1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/asan.h> 62 #include <sys/bitset.h> 63 #include <sys/domainset.h> 64 #include <sys/eventhandler.h> 65 #include <sys/kernel.h> 66 #include <sys/types.h> 67 #include <sys/limits.h> 68 #include <sys/queue.h> 69 #include <sys/malloc.h> 70 #include <sys/ktr.h> 71 #include <sys/lock.h> 72 #include <sys/sysctl.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/random.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/sched.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/smp.h> 81 #include <sys/smr.h> 82 #include <sys/taskqueue.h> 83 #include <sys/vmmeter.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/vm_domainset.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_pageout.h> 91 #include <vm/vm_phys.h> 92 #include <vm/vm_pagequeue.h> 93 #include <vm/vm_map.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_dumpset.h> 97 #include <vm/uma.h> 98 #include <vm/uma_int.h> 99 #include <vm/uma_dbg.h> 100 101 #include <ddb/ddb.h> 102 103 #ifdef DEBUG_MEMGUARD 104 #include <vm/memguard.h> 105 #endif 106 107 #include <machine/md_var.h> 108 109 #ifdef INVARIANTS 110 #define UMA_ALWAYS_CTORDTOR 1 111 #else 112 #define UMA_ALWAYS_CTORDTOR 0 113 #endif 114 115 /* 116 * This is the zone and keg from which all zones are spawned. 117 */ 118 static uma_zone_t kegs; 119 static uma_zone_t zones; 120 121 /* 122 * On INVARIANTS builds, the slab contains a second bitset of the same size, 123 * "dbg_bits", which is laid out immediately after us_free. 124 */ 125 #ifdef INVARIANTS 126 #define SLAB_BITSETS 2 127 #else 128 #define SLAB_BITSETS 1 129 #endif 130 131 /* 132 * These are the two zones from which all offpage uma_slab_ts are allocated. 133 * 134 * One zone is for slab headers that can represent a larger number of items, 135 * making the slabs themselves more efficient, and the other zone is for 136 * headers that are smaller and represent fewer items, making the headers more 137 * efficient. 138 */ 139 #define SLABZONE_SIZE(setsize) \ 140 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 141 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 142 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 143 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 144 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 145 static uma_zone_t slabzones[2]; 146 147 /* 148 * The initial hash tables come out of this zone so they can be allocated 149 * prior to malloc coming up. 150 */ 151 static uma_zone_t hashzone; 152 153 /* The boot-time adjusted value for cache line alignment. */ 154 int uma_align_cache = 64 - 1; 155 156 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 157 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 158 159 /* 160 * Are we allowed to allocate buckets? 161 */ 162 static int bucketdisable = 1; 163 164 /* Linked list of all kegs in the system */ 165 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 166 167 /* Linked list of all cache-only zones in the system */ 168 static LIST_HEAD(,uma_zone) uma_cachezones = 169 LIST_HEAD_INITIALIZER(uma_cachezones); 170 171 /* 172 * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of 173 * zones. 174 */ 175 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 176 177 static struct sx uma_reclaim_lock; 178 179 /* 180 * First available virual address for boot time allocations. 181 */ 182 static vm_offset_t bootstart; 183 static vm_offset_t bootmem; 184 185 /* 186 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 187 * allocations don't trigger a wakeup of the reclaim thread. 188 */ 189 unsigned long uma_kmem_limit = LONG_MAX; 190 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 191 "UMA kernel memory soft limit"); 192 unsigned long uma_kmem_total; 193 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 194 "UMA kernel memory usage"); 195 196 /* Is the VM done starting up? */ 197 static enum { 198 BOOT_COLD, 199 BOOT_KVA, 200 BOOT_PCPU, 201 BOOT_RUNNING, 202 BOOT_SHUTDOWN, 203 } booted = BOOT_COLD; 204 205 /* 206 * This is the handle used to schedule events that need to happen 207 * outside of the allocation fast path. 208 */ 209 static struct callout uma_callout; 210 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 211 212 /* 213 * This structure is passed as the zone ctor arg so that I don't have to create 214 * a special allocation function just for zones. 215 */ 216 struct uma_zctor_args { 217 const char *name; 218 size_t size; 219 uma_ctor ctor; 220 uma_dtor dtor; 221 uma_init uminit; 222 uma_fini fini; 223 uma_import import; 224 uma_release release; 225 void *arg; 226 uma_keg_t keg; 227 int align; 228 uint32_t flags; 229 }; 230 231 struct uma_kctor_args { 232 uma_zone_t zone; 233 size_t size; 234 uma_init uminit; 235 uma_fini fini; 236 int align; 237 uint32_t flags; 238 }; 239 240 struct uma_bucket_zone { 241 uma_zone_t ubz_zone; 242 const char *ubz_name; 243 int ubz_entries; /* Number of items it can hold. */ 244 int ubz_maxsize; /* Maximum allocation size per-item. */ 245 }; 246 247 /* 248 * Compute the actual number of bucket entries to pack them in power 249 * of two sizes for more efficient space utilization. 250 */ 251 #define BUCKET_SIZE(n) \ 252 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 253 254 #define BUCKET_MAX BUCKET_SIZE(256) 255 256 struct uma_bucket_zone bucket_zones[] = { 257 /* Literal bucket sizes. */ 258 { NULL, "2 Bucket", 2, 4096 }, 259 { NULL, "4 Bucket", 4, 3072 }, 260 { NULL, "8 Bucket", 8, 2048 }, 261 { NULL, "16 Bucket", 16, 1024 }, 262 /* Rounded down power of 2 sizes for efficiency. */ 263 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 264 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 265 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 266 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 267 { NULL, NULL, 0} 268 }; 269 270 /* 271 * Flags and enumerations to be passed to internal functions. 272 */ 273 enum zfreeskip { 274 SKIP_NONE = 0, 275 SKIP_CNT = 0x00000001, 276 SKIP_DTOR = 0x00010000, 277 SKIP_FINI = 0x00020000, 278 }; 279 280 /* Prototypes.. */ 281 282 void uma_startup1(vm_offset_t); 283 void uma_startup2(void); 284 285 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 286 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 287 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 288 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 289 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 290 static void page_free(void *, vm_size_t, uint8_t); 291 static void pcpu_page_free(void *, vm_size_t, uint8_t); 292 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 293 static void cache_drain(uma_zone_t); 294 static void bucket_drain(uma_zone_t, uma_bucket_t); 295 static void bucket_cache_reclaim(uma_zone_t zone, bool, int); 296 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int); 297 static int keg_ctor(void *, int, void *, int); 298 static void keg_dtor(void *, int, void *); 299 static void keg_drain(uma_keg_t keg, int domain); 300 static int zone_ctor(void *, int, void *, int); 301 static void zone_dtor(void *, int, void *); 302 static inline void item_dtor(uma_zone_t zone, void *item, int size, 303 void *udata, enum zfreeskip skip); 304 static int zero_init(void *, int, int); 305 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 306 int itemdomain, bool ws); 307 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 308 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 309 static void zone_timeout(uma_zone_t zone, void *); 310 static int hash_alloc(struct uma_hash *, u_int); 311 static int hash_expand(struct uma_hash *, struct uma_hash *); 312 static void hash_free(struct uma_hash *hash); 313 static void uma_timeout(void *); 314 static void uma_shutdown(void); 315 static void *zone_alloc_item(uma_zone_t, void *, int, int); 316 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 317 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 318 static void zone_free_limit(uma_zone_t zone, int count); 319 static void bucket_enable(void); 320 static void bucket_init(void); 321 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 322 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 323 static void bucket_zone_drain(int domain); 324 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 325 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 326 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 327 static size_t slab_sizeof(int nitems); 328 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 329 uma_fini fini, int align, uint32_t flags); 330 static int zone_import(void *, void **, int, int, int); 331 static void zone_release(void *, void **, int); 332 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 333 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 334 335 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 336 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 337 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 338 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 339 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 340 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 341 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 342 343 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 344 345 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 346 "Memory allocation debugging"); 347 348 #ifdef INVARIANTS 349 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 350 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 351 352 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 353 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 354 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 355 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 356 357 static u_int dbg_divisor = 1; 358 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 359 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 360 "Debug & thrash every this item in memory allocator"); 361 362 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 363 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 364 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 365 &uma_dbg_cnt, "memory items debugged"); 366 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 367 &uma_skip_cnt, "memory items skipped, not debugged"); 368 #endif 369 370 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 371 "Universal Memory Allocator"); 372 373 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 374 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 375 376 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 377 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 378 379 static int zone_warnings = 1; 380 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 381 "Warn when UMA zones becomes full"); 382 383 static int multipage_slabs = 1; 384 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 385 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 386 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 387 "UMA may choose larger slab sizes for better efficiency"); 388 389 /* 390 * Select the slab zone for an offpage slab with the given maximum item count. 391 */ 392 static inline uma_zone_t 393 slabzone(int ipers) 394 { 395 396 return (slabzones[ipers > SLABZONE0_SETSIZE]); 397 } 398 399 /* 400 * This routine checks to see whether or not it's safe to enable buckets. 401 */ 402 static void 403 bucket_enable(void) 404 { 405 406 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 407 bucketdisable = vm_page_count_min(); 408 } 409 410 /* 411 * Initialize bucket_zones, the array of zones of buckets of various sizes. 412 * 413 * For each zone, calculate the memory required for each bucket, consisting 414 * of the header and an array of pointers. 415 */ 416 static void 417 bucket_init(void) 418 { 419 struct uma_bucket_zone *ubz; 420 int size; 421 422 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 423 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 424 size += sizeof(void *) * ubz->ubz_entries; 425 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 426 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 427 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 428 UMA_ZONE_FIRSTTOUCH); 429 } 430 } 431 432 /* 433 * Given a desired number of entries for a bucket, return the zone from which 434 * to allocate the bucket. 435 */ 436 static struct uma_bucket_zone * 437 bucket_zone_lookup(int entries) 438 { 439 struct uma_bucket_zone *ubz; 440 441 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 442 if (ubz->ubz_entries >= entries) 443 return (ubz); 444 ubz--; 445 return (ubz); 446 } 447 448 static int 449 bucket_select(int size) 450 { 451 struct uma_bucket_zone *ubz; 452 453 ubz = &bucket_zones[0]; 454 if (size > ubz->ubz_maxsize) 455 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 456 457 for (; ubz->ubz_entries != 0; ubz++) 458 if (ubz->ubz_maxsize < size) 459 break; 460 ubz--; 461 return (ubz->ubz_entries); 462 } 463 464 static uma_bucket_t 465 bucket_alloc(uma_zone_t zone, void *udata, int flags) 466 { 467 struct uma_bucket_zone *ubz; 468 uma_bucket_t bucket; 469 470 /* 471 * Don't allocate buckets early in boot. 472 */ 473 if (__predict_false(booted < BOOT_KVA)) 474 return (NULL); 475 476 /* 477 * To limit bucket recursion we store the original zone flags 478 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 479 * NOVM flag to persist even through deep recursions. We also 480 * store ZFLAG_BUCKET once we have recursed attempting to allocate 481 * a bucket for a bucket zone so we do not allow infinite bucket 482 * recursion. This cookie will even persist to frees of unused 483 * buckets via the allocation path or bucket allocations in the 484 * free path. 485 */ 486 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 487 udata = (void *)(uintptr_t)zone->uz_flags; 488 else { 489 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 490 return (NULL); 491 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 492 } 493 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 494 flags |= M_NOVM; 495 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size)); 496 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 497 ubz++; 498 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 499 if (bucket) { 500 #ifdef INVARIANTS 501 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 502 #endif 503 bucket->ub_cnt = 0; 504 bucket->ub_entries = min(ubz->ubz_entries, 505 zone->uz_bucket_size_max); 506 bucket->ub_seq = SMR_SEQ_INVALID; 507 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 508 zone->uz_name, zone, bucket); 509 } 510 511 return (bucket); 512 } 513 514 static void 515 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 516 { 517 struct uma_bucket_zone *ubz; 518 519 if (bucket->ub_cnt != 0) 520 bucket_drain(zone, bucket); 521 522 KASSERT(bucket->ub_cnt == 0, 523 ("bucket_free: Freeing a non free bucket.")); 524 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 525 ("bucket_free: Freeing an SMR bucket.")); 526 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 527 udata = (void *)(uintptr_t)zone->uz_flags; 528 ubz = bucket_zone_lookup(bucket->ub_entries); 529 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 530 } 531 532 static void 533 bucket_zone_drain(int domain) 534 { 535 struct uma_bucket_zone *ubz; 536 537 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 538 uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN, 539 domain); 540 } 541 542 #ifdef KASAN 543 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0, 544 "Base UMA allocation size not a multiple of the KASAN scale factor"); 545 546 static void 547 kasan_mark_item_valid(uma_zone_t zone, void *item) 548 { 549 void *pcpu_item; 550 size_t sz, rsz; 551 int i; 552 553 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 554 return; 555 556 sz = zone->uz_size; 557 rsz = roundup2(sz, KASAN_SHADOW_SCALE); 558 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 559 kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE); 560 } else { 561 pcpu_item = zpcpu_base_to_offset(item); 562 for (i = 0; i <= mp_maxid; i++) 563 kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz, 564 KASAN_GENERIC_REDZONE); 565 } 566 } 567 568 static void 569 kasan_mark_item_invalid(uma_zone_t zone, void *item) 570 { 571 void *pcpu_item; 572 size_t sz; 573 int i; 574 575 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 576 return; 577 578 sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE); 579 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 580 kasan_mark(item, 0, sz, KASAN_UMA_FREED); 581 } else { 582 pcpu_item = zpcpu_base_to_offset(item); 583 for (i = 0; i <= mp_maxid; i++) 584 kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz, 585 KASAN_UMA_FREED); 586 } 587 } 588 589 static void 590 kasan_mark_slab_valid(uma_keg_t keg, void *mem) 591 { 592 size_t sz; 593 594 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 595 sz = keg->uk_ppera * PAGE_SIZE; 596 kasan_mark(mem, sz, sz, 0); 597 } 598 } 599 600 static void 601 kasan_mark_slab_invalid(uma_keg_t keg, void *mem) 602 { 603 size_t sz; 604 605 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 606 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 607 sz = keg->uk_ppera * PAGE_SIZE; 608 else 609 sz = keg->uk_pgoff; 610 kasan_mark(mem, 0, sz, KASAN_UMA_FREED); 611 } 612 } 613 #else /* !KASAN */ 614 static void 615 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused) 616 { 617 } 618 619 static void 620 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused) 621 { 622 } 623 624 static void 625 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused) 626 { 627 } 628 629 static void 630 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused) 631 { 632 } 633 #endif /* KASAN */ 634 635 /* 636 * Acquire the domain lock and record contention. 