 #endif 1916 1917 /* 1918 * Actual size of embedded struct slab (!OFFPAGE). 1919 */ 1920 static size_t 1921 slab_sizeof(int nitems) 1922 { 1923 size_t s; 1924 1925 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1926 return (roundup(s, UMA_ALIGN_PTR + 1)); 1927 } 1928 1929 #define UMA_FIXPT_SHIFT 31 1930 #define UMA_FRAC_FIXPT(n, d) \ 1931 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1932 #define UMA_FIXPT_PCT(f) \ 1933 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1934 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1935 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1936 1937 /* 1938 * Compute the number of items that will fit in a slab. If hdr is true, the 1939 * item count may be limited to provide space in the slab for an inline slab 1940 * header. Otherwise, all slab space will be provided for item storage. 1941 */ 1942 static u_int 1943 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1944 { 1945 u_int ipers; 1946 u_int padpi; 1947 1948 /* The padding between items is not needed after the last item. */ 1949 padpi = rsize - size; 1950 1951 if (hdr) { 1952 /* 1953 * Start with the maximum item count and remove items until 1954 * the slab header first alongside the allocatable memory. 1955 */ 1956 for (ipers = MIN(SLAB_MAX_SETSIZE, 1957 (slabsize + padpi - slab_sizeof(1)) / rsize); 1958 ipers > 0 && 1959 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 1960 ipers--) 1961 continue; 1962 } else { 1963 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 1964 } 1965 1966 return (ipers); 1967 } 1968 1969 struct keg_layout_result { 1970 u_int format; 1971 u_int slabsize; 1972 u_int ipers; 1973 u_int eff; 1974 }; 1975 1976 static void 1977 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 1978 struct keg_layout_result *kl) 1979 { 1980 u_int total; 1981 1982 kl->format = fmt; 1983 kl->slabsize = slabsize; 1984 1985 /* Handle INTERNAL as inline with an extra page. */ 1986 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 1987 kl->format &= ~UMA_ZFLAG_INTERNAL; 1988 kl->slabsize += PAGE_SIZE; 1989 } 1990 1991 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 1992 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 1993 1994 /* Account for memory used by an offpage slab header. */ 1995 total = kl->slabsize; 1996 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 1997 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 1998 1999 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2000 } 2001 2002 /* 2003 * Determine the format of a uma keg. This determines where the slab header 2004 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2005 * 2006 * Arguments 2007 * keg The zone we should initialize 2008 * 2009 * Returns 2010 * Nothing 2011 */ 2012 static void 2013 keg_layout(uma_keg_t keg) 2014 { 2015 struct keg_layout_result kl = {}, kl_tmp; 2016 u_int fmts[2]; 2017 u_int alignsize; 2018 u_int nfmt; 2019 u_int pages; 2020 u_int rsize; 2021 u_int slabsize; 2022 u_int i, j; 2023 2024 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2025 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2026 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2027 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2028 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2029 PRINT_UMA_ZFLAGS)); 2030 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2031 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2032 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2033 PRINT_UMA_ZFLAGS)); 2034 2035 alignsize = keg->uk_align + 1; 2036 2037 /* 2038 * Calculate the size of each allocation (rsize) according to 2039 * alignment. If the requested size is smaller than we have 2040 * allocation bits for we round it up. 2041 */ 2042 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2043 rsize = roundup2(rsize, alignsize); 2044 2045 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2046 /* 2047 * We want one item to start on every align boundary in a page. 2048 * To do this we will span pages. We will also extend the item 2049 * by the size of align if it is an even multiple of align. 2050 * Otherwise, it would fall on the same boundary every time. 2051 */ 2052 if ((rsize & alignsize) == 0) 2053 rsize += alignsize; 2054 slabsize = rsize * (PAGE_SIZE / alignsize); 2055 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2056 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2057 slabsize = round_page(slabsize); 2058 } else { 2059 /* 2060 * Start with a slab size of as many pages as it takes to 2061 * represent a single item. We will try to fit as many 2062 * additional items into the slab as possible. 2063 */ 2064 slabsize = round_page(keg->uk_size); 2065 } 2066 2067 /* Build a list of all of the available formats for this keg. */ 2068 nfmt = 0; 2069 2070 /* Evaluate an inline slab layout. */ 2071 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2072 fmts[nfmt++] = 0; 2073 2074 /* TODO: vm_page-embedded slab. */ 2075 2076 /* 2077 * We can't do OFFPAGE if we're internal or if we've been 2078 * asked to not go to the VM for buckets. If we do this we 2079 * may end up going to the VM for slabs which we do not want 2080 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2081 * In those cases, evaluate a pseudo-format called INTERNAL 2082 * which has an inline slab header and one extra page to 2083 * guarantee that it fits. 2084 * 2085 * Otherwise, see if using an OFFPAGE slab will improve our 2086 * efficiency. 2087 */ 2088 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2089 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2090 else 2091 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2092 2093 /* 2094 * Choose a slab size and format which satisfy the minimum efficiency. 2095 * Prefer the smallest slab size that meets the constraints. 2096 * 2097 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2098 * for small items (up to PAGE_SIZE), the iteration increment is one 2099 * page; and for large items, the increment is one item. 2100 */ 2101 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2102 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2103 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2104 rsize, i)); 2105 for ( ; ; i++) { 2106 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2107 round_page(rsize * (i - 1) + keg->uk_size); 2108 2109 for (j = 0; j < nfmt; j++) { 2110 /* Only if we have no viable format yet. */ 2111 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2112 kl.ipers > 0) 2113 continue; 2114 2115 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2116 if (kl_tmp.eff <= kl.eff) 2117 continue; 2118 2119 kl = kl_tmp; 2120 2121 CTR6(KTR_UMA, "keg %s layout: format %#x " 2122 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2123 keg->uk_name, kl.format, kl.ipers, rsize, 2124 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2125 2126 /* Stop when we reach the minimum efficiency. */ 2127 if (kl.eff >= UMA_MIN_EFF) 2128 break; 2129 } 2130 2131 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2132 slabsize >= SLAB_MAX_SETSIZE * rsize || 2133 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2134 break; 2135 } 2136 2137 pages = atop(kl.slabsize); 2138 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2139 pages *= mp_maxid + 1; 2140 2141 keg->uk_rsize = rsize; 2142 keg->uk_ipers = kl.ipers; 2143 keg->uk_ppera = pages; 2144 keg->uk_flags |= kl.format; 2145 2146 /* 2147 * How do we find the slab header if it is offpage or if not all item 2148 * start addresses are in the same page? We could solve the latter 2149 * case with vaddr alignment, but we don't. 2150 */ 2151 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2152 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2153 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2154 keg->uk_flags |= UMA_ZFLAG_HASH; 2155 else 2156 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2157 } 2158 2159 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2160 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2161 pages); 2162 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2163 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2164 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2165 keg->uk_ipers, pages)); 2166 } 2167 2168 /* 2169 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2170 * the keg onto the global keg list. 2171 * 2172 * Arguments/Returns follow uma_ctor specifications 2173 * udata Actually uma_kctor_args 2174 */ 2175 static int 2176 keg_ctor(void *mem, int size, void *udata, int flags) 2177 { 2178 struct uma_kctor_args *arg = udata; 2179 uma_keg_t keg = mem; 2180 uma_zone_t zone; 2181 int i; 2182 2183 bzero(keg, size); 2184 keg->uk_size = arg->size; 2185 keg->uk_init = arg->uminit; 2186 keg->uk_fini = arg->fini; 2187 keg->uk_align = arg->align; 2188 keg->uk_reserve = 0; 2189 keg->uk_flags = arg->flags; 2190 2191 /* 2192 * We use a global round-robin policy by default. Zones with 2193 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2194 * case the iterator is never run. 2195 */ 2196 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2197 keg->uk_dr.dr_iter = 0; 2198 2199 /* 2200 * The master zone is passed to us at keg-creation time. 2201 */ 2202 zone = arg->zone; 2203 keg->uk_name = zone->uz_name; 2204 2205 if (arg->flags & UMA_ZONE_ZINIT) 2206 keg->uk_init = zero_init; 2207 2208 if (arg->flags & UMA_ZONE_MALLOC) 2209 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2210 2211 #ifndef SMP 2212 keg->uk_flags &= ~UMA_ZONE_PCPU; 2213 #endif 2214 2215 keg_layout(keg); 2216 2217 /* 2218 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2219 * work on. Use round-robin for everything else. 2220 * 2221 * Zones may override the default by specifying either. 2222 */ 2223 #ifdef NUMA 2224 if ((keg->uk_flags & 2225 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2226 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2227 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2228 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2229 #endif 2230 2231 /* 2232 * If we haven't booted yet we need allocations to go through the 2233 * startup cache until the vm is ready. 2234 */ 2235 #ifdef UMA_MD_SMALL_ALLOC 2236 if (keg->uk_ppera == 1) 2237 keg->uk_allocf = uma_small_alloc; 2238 else 2239 #endif 2240 if (booted < BOOT_KVA) 2241 keg->uk_allocf = startup_alloc; 2242 else if (keg->uk_flags & UMA_ZONE_PCPU) 2243 keg->uk_allocf = pcpu_page_alloc; 2244 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2245 keg->uk_allocf = contig_alloc; 2246 else 2247 keg->uk_allocf = page_alloc; 2248 #ifdef UMA_MD_SMALL_ALLOC 2249 if (keg->uk_ppera == 1) 2250 keg->uk_freef = uma_small_free; 2251 else 2252 #endif 2253 if (keg->uk_flags & UMA_ZONE_PCPU) 2254 keg->uk_freef = pcpu_page_free; 2255 else 2256 keg->uk_freef = page_free; 2257 2258 /* 2259 * Initialize keg's locks. 2260 */ 2261 for (i = 0; i < vm_ndomains; i++) 2262 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2263 2264 /* 2265 * If we're putting the slab header in the actual page we need to 2266 * figure out where in each page it goes. See slab_sizeof 2267 * definition. 2268 */ 2269 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2270 size_t shsize; 2271 2272 shsize = slab_sizeof(keg->uk_ipers); 2273 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2274 /* 2275 * The only way the following is possible is if with our 2276 * UMA_ALIGN_PTR adjustments we are now bigger than 2277 * UMA_SLAB_SIZE. I haven't checked whether this is 2278 * mathematically possible for all cases, so we make 2279 * sure here anyway. 2280 */ 2281 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2282 ("zone %s ipers %d rsize %d size %d slab won't fit", 2283 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2284 } 2285 2286 if (keg->uk_flags & UMA_ZFLAG_HASH) 2287 hash_alloc(&keg->uk_hash, 0); 2288 2289 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2290 2291 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2292 2293 rw_wlock(&uma_rwlock); 2294 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2295 rw_wunlock(&uma_rwlock); 2296 return (0); 2297 } 2298 2299 static void 2300 zone_kva_available(uma_zone_t zone, void *unused) 2301 { 2302 uma_keg_t keg; 2303 2304 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2305 return; 2306 KEG_GET(zone, keg); 2307 2308 if (keg->uk_allocf == startup_alloc) { 2309 /* Switch to the real allocator. */ 2310 if (keg->uk_flags & UMA_ZONE_PCPU) 2311 keg->uk_allocf = pcpu_page_alloc; 2312 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2313 keg->uk_ppera > 1) 2314 keg->uk_allocf = contig_alloc; 2315 else 2316 keg->uk_allocf = page_alloc; 2317 } 2318 } 2319 2320 static void 2321 zone_alloc_counters(uma_zone_t zone, void *unused) 2322 { 2323 2324 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2325 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2326 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2327 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2328 } 2329 2330 static void 2331 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2332 { 2333 uma_zone_domain_t zdom; 2334 uma_domain_t dom; 2335 uma_keg_t keg; 2336 struct sysctl_oid *oid, *domainoid; 2337 int domains, i, cnt; 2338 static const char *nokeg = "cache zone"; 2339 char *c; 2340 2341 /* 2342 * Make a sysctl safe copy of the zone name by removing 2343 * any special characters and handling dups by appending 2344 * an index. 