1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/eventhandler.h> 63 #include <sys/kernel.h> 64 #include <sys/types.h> 65 #include <sys/limits.h> 66 #include <sys/queue.h> 67 #include <sys/malloc.h> 68 #include <sys/ktr.h> 69 #include <sys/lock.h> 70 #include <sys/sysctl.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/random.h> 74 #include <sys/rwlock.h> 75 #include <sys/sbuf.h> 76 #include <sys/sched.h> 77 #include <sys/smp.h> 78 #include <sys/taskqueue.h> 79 #include <sys/vmmeter.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_kern.h> 88 #include <vm/vm_extern.h> 89 #include <vm/uma.h> 90 #include <vm/uma_int.h> 91 #include <vm/uma_dbg.h> 92 93 #include <ddb/ddb.h> 94 95 #ifdef DEBUG_MEMGUARD 96 #include <vm/memguard.h> 97 #endif 98 99 /* 100 * This is the zone and keg from which all zones are spawned. The idea is that 101 * even the zone & keg heads are allocated from the allocator, so we use the 102 * bss section to bootstrap us. 103 */ 104 static struct uma_keg masterkeg; 105 static struct uma_zone masterzone_k; 106 static struct uma_zone masterzone_z; 107 static uma_zone_t kegs = &masterzone_k; 108 static uma_zone_t zones = &masterzone_z; 109 110 /* This is the zone from which all of uma_slab_t's are allocated. */ 111 static uma_zone_t slabzone; 112 113 /* 114 * The initial hash tables come out of this zone so they can be allocated 115 * prior to malloc coming up. 116 */ 117 static uma_zone_t hashzone; 118 119 /* The boot-time adjusted value for cache line alignment. */ 120 int uma_align_cache = 64 - 1; 121 122 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 123 124 /* 125 * Are we allowed to allocate buckets? 126 */ 127 static int bucketdisable = 1; 128 129 /* Linked list of all kegs in the system */ 130 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 131 132 /* Linked list of all cache-only zones in the system */ 133 static LIST_HEAD(,uma_zone) uma_cachezones = 134 LIST_HEAD_INITIALIZER(uma_cachezones); 135 136 /* This RW lock protects the keg list */ 137 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 138 139 /* 140 * Pointer and counter to pool of pages, that is preallocated at 141 * startup to bootstrap UMA. Early zones continue to use the pool 142 * until it is depleted, so allocations may happen after boot, thus 143 * we need a mutex to protect it. 144 */ 145 static char *bootmem; 146 static int boot_pages; 147 static struct mtx uma_boot_pages_mtx; 148 149 static struct sx uma_drain_lock; 150 151 /* kmem soft limit. */ 152 static unsigned long uma_kmem_limit = LONG_MAX; 153 static volatile unsigned long uma_kmem_total; 154 155 /* Is the VM done starting up? */ 156 static int booted = 0; 157 #define UMA_STARTUP 1 158 #define UMA_STARTUP2 2 159 160 /* 161 * This is the handle used to schedule events that need to happen 162 * outside of the allocation fast path. 163 */ 164 static struct callout uma_callout; 165 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 166 167 /* 168 * This structure is passed as the zone ctor arg so that I don't have to create 169 * a special allocation function just for zones. 170 */ 171 struct uma_zctor_args { 172 const char *name; 173 size_t size; 174 uma_ctor ctor; 175 uma_dtor dtor; 176 uma_init uminit; 177 uma_fini fini; 178 uma_import import; 179 uma_release release; 180 void *arg; 181 uma_keg_t keg; 182 int align; 183 uint32_t flags; 184 }; 185 186 struct uma_kctor_args { 187 uma_zone_t zone; 188 size_t size; 189 uma_init uminit; 190 uma_fini fini; 191 int align; 192 uint32_t flags; 193 }; 194 195 struct uma_bucket_zone { 196 uma_zone_t ubz_zone; 197 char *ubz_name; 198 int ubz_entries; /* Number of items it can hold. */ 199 int ubz_maxsize; /* Maximum allocation size per-item. */ 200 }; 201 202 /* 203 * Compute the actual number of bucket entries to pack them in power 204 * of two sizes for more efficient space utilization. 205 */ 206 #define BUCKET_SIZE(n) \ 207 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 208 209 #define BUCKET_MAX BUCKET_SIZE(256) 210 211 struct uma_bucket_zone bucket_zones[] = { 212 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 213 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 214 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 215 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 216 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 217 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 218 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 219 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 220 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 221 { NULL, NULL, 0} 222 }; 223 224 /* 225 * Flags and enumerations to be passed to internal functions. 226 */ 227 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 228 229 /* Prototypes.. */ 230 231 static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 232 static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 233 static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 234 static void page_free(void *, vm_size_t, uint8_t); 235 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 236 static void cache_drain(uma_zone_t); 237 static void bucket_drain(uma_zone_t, uma_bucket_t); 238 static void bucket_cache_drain(uma_zone_t zone); 239 static int keg_ctor(void *, int, void *, int); 240 static void keg_dtor(void *, int, void *); 241 static int zone_ctor(void *, int, void *, int); 242 static void zone_dtor(void *, int, void *); 243 static int zero_init(void *, int, int); 244 static void keg_small_init(uma_keg_t keg); 245 static void keg_large_init(uma_keg_t keg); 246 static void zone_foreach(void (*zfunc)(uma_zone_t)); 247 static void zone_timeout(uma_zone_t zone); 248 static int hash_alloc(struct uma_hash *); 249 static int hash_expand(struct uma_hash *, struct uma_hash *); 250 static void hash_free(struct uma_hash *hash); 251 static void uma_timeout(void *); 252 static void uma_startup3(void); 253 static void *zone_alloc_item(uma_zone_t, void *, int); 254 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 255 static void bucket_enable(void); 256 static void bucket_init(void); 257 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 258 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 259 static void bucket_zone_drain(void); 260 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 261 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 262 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 263 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 264 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 265 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 266 uma_fini fini, int align, uint32_t flags); 267 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 268 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 269 static void uma_zero_item(void *item, uma_zone_t zone); 270 271 void uma_print_zone(uma_zone_t); 272 void uma_print_stats(void); 273 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 274 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 275 276 #ifdef INVARIANTS 277 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 278 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 279 #endif 280 281 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 282 283 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 284 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 285 286 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 287 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 288 289 static int zone_warnings = 1; 290 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 291 "Warn when UMA zones becomes full"); 292 293 /* Adjust bytes under management by UMA. */ 294 static inline void 295 uma_total_dec(unsigned long size) 296 { 297 298 atomic_subtract_long(&uma_kmem_total, size); 299 } 300 301 static inline void 302 uma_total_inc(unsigned long size) 303 { 304 305 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 306 uma_reclaim_wakeup(); 307 } 308 309 /* 310 * This routine checks to see whether or not it's safe to enable buckets. 311 */ 312 static void 313 bucket_enable(void) 314 { 315 bucketdisable = vm_page_count_min(); 316 } 317 318 /* 319 * Initialize bucket_zones, the array of zones of buckets of various sizes. 320 * 321 * For each zone, calculate the memory required for each bucket, consisting 322 * of the header and an array of pointers. 323 */ 324 static void 325 bucket_init(void) 326 { 327 struct uma_bucket_zone *ubz; 328 int size; 329 330 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 331 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 332 size += sizeof(void *) * ubz->ubz_entries; 333 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 334 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 335 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 336 } 337 } 338 339 /* 340 * Given a desired number of entries for a bucket, return the zone from which 341 * to allocate the bucket. 342 */ 343 static struct uma_bucket_zone * 344 bucket_zone_lookup(int entries) 345 { 346 struct uma_bucket_zone *ubz; 347 348 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 349 if (ubz->ubz_entries >= entries) 350 return (ubz); 351 ubz--; 352 return (ubz); 353 } 354 355 static int 356 bucket_select(int size) 357 { 358 struct uma_bucket_zone *ubz; 359 360 ubz = &bucket_zones[0]; 361 if (size > ubz->ubz_maxsize) 362 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 363 364 for (; ubz->ubz_entries != 0; ubz++) 365 if (ubz->ubz_maxsize < size) 366 break; 367 ubz--; 368 return (ubz->ubz_entries); 369 } 370 371 static uma_bucket_t 372 bucket_alloc(uma_zone_t zone, void *udata, int flags) 373 { 374 struct uma_bucket_zone *ubz; 375 uma_bucket_t bucket; 376 377 /* 378 * This is to stop us from allocating per cpu buckets while we're 379 * running out of vm.boot_pages. Otherwise, we would exhaust the 380 * boot pages. This also prevents us from allocating buckets in 381 * low memory situations. 382 */ 383 if (bucketdisable) 384 return (NULL); 385 /* 386 * To limit bucket recursion we store the original zone flags 387 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 388 * NOVM flag to persist even through deep recursions. We also 389 * store ZFLAG_BUCKET once we have recursed attempting to allocate 390 * a bucket for a bucket zone so we do not allow infinite bucket 391 * recursion. This cookie will even persist to frees of unused 392 * buckets via the allocation path or bucket allocations in the 393 * free path. 394 */ 395 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 396 udata = (void *)(uintptr_t)zone->uz_flags; 397 else { 398 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 399 return (NULL); 400 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 401 } 402 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 403 flags |= M_NOVM; 404 ubz = bucket_zone_lookup(zone->uz_count); 405 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 406 ubz++; 407 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 408 if (bucket) { 409 #ifdef INVARIANTS 410 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 411 #endif 412 bucket->ub_cnt = 0; 413 bucket->ub_entries = ubz->ubz_entries; 414 } 415 416 return (bucket); 417 } 418 419 static void 420 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 421 { 422 struct uma_bucket_zone *ubz; 423 424 KASSERT(bucket->ub_cnt == 0, 425 ("bucket_free: Freeing a non free bucket.")); 426 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 427 udata = (void *)(uintptr_t)zone->uz_flags; 428 ubz = bucket_zone_lookup(bucket->ub_entries); 429 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 430 } 431 432 static void 433 bucket_zone_drain(void) 434 { 435 struct uma_bucket_zone *ubz; 436 437 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 438 zone_drain(ubz->ubz_zone); 439 } 440 441 static void 442 zone_log_warning(uma_zone_t zone) 443 { 444 static const struct timeval warninterval = { 300, 0 }; 445 446 if (!zone_warnings || zone->uz_warning == NULL) 447 return; 448 449 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 450 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 451 } 452 453 static inline void 454 zone_maxaction(uma_zone_t zone) 455 { 456 457 if (zone->uz_maxaction.ta_func != NULL) 458 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 459 } 460 461 static void 462 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 463 { 464 uma_klink_t klink; 465 466 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 467 kegfn(klink->kl_keg); 468 } 469 470 /* 471 * Routine called by timeout which is used to fire off some time interval 472 * based calculations. (stats, hash size, etc.) 473 * 474 * Arguments: 475 * arg Unused 476 * 477 * Returns: 478 * Nothing 479 */ 480 static void 481 uma_timeout(void *unused) 482 { 483 bucket_enable(); 484 zone_foreach(zone_timeout); 485 486 /* Reschedule this event */ 487 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 488 } 489 490 /* 491 * Routine to perform timeout driven calculations. This expands the 492 * hashes and does per cpu statistics aggregation. 