637 */ 638 static uma_zone_domain_t 639 zone_domain_lock(uma_zone_t zone, int domain) 640 { 641 uma_zone_domain_t zdom; 642 bool lockfail; 643 644 zdom = ZDOM_GET(zone, domain); 645 lockfail = false; 646 if (ZDOM_OWNED(zdom)) 647 lockfail = true; 648 ZDOM_LOCK(zdom); 649 /* This is unsynchronized. The counter does not need to be precise. */ 650 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 651 zone->uz_bucket_size++; 652 return (zdom); 653 } 654 655 /* 656 * Search for the domain with the least cached items and return it if it 657 * is out of balance with the preferred domain. 658 */ 659 static __noinline int 660 zone_domain_lowest(uma_zone_t zone, int pref) 661 { 662 long least, nitems, prefitems; 663 int domain; 664 int i; 665 666 prefitems = least = LONG_MAX; 667 domain = 0; 668 for (i = 0; i < vm_ndomains; i++) { 669 nitems = ZDOM_GET(zone, i)->uzd_nitems; 670 if (nitems < least) { 671 domain = i; 672 least = nitems; 673 } 674 if (domain == pref) 675 prefitems = nitems; 676 } 677 if (prefitems < least * 2) 678 return (pref); 679 680 return (domain); 681 } 682 683 /* 684 * Search for the domain with the most cached items and return it or the 685 * preferred domain if it has enough to proceed. 686 */ 687 static __noinline int 688 zone_domain_highest(uma_zone_t zone, int pref) 689 { 690 long most, nitems; 691 int domain; 692 int i; 693 694 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 695 return (pref); 696 697 most = 0; 698 domain = 0; 699 for (i = 0; i < vm_ndomains; i++) { 700 nitems = ZDOM_GET(zone, i)->uzd_nitems; 701 if (nitems > most) { 702 domain = i; 703 most = nitems; 704 } 705 } 706 707 return (domain); 708 } 709 710 /* 711 * Set the maximum imax value. 712 */ 713 static void 714 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 715 { 716 long old; 717 718 old = zdom->uzd_imax; 719 do { 720 if (old >= nitems) 721 return; 722 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 723 724 /* 725 * We are at new maximum, so do the last WSS update for the old 726 * bimin and prepare to measure next allocation batch. 727 */ 728 if (zdom->uzd_wss < old - zdom->uzd_bimin) 729 zdom->uzd_wss = old - zdom->uzd_bimin; 730 zdom->uzd_bimin = nitems; 731 } 732 733 /* 734 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 735 * zone's caches. If a bucket is found the zone is not locked on return. 736 */ 737 static uma_bucket_t 738 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 739 { 740 uma_bucket_t bucket; 741 long cnt; 742 int i; 743 bool dtor = false; 744 745 ZDOM_LOCK_ASSERT(zdom); 746 747 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 748 return (NULL); 749 750 /* SMR Buckets can not be re-used until readers expire. */ 751 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 752 bucket->ub_seq != SMR_SEQ_INVALID) { 753 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 754 return (NULL); 755 bucket->ub_seq = SMR_SEQ_INVALID; 756 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 757 if (STAILQ_NEXT(bucket, ub_link) != NULL) 758 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 759 } 760 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 761 762 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt, 763 ("%s: item count underflow (%ld, %d)", 764 __func__, zdom->uzd_nitems, bucket->ub_cnt)); 765 KASSERT(bucket->ub_cnt > 0, 766 ("%s: empty bucket in bucket cache", __func__)); 767 zdom->uzd_nitems -= bucket->ub_cnt; 768 769 if (reclaim) { 770 /* 771 * Shift the bounds of the current WSS interval to avoid 772 * perturbing the estimates. 773 */ 774 cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt); 775 atomic_subtract_long(&zdom->uzd_imax, cnt); 776 zdom->uzd_bimin -= cnt; 777 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 778 if (zdom->uzd_limin >= bucket->ub_cnt) { 779 zdom->uzd_limin -= bucket->ub_cnt; 780 } else { 781 zdom->uzd_limin = 0; 782 zdom->uzd_timin = 0; 783 } 784 } else if (zdom->uzd_bimin > zdom->uzd_nitems) { 785 zdom->uzd_bimin = zdom->uzd_nitems; 786 if (zdom->uzd_imin > zdom->uzd_nitems) 787 zdom->uzd_imin = zdom->uzd_nitems; 788 } 789 790 ZDOM_UNLOCK(zdom); 791 if (dtor) 792 for (i = 0; i < bucket->ub_cnt; i++) 793 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 794 NULL, SKIP_NONE); 795 796 return (bucket); 797 } 798 799 /* 800 * Insert a full bucket into the specified cache. The "ws" parameter indicates 801 * whether the bucket's contents should be counted as part of the zone's working 802 * set. The bucket may be freed if it exceeds the bucket limit. 803 */ 804 static void 805 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 806 const bool ws) 807 { 808 uma_zone_domain_t zdom; 809 810 /* We don't cache empty buckets. This can happen after a reclaim. */ 811 if (bucket->ub_cnt == 0) 812 goto out; 813 zdom = zone_domain_lock(zone, domain); 814 815 /* 816 * Conditionally set the maximum number of items. 817 */ 818 zdom->uzd_nitems += bucket->ub_cnt; 819 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 820 if (ws) { 821 zone_domain_imax_set(zdom, zdom->uzd_nitems); 822 } else { 823 /* 824 * Shift the bounds of the current WSS interval to 825 * avoid perturbing the estimates. 826 */ 827 atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt); 828 zdom->uzd_imin += bucket->ub_cnt; 829 zdom->uzd_bimin += bucket->ub_cnt; 830 zdom->uzd_limin += bucket->ub_cnt; 831 } 832 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 833 zdom->uzd_seq = bucket->ub_seq; 834 835 /* 836 * Try to promote reuse of recently used items. For items 837 * protected by SMR, try to defer reuse to minimize polling. 838 */ 839 if (bucket->ub_seq == SMR_SEQ_INVALID) 840 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 841 else 842 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 843 ZDOM_UNLOCK(zdom); 844 return; 845 } 846 zdom->uzd_nitems -= bucket->ub_cnt; 847 ZDOM_UNLOCK(zdom); 848 out: 849 bucket_free(zone, bucket, udata); 850 } 851 852 /* Pops an item out of a per-cpu cache bucket. */ 853 static inline void * 854 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 855 { 856 void *item; 857 858 CRITICAL_ASSERT(curthread); 859 860 bucket->ucb_cnt--; 861 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 862 #ifdef INVARIANTS 863 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 864 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 865 #endif 866 cache->uc_allocs++; 867 868 return (item); 869 } 870 871 /* Pushes an item into a per-cpu cache bucket. */ 872 static inline void 873 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 874 { 875 876 CRITICAL_ASSERT(curthread); 877 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 878 ("uma_zfree: Freeing to non free bucket index.")); 879 880 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 881 bucket->ucb_cnt++; 882 cache->uc_frees++; 883 } 884 885 /* 886 * Unload a UMA bucket from a per-cpu cache. 887 */ 888 static inline uma_bucket_t 889 cache_bucket_unload(uma_cache_bucket_t bucket) 890 { 891 uma_bucket_t b; 892 893 b = bucket->ucb_bucket; 894 if (b != NULL) { 895 MPASS(b->ub_entries == bucket->ucb_entries); 896 b->ub_cnt = bucket->ucb_cnt; 897 bucket->ucb_bucket = NULL; 898 bucket->ucb_entries = bucket->ucb_cnt = 0; 899 } 900 901 return (b); 902 } 903 904 static inline uma_bucket_t 905 cache_bucket_unload_alloc(uma_cache_t cache) 906 { 907 908 return (cache_bucket_unload(&cache->uc_allocbucket)); 909 } 910 911 static inline uma_bucket_t 912 cache_bucket_unload_free(uma_cache_t cache) 913 { 914 915 return (cache_bucket_unload(&cache->uc_freebucket)); 916 } 917 918 static inline uma_bucket_t 919 cache_bucket_unload_cross(uma_cache_t cache) 920 { 921 922 return (cache_bucket_unload(&cache->uc_crossbucket)); 923 } 924 925 /* 926 * Load a bucket into a per-cpu cache bucket. 927 */ 928 static inline void 929 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 930 { 931 932 CRITICAL_ASSERT(curthread); 933 MPASS(bucket->ucb_bucket == NULL); 934 MPASS(b->ub_seq == SMR_SEQ_INVALID); 935 936 bucket->ucb_bucket = b; 937 bucket->ucb_cnt = b->ub_cnt; 938 bucket->ucb_entries = b->ub_entries; 939 } 940 941 static inline void 942 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 943 { 944 945 cache_bucket_load(&cache->uc_allocbucket, b); 946 } 947 948 static inline void 949 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 950 { 951 952 cache_bucket_load(&cache->uc_freebucket, b); 953 } 954 955 #ifdef NUMA 956 static inline void 957 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 958 { 959 960 cache_bucket_load(&cache->uc_crossbucket, b); 961 } 962 #endif 963 964 /* 965 * Copy and preserve ucb_spare. 966 */ 967 static inline void 968 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 969 { 970 971 b1->ucb_bucket = b2->ucb_bucket; 972 b1->ucb_entries = b2->ucb_entries; 973 b1->ucb_cnt = b2->ucb_cnt; 974 } 975 976 /* 977 * Swap two cache buckets. 978 */ 979 static inline void 980 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 981 { 982 struct uma_cache_bucket b3; 983 984 CRITICAL_ASSERT(curthread); 985 986 cache_bucket_copy(&b3, b1); 987 cache_bucket_copy(b1, b2); 988 cache_bucket_copy(b2, &b3); 989 } 990 991 /* 992 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 993 */ 994 static uma_bucket_t 995 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 996 { 997 uma_zone_domain_t zdom; 998 uma_bucket_t bucket; 999 1000 /* 1001 * Avoid the lock if possible. 1002 */ 1003 zdom = ZDOM_GET(zone, domain); 1004 if (zdom->uzd_nitems == 0) 1005 return (NULL); 1006 1007 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 1008 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 1009 return (NULL); 1010 1011 /* 1012 * Check the zone's cache of buckets. 1013 */ 1014 zdom = zone_domain_lock(zone, domain); 1015 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) 1016 return (bucket); 1017 ZDOM_UNLOCK(zdom); 1018 1019 return (NULL); 1020 } 1021 1022 static void 1023 zone_log_warning(uma_zone_t zone) 1024 { 1025 static const struct timeval warninterval = { 300, 0 }; 1026 1027 if (!zone_warnings || zone->uz_warning == NULL) 1028 return; 1029 1030 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 1031 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 1032 } 1033 1034 static inline void 1035 zone_maxaction(uma_zone_t zone) 1036 { 1037 1038 if (zone->uz_maxaction.ta_func != NULL) 1039 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 1040 } 1041 1042 /* 1043 * Routine called by timeout which is used to fire off some time interval 1044 * based calculations. (stats, hash size, etc.) 1045 * 1046 * Arguments: 1047 * arg Unused 1048 * 1049 * Returns: 1050 * Nothing 1051 */ 1052 static void 1053 uma_timeout(void *unused) 1054 { 1055 bucket_enable(); 1056 zone_foreach(zone_timeout, NULL); 1057 1058 /* Reschedule this event */ 1059 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1060 } 1061 1062 /* 1063 * Update the working set size estimates for the zone's bucket cache. 1064 * The constants chosen here are somewhat arbitrary. 1065 */ 1066 static void 1067 zone_domain_update_wss(uma_zone_domain_t zdom) 1068 { 1069 long m; 1070 1071 ZDOM_LOCK_ASSERT(zdom); 1072 MPASS(zdom->uzd_imax >= zdom->uzd_nitems); 1073 MPASS(zdom->uzd_nitems >= zdom->uzd_bimin); 1074 MPASS(zdom->uzd_bimin >= zdom->uzd_imin); 1075 1076 /* 1077 * Estimate WSS as modified moving average of biggest allocation 1078 * batches for each period over few minutes (UMA_TIMEOUT of 20s). 1079 */ 1080 zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4, 1081 zdom->uzd_imax - zdom->uzd_bimin); 1082 1083 /* 1084 * Estimate longtime minimum item count as a combination of recent 1085 * minimum item count, adjusted by WSS for safety, and the modified 1086 * moving average over the last several hours (UMA_TIMEOUT of 20s). 1087 * timin measures time since limin tried to go negative, that means 1088 * we were dangerously close to or got out of cache. 1089 */ 1090 m = zdom->uzd_imin - zdom->uzd_wss; 1091 if (m >= 0) { 1092 if (zdom->uzd_limin >= m) 1093 zdom->uzd_limin = m; 1094 else 1095 zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256; 1096 zdom->uzd_timin++; 1097 } else { 1098 zdom->uzd_limin = 0; 1099 zdom->uzd_timin = 0; 1100 } 1101 1102 /* To reduce period edge effects on WSS keep half of the imax. */ 1103 atomic_subtract_long(&zdom->uzd_imax, 1104 (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2); 1105 zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems; 1106 } 1107 1108 /* 1109 * Routine to perform timeout driven calculations. This expands the 1110 * hashes and does per cpu statistics aggregation. 1111 * 1112 * Returns nothing. 1113 */ 1114 static void 1115 zone_timeout(uma_zone_t zone, void *unused) 1116 { 1117 uma_keg_t keg; 1118 u_int slabs, pages; 1119 1120 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 1121 goto trim; 1122 1123 keg = zone->uz_keg; 1124 1125 /* 1126 * Hash zones are non-numa by definition so the first domain 1127 * is the only one present. 1128 */ 1129 KEG_LOCK(keg, 0); 1130 pages = keg->uk_domain[0].ud_pages; 1131 1132 /* 1133 * Expand the keg hash table. 