2345 */ 2346 if (zone->uz_namecnt != 0) { 2347 /* Count the number of decimal digits and '_' separator. */ 2348 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2349 cnt /= 10; 2350 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2351 M_UMA, M_WAITOK); 2352 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2353 zone->uz_namecnt); 2354 } else 2355 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2356 for (c = zone->uz_ctlname; *c != '\0'; c++) 2357 if (strchr("./\\ -", *c) != NULL) 2358 *c = '_'; 2359 2360 /* 2361 * Basic parameters at the root. 2362 */ 2363 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2364 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2365 oid = zone->uz_oid; 2366 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2367 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2368 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2369 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2370 zone, 0, sysctl_handle_uma_zone_flags, "A", 2371 "Allocator configuration flags"); 2372 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2373 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2374 "Desired per-cpu cache size"); 2375 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2376 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2377 "Maximum allowed per-cpu cache size"); 2378 2379 /* 2380 * keg if present. 2381 */ 2382 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2383 domains = vm_ndomains; 2384 else 2385 domains = 1; 2386 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2387 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2388 keg = zone->uz_keg; 2389 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2390 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2391 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2392 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2393 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2394 "Real object size with alignment"); 2395 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2396 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2397 "pages per-slab allocation"); 2398 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2399 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2400 "items available per-slab"); 2401 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2402 "align", CTLFLAG_RD, &keg->uk_align, 0, 2403 "item alignment mask"); 2404 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2405 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2406 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2407 "Slab utilization (100 - internal fragmentation %)"); 2408 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2409 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2410 for (i = 0; i < domains; i++) { 2411 dom = &keg->uk_domain[i]; 2412 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2413 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2414 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2415 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2416 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2417 "Total pages currently allocated from VM"); 2418 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2419 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2420 "items free in the slab layer"); 2421 } 2422 } else 2423 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2424 "name", CTLFLAG_RD, nokeg, "Keg name"); 2425 2426 /* 2427 * Information about zone limits. 2428 */ 2429 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2430 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2431 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2432 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2433 zone, 0, sysctl_handle_uma_zone_items, "QU", 2434 "current number of allocated items if limit is set"); 2435 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2436 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2437 "Maximum number of cached items"); 2438 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2439 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2440 "Number of threads sleeping at limit"); 2441 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2442 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2443 "Total zone limit sleeps"); 2444 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2445 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2446 "Maximum number of items in each domain's bucket cache"); 2447 2448 /* 2449 * Per-domain zone information. 2450 */ 2451 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2452 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2453 for (i = 0; i < domains; i++) { 2454 zdom = ZDOM_GET(zone, i); 2455 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2456 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2457 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2458 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2459 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2460 "number of items in this domain"); 2461 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2462 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2463 "maximum item count in this period"); 2464 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2465 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2466 "minimum item count in this period"); 2467 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2468 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2469 "Working set size"); 2470 } 2471 2472 /* 2473 * General statistics. 2474 */ 2475 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2476 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2477 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2478 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2479 zone, 1, sysctl_handle_uma_zone_cur, "I", 2480 "Current number of allocated items"); 2481 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2482 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2483 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2484 "Total allocation calls"); 2485 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2486 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2487 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2488 "Total free calls"); 2489 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2490 "fails", CTLFLAG_RD, &zone->uz_fails, 2491 "Number of allocation failures"); 2492 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2493 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2494 "Free calls from the wrong domain"); 2495 } 2496 2497 struct uma_zone_count { 2498 const char *name; 2499 int count; 2500 }; 2501 2502 static void 2503 zone_count(uma_zone_t zone, void *arg) 2504 { 2505 struct uma_zone_count *cnt; 2506 2507 cnt = arg; 2508 /* 2509 * Some zones are rapidly created with identical names and 2510 * destroyed out of order. This can lead to gaps in the count. 2511 * Use one greater than the maximum observed for this name. 2512 */ 2513 if (strcmp(zone->uz_name, cnt->name) == 0) 2514 cnt->count = MAX(cnt->count, 2515 zone->uz_namecnt + 1); 2516 } 2517 2518 static void 2519 zone_update_caches(uma_zone_t zone) 2520 { 2521 int i; 2522 2523 for (i = 0; i <= mp_maxid; i++) { 2524 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2525 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2526 } 2527 } 2528 2529 /* 2530 * Zone header ctor. This initializes all fields, locks, etc. 2531 * 2532 * Arguments/Returns follow uma_ctor specifications 2533 * udata Actually uma_zctor_args 2534 */ 2535 static int 2536 zone_ctor(void *mem, int size, void *udata, int flags) 2537 { 2538 struct uma_zone_count cnt; 2539 struct uma_zctor_args *arg = udata; 2540 uma_zone_domain_t zdom; 2541 uma_zone_t zone = mem; 2542 uma_zone_t z; 2543 uma_keg_t keg; 2544 int i; 2545 2546 bzero(zone, size); 2547 zone->uz_name = arg->name; 2548 zone->uz_ctor = arg->ctor; 2549 zone->uz_dtor = arg->dtor; 2550 zone->uz_init = NULL; 2551 zone->uz_fini = NULL; 2552 zone->uz_sleeps = 0; 2553 zone->uz_bucket_size = 0; 2554 zone->uz_bucket_size_min = 0; 2555 zone->uz_bucket_size_max = BUCKET_MAX; 2556 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2557 zone->uz_warning = NULL; 2558 /* The domain structures follow the cpu structures. */ 2559 zone->uz_bucket_max = ULONG_MAX; 2560 timevalclear(&zone->uz_ratecheck); 2561 2562 /* Count the number of duplicate names. */ 2563 cnt.name = arg->name; 2564 cnt.count = 0; 2565 zone_foreach(zone_count, &cnt); 2566 zone->uz_namecnt = cnt.count; 2567 ZONE_CROSS_LOCK_INIT(zone); 2568 2569 for (i = 0; i < vm_ndomains; i++) { 2570 zdom = ZDOM_GET(zone, i); 2571 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2572 STAILQ_INIT(&zdom->uzd_buckets); 2573 } 2574 2575 #ifdef INVARIANTS 2576 if (arg->uminit == trash_init && arg->fini == trash_fini) 2577 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2578 #endif 2579 2580 /* 2581 * This is a pure cache zone, no kegs. 2582 */ 2583 if (arg->import) { 2584 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2585 ("zone_ctor: Import specified for non-cache zone.")); 2586 zone->uz_flags = arg->flags; 2587 zone->uz_size = arg->size; 2588 zone->uz_import = arg->import; 2589 zone->uz_release = arg->release; 2590 zone->uz_arg = arg->arg; 2591 #ifdef NUMA 2592 /* 2593 * Cache zones are round-robin unless a policy is 2594 * specified because they may have incompatible 2595 * constraints. 2596 */ 2597 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2598 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2599 #endif 2600 rw_wlock(&uma_rwlock); 2601 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2602 rw_wunlock(&uma_rwlock); 2603 goto out; 2604 } 2605 2606 /* 2607 * Use the regular zone/keg/slab allocator. 2608 */ 2609 zone->uz_import = zone_import; 2610 zone->uz_release = zone_release; 2611 zone->uz_arg = zone; 2612 keg = arg->keg; 2613 2614 if (arg->flags & UMA_ZONE_SECONDARY) { 2615 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2616 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2617 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2618 zone->uz_init = arg->uminit; 2619 zone->uz_fini = arg->fini; 2620 zone->uz_flags |= UMA_ZONE_SECONDARY; 2621 rw_wlock(&uma_rwlock); 2622 ZONE_LOCK(zone); 2623 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2624 if (LIST_NEXT(z, uz_link) == NULL) { 2625 LIST_INSERT_AFTER(z, zone, uz_link); 2626 break; 2627 } 2628 } 2629 ZONE_UNLOCK(zone); 2630 rw_wunlock(&uma_rwlock); 2631 } else if (keg == NULL) { 2632 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2633 arg->align, arg->flags)) == NULL) 2634 return (ENOMEM); 2635 } else { 2636 struct uma_kctor_args karg; 2637 int error; 2638 2639 /* We should only be here from uma_startup() */ 2640 karg.size = arg->size; 2641 karg.uminit = arg->uminit; 2642 karg.fini = arg->fini; 2643 karg.align = arg->align; 2644 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2645 karg.zone = zone; 2646 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2647 flags); 2648 if (error) 2649 return (error); 2650 } 2651 2652 /* Inherit properties from the keg. */ 2653 zone->uz_keg = keg; 2654 zone->uz_size = keg->uk_size; 2655 zone->uz_flags |= (keg->uk_flags & 2656 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2657 2658 out: 2659 if (booted >= BOOT_PCPU) { 2660 zone_alloc_counters(zone, NULL); 2661 if (booted >= BOOT_RUNNING) 2662 zone_alloc_sysctl(zone, NULL); 2663 } else { 2664 zone->uz_allocs = EARLY_COUNTER; 2665 zone->uz_frees = EARLY_COUNTER; 2666 zone->uz_fails = EARLY_COUNTER; 2667 } 2668 2669 /* Caller requests a private SMR context. */ 2670 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2671 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2672 2673 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2674 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2675 ("Invalid zone flag combination")); 2676 if (arg->flags & UMA_ZFLAG_INTERNAL) 2677 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2678 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2679 zone->uz_bucket_size = BUCKET_MAX; 2680 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2681 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2682 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2683 zone->uz_bucket_size = 0; 2684 else 2685 zone->uz_bucket_size = bucket_select(zone->uz_size); 2686 zone->uz_bucket_size_min = zone->uz_bucket_size; 2687 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2688 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2689 zone_update_caches(zone); 2690 2691 return (0); 2692 } 2693 2694 /* 2695 * Keg header dtor. This frees all data, destroys locks, frees the hash 2696 * table and removes the keg from the global list. 2697 * 2698 * Arguments/Returns follow uma_dtor specifications 2699 * udata unused 2700 */ 2701 static void 2702 keg_dtor(void *arg, int size, void *udata) 2703 { 2704 uma_keg_t keg; 2705 uint32_t free, pages; 2706 int i; 2707 2708 keg = (uma_keg_t)arg; 2709 free = pages = 0; 2710 for (i = 0; i < vm_ndomains; i++) { 2711 free += keg->uk_domain[i].ud_free_items; 2712 pages += keg->uk_domain[i].ud_pages; 2713 KEG_LOCK_FINI(keg, i); 2714 } 2715 if (pages != 0) 2716 printf("Freed UMA keg (%s) was not empty (%u items). " 2717 " Lost %u pages of memory.