493 * 494 * Returns nothing. 495 */ 496 static void 497 keg_timeout(uma_keg_t keg) 498 { 499 500 KEG_LOCK(keg); 501 /* 502 * Expand the keg hash table. 503 * 504 * This is done if the number of slabs is larger than the hash size. 505 * What I'm trying to do here is completely reduce collisions. This 506 * may be a little aggressive. Should I allow for two collisions max? 507 */ 508 if (keg->uk_flags & UMA_ZONE_HASH && 509 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 510 struct uma_hash newhash; 511 struct uma_hash oldhash; 512 int ret; 513 514 /* 515 * This is so involved because allocating and freeing 516 * while the keg lock is held will lead to deadlock. 517 * I have to do everything in stages and check for 518 * races. 519 */ 520 newhash = keg->uk_hash; 521 KEG_UNLOCK(keg); 522 ret = hash_alloc(&newhash); 523 KEG_LOCK(keg); 524 if (ret) { 525 if (hash_expand(&keg->uk_hash, &newhash)) { 526 oldhash = keg->uk_hash; 527 keg->uk_hash = newhash; 528 } else 529 oldhash = newhash; 530 531 KEG_UNLOCK(keg); 532 hash_free(&oldhash); 533 return; 534 } 535 } 536 KEG_UNLOCK(keg); 537 } 538 539 static void 540 zone_timeout(uma_zone_t zone) 541 { 542 543 zone_foreach_keg(zone, &keg_timeout); 544 } 545 546 /* 547 * Allocate and zero fill the next sized hash table from the appropriate 548 * backing store. 549 * 550 * Arguments: 551 * hash A new hash structure with the old hash size in uh_hashsize 552 * 553 * Returns: 554 * 1 on success and 0 on failure. 555 */ 556 static int 557 hash_alloc(struct uma_hash *hash) 558 { 559 int oldsize; 560 int alloc; 561 562 oldsize = hash->uh_hashsize; 563 564 /* We're just going to go to a power of two greater */ 565 if (oldsize) { 566 hash->uh_hashsize = oldsize * 2; 567 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 568 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 569 M_UMAHASH, M_NOWAIT); 570 } else { 571 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 572 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 573 M_WAITOK); 574 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 575 } 576 if (hash->uh_slab_hash) { 577 bzero(hash->uh_slab_hash, alloc); 578 hash->uh_hashmask = hash->uh_hashsize - 1; 579 return (1); 580 } 581 582 return (0); 583 } 584 585 /* 586 * Expands the hash table for HASH zones. This is done from zone_timeout 587 * to reduce collisions. This must not be done in the regular allocation 588 * path, otherwise, we can recurse on the vm while allocating pages. 589 * 590 * Arguments: 591 * oldhash The hash you want to expand 592 * newhash The hash structure for the new table 593 * 594 * Returns: 595 * Nothing 596 * 597 * Discussion: 598 */ 599 static int 600 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 601 { 602 uma_slab_t slab; 603 int hval; 604 int i; 605 606 if (!newhash->uh_slab_hash) 607 return (0); 608 609 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 610 return (0); 611 612 /* 613 * I need to investigate hash algorithms for resizing without a 614 * full rehash. 615 */ 616 617 for (i = 0; i < oldhash->uh_hashsize; i++) 618 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 619 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 620 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 621 hval = UMA_HASH(newhash, slab->us_data); 622 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 623 slab, us_hlink); 624 } 625 626 return (1); 627 } 628 629 /* 630 * Free the hash bucket to the appropriate backing store. 631 * 632 * Arguments: 633 * slab_hash The hash bucket we're freeing 634 * hashsize The number of entries in that hash bucket 635 * 636 * Returns: 637 * Nothing 638 */ 639 static void 640 hash_free(struct uma_hash *hash) 641 { 642 if (hash->uh_slab_hash == NULL) 643 return; 644 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 645 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 646 else 647 free(hash->uh_slab_hash, M_UMAHASH); 648 } 649 650 /* 651 * Frees all outstanding items in a bucket 652 * 653 * Arguments: 654 * zone The zone to free to, must be unlocked. 655 * bucket The free/alloc bucket with items, cpu queue must be locked. 656 * 657 * Returns: 658 * Nothing 659 */ 660 661 static void 662 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 663 { 664 int i; 665 666 if (bucket == NULL) 667 return; 668 669 if (zone->uz_fini) 670 for (i = 0; i < bucket->ub_cnt; i++) 671 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 672 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 673 bucket->ub_cnt = 0; 674 } 675 676 /* 677 * Drains the per cpu caches for a zone. 678 * 679 * NOTE: This may only be called while the zone is being turn down, and not 680 * during normal operation. This is necessary in order that we do not have 681 * to migrate CPUs to drain the per-CPU caches. 682 * 683 * Arguments: 684 * zone The zone to drain, must be unlocked. 685 * 686 * Returns: 687 * Nothing 688 */ 689 static void 690 cache_drain(uma_zone_t zone) 691 { 692 uma_cache_t cache; 693 int cpu; 694 695 /* 696 * XXX: It is safe to not lock the per-CPU caches, because we're 697 * tearing down the zone anyway. I.e., there will be no further use 698 * of the caches at this point. 699 * 700 * XXX: It would good to be able to assert that the zone is being 701 * torn down to prevent improper use of cache_drain(). 702 * 703 * XXX: We lock the zone before passing into bucket_cache_drain() as 704 * it is used elsewhere. Should the tear-down path be made special 705 * there in some form? 706 */ 707 CPU_FOREACH(cpu) { 708 cache = &zone->uz_cpu[cpu]; 709 bucket_drain(zone, cache->uc_allocbucket); 710 bucket_drain(zone, cache->uc_freebucket); 711 if (cache->uc_allocbucket != NULL) 712 bucket_free(zone, cache->uc_allocbucket, NULL); 713 if (cache->uc_freebucket != NULL) 714 bucket_free(zone, cache->uc_freebucket, NULL); 715 cache->uc_allocbucket = cache->uc_freebucket = NULL; 716 } 717 ZONE_LOCK(zone); 718 bucket_cache_drain(zone); 719 ZONE_UNLOCK(zone); 720 } 721 722 static void 723 cache_shrink(uma_zone_t zone) 724 { 725 726 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 727 return; 728 729 ZONE_LOCK(zone); 730 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 731 ZONE_UNLOCK(zone); 732 } 733 734 static void 735 cache_drain_safe_cpu(uma_zone_t zone) 736 { 737 uma_cache_t cache; 738 uma_bucket_t b1, b2; 739 740 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 741 return; 742 743 b1 = b2 = NULL; 744 ZONE_LOCK(zone); 745 critical_enter(); 746 cache = &zone->uz_cpu[curcpu]; 747 if (cache->uc_allocbucket) { 748 if (cache->uc_allocbucket->ub_cnt != 0) 749 LIST_INSERT_HEAD(&zone->uz_buckets, 750 cache->uc_allocbucket, ub_link); 751 else 752 b1 = cache->uc_allocbucket; 753 cache->uc_allocbucket = NULL; 754 } 755 if (cache->uc_freebucket) { 756 if (cache->uc_freebucket->ub_cnt != 0) 757 LIST_INSERT_HEAD(&zone->uz_buckets, 758 cache->uc_freebucket, ub_link); 759 else 760 b2 = cache->uc_freebucket; 761 cache->uc_freebucket = NULL; 762 } 763 critical_exit(); 764 ZONE_UNLOCK(zone); 765 if (b1) 766 bucket_free(zone, b1, NULL); 767 if (b2) 768 bucket_free(zone, b2, NULL); 769 } 770 771 /* 772 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 773 * This is an expensive call because it needs to bind to all CPUs 774 * one by one and enter a critical section on each of them in order 775 * to safely access their cache buckets. 776 * Zone lock must not be held on call this function. 777 */ 778 static void 779 cache_drain_safe(uma_zone_t zone) 780 { 781 int cpu; 782 783 /* 784 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 785 */ 786 if (zone) 787 cache_shrink(zone); 788 else 789 zone_foreach(cache_shrink); 790 791 CPU_FOREACH(cpu) { 792 thread_lock(curthread); 793 sched_bind(curthread, cpu); 794 thread_unlock(curthread); 795 796 if (zone) 797 cache_drain_safe_cpu(zone); 798 else 799 zone_foreach(cache_drain_safe_cpu); 800 } 801 thread_lock(curthread); 802 sched_unbind(curthread); 803 thread_unlock(curthread); 804 } 805 806 /* 807 * Drain the cached buckets from a zone. Expects a locked zone on entry. 808 */ 809 static void 810 bucket_cache_drain(uma_zone_t zone) 811 { 812 uma_bucket_t bucket; 813 814 /* 815 * Drain the bucket queues and free the buckets, we just keep two per 816 * cpu (alloc/free). 817 */ 818 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 819 LIST_REMOVE(bucket, ub_link); 820 ZONE_UNLOCK(zone); 821 bucket_drain(zone, bucket); 822 bucket_free(zone, bucket, NULL); 823 ZONE_LOCK(zone); 824 } 825 826 /* 827 * Shrink further bucket sizes. Price of single zone lock collision 828 * is probably lower then price of global cache drain. 829 */ 830 if (zone->uz_count > zone->uz_count_min) 831 zone->uz_count--; 832 } 833 834 static void 835 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 836 { 837 uint8_t *mem; 838 int i; 839 uint8_t flags; 840 841 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 842 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 843 844 mem = slab->us_data; 845 flags = slab->us_flags; 846 i = start; 847 if (keg->uk_fini != NULL) { 848 for (i--; i > -1; i--) 849 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 850 keg->uk_size); 851 } 852 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 853 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 854 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 855 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 856 } 857 858 /* 859 * Frees pages from a keg back to the system. This is done on demand from 860 * the pageout daemon. 861 * 862 * Returns nothing. 863 */ 864 static void 865 keg_drain(uma_keg_t keg) 866 { 867 struct slabhead freeslabs = { 0 }; 868 uma_slab_t slab, tmp; 869 870 /* 871 * We don't want to take pages from statically allocated kegs at this 872 * time 873 */ 874 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 875 return; 876 877 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 878 keg->uk_name, keg, keg->uk_free); 879 KEG_LOCK(keg); 880 if (keg->uk_free == 0) 881 goto finished; 882 883 LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) { 884 /* We have nowhere to free these to. */ 885 if (slab->us_flags & UMA_SLAB_BOOT) 886 continue; 887 888 LIST_REMOVE(slab, us_link); 889 keg->uk_pages -= keg->uk_ppera; 890 keg->uk_free -= keg->uk_ipers; 891 892 if (keg->uk_flags & UMA_ZONE_HASH) 893 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 894 895 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 896 } 897 finished: 898 KEG_UNLOCK(keg); 899 900 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 901 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 902 keg_free_slab(keg, slab, keg->uk_ipers); 903 } 904 } 905 906 static void 907 zone_drain_wait(uma_zone_t zone, int waitok) 908 { 909 910 /* 911 * Set draining to interlock with zone_dtor() so we can release our 912 * locks as we go. Only dtor() should do a WAITOK call since it 913 * is the only call that knows the structure will still be available 914 * when it wakes up. 915 */ 916 ZONE_LOCK(zone); 917 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 918 if (waitok == M_NOWAIT) 919 goto out; 920 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 921 } 922 zone->uz_flags |= UMA_ZFLAG_DRAINING; 923 bucket_cache_drain(zone); 924 ZONE_UNLOCK(zone); 925 /* 926 * The DRAINING flag protects us from being freed while 927 * we're running. Normally the uma_rwlock would protect us but we 928 * must be able to release and acquire the right lock for each keg. 929 */ 930 zone_foreach_keg(zone, &keg_drain); 931 ZONE_LOCK(zone); 932 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 933 wakeup(zone); 934 out: 935 ZONE_UNLOCK(zone); 936 } 937 938 void 939 zone_drain(uma_zone_t zone) 940 { 941 942 zone_drain_wait(zone, M_NOWAIT); 943 } 944 945 /* 946 * Allocate a new slab for a keg. This does not insert the slab onto a list. 947 * 948 * Arguments: 949 * wait Shall we wait? 950 * 951 * Returns: 952 * The slab that was allocated or NULL if there is no memory and the 953 * caller specified M_NOWAIT. 