1134 * 1135 * This is done if the number of slabs is larger than the hash size. 1136 * What I'm trying to do here is completely reduce collisions. This 1137 * may be a little aggressive. Should I allow for two collisions max? 1138 */ 1139 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1140 struct uma_hash newhash; 1141 struct uma_hash oldhash; 1142 int ret; 1143 1144 /* 1145 * This is so involved because allocating and freeing 1146 * while the keg lock is held will lead to deadlock. 1147 * I have to do everything in stages and check for 1148 * races. 1149 */ 1150 KEG_UNLOCK(keg, 0); 1151 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1152 KEG_LOCK(keg, 0); 1153 if (ret) { 1154 if (hash_expand(&keg->uk_hash, &newhash)) { 1155 oldhash = keg->uk_hash; 1156 keg->uk_hash = newhash; 1157 } else 1158 oldhash = newhash; 1159 1160 KEG_UNLOCK(keg, 0); 1161 hash_free(&oldhash); 1162 goto trim; 1163 } 1164 } 1165 KEG_UNLOCK(keg, 0); 1166 1167 trim: 1168 /* Trim caches not used for a long time. */ 1169 for (int i = 0; i < vm_ndomains; i++) { 1170 if (bucket_cache_reclaim_domain(zone, false, false, i) && 1171 (zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1172 keg_drain(zone->uz_keg, i); 1173 } 1174 } 1175 1176 /* 1177 * Allocate and zero fill the next sized hash table from the appropriate 1178 * backing store. 1179 * 1180 * Arguments: 1181 * hash A new hash structure with the old hash size in uh_hashsize 1182 * 1183 * Returns: 1184 * 1 on success and 0 on failure. 1185 */ 1186 static int 1187 hash_alloc(struct uma_hash *hash, u_int size) 1188 { 1189 size_t alloc; 1190 1191 KASSERT(powerof2(size), ("hash size must be power of 2")); 1192 if (size > UMA_HASH_SIZE_INIT) { 1193 hash->uh_hashsize = size; 1194 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1195 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1196 } else { 1197 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1198 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1199 UMA_ANYDOMAIN, M_WAITOK); 1200 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1201 } 1202 if (hash->uh_slab_hash) { 1203 bzero(hash->uh_slab_hash, alloc); 1204 hash->uh_hashmask = hash->uh_hashsize - 1; 1205 return (1); 1206 } 1207 1208 return (0); 1209 } 1210 1211 /* 1212 * Expands the hash table for HASH zones. This is done from zone_timeout 1213 * to reduce collisions. This must not be done in the regular allocation 1214 * path, otherwise, we can recurse on the vm while allocating pages. 1215 * 1216 * Arguments: 1217 * oldhash The hash you want to expand 1218 * newhash The hash structure for the new table 1219 * 1220 * Returns: 1221 * Nothing 1222 * 1223 * Discussion: 1224 */ 1225 static int 1226 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1227 { 1228 uma_hash_slab_t slab; 1229 u_int hval; 1230 u_int idx; 1231 1232 if (!newhash->uh_slab_hash) 1233 return (0); 1234 1235 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1236 return (0); 1237 1238 /* 1239 * I need to investigate hash algorithms for resizing without a 1240 * full rehash. 1241 */ 1242 1243 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1244 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1245 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1246 LIST_REMOVE(slab, uhs_hlink); 1247 hval = UMA_HASH(newhash, slab->uhs_data); 1248 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1249 slab, uhs_hlink); 1250 } 1251 1252 return (1); 1253 } 1254 1255 /* 1256 * Free the hash bucket to the appropriate backing store. 1257 * 1258 * Arguments: 1259 * slab_hash The hash bucket we're freeing 1260 * hashsize The number of entries in that hash bucket 1261 * 1262 * Returns: 1263 * Nothing 1264 */ 1265 static void 1266 hash_free(struct uma_hash *hash) 1267 { 1268 if (hash->uh_slab_hash == NULL) 1269 return; 1270 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1271 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1272 else 1273 free(hash->uh_slab_hash, M_UMAHASH); 1274 } 1275 1276 /* 1277 * Frees all outstanding items in a bucket 1278 * 1279 * Arguments: 1280 * zone The zone to free to, must be unlocked. 1281 * bucket The free/alloc bucket with items. 1282 * 1283 * Returns: 1284 * Nothing 1285 */ 1286 static void 1287 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1288 { 1289 int i; 1290 1291 if (bucket->ub_cnt == 0) 1292 return; 1293 1294 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1295 bucket->ub_seq != SMR_SEQ_INVALID) { 1296 smr_wait(zone->uz_smr, bucket->ub_seq); 1297 bucket->ub_seq = SMR_SEQ_INVALID; 1298 for (i = 0; i < bucket->ub_cnt; i++) 1299 item_dtor(zone, bucket->ub_bucket[i], 1300 zone->uz_size, NULL, SKIP_NONE); 1301 } 1302 if (zone->uz_fini) 1303 for (i = 0; i < bucket->ub_cnt; i++) { 1304 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 1305 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1306 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 1307 } 1308 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1309 if (zone->uz_max_items > 0) 1310 zone_free_limit(zone, bucket->ub_cnt); 1311 #ifdef INVARIANTS 1312 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1313 #endif 1314 bucket->ub_cnt = 0; 1315 } 1316 1317 /* 1318 * Drains the per cpu caches for a zone. 1319 * 1320 * NOTE: This may only be called while the zone is being torn down, and not 1321 * during normal operation. This is necessary in order that we do not have 1322 * to migrate CPUs to drain the per-CPU caches. 1323 * 1324 * Arguments: 1325 * zone The zone to drain, must be unlocked. 1326 * 1327 * Returns: 1328 * Nothing 1329 */ 1330 static void 1331 cache_drain(uma_zone_t zone) 1332 { 1333 uma_cache_t cache; 1334 uma_bucket_t bucket; 1335 smr_seq_t seq; 1336 int cpu; 1337 1338 /* 1339 * XXX: It is safe to not lock the per-CPU caches, because we're 1340 * tearing down the zone anyway. I.e., there will be no further use 1341 * of the caches at this point. 1342 * 1343 * XXX: It would good to be able to assert that the zone is being 1344 * torn down to prevent improper use of cache_drain(). 1345 */ 1346 seq = SMR_SEQ_INVALID; 1347 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1348 seq = smr_advance(zone->uz_smr); 1349 CPU_FOREACH(cpu) { 1350 cache = &zone->uz_cpu[cpu]; 1351 bucket = cache_bucket_unload_alloc(cache); 1352 if (bucket != NULL) 1353 bucket_free(zone, bucket, NULL); 1354 bucket = cache_bucket_unload_free(cache); 1355 if (bucket != NULL) { 1356 bucket->ub_seq = seq; 1357 bucket_free(zone, bucket, NULL); 1358 } 1359 bucket = cache_bucket_unload_cross(cache); 1360 if (bucket != NULL) { 1361 bucket->ub_seq = seq; 1362 bucket_free(zone, bucket, NULL); 1363 } 1364 } 1365 bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN); 1366 } 1367 1368 static void 1369 cache_shrink(uma_zone_t zone, void *unused) 1370 { 1371 1372 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1373 return; 1374 1375 ZONE_LOCK(zone); 1376 zone->uz_bucket_size = 1377 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1378 ZONE_UNLOCK(zone); 1379 } 1380 1381 static void 1382 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1383 { 1384 uma_cache_t cache; 1385 uma_bucket_t b1, b2, b3; 1386 int domain; 1387 1388 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1389 return; 1390 1391 b1 = b2 = b3 = NULL; 1392 critical_enter(); 1393 cache = &zone->uz_cpu[curcpu]; 1394 domain = PCPU_GET(domain); 1395 b1 = cache_bucket_unload_alloc(cache); 1396 1397 /* 1398 * Don't flush SMR zone buckets. This leaves the zone without a 1399 * bucket and forces every free to synchronize(). 1400 */ 1401 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1402 b2 = cache_bucket_unload_free(cache); 1403 b3 = cache_bucket_unload_cross(cache); 1404 } 1405 critical_exit(); 1406 1407 if (b1 != NULL) 1408 zone_free_bucket(zone, b1, NULL, domain, false); 1409 if (b2 != NULL) 1410 zone_free_bucket(zone, b2, NULL, domain, false); 1411 if (b3 != NULL) { 1412 /* Adjust the domain so it goes to zone_free_cross. */ 1413 domain = (domain + 1) % vm_ndomains; 1414 zone_free_bucket(zone, b3, NULL, domain, false); 1415 } 1416 } 1417 1418 /* 1419 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1420 * This is an expensive call because it needs to bind to all CPUs 1421 * one by one and enter a critical section on each of them in order 1422 * to safely access their cache buckets. 1423 * Zone lock must not be held on call this function. 1424 */ 1425 static void 1426 pcpu_cache_drain_safe(uma_zone_t zone) 1427 { 1428 int cpu; 1429 1430 /* 1431 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1432 */ 1433 if (zone) 1434 cache_shrink(zone, NULL); 1435 else 1436 zone_foreach(cache_shrink, NULL); 1437 1438 CPU_FOREACH(cpu) { 1439 thread_lock(curthread); 1440 sched_bind(curthread, cpu); 1441 thread_unlock(curthread); 1442 1443 if (zone) 1444 cache_drain_safe_cpu(zone, NULL); 1445 else 1446 zone_foreach(cache_drain_safe_cpu, NULL); 1447 } 1448 thread_lock(curthread); 1449 sched_unbind(curthread); 1450 thread_unlock(curthread); 1451 } 1452 1453 /* 1454 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1455 * requested a drain, otherwise the per-domain caches are trimmed to either 1456 * estimated working set size. 1457 */ 1458 static bool 1459 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain) 1460 { 1461 uma_zone_domain_t zdom; 1462 uma_bucket_t bucket; 1463 long target; 1464 bool done = false; 1465 1466 /* 1467 * The cross bucket is partially filled and not part of 1468 * the item count. Reclaim it individually here. 1469 */ 1470 zdom = ZDOM_GET(zone, domain); 1471 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1472 ZONE_CROSS_LOCK(zone); 1473 bucket = zdom->uzd_cross; 1474 zdom->uzd_cross = NULL; 1475 ZONE_CROSS_UNLOCK(zone); 1476 if (bucket != NULL) 1477 bucket_free(zone, bucket, NULL); 1478 } 1479 1480 /* 1481 * If we were asked to drain the zone, we are done only once 1482 * this bucket cache is empty. If trim, we reclaim items in 1483 * excess of the zone's estimated working set size. Multiple 1484 * consecutive calls will shrink the WSS and so reclaim more. 1485 * If neither drain nor trim, then voluntarily reclaim 1/4 1486 * (to reduce first spike) of items not used for a long time. 1487 */ 1488 ZDOM_LOCK(zdom); 1489 zone_domain_update_wss(zdom); 1490 if (drain) 1491 target = 0; 1492 else if (trim) 1493 target = zdom->uzd_wss; 1494 else if (zdom->uzd_timin > 900 / UMA_TIMEOUT) 1495 target = zdom->uzd_nitems - zdom->uzd_limin / 4; 1496 else { 1497 ZDOM_UNLOCK(zdom); 1498 return (done); 1499 } 1500 while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL && 1501 zdom->uzd_nitems >= target + bucket->ub_cnt) { 1502 bucket = zone_fetch_bucket(zone, zdom, true); 1503 if (bucket == NULL) 1504 break; 1505 bucket_free(zone, bucket, NULL); 1506 done = true; 1507 ZDOM_LOCK(zdom); 1508 } 1509 ZDOM_UNLOCK(zdom); 1510 return (done); 1511 } 1512 1513 static void 1514 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain) 1515 { 1516 int i; 1517 1518 /* 1519 * Shrink the zone bucket size to ensure that the per-CPU caches 1520 * don't grow too large. 1521 */ 1522 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1523 zone->uz_bucket_size--; 1524 1525 if (domain != UMA_ANYDOMAIN && 1526 (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) { 1527 bucket_cache_reclaim_domain(zone, drain, true, domain); 1528 } else { 1529 for (i = 0; i < vm_ndomains; i++) 1530 bucket_cache_reclaim_domain(zone, drain, true, i); 1531 } 1532 } 1533 1534 static void 1535 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1536 { 1537 uint8_t *mem; 1538 size_t size; 1539 int i; 1540 uint8_t flags; 1541 1542 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1543 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1544 1545 mem = slab_data(slab, keg); 1546 size = PAGE_SIZE * keg->uk_ppera; 1547 1548 kasan_mark_slab_valid(keg, mem); 1549 if (keg->uk_fini != NULL) { 1550 for (i = start - 1; i > -1; i--) 1551 #ifdef INVARIANTS 1552 /* 1553 * trash_fini implies that dtor was trash_dtor. trash_fini 1554 * would check that memory hasn't been modified since free, 1555 * which executed trash_dtor. 1556 * That's why we need to run uma_dbg_kskip() check here, 1557 * albeit we don't make skip check for other init/fini 1558 * invocations. 1559 */ 1560 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1561 keg->uk_fini != trash_fini) 1562 #endif 1563 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1564 } 1565 flags = slab->us_flags; 1566 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1567 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1568 NULL, SKIP_NONE); 1569 } 1570 keg->uk_freef(mem, size, flags); 1571 uma_total_dec(size); 1572 } 1573 1574 static void 1575 keg_drain_domain(uma_keg_t keg, int domain) 1576 { 1577 struct slabhead freeslabs; 1578 uma_domain_t dom; 1579 uma_slab_t slab, tmp; 1580 uint32_t i, stofree, stokeep, partial; 1581 1582 dom = &keg->uk_domain[domain]; 1583 LIST_INIT(&freeslabs); 1584 1585 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1586 keg->uk_name, keg, domain, dom->ud_free_items); 1587 1588 KEG_LOCK(keg, domain); 1589 1590 /* 1591 * Are the free items in partially allocated slabs sufficient to meet 1592 * the reserve? If not, compute the number of fully free slabs that must 1593 * be kept. 1594 */ 1595 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers; 1596 if (partial < keg->uk_reserve) { 1597 stokeep = min(dom->ud_free_slabs, 1598 howmany(keg->uk_reserve - partial, keg->uk_ipers)); 1599 } else { 1600 stokeep = 0; 1601 } 1602 stofree = dom->ud_free_slabs - stokeep; 1603 1604 /* 1605 * Partition the free slabs into two sets: those that must be kept in 1606 * order to maintain the reserve, and those that may be released back to 1607 * the system. Since one set may be much larger than the other, 1608 * populate the smaller of the two sets and swap them if necessary. 1609 */ 1610 for (i = min(stofree, stokeep); i > 0; i--) { 1611 slab = LIST_FIRST(&dom->ud_free_slab); 1612 LIST_REMOVE(slab, us_link); 1613 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1614 } 1615 if (stofree > stokeep) 1616 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1617 1618 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1619 LIST_FOREACH(slab, &freeslabs, us_link) 1620 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1621 } 1622 dom->ud_free_items -= stofree * keg->uk_ipers; 1623 dom->ud_free_slabs -= stofree; 1624 dom->ud_pages -= stofree * keg->uk_ppera; 1625 KEG_UNLOCK(keg, domain); 1626 1627 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1628 keg_free_slab(keg, slab, keg->uk_ipers); 1629 } 1630 1631 /* 1632 * Frees pages from a keg back to the system. This is done on demand from 1633 * the pageout daemon. 1634 * 1635 * Returns nothing. 1636 */ 1637 static void 1638 keg_drain(uma_keg_t keg, int domain) 1639 { 1640 int i; 1641 1642 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0) 1643 return; 1644 if (domain != UMA_ANYDOMAIN) { 1645 keg_drain_domain(keg, domain); 1646 } else { 1647 for (i = 0; i < vm_ndomains; i++) 1648 keg_drain_domain(keg, i); 1649 } 1650 } 1651 1652 static void 1653 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain) 1654 { 1655 /* 1656 * Count active reclaim operations in order to interlock with 1657 * zone_dtor(), which removes the zone from global lists before 1658 * attempting to reclaim items itself. 1659 * 1660 * The zone may be destroyed while sleeping, so only zone_dtor() should 1661 * specify M_WAITOK. 