\n", 2718 keg->uk_name ? keg->uk_name : "", 2719 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2720 2721 hash_free(&keg->uk_hash); 2722 } 2723 2724 /* 2725 * Zone header dtor. 2726 * 2727 * Arguments/Returns follow uma_dtor specifications 2728 * udata unused 2729 */ 2730 static void 2731 zone_dtor(void *arg, int size, void *udata) 2732 { 2733 uma_zone_t zone; 2734 uma_keg_t keg; 2735 int i; 2736 2737 zone = (uma_zone_t)arg; 2738 2739 sysctl_remove_oid(zone->uz_oid, 1, 1); 2740 2741 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2742 cache_drain(zone); 2743 2744 rw_wlock(&uma_rwlock); 2745 LIST_REMOVE(zone, uz_link); 2746 rw_wunlock(&uma_rwlock); 2747 zone_reclaim(zone, M_WAITOK, true); 2748 2749 /* 2750 * We only destroy kegs from non secondary/non cache zones. 2751 */ 2752 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2753 keg = zone->uz_keg; 2754 rw_wlock(&uma_rwlock); 2755 LIST_REMOVE(keg, uk_link); 2756 rw_wunlock(&uma_rwlock); 2757 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2758 } 2759 counter_u64_free(zone->uz_allocs); 2760 counter_u64_free(zone->uz_frees); 2761 counter_u64_free(zone->uz_fails); 2762 counter_u64_free(zone->uz_xdomain); 2763 free(zone->uz_ctlname, M_UMA); 2764 for (i = 0; i < vm_ndomains; i++) 2765 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 2766 ZONE_CROSS_LOCK_FINI(zone); 2767 } 2768 2769 static void 2770 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2771 { 2772 uma_keg_t keg; 2773 uma_zone_t zone; 2774 2775 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2776 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2777 zfunc(zone, arg); 2778 } 2779 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2780 zfunc(zone, arg); 2781 } 2782 2783 /* 2784 * Traverses every zone in the system and calls a callback 2785 * 2786 * Arguments: 2787 * zfunc A pointer to a function which accepts a zone 2788 * as an argument. 2789 * 2790 * Returns: 2791 * Nothing 2792 */ 2793 static void 2794 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2795 { 2796 2797 rw_rlock(&uma_rwlock); 2798 zone_foreach_unlocked(zfunc, arg); 2799 rw_runlock(&uma_rwlock); 2800 } 2801 2802 /* 2803 * Initialize the kernel memory allocator. This is done after pages can be 2804 * allocated but before general KVA is available. 2805 */ 2806 void 2807 uma_startup1(vm_offset_t virtual_avail) 2808 { 2809 struct uma_zctor_args args; 2810 size_t ksize, zsize, size; 2811 uma_keg_t masterkeg; 2812 uintptr_t m; 2813 uint8_t pflag; 2814 2815 bootstart = bootmem = virtual_avail; 2816 2817 rw_init(&uma_rwlock, "UMA lock"); 2818 sx_init(&uma_reclaim_lock, "umareclaim"); 2819 2820 ksize = sizeof(struct uma_keg) + 2821 (sizeof(struct uma_domain) * vm_ndomains); 2822 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2823 zsize = sizeof(struct uma_zone) + 2824 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2825 (sizeof(struct uma_zone_domain) * vm_ndomains); 2826 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2827 2828 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2829 size = (zsize * 2) + ksize; 2830 m = (uintptr_t)startup_alloc(NULL, size, 0, &pflag, M_NOWAIT | M_ZERO); 2831 zones = (uma_zone_t)m; 2832 m += zsize; 2833 kegs = (uma_zone_t)m; 2834 m += zsize; 2835 masterkeg = (uma_keg_t)m; 2836 2837 /* "manually" create the initial zone */ 2838 memset(&args, 0, sizeof(args)); 2839 args.name = "UMA Kegs"; 2840 args.size = ksize; 2841 args.ctor = keg_ctor; 2842 args.dtor = keg_dtor; 2843 args.uminit = zero_init; 2844 args.fini = NULL; 2845 args.keg = masterkeg; 2846 args.align = UMA_SUPER_ALIGN - 1; 2847 args.flags = UMA_ZFLAG_INTERNAL; 2848 zone_ctor(kegs, zsize, &args, M_WAITOK); 2849 2850 args.name = "UMA Zones"; 2851 args.size = zsize; 2852 args.ctor = zone_ctor; 2853 args.dtor = zone_dtor; 2854 args.uminit = zero_init; 2855 args.fini = NULL; 2856 args.keg = NULL; 2857 args.align = UMA_SUPER_ALIGN - 1; 2858 args.flags = UMA_ZFLAG_INTERNAL; 2859 zone_ctor(zones, zsize, &args, M_WAITOK); 2860 2861 /* Now make zones for slab headers */ 2862 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2863 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2864 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2865 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2866 2867 hashzone = uma_zcreate("UMA Hash", 2868 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2869 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2870 2871 bucket_init(); 2872 smr_init(); 2873 } 2874 2875 #ifndef UMA_MD_SMALL_ALLOC 2876 extern void vm_radix_reserve_kva(void); 2877 #endif 2878 2879 /* 2880 * Advertise the availability of normal kva allocations and switch to 2881 * the default back-end allocator. Marks the KVA we consumed on startup 2882 * as used in the map. 2883 */ 2884 void 2885 uma_startup2(void) 2886 { 2887 2888 if (bootstart != bootmem) { 2889 vm_map_lock(kernel_map); 2890 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2891 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2892 vm_map_unlock(kernel_map); 2893 } 2894 2895 #ifndef UMA_MD_SMALL_ALLOC 2896 /* Set up radix zone to use noobj_alloc. */ 2897 vm_radix_reserve_kva(); 2898 #endif 2899 2900 booted = BOOT_KVA; 2901 zone_foreach_unlocked(zone_kva_available, NULL); 2902 bucket_enable(); 2903 } 2904 2905 /* 2906 * Allocate counters as early as possible so that boot-time allocations are 2907 * accounted more precisely. 2908 */ 2909 static void 2910 uma_startup_pcpu(void *arg __unused) 2911 { 2912 2913 zone_foreach_unlocked(zone_alloc_counters, NULL); 2914 booted = BOOT_PCPU; 2915 } 2916 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 2917 2918 /* 2919 * Finish our initialization steps. 2920 */ 2921 static void 2922 uma_startup3(void *arg __unused) 2923 { 2924 2925 #ifdef INVARIANTS 2926 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2927 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2928 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2929 #endif 2930 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2931 callout_init(&uma_callout, 1); 2932 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2933 booted = BOOT_RUNNING; 2934 2935 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2936 EVENTHANDLER_PRI_FIRST); 2937 } 2938 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 2939 2940 static void 2941 uma_shutdown(void) 2942 { 2943 2944 booted = BOOT_SHUTDOWN; 2945 } 2946 2947 static uma_keg_t 2948 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2949 int align, uint32_t flags) 2950 { 2951 struct uma_kctor_args args; 2952 2953 args.size = size; 2954 args.uminit = uminit; 2955 args.fini = fini; 2956 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2957 args.flags = flags; 2958 args.zone = zone; 2959 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2960 } 2961 2962 /* Public functions */ 2963 /* See uma.h */ 2964 void 2965 uma_set_align(int align) 2966 { 2967 2968 if (align != UMA_ALIGN_CACHE) 2969 uma_align_cache = align; 2970 } 2971 2972 /* See uma.h */ 2973 uma_zone_t 2974 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2975 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2976 2977 { 2978 struct uma_zctor_args args; 2979 uma_zone_t res; 2980 2981 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2982 align, name)); 2983 2984 /* This stuff is essential for the zone ctor */ 2985 memset(&args, 0, sizeof(args)); 2986 args.name = name; 2987 args.size = size; 2988 args.ctor = ctor; 2989 args.dtor = dtor; 2990 args.uminit = uminit; 2991 args.fini = fini; 2992 #ifdef INVARIANTS 2993 /* 2994 * Inject procedures which check for memory use after free if we are 2995 * allowed to scramble the memory while it is not allocated. This 2996 * requires that: UMA is actually able to access the memory, no init 2997 * or fini procedures, no dependency on the initial value of the 2998 * memory, and no (legitimate) use of the memory after free. Note, 2999 * the ctor and dtor do not need to be empty. 3000 */ 3001 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3002 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3003 args.uminit = trash_init; 3004 args.fini = trash_fini; 3005 } 3006 #endif 3007 args.align = align; 3008 args.flags = flags; 3009 args.keg = NULL; 3010 3011 sx_slock(&uma_reclaim_lock); 3012 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3013 sx_sunlock(&uma_reclaim_lock); 3014 3015 return (res); 3016 } 3017 3018 /* See uma.h */ 3019 uma_zone_t 3020 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3021 uma_init zinit, uma_fini zfini, uma_zone_t master) 3022 { 3023 struct uma_zctor_args args; 3024 uma_keg_t keg; 3025 uma_zone_t res; 3026 3027 keg = master->uz_keg; 3028 memset(&args, 0, sizeof(args)); 3029 args.name = name; 3030 args.size = keg->uk_size; 3031 args.ctor = ctor; 3032 args.dtor = dtor; 3033 args.uminit = zinit; 3034 args.fini = zfini; 3035 args.align = keg->uk_align; 3036 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3037 args.keg = keg; 3038 3039 sx_slock(&uma_reclaim_lock); 3040 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3041 sx_sunlock(&uma_reclaim_lock); 3042 3043 return (res); 3044 } 3045 3046 /* See uma.h */ 3047 uma_zone_t 3048 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3049 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3050 void *arg, int flags) 3051 { 3052 struct uma_zctor_args args; 3053 3054 memset(&args, 0, sizeof(args)); 3055 args.name = name; 3056 args.size = size; 3057 args.ctor = ctor; 3058 args.dtor = dtor; 3059 args.uminit = zinit; 3060 args.fini = zfini; 3061 args.import = zimport; 3062 args.release = zrelease; 3063 args.arg = arg; 3064 args.align = 0; 3065 args.flags = flags | UMA_ZFLAG_CACHE; 3066 3067 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3068 } 3069 3070 /* See uma.h */ 3071 void 3072 uma_zdestroy(uma_zone_t zone) 3073 { 3074 3075 /* 3076 * Large slabs are expensive to reclaim, so don't bother doing 3077 * unnecessary work if we're shutting down. 3078 */ 3079 if (booted == BOOT_SHUTDOWN && 3080 zone->uz_fini == NULL && zone->uz_release == zone_release) 3081 return; 3082 sx_slock(&uma_reclaim_lock); 3083 zone_free_item(zones, zone, NULL, SKIP_NONE); 3084 sx_sunlock(&uma_reclaim_lock); 3085 } 3086 3087 void 3088 uma_zwait(uma_zone_t zone) 3089 { 3090 3091 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3092 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3093 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3094 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3095 else 3096 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3097 } 3098 3099 void * 3100 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3101 { 3102 void *item, *pcpu_item; 3103 #ifdef SMP 3104 int i; 3105 3106 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3107 #endif 3108 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3109 if (item == NULL) 3110 return (NULL); 3111 pcpu_item = zpcpu_base_to_offset(item); 3112 if (flags & M_ZERO) { 3113 #ifdef SMP 3114 for (i = 0; i <= mp_maxid; i++) 3115 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3116 #else 3117 bzero(item, zone->uz_size); 3118 #endif 3119 } 3120 return (pcpu_item); 3121 } 3122 3123 /* 3124 * A stub while both regular and pcpu cases are identical. 