954 */ 955 static uma_slab_t 956 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 957 { 958 uma_alloc allocf; 959 uma_slab_t slab; 960 unsigned long size; 961 uint8_t *mem; 962 uint8_t flags; 963 int i; 964 965 mtx_assert(&keg->uk_lock, MA_OWNED); 966 slab = NULL; 967 mem = NULL; 968 969 allocf = keg->uk_allocf; 970 KEG_UNLOCK(keg); 971 size = keg->uk_ppera * PAGE_SIZE; 972 973 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 974 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 975 if (slab == NULL) 976 goto out; 977 } 978 979 /* 980 * This reproduces the old vm_zone behavior of zero filling pages the 981 * first time they are added to a zone. 982 * 983 * Malloced items are zeroed in uma_zalloc. 984 */ 985 986 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 987 wait |= M_ZERO; 988 else 989 wait &= ~M_ZERO; 990 991 if (keg->uk_flags & UMA_ZONE_NODUMP) 992 wait |= M_NODUMP; 993 994 /* zone is passed for legacy reasons. */ 995 mem = allocf(zone, size, &flags, wait); 996 if (mem == NULL) { 997 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 998 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 999 slab = NULL; 1000 goto out; 1001 } 1002 uma_total_inc(size); 1003 1004 /* Point the slab into the allocated memory */ 1005 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1006 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1007 1008 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1009 for (i = 0; i < keg->uk_ppera; i++) 1010 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1011 1012 slab->us_keg = keg; 1013 slab->us_data = mem; 1014 slab->us_freecount = keg->uk_ipers; 1015 slab->us_flags = flags; 1016 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1017 #ifdef INVARIANTS 1018 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1019 #endif 1020 1021 if (keg->uk_init != NULL) { 1022 for (i = 0; i < keg->uk_ipers; i++) 1023 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1024 keg->uk_size, wait) != 0) 1025 break; 1026 if (i != keg->uk_ipers) { 1027 keg_free_slab(keg, slab, i); 1028 slab = NULL; 1029 goto out; 1030 } 1031 } 1032 out: 1033 KEG_LOCK(keg); 1034 1035 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1036 slab, keg->uk_name, keg); 1037 1038 if (slab != NULL) { 1039 if (keg->uk_flags & UMA_ZONE_HASH) 1040 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1041 1042 keg->uk_pages += keg->uk_ppera; 1043 keg->uk_free += keg->uk_ipers; 1044 } 1045 1046 return (slab); 1047 } 1048 1049 /* 1050 * This function is intended to be used early on in place of page_alloc() so 1051 * that we may use the boot time page cache to satisfy allocations before 1052 * the VM is ready. 1053 */ 1054 static void * 1055 startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1056 { 1057 uma_keg_t keg; 1058 void *mem; 1059 int pages; 1060 1061 keg = zone_first_keg(zone); 1062 pages = howmany(bytes, PAGE_SIZE); 1063 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1064 1065 /* 1066 * Check our small startup cache to see if it has pages remaining. 1067 */ 1068 mtx_lock(&uma_boot_pages_mtx); 1069 if (pages <= boot_pages) { 1070 mem = bootmem; 1071 boot_pages -= pages; 1072 bootmem += pages * PAGE_SIZE; 1073 mtx_unlock(&uma_boot_pages_mtx); 1074 *pflag = UMA_SLAB_BOOT; 1075 return (mem); 1076 } 1077 mtx_unlock(&uma_boot_pages_mtx); 1078 if (booted < UMA_STARTUP2) 1079 panic("UMA: Increase vm.boot_pages"); 1080 /* 1081 * Now that we've booted reset these users to their real allocator. 1082 */ 1083 #ifdef UMA_MD_SMALL_ALLOC 1084 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1085 #else 1086 keg->uk_allocf = page_alloc; 1087 #endif 1088 return keg->uk_allocf(zone, bytes, pflag, wait); 1089 } 1090 1091 /* 1092 * Allocates a number of pages from the system 1093 * 1094 * Arguments: 1095 * bytes The number of bytes requested 1096 * wait Shall we wait? 1097 * 1098 * Returns: 1099 * A pointer to the alloced memory or possibly 1100 * NULL if M_NOWAIT is set. 1101 */ 1102 static void * 1103 page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1104 { 1105 void *p; /* Returned page */ 1106 1107 *pflag = UMA_SLAB_KERNEL; 1108 p = (void *) kmem_malloc(kernel_arena, bytes, wait); 1109 1110 return (p); 1111 } 1112 1113 /* 1114 * Allocates a number of pages from within an object 1115 * 1116 * Arguments: 1117 * bytes The number of bytes requested 1118 * wait Shall we wait? 1119 * 1120 * Returns: 1121 * A pointer to the alloced memory or possibly 1122 * NULL if M_NOWAIT is set. 1123 */ 1124 static void * 1125 noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait) 1126 { 1127 TAILQ_HEAD(, vm_page) alloctail; 1128 u_long npages; 1129 vm_offset_t retkva, zkva; 1130 vm_page_t p, p_next; 1131 uma_keg_t keg; 1132 1133 TAILQ_INIT(&alloctail); 1134 keg = zone_first_keg(zone); 1135 1136 npages = howmany(bytes, PAGE_SIZE); 1137 while (npages > 0) { 1138 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1139 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1140 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1141 VM_ALLOC_NOWAIT)); 1142 if (p != NULL) { 1143 /* 1144 * Since the page does not belong to an object, its 1145 * listq is unused. 1146 */ 1147 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1148 npages--; 1149 continue; 1150 } 1151 /* 1152 * Page allocation failed, free intermediate pages and 1153 * exit. 1154 */ 1155 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1156 vm_page_unwire(p, PQ_NONE); 1157 vm_page_free(p); 1158 } 1159 return (NULL); 1160 } 1161 *flags = UMA_SLAB_PRIV; 1162 zkva = keg->uk_kva + 1163 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1164 retkva = zkva; 1165 TAILQ_FOREACH(p, &alloctail, listq) { 1166 pmap_qenter(zkva, &p, 1); 1167 zkva += PAGE_SIZE; 1168 } 1169 1170 return ((void *)retkva); 1171 } 1172 1173 /* 1174 * Frees a number of pages to the system 1175 * 1176 * Arguments: 1177 * mem A pointer to the memory to be freed 1178 * size The size of the memory being freed 1179 * flags The original p->us_flags field 1180 * 1181 * Returns: 1182 * Nothing 1183 */ 1184 static void 1185 page_free(void *mem, vm_size_t size, uint8_t flags) 1186 { 1187 struct vmem *vmem; 1188 1189 if (flags & UMA_SLAB_KERNEL) 1190 vmem = kernel_arena; 1191 else 1192 panic("UMA: page_free used with invalid flags %x", flags); 1193 1194 kmem_free(vmem, (vm_offset_t)mem, size); 1195 } 1196 1197 /* 1198 * Zero fill initializer 1199 * 1200 * Arguments/Returns follow uma_init specifications 1201 */ 1202 static int 1203 zero_init(void *mem, int size, int flags) 1204 { 1205 bzero(mem, size); 1206 return (0); 1207 } 1208 1209 /* 1210 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1211 * 1212 * Arguments 1213 * keg The zone we should initialize 1214 * 1215 * Returns 1216 * Nothing 1217 */ 1218 static void 1219 keg_small_init(uma_keg_t keg) 1220 { 1221 u_int rsize; 1222 u_int memused; 1223 u_int wastedspace; 1224 u_int shsize; 1225 u_int slabsize; 1226 1227 if (keg->uk_flags & UMA_ZONE_PCPU) { 1228 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1229 1230 slabsize = sizeof(struct pcpu); 1231 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1232 PAGE_SIZE); 1233 } else { 1234 slabsize = UMA_SLAB_SIZE; 1235 keg->uk_ppera = 1; 1236 } 1237 1238 /* 1239 * Calculate the size of each allocation (rsize) according to 1240 * alignment. If the requested size is smaller than we have 1241 * allocation bits for we round it up. 1242 */ 1243 rsize = keg->uk_size; 1244 if (rsize < slabsize / SLAB_SETSIZE) 1245 rsize = slabsize / SLAB_SETSIZE; 1246 if (rsize & keg->uk_align) 1247 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1248 keg->uk_rsize = rsize; 1249 1250 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1251 keg->uk_rsize < sizeof(struct pcpu), 1252 ("%s: size %u too large", __func__, keg->uk_rsize)); 1253 1254 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1255 shsize = 0; 1256 else 1257 shsize = sizeof(struct uma_slab); 1258 1259 keg->uk_ipers = (slabsize - shsize) / rsize; 1260 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1261 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1262 1263 memused = keg->uk_ipers * rsize + shsize; 1264 wastedspace = slabsize - memused; 1265 1266 /* 1267 * We can't do OFFPAGE if we're internal or if we've been 1268 * asked to not go to the VM for buckets. If we do this we 1269 * may end up going to the VM for slabs which we do not 1270 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1271 * of UMA_ZONE_VM, which clearly forbids it. 1272 */ 1273 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1274 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1275 return; 1276 1277 /* 1278 * See if using an OFFPAGE slab will limit our waste. Only do 1279 * this if it permits more items per-slab. 1280 * 1281 * XXX We could try growing slabsize to limit max waste as well. 1282 * Historically this was not done because the VM could not 1283 * efficiently handle contiguous allocations. 1284 */ 1285 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1286 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1287 keg->uk_ipers = slabsize / keg->uk_rsize; 1288 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1289 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1290 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1291 "keg: %s(%p), calculated wastedspace = %d, " 1292 "maximum wasted space allowed = %d, " 1293 "calculated ipers = %d, " 1294 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1295 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1296 slabsize - keg->uk_ipers * keg->uk_rsize); 1297 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1298 } 1299 1300 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1301 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1302 keg->uk_flags |= UMA_ZONE_HASH; 1303 } 1304 1305 /* 1306 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1307 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1308 * more complicated. 1309 * 1310 * Arguments 1311 * keg The keg we should initialize 1312 * 1313 * Returns 1314 * Nothing 1315 */ 1316 static void 1317 keg_large_init(uma_keg_t keg) 1318 { 1319 u_int shsize; 1320 1321 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1322 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1323 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1324 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1325 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1326 1327 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1328 keg->uk_ipers = 1; 1329 keg->uk_rsize = keg->uk_size; 1330 1331 /* Check whether we have enough space to not do OFFPAGE. */ 1332 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1333 shsize = sizeof(struct uma_slab); 1334 if (shsize & UMA_ALIGN_PTR) 1335 shsize = (shsize & ~UMA_ALIGN_PTR) + 1336 (UMA_ALIGN_PTR + 1); 1337 1338 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) { 1339 /* 1340 * We can't do OFFPAGE if we're internal, in which case 1341 * we need an extra page per allocation to contain the 1342 * slab header. 