1662 */ 1663 ZONE_LOCK(zone); 1664 if (waitok == M_WAITOK) { 1665 while (zone->uz_reclaimers > 0) 1666 msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1); 1667 } 1668 zone->uz_reclaimers++; 1669 ZONE_UNLOCK(zone); 1670 bucket_cache_reclaim(zone, drain, domain); 1671 1672 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1673 keg_drain(zone->uz_keg, domain); 1674 ZONE_LOCK(zone); 1675 zone->uz_reclaimers--; 1676 if (zone->uz_reclaimers == 0) 1677 wakeup(zone); 1678 ZONE_UNLOCK(zone); 1679 } 1680 1681 static void 1682 zone_drain(uma_zone_t zone, void *arg) 1683 { 1684 int domain; 1685 1686 domain = (int)(uintptr_t)arg; 1687 zone_reclaim(zone, domain, M_NOWAIT, true); 1688 } 1689 1690 static void 1691 zone_trim(uma_zone_t zone, void *arg) 1692 { 1693 int domain; 1694 1695 domain = (int)(uintptr_t)arg; 1696 zone_reclaim(zone, domain, M_NOWAIT, false); 1697 } 1698 1699 /* 1700 * Allocate a new slab for a keg and inserts it into the partial slab list. 1701 * The keg should be unlocked on entry. If the allocation succeeds it will 1702 * be locked on return. 1703 * 1704 * Arguments: 1705 * flags Wait flags for the item initialization routine 1706 * aflags Wait flags for the slab allocation 1707 * 1708 * Returns: 1709 * The slab that was allocated or NULL if there is no memory and the 1710 * caller specified M_NOWAIT. 1711 */ 1712 static uma_slab_t 1713 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1714 int aflags) 1715 { 1716 uma_domain_t dom; 1717 uma_slab_t slab; 1718 unsigned long size; 1719 uint8_t *mem; 1720 uint8_t sflags; 1721 int i; 1722 1723 KASSERT(domain >= 0 && domain < vm_ndomains, 1724 ("keg_alloc_slab: domain %d out of range", domain)); 1725 1726 slab = NULL; 1727 mem = NULL; 1728 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1729 uma_hash_slab_t hslab; 1730 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1731 domain, aflags); 1732 if (hslab == NULL) 1733 goto fail; 1734 slab = &hslab->uhs_slab; 1735 } 1736 1737 /* 1738 * This reproduces the old vm_zone behavior of zero filling pages the 1739 * first time they are added to a zone. 1740 * 1741 * Malloced items are zeroed in uma_zalloc. 1742 */ 1743 1744 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1745 aflags |= M_ZERO; 1746 else 1747 aflags &= ~M_ZERO; 1748 1749 if (keg->uk_flags & UMA_ZONE_NODUMP) 1750 aflags |= M_NODUMP; 1751 1752 /* zone is passed for legacy reasons. */ 1753 size = keg->uk_ppera * PAGE_SIZE; 1754 mem = keg->uk_allocf(zone, size, domain, &sflags, aflags); 1755 if (mem == NULL) { 1756 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1757 zone_free_item(slabzone(keg->uk_ipers), 1758 slab_tohashslab(slab), NULL, SKIP_NONE); 1759 goto fail; 1760 } 1761 uma_total_inc(size); 1762 1763 /* For HASH zones all pages go to the same uma_domain. */ 1764 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1765 domain = 0; 1766 1767 /* Point the slab into the allocated memory */ 1768 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1769 slab = (uma_slab_t)(mem + keg->uk_pgoff); 1770 else 1771 slab_tohashslab(slab)->uhs_data = mem; 1772 1773 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1774 for (i = 0; i < keg->uk_ppera; i++) 1775 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1776 zone, slab); 1777 1778 slab->us_freecount = keg->uk_ipers; 1779 slab->us_flags = sflags; 1780 slab->us_domain = domain; 1781 1782 BIT_FILL(keg->uk_ipers, &slab->us_free); 1783 #ifdef INVARIANTS 1784 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1785 #endif 1786 1787 if (keg->uk_init != NULL) { 1788 for (i = 0; i < keg->uk_ipers; i++) 1789 if (keg->uk_init(slab_item(slab, keg, i), 1790 keg->uk_size, flags) != 0) 1791 break; 1792 if (i != keg->uk_ipers) { 1793 keg_free_slab(keg, slab, i); 1794 goto fail; 1795 } 1796 } 1797 kasan_mark_slab_invalid(keg, mem); 1798 KEG_LOCK(keg, domain); 1799 1800 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1801 slab, keg->uk_name, keg); 1802 1803 if (keg->uk_flags & UMA_ZFLAG_HASH) 1804 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1805 1806 /* 1807 * If we got a slab here it's safe to mark it partially used 1808 * and return. We assume that the caller is going to remove 1809 * at least one item. 1810 */ 1811 dom = &keg->uk_domain[domain]; 1812 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1813 dom->ud_pages += keg->uk_ppera; 1814 dom->ud_free_items += keg->uk_ipers; 1815 1816 return (slab); 1817 1818 fail: 1819 return (NULL); 1820 } 1821 1822 /* 1823 * This function is intended to be used early on in place of page_alloc(). It 1824 * performs contiguous physical memory allocations and uses a bump allocator for 1825 * KVA, so is usable before the kernel map is initialized. 1826 */ 1827 static void * 1828 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1829 int wait) 1830 { 1831 vm_paddr_t pa; 1832 vm_page_t m; 1833 void *mem; 1834 int pages; 1835 int i; 1836 1837 pages = howmany(bytes, PAGE_SIZE); 1838 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1839 1840 *pflag = UMA_SLAB_BOOT; 1841 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1842 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1843 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1844 if (m == NULL) 1845 return (NULL); 1846 1847 pa = VM_PAGE_TO_PHYS(m); 1848 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1849 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1850 defined(__riscv) || defined(__powerpc64__) 1851 if ((wait & M_NODUMP) == 0) 1852 dump_add_page(pa); 1853 #endif 1854 } 1855 /* Allocate KVA and indirectly advance bootmem. */ 1856 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1857 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1858 if ((wait & M_ZERO) != 0) 1859 bzero(mem, pages * PAGE_SIZE); 1860 1861 return (mem); 1862 } 1863 1864 static void 1865 startup_free(void *mem, vm_size_t bytes) 1866 { 1867 vm_offset_t va; 1868 vm_page_t m; 1869 1870 va = (vm_offset_t)mem; 1871 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1872 1873 /* 1874 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid 1875 * unmapping ranges of the direct map. 1876 */ 1877 if (va >= bootstart && va + bytes <= bootmem) 1878 pmap_remove(kernel_pmap, va, va + bytes); 1879 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1880 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1881 defined(__riscv) || defined(__powerpc64__) 1882 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1883 #endif 1884 vm_page_unwire_noq(m); 1885 vm_page_free(m); 1886 } 1887 } 1888 1889 /* 1890 * Allocates a number of pages from the system 1891 * 1892 * Arguments: 1893 * bytes The number of bytes requested 1894 * wait Shall we wait? 1895 * 1896 * Returns: 1897 * A pointer to the alloced memory or possibly 1898 * NULL if M_NOWAIT is set. 1899 */ 1900 static void * 1901 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1902 int wait) 1903 { 1904 void *p; /* Returned page */ 1905 1906 *pflag = UMA_SLAB_KERNEL; 1907 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1908 1909 return (p); 1910 } 1911 1912 static void * 1913 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1914 int wait) 1915 { 1916 struct pglist alloctail; 1917 vm_offset_t addr, zkva; 1918 int cpu, flags; 1919 vm_page_t p, p_next; 1920 #ifdef NUMA 1921 struct pcpu *pc; 1922 #endif 1923 1924 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1925 1926 TAILQ_INIT(&alloctail); 1927 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1928 malloc2vm_flags(wait); 1929 *pflag = UMA_SLAB_KERNEL; 1930 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1931 if (CPU_ABSENT(cpu)) { 1932 p = vm_page_alloc(NULL, 0, flags); 1933 } else { 1934 #ifndef NUMA 1935 p = vm_page_alloc(NULL, 0, flags); 1936 #else 1937 pc = pcpu_find(cpu); 1938 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1939 p = NULL; 1940 else 1941 p = vm_page_alloc_domain(NULL, 0, 1942 pc->pc_domain, flags); 1943 if (__predict_false(p == NULL)) 1944 p = vm_page_alloc(NULL, 0, flags); 1945 #endif 1946 } 1947 if (__predict_false(p == NULL)) 1948 goto fail; 1949 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1950 } 1951 if ((addr = kva_alloc(bytes)) == 0) 1952 goto fail; 1953 zkva = addr; 1954 TAILQ_FOREACH(p, &alloctail, listq) { 1955 pmap_qenter(zkva, &p, 1); 1956 zkva += PAGE_SIZE; 1957 } 1958 return ((void*)addr); 1959 fail: 1960 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1961 vm_page_unwire_noq(p); 1962 vm_page_free(p); 1963 } 1964 return (NULL); 1965 } 1966 1967 /* 1968 * Allocates a number of pages from within an object 1969 * 1970 * Arguments: 1971 * bytes The number of bytes requested 1972 * wait Shall we wait? 1973 * 1974 * Returns: 1975 * A pointer to the alloced memory or possibly 1976 * NULL if M_NOWAIT is set. 1977 */ 1978 static void * 1979 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1980 int wait) 1981 { 1982 TAILQ_HEAD(, vm_page) alloctail; 1983 u_long npages; 1984 vm_offset_t retkva, zkva; 1985 vm_page_t p, p_next; 1986 uma_keg_t keg; 1987 1988 TAILQ_INIT(&alloctail); 1989 keg = zone->uz_keg; 1990 1991 npages = howmany(bytes, PAGE_SIZE); 1992 while (npages > 0) { 1993 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1994 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1995 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1996 VM_ALLOC_NOWAIT)); 1997 if (p != NULL) { 1998 /* 1999 * Since the page does not belong to an object, its 2000 * listq is unused. 2001 */ 2002 TAILQ_INSERT_TAIL(&alloctail, p, listq); 2003 npages--; 2004 continue; 2005 } 2006 /* 2007 * Page allocation failed, free intermediate pages and 2008 * exit. 2009 */ 2010 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 2011 vm_page_unwire_noq(p); 2012 vm_page_free(p); 2013 } 2014 return (NULL); 2015 } 2016 *flags = UMA_SLAB_PRIV; 2017 zkva = keg->uk_kva + 2018 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 2019 retkva = zkva; 2020 TAILQ_FOREACH(p, &alloctail, listq) { 2021 pmap_qenter(zkva, &p, 1); 2022 zkva += PAGE_SIZE; 2023 } 2024 2025 return ((void *)retkva); 2026 } 2027 2028 /* 2029 * Allocate physically contiguous pages. 2030 */ 2031 static void * 2032 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 2033 int wait) 2034 { 2035 2036 *pflag = UMA_SLAB_KERNEL; 2037 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 2038 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 2039 } 2040 2041 /* 2042 * Frees a number of pages to the system 2043 * 2044 * Arguments: 2045 * mem A pointer to the memory to be freed 2046 * size The size of the memory being freed 2047 * flags The original p->us_flags field 2048 * 2049 * Returns: 2050 * Nothing 2051 */ 2052 static void 2053 page_free(void *mem, vm_size_t size, uint8_t flags) 2054 { 2055 2056 if ((flags & UMA_SLAB_BOOT) != 0) { 2057 startup_free(mem, size); 2058 return; 2059 } 2060 2061 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 2062 ("UMA: page_free used with invalid flags %x", flags)); 2063 2064 kmem_free((vm_offset_t)mem, size); 2065 } 2066 2067 /* 2068 * Frees pcpu zone allocations 2069 * 2070 * Arguments: 2071 * mem A pointer to the memory to be freed 2072 * size The size of the memory being freed 2073 * flags The original p->us_flags field 2074 * 2075 * Returns: 2076 * Nothing 2077 */ 2078 static void 2079 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 2080 { 2081 vm_offset_t sva, curva; 2082 vm_paddr_t paddr; 2083 vm_page_t m; 2084 2085 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 2086 2087 if ((flags & UMA_SLAB_BOOT) != 0) { 2088 startup_free(mem, size); 2089 return; 2090 } 2091 2092 sva = (vm_offset_t)mem; 2093 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 2094 paddr = pmap_kextract(curva); 2095 m = PHYS_TO_VM_PAGE(paddr); 2096 vm_page_unwire_noq(m); 2097 vm_page_free(m); 2098 } 2099 pmap_qremove(sva, size >> PAGE_SHIFT); 2100 kva_free(sva, size); 2101 } 2102 2103 /* 2104 * Zero fill initializer 2105 * 2106 * Arguments/Returns follow uma_init specifications 2107 */ 2108 static int 2109 zero_init(void *mem, int size, int flags) 2110 { 2111 bzero(mem, size); 2112 return (0); 2113 } 2114 2115 #ifdef INVARIANTS 2116 static struct noslabbits * 2117 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 2118 { 2119 2120 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 2121 } 2122 #endif 2123 2124 /* 2125 * Actual size of embedded struct slab (!OFFPAGE). 2126 */ 2127 static size_t 2128 slab_sizeof(int nitems) 2129 { 2130 size_t s; 2131 2132 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 2133 return (roundup(s, UMA_ALIGN_PTR + 1)); 2134 } 2135 2136 #define UMA_FIXPT_SHIFT 31 2137 #define UMA_FRAC_FIXPT(n, d) \ 2138 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 2139 #define UMA_FIXPT_PCT(f) \ 2140 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 2141 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 2142 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 2143 2144 /* 2145 * Compute the number of items that will fit in a slab. If hdr is true, the 2146 * item count may be limited to provide space in the slab for an inline slab 2147 * header. Otherwise, all slab space will be provided for item storage. 2148 */ 2149 static u_int 2150 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 2151 { 2152 u_int ipers; 2153 u_int padpi; 2154 2155 /* The padding between items is not needed after the last item. */ 2156 padpi = rsize - size; 2157 2158 if (hdr) { 2159 /* 2160 * Start with the maximum item count and remove items until 2161 * the slab header first alongside the allocatable memory. 2162 */ 2163 for (ipers = MIN(SLAB_MAX_SETSIZE, 2164 (slabsize + padpi - slab_sizeof(1)) / rsize); 2165 ipers > 0 && 2166 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 2167 ipers--) 2168 continue; 2169 } else { 2170 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 2171 } 2172 2173 return (ipers); 2174 } 2175 2176 struct keg_layout_result { 2177 u_int format; 2178 u_int slabsize; 2179 u_int ipers; 2180 u_int eff; 2181 }; 2182 2183 static void 2184 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 2185 struct keg_layout_result *kl) 2186 { 2187 u_int total; 2188 2189 kl->format = fmt; 2190 kl->slabsize = slabsize; 2191 2192 /* Handle INTERNAL as inline with an extra page. */ 2193 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 2194 kl->format &= ~UMA_ZFLAG_INTERNAL; 2195 kl->slabsize += PAGE_SIZE; 2196 } 2197 2198 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2199 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2200 2201 /* Account for memory used by an offpage slab header. */ 2202 total = kl->slabsize; 2203 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2204 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2205 2206 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2207 } 2208 2209 /* 2210 * Determine the format of a uma keg. This determines where the slab header 2211 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2212 * 2213 * Arguments 2214 * keg The zone we should initialize 2215 * 2216 * Returns 2217 * Nothing 2218 */ 2219 static void 2220 keg_layout(uma_keg_t keg) 2221 { 2222 struct keg_layout_result kl = {}, kl_tmp; 2223 u_int fmts[2]; 2224 u_int alignsize; 2225 u_int nfmt; 2226 u_int pages; 2227 u_int rsize; 2228 u_int slabsize; 2229 u_int i, j; 2230 2231 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2232 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2233 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2234 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2235 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2236 PRINT_UMA_ZFLAGS)); 2237 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2238 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2239 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2240 PRINT_UMA_ZFLAGS)); 2241 2242 alignsize = keg->uk_align + 1; 2243 #ifdef KASAN 2244 /* 2245 * ASAN requires that each allocation be aligned to the shadow map 2246 * scale factor. 