3125 */ 3126 void 3127 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3128 { 3129 void *item; 3130 3131 #ifdef SMP 3132 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3133 #endif 3134 item = zpcpu_offset_to_base(pcpu_item); 3135 uma_zfree_arg(zone, item, udata); 3136 } 3137 3138 static inline void * 3139 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3140 void *item) 3141 { 3142 #ifdef INVARIANTS 3143 bool skipdbg; 3144 3145 skipdbg = uma_dbg_zskip(zone, item); 3146 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3147 zone->uz_ctor != trash_ctor) 3148 trash_ctor(item, size, udata, flags); 3149 #endif 3150 /* Check flags before loading ctor pointer. */ 3151 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3152 __predict_false(zone->uz_ctor != NULL) && 3153 zone->uz_ctor(item, size, udata, flags) != 0) { 3154 counter_u64_add(zone->uz_fails, 1); 3155 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3156 return (NULL); 3157 } 3158 #ifdef INVARIANTS 3159 if (!skipdbg) 3160 uma_dbg_alloc(zone, NULL, item); 3161 #endif 3162 if (__predict_false(flags & M_ZERO)) 3163 return (memset(item, 0, size)); 3164 3165 return (item); 3166 } 3167 3168 static inline void 3169 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3170 enum zfreeskip skip) 3171 { 3172 #ifdef INVARIANTS 3173 bool skipdbg; 3174 3175 skipdbg = uma_dbg_zskip(zone, item); 3176 if (skip == SKIP_NONE && !skipdbg) { 3177 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3178 uma_dbg_free(zone, udata, item); 3179 else 3180 uma_dbg_free(zone, NULL, item); 3181 } 3182 #endif 3183 if (__predict_true(skip < SKIP_DTOR)) { 3184 if (zone->uz_dtor != NULL) 3185 zone->uz_dtor(item, size, udata); 3186 #ifdef INVARIANTS 3187 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3188 zone->uz_dtor != trash_dtor) 3189 trash_dtor(item, size, udata); 3190 #endif 3191 } 3192 } 3193 3194 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3195 #define UMA_ZALLOC_DEBUG 3196 static int 3197 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3198 { 3199 int error; 3200 3201 error = 0; 3202 #ifdef WITNESS 3203 if (flags & M_WAITOK) { 3204 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3205 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3206 } 3207 #endif 3208 3209 #ifdef INVARIANTS 3210 KASSERT((flags & M_EXEC) == 0, 3211 ("uma_zalloc_debug: called with M_EXEC")); 3212 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3213 ("uma_zalloc_debug: called within spinlock or critical section")); 3214 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3215 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3216 #endif 3217 3218 #ifdef DEBUG_MEMGUARD 3219 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3220 void *item; 3221 item = memguard_alloc(zone->uz_size, flags); 3222 if (item != NULL) { 3223 error = EJUSTRETURN; 3224 if (zone->uz_init != NULL && 3225 zone->uz_init(item, zone->uz_size, flags) != 0) { 3226 *itemp = NULL; 3227 return (error); 3228 } 3229 if (zone->uz_ctor != NULL && 3230 zone->uz_ctor(item, zone->uz_size, udata, 3231 flags) != 0) { 3232 counter_u64_add(zone->uz_fails, 1); 3233 zone->uz_fini(item, zone->uz_size); 3234 *itemp = NULL; 3235 return (error); 3236 } 3237 *itemp = item; 3238 return (error); 3239 } 3240 /* This is unfortunate but should not be fatal. */ 3241 } 3242 #endif 3243 return (error); 3244 } 3245 3246 static int 3247 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3248 { 3249 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3250 ("uma_zfree_debug: called with spinlock or critical section held")); 3251 3252 #ifdef DEBUG_MEMGUARD 3253 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3254 if (zone->uz_dtor != NULL) 3255 zone->uz_dtor(item, zone->uz_size, udata); 3256 if (zone->uz_fini != NULL) 3257 zone->uz_fini(item, zone->uz_size); 3258 memguard_free(item); 3259 return (EJUSTRETURN); 3260 } 3261 #endif 3262 return (0); 3263 } 3264 #endif 3265 3266 static inline void * 3267 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3268 void *udata, int flags) 3269 { 3270 void *item; 3271 int size, uz_flags; 3272 3273 item = cache_bucket_pop(cache, bucket); 3274 size = cache_uz_size(cache); 3275 uz_flags = cache_uz_flags(cache); 3276 critical_exit(); 3277 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3278 } 3279 3280 static __noinline void * 3281 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3282 { 3283 uma_cache_bucket_t bucket; 3284 int domain; 3285 3286 while (cache_alloc(zone, cache, udata, flags)) { 3287 cache = &zone->uz_cpu[curcpu]; 3288 bucket = &cache->uc_allocbucket; 3289 if (__predict_false(bucket->ucb_cnt == 0)) 3290 continue; 3291 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3292 } 3293 critical_exit(); 3294 3295 /* 3296 * We can not get a bucket so try to return a single item. 3297 */ 3298 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3299 domain = PCPU_GET(domain); 3300 else 3301 domain = UMA_ANYDOMAIN; 3302 return (zone_alloc_item(zone, udata, domain, flags)); 3303 } 3304 3305 /* See uma.h */ 3306 void * 3307 uma_zalloc_smr(uma_zone_t zone, int flags) 3308 { 3309 uma_cache_bucket_t bucket; 3310 uma_cache_t cache; 3311 3312 #ifdef UMA_ZALLOC_DEBUG 3313 void *item; 3314 3315 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3316 ("uma_zalloc_arg: called with non-SMR zone.\n")); 3317 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3318 return (item); 3319 #endif 3320 3321 critical_enter(); 3322 cache = &zone->uz_cpu[curcpu]; 3323 bucket = &cache->uc_allocbucket; 3324 if (__predict_false(bucket->ucb_cnt == 0)) 3325 return (cache_alloc_retry(zone, cache, NULL, flags)); 3326 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3327 } 3328 3329 /* See uma.h */ 3330 void * 3331 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3332 { 3333 uma_cache_bucket_t bucket; 3334 uma_cache_t cache; 3335 3336 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3337 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3338 3339 /* This is the fast path allocation */ 3340 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3341 zone, flags); 3342 3343 #ifdef UMA_ZALLOC_DEBUG 3344 void *item; 3345 3346 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3347 ("uma_zalloc_arg: called with SMR zone.\n")); 3348 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3349 return (item); 3350 #endif 3351 3352 /* 3353 * If possible, allocate from the per-CPU cache. There are two 3354 * requirements for safe access to the per-CPU cache: (1) the thread 3355 * accessing the cache must not be preempted or yield during access, 3356 * and (2) the thread must not migrate CPUs without switching which 3357 * cache it accesses. We rely on a critical section to prevent 3358 * preemption and migration. We release the critical section in 3359 * order to acquire the zone mutex if we are unable to allocate from 3360 * the current cache; when we re-acquire the critical section, we 3361 * must detect and handle migration if it has occurred. 3362 */ 3363 critical_enter(); 3364 cache = &zone->uz_cpu[curcpu]; 3365 bucket = &cache->uc_allocbucket; 3366 if (__predict_false(bucket->ucb_cnt == 0)) 3367 return (cache_alloc_retry(zone, cache, udata, flags)); 3368 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3369 } 3370 3371 /* 3372 * Replenish an alloc bucket and possibly restore an old one. Called in 3373 * a critical section. Returns in a critical section. 3374 * 3375 * A false return value indicates an allocation failure. 3376 * A true return value indicates success and the caller should retry. 3377 */ 3378 static __noinline bool 3379 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3380 { 3381 uma_bucket_t bucket; 3382 int domain; 3383 bool new; 3384 3385 CRITICAL_ASSERT(curthread); 3386 3387 /* 3388 * If we have run out of items in our alloc bucket see 3389 * if we can switch with the free bucket. 3390 * 3391 * SMR Zones can't re-use the free bucket until the sequence has 3392 * expired. 3393 */ 3394 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3395 cache->uc_freebucket.ucb_cnt != 0) { 3396 cache_bucket_swap(&cache->uc_freebucket, 3397 &cache->uc_allocbucket); 3398 return (true); 3399 } 3400 3401 /* 3402 * Discard any empty allocation bucket while we hold no locks. 3403 */ 3404 bucket = cache_bucket_unload_alloc(cache); 3405 critical_exit(); 3406 3407 if (bucket != NULL) { 3408 KASSERT(bucket->ub_cnt == 0, 3409 ("cache_alloc: Entered with non-empty alloc bucket.")); 3410 bucket_free(zone, bucket, udata); 3411 } 3412 3413 /* Short-circuit for zones without buckets and low memory. */ 3414 if (zone->uz_bucket_size == 0 || bucketdisable) { 3415 critical_enter(); 3416 return (false); 3417 } 3418 3419 /* 3420 * Attempt to retrieve the item from the per-CPU cache has failed, so 3421 * we must go back to the zone. This requires the zdom lock, so we 3422 * must drop the critical section, then re-acquire it when we go back 3423 * to the cache. Since the critical section is released, we may be 3424 * preempted or migrate. As such, make sure not to maintain any 3425 * thread-local state specific to the cache from prior to releasing 3426 * the critical section. 3427 */ 3428 domain = PCPU_GET(domain); 3429 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0) 3430 domain = zone_domain_highest(zone, domain); 3431 bucket = cache_fetch_bucket(zone, cache, domain); 3432 if (bucket == NULL) { 3433 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3434 new = true; 3435 } else 3436 new = false; 3437 3438 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3439 zone->uz_name, zone, bucket); 3440 if (bucket == NULL) { 3441 critical_enter(); 3442 return (false); 3443 } 3444 3445 /* 3446 * See if we lost the race or were migrated. Cache the 3447 * initialized bucket to make this less likely or claim 3448 * the memory directly. 3449 */ 3450 critical_enter(); 3451 cache = &zone->uz_cpu[curcpu]; 3452 if (cache->uc_allocbucket.ucb_bucket == NULL && 3453 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3454 domain == PCPU_GET(domain))) { 3455 if (new) 3456 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3457 bucket->ub_cnt); 3458 cache_bucket_load_alloc(cache, bucket); 3459 return (true); 3460 } 3461 3462 /* 3463 * We lost the race, release this bucket and start over. 3464 */ 3465 critical_exit(); 3466 zone_put_bucket(zone, domain, bucket, udata, false); 3467 critical_enter(); 3468 3469 return (true); 3470 } 3471 3472 void * 3473 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3474 { 3475 3476 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3477 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3478 3479 /* This is the fast path allocation */ 3480 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3481 zone->uz_name, zone, domain, flags); 3482 3483 if (flags & M_WAITOK) { 3484 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3485 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3486 } 3487 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3488 ("uma_zalloc_domain: called with spinlock or critical section held")); 3489 3490 return (zone_alloc_item(zone, udata, domain, flags)); 3491 } 3492 3493 /* 3494 * Find a slab with some space. Prefer slabs that are partially used over those 3495 * that are totally full. This helps to reduce fragmentation. 3496 * 3497 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3498 * only 'domain'. 3499 */ 3500 static uma_slab_t 3501 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3502 { 3503 uma_domain_t dom; 3504 uma_slab_t slab; 3505 int start; 3506 3507 KASSERT(domain >= 0 && domain < vm_ndomains, 3508 ("keg_first_slab: domain %d out of range", domain)); 3509 KEG_LOCK_ASSERT(keg, domain); 3510 3511 slab = NULL; 3512 start = domain; 3513 do { 3514 dom = &keg->uk_domain[domain]; 3515 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3516 return (slab); 3517 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3518 LIST_REMOVE(slab, us_link); 3519 dom->ud_free_slabs--; 3520 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3521 return (slab); 3522 } 3523 if (rr) 3524 domain = (domain + 1) % vm_ndomains; 3525 } while (domain != start); 3526 3527 return (NULL); 3528 } 3529 3530 /* 3531 * Fetch an existing slab from a free or partial list. Returns with the 3532 * keg domain lock held if a slab was found or unlocked if not. 3533 */ 3534 static uma_slab_t 3535 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3536 { 3537 uma_slab_t slab; 3538 uint32_t reserve; 3539 3540 /* HASH has a single free list. */ 3541 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3542 domain = 0; 3543 3544 KEG_LOCK(keg, domain); 3545 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3546 if (keg->uk_domain[domain].ud_free_items <= reserve || 3547 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3548 KEG_UNLOCK(keg, domain); 3549 return (NULL); 3550 } 3551 return (slab); 3552 } 3553 3554 static uma_slab_t 3555 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3556 { 3557 struct vm_domainset_iter di; 3558 uma_slab_t slab; 3559 int aflags, domain; 3560 bool rr; 3561 3562 restart: 3563 /* 3564 * Use the keg's policy if upper layers haven't already specified a 3565 * domain (as happens with first-touch zones). 3566 * 3567 * To avoid races we run the iterator with the keg lock held, but that 3568 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3569 * clear M_WAITOK and handle low memory conditions locally. 