1343 */ 1344 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1345 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1346 else 1347 keg->uk_ppera++; 1348 } 1349 } 1350 1351 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1352 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1353 keg->uk_flags |= UMA_ZONE_HASH; 1354 } 1355 1356 static void 1357 keg_cachespread_init(uma_keg_t keg) 1358 { 1359 int alignsize; 1360 int trailer; 1361 int pages; 1362 int rsize; 1363 1364 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1365 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1366 1367 alignsize = keg->uk_align + 1; 1368 rsize = keg->uk_size; 1369 /* 1370 * We want one item to start on every align boundary in a page. To 1371 * do this we will span pages. We will also extend the item by the 1372 * size of align if it is an even multiple of align. Otherwise, it 1373 * would fall on the same boundary every time. 1374 */ 1375 if (rsize & keg->uk_align) 1376 rsize = (rsize & ~keg->uk_align) + alignsize; 1377 if ((rsize & alignsize) == 0) 1378 rsize += alignsize; 1379 trailer = rsize - keg->uk_size; 1380 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1381 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1382 keg->uk_rsize = rsize; 1383 keg->uk_ppera = pages; 1384 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1385 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1386 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1387 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1388 keg->uk_ipers)); 1389 } 1390 1391 /* 1392 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1393 * the keg onto the global keg list. 1394 * 1395 * Arguments/Returns follow uma_ctor specifications 1396 * udata Actually uma_kctor_args 1397 */ 1398 static int 1399 keg_ctor(void *mem, int size, void *udata, int flags) 1400 { 1401 struct uma_kctor_args *arg = udata; 1402 uma_keg_t keg = mem; 1403 uma_zone_t zone; 1404 1405 bzero(keg, size); 1406 keg->uk_size = arg->size; 1407 keg->uk_init = arg->uminit; 1408 keg->uk_fini = arg->fini; 1409 keg->uk_align = arg->align; 1410 keg->uk_free = 0; 1411 keg->uk_reserve = 0; 1412 keg->uk_pages = 0; 1413 keg->uk_flags = arg->flags; 1414 keg->uk_slabzone = NULL; 1415 1416 /* 1417 * The master zone is passed to us at keg-creation time. 1418 */ 1419 zone = arg->zone; 1420 keg->uk_name = zone->uz_name; 1421 1422 if (arg->flags & UMA_ZONE_VM) 1423 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1424 1425 if (arg->flags & UMA_ZONE_ZINIT) 1426 keg->uk_init = zero_init; 1427 1428 if (arg->flags & UMA_ZONE_MALLOC) 1429 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1430 1431 if (arg->flags & UMA_ZONE_PCPU) 1432 #ifdef SMP 1433 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1434 #else 1435 keg->uk_flags &= ~UMA_ZONE_PCPU; 1436 #endif 1437 1438 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1439 keg_cachespread_init(keg); 1440 } else { 1441 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1442 keg_large_init(keg); 1443 else 1444 keg_small_init(keg); 1445 } 1446 1447 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1448 keg->uk_slabzone = slabzone; 1449 1450 /* 1451 * If we haven't booted yet we need allocations to go through the 1452 * startup cache until the vm is ready. 1453 */ 1454 if (booted < UMA_STARTUP2) 1455 keg->uk_allocf = startup_alloc; 1456 #ifdef UMA_MD_SMALL_ALLOC 1457 else if (keg->uk_ppera == 1) 1458 keg->uk_allocf = uma_small_alloc; 1459 #endif 1460 else 1461 keg->uk_allocf = page_alloc; 1462 #ifdef UMA_MD_SMALL_ALLOC 1463 if (keg->uk_ppera == 1) 1464 keg->uk_freef = uma_small_free; 1465 else 1466 #endif 1467 keg->uk_freef = page_free; 1468 1469 /* 1470 * Initialize keg's lock 1471 */ 1472 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1473 1474 /* 1475 * If we're putting the slab header in the actual page we need to 1476 * figure out where in each page it goes. This calculates a right 1477 * justified offset into the memory on an ALIGN_PTR boundary. 1478 */ 1479 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1480 u_int totsize; 1481 1482 /* Size of the slab struct and free list */ 1483 totsize = sizeof(struct uma_slab); 1484 1485 if (totsize & UMA_ALIGN_PTR) 1486 totsize = (totsize & ~UMA_ALIGN_PTR) + 1487 (UMA_ALIGN_PTR + 1); 1488 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1489 1490 /* 1491 * The only way the following is possible is if with our 1492 * UMA_ALIGN_PTR adjustments we are now bigger than 1493 * UMA_SLAB_SIZE. I haven't checked whether this is 1494 * mathematically possible for all cases, so we make 1495 * sure here anyway. 1496 */ 1497 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1498 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1499 printf("zone %s ipers %d rsize %d size %d\n", 1500 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1501 keg->uk_size); 1502 panic("UMA slab won't fit."); 1503 } 1504 } 1505 1506 if (keg->uk_flags & UMA_ZONE_HASH) 1507 hash_alloc(&keg->uk_hash); 1508 1509 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1510 keg, zone->uz_name, zone, 1511 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1512 keg->uk_free); 1513 1514 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1515 1516 rw_wlock(&uma_rwlock); 1517 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1518 rw_wunlock(&uma_rwlock); 1519 return (0); 1520 } 1521 1522 /* 1523 * Zone header ctor. This initializes all fields, locks, etc. 1524 * 1525 * Arguments/Returns follow uma_ctor specifications 1526 * udata Actually uma_zctor_args 1527 */ 1528 static int 1529 zone_ctor(void *mem, int size, void *udata, int flags) 1530 { 1531 struct uma_zctor_args *arg = udata; 1532 uma_zone_t zone = mem; 1533 uma_zone_t z; 1534 uma_keg_t keg; 1535 1536 bzero(zone, size); 1537 zone->uz_name = arg->name; 1538 zone->uz_ctor = arg->ctor; 1539 zone->uz_dtor = arg->dtor; 1540 zone->uz_slab = zone_fetch_slab; 1541 zone->uz_init = NULL; 1542 zone->uz_fini = NULL; 1543 zone->uz_allocs = 0; 1544 zone->uz_frees = 0; 1545 zone->uz_fails = 0; 1546 zone->uz_sleeps = 0; 1547 zone->uz_count = 0; 1548 zone->uz_count_min = 0; 1549 zone->uz_flags = 0; 1550 zone->uz_warning = NULL; 1551 timevalclear(&zone->uz_ratecheck); 1552 keg = arg->keg; 1553 1554 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1555 1556 /* 1557 * This is a pure cache zone, no kegs. 1558 */ 1559 if (arg->import) { 1560 if (arg->flags & UMA_ZONE_VM) 1561 arg->flags |= UMA_ZFLAG_CACHEONLY; 1562 zone->uz_flags = arg->flags; 1563 zone->uz_size = arg->size; 1564 zone->uz_import = arg->import; 1565 zone->uz_release = arg->release; 1566 zone->uz_arg = arg->arg; 1567 zone->uz_lockptr = &zone->uz_lock; 1568 rw_wlock(&uma_rwlock); 1569 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1570 rw_wunlock(&uma_rwlock); 1571 goto out; 1572 } 1573 1574 /* 1575 * Use the regular zone/keg/slab allocator. 1576 */ 1577 zone->uz_import = (uma_import)zone_import; 1578 zone->uz_release = (uma_release)zone_release; 1579 zone->uz_arg = zone; 1580 1581 if (arg->flags & UMA_ZONE_SECONDARY) { 1582 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1583 zone->uz_init = arg->uminit; 1584 zone->uz_fini = arg->fini; 1585 zone->uz_lockptr = &keg->uk_lock; 1586 zone->uz_flags |= UMA_ZONE_SECONDARY; 1587 rw_wlock(&uma_rwlock); 1588 ZONE_LOCK(zone); 1589 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1590 if (LIST_NEXT(z, uz_link) == NULL) { 1591 LIST_INSERT_AFTER(z, zone, uz_link); 1592 break; 1593 } 1594 } 1595 ZONE_UNLOCK(zone); 1596 rw_wunlock(&uma_rwlock); 1597 } else if (keg == NULL) { 1598 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1599 arg->align, arg->flags)) == NULL) 1600 return (ENOMEM); 1601 } else { 1602 struct uma_kctor_args karg; 1603 int error; 1604 1605 /* We should only be here from uma_startup() */ 1606 karg.size = arg->size; 1607 karg.uminit = arg->uminit; 1608 karg.fini = arg->fini; 1609 karg.align = arg->align; 1610 karg.flags = arg->flags; 1611 karg.zone = zone; 1612 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1613 flags); 1614 if (error) 1615 return (error); 1616 } 1617 1618 /* 1619 * Link in the first keg. 1620 */ 1621 zone->uz_klink.kl_keg = keg; 1622 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1623 zone->uz_lockptr = &keg->uk_lock; 1624 zone->uz_size = keg->uk_size; 1625 zone->uz_flags |= (keg->uk_flags & 1626 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1627 1628 /* 1629 * Some internal zones don't have room allocated for the per cpu 1630 * caches. If we're internal, bail out here. 1631 */ 1632 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1633 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1634 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1635 return (0); 1636 } 1637 1638 out: 1639 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1640 zone->uz_count = bucket_select(zone->uz_size); 1641 else 1642 zone->uz_count = BUCKET_MAX; 1643 zone->uz_count_min = zone->uz_count; 1644 1645 return (0); 1646 } 1647 1648 /* 1649 * Keg header dtor. This frees all data, destroys locks, frees the hash 1650 * table and removes the keg from the global list. 1651 * 1652 * Arguments/Returns follow uma_dtor specifications 1653 * udata unused 1654 */ 1655 static void 1656 keg_dtor(void *arg, int size, void *udata) 1657 { 1658 uma_keg_t keg; 1659 1660 keg = (uma_keg_t)arg; 1661 KEG_LOCK(keg); 1662 if (keg->uk_free != 0) { 1663 printf("Freed UMA keg (%s) was not empty (%d items). " 1664 " Lost %d pages of memory.\n", 1665 keg->uk_name ? keg->uk_name : "", 1666 keg->uk_free, keg->uk_pages); 1667 } 1668 KEG_UNLOCK(keg); 1669 1670 hash_free(&keg->uk_hash); 1671 1672 KEG_LOCK_FINI(keg); 1673 } 1674 1675 /* 1676 * Zone header dtor. 1677 * 1678 * Arguments/Returns follow uma_dtor specifications 1679 * udata unused 1680 */ 1681 static void 1682 zone_dtor(void *arg, int size, void *udata) 1683 { 1684 uma_klink_t klink; 1685 uma_zone_t zone; 1686 uma_keg_t keg; 1687 1688 zone = (uma_zone_t)arg; 1689 keg = zone_first_keg(zone); 1690 1691 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1692 cache_drain(zone); 1693 1694 rw_wlock(&uma_rwlock); 1695 LIST_REMOVE(zone, uz_link); 1696 rw_wunlock(&uma_rwlock); 1697 /* 1698 * XXX there are some races here where 1699 * the zone can be drained but zone lock 1700 * released and then refilled before we 1701 * remove it... we dont care for now 1702 */ 1703 zone_drain_wait(zone, M_WAITOK); 1704 /* 1705 * Unlink all of our kegs. 1706 */ 1707 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1708 klink->kl_keg = NULL; 1709 LIST_REMOVE(klink, kl_link); 1710 if (klink == &zone->uz_klink) 1711 continue; 1712 free(klink, M_TEMP); 1713 } 1714 /* 1715 * We only destroy kegs from non secondary zones. 1716 */ 1717 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1718 rw_wlock(&uma_rwlock); 1719 LIST_REMOVE(keg, uk_link); 1720 rw_wunlock(&uma_rwlock); 1721 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1722 } 1723 ZONE_LOCK_FINI(zone); 1724 } 1725 1726 /* 1727 * Traverses every zone in the system and calls a callback 1728 * 1729 * Arguments: 1730 * zfunc A pointer to a function which accepts a zone 1731 * as an argument. 1732 * 1733 * Returns: 1734 * Nothing 1735 */ 1736 static void 1737 zone_foreach(void (*zfunc)(uma_zone_t)) 1738 { 1739 uma_keg_t keg; 1740 uma_zone_t zone; 1741 1742 rw_rlock(&uma_rwlock); 1743 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1744 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1745 zfunc(zone); 1746 } 1747 rw_runlock(&uma_rwlock); 1748 } 1749 1750 /* Public functions */ 1751 /* See uma.h */ 1752 void 1753 uma_startup(void *mem, int npages) 1754 { 1755 struct uma_zctor_args args; 1756 1757 rw_init(&uma_rwlock, "UMA lock"); 1758 1759 /* "manually" create the initial zone */ 1760 memset(&args, 0, sizeof(args)); 1761 args.name = "UMA Kegs"; 1762 args.size = sizeof(struct uma_keg); 1763 args.ctor = keg_ctor; 1764 args.dtor = keg_dtor; 1765 args.uminit = zero_init; 1766 args.fini = NULL; 1767 args.keg = &masterkeg; 1768 args.align = 32 - 1; 1769 args.flags = UMA_ZFLAG_INTERNAL; 1770 /* The initial zone has no Per cpu queues so it's smaller */ 1771 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1772 1773 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1774 bootmem = mem; 1775 boot_pages = npages; 1776 1777 args.name = "UMA Zones"; 1778 args.size = sizeof(struct uma_zone) + 1779 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1780 args.ctor = zone_ctor; 1781 args.dtor = zone_dtor; 1782 args.uminit = zero_init; 1783 args.fini = NULL; 1784 args.keg = NULL; 1785 args.align = 32 - 1; 1786 args.flags = UMA_ZFLAG_INTERNAL; 1787 /* The initial zone has no Per cpu queues so it's smaller */ 1788 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1789 1790 /* Now make a zone for slab headers */ 1791 slabzone = uma_zcreate("UMA Slabs", 1792 sizeof(struct uma_slab), 1793 NULL, NULL, NULL, NULL, 1794 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1795 1796 hashzone = uma_zcreate("UMA Hash", 1797 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1798 NULL, NULL, NULL, NULL, 1799 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1800 1801 bucket_init(); 1802 1803 booted = UMA_STARTUP; 1804 } 1805 1806 /* see uma.h */ 1807 void 1808 uma_startup2(void) 1809 { 1810 booted = UMA_STARTUP2; 1811 bucket_enable(); 1812 sx_init(&uma_drain_lock, "umadrain"); 1813 } 1814 1815 /* 1816 * Initialize our callout handle 1817 * 1818 */ 1819 1820 static void 1821 uma_startup3(void) 1822 { 1823 1824 callout_init(&uma_callout, 1); 1825 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1826 } 1827 1828 static uma_keg_t 1829 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1830 int align, uint32_t flags) 1831 { 1832 struct uma_kctor_args args; 1833 1834 args.size = size; 1835 args.uminit = uminit; 1836 args.fini = fini; 1837 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1838 args.flags = flags; 1839 args.zone = zone; 1840 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1841 } 1842 1843 /* See uma.h */ 1844 void 1845 uma_set_align(int align) 1846 { 1847 1848 if (align != UMA_ALIGN_CACHE) 1849 uma_align_cache = align; 1850 } 1851 1852 /* See uma.h */ 1853 uma_zone_t 1854 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1855 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1856 1857 { 1858 struct uma_zctor_args args; 1859 uma_zone_t res; 1860 bool locked; 1861 1862 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 1863 align, name)); 1864 1865 /* This stuff is essential for the zone ctor */ 1866 memset(&args, 0, sizeof(args)); 1867 args.name = name; 1868 args.size = size; 1869 args.ctor = ctor; 1870 args.dtor = dtor; 1871 args.uminit = uminit; 1872 args.fini = fini; 1873 #ifdef INVARIANTS 1874 /* 1875 * If a zone is being created with an empty constructor and 1876 * destructor, pass UMA constructor/destructor which checks for 1877 * memory use after free. 1878 */ 1879 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 1880 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 1881 args.ctor = trash_ctor; 1882 args.dtor = trash_dtor; 1883 args.uminit = trash_init; 1884 args.fini = trash_fini; 1885 } 1886 #endif 1887 args.align = align; 1888 args.flags = flags; 1889 args.keg = NULL; 1890 1891 if (booted < UMA_STARTUP2) { 1892 locked = false; 1893 } else { 1894 sx_slock(&uma_drain_lock); 1895 locked = true; 1896 } 1897 res = zone_alloc_item(zones, &args, M_WAITOK); 1898 if (locked) 1899 sx_sunlock(&uma_drain_lock); 1900 return (res); 1901 } 1902 1903 /* See uma.h */ 1904 uma_zone_t 1905 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1906 uma_init zinit, uma_fini zfini, uma_zone_t master) 1907 { 1908 struct uma_zctor_args args; 1909 uma_keg_t keg; 1910 uma_zone_t res; 1911 bool locked; 1912 1913 keg = zone_first_keg(master); 1914 memset(&args, 0, sizeof(args)); 1915 args.name = name; 1916 args.size = keg->uk_size; 1917 args.ctor = ctor; 1918 args.dtor = dtor; 1919 args.uminit = zinit; 1920 args.fini = zfini; 1921 args.align = keg->uk_align; 1922 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1923 args.keg = keg; 1924 1925 if (booted < UMA_STARTUP2) { 1926 locked = false; 1927 } else { 1928 sx_slock(&uma_drain_lock); 1929 locked = true; 1930 } 1931 /* XXX Attaches only one keg of potentially many. */ 1932 res = zone_alloc_item(zones, &args, M_WAITOK); 1933 if (locked) 1934 sx_sunlock(&uma_drain_lock); 1935 return (res); 1936 } 1937 1938 /* See uma.h */ 1939 uma_zone_t 1940 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 1941 uma_init zinit, uma_fini zfini, uma_import zimport, 1942 uma_release zrelease, void *arg, int flags) 1943 { 1944 struct uma_zctor_args args; 1945 1946 memset(&args, 0, sizeof(args)); 1947 args.name = name; 1948 args.size = size; 1949 args.ctor = ctor; 1950 args.dtor = dtor; 1951 args.uminit = zinit; 1952 args.fini = zfini; 1953 args.import = zimport; 1954 args.release = zrelease; 1955 args.arg = arg; 1956 args.align = 0; 1957 args.flags = flags; 1958 1959 return (zone_alloc_item(zones, &args, M_WAITOK)); 1960 } 1961 1962 static void 1963 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1964 { 1965 if (a < b) { 1966 ZONE_LOCK(a); 1967 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 1968 } else { 1969 ZONE_LOCK(b); 1970 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 1971 } 1972 } 1973 1974 static void 1975 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 1976 { 1977 1978 ZONE_UNLOCK(a); 1979 ZONE_UNLOCK(b); 1980 } 1981 1982 int 1983 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 1984 { 1985 uma_klink_t klink; 1986 uma_klink_t kl; 1987 int error; 1988 1989 error = 0; 1990 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 1991 1992 zone_lock_pair(zone, master); 1993 /* 1994 * zone must use vtoslab() to resolve objects and must already be 1995 * a secondary. 1996 */ 1997 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 1998 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 1999 error = EINVAL; 2000 goto out; 2001 } 2002 /* 2003 * The new master must also use vtoslab(). 2004 */ 2005 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2006 error = EINVAL; 2007 goto out; 2008 } 2009 2010 /* 2011 * The underlying object must be the same size. rsize 2012 * may be different. 2013 */ 2014 if (master->uz_size != zone->uz_size) { 2015 error = E2BIG; 2016 goto out; 2017 } 2018 /* 2019 * Put it at the end of the list. 2020 */ 2021 klink->kl_keg = zone_first_keg(master); 2022 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2023 if (LIST_NEXT(kl, kl_link) == NULL) { 2024 LIST_INSERT_AFTER(kl, klink, kl_link); 2025 break; 2026 } 2027 } 2028 klink = NULL; 2029 zone->uz_flags |= UMA_ZFLAG_MULTI; 2030 zone->uz_slab = zone_fetch_slab_multi; 2031 2032 out: 2033 zone_unlock_pair(zone, master); 2034 if (klink != NULL) 2035 free(klink, M_TEMP); 2036 2037 return (error); 2038 } 2039 2040 2041 /* See uma.h */ 2042 void 2043 uma_zdestroy(uma_zone_t zone) 2044 { 2045 2046 sx_slock(&uma_drain_lock); 2047 zone_free_item(zones, zone, NULL, SKIP_NONE); 2048 sx_sunlock(&uma_drain_lock); 2049 } 2050 2051 void 2052 uma_zwait(uma_zone_t zone) 2053 { 2054 void *item; 2055 2056 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2057 uma_zfree(zone, item); 2058 } 2059 2060 /* See uma.h */ 2061 void * 2062 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2063 { 2064 void *item; 2065 uma_cache_t cache; 2066 uma_bucket_t bucket; 2067 int lockfail; 2068 int cpu; 2069 2070 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2071 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2072 2073 /* This is the fast path allocation */ 2074 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2075 curthread, zone->uz_name, zone, flags); 2076 2077 if (flags & M_WAITOK) { 2078 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2079 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2080 } 2081 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2082 ("uma_zalloc_arg: called with spinlock or critical section held")); 2083 2084 #ifdef DEBUG_MEMGUARD 2085 if (memguard_cmp_zone(zone)) { 2086 item = memguard_alloc(zone->uz_size, flags); 2087 if (item != NULL) { 2088 if (zone->uz_init != NULL && 2089 zone->uz_init(item, zone->uz_size, flags) != 0) 2090 return (NULL); 2091 if (zone->uz_ctor != NULL && 2092 zone->uz_ctor(item, zone->uz_size, udata, 2093 flags) != 0) { 2094 zone->uz_fini(item, zone->uz_size); 2095 return (NULL); 2096 } 2097 return (item); 2098 } 2099 /* This is unfortunate but should not be fatal. */ 2100 } 2101 #endif 2102 /* 2103 * If possible, allocate from the per-CPU cache. There are two 2104 * requirements for safe access to the per-CPU cache: (1) the thread 2105 * accessing the cache must not be preempted or yield during access, 2106 * and (2) the thread must not migrate CPUs without switching which 2107 * cache it accesses. We rely on a critical section to prevent 2108 * preemption and migration. We release the critical section in 2109 * order to acquire the zone mutex if we are unable to allocate from 2110 * the current cache; when we re-acquire the critical section, we 2111 * must detect and handle migration if it has occurred. 2112 */ 2113 critical_enter(); 2114 cpu = curcpu; 2115 cache = &zone->uz_cpu[cpu]; 2116 2117 zalloc_start: 2118 bucket = cache->uc_allocbucket; 2119 if (bucket != NULL && bucket->ub_cnt > 0) { 2120 bucket->ub_cnt--; 2121 item = bucket->ub_bucket[bucket->ub_cnt]; 2122 #ifdef INVARIANTS 2123 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2124 #endif 2125 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2126 cache->uc_allocs++; 2127 critical_exit(); 2128 if (zone->uz_ctor != NULL && 2129 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2130 atomic_add_long(&zone->uz_fails, 1); 2131 zone_free_item(zone, item, udata, SKIP_DTOR); 2132 return (NULL); 2133 } 2134 #ifdef INVARIANTS 2135 uma_dbg_alloc(zone, NULL, item); 2136 #endif 2137 if (flags & M_ZERO) 2138 uma_zero_item(item, zone); 2139 return (item); 2140 } 2141 2142 /* 2143 * We have run out of items in our alloc bucket. 2144 * See if we can switch with our free bucket. 2145 */ 2146 bucket = cache->uc_freebucket; 2147 if (bucket != NULL && bucket->ub_cnt > 0) { 2148 CTR2(KTR_UMA, 2149 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2150 zone->uz_name, zone); 2151 cache->uc_freebucket = cache->uc_allocbucket; 2152 cache->uc_allocbucket = bucket; 2153 goto zalloc_start; 2154 } 2155 2156 /* 2157 * Discard any empty allocation bucket while we hold no locks. 2158 */ 2159 bucket = cache->uc_allocbucket; 2160 cache->uc_allocbucket = NULL; 2161 critical_exit(); 2162 if (bucket != NULL) 2163 bucket_free(zone, bucket, udata); 2164 2165 /* Short-circuit for zones without buckets and low memory. */ 2166 if (zone->uz_count == 0 || bucketdisable) 2167 goto zalloc_item; 2168 2169 /* 2170 * Attempt to retrieve the item from the per-CPU cache has failed, so 2171 * we must go back to the zone. This requires the zone lock, so we 2172 * must drop the critical section, then re-acquire it when we go back 2173 * to the cache. Since the critical section is released, we may be 2174 * preempted or migrate. As such, make sure not to maintain any 2175 * thread-local state specific to the cache from prior to releasing 2176 * the critical section. 2177 */ 2178 lockfail = 0; 2179 if (ZONE_TRYLOCK(zone) == 0) { 2180 /* Record contention to size the buckets. */ 2181 ZONE_LOCK(zone); 2182 lockfail = 1; 2183 } 2184 critical_enter(); 2185 cpu = curcpu; 2186 cache = &zone->uz_cpu[cpu]; 2187 2188 /* 2189 * Since we have locked the zone we may as well send back our stats. 2190 */ 2191 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2192 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2193 cache->uc_allocs = 0; 2194 cache->uc_frees = 0; 2195 2196 /* See if we lost the race to fill the cache. */ 2197 if (cache->uc_allocbucket != NULL) { 2198 ZONE_UNLOCK(zone); 2199 goto zalloc_start; 2200 } 2201 2202 /* 2203 * Check the zone's cache of buckets. 2204 */ 2205 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2206 KASSERT(bucket->ub_cnt != 0, 2207 ("uma_zalloc_arg: Returning an empty bucket.")); 2208 2209 LIST_REMOVE(bucket, ub_link); 2210 cache->uc_allocbucket = bucket; 2211 ZONE_UNLOCK(zone); 2212 goto zalloc_start; 2213 } 2214 /* We are no longer associated with this CPU. */ 2215 critical_exit(); 2216 2217 /* 2218 * We bump the uz count when the cache size is insufficient to 2219 * handle the working set. 2220 */ 2221 if (lockfail && zone->uz_count < BUCKET_MAX) 2222 zone->uz_count++; 2223 ZONE_UNLOCK(zone); 2224 2225 /* 2226 * Now lets just fill a bucket and put it on the free list. If that 2227 * works we'll restart the allocation from the beginning and it 2228 * will use the just filled bucket. 2229 */ 2230 bucket = zone_alloc_bucket(zone, udata, flags); 2231 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2232 zone->uz_name, zone, bucket); 2233 if (bucket != NULL) { 2234 ZONE_LOCK(zone); 2235 critical_enter(); 2236 cpu = curcpu; 2237 cache = &zone->uz_cpu[cpu]; 2238 /* 2239 * See if we lost the race or were migrated. Cache the 2240 * initialized bucket to make this less likely or claim 2241 * the memory directly. 2242 */ 2243 if (cache->uc_allocbucket == NULL) 2244 cache->uc_allocbucket = bucket; 2245 else 2246 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2247 ZONE_UNLOCK(zone); 2248 goto zalloc_start; 2249 } 2250 2251 /* 2252 * We may not be able to get a bucket so return an actual item. 2253 */ 2254 zalloc_item: 2255 item = zone_alloc_item(zone, udata, flags); 2256 2257 return (item); 2258 } 2259 2260 static uma_slab_t 2261 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2262 { 2263 uma_slab_t slab; 2264 int reserve; 2265 2266 mtx_assert(&keg->uk_lock, MA_OWNED); 2267 slab = NULL; 2268 reserve = 0; 2269 if ((flags & M_USE_RESERVE) == 0) 2270 reserve = keg->uk_reserve; 2271 2272 for (;;) { 2273 /* 2274 * Find a slab with some space. Prefer slabs that are partially 2275 * used over those that are totally full. This helps to reduce 2276 * fragmentation. 