2247 */ 2248 if (alignsize < KASAN_SHADOW_SCALE) 2249 alignsize = KASAN_SHADOW_SCALE; 2250 #endif 2251 2252 /* 2253 * Calculate the size of each allocation (rsize) according to 2254 * alignment. If the requested size is smaller than we have 2255 * allocation bits for we round it up. 2256 */ 2257 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2258 rsize = roundup2(rsize, alignsize); 2259 2260 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2261 /* 2262 * We want one item to start on every align boundary in a page. 2263 * To do this we will span pages. We will also extend the item 2264 * by the size of align if it is an even multiple of align. 2265 * Otherwise, it would fall on the same boundary every time. 2266 */ 2267 if ((rsize & alignsize) == 0) 2268 rsize += alignsize; 2269 slabsize = rsize * (PAGE_SIZE / alignsize); 2270 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2271 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2272 slabsize = round_page(slabsize); 2273 } else { 2274 /* 2275 * Start with a slab size of as many pages as it takes to 2276 * represent a single item. We will try to fit as many 2277 * additional items into the slab as possible. 2278 */ 2279 slabsize = round_page(keg->uk_size); 2280 } 2281 2282 /* Build a list of all of the available formats for this keg. */ 2283 nfmt = 0; 2284 2285 /* Evaluate an inline slab layout. */ 2286 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2287 fmts[nfmt++] = 0; 2288 2289 /* TODO: vm_page-embedded slab. */ 2290 2291 /* 2292 * We can't do OFFPAGE if we're internal or if we've been 2293 * asked to not go to the VM for buckets. If we do this we 2294 * may end up going to the VM for slabs which we do not want 2295 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2296 * In those cases, evaluate a pseudo-format called INTERNAL 2297 * which has an inline slab header and one extra page to 2298 * guarantee that it fits. 2299 * 2300 * Otherwise, see if using an OFFPAGE slab will improve our 2301 * efficiency. 2302 */ 2303 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2304 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2305 else 2306 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2307 2308 /* 2309 * Choose a slab size and format which satisfy the minimum efficiency. 2310 * Prefer the smallest slab size that meets the constraints. 2311 * 2312 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2313 * for small items (up to PAGE_SIZE), the iteration increment is one 2314 * page; and for large items, the increment is one item. 2315 */ 2316 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2317 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2318 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2319 rsize, i)); 2320 for ( ; ; i++) { 2321 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2322 round_page(rsize * (i - 1) + keg->uk_size); 2323 2324 for (j = 0; j < nfmt; j++) { 2325 /* Only if we have no viable format yet. */ 2326 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2327 kl.ipers > 0) 2328 continue; 2329 2330 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2331 if (kl_tmp.eff <= kl.eff) 2332 continue; 2333 2334 kl = kl_tmp; 2335 2336 CTR6(KTR_UMA, "keg %s layout: format %#x " 2337 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2338 keg->uk_name, kl.format, kl.ipers, rsize, 2339 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2340 2341 /* Stop when we reach the minimum efficiency. */ 2342 if (kl.eff >= UMA_MIN_EFF) 2343 break; 2344 } 2345 2346 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2347 slabsize >= SLAB_MAX_SETSIZE * rsize || 2348 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2349 break; 2350 } 2351 2352 pages = atop(kl.slabsize); 2353 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2354 pages *= mp_maxid + 1; 2355 2356 keg->uk_rsize = rsize; 2357 keg->uk_ipers = kl.ipers; 2358 keg->uk_ppera = pages; 2359 keg->uk_flags |= kl.format; 2360 2361 /* 2362 * How do we find the slab header if it is offpage or if not all item 2363 * start addresses are in the same page? We could solve the latter 2364 * case with vaddr alignment, but we don't. 2365 */ 2366 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2367 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2368 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2369 keg->uk_flags |= UMA_ZFLAG_HASH; 2370 else 2371 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2372 } 2373 2374 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2375 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2376 pages); 2377 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2378 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2379 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2380 keg->uk_ipers, pages)); 2381 } 2382 2383 /* 2384 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2385 * the keg onto the global keg list. 2386 * 2387 * Arguments/Returns follow uma_ctor specifications 2388 * udata Actually uma_kctor_args 2389 */ 2390 static int 2391 keg_ctor(void *mem, int size, void *udata, int flags) 2392 { 2393 struct uma_kctor_args *arg = udata; 2394 uma_keg_t keg = mem; 2395 uma_zone_t zone; 2396 int i; 2397 2398 bzero(keg, size); 2399 keg->uk_size = arg->size; 2400 keg->uk_init = arg->uminit; 2401 keg->uk_fini = arg->fini; 2402 keg->uk_align = arg->align; 2403 keg->uk_reserve = 0; 2404 keg->uk_flags = arg->flags; 2405 2406 /* 2407 * We use a global round-robin policy by default. Zones with 2408 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2409 * case the iterator is never run. 2410 */ 2411 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2412 keg->uk_dr.dr_iter = 0; 2413 2414 /* 2415 * The primary zone is passed to us at keg-creation time. 2416 */ 2417 zone = arg->zone; 2418 keg->uk_name = zone->uz_name; 2419 2420 if (arg->flags & UMA_ZONE_ZINIT) 2421 keg->uk_init = zero_init; 2422 2423 if (arg->flags & UMA_ZONE_MALLOC) 2424 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2425 2426 #ifndef SMP 2427 keg->uk_flags &= ~UMA_ZONE_PCPU; 2428 #endif 2429 2430 keg_layout(keg); 2431 2432 /* 2433 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2434 * work on. Use round-robin for everything else. 2435 * 2436 * Zones may override the default by specifying either. 2437 */ 2438 #ifdef NUMA 2439 if ((keg->uk_flags & 2440 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2441 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2442 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2443 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2444 #endif 2445 2446 /* 2447 * If we haven't booted yet we need allocations to go through the 2448 * startup cache until the vm is ready. 2449 */ 2450 #ifdef UMA_MD_SMALL_ALLOC 2451 if (keg->uk_ppera == 1) 2452 keg->uk_allocf = uma_small_alloc; 2453 else 2454 #endif 2455 if (booted < BOOT_KVA) 2456 keg->uk_allocf = startup_alloc; 2457 else if (keg->uk_flags & UMA_ZONE_PCPU) 2458 keg->uk_allocf = pcpu_page_alloc; 2459 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2460 keg->uk_allocf = contig_alloc; 2461 else 2462 keg->uk_allocf = page_alloc; 2463 #ifdef UMA_MD_SMALL_ALLOC 2464 if (keg->uk_ppera == 1) 2465 keg->uk_freef = uma_small_free; 2466 else 2467 #endif 2468 if (keg->uk_flags & UMA_ZONE_PCPU) 2469 keg->uk_freef = pcpu_page_free; 2470 else 2471 keg->uk_freef = page_free; 2472 2473 /* 2474 * Initialize keg's locks. 2475 */ 2476 for (i = 0; i < vm_ndomains; i++) 2477 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2478 2479 /* 2480 * If we're putting the slab header in the actual page we need to 2481 * figure out where in each page it goes. See slab_sizeof 2482 * definition. 2483 */ 2484 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2485 size_t shsize; 2486 2487 shsize = slab_sizeof(keg->uk_ipers); 2488 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2489 /* 2490 * The only way the following is possible is if with our 2491 * UMA_ALIGN_PTR adjustments we are now bigger than 2492 * UMA_SLAB_SIZE. I haven't checked whether this is 2493 * mathematically possible for all cases, so we make 2494 * sure here anyway. 2495 */ 2496 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2497 ("zone %s ipers %d rsize %d size %d slab won't fit", 2498 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2499 } 2500 2501 if (keg->uk_flags & UMA_ZFLAG_HASH) 2502 hash_alloc(&keg->uk_hash, 0); 2503 2504 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2505 2506 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2507 2508 rw_wlock(&uma_rwlock); 2509 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2510 rw_wunlock(&uma_rwlock); 2511 return (0); 2512 } 2513 2514 static void 2515 zone_kva_available(uma_zone_t zone, void *unused) 2516 { 2517 uma_keg_t keg; 2518 2519 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2520 return; 2521 KEG_GET(zone, keg); 2522 2523 if (keg->uk_allocf == startup_alloc) { 2524 /* Switch to the real allocator. */ 2525 if (keg->uk_flags & UMA_ZONE_PCPU) 2526 keg->uk_allocf = pcpu_page_alloc; 2527 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2528 keg->uk_ppera > 1) 2529 keg->uk_allocf = contig_alloc; 2530 else 2531 keg->uk_allocf = page_alloc; 2532 } 2533 } 2534 2535 static void 2536 zone_alloc_counters(uma_zone_t zone, void *unused) 2537 { 2538 2539 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2540 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2541 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2542 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2543 } 2544 2545 static void 2546 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2547 { 2548 uma_zone_domain_t zdom; 2549 uma_domain_t dom; 2550 uma_keg_t keg; 2551 struct sysctl_oid *oid, *domainoid; 2552 int domains, i, cnt; 2553 static const char *nokeg = "cache zone"; 2554 char *c; 2555 2556 /* 2557 * Make a sysctl safe copy of the zone name by removing 2558 * any special characters and handling dups by appending 2559 * an index. 2560 */ 2561 if (zone->uz_namecnt != 0) { 2562 /* Count the number of decimal digits and '_' separator. */ 2563 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2564 cnt /= 10; 2565 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2566 M_UMA, M_WAITOK); 2567 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2568 zone->uz_namecnt); 2569 } else 2570 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2571 for (c = zone->uz_ctlname; *c != '\0'; c++) 2572 if (strchr("./\\ -", *c) != NULL) 2573 *c = '_'; 2574 2575 /* 2576 * Basic parameters at the root. 2577 */ 2578 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2579 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2580 oid = zone->uz_oid; 2581 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2582 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2583 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2584 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2585 zone, 0, sysctl_handle_uma_zone_flags, "A", 2586 "Allocator configuration flags"); 2587 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2588 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2589 "Desired per-cpu cache size"); 2590 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2591 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2592 "Maximum allowed per-cpu cache size"); 2593 2594 /* 2595 * keg if present. 2596 */ 2597 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2598 domains = vm_ndomains; 2599 else 2600 domains = 1; 2601 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2602 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2603 keg = zone->uz_keg; 2604 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2605 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2606 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2607 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2608 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2609 "Real object size with alignment"); 2610 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2611 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2612 "pages per-slab allocation"); 2613 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2614 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2615 "items available per-slab"); 2616 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2617 "align", CTLFLAG_RD, &keg->uk_align, 0, 2618 "item alignment mask"); 2619 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2620 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0, 2621 "number of reserved items"); 2622 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2623 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2624 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2625 "Slab utilization (100 - internal fragmentation %)"); 2626 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2627 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2628 for (i = 0; i < domains; i++) { 2629 dom = &keg->uk_domain[i]; 2630 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2631 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2632 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2633 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2634 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2635 "Total pages currently allocated from VM"); 2636 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2637 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2638 "items free in the slab layer"); 2639 } 2640 } else 2641 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2642 "name", CTLFLAG_RD, nokeg, "Keg name"); 2643 2644 /* 2645 * Information about zone limits. 2646 */ 2647 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2648 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2649 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2650 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2651 zone, 0, sysctl_handle_uma_zone_items, "QU", 2652 "Current number of allocated items if limit is set"); 2653 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2654 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2655 "Maximum number of allocated and cached items"); 2656 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2657 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2658 "Number of threads sleeping at limit"); 2659 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2660 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2661 "Total zone limit sleeps"); 2662 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2663 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2664 "Maximum number of items in each domain's bucket cache"); 2665 2666 /* 2667 * Per-domain zone information. 