3570 */ 3571 rr = rdomain == UMA_ANYDOMAIN; 3572 if (rr) { 3573 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3574 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3575 &aflags); 3576 } else { 3577 aflags = flags; 3578 domain = rdomain; 3579 } 3580 3581 for (;;) { 3582 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3583 if (slab != NULL) 3584 return (slab); 3585 3586 /* 3587 * M_NOVM means don't ask at all! 3588 */ 3589 if (flags & M_NOVM) 3590 break; 3591 3592 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3593 if (slab != NULL) 3594 return (slab); 3595 if (!rr && (flags & M_WAITOK) == 0) 3596 break; 3597 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3598 if ((flags & M_WAITOK) != 0) { 3599 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3600 goto restart; 3601 } 3602 break; 3603 } 3604 } 3605 3606 /* 3607 * We might not have been able to get a slab but another cpu 3608 * could have while we were unlocked. Check again before we 3609 * fail. 3610 */ 3611 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3612 return (slab); 3613 3614 return (NULL); 3615 } 3616 3617 static void * 3618 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3619 { 3620 uma_domain_t dom; 3621 void *item; 3622 int freei; 3623 3624 KEG_LOCK_ASSERT(keg, slab->us_domain); 3625 3626 dom = &keg->uk_domain[slab->us_domain]; 3627 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3628 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3629 item = slab_item(slab, keg, freei); 3630 slab->us_freecount--; 3631 dom->ud_free_items--; 3632 3633 /* 3634 * Move this slab to the full list. It must be on the partial list, so 3635 * we do not need to update the free slab count. In particular, 3636 * keg_fetch_slab() always returns slabs on the partial list. 3637 */ 3638 if (slab->us_freecount == 0) { 3639 LIST_REMOVE(slab, us_link); 3640 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3641 } 3642 3643 return (item); 3644 } 3645 3646 static int 3647 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3648 { 3649 uma_domain_t dom; 3650 uma_zone_t zone; 3651 uma_slab_t slab; 3652 uma_keg_t keg; 3653 #ifdef NUMA 3654 int stripe; 3655 #endif 3656 int i; 3657 3658 zone = arg; 3659 slab = NULL; 3660 keg = zone->uz_keg; 3661 /* Try to keep the buckets totally full */ 3662 for (i = 0; i < max; ) { 3663 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3664 break; 3665 #ifdef NUMA 3666 stripe = howmany(max, vm_ndomains); 3667 #endif 3668 dom = &keg->uk_domain[slab->us_domain]; 3669 while (slab->us_freecount && i < max) { 3670 bucket[i++] = slab_alloc_item(keg, slab); 3671 if (dom->ud_free_items <= keg->uk_reserve) 3672 break; 3673 #ifdef NUMA 3674 /* 3675 * If the zone is striped we pick a new slab for every 3676 * N allocations. Eliminating this conditional will 3677 * instead pick a new domain for each bucket rather 3678 * than stripe within each bucket. The current option 3679 * produces more fragmentation and requires more cpu 3680 * time but yields better distribution. 3681 */ 3682 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3683 vm_ndomains > 1 && --stripe == 0) 3684 break; 3685 #endif 3686 } 3687 KEG_UNLOCK(keg, slab->us_domain); 3688 /* Don't block if we allocated any successfully. */ 3689 flags &= ~M_WAITOK; 3690 flags |= M_NOWAIT; 3691 } 3692 3693 return i; 3694 } 3695 3696 static int 3697 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3698 { 3699 uint64_t old, new, total, max; 3700 3701 /* 3702 * The hard case. We're going to sleep because there were existing 3703 * sleepers or because we ran out of items. This routine enforces 3704 * fairness by keeping fifo order. 3705 * 3706 * First release our ill gotten gains and make some noise. 3707 */ 3708 for (;;) { 3709 zone_free_limit(zone, count); 3710 zone_log_warning(zone); 3711 zone_maxaction(zone); 3712 if (flags & M_NOWAIT) 3713 return (0); 3714 3715 /* 3716 * We need to allocate an item or set ourself as a sleeper 3717 * while the sleepq lock is held to avoid wakeup races. This 3718 * is essentially a home rolled semaphore. 3719 */ 3720 sleepq_lock(&zone->uz_max_items); 3721 old = zone->uz_items; 3722 do { 3723 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3724 /* Cache the max since we will evaluate twice. */ 3725 max = zone->uz_max_items; 3726 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3727 UZ_ITEMS_COUNT(old) >= max) 3728 new = old + UZ_ITEMS_SLEEPER; 3729 else 3730 new = old + MIN(count, max - old); 3731 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3732 3733 /* We may have successfully allocated under the sleepq lock. */ 3734 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3735 sleepq_release(&zone->uz_max_items); 3736 return (new - old); 3737 } 3738 3739 /* 3740 * This is in a different cacheline from uz_items so that we 3741 * don't constantly invalidate the fastpath cacheline when we 3742 * adjust item counts. This could be limited to toggling on 3743 * transitions. 3744 */ 3745 atomic_add_32(&zone->uz_sleepers, 1); 3746 atomic_add_64(&zone->uz_sleeps, 1); 3747 3748 /* 3749 * We have added ourselves as a sleeper. The sleepq lock 3750 * protects us from wakeup races. Sleep now and then retry. 3751 */ 3752 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3753 sleepq_wait(&zone->uz_max_items, PVM); 3754 3755 /* 3756 * After wakeup, remove ourselves as a sleeper and try 3757 * again. We no longer have the sleepq lock for protection. 3758 * 3759 * Subract ourselves as a sleeper while attempting to add 3760 * our count. 3761 */ 3762 atomic_subtract_32(&zone->uz_sleepers, 1); 3763 old = atomic_fetchadd_64(&zone->uz_items, 3764 -(UZ_ITEMS_SLEEPER - count)); 3765 /* We're no longer a sleeper. */ 3766 old -= UZ_ITEMS_SLEEPER; 3767 3768 /* 3769 * If we're still at the limit, restart. Notably do not 3770 * block on other sleepers. Cache the max value to protect 3771 * against changes via sysctl. 3772 */ 3773 total = UZ_ITEMS_COUNT(old); 3774 max = zone->uz_max_items; 3775 if (total >= max) 3776 continue; 3777 /* Truncate if necessary, otherwise wake other sleepers. */ 3778 if (total + count > max) { 3779 zone_free_limit(zone, total + count - max); 3780 count = max - total; 3781 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3782 wakeup_one(&zone->uz_max_items); 3783 3784 return (count); 3785 } 3786 } 3787 3788 /* 3789 * Allocate 'count' items from our max_items limit. Returns the number 3790 * available. If M_NOWAIT is not specified it will sleep until at least 3791 * one item can be allocated. 3792 */ 3793 static int 3794 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3795 { 3796 uint64_t old; 3797 uint64_t max; 3798 3799 max = zone->uz_max_items; 3800 MPASS(max > 0); 3801 3802 /* 3803 * We expect normal allocations to succeed with a simple 3804 * fetchadd. 3805 */ 3806 old = atomic_fetchadd_64(&zone->uz_items, count); 3807 if (__predict_true(old + count <= max)) 3808 return (count); 3809 3810 /* 3811 * If we had some items and no sleepers just return the 3812 * truncated value. We have to release the excess space 3813 * though because that may wake sleepers who weren't woken 3814 * because we were temporarily over the limit. 3815 */ 3816 if (old < max) { 3817 zone_free_limit(zone, (old + count) - max); 3818 return (max - old); 3819 } 3820 return (zone_alloc_limit_hard(zone, count, flags)); 3821 } 3822 3823 /* 3824 * Free a number of items back to the limit. 3825 */ 3826 static void 3827 zone_free_limit(uma_zone_t zone, int count) 3828 { 3829 uint64_t old; 3830 3831 MPASS(count > 0); 3832 3833 /* 3834 * In the common case we either have no sleepers or 3835 * are still over the limit and can just return. 3836 */ 3837 old = atomic_fetchadd_64(&zone->uz_items, -count); 3838 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3839 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3840 return; 3841 3842 /* 3843 * Moderate the rate of wakeups. Sleepers will continue 3844 * to generate wakeups if necessary. 3845 */ 3846 wakeup_one(&zone->uz_max_items); 3847 } 3848 3849 static uma_bucket_t 3850 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3851 { 3852 uma_bucket_t bucket; 3853 int maxbucket, cnt; 3854 3855 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3856 zone, domain); 3857 3858 /* Avoid allocs targeting empty domains. */ 3859 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3860 domain = UMA_ANYDOMAIN; 3861 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 3862 domain = UMA_ANYDOMAIN; 3863 3864 if (zone->uz_max_items > 0) 3865 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3866 M_NOWAIT); 3867 else 3868 maxbucket = zone->uz_bucket_size; 3869 if (maxbucket == 0) 3870 return (false); 3871 3872 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3873 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3874 if (bucket == NULL) { 3875 cnt = 0; 3876 goto out; 3877 } 3878 3879 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3880 MIN(maxbucket, bucket->ub_entries), domain, flags); 3881 3882 /* 3883 * Initialize the memory if necessary. 3884 */ 3885 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3886 int i; 3887 3888 for (i = 0; i < bucket->ub_cnt; i++) 3889 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3890 flags) != 0) 3891 break; 3892 /* 3893 * If we couldn't initialize the whole bucket, put the 3894 * rest back onto the freelist. 3895 */ 3896 if (i != bucket->ub_cnt) { 3897 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3898 bucket->ub_cnt - i); 3899 #ifdef INVARIANTS 3900 bzero(&bucket->ub_bucket[i], 3901 sizeof(void *) * (bucket->ub_cnt - i)); 3902 #endif 3903 bucket->ub_cnt = i; 3904 } 3905 } 3906 3907 cnt = bucket->ub_cnt; 3908 if (bucket->ub_cnt == 0) { 3909 bucket_free(zone, bucket, udata); 3910 counter_u64_add(zone->uz_fails, 1); 3911 bucket = NULL; 3912 } 3913 out: 3914 if (zone->uz_max_items > 0 && cnt < maxbucket) 3915 zone_free_limit(zone, maxbucket - cnt); 3916 3917 return (bucket); 3918 } 3919 3920 /* 3921 * Allocates a single item from a zone. 3922 * 3923 * Arguments 3924 * zone The zone to alloc for. 3925 * udata The data to be passed to the constructor. 3926 * domain The domain to allocate from or UMA_ANYDOMAIN. 3927 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3928 * 3929 * Returns 3930 * NULL if there is no memory and M_NOWAIT is set 3931 * An item if successful 3932 */ 3933 3934 static void * 3935 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3936 { 3937 void *item; 3938 3939 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) 3940 return (NULL); 3941 3942 /* Avoid allocs targeting empty domains. */ 3943 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3944 domain = UMA_ANYDOMAIN; 3945 3946 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3947 goto fail_cnt; 3948 3949 /* 3950 * We have to call both the zone's init (not the keg's init) 3951 * and the zone's ctor. This is because the item is going from 3952 * a keg slab directly to the user, and the user is expecting it 3953 * to be both zone-init'd as well as zone-ctor'd. 3954 */ 3955 if (zone->uz_init != NULL) { 3956 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3957 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3958 goto fail_cnt; 3959 } 3960 } 3961 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 3962 item); 3963 if (item == NULL) 3964 goto fail; 3965 3966 counter_u64_add(zone->uz_allocs, 1); 3967 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3968 zone->uz_name, zone); 3969 3970 return (item); 3971 3972 fail_cnt: 3973 counter_u64_add(zone->uz_fails, 1); 3974 fail: 3975 if (zone->uz_max_items > 0) 3976 zone_free_limit(zone, 1); 3977 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3978 zone->uz_name, zone); 3979 3980 return (NULL); 3981 } 3982 3983 /* See uma.h */ 3984 void 3985 uma_zfree_smr(uma_zone_t zone, void *item) 3986 { 3987 uma_cache_t cache; 3988 uma_cache_bucket_t bucket; 3989 int itemdomain, uz_flags; 3990 3991 #ifdef UMA_ZALLOC_DEBUG 3992 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3993 ("uma_zfree_smr: called with non-SMR zone.\n")); 3994 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 3995 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 3996 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 3997 return; 3998 #endif 3999 cache = &zone->uz_cpu[curcpu]; 4000 uz_flags = cache_uz_flags(cache); 4001 itemdomain = 0; 4002 #ifdef NUMA 4003 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4004 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4005 #endif 4006 critical_enter(); 4007 do { 4008 cache = &zone->uz_cpu[curcpu]; 4009 /* SMR Zones must free to the free bucket. */ 4010 bucket = &cache->uc_freebucket; 4011 #ifdef NUMA 4012 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4013 PCPU_GET(domain) != itemdomain) { 4014 bucket = &cache->uc_crossbucket; 4015 } 4016 #endif 4017 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4018 cache_bucket_push(cache, bucket, item); 4019 critical_exit(); 4020 return; 4021 } 4022 } while (cache_free(zone, cache, NULL, item, itemdomain)); 4023 critical_exit(); 4024 4025 /* 4026 * If nothing else caught this, we'll just do an internal free. 4027 */ 4028 zone_free_item(zone, item, NULL, SKIP_NONE); 4029 } 4030 4031 /* See uma.h */ 4032 void 4033 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4034 { 4035 uma_cache_t cache; 4036 uma_cache_bucket_t bucket; 4037 int itemdomain, uz_flags; 4038 4039 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4040 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4041 4042 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4043 4044 #ifdef UMA_ZALLOC_DEBUG 4045 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4046 ("uma_zfree_arg: called with SMR zone.