2277 */ 2278 if (keg->uk_free > reserve) { 2279 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2280 slab = LIST_FIRST(&keg->uk_part_slab); 2281 } else { 2282 slab = LIST_FIRST(&keg->uk_free_slab); 2283 LIST_REMOVE(slab, us_link); 2284 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2285 us_link); 2286 } 2287 MPASS(slab->us_keg == keg); 2288 return (slab); 2289 } 2290 2291 /* 2292 * M_NOVM means don't ask at all! 2293 */ 2294 if (flags & M_NOVM) 2295 break; 2296 2297 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2298 keg->uk_flags |= UMA_ZFLAG_FULL; 2299 /* 2300 * If this is not a multi-zone, set the FULL bit. 2301 * Otherwise slab_multi() takes care of it. 2302 */ 2303 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2304 zone->uz_flags |= UMA_ZFLAG_FULL; 2305 zone_log_warning(zone); 2306 zone_maxaction(zone); 2307 } 2308 if (flags & M_NOWAIT) 2309 break; 2310 zone->uz_sleeps++; 2311 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2312 continue; 2313 } 2314 slab = keg_alloc_slab(keg, zone, flags); 2315 /* 2316 * If we got a slab here it's safe to mark it partially used 2317 * and return. We assume that the caller is going to remove 2318 * at least one item. 2319 */ 2320 if (slab) { 2321 MPASS(slab->us_keg == keg); 2322 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2323 return (slab); 2324 } 2325 /* 2326 * We might not have been able to get a slab but another cpu 2327 * could have while we were unlocked. Check again before we 2328 * fail. 2329 */ 2330 flags |= M_NOVM; 2331 } 2332 return (slab); 2333 } 2334 2335 static uma_slab_t 2336 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2337 { 2338 uma_slab_t slab; 2339 2340 if (keg == NULL) { 2341 keg = zone_first_keg(zone); 2342 KEG_LOCK(keg); 2343 } 2344 2345 for (;;) { 2346 slab = keg_fetch_slab(keg, zone, flags); 2347 if (slab) 2348 return (slab); 2349 if (flags & (M_NOWAIT | M_NOVM)) 2350 break; 2351 } 2352 KEG_UNLOCK(keg); 2353 return (NULL); 2354 } 2355 2356 /* 2357 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2358 * with the keg locked. On NULL no lock is held. 2359 * 2360 * The last pointer is used to seed the search. It is not required. 2361 */ 2362 static uma_slab_t 2363 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2364 { 2365 uma_klink_t klink; 2366 uma_slab_t slab; 2367 uma_keg_t keg; 2368 int flags; 2369 int empty; 2370 int full; 2371 2372 /* 2373 * Don't wait on the first pass. This will skip limit tests 2374 * as well. We don't want to block if we can find a provider 2375 * without blocking. 2376 */ 2377 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2378 /* 2379 * Use the last slab allocated as a hint for where to start 2380 * the search. 2381 */ 2382 if (last != NULL) { 2383 slab = keg_fetch_slab(last, zone, flags); 2384 if (slab) 2385 return (slab); 2386 KEG_UNLOCK(last); 2387 } 2388 /* 2389 * Loop until we have a slab incase of transient failures 2390 * while M_WAITOK is specified. I'm not sure this is 100% 2391 * required but we've done it for so long now. 2392 */ 2393 for (;;) { 2394 empty = 0; 2395 full = 0; 2396 /* 2397 * Search the available kegs for slabs. Be careful to hold the 2398 * correct lock while calling into the keg layer. 2399 */ 2400 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2401 keg = klink->kl_keg; 2402 KEG_LOCK(keg); 2403 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2404 slab = keg_fetch_slab(keg, zone, flags); 2405 if (slab) 2406 return (slab); 2407 } 2408 if (keg->uk_flags & UMA_ZFLAG_FULL) 2409 full++; 2410 else 2411 empty++; 2412 KEG_UNLOCK(keg); 2413 } 2414 if (rflags & (M_NOWAIT | M_NOVM)) 2415 break; 2416 flags = rflags; 2417 /* 2418 * All kegs are full. XXX We can't atomically check all kegs 2419 * and sleep so just sleep for a short period and retry. 2420 */ 2421 if (full && !empty) { 2422 ZONE_LOCK(zone); 2423 zone->uz_flags |= UMA_ZFLAG_FULL; 2424 zone->uz_sleeps++; 2425 zone_log_warning(zone); 2426 zone_maxaction(zone); 2427 msleep(zone, zone->uz_lockptr, PVM, 2428 "zonelimit", hz/100); 2429 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2430 ZONE_UNLOCK(zone); 2431 continue; 2432 } 2433 } 2434 return (NULL); 2435 } 2436 2437 static void * 2438 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2439 { 2440 void *item; 2441 uint8_t freei; 2442 2443 MPASS(keg == slab->us_keg); 2444 mtx_assert(&keg->uk_lock, MA_OWNED); 2445 2446 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2447 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2448 item = slab->us_data + (keg->uk_rsize * freei); 2449 slab->us_freecount--; 2450 keg->uk_free--; 2451 2452 /* Move this slab to the full list */ 2453 if (slab->us_freecount == 0) { 2454 LIST_REMOVE(slab, us_link); 2455 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2456 } 2457 2458 return (item); 2459 } 2460 2461 static int 2462 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2463 { 2464 uma_slab_t slab; 2465 uma_keg_t keg; 2466 int i; 2467 2468 slab = NULL; 2469 keg = NULL; 2470 /* Try to keep the buckets totally full */ 2471 for (i = 0; i < max; ) { 2472 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2473 break; 2474 keg = slab->us_keg; 2475 while (slab->us_freecount && i < max) { 2476 bucket[i++] = slab_alloc_item(keg, slab); 2477 if (keg->uk_free <= keg->uk_reserve) 2478 break; 2479 } 2480 /* Don't grab more than one slab at a time. */ 2481 flags &= ~M_WAITOK; 2482 flags |= M_NOWAIT; 2483 } 2484 if (slab != NULL) 2485 KEG_UNLOCK(keg); 2486 2487 return i; 2488 } 2489 2490 static uma_bucket_t 2491 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2492 { 2493 uma_bucket_t bucket; 2494 int max; 2495 2496 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2497 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2498 if (bucket == NULL) 2499 return (NULL); 2500 2501 max = MIN(bucket->ub_entries, zone->uz_count); 2502 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2503 max, flags); 2504 2505 /* 2506 * Initialize the memory if necessary. 2507 */ 2508 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2509 int i; 2510 2511 for (i = 0; i < bucket->ub_cnt; i++) 2512 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2513 flags) != 0) 2514 break; 2515 /* 2516 * If we couldn't initialize the whole bucket, put the 2517 * rest back onto the freelist. 2518 */ 2519 if (i != bucket->ub_cnt) { 2520 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2521 bucket->ub_cnt - i); 2522 #ifdef INVARIANTS 2523 bzero(&bucket->ub_bucket[i], 2524 sizeof(void *) * (bucket->ub_cnt - i)); 2525 #endif 2526 bucket->ub_cnt = i; 2527 } 2528 } 2529 2530 if (bucket->ub_cnt == 0) { 2531 bucket_free(zone, bucket, udata); 2532 atomic_add_long(&zone->uz_fails, 1); 2533 return (NULL); 2534 } 2535 2536 return (bucket); 2537 } 2538 2539 /* 2540 * Allocates a single item from a zone. 2541 * 2542 * Arguments 2543 * zone The zone to alloc for. 2544 * udata The data to be passed to the constructor. 2545 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2546 * 2547 * Returns 2548 * NULL if there is no memory and M_NOWAIT is set 2549 * An item if successful 2550 */ 2551 2552 static void * 2553 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2554 { 2555 void *item; 2556 2557 item = NULL; 2558 2559 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2560 goto fail; 2561 atomic_add_long(&zone->uz_allocs, 1); 2562 2563 /* 2564 * We have to call both the zone's init (not the keg's init) 2565 * and the zone's ctor. This is because the item is going from 2566 * a keg slab directly to the user, and the user is expecting it 2567 * to be both zone-init'd as well as zone-ctor'd. 2568 */ 2569 if (zone->uz_init != NULL) { 2570 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2571 zone_free_item(zone, item, udata, SKIP_FINI); 2572 goto fail; 2573 } 2574 } 2575 if (zone->uz_ctor != NULL) { 2576 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2577 zone_free_item(zone, item, udata, SKIP_DTOR); 2578 goto fail; 2579 } 2580 } 2581 #ifdef INVARIANTS 2582 uma_dbg_alloc(zone, NULL, item); 2583 #endif 2584 if (flags & M_ZERO) 2585 uma_zero_item(item, zone); 2586 2587 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 2588 zone->uz_name, zone); 2589 2590 return (item); 2591 2592 fail: 2593 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 2594 zone->uz_name, zone); 2595 atomic_add_long(&zone->uz_fails, 1); 2596 return (NULL); 2597 } 2598 2599 /* See uma.h */ 2600 void 2601 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2602 { 2603 uma_cache_t cache; 2604 uma_bucket_t bucket; 2605 int lockfail; 2606 int cpu; 2607 2608 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2609 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2610 2611 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2612 zone->uz_name); 2613 2614 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2615 ("uma_zfree_arg: called with spinlock or critical section held")); 2616 2617 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2618 if (item == NULL) 2619 return; 2620 #ifdef DEBUG_MEMGUARD 2621 if (is_memguard_addr(item)) { 2622 if (zone->uz_dtor != NULL) 2623 zone->uz_dtor(item, zone->uz_size, udata); 2624 if (zone->uz_fini != NULL) 2625 zone->uz_fini(item, zone->uz_size); 2626 memguard_free(item); 2627 return; 2628 } 2629 #endif 2630 #ifdef INVARIANTS 2631 if (zone->uz_flags & UMA_ZONE_MALLOC) 2632 uma_dbg_free(zone, udata, item); 2633 else 2634 uma_dbg_free(zone, NULL, item); 2635 #endif 2636 if (zone->uz_dtor != NULL) 2637 zone->uz_dtor(item, zone->uz_size, udata); 2638 2639 /* 2640 * The race here is acceptable. If we miss it we'll just have to wait 2641 * a little longer for the limits to be reset. 2642 */ 2643 if (zone->uz_flags & UMA_ZFLAG_FULL) 2644 goto zfree_item; 2645 2646 /* 2647 * If possible, free to the per-CPU cache. There are two 2648 * requirements for safe access to the per-CPU cache: (1) the thread 2649 * accessing the cache must not be preempted or yield during access, 2650 * and (2) the thread must not migrate CPUs without switching which 2651 * cache it accesses. We rely on a critical section to prevent 2652 * preemption and migration. We release the critical section in 2653 * order to acquire the zone mutex if we are unable to free to the 2654 * current cache; when we re-acquire the critical section, we must 2655 * detect and handle migration if it has occurred. 2656 */ 2657 zfree_restart: 2658 critical_enter(); 2659 cpu = curcpu; 2660 cache = &zone->uz_cpu[cpu]; 2661 2662 zfree_start: 2663 /* 2664 * Try to free into the allocbucket first to give LIFO ordering 2665 * for cache-hot datastructures. Spill over into the freebucket 2666 * if necessary. Alloc will swap them if one runs dry. 2667 */ 2668 bucket = cache->uc_allocbucket; 2669 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2670 bucket = cache->uc_freebucket; 2671 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2672 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2673 ("uma_zfree: Freeing to non free bucket index.")); 2674 bucket->ub_bucket[bucket->ub_cnt] = item; 2675 bucket->ub_cnt++; 2676 cache->uc_frees++; 2677 critical_exit(); 2678 return; 2679 } 2680 2681 /* 2682 * We must go back the zone, which requires acquiring the zone lock, 2683 * which in turn means we must release and re-acquire the critical 2684 * section. Since the critical section is released, we may be 2685 * preempted or migrate. As such, make sure not to maintain any 2686 * thread-local state specific to the cache from prior to releasing 2687 * the critical section. 2688 */ 2689 critical_exit(); 2690 if (zone->uz_count == 0 || bucketdisable) 2691 goto zfree_item; 2692 2693 lockfail = 0; 2694 if (ZONE_TRYLOCK(zone) == 0) { 2695 /* Record contention to size the buckets. */ 2696 ZONE_LOCK(zone); 2697 lockfail = 1; 2698 } 2699 critical_enter(); 2700 cpu = curcpu; 2701 cache = &zone->uz_cpu[cpu]; 2702 2703 /* 2704 * Since we have locked the zone we may as well send back our stats. 2705 */ 2706 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2707 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2708 cache->uc_allocs = 0; 2709 cache->uc_frees = 0; 2710 2711 bucket = cache->uc_freebucket; 2712 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2713 ZONE_UNLOCK(zone); 2714 goto zfree_start; 2715 } 2716 cache->uc_freebucket = NULL; 2717 /* We are no longer associated with this CPU. */ 2718 critical_exit(); 2719 2720 /* Can we throw this on the zone full list? */ 2721 if (bucket != NULL) { 2722 CTR3(KTR_UMA, 2723 "uma_zfree: zone %s(%p) putting bucket %p on free list", 2724 zone->uz_name, zone, bucket); 2725 /* ub_cnt is pointing to the last free item */ 2726 KASSERT(bucket->ub_cnt != 0, 2727 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2728 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2729 } 2730 2731 /* 2732 * We bump the uz count when the cache size is insufficient to 2733 * handle the working set. 2734 */ 2735 if (lockfail && zone->uz_count < BUCKET_MAX) 2736 zone->uz_count++; 2737 ZONE_UNLOCK(zone); 2738 2739 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2740 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 2741 zone->uz_name, zone, bucket); 2742 if (bucket) { 2743 critical_enter(); 2744 cpu = curcpu; 2745 cache = &zone->uz_cpu[cpu]; 2746 if (cache->uc_freebucket == NULL) { 2747 cache->uc_freebucket = bucket; 2748 goto zfree_start; 2749 } 2750 /* 2751 * We lost the race, start over. We have to drop our 2752 * critical section to free the bucket. 