2668 */ 2669 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2670 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2671 for (i = 0; i < domains; i++) { 2672 zdom = ZDOM_GET(zone, i); 2673 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2674 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2675 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2676 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2677 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2678 "number of items in this domain"); 2679 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2680 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2681 "maximum item count in this period"); 2682 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2683 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2684 "minimum item count in this period"); 2685 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2686 "bimin", CTLFLAG_RD, &zdom->uzd_bimin, 2687 "Minimum item count in this batch"); 2688 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2689 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2690 "Working set size"); 2691 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2692 "limin", CTLFLAG_RD, &zdom->uzd_limin, 2693 "Long time minimum item count"); 2694 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2695 "timin", CTLFLAG_RD, &zdom->uzd_timin, 0, 2696 "Time since zero long time minimum item count"); 2697 } 2698 2699 /* 2700 * General statistics. 2701 */ 2702 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2703 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2704 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2705 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2706 zone, 1, sysctl_handle_uma_zone_cur, "I", 2707 "Current number of allocated items"); 2708 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2709 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2710 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2711 "Total allocation calls"); 2712 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2713 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2714 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2715 "Total free calls"); 2716 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2717 "fails", CTLFLAG_RD, &zone->uz_fails, 2718 "Number of allocation failures"); 2719 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2720 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2721 "Free calls from the wrong domain"); 2722 } 2723 2724 struct uma_zone_count { 2725 const char *name; 2726 int count; 2727 }; 2728 2729 static void 2730 zone_count(uma_zone_t zone, void *arg) 2731 { 2732 struct uma_zone_count *cnt; 2733 2734 cnt = arg; 2735 /* 2736 * Some zones are rapidly created with identical names and 2737 * destroyed out of order. This can lead to gaps in the count. 2738 * Use one greater than the maximum observed for this name. 2739 */ 2740 if (strcmp(zone->uz_name, cnt->name) == 0) 2741 cnt->count = MAX(cnt->count, 2742 zone->uz_namecnt + 1); 2743 } 2744 2745 static void 2746 zone_update_caches(uma_zone_t zone) 2747 { 2748 int i; 2749 2750 for (i = 0; i <= mp_maxid; i++) { 2751 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2752 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2753 } 2754 } 2755 2756 /* 2757 * Zone header ctor. This initializes all fields, locks, etc. 2758 * 2759 * Arguments/Returns follow uma_ctor specifications 2760 * udata Actually uma_zctor_args 2761 */ 2762 static int 2763 zone_ctor(void *mem, int size, void *udata, int flags) 2764 { 2765 struct uma_zone_count cnt; 2766 struct uma_zctor_args *arg = udata; 2767 uma_zone_domain_t zdom; 2768 uma_zone_t zone = mem; 2769 uma_zone_t z; 2770 uma_keg_t keg; 2771 int i; 2772 2773 bzero(zone, size); 2774 zone->uz_name = arg->name; 2775 zone->uz_ctor = arg->ctor; 2776 zone->uz_dtor = arg->dtor; 2777 zone->uz_init = NULL; 2778 zone->uz_fini = NULL; 2779 zone->uz_sleeps = 0; 2780 zone->uz_bucket_size = 0; 2781 zone->uz_bucket_size_min = 0; 2782 zone->uz_bucket_size_max = BUCKET_MAX; 2783 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2784 zone->uz_warning = NULL; 2785 /* The domain structures follow the cpu structures. */ 2786 zone->uz_bucket_max = ULONG_MAX; 2787 timevalclear(&zone->uz_ratecheck); 2788 2789 /* Count the number of duplicate names. */ 2790 cnt.name = arg->name; 2791 cnt.count = 0; 2792 zone_foreach(zone_count, &cnt); 2793 zone->uz_namecnt = cnt.count; 2794 ZONE_CROSS_LOCK_INIT(zone); 2795 2796 for (i = 0; i < vm_ndomains; i++) { 2797 zdom = ZDOM_GET(zone, i); 2798 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2799 STAILQ_INIT(&zdom->uzd_buckets); 2800 } 2801 2802 #if defined(INVARIANTS) && !defined(KASAN) 2803 if (arg->uminit == trash_init && arg->fini == trash_fini) 2804 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2805 #elif defined(KASAN) 2806 if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0) 2807 arg->flags |= UMA_ZONE_NOKASAN; 2808 #endif 2809 2810 /* 2811 * This is a pure cache zone, no kegs. 2812 */ 2813 if (arg->import) { 2814 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2815 ("zone_ctor: Import specified for non-cache zone.")); 2816 zone->uz_flags = arg->flags; 2817 zone->uz_size = arg->size; 2818 zone->uz_import = arg->import; 2819 zone->uz_release = arg->release; 2820 zone->uz_arg = arg->arg; 2821 #ifdef NUMA 2822 /* 2823 * Cache zones are round-robin unless a policy is 2824 * specified because they may have incompatible 2825 * constraints. 2826 */ 2827 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2828 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2829 #endif 2830 rw_wlock(&uma_rwlock); 2831 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2832 rw_wunlock(&uma_rwlock); 2833 goto out; 2834 } 2835 2836 /* 2837 * Use the regular zone/keg/slab allocator. 2838 */ 2839 zone->uz_import = zone_import; 2840 zone->uz_release = zone_release; 2841 zone->uz_arg = zone; 2842 keg = arg->keg; 2843 2844 if (arg->flags & UMA_ZONE_SECONDARY) { 2845 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2846 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2847 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2848 zone->uz_init = arg->uminit; 2849 zone->uz_fini = arg->fini; 2850 zone->uz_flags |= UMA_ZONE_SECONDARY; 2851 rw_wlock(&uma_rwlock); 2852 ZONE_LOCK(zone); 2853 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2854 if (LIST_NEXT(z, uz_link) == NULL) { 2855 LIST_INSERT_AFTER(z, zone, uz_link); 2856 break; 2857 } 2858 } 2859 ZONE_UNLOCK(zone); 2860 rw_wunlock(&uma_rwlock); 2861 } else if (keg == NULL) { 2862 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2863 arg->align, arg->flags)) == NULL) 2864 return (ENOMEM); 2865 } else { 2866 struct uma_kctor_args karg; 2867 int error; 2868 2869 /* We should only be here from uma_startup() */ 2870 karg.size = arg->size; 2871 karg.uminit = arg->uminit; 2872 karg.fini = arg->fini; 2873 karg.align = arg->align; 2874 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2875 karg.zone = zone; 2876 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2877 flags); 2878 if (error) 2879 return (error); 2880 } 2881 2882 /* Inherit properties from the keg. */ 2883 zone->uz_keg = keg; 2884 zone->uz_size = keg->uk_size; 2885 zone->uz_flags |= (keg->uk_flags & 2886 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2887 2888 out: 2889 if (booted >= BOOT_PCPU) { 2890 zone_alloc_counters(zone, NULL); 2891 if (booted >= BOOT_RUNNING) 2892 zone_alloc_sysctl(zone, NULL); 2893 } else { 2894 zone->uz_allocs = EARLY_COUNTER; 2895 zone->uz_frees = EARLY_COUNTER; 2896 zone->uz_fails = EARLY_COUNTER; 2897 } 2898 2899 /* Caller requests a private SMR context. */ 2900 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2901 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2902 2903 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2904 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2905 ("Invalid zone flag combination")); 2906 if (arg->flags & UMA_ZFLAG_INTERNAL) 2907 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2908 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2909 zone->uz_bucket_size = BUCKET_MAX; 2910 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2911 zone->uz_bucket_size = 0; 2912 else 2913 zone->uz_bucket_size = bucket_select(zone->uz_size); 2914 zone->uz_bucket_size_min = zone->uz_bucket_size; 2915 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2916 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2917 zone_update_caches(zone); 2918 2919 return (0); 2920 } 2921 2922 /* 2923 * Keg header dtor. This frees all data, destroys locks, frees the hash 2924 * table and removes the keg from the global list. 2925 * 2926 * Arguments/Returns follow uma_dtor specifications 2927 * udata unused 2928 */ 2929 static void 2930 keg_dtor(void *arg, int size, void *udata) 2931 { 2932 uma_keg_t keg; 2933 uint32_t free, pages; 2934 int i; 2935 2936 keg = (uma_keg_t)arg; 2937 free = pages = 0; 2938 for (i = 0; i < vm_ndomains; i++) { 2939 free += keg->uk_domain[i].ud_free_items; 2940 pages += keg->uk_domain[i].ud_pages; 2941 KEG_LOCK_FINI(keg, i); 2942 } 2943 if (pages != 0) 2944 printf("Freed UMA keg (%s) was not empty (%u items). " 2945 " Lost %u pages of memory.\n", 2946 keg->uk_name ? keg->uk_name : "", 2947 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2948 2949 hash_free(&keg->uk_hash); 2950 } 2951 2952 /* 2953 * Zone header dtor. 2954 * 2955 * Arguments/Returns follow uma_dtor specifications 2956 * udata unused 2957 */ 2958 static void 2959 zone_dtor(void *arg, int size, void *udata) 2960 { 2961 uma_zone_t zone; 2962 uma_keg_t keg; 2963 int i; 2964 2965 zone = (uma_zone_t)arg; 2966 2967 sysctl_remove_oid(zone->uz_oid, 1, 1); 2968 2969 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2970 cache_drain(zone); 2971 2972 rw_wlock(&uma_rwlock); 2973 LIST_REMOVE(zone, uz_link); 2974 rw_wunlock(&uma_rwlock); 2975 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2976 keg = zone->uz_keg; 2977 keg->uk_reserve = 0; 2978 } 2979 zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true); 2980 2981 /* 2982 * We only destroy kegs from non secondary/non cache zones. 2983 */ 2984 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2985 keg = zone->uz_keg; 2986 rw_wlock(&uma_rwlock); 2987 LIST_REMOVE(keg, uk_link); 2988 rw_wunlock(&uma_rwlock); 2989 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2990 } 2991 counter_u64_free(zone->uz_allocs); 2992 counter_u64_free(zone->uz_frees); 2993 counter_u64_free(zone->uz_fails); 2994 counter_u64_free(zone->uz_xdomain); 2995 free(zone->uz_ctlname, M_UMA); 2996 for (i = 0; i < vm_ndomains; i++) 2997 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 2998 ZONE_CROSS_LOCK_FINI(zone); 2999 } 3000 3001 static void 3002 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3003 { 3004 uma_keg_t keg; 3005 uma_zone_t zone; 3006 3007 LIST_FOREACH(keg, &uma_kegs, uk_link) { 3008 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 3009 zfunc(zone, arg); 3010 } 3011 LIST_FOREACH(zone, &uma_cachezones, uz_link) 3012 zfunc(zone, arg); 3013 } 3014 3015 /* 3016 * Traverses every zone in the system and calls a callback 3017 * 3018 * Arguments: 3019 * zfunc A pointer to a function which accepts a zone 3020 * as an argument. 3021 * 3022 * Returns: 3023 * Nothing 3024 */ 3025 static void 3026 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3027 { 3028 3029 rw_rlock(&uma_rwlock); 3030 zone_foreach_unlocked(zfunc, arg); 3031 rw_runlock(&uma_rwlock); 3032 } 3033 3034 /* 3035 * Initialize the kernel memory allocator. This is done after pages can be 3036 * allocated but before general KVA is available. 3037 */ 3038 void 3039 uma_startup1(vm_offset_t virtual_avail) 3040 { 3041 struct uma_zctor_args args; 3042 size_t ksize, zsize, size; 3043 uma_keg_t primarykeg; 3044 uintptr_t m; 3045 int domain; 3046 uint8_t pflag; 3047 3048 bootstart = bootmem = virtual_avail; 3049 3050 rw_init(&uma_rwlock, "UMA lock"); 3051 sx_init(&uma_reclaim_lock, "umareclaim"); 3052 3053 ksize = sizeof(struct uma_keg) + 3054 (sizeof(struct uma_domain) * vm_ndomains); 3055 ksize = roundup(ksize, UMA_SUPER_ALIGN); 3056 zsize = sizeof(struct uma_zone) + 3057 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 3058 (sizeof(struct uma_zone_domain) * vm_ndomains); 3059 zsize = roundup(zsize, UMA_SUPER_ALIGN); 3060 3061 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 3062 size = (zsize * 2) + ksize; 3063 for (domain = 0; domain < vm_ndomains; domain++) { 3064 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 3065 M_NOWAIT | M_ZERO); 3066 if (m != 0) 3067 break; 3068 } 3069 zones = (uma_zone_t)m; 3070 m += zsize; 3071 kegs = (uma_zone_t)m; 3072 m += zsize; 3073 primarykeg = (uma_keg_t)m; 3074 3075 /* "manually" create the initial zone */ 3076 memset(&args, 0, sizeof(args)); 3077 args.name = "UMA Kegs"; 3078 args.size = ksize; 3079 args.ctor = keg_ctor; 3080 args.dtor = keg_dtor; 3081 args.uminit = zero_init; 3082 args.fini = NULL; 3083 args.keg = primarykeg; 3084 args.align = UMA_SUPER_ALIGN - 1; 3085 args.flags = UMA_ZFLAG_INTERNAL; 3086 zone_ctor(kegs, zsize, &args, M_WAITOK); 3087 3088 args.name = "UMA Zones"; 3089 args.size = zsize; 3090 args.ctor = zone_ctor; 3091 args.dtor = zone_dtor; 3092 args.uminit = zero_init; 3093 args.fini = NULL; 3094 args.keg = NULL; 3095 args.align = UMA_SUPER_ALIGN - 1; 3096 args.flags = UMA_ZFLAG_INTERNAL; 3097 zone_ctor(zones, zsize, &args, M_WAITOK); 3098 3099 /* Now make zones for slab headers */ 3100 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 3101 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3102 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 3103 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3104 3105 hashzone = uma_zcreate("UMA Hash", 3106 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 3107 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3108 3109 bucket_init(); 3110 smr_init(); 3111 } 3112 3113 #ifndef UMA_MD_SMALL_ALLOC 3114 extern void vm_radix_reserve_kva(void); 3115 #endif 3116 3117 /* 3118 * Advertise the availability of normal kva allocations and switch to 3119 * the default back-end allocator. Marks the KVA we consumed on startup 3120 * as used in the map. 3121 */ 3122 void 3123 uma_startup2(void) 3124 { 3125 3126 if (bootstart != bootmem) { 3127 vm_map_lock(kernel_map); 3128 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 3129 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 3130 vm_map_unlock(kernel_map); 3131 } 3132 3133 #ifndef UMA_MD_SMALL_ALLOC 3134 /* Set up radix zone to use noobj_alloc. */ 3135 vm_radix_reserve_kva(); 3136 #endif 3137 3138 booted = BOOT_KVA; 3139 zone_foreach_unlocked(zone_kva_available, NULL); 3140 bucket_enable(); 3141 } 3142 3143 /* 3144 * Allocate counters as early as possible so that boot-time allocations are 3145 * accounted more precisely. 3146 */ 3147 static void 3148 uma_startup_pcpu(void *arg __unused) 3149 { 3150 3151 zone_foreach_unlocked(zone_alloc_counters, NULL); 3152 booted = BOOT_PCPU; 3153 } 3154 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 3155 3156 /* 3157 * Finish our initialization steps. 