\n")); 4047 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4048 return; 4049 #endif 4050 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4051 if (item == NULL) 4052 return; 4053 4054 /* 4055 * We are accessing the per-cpu cache without a critical section to 4056 * fetch size and flags. This is acceptable, if we are preempted we 4057 * will simply read another cpu's line. 4058 */ 4059 cache = &zone->uz_cpu[curcpu]; 4060 uz_flags = cache_uz_flags(cache); 4061 if (UMA_ALWAYS_CTORDTOR || 4062 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4063 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4064 4065 /* 4066 * The race here is acceptable. If we miss it we'll just have to wait 4067 * a little longer for the limits to be reset. 4068 */ 4069 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4070 if (zone->uz_sleepers > 0) 4071 goto zfree_item; 4072 } 4073 4074 /* 4075 * If possible, free to the per-CPU cache. There are two 4076 * requirements for safe access to the per-CPU cache: (1) the thread 4077 * accessing the cache must not be preempted or yield during access, 4078 * and (2) the thread must not migrate CPUs without switching which 4079 * cache it accesses. We rely on a critical section to prevent 4080 * preemption and migration. We release the critical section in 4081 * order to acquire the zone mutex if we are unable to free to the 4082 * current cache; when we re-acquire the critical section, we must 4083 * detect and handle migration if it has occurred. 4084 */ 4085 itemdomain = 0; 4086 #ifdef NUMA 4087 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4088 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4089 #endif 4090 critical_enter(); 4091 do { 4092 cache = &zone->uz_cpu[curcpu]; 4093 /* 4094 * Try to free into the allocbucket first to give LIFO 4095 * ordering for cache-hot datastructures. Spill over 4096 * into the freebucket if necessary. Alloc will swap 4097 * them if one runs dry. 4098 */ 4099 bucket = &cache->uc_allocbucket; 4100 #ifdef NUMA 4101 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4102 PCPU_GET(domain) != itemdomain) { 4103 bucket = &cache->uc_crossbucket; 4104 } else 4105 #endif 4106 if (bucket->ucb_cnt == bucket->ucb_entries && 4107 cache->uc_freebucket.ucb_cnt < 4108 cache->uc_freebucket.ucb_entries) 4109 cache_bucket_swap(&cache->uc_freebucket, 4110 &cache->uc_allocbucket); 4111 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4112 cache_bucket_push(cache, bucket, item); 4113 critical_exit(); 4114 return; 4115 } 4116 } while (cache_free(zone, cache, udata, item, itemdomain)); 4117 critical_exit(); 4118 4119 /* 4120 * If nothing else caught this, we'll just do an internal free. 4121 */ 4122 zfree_item: 4123 zone_free_item(zone, item, udata, SKIP_DTOR); 4124 } 4125 4126 #ifdef NUMA 4127 /* 4128 * sort crossdomain free buckets to domain correct buckets and cache 4129 * them. 4130 */ 4131 static void 4132 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4133 { 4134 struct uma_bucketlist fullbuckets; 4135 uma_zone_domain_t zdom; 4136 uma_bucket_t b; 4137 smr_seq_t seq; 4138 void *item; 4139 int domain; 4140 4141 CTR3(KTR_UMA, 4142 "uma_zfree: zone %s(%p) draining cross bucket %p", 4143 zone->uz_name, zone, bucket); 4144 4145 /* 4146 * It is possible for buckets to arrive here out of order so we fetch 4147 * the current smr seq rather than accepting the bucket's. 4148 */ 4149 seq = SMR_SEQ_INVALID; 4150 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4151 seq = smr_advance(zone->uz_smr); 4152 4153 /* 4154 * To avoid having ndomain * ndomain buckets for sorting we have a 4155 * lock on the current crossfree bucket. A full matrix with 4156 * per-domain locking could be used if necessary. 4157 */ 4158 STAILQ_INIT(&fullbuckets); 4159 ZONE_CROSS_LOCK(zone); 4160 while (bucket->ub_cnt > 0) { 4161 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4162 domain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4163 zdom = ZDOM_GET(zone, domain); 4164 if (zdom->uzd_cross == NULL) { 4165 zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT); 4166 if (zdom->uzd_cross == NULL) 4167 break; 4168 } 4169 b = zdom->uzd_cross; 4170 b->ub_bucket[b->ub_cnt++] = item; 4171 b->ub_seq = seq; 4172 if (b->ub_cnt == b->ub_entries) { 4173 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4174 zdom->uzd_cross = NULL; 4175 } 4176 bucket->ub_cnt--; 4177 } 4178 ZONE_CROSS_UNLOCK(zone); 4179 if (bucket->ub_cnt == 0) 4180 bucket->ub_seq = SMR_SEQ_INVALID; 4181 bucket_free(zone, bucket, udata); 4182 4183 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4184 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4185 domain = _vm_phys_domain(pmap_kextract( 4186 (vm_offset_t)b->ub_bucket[0])); 4187 zone_put_bucket(zone, domain, b, udata, true); 4188 } 4189 } 4190 #endif 4191 4192 static void 4193 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4194 int itemdomain, bool ws) 4195 { 4196 4197 #ifdef NUMA 4198 /* 4199 * Buckets coming from the wrong domain will be entirely for the 4200 * only other domain on two domain systems. In this case we can 4201 * simply cache them. Otherwise we need to sort them back to 4202 * correct domains. 4203 */ 4204 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4205 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4206 zone_free_cross(zone, bucket, udata); 4207 return; 4208 } 4209 #endif 4210 4211 /* 4212 * Attempt to save the bucket in the zone's domain bucket cache. 4213 */ 4214 CTR3(KTR_UMA, 4215 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4216 zone->uz_name, zone, bucket); 4217 /* ub_cnt is pointing to the last free item */ 4218 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4219 itemdomain = zone_domain_lowest(zone, itemdomain); 4220 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4221 } 4222 4223 /* 4224 * Populate a free or cross bucket for the current cpu cache. Free any 4225 * existing full bucket either to the zone cache or back to the slab layer. 4226 * 4227 * Enters and returns in a critical section. false return indicates that 4228 * we can not satisfy this free in the cache layer. true indicates that 4229 * the caller should retry. 4230 */ 4231 static __noinline bool 4232 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4233 int itemdomain) 4234 { 4235 uma_cache_bucket_t cbucket; 4236 uma_bucket_t newbucket, bucket; 4237 4238 CRITICAL_ASSERT(curthread); 4239 4240 if (zone->uz_bucket_size == 0) 4241 return false; 4242 4243 cache = &zone->uz_cpu[curcpu]; 4244 newbucket = NULL; 4245 4246 /* 4247 * FIRSTTOUCH domains need to free to the correct zdom. When 4248 * enabled this is the zdom of the item. The bucket is the 4249 * cross bucket if the current domain and itemdomain do not match. 4250 */ 4251 cbucket = &cache->uc_freebucket; 4252 #ifdef NUMA 4253 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4254 if (PCPU_GET(domain) != itemdomain) { 4255 cbucket = &cache->uc_crossbucket; 4256 if (cbucket->ucb_cnt != 0) 4257 counter_u64_add(zone->uz_xdomain, 4258 cbucket->ucb_cnt); 4259 } 4260 } 4261 #endif 4262 bucket = cache_bucket_unload(cbucket); 4263 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4264 ("cache_free: Entered with non-full free bucket.")); 4265 4266 /* We are no longer associated with this CPU. */ 4267 critical_exit(); 4268 4269 /* 4270 * Don't let SMR zones operate without a free bucket. Force 4271 * a synchronize and re-use this one. We will only degrade 4272 * to a synchronize every bucket_size items rather than every 4273 * item if we fail to allocate a bucket. 4274 */ 4275 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4276 if (bucket != NULL) 4277 bucket->ub_seq = smr_advance(zone->uz_smr); 4278 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4279 if (newbucket == NULL && bucket != NULL) { 4280 bucket_drain(zone, bucket); 4281 newbucket = bucket; 4282 bucket = NULL; 4283 } 4284 } else if (!bucketdisable) 4285 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4286 4287 if (bucket != NULL) 4288 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4289 4290 critical_enter(); 4291 if ((bucket = newbucket) == NULL) 4292 return (false); 4293 cache = &zone->uz_cpu[curcpu]; 4294 #ifdef NUMA 4295 /* 4296 * Check to see if we should be populating the cross bucket. If it 4297 * is already populated we will fall through and attempt to populate 4298 * the free bucket. 4299 */ 4300 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4301 if (PCPU_GET(domain) != itemdomain && 4302 cache->uc_crossbucket.ucb_bucket == NULL) { 4303 cache_bucket_load_cross(cache, bucket); 4304 return (true); 4305 } 4306 } 4307 #endif 4308 /* 4309 * We may have lost the race to fill the bucket or switched CPUs. 4310 */ 4311 if (cache->uc_freebucket.ucb_bucket != NULL) { 4312 critical_exit(); 4313 bucket_free(zone, bucket, udata); 4314 critical_enter(); 4315 } else 4316 cache_bucket_load_free(cache, bucket); 4317 4318 return (true); 4319 } 4320 4321 void 4322 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 4323 { 4324 4325 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4326 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4327 4328 CTR2(KTR_UMA, "uma_zfree_domain zone %s(%p)", zone->uz_name, zone); 4329 4330 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 4331 ("uma_zfree_domain: called with spinlock or critical section held")); 4332 4333 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4334 if (item == NULL) 4335 return; 4336 zone_free_item(zone, item, udata, SKIP_NONE); 4337 } 4338 4339 static void 4340 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4341 { 4342 uma_keg_t keg; 4343 uma_domain_t dom; 4344 int freei; 4345 4346 keg = zone->uz_keg; 4347 KEG_LOCK_ASSERT(keg, slab->us_domain); 4348 4349 /* Do we need to remove from any lists? */ 4350 dom = &keg->uk_domain[slab->us_domain]; 4351 if (slab->us_freecount + 1 == keg->uk_ipers) { 4352 LIST_REMOVE(slab, us_link); 4353 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4354 dom->ud_free_slabs++; 4355 } else if (slab->us_freecount == 0) { 4356 LIST_REMOVE(slab, us_link); 4357 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4358 } 4359 4360 /* Slab management. */ 4361 freei = slab_item_index(slab, keg, item); 4362 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4363 slab->us_freecount++; 4364 4365 /* Keg statistics. */ 4366 dom->ud_free_items++; 4367 } 4368 4369 static void 4370 zone_release(void *arg, void **bucket, int cnt) 4371 { 4372 struct mtx *lock; 4373 uma_zone_t zone; 4374 uma_slab_t slab; 4375 uma_keg_t keg; 4376 uint8_t *mem; 4377 void *item; 4378 int i; 4379 4380 zone = arg; 4381 keg = zone->uz_keg; 4382 lock = NULL; 4383 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4384 lock = KEG_LOCK(keg, 0); 4385 for (i = 0; i < cnt; i++) { 4386 item = bucket[i]; 4387 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4388 slab = vtoslab((vm_offset_t)item); 4389 } else { 4390 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4391 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4392 slab = hash_sfind(&keg->uk_hash, mem); 4393 else 4394 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4395 } 4396 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4397 if (lock != NULL) 4398 mtx_unlock(lock); 4399 lock = KEG_LOCK(keg, slab->us_domain); 4400 } 4401 slab_free_item(zone, slab, item); 4402 } 4403 if (lock != NULL) 4404 mtx_unlock(lock); 4405 } 4406 4407 /* 4408 * Frees a single item to any zone. 4409 * 4410 * Arguments: 4411 * zone The zone to free to 4412 * item The item we're freeing 4413 * udata User supplied data for the dtor 4414 * skip Skip dtors and finis 4415 */ 4416 static __noinline void 4417 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4418 { 4419 4420 /* 4421 * If a free is sent directly to an SMR zone we have to 4422 * synchronize immediately because the item can instantly 4423 * be reallocated. This should only happen in degenerate 4424 * cases when no memory is available for per-cpu caches. 4425 */ 4426 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4427 smr_synchronize(zone->uz_smr); 4428 4429 item_dtor(zone, item, zone->uz_size, udata, skip); 4430 4431 if (skip < SKIP_FINI && zone->uz_fini) 4432 zone->uz_fini(item, zone->uz_size); 4433 4434 zone->uz_release(zone->uz_arg, &item, 1); 4435 4436 if (skip & SKIP_CNT) 4437 return; 4438 4439 counter_u64_add(zone->uz_frees, 1); 4440 4441 if (zone->uz_max_items > 0) 4442 zone_free_limit(zone, 1); 4443 } 4444 4445 /* See uma.h */ 4446 int 4447 uma_zone_set_max(uma_zone_t zone, int nitems) 4448 { 4449 struct uma_bucket_zone *ubz; 4450 int count; 4451 4452 /* 4453 * XXX This can misbehave if the zone has any allocations with 4454 * no limit and a limit is imposed. There is currently no 4455 * way to clear a limit. 