2753 */ 2754 critical_exit(); 2755 bucket_free(zone, bucket, udata); 2756 goto zfree_restart; 2757 } 2758 2759 /* 2760 * If nothing else caught this, we'll just do an internal free. 2761 */ 2762 zfree_item: 2763 zone_free_item(zone, item, udata, SKIP_DTOR); 2764 2765 return; 2766 } 2767 2768 static void 2769 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2770 { 2771 uint8_t freei; 2772 2773 mtx_assert(&keg->uk_lock, MA_OWNED); 2774 MPASS(keg == slab->us_keg); 2775 2776 /* Do we need to remove from any lists? */ 2777 if (slab->us_freecount+1 == keg->uk_ipers) { 2778 LIST_REMOVE(slab, us_link); 2779 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2780 } else if (slab->us_freecount == 0) { 2781 LIST_REMOVE(slab, us_link); 2782 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2783 } 2784 2785 /* Slab management. */ 2786 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2787 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2788 slab->us_freecount++; 2789 2790 /* Keg statistics. */ 2791 keg->uk_free++; 2792 } 2793 2794 static void 2795 zone_release(uma_zone_t zone, void **bucket, int cnt) 2796 { 2797 void *item; 2798 uma_slab_t slab; 2799 uma_keg_t keg; 2800 uint8_t *mem; 2801 int clearfull; 2802 int i; 2803 2804 clearfull = 0; 2805 keg = zone_first_keg(zone); 2806 KEG_LOCK(keg); 2807 for (i = 0; i < cnt; i++) { 2808 item = bucket[i]; 2809 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2810 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2811 if (zone->uz_flags & UMA_ZONE_HASH) { 2812 slab = hash_sfind(&keg->uk_hash, mem); 2813 } else { 2814 mem += keg->uk_pgoff; 2815 slab = (uma_slab_t)mem; 2816 } 2817 } else { 2818 slab = vtoslab((vm_offset_t)item); 2819 if (slab->us_keg != keg) { 2820 KEG_UNLOCK(keg); 2821 keg = slab->us_keg; 2822 KEG_LOCK(keg); 2823 } 2824 } 2825 slab_free_item(keg, slab, item); 2826 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2827 if (keg->uk_pages < keg->uk_maxpages) { 2828 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2829 clearfull = 1; 2830 } 2831 2832 /* 2833 * We can handle one more allocation. Since we're 2834 * clearing ZFLAG_FULL, wake up all procs blocked 2835 * on pages. This should be uncommon, so keeping this 2836 * simple for now (rather than adding count of blocked 2837 * threads etc). 2838 */ 2839 wakeup(keg); 2840 } 2841 } 2842 KEG_UNLOCK(keg); 2843 if (clearfull) { 2844 ZONE_LOCK(zone); 2845 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2846 wakeup(zone); 2847 ZONE_UNLOCK(zone); 2848 } 2849 2850 } 2851 2852 /* 2853 * Frees a single item to any zone. 2854 * 2855 * Arguments: 2856 * zone The zone to free to 2857 * item The item we're freeing 2858 * udata User supplied data for the dtor 2859 * skip Skip dtors and finis 2860 */ 2861 static void 2862 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2863 { 2864 2865 #ifdef INVARIANTS 2866 if (skip == SKIP_NONE) { 2867 if (zone->uz_flags & UMA_ZONE_MALLOC) 2868 uma_dbg_free(zone, udata, item); 2869 else 2870 uma_dbg_free(zone, NULL, item); 2871 } 2872 #endif 2873 if (skip < SKIP_DTOR && zone->uz_dtor) 2874 zone->uz_dtor(item, zone->uz_size, udata); 2875 2876 if (skip < SKIP_FINI && zone->uz_fini) 2877 zone->uz_fini(item, zone->uz_size); 2878 2879 atomic_add_long(&zone->uz_frees, 1); 2880 zone->uz_release(zone->uz_arg, &item, 1); 2881 } 2882 2883 /* See uma.h */ 2884 int 2885 uma_zone_set_max(uma_zone_t zone, int nitems) 2886 { 2887 uma_keg_t keg; 2888 2889 keg = zone_first_keg(zone); 2890 if (keg == NULL) 2891 return (0); 2892 KEG_LOCK(keg); 2893 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2894 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2895 keg->uk_maxpages += keg->uk_ppera; 2896 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 2897 KEG_UNLOCK(keg); 2898 2899 return (nitems); 2900 } 2901 2902 /* See uma.h */ 2903 int 2904 uma_zone_get_max(uma_zone_t zone) 2905 { 2906 int nitems; 2907 uma_keg_t keg; 2908 2909 keg = zone_first_keg(zone); 2910 if (keg == NULL) 2911 return (0); 2912 KEG_LOCK(keg); 2913 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 2914 KEG_UNLOCK(keg); 2915 2916 return (nitems); 2917 } 2918 2919 /* See uma.h */ 2920 void 2921 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2922 { 2923 2924 ZONE_LOCK(zone); 2925 zone->uz_warning = warning; 2926 ZONE_UNLOCK(zone); 2927 } 2928 2929 /* See uma.h */ 2930 void 2931 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 2932 { 2933 2934 ZONE_LOCK(zone); 2935 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 2936 ZONE_UNLOCK(zone); 2937 } 2938 2939 /* See uma.h */ 2940 int 2941 uma_zone_get_cur(uma_zone_t zone) 2942 { 2943 int64_t nitems; 2944 u_int i; 2945 2946 ZONE_LOCK(zone); 2947 nitems = zone->uz_allocs - zone->uz_frees; 2948 CPU_FOREACH(i) { 2949 /* 2950 * See the comment in sysctl_vm_zone_stats() regarding the 2951 * safety of accessing the per-cpu caches. With the zone lock 2952 * held, it is safe, but can potentially result in stale data. 2953 */ 2954 nitems += zone->uz_cpu[i].uc_allocs - 2955 zone->uz_cpu[i].uc_frees; 2956 } 2957 ZONE_UNLOCK(zone); 2958 2959 return (nitems < 0 ? 0 : nitems); 2960 } 2961 2962 /* See uma.h */ 2963 void 2964 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2965 { 2966 uma_keg_t keg; 2967 2968 keg = zone_first_keg(zone); 2969 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2970 KEG_LOCK(keg); 2971 KASSERT(keg->uk_pages == 0, 2972 ("uma_zone_set_init on non-empty keg")); 2973 keg->uk_init = uminit; 2974 KEG_UNLOCK(keg); 2975 } 2976 2977 /* See uma.h */ 2978 void 2979 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2980 { 2981 uma_keg_t keg; 2982 2983 keg = zone_first_keg(zone); 2984 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 2985 KEG_LOCK(keg); 2986 KASSERT(keg->uk_pages == 0, 2987 ("uma_zone_set_fini on non-empty keg")); 2988 keg->uk_fini = fini; 2989 KEG_UNLOCK(keg); 2990 } 2991 2992 /* See uma.h */ 2993 void 2994 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2995 { 2996 2997 ZONE_LOCK(zone); 2998 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2999 ("uma_zone_set_zinit on non-empty keg")); 3000 zone->uz_init = zinit; 3001 ZONE_UNLOCK(zone); 3002 } 3003 3004 /* See uma.h */ 3005 void 3006 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3007 { 3008 3009 ZONE_LOCK(zone); 3010 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3011 ("uma_zone_set_zfini on non-empty keg")); 3012 zone->uz_fini = zfini; 3013 ZONE_UNLOCK(zone); 3014 } 3015 3016 /* See uma.h */ 3017 /* XXX uk_freef is not actually used with the zone locked */ 3018 void 3019 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3020 { 3021 uma_keg_t keg; 3022 3023 keg = zone_first_keg(zone); 3024 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3025 KEG_LOCK(keg); 3026 keg->uk_freef = freef; 3027 KEG_UNLOCK(keg); 3028 } 3029 3030 /* See uma.h */ 3031 /* XXX uk_allocf is not actually used with the zone locked */ 3032 void 3033 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3034 { 3035 uma_keg_t keg; 3036 3037 keg = zone_first_keg(zone); 3038 KEG_LOCK(keg); 3039 keg->uk_allocf = allocf; 3040 KEG_UNLOCK(keg); 3041 } 3042 3043 /* See uma.h */ 3044 void 3045 uma_zone_reserve(uma_zone_t zone, int items) 3046 { 3047 uma_keg_t keg; 3048 3049 keg = zone_first_keg(zone); 3050 if (keg == NULL) 3051 return; 3052 KEG_LOCK(keg); 3053 keg->uk_reserve = items; 3054 KEG_UNLOCK(keg); 3055 3056 return; 3057 } 3058 3059 /* See uma.h */ 3060 int 3061 uma_zone_reserve_kva(uma_zone_t zone, int count) 3062 { 3063 uma_keg_t keg; 3064 vm_offset_t kva; 3065 u_int pages; 3066 3067 keg = zone_first_keg(zone); 3068 if (keg == NULL) 3069 return (0); 3070 pages = count / keg->uk_ipers; 3071 3072 if (pages * keg->uk_ipers < count) 3073 pages++; 3074 pages *= keg->uk_ppera; 3075 3076 #ifdef UMA_MD_SMALL_ALLOC 3077 if (keg->uk_ppera > 1) { 3078 #else 3079 if (1) { 3080 #endif 3081 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3082 if (kva == 0) 3083 return (0); 3084 } else 3085 kva = 0; 3086 KEG_LOCK(keg); 3087 keg->uk_kva = kva; 3088 keg->uk_offset = 0; 3089 keg->uk_maxpages = pages; 3090 #ifdef UMA_MD_SMALL_ALLOC 3091 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3092 #else 3093 keg->uk_allocf = noobj_alloc; 3094 #endif 3095 keg->uk_flags |= UMA_ZONE_NOFREE; 3096 KEG_UNLOCK(keg); 3097 3098 return (1); 3099 } 3100 3101 /* See uma.h */ 3102 void 3103 uma_prealloc(uma_zone_t zone, int items) 3104 { 3105 int slabs; 3106 uma_slab_t slab; 3107 uma_keg_t keg; 3108 3109 keg = zone_first_keg(zone); 3110 if (keg == NULL) 3111 return; 3112 KEG_LOCK(keg); 3113 slabs = items / keg->uk_ipers; 3114 if (slabs * keg->uk_ipers < items) 3115 slabs++; 3116 while (slabs > 0) { 3117 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3118 if (slab == NULL) 3119 break; 3120 MPASS(slab->us_keg == keg); 3121 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3122 slabs--; 3123 } 3124 KEG_UNLOCK(keg); 3125 } 3126 3127 /* See uma.h */ 3128 static void 3129 uma_reclaim_locked(bool kmem_danger) 3130 { 3131 3132 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3133 sx_assert(&uma_drain_lock, SA_XLOCKED); 3134 bucket_enable(); 3135 zone_foreach(zone_drain); 3136 if (vm_page_count_min() || kmem_danger) { 3137 cache_drain_safe(NULL); 3138 zone_foreach(zone_drain); 3139 } 3140 /* 3141 * Some slabs may have been freed but this zone will be visited early 3142 * we visit again so that we can free pages that are empty once other 3143 * zones are drained. We have to do the same for buckets. 3144 */ 3145 zone_drain(slabzone); 3146 bucket_zone_drain(); 3147 } 3148 3149 void 3150 uma_reclaim(void) 3151 { 3152 3153 sx_xlock(&uma_drain_lock); 3154 uma_reclaim_locked(false); 3155 sx_xunlock(&uma_drain_lock); 3156 } 3157 3158 static volatile int uma_reclaim_needed; 3159 3160 void 3161 uma_reclaim_wakeup(void) 3162 { 3163 3164 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3165 wakeup(uma_reclaim); 3166 } 3167 3168 void 3169 uma_reclaim_worker(void *arg __unused) 3170 { 3171 3172 for (;;) { 3173 sx_xlock(&uma_drain_lock); 3174 while (atomic_load_int(&uma_reclaim_needed) == 0) 3175 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3176 hz); 3177 sx_xunlock(&uma_drain_lock); 3178 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3179 sx_xlock(&uma_drain_lock); 3180 uma_reclaim_locked(true); 3181 atomic_store_int(&uma_reclaim_needed, 0); 3182 sx_xunlock(&uma_drain_lock); 3183 /* Don't fire more than once per-second. */ 3184 pause("umarclslp", hz); 3185 } 3186 } 3187 3188 /* See uma.h */ 3189 int 3190 uma_zone_exhausted(uma_zone_t zone) 3191 { 3192 int full; 3193 3194 ZONE_LOCK(zone); 3195 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3196 ZONE_UNLOCK(zone); 3197 return (full); 3198 } 3199 3200 int 3201 uma_zone_exhausted_nolock(uma_zone_t zone) 3202 { 3203 return (zone->uz_flags & UMA_ZFLAG_FULL); 3204 } 3205 3206 void * 3207 uma_large_malloc(vm_size_t size, int wait) 3208 { 3209 void *mem; 3210 uma_slab_t slab; 3211 uint8_t flags; 3212 3213 slab = zone_alloc_item(slabzone, NULL, wait); 3214 if (slab == NULL) 3215 return (NULL); 3216 mem = page_alloc(NULL, size, &flags, wait); 3217 if (mem) { 3218 vsetslab((vm_offset_t)mem, slab); 3219 slab->us_data = mem; 3220 slab->us_flags = flags | UMA_SLAB_MALLOC; 3221 slab->us_size = size; 3222 uma_total_inc(size); 3223 } else { 3224 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3225 } 3226 3227 return (mem); 3228 } 3229 3230 void 3231 uma_large_free(uma_slab_t slab) 3232 { 3233 3234 page_free(slab->us_data, slab->us_size, slab->us_flags); 3235 uma_total_dec(slab->us_size); 3236 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3237 } 3238 3239 static void 3240 uma_zero_item(void *item, uma_zone_t zone) 3241 { 3242 int i; 3243 3244 if (zone->uz_flags & UMA_ZONE_PCPU) { 3245 CPU_FOREACH(i) 3246 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3247 } else 3248 bzero(item, zone->uz_size); 3249 } 3250 3251 unsigned long 3252 uma_limit(void) 3253 { 3254 3255 return (uma_kmem_limit); 3256 } 3257 3258 void 3259 uma_set_limit(unsigned long limit) 3260 { 3261 3262 uma_kmem_limit = limit; 3263 } 3264 3265 unsigned long 3266 uma_size(void) 3267 { 3268 3269 return (uma_kmem_total); 3270 } 3271 3272 long 3273 uma_avail(void) 3274 { 3275 3276 return (uma_kmem_limit - uma_kmem_total); 3277 } 3278 3279 void 3280 uma_print_stats(void) 3281 { 3282 zone_foreach(uma_print_zone); 3283 } 3284 3285 static void 3286 slab_print(uma_slab_t slab) 3287 { 3288 printf("slab: keg %p, data %p, freecount %d\n", 3289 slab->us_keg, slab->us_data, slab->us_freecount); 3290 } 3291 3292 static void 3293 cache_print(uma_cache_t cache) 3294 { 3295 printf("alloc: %p(%d), free: %p(%d)\n", 3296 cache->uc_allocbucket, 3297 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3298 cache->uc_freebucket, 3299 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3300 } 3301 3302 static void 3303 uma_print_keg(uma_keg_t keg) 3304 { 3305 uma_slab_t slab; 3306 3307 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3308 "out %d free %d limit %d\n", 3309 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3310 keg->uk_ipers, keg->uk_ppera, 3311 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3312 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3313 printf("Part slabs:\n"); 3314 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3315 slab_print(slab); 3316 printf("Free slabs:\n"); 3317 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3318 slab_print(slab); 3319 printf("Full slabs:\n"); 3320 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3321 slab_print(slab); 3322 } 3323 3324 void 3325 uma_print_zone(uma_zone_t zone) 3326 { 3327 uma_cache_t cache; 3328 uma_klink_t kl; 3329 int i; 3330 3331 printf("zone: %s(%p) size %d flags %#x\n", 3332 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3333 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3334 uma_print_keg(kl->kl_keg); 3335 CPU_FOREACH(i) { 3336 cache = &zone->uz_cpu[i]; 3337 printf("CPU %d Cache:\n", i); 3338 cache_print(cache); 3339 } 3340 } 3341 3342 #ifdef DDB 3343 /* 3344 * Generate statistics across both the zone and its per-cpu cache's. Return 3345 * desired statistics if the pointer is non-NULL for that statistic. 3346 * 3347 * Note: does not update the zone statistics, as it can't safely clear the 3348 * per-CPU cache statistic. 3349 * 3350 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3351 * safe from off-CPU; we should modify the caches to track this information 3352 * directly so that we don't have to. 3353 */ 3354 static void 3355 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3356 uint64_t *freesp, uint64_t *sleepsp) 3357 { 3358 uma_cache_t cache; 3359 uint64_t allocs, frees, sleeps; 3360 int cachefree, cpu; 3361 3362 allocs = frees = sleeps = 0; 3363 cachefree = 0; 3364 CPU_FOREACH(cpu) { 3365 cache = &z->uz_cpu[cpu]; 3366 if (cache->uc_allocbucket != NULL) 3367 cachefree += cache->uc_allocbucket->ub_cnt; 3368 if (cache->uc_freebucket != NULL) 3369 cachefree += cache->uc_freebucket->ub_cnt; 3370 allocs += cache->uc_allocs; 3371 frees += cache->uc_frees; 3372 } 3373 allocs += z->uz_allocs; 3374 frees += z->uz_frees; 3375 sleeps += z->uz_sleeps; 3376 if (cachefreep != NULL) 3377 *cachefreep = cachefree; 3378 if (allocsp != NULL) 3379 *allocsp = allocs; 3380 if (freesp != NULL) 3381 *freesp = frees; 3382 if (sleepsp != NULL) 3383 *sleepsp = sleeps; 3384 } 3385 #endif /* DDB */ 3386 3387 static int 3388 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3389 { 3390 uma_keg_t kz; 3391 uma_zone_t z; 3392 int count; 3393 3394 count = 0; 3395 rw_rlock(&uma_rwlock); 3396 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3397 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3398 count++; 3399 } 3400 rw_runlock(&uma_rwlock); 3401 return (sysctl_handle_int(oidp, &count, 0, req)); 3402 } 3403 3404 static int 3405 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3406 { 3407 struct uma_stream_header ush; 3408 struct uma_type_header uth; 3409 struct uma_percpu_stat ups; 3410 uma_bucket_t bucket; 3411 struct sbuf sbuf; 3412 uma_cache_t cache; 3413 uma_klink_t kl; 3414 uma_keg_t kz; 3415 uma_zone_t z; 3416 uma_keg_t k; 3417 int count, error, i; 3418 3419 error = sysctl_wire_old_buffer(req, 0); 3420 if (error != 0) 3421 return (error); 3422 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3423 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3424 3425 count = 0; 3426 rw_rlock(&uma_rwlock); 3427 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3428 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3429 count++; 3430 } 3431 3432 /* 3433 * Insert stream header. 3434 */ 3435 bzero(&ush, sizeof(ush)); 3436 ush.ush_version = UMA_STREAM_VERSION; 3437 ush.ush_maxcpus = (mp_maxid + 1); 3438 ush.ush_count = count; 3439 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3440 3441 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3442 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3443 bzero(&uth, sizeof(uth)); 3444 ZONE_LOCK(z); 3445 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3446 uth.uth_align = kz->uk_align; 3447 uth.uth_size = kz->uk_size; 3448 uth.uth_rsize = kz->uk_rsize; 3449 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3450 k = kl->kl_keg; 3451 uth.uth_maxpages += k->uk_maxpages; 3452 uth.uth_pages += k->uk_pages; 3453 uth.uth_keg_free += k->uk_free; 3454 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3455 * k->uk_ipers; 3456 } 3457 3458 /* 3459 * A zone is secondary is it is not the first entry 3460 * on the keg's zone list. 3461 */ 3462 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3463 (LIST_FIRST(&kz->uk_zones) != z)) 3464 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3465 3466 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3467 uth.uth_zone_free += bucket->ub_cnt; 3468 uth.uth_allocs = z->uz_allocs; 3469 uth.uth_frees = z->uz_frees; 3470 uth.uth_fails = z->uz_fails; 3471 uth.uth_sleeps = z->uz_sleeps; 3472 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3473 /* 3474 * While it is not normally safe to access the cache 3475 * bucket pointers while not on the CPU that owns the 3476 * cache, we only allow the pointers to be exchanged 3477 * without the zone lock held, not invalidated, so 3478 * accept the possible race associated with bucket 3479 * exchange during monitoring. 3480 */ 3481 for (i = 0; i < (mp_maxid + 1); i++) { 3482 bzero(&ups, sizeof(ups)); 3483 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3484 goto skip; 3485 if (CPU_ABSENT(i)) 3486 goto skip; 3487 cache = &z->uz_cpu[i]; 3488 if (cache->uc_allocbucket != NULL) 3489 ups.ups_cache_free += 3490 cache->uc_allocbucket->ub_cnt; 3491 if (cache->uc_freebucket != NULL) 3492 ups.ups_cache_free += 3493 cache->uc_freebucket->ub_cnt; 3494 ups.ups_allocs = cache->uc_allocs; 3495 ups.ups_frees = cache->uc_frees; 3496 skip: 3497 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3498 } 3499 ZONE_UNLOCK(z); 3500 } 3501 } 3502 rw_runlock(&uma_rwlock); 3503 error = sbuf_finish(&sbuf); 3504 sbuf_delete(&sbuf); 3505 return (error); 3506 } 3507 3508 int 3509 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3510 { 3511 uma_zone_t zone = *(uma_zone_t *)arg1; 3512 int error, max; 3513 3514 max = uma_zone_get_max(zone); 3515 error = sysctl_handle_int(oidp, &max, 0, req); 3516 if (error || !req->newptr) 3517 return (error); 3518 3519 uma_zone_set_max(zone, max); 3520 3521 return (0); 3522 } 3523 3524 int 3525 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3526 { 3527 uma_zone_t zone = *(uma_zone_t *)arg1; 3528 int cur; 3529 3530 cur = uma_zone_get_cur(zone); 3531 return (sysctl_handle_int(oidp, &cur, 0, req)); 3532 } 3533 3534 #ifdef INVARIANTS 3535 static uma_slab_t 3536 uma_dbg_getslab(uma_zone_t zone, void *item) 3537 { 3538 uma_slab_t slab; 3539 uma_keg_t keg; 3540 uint8_t *mem; 3541 3542 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3543 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3544 slab = vtoslab((vm_offset_t)mem); 3545 } else { 3546 /* 3547 * It is safe to return the slab here even though the 3548 * zone is unlocked because the item's allocation state 3549 * essentially holds a reference. 3550 */ 3551 ZONE_LOCK(zone); 3552 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3553 if (keg->uk_flags & UMA_ZONE_HASH) 3554 slab = hash_sfind(&keg->uk_hash, mem); 3555 else 3556 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3557 ZONE_UNLOCK(zone); 3558 } 3559 3560 return (slab); 3561 } 3562 3563 /* 3564 * Set up the slab's freei data such that uma_dbg_free can function. 3565 * 3566 */ 3567 static void 3568 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 3569 { 3570 uma_keg_t keg; 3571 int freei; 3572 3573 if (zone_first_keg(zone) == NULL) 3574 return; 3575 if (slab == NULL) { 3576 slab = uma_dbg_getslab(zone, item); 3577 if (slab == NULL) 3578 panic("uma: item %p did not belong to zone %s\n", 3579 item, zone->uz_name); 3580 } 3581 keg = slab->us_keg; 3582 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3583 3584 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3585 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 3586 item, zone, zone->uz_name, slab, freei); 3587 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3588 3589 return; 3590 } 3591 3592 /* 3593 * Verifies freed addresses. Checks for alignment, valid slab membership 3594 * and duplicate frees. 3595 * 3596 */ 3597 static void 3598 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 3599 { 3600 uma_keg_t keg; 3601 int freei; 3602 3603 if (zone_first_keg(zone) == NULL) 3604 return; 3605 if (slab == NULL) { 3606 slab = uma_dbg_getslab(zone, item); 3607 if (slab == NULL) 3608 panic("uma: Freed item %p did not belong to zone %s\n", 3609 item, zone->uz_name); 3610 } 3611 keg = slab->us_keg; 3612 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3613 3614 if (freei >= keg->uk_ipers) 3615 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 3616 item, zone, zone->uz_name, slab, freei); 3617 3618 if (((freei * keg->uk_rsize) + slab->us_data) != item) 3619 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 3620 item, zone, zone->uz_name, slab, freei); 3621 3622 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3623 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 3624 item, zone, zone->uz_name, slab, freei); 3625 3626 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3627 } 3628 #endif /* INVARIANTS */ 3629 3630 #ifdef DDB 3631 DB_SHOW_COMMAND(uma, db_show_uma) 3632 { 3633 uint64_t allocs, frees, sleeps; 3634 uma_bucket_t bucket; 3635 uma_keg_t kz; 3636 uma_zone_t z; 3637 int cachefree; 3638 3639 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3640 "Free", "Requests", "Sleeps", "Bucket"); 3641 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3642 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3643 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3644 allocs = z->uz_allocs; 3645 frees = z->uz_frees; 3646 sleeps = z->uz_sleeps; 3647 cachefree = 0; 3648 } else 3649 uma_zone_sumstat(z, &cachefree, &allocs, 3650 &frees, &sleeps); 3651 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3652 (LIST_FIRST(&kz->uk_zones) != z))) 3653 cachefree += kz->uk_free; 3654 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3655 cachefree += bucket->ub_cnt; 3656 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3657 z->uz_name, (uintmax_t)kz->uk_size, 3658 (intmax_t)(allocs - frees), cachefree, 3659 (uintmax_t)allocs, sleeps, z->uz_count); 3660 if (db_pager_quit) 3661 return; 3662 } 3663 } 3664 } 3665 3666 DB_SHOW_COMMAND(umacache, db_show_umacache) 3667 { 3668 uint64_t allocs, frees; 3669 uma_bucket_t bucket; 3670 uma_zone_t z; 3671 int cachefree; 3672 3673 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3674 "Requests", "Bucket"); 3675 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3676 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3677 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3678 cachefree += bucket->ub_cnt; 3679 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3680 z->uz_name, (uintmax_t)z->uz_size, 3681 (intmax_t)(allocs - frees), cachefree, 3682 (uintmax_t)allocs, z->uz_count); 3683 if (db_pager_quit) 3684 return; 3685 } 3686 } 3687 #endif /* DDB */ 3688