3158 */ 3159 static void 3160 uma_startup3(void *arg __unused) 3161 { 3162 3163 #ifdef INVARIANTS 3164 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 3165 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 3166 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 3167 #endif 3168 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 3169 callout_init(&uma_callout, 1); 3170 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 3171 booted = BOOT_RUNNING; 3172 3173 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 3174 EVENTHANDLER_PRI_FIRST); 3175 } 3176 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 3177 3178 static void 3179 uma_shutdown(void) 3180 { 3181 3182 booted = BOOT_SHUTDOWN; 3183 } 3184 3185 static uma_keg_t 3186 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 3187 int align, uint32_t flags) 3188 { 3189 struct uma_kctor_args args; 3190 3191 args.size = size; 3192 args.uminit = uminit; 3193 args.fini = fini; 3194 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 3195 args.flags = flags; 3196 args.zone = zone; 3197 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 3198 } 3199 3200 /* Public functions */ 3201 /* See uma.h */ 3202 void 3203 uma_set_align(int align) 3204 { 3205 3206 if (align != UMA_ALIGN_CACHE) 3207 uma_align_cache = align; 3208 } 3209 3210 /* See uma.h */ 3211 uma_zone_t 3212 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 3213 uma_init uminit, uma_fini fini, int align, uint32_t flags) 3214 3215 { 3216 struct uma_zctor_args args; 3217 uma_zone_t res; 3218 3219 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 3220 align, name)); 3221 3222 /* This stuff is essential for the zone ctor */ 3223 memset(&args, 0, sizeof(args)); 3224 args.name = name; 3225 args.size = size; 3226 args.ctor = ctor; 3227 args.dtor = dtor; 3228 args.uminit = uminit; 3229 args.fini = fini; 3230 #if defined(INVARIANTS) && !defined(KASAN) 3231 /* 3232 * Inject procedures which check for memory use after free if we are 3233 * allowed to scramble the memory while it is not allocated. This 3234 * requires that: UMA is actually able to access the memory, no init 3235 * or fini procedures, no dependency on the initial value of the 3236 * memory, and no (legitimate) use of the memory after free. Note, 3237 * the ctor and dtor do not need to be empty. 3238 */ 3239 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3240 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3241 args.uminit = trash_init; 3242 args.fini = trash_fini; 3243 } 3244 #endif 3245 args.align = align; 3246 args.flags = flags; 3247 args.keg = NULL; 3248 3249 sx_xlock(&uma_reclaim_lock); 3250 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3251 sx_xunlock(&uma_reclaim_lock); 3252 3253 return (res); 3254 } 3255 3256 /* See uma.h */ 3257 uma_zone_t 3258 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3259 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3260 { 3261 struct uma_zctor_args args; 3262 uma_keg_t keg; 3263 uma_zone_t res; 3264 3265 keg = primary->uz_keg; 3266 memset(&args, 0, sizeof(args)); 3267 args.name = name; 3268 args.size = keg->uk_size; 3269 args.ctor = ctor; 3270 args.dtor = dtor; 3271 args.uminit = zinit; 3272 args.fini = zfini; 3273 args.align = keg->uk_align; 3274 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3275 args.keg = keg; 3276 3277 sx_xlock(&uma_reclaim_lock); 3278 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3279 sx_xunlock(&uma_reclaim_lock); 3280 3281 return (res); 3282 } 3283 3284 /* See uma.h */ 3285 uma_zone_t 3286 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3287 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3288 void *arg, int flags) 3289 { 3290 struct uma_zctor_args args; 3291 3292 memset(&args, 0, sizeof(args)); 3293 args.name = name; 3294 args.size = size; 3295 args.ctor = ctor; 3296 args.dtor = dtor; 3297 args.uminit = zinit; 3298 args.fini = zfini; 3299 args.import = zimport; 3300 args.release = zrelease; 3301 args.arg = arg; 3302 args.align = 0; 3303 args.flags = flags | UMA_ZFLAG_CACHE; 3304 3305 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3306 } 3307 3308 /* See uma.h */ 3309 void 3310 uma_zdestroy(uma_zone_t zone) 3311 { 3312 3313 /* 3314 * Large slabs are expensive to reclaim, so don't bother doing 3315 * unnecessary work if we're shutting down. 3316 */ 3317 if (booted == BOOT_SHUTDOWN && 3318 zone->uz_fini == NULL && zone->uz_release == zone_release) 3319 return; 3320 sx_xlock(&uma_reclaim_lock); 3321 zone_free_item(zones, zone, NULL, SKIP_NONE); 3322 sx_xunlock(&uma_reclaim_lock); 3323 } 3324 3325 void 3326 uma_zwait(uma_zone_t zone) 3327 { 3328 3329 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3330 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3331 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3332 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3333 else 3334 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3335 } 3336 3337 void * 3338 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3339 { 3340 void *item, *pcpu_item; 3341 #ifdef SMP 3342 int i; 3343 3344 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3345 #endif 3346 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3347 if (item == NULL) 3348 return (NULL); 3349 pcpu_item = zpcpu_base_to_offset(item); 3350 if (flags & M_ZERO) { 3351 #ifdef SMP 3352 for (i = 0; i <= mp_maxid; i++) 3353 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3354 #else 3355 bzero(item, zone->uz_size); 3356 #endif 3357 } 3358 return (pcpu_item); 3359 } 3360 3361 /* 3362 * A stub while both regular and pcpu cases are identical. 3363 */ 3364 void 3365 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3366 { 3367 void *item; 3368 3369 #ifdef SMP 3370 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3371 #endif 3372 3373 /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */ 3374 if (pcpu_item == NULL) 3375 return; 3376 3377 item = zpcpu_offset_to_base(pcpu_item); 3378 uma_zfree_arg(zone, item, udata); 3379 } 3380 3381 static inline void * 3382 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3383 void *item) 3384 { 3385 #ifdef INVARIANTS 3386 bool skipdbg; 3387 #endif 3388 3389 kasan_mark_item_valid(zone, item); 3390 3391 #ifdef INVARIANTS 3392 skipdbg = uma_dbg_zskip(zone, item); 3393 if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 && 3394 zone->uz_ctor != trash_ctor) 3395 trash_ctor(item, size, udata, flags); 3396 #endif 3397 3398 /* Check flags before loading ctor pointer. */ 3399 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3400 __predict_false(zone->uz_ctor != NULL) && 3401 zone->uz_ctor(item, size, udata, flags) != 0) { 3402 counter_u64_add(zone->uz_fails, 1); 3403 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3404 return (NULL); 3405 } 3406 #ifdef INVARIANTS 3407 if (!skipdbg) 3408 uma_dbg_alloc(zone, NULL, item); 3409 #endif 3410 if (__predict_false(flags & M_ZERO)) 3411 return (memset(item, 0, size)); 3412 3413 return (item); 3414 } 3415 3416 static inline void 3417 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3418 enum zfreeskip skip) 3419 { 3420 #ifdef INVARIANTS 3421 bool skipdbg; 3422 3423 skipdbg = uma_dbg_zskip(zone, item); 3424 if (skip == SKIP_NONE && !skipdbg) { 3425 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3426 uma_dbg_free(zone, udata, item); 3427 else 3428 uma_dbg_free(zone, NULL, item); 3429 } 3430 #endif 3431 if (__predict_true(skip < SKIP_DTOR)) { 3432 if (zone->uz_dtor != NULL) 3433 zone->uz_dtor(item, size, udata); 3434 #ifdef INVARIANTS 3435 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3436 zone->uz_dtor != trash_dtor) 3437 trash_dtor(item, size, udata); 3438 #endif 3439 } 3440 kasan_mark_item_invalid(zone, item); 3441 } 3442 3443 #ifdef NUMA 3444 static int 3445 item_domain(void *item) 3446 { 3447 int domain; 3448 3449 domain = vm_phys_domain(vtophys(item)); 3450 KASSERT(domain >= 0 && domain < vm_ndomains, 3451 ("%s: unknown domain for item %p", __func__, item)); 3452 return (domain); 3453 } 3454 #endif 3455 3456 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3457 #define UMA_ZALLOC_DEBUG 3458 static int 3459 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3460 { 3461 int error; 3462 3463 error = 0; 3464 #ifdef WITNESS 3465 if (flags & M_WAITOK) { 3466 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3467 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3468 } 3469 #endif 3470 3471 #ifdef INVARIANTS 3472 KASSERT((flags & M_EXEC) == 0, 3473 ("uma_zalloc_debug: called with M_EXEC")); 3474 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3475 ("uma_zalloc_debug: called within spinlock or critical section")); 3476 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3477 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3478 #endif 3479 3480 #ifdef DEBUG_MEMGUARD 3481 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3482 void *item; 3483 item = memguard_alloc(zone->uz_size, flags); 3484 if (item != NULL) { 3485 error = EJUSTRETURN; 3486 if (zone->uz_init != NULL && 3487 zone->uz_init(item, zone->uz_size, flags) != 0) { 3488 *itemp = NULL; 3489 return (error); 3490 } 3491 if (zone->uz_ctor != NULL && 3492 zone->uz_ctor(item, zone->uz_size, udata, 3493 flags) != 0) { 3494 counter_u64_add(zone->uz_fails, 1); 3495 zone->uz_fini(item, zone->uz_size); 3496 *itemp = NULL; 3497 return (error); 3498 } 3499 *itemp = item; 3500 return (error); 3501 } 3502 /* This is unfortunate but should not be fatal. */ 3503 } 3504 #endif 3505 return (error); 3506 } 3507 3508 static int 3509 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3510 { 3511 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3512 ("uma_zfree_debug: called with spinlock or critical section held")); 3513 3514 #ifdef DEBUG_MEMGUARD 3515 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3516 if (zone->uz_dtor != NULL) 3517 zone->uz_dtor(item, zone->uz_size, udata); 3518 if (zone->uz_fini != NULL) 3519 zone->uz_fini(item, zone->uz_size); 3520 memguard_free(item); 3521 return (EJUSTRETURN); 3522 } 3523 #endif 3524 return (0); 3525 } 3526 #endif 3527 3528 static inline void * 3529 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3530 void *udata, int flags) 3531 { 3532 void *item; 3533 int size, uz_flags; 3534 3535 item = cache_bucket_pop(cache, bucket); 3536 size = cache_uz_size(cache); 3537 uz_flags = cache_uz_flags(cache); 3538 critical_exit(); 3539 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3540 } 3541 3542 static __noinline void * 3543 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3544 { 3545 uma_cache_bucket_t bucket; 3546 int domain; 3547 3548 while (cache_alloc(zone, cache, udata, flags)) { 3549 cache = &zone->uz_cpu[curcpu]; 3550 bucket = &cache->uc_allocbucket; 3551 if (__predict_false(bucket->ucb_cnt == 0)) 3552 continue; 3553 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3554 } 3555 critical_exit(); 3556 3557 /* 3558 * We can not get a bucket so try to return a single item. 3559 */ 3560 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3561 domain = PCPU_GET(domain); 3562 else 3563 domain = UMA_ANYDOMAIN; 3564 return (zone_alloc_item(zone, udata, domain, flags)); 3565 } 3566 3567 /* See uma.h */ 3568 void * 3569 uma_zalloc_smr(uma_zone_t zone, int flags) 3570 { 3571 uma_cache_bucket_t bucket; 3572 uma_cache_t cache; 3573 3574 #ifdef UMA_ZALLOC_DEBUG 3575 void *item; 3576 3577 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3578 ("uma_zalloc_arg: called with non-SMR zone.")); 3579 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3580 return (item); 3581 #endif 3582 3583 critical_enter(); 3584 cache = &zone->uz_cpu[curcpu]; 3585 bucket = &cache->uc_allocbucket; 3586 if (__predict_false(bucket->ucb_cnt == 0)) 3587 return (cache_alloc_retry(zone, cache, NULL, flags)); 3588 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3589 } 3590 3591 /* See uma.h */ 3592 void * 3593 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3594 { 3595 uma_cache_bucket_t bucket; 3596 uma_cache_t cache; 3597 3598 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3599 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3600 3601 /* This is the fast path allocation */ 3602 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3603 zone, flags); 3604 3605 #ifdef UMA_ZALLOC_DEBUG 3606 void *item; 3607 3608 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3609 ("uma_zalloc_arg: called with SMR zone.")); 3610 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3611 return (item); 3612 #endif 3613 3614 /* 3615 * If possible, allocate from the per-CPU cache. There are two 3616 * requirements for safe access to the per-CPU cache: (1) the thread 3617 * accessing the cache must not be preempted or yield during access, 3618 * and (2) the thread must not migrate CPUs without switching which 3619 * cache it accesses. We rely on a critical section to prevent 3620 * preemption and migration. We release the critical section in 3621 * order to acquire the zone mutex if we are unable to allocate from 3622 * the current cache; when we re-acquire the critical section, we 3623 * must detect and handle migration if it has occurred. 3624 */ 3625 critical_enter(); 3626 cache = &zone->uz_cpu[curcpu]; 3627 bucket = &cache->uc_allocbucket; 3628 if (__predict_false(bucket->ucb_cnt == 0)) 3629 return (cache_alloc_retry(zone, cache, udata, flags)); 3630 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3631 } 3632 3633 /* 3634 * Replenish an alloc bucket and possibly restore an old one. Called in 3635 * a critical section. Returns in a critical section. 3636 * 3637 * A false return value indicates an allocation failure. 3638 * A true return value indicates success and the caller should retry. 3639 */ 3640 static __noinline bool 3641 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3642 { 3643 uma_bucket_t bucket; 3644 int curdomain, domain; 3645 bool new; 3646 3647 CRITICAL_ASSERT(curthread); 3648 3649 /* 3650 * If we have run out of items in our alloc bucket see 3651 * if we can switch with the free bucket. 3652 * 3653 * SMR Zones can't re-use the free bucket until the sequence has 3654 * expired. 3655 */ 3656 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3657 cache->uc_freebucket.ucb_cnt != 0) { 3658 cache_bucket_swap(&cache->uc_freebucket, 3659 &cache->uc_allocbucket); 3660 return (true); 3661 } 3662 3663 /* 3664 * Discard any empty allocation bucket while we hold no locks. 3665 */ 3666 bucket = cache_bucket_unload_alloc(cache); 3667 critical_exit(); 3668 3669 if (bucket != NULL) { 3670 KASSERT(bucket->ub_cnt == 0, 3671 ("cache_alloc: Entered with non-empty alloc bucket.")); 3672 bucket_free(zone, bucket, udata); 3673 } 3674 3675 /* 3676 * Attempt to retrieve the item from the per-CPU cache has failed, so 3677 * we must go back to the zone. This requires the zdom lock, so we 3678 * must drop the critical section, then re-acquire it when we go back 3679 * to the cache. Since the critical section is released, we may be 3680 * preempted or migrate. As such, make sure not to maintain any 3681 * thread-local state specific to the cache from prior to releasing 3682 * the critical section. 3683 */ 3684 domain = PCPU_GET(domain); 3685 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3686 VM_DOMAIN_EMPTY(domain)) 3687 domain = zone_domain_highest(zone, domain); 3688 bucket = cache_fetch_bucket(zone, cache, domain); 3689 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { 3690 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3691 new = true; 3692 } else { 3693 new = false; 3694 } 3695 3696 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3697 zone->uz_name, zone, bucket); 3698 if (bucket == NULL) { 3699 critical_enter(); 3700 return (false); 3701 } 3702 3703 /* 3704 * See if we lost the race or were migrated. Cache the 3705 * initialized bucket to make this less likely or claim 3706 * the memory directly. 