4456 */ 4457 ZONE_LOCK(zone); 4458 ubz = bucket_zone_max(zone, nitems); 4459 count = ubz != NULL ? ubz->ubz_entries : 0; 4460 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 4461 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4462 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4463 zone->uz_max_items = nitems; 4464 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4465 zone_update_caches(zone); 4466 /* We may need to wake waiters. */ 4467 wakeup(&zone->uz_max_items); 4468 ZONE_UNLOCK(zone); 4469 4470 return (nitems); 4471 } 4472 4473 /* See uma.h */ 4474 void 4475 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4476 { 4477 struct uma_bucket_zone *ubz; 4478 int bpcpu; 4479 4480 ZONE_LOCK(zone); 4481 ubz = bucket_zone_max(zone, nitems); 4482 if (ubz != NULL) { 4483 bpcpu = 2; 4484 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4485 /* Count the cross-domain bucket. */ 4486 bpcpu++; 4487 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 4488 zone->uz_bucket_size_max = ubz->ubz_entries; 4489 } else { 4490 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 4491 } 4492 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4493 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4494 zone->uz_bucket_max = nitems / vm_ndomains; 4495 ZONE_UNLOCK(zone); 4496 } 4497 4498 /* See uma.h */ 4499 int 4500 uma_zone_get_max(uma_zone_t zone) 4501 { 4502 int nitems; 4503 4504 nitems = atomic_load_64(&zone->uz_max_items); 4505 4506 return (nitems); 4507 } 4508 4509 /* See uma.h */ 4510 void 4511 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4512 { 4513 4514 ZONE_ASSERT_COLD(zone); 4515 zone->uz_warning = warning; 4516 } 4517 4518 /* See uma.h */ 4519 void 4520 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4521 { 4522 4523 ZONE_ASSERT_COLD(zone); 4524 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4525 } 4526 4527 /* See uma.h */ 4528 int 4529 uma_zone_get_cur(uma_zone_t zone) 4530 { 4531 int64_t nitems; 4532 u_int i; 4533 4534 nitems = 0; 4535 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4536 nitems = counter_u64_fetch(zone->uz_allocs) - 4537 counter_u64_fetch(zone->uz_frees); 4538 CPU_FOREACH(i) 4539 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4540 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4541 4542 return (nitems < 0 ? 0 : nitems); 4543 } 4544 4545 static uint64_t 4546 uma_zone_get_allocs(uma_zone_t zone) 4547 { 4548 uint64_t nitems; 4549 u_int i; 4550 4551 nitems = 0; 4552 if (zone->uz_allocs != EARLY_COUNTER) 4553 nitems = counter_u64_fetch(zone->uz_allocs); 4554 CPU_FOREACH(i) 4555 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4556 4557 return (nitems); 4558 } 4559 4560 static uint64_t 4561 uma_zone_get_frees(uma_zone_t zone) 4562 { 4563 uint64_t nitems; 4564 u_int i; 4565 4566 nitems = 0; 4567 if (zone->uz_frees != EARLY_COUNTER) 4568 nitems = counter_u64_fetch(zone->uz_frees); 4569 CPU_FOREACH(i) 4570 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4571 4572 return (nitems); 4573 } 4574 4575 #ifdef INVARIANTS 4576 /* Used only for KEG_ASSERT_COLD(). */ 4577 static uint64_t 4578 uma_keg_get_allocs(uma_keg_t keg) 4579 { 4580 uma_zone_t z; 4581 uint64_t nitems; 4582 4583 nitems = 0; 4584 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4585 nitems += uma_zone_get_allocs(z); 4586 4587 return (nitems); 4588 } 4589 #endif 4590 4591 /* See uma.h */ 4592 void 4593 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4594 { 4595 uma_keg_t keg; 4596 4597 KEG_GET(zone, keg); 4598 KEG_ASSERT_COLD(keg); 4599 keg->uk_init = uminit; 4600 } 4601 4602 /* See uma.h */ 4603 void 4604 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4605 { 4606 uma_keg_t keg; 4607 4608 KEG_GET(zone, keg); 4609 KEG_ASSERT_COLD(keg); 4610 keg->uk_fini = fini; 4611 } 4612 4613 /* See uma.h */ 4614 void 4615 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4616 { 4617 4618 ZONE_ASSERT_COLD(zone); 4619 zone->uz_init = zinit; 4620 } 4621 4622 /* See uma.h */ 4623 void 4624 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4625 { 4626 4627 ZONE_ASSERT_COLD(zone); 4628 zone->uz_fini = zfini; 4629 } 4630 4631 /* See uma.h */ 4632 void 4633 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4634 { 4635 uma_keg_t keg; 4636 4637 KEG_GET(zone, keg); 4638 KEG_ASSERT_COLD(keg); 4639 keg->uk_freef = freef; 4640 } 4641 4642 /* See uma.h */ 4643 void 4644 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4645 { 4646 uma_keg_t keg; 4647 4648 KEG_GET(zone, keg); 4649 KEG_ASSERT_COLD(keg); 4650 keg->uk_allocf = allocf; 4651 } 4652 4653 /* See uma.h */ 4654 void 4655 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4656 { 4657 4658 ZONE_ASSERT_COLD(zone); 4659 4660 KASSERT(smr != NULL, ("Got NULL smr")); 4661 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4662 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 4663 zone->uz_flags |= UMA_ZONE_SMR; 4664 zone->uz_smr = smr; 4665 zone_update_caches(zone); 4666 } 4667 4668 smr_t 4669 uma_zone_get_smr(uma_zone_t zone) 4670 { 4671 4672 return (zone->uz_smr); 4673 } 4674 4675 /* See uma.h */ 4676 void 4677 uma_zone_reserve(uma_zone_t zone, int items) 4678 { 4679 uma_keg_t keg; 4680 4681 KEG_GET(zone, keg); 4682 KEG_ASSERT_COLD(keg); 4683 keg->uk_reserve = items; 4684 } 4685 4686 /* See uma.h */ 4687 int 4688 uma_zone_reserve_kva(uma_zone_t zone, int count) 4689 { 4690 uma_keg_t keg; 4691 vm_offset_t kva; 4692 u_int pages; 4693 4694 KEG_GET(zone, keg); 4695 KEG_ASSERT_COLD(keg); 4696 ZONE_ASSERT_COLD(zone); 4697 4698 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4699 4700 #ifdef UMA_MD_SMALL_ALLOC 4701 if (keg->uk_ppera > 1) { 4702 #else 4703 if (1) { 4704 #endif 4705 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4706 if (kva == 0) 4707 return (0); 4708 } else 4709 kva = 0; 4710 4711 MPASS(keg->uk_kva == 0); 4712 keg->uk_kva = kva; 4713 keg->uk_offset = 0; 4714 zone->uz_max_items = pages * keg->uk_ipers; 4715 #ifdef UMA_MD_SMALL_ALLOC 4716 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4717 #else 4718 keg->uk_allocf = noobj_alloc; 4719 #endif 4720 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4721 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4722 zone_update_caches(zone); 4723 4724 return (1); 4725 } 4726 4727 /* See uma.h */ 4728 void 4729 uma_prealloc(uma_zone_t zone, int items) 4730 { 4731 struct vm_domainset_iter di; 4732 uma_domain_t dom; 4733 uma_slab_t slab; 4734 uma_keg_t keg; 4735 int aflags, domain, slabs; 4736 4737 KEG_GET(zone, keg); 4738 slabs = howmany(items, keg->uk_ipers); 4739 while (slabs-- > 0) { 4740 aflags = M_NOWAIT; 4741 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4742 &aflags); 4743 for (;;) { 4744 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4745 aflags); 4746 if (slab != NULL) { 4747 dom = &keg->uk_domain[slab->us_domain]; 4748 /* 4749 * keg_alloc_slab() always returns a slab on the 4750 * partial list. 4751 */ 4752 LIST_REMOVE(slab, us_link); 4753 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4754 us_link); 4755 dom->ud_free_slabs++; 4756 KEG_UNLOCK(keg, slab->us_domain); 4757 break; 4758 } 4759 if (vm_domainset_iter_policy(&di, &domain) != 0) 4760 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 4761 } 4762 } 4763 } 4764 4765 /* 4766 * Returns a snapshot of memory consumption in bytes. 4767 */ 4768 size_t 4769 uma_zone_memory(uma_zone_t zone) 4770 { 4771 size_t sz; 4772 int i; 4773 4774 sz = 0; 4775 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 4776 for (i = 0; i < vm_ndomains; i++) 4777 sz += ZDOM_GET(zone, i)->uzd_nitems; 4778 return (sz * zone->uz_size); 4779 } 4780 for (i = 0; i < vm_ndomains; i++) 4781 sz += zone->uz_keg->uk_domain[i].ud_pages; 4782 4783 return (sz * PAGE_SIZE); 4784 } 4785 4786 /* See uma.h */ 4787 void 4788 uma_reclaim(int req) 4789 { 4790 4791 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4792 sx_xlock(&uma_reclaim_lock); 4793 bucket_enable(); 4794 4795 switch (req) { 4796 case UMA_RECLAIM_TRIM: 4797 zone_foreach(zone_trim, NULL); 4798 break; 4799 case UMA_RECLAIM_DRAIN: 4800 case UMA_RECLAIM_DRAIN_CPU: 4801 zone_foreach(zone_drain, NULL); 4802 if (req == UMA_RECLAIM_DRAIN_CPU) { 4803 pcpu_cache_drain_safe(NULL); 4804 zone_foreach(zone_drain, NULL); 4805 } 4806 break; 4807 default: 4808 panic("unhandled reclamation request %d", req); 4809 } 4810 4811 /* 4812 * Some slabs may have been freed but this zone will be visited early 4813 * we visit again so that we can free pages that are empty once other 4814 * zones are drained. We have to do the same for buckets. 4815 */ 4816 zone_drain(slabzones[0], NULL); 4817 zone_drain(slabzones[1], NULL); 4818 bucket_zone_drain(); 4819 sx_xunlock(&uma_reclaim_lock); 4820 } 4821 4822 static volatile int uma_reclaim_needed; 4823 4824 void 4825 uma_reclaim_wakeup(void) 4826 { 4827 4828 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4829 wakeup(uma_reclaim); 4830 } 4831 4832 void 4833 uma_reclaim_worker(void *arg __unused) 4834 { 4835 4836 for (;;) { 4837 sx_xlock(&uma_reclaim_lock); 4838 while (atomic_load_int(&uma_reclaim_needed) == 0) 4839 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4840 hz); 4841 sx_xunlock(&uma_reclaim_lock); 4842 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4843 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4844 atomic_store_int(&uma_reclaim_needed, 0); 4845 /* Don't fire more than once per-second. */ 4846 pause("umarclslp", hz); 4847 } 4848 } 4849 4850 /* See uma.h */ 4851 void 4852 uma_zone_reclaim(uma_zone_t zone, int req) 4853 { 4854 4855 switch (req) { 4856 case UMA_RECLAIM_TRIM: 4857 zone_trim(zone, NULL); 4858 break; 4859 case UMA_RECLAIM_DRAIN: 4860 zone_drain(zone, NULL); 4861 break; 4862 case UMA_RECLAIM_DRAIN_CPU: 4863 pcpu_cache_drain_safe(zone); 4864 zone_drain(zone, NULL); 4865 break; 4866 default: 4867 panic("unhandled reclamation request %d", req); 4868 } 4869 } 4870 4871 /* See uma.h */ 4872 int 4873 uma_zone_exhausted(uma_zone_t zone) 4874 { 4875 4876 return (atomic_load_32(&zone->uz_sleepers) > 0); 4877 } 4878 4879 unsigned long 4880 uma_limit(void) 4881 { 4882 4883 return (uma_kmem_limit); 4884 } 4885 4886 void 4887 uma_set_limit(unsigned long limit) 4888 { 4889 4890 uma_kmem_limit = limit; 4891 } 4892 4893 unsigned long 4894 uma_size(void) 4895 { 4896 4897 return (atomic_load_long(&uma_kmem_total)); 4898 } 4899 4900 long 4901 uma_avail(void) 4902 { 4903 4904 return (uma_kmem_limit - uma_size()); 4905 } 4906 4907 #ifdef DDB 4908 /* 4909 * Generate statistics across both the zone and its per-cpu cache's. Return 4910 * desired statistics if the pointer is non-NULL for that statistic. 4911 * 4912 * Note: does not update the zone statistics, as it can't safely clear the 4913 * per-CPU cache statistic. 4914 * 4915 */ 4916 static void 4917 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4918 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4919 { 4920 uma_cache_t cache; 4921 uint64_t allocs, frees, sleeps, xdomain; 4922 int cachefree, cpu; 4923 4924 allocs = frees = sleeps = xdomain = 0; 4925 cachefree = 0; 4926 CPU_FOREACH(cpu) { 4927 cache = &z->uz_cpu[cpu]; 4928 cachefree += cache->uc_allocbucket.ucb_cnt; 4929 cachefree += cache->uc_freebucket.ucb_cnt; 4930 xdomain += cache->uc_crossbucket.ucb_cnt; 4931 cachefree += cache->uc_crossbucket.ucb_cnt; 4932 allocs += cache->uc_allocs; 4933 frees += cache->uc_frees; 4934 } 4935 allocs += counter_u64_fetch(z->uz_allocs); 4936 frees += counter_u64_fetch(z->uz_frees); 4937 xdomain += counter_u64_fetch(z->uz_xdomain); 4938 sleeps += z->uz_sleeps; 4939 if (cachefreep != NULL) 4940 *cachefreep = cachefree; 4941 if (allocsp != NULL) 4942 *allocsp = allocs; 4943 if (freesp != NULL) 4944 *freesp = frees; 4945 if (sleepsp != NULL) 4946 *sleepsp = sleeps; 4947 if (xdomainp != NULL) 4948 *xdomainp = xdomain; 4949 } 4950 #endif /* DDB */ 4951 4952 static int 4953 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4954 { 4955 uma_keg_t kz; 4956 uma_zone_t z; 4957 int count; 4958 4959 count = 0; 4960 rw_rlock(&uma_rwlock); 4961 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4962 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4963 count++; 4964 } 4965 LIST_FOREACH(z, &uma_cachezones, uz_link) 4966 count++; 4967 4968 rw_runlock(&uma_rwlock); 4969 return (sysctl_handle_int(oidp, &count, 0, req)); 4970 } 4971 4972 static void 4973 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4974 struct uma_percpu_stat *ups, bool internal) 4975 { 4976 uma_zone_domain_t zdom; 4977 uma_cache_t cache; 4978 int i; 4979 4980 4981 for (i = 0; i < vm_ndomains; i++) { 4982 zdom = ZDOM_GET(z, i); 4983 uth->uth_zone_free += zdom->uzd_nitems; 4984 } 4985 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4986 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4987 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4988 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 4989 uth->uth_sleeps = z->uz_sleeps; 4990 4991 for (i = 0; i < mp_maxid + 1; i++) { 4992 bzero(&ups[i], sizeof(*ups)); 4993 if (internal || CPU_ABSENT(i)) 4994 continue; 4995 cache = &z->uz_cpu[i]; 4996 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 4997 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 4998 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 4999 ups[i].ups_allocs = cache->uc_allocs; 5000 ups[i].ups_frees = cache->uc_frees; 5001 } 5002 } 5003 5004 static int 5005 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5006 { 5007 struct uma_stream_header ush; 5008 struct uma_type_header uth; 5009 struct uma_percpu_stat *ups; 5010 struct sbuf sbuf; 5011 uma_keg_t kz; 5012 uma_zone_t z; 5013 uint64_t items; 5014 uint32_t kfree, pages; 5015 int count, error, i; 5016 5017 error = sysctl_wire_old_buffer(req, 0); 5018 if (error != 0) 5019 return (error); 5020 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5021 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5022 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5023 5024 count = 0; 5025 rw_rlock(&uma_rwlock); 5026 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5027 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5028 count++; 5029 } 5030 5031 LIST_FOREACH(z, &uma_cachezones, uz_link) 5032 count++; 5033 5034 /* 5035 * Insert stream header. 