3707 */ 3708 critical_enter(); 3709 cache = &zone->uz_cpu[curcpu]; 3710 if (cache->uc_allocbucket.ucb_bucket == NULL && 3711 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3712 (curdomain = PCPU_GET(domain)) == domain || 3713 VM_DOMAIN_EMPTY(curdomain))) { 3714 if (new) 3715 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3716 bucket->ub_cnt); 3717 cache_bucket_load_alloc(cache, bucket); 3718 return (true); 3719 } 3720 3721 /* 3722 * We lost the race, release this bucket and start over. 3723 */ 3724 critical_exit(); 3725 zone_put_bucket(zone, domain, bucket, udata, !new); 3726 critical_enter(); 3727 3728 return (true); 3729 } 3730 3731 void * 3732 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3733 { 3734 #ifdef NUMA 3735 uma_bucket_t bucket; 3736 uma_zone_domain_t zdom; 3737 void *item; 3738 #endif 3739 3740 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3741 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3742 3743 /* This is the fast path allocation */ 3744 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3745 zone->uz_name, zone, domain, flags); 3746 3747 if (flags & M_WAITOK) { 3748 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3749 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3750 } 3751 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3752 ("uma_zalloc_domain: called with spinlock or critical section held")); 3753 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3754 ("uma_zalloc_domain: called with SMR zone.")); 3755 #ifdef NUMA 3756 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0, 3757 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone.")); 3758 3759 if (vm_ndomains == 1) 3760 return (uma_zalloc_arg(zone, udata, flags)); 3761 3762 /* 3763 * Try to allocate from the bucket cache before falling back to the keg. 3764 * We could try harder and attempt to allocate from per-CPU caches or 3765 * the per-domain cross-domain buckets, but the complexity is probably 3766 * not worth it. It is more important that frees of previous 3767 * cross-domain allocations do not blow up the cache. 3768 */ 3769 zdom = zone_domain_lock(zone, domain); 3770 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 3771 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3772 #ifdef INVARIANTS 3773 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL; 3774 #endif 3775 bucket->ub_cnt--; 3776 zone_put_bucket(zone, domain, bucket, udata, true); 3777 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, 3778 flags, item); 3779 if (item != NULL) { 3780 KASSERT(item_domain(item) == domain, 3781 ("%s: bucket cache item %p from wrong domain", 3782 __func__, item)); 3783 counter_u64_add(zone->uz_allocs, 1); 3784 } 3785 return (item); 3786 } 3787 ZDOM_UNLOCK(zdom); 3788 return (zone_alloc_item(zone, udata, domain, flags)); 3789 #else 3790 return (uma_zalloc_arg(zone, udata, flags)); 3791 #endif 3792 } 3793 3794 /* 3795 * Find a slab with some space. Prefer slabs that are partially used over those 3796 * that are totally full. This helps to reduce fragmentation. 3797 * 3798 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3799 * only 'domain'. 3800 */ 3801 static uma_slab_t 3802 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3803 { 3804 uma_domain_t dom; 3805 uma_slab_t slab; 3806 int start; 3807 3808 KASSERT(domain >= 0 && domain < vm_ndomains, 3809 ("keg_first_slab: domain %d out of range", domain)); 3810 KEG_LOCK_ASSERT(keg, domain); 3811 3812 slab = NULL; 3813 start = domain; 3814 do { 3815 dom = &keg->uk_domain[domain]; 3816 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3817 return (slab); 3818 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3819 LIST_REMOVE(slab, us_link); 3820 dom->ud_free_slabs--; 3821 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3822 return (slab); 3823 } 3824 if (rr) 3825 domain = (domain + 1) % vm_ndomains; 3826 } while (domain != start); 3827 3828 return (NULL); 3829 } 3830 3831 /* 3832 * Fetch an existing slab from a free or partial list. Returns with the 3833 * keg domain lock held if a slab was found or unlocked if not. 3834 */ 3835 static uma_slab_t 3836 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3837 { 3838 uma_slab_t slab; 3839 uint32_t reserve; 3840 3841 /* HASH has a single free list. */ 3842 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3843 domain = 0; 3844 3845 KEG_LOCK(keg, domain); 3846 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3847 if (keg->uk_domain[domain].ud_free_items <= reserve || 3848 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3849 KEG_UNLOCK(keg, domain); 3850 return (NULL); 3851 } 3852 return (slab); 3853 } 3854 3855 static uma_slab_t 3856 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3857 { 3858 struct vm_domainset_iter di; 3859 uma_slab_t slab; 3860 int aflags, domain; 3861 bool rr; 3862 3863 restart: 3864 /* 3865 * Use the keg's policy if upper layers haven't already specified a 3866 * domain (as happens with first-touch zones). 3867 * 3868 * To avoid races we run the iterator with the keg lock held, but that 3869 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3870 * clear M_WAITOK and handle low memory conditions locally. 3871 */ 3872 rr = rdomain == UMA_ANYDOMAIN; 3873 if (rr) { 3874 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3875 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3876 &aflags); 3877 } else { 3878 aflags = flags; 3879 domain = rdomain; 3880 } 3881 3882 for (;;) { 3883 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3884 if (slab != NULL) 3885 return (slab); 3886 3887 /* 3888 * M_NOVM means don't ask at all! 3889 */ 3890 if (flags & M_NOVM) 3891 break; 3892 3893 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3894 if (slab != NULL) 3895 return (slab); 3896 if (!rr && (flags & M_WAITOK) == 0) 3897 break; 3898 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3899 if ((flags & M_WAITOK) != 0) { 3900 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 3901 goto restart; 3902 } 3903 break; 3904 } 3905 } 3906 3907 /* 3908 * We might not have been able to get a slab but another cpu 3909 * could have while we were unlocked. Check again before we 3910 * fail. 3911 */ 3912 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3913 return (slab); 3914 3915 return (NULL); 3916 } 3917 3918 static void * 3919 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3920 { 3921 uma_domain_t dom; 3922 void *item; 3923 int freei; 3924 3925 KEG_LOCK_ASSERT(keg, slab->us_domain); 3926 3927 dom = &keg->uk_domain[slab->us_domain]; 3928 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3929 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3930 item = slab_item(slab, keg, freei); 3931 slab->us_freecount--; 3932 dom->ud_free_items--; 3933 3934 /* 3935 * Move this slab to the full list. It must be on the partial list, so 3936 * we do not need to update the free slab count. In particular, 3937 * keg_fetch_slab() always returns slabs on the partial list. 3938 */ 3939 if (slab->us_freecount == 0) { 3940 LIST_REMOVE(slab, us_link); 3941 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3942 } 3943 3944 return (item); 3945 } 3946 3947 static int 3948 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3949 { 3950 uma_domain_t dom; 3951 uma_zone_t zone; 3952 uma_slab_t slab; 3953 uma_keg_t keg; 3954 #ifdef NUMA 3955 int stripe; 3956 #endif 3957 int i; 3958 3959 zone = arg; 3960 slab = NULL; 3961 keg = zone->uz_keg; 3962 /* Try to keep the buckets totally full */ 3963 for (i = 0; i < max; ) { 3964 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3965 break; 3966 #ifdef NUMA 3967 stripe = howmany(max, vm_ndomains); 3968 #endif 3969 dom = &keg->uk_domain[slab->us_domain]; 3970 do { 3971 bucket[i++] = slab_alloc_item(keg, slab); 3972 if (dom->ud_free_items <= keg->uk_reserve) { 3973 /* 3974 * Avoid depleting the reserve after a 3975 * successful item allocation, even if 3976 * M_USE_RESERVE is specified. 3977 */ 3978 KEG_UNLOCK(keg, slab->us_domain); 3979 goto out; 3980 } 3981 #ifdef NUMA 3982 /* 3983 * If the zone is striped we pick a new slab for every 3984 * N allocations. Eliminating this conditional will 3985 * instead pick a new domain for each bucket rather 3986 * than stripe within each bucket. The current option 3987 * produces more fragmentation and requires more cpu 3988 * time but yields better distribution. 3989 */ 3990 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3991 vm_ndomains > 1 && --stripe == 0) 3992 break; 3993 #endif 3994 } while (slab->us_freecount != 0 && i < max); 3995 KEG_UNLOCK(keg, slab->us_domain); 3996 3997 /* Don't block if we allocated any successfully. */ 3998 flags &= ~M_WAITOK; 3999 flags |= M_NOWAIT; 4000 } 4001 out: 4002 return i; 4003 } 4004 4005 static int 4006 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 4007 { 4008 uint64_t old, new, total, max; 4009 4010 /* 4011 * The hard case. We're going to sleep because there were existing 4012 * sleepers or because we ran out of items. This routine enforces 4013 * fairness by keeping fifo order. 4014 * 4015 * First release our ill gotten gains and make some noise. 4016 */ 4017 for (;;) { 4018 zone_free_limit(zone, count); 4019 zone_log_warning(zone); 4020 zone_maxaction(zone); 4021 if (flags & M_NOWAIT) 4022 return (0); 4023 4024 /* 4025 * We need to allocate an item or set ourself as a sleeper 4026 * while the sleepq lock is held to avoid wakeup races. This 4027 * is essentially a home rolled semaphore. 4028 */ 4029 sleepq_lock(&zone->uz_max_items); 4030 old = zone->uz_items; 4031 do { 4032 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 4033 /* Cache the max since we will evaluate twice. */ 4034 max = zone->uz_max_items; 4035 if (UZ_ITEMS_SLEEPERS(old) != 0 || 4036 UZ_ITEMS_COUNT(old) >= max) 4037 new = old + UZ_ITEMS_SLEEPER; 4038 else 4039 new = old + MIN(count, max - old); 4040 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 4041 4042 /* We may have successfully allocated under the sleepq lock. */ 4043 if (UZ_ITEMS_SLEEPERS(new) == 0) { 4044 sleepq_release(&zone->uz_max_items); 4045 return (new - old); 4046 } 4047 4048 /* 4049 * This is in a different cacheline from uz_items so that we 4050 * don't constantly invalidate the fastpath cacheline when we 4051 * adjust item counts. This could be limited to toggling on 4052 * transitions. 4053 */ 4054 atomic_add_32(&zone->uz_sleepers, 1); 4055 atomic_add_64(&zone->uz_sleeps, 1); 4056 4057 /* 4058 * We have added ourselves as a sleeper. The sleepq lock 4059 * protects us from wakeup races. Sleep now and then retry. 4060 */ 4061 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 4062 sleepq_wait(&zone->uz_max_items, PVM); 4063 4064 /* 4065 * After wakeup, remove ourselves as a sleeper and try 4066 * again. We no longer have the sleepq lock for protection. 4067 * 4068 * Subract ourselves as a sleeper while attempting to add 4069 * our count. 4070 */ 4071 atomic_subtract_32(&zone->uz_sleepers, 1); 4072 old = atomic_fetchadd_64(&zone->uz_items, 4073 -(UZ_ITEMS_SLEEPER - count)); 4074 /* We're no longer a sleeper. */ 4075 old -= UZ_ITEMS_SLEEPER; 4076 4077 /* 4078 * If we're still at the limit, restart. Notably do not 4079 * block on other sleepers. Cache the max value to protect 4080 * against changes via sysctl. 4081 */ 4082 total = UZ_ITEMS_COUNT(old); 4083 max = zone->uz_max_items; 4084 if (total >= max) 4085 continue; 4086 /* Truncate if necessary, otherwise wake other sleepers. */ 4087 if (total + count > max) { 4088 zone_free_limit(zone, total + count - max); 4089 count = max - total; 4090 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 4091 wakeup_one(&zone->uz_max_items); 4092 4093 return (count); 4094 } 4095 } 4096 4097 /* 4098 * Allocate 'count' items from our max_items limit. Returns the number 4099 * available. If M_NOWAIT is not specified it will sleep until at least 4100 * one item can be allocated. 4101 */ 4102 static int 4103 zone_alloc_limit(uma_zone_t zone, int count, int flags) 4104 { 4105 uint64_t old; 4106 uint64_t max; 4107 4108 max = zone->uz_max_items; 4109 MPASS(max > 0); 4110 4111 /* 4112 * We expect normal allocations to succeed with a simple 4113 * fetchadd. 4114 */ 4115 old = atomic_fetchadd_64(&zone->uz_items, count); 4116 if (__predict_true(old + count <= max)) 4117 return (count); 4118 4119 /* 4120 * If we had some items and no sleepers just return the 4121 * truncated value. We have to release the excess space 4122 * though because that may wake sleepers who weren't woken 4123 * because we were temporarily over the limit. 4124 */ 4125 if (old < max) { 4126 zone_free_limit(zone, (old + count) - max); 4127 return (max - old); 4128 } 4129 return (zone_alloc_limit_hard(zone, count, flags)); 4130 } 4131 4132 /* 4133 * Free a number of items back to the limit. 4134 */ 4135 static void 4136 zone_free_limit(uma_zone_t zone, int count) 4137 { 4138 uint64_t old; 4139 4140 MPASS(count > 0); 4141 4142 /* 4143 * In the common case we either have no sleepers or 4144 * are still over the limit and can just return. 4145 */ 4146 old = atomic_fetchadd_64(&zone->uz_items, -count); 4147 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 4148 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 4149 return; 4150 4151 /* 4152 * Moderate the rate of wakeups. Sleepers will continue 4153 * to generate wakeups if necessary. 4154 */ 4155 wakeup_one(&zone->uz_max_items); 4156 } 4157 4158 static uma_bucket_t 4159 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 4160 { 4161 uma_bucket_t bucket; 4162 int error, maxbucket, cnt; 4163 4164 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 4165 zone, domain); 4166 4167 /* Avoid allocs targeting empty domains. */ 4168 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4169 domain = UMA_ANYDOMAIN; 4170 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4171 domain = UMA_ANYDOMAIN; 4172 4173 if (zone->uz_max_items > 0) 4174 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 4175 M_NOWAIT); 4176 else 4177 maxbucket = zone->uz_bucket_size; 4178 if (maxbucket == 0) 4179 return (false); 4180 4181 /* Don't wait for buckets, preserve caller's NOVM setting. */ 4182 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 4183 if (bucket == NULL) { 4184 cnt = 0; 4185 goto out; 4186 } 4187 4188 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 4189 MIN(maxbucket, bucket->ub_entries), domain, flags); 4190 4191 /* 4192 * Initialize the memory if necessary. 4193 */ 4194 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 4195 int i; 4196 4197 for (i = 0; i < bucket->ub_cnt; i++) { 4198 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 4199 error = zone->uz_init(bucket->ub_bucket[i], 4200 zone->uz_size, flags); 4201 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 4202 if (error != 0) 4203 break; 4204 } 4205 4206 /* 4207 * If we couldn't initialize the whole bucket, put the 4208 * rest back onto the freelist. 4209 */ 4210 if (i != bucket->ub_cnt) { 4211 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 4212 bucket->ub_cnt - i); 4213 #ifdef INVARIANTS 4214 bzero(&bucket->ub_bucket[i], 4215 sizeof(void *) * (bucket->ub_cnt - i)); 4216 #endif 4217 bucket->ub_cnt = i; 4218 } 4219 } 4220 4221 cnt = bucket->ub_cnt; 4222 if (bucket->ub_cnt == 0) { 4223 bucket_free(zone, bucket, udata); 4224 counter_u64_add(zone->uz_fails, 1); 4225 bucket = NULL; 4226 } 4227 out: 4228 if (zone->uz_max_items > 0 && cnt < maxbucket) 4229 zone_free_limit(zone, maxbucket - cnt); 4230 4231 return (bucket); 4232 } 4233 4234 /* 4235 * Allocates a single item from a zone. 4236 * 4237 * Arguments 4238 * zone The zone to alloc for. 4239 * udata The data to be passed to the constructor. 4240 * domain The domain to allocate from or UMA_ANYDOMAIN. 4241 * flags M_WAITOK, M_NOWAIT, M_ZERO. 4242 * 4243 * Returns 4244 * NULL if there is no memory and M_NOWAIT is set 4245 * An item if successful 4246 */ 4247 4248 static void * 4249 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 4250 { 4251 void *item; 4252 4253 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { 4254 counter_u64_add(zone->uz_fails, 1