5036 */ 5037 bzero(&ush, sizeof(ush)); 5038 ush.ush_version = UMA_STREAM_VERSION; 5039 ush.ush_maxcpus = (mp_maxid + 1); 5040 ush.ush_count = count; 5041 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5042 5043 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5044 kfree = pages = 0; 5045 for (i = 0; i < vm_ndomains; i++) { 5046 kfree += kz->uk_domain[i].ud_free_items; 5047 pages += kz->uk_domain[i].ud_pages; 5048 } 5049 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5050 bzero(&uth, sizeof(uth)); 5051 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5052 uth.uth_align = kz->uk_align; 5053 uth.uth_size = kz->uk_size; 5054 uth.uth_rsize = kz->uk_rsize; 5055 if (z->uz_max_items > 0) { 5056 items = UZ_ITEMS_COUNT(z->uz_items); 5057 uth.uth_pages = (items / kz->uk_ipers) * 5058 kz->uk_ppera; 5059 } else 5060 uth.uth_pages = pages; 5061 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5062 kz->uk_ppera; 5063 uth.uth_limit = z->uz_max_items; 5064 uth.uth_keg_free = kfree; 5065 5066 /* 5067 * A zone is secondary is it is not the first entry 5068 * on the keg's zone list. 5069 */ 5070 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5071 (LIST_FIRST(&kz->uk_zones) != z)) 5072 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5073 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5074 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5075 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5076 for (i = 0; i < mp_maxid + 1; i++) 5077 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5078 } 5079 } 5080 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5081 bzero(&uth, sizeof(uth)); 5082 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5083 uth.uth_size = z->uz_size; 5084 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5085 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5086 for (i = 0; i < mp_maxid + 1; i++) 5087 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5088 } 5089 5090 rw_runlock(&uma_rwlock); 5091 error = sbuf_finish(&sbuf); 5092 sbuf_delete(&sbuf); 5093 free(ups, M_TEMP); 5094 return (error); 5095 } 5096 5097 int 5098 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5099 { 5100 uma_zone_t zone = *(uma_zone_t *)arg1; 5101 int error, max; 5102 5103 max = uma_zone_get_max(zone); 5104 error = sysctl_handle_int(oidp, &max, 0, req); 5105 if (error || !req->newptr) 5106 return (error); 5107 5108 uma_zone_set_max(zone, max); 5109 5110 return (0); 5111 } 5112 5113 int 5114 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5115 { 5116 uma_zone_t zone; 5117 int cur; 5118 5119 /* 5120 * Some callers want to add sysctls for global zones that 5121 * may not yet exist so they pass a pointer to a pointer. 5122 */ 5123 if (arg2 == 0) 5124 zone = *(uma_zone_t *)arg1; 5125 else 5126 zone = arg1; 5127 cur = uma_zone_get_cur(zone); 5128 return (sysctl_handle_int(oidp, &cur, 0, req)); 5129 } 5130 5131 static int 5132 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5133 { 5134 uma_zone_t zone = arg1; 5135 uint64_t cur; 5136 5137 cur = uma_zone_get_allocs(zone); 5138 return (sysctl_handle_64(oidp, &cur, 0, req)); 5139 } 5140 5141 static int 5142 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5143 { 5144 uma_zone_t zone = arg1; 5145 uint64_t cur; 5146 5147 cur = uma_zone_get_frees(zone); 5148 return (sysctl_handle_64(oidp, &cur, 0, req)); 5149 } 5150 5151 static int 5152 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5153 { 5154 struct sbuf sbuf; 5155 uma_zone_t zone = arg1; 5156 int error; 5157 5158 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5159 if (zone->uz_flags != 0) 5160 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5161 else 5162 sbuf_printf(&sbuf, "0"); 5163 error = sbuf_finish(&sbuf); 5164 sbuf_delete(&sbuf); 5165 5166 return (error); 5167 } 5168 5169 static int 5170 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5171 { 5172 uma_keg_t keg = arg1; 5173 int avail, effpct, total; 5174 5175 total = keg->uk_ppera * PAGE_SIZE; 5176 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5177 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5178 /* 5179 * We consider the client's requested size and alignment here, not the 5180 * real size determination uk_rsize, because we also adjust the real 5181 * size for internal implementation reasons (max bitset size). 5182 */ 5183 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5184 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5185 avail *= mp_maxid + 1; 5186 effpct = 100 * avail / total; 5187 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5188 } 5189 5190 static int 5191 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5192 { 5193 uma_zone_t zone = arg1; 5194 uint64_t cur; 5195 5196 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5197 return (sysctl_handle_64(oidp, &cur, 0, req)); 5198 } 5199 5200 #ifdef INVARIANTS 5201 static uma_slab_t 5202 uma_dbg_getslab(uma_zone_t zone, void *item) 5203 { 5204 uma_slab_t slab; 5205 uma_keg_t keg; 5206 uint8_t *mem; 5207 5208 /* 5209 * It is safe to return the slab here even though the 5210 * zone is unlocked because the item's allocation state 5211 * essentially holds a reference. 5212 */ 5213 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5214 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5215 return (NULL); 5216 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5217 return (vtoslab((vm_offset_t)mem)); 5218 keg = zone->uz_keg; 5219 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5220 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5221 KEG_LOCK(keg, 0); 5222 slab = hash_sfind(&keg->uk_hash, mem); 5223 KEG_UNLOCK(keg, 0); 5224 5225 return (slab); 5226 } 5227 5228 static bool 5229 uma_dbg_zskip(uma_zone_t zone, void *mem) 5230 { 5231 5232 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5233 return (true); 5234 5235 return (uma_dbg_kskip(zone->uz_keg, mem)); 5236 } 5237 5238 static bool 5239 uma_dbg_kskip(uma_keg_t keg, void *mem) 5240 { 5241 uintptr_t idx; 5242 5243 if (dbg_divisor == 0) 5244 return (true); 5245 5246 if (dbg_divisor == 1) 5247 return (false); 5248 5249 idx = (uintptr_t)mem >> PAGE_SHIFT; 5250 if (keg->uk_ipers > 1) { 5251 idx *= keg->uk_ipers; 5252 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5253 } 5254 5255 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5256 counter_u64_add(uma_skip_cnt, 1); 5257 return (true); 5258 } 5259 counter_u64_add(uma_dbg_cnt, 1); 5260 5261 return (false); 5262 } 5263 5264 /* 5265 * Set up the slab's freei data such that uma_dbg_free can function. 5266 * 5267 */ 5268 static void 5269 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5270 { 5271 uma_keg_t keg; 5272 int freei; 5273 5274 if (slab == NULL) { 5275 slab = uma_dbg_getslab(zone, item); 5276 if (slab == NULL) 5277 panic("uma: item %p did not belong to zone %s\n", 5278 item, zone->uz_name); 5279 } 5280 keg = zone->uz_keg; 5281 freei = slab_item_index(slab, keg, item); 5282 5283 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5284 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 5285 item, zone, zone->uz_name, slab, freei); 5286 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5287 } 5288 5289 /* 5290 * Verifies freed addresses. Checks for alignment, valid slab membership 5291 * and duplicate frees. 5292 * 5293 */ 5294 static void 5295 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5296 { 5297 uma_keg_t keg; 5298 int freei; 5299 5300 if (slab == NULL) { 5301 slab = uma_dbg_getslab(zone, item); 5302 if (slab == NULL) 5303 panic("uma: Freed item %p did not belong to zone %s\n", 5304 item, zone->uz_name); 5305 } 5306 keg = zone->uz_keg; 5307 freei = slab_item_index(slab, keg, item); 5308 5309 if (freei >= keg->uk_ipers) 5310 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 5311 item, zone, zone->uz_name, slab, freei); 5312 5313 if (slab_item(slab, keg, freei) != item) 5314 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 5315 item, zone, zone->uz_name, slab, freei); 5316 5317 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5318 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 5319 item, zone, zone->uz_name, slab, freei); 5320 5321 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5322 } 5323 #endif /* INVARIANTS */ 5324 5325 #ifdef DDB 5326 static int64_t 5327 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5328 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5329 { 5330 uint64_t frees; 5331 int i; 5332 5333 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5334 *allocs = counter_u64_fetch(z->uz_allocs); 5335 frees = counter_u64_fetch(z->uz_frees); 5336 *sleeps = z->uz_sleeps; 5337 *cachefree = 0; 5338 *xdomain = 0; 5339 } else 5340 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5341 xdomain); 5342 for (i = 0; i < vm_ndomains; i++) { 5343 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5344 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5345 (LIST_FIRST(&kz->uk_zones) != z))) 5346 *cachefree += kz->uk_domain[i].ud_free_items; 5347 } 5348 *used = *allocs - frees; 5349 return (((int64_t)*used + *cachefree) * kz->uk_size); 5350 } 5351 5352 DB_SHOW_COMMAND(uma, db_show_uma) 5353 { 5354 const char *fmt_hdr, *fmt_entry; 5355 uma_keg_t kz; 5356 uma_zone_t z; 5357 uint64_t allocs, used, sleeps, xdomain; 5358 long cachefree; 5359 /* variables for sorting */ 5360 uma_keg_t cur_keg; 5361 uma_zone_t cur_zone, last_zone; 5362 int64_t cur_size, last_size, size; 5363 int ties; 5364 5365 /* /i option produces machine-parseable CSV output */ 5366 if (modif[0] == 'i') { 5367 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5368 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5369 } else { 5370 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5371 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5372 } 5373 5374 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5375 "Sleeps", "Bucket", "Total Mem", "XFree"); 5376 5377 /* Sort the zones with largest size first. */ 5378 last_zone = NULL; 5379 last_size = INT64_MAX; 5380 for (;;) { 5381 cur_zone = NULL; 5382 cur_size = -1; 5383 ties = 0; 5384 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5385 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5386 /* 5387 * In the case of size ties, print out zones 5388 * in the order they are encountered. That is, 5389 * when we encounter the most recently output 5390 * zone, we have already printed all preceding 5391 * ties, and we must print all following ties. 5392 */ 5393 if (z == last_zone) { 5394 ties = 1; 5395 continue; 5396 } 5397 size = get_uma_stats(kz, z, &allocs, &used, 5398 &sleeps, &cachefree, &xdomain); 5399 if (size > cur_size && size < last_size + ties) 5400 { 5401 cur_size = size; 5402 cur_zone = z; 5403 cur_keg = kz; 5404 } 5405 } 5406 } 5407 if (cur_zone == NULL) 5408 break; 5409 5410 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5411 &sleeps, &cachefree, &xdomain); 5412 db_printf(fmt_entry, cur_zone->uz_name, 5413 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5414 (uintmax_t)allocs, (uintmax_t)sleeps, 5415 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5416 xdomain); 5417 5418 if (db_pager_quit) 5419 return; 5420 last_zone = cur_zone; 5421 last_size = cur_size; 5422 } 5423 } 5424 5425 DB_SHOW_COMMAND(umacache, db_show_umacache) 5426 { 5427 uma_zone_t z; 5428 uint64_t allocs, frees; 5429 long cachefree; 5430 int i; 5431 5432 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5433 "Requests", "Bucket"); 5434 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5435 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5436 for (i = 0; i < vm_ndomains; i++) 5437 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5438 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5439 z->uz_name, (uintmax_t)z->uz_size, 5440 (intmax_t)(allocs - frees), cachefree, 5441 (uintmax_t)allocs, z->uz_bucket_size); 5442 if (db_pager_quit) 5443 return; 5444 } 5445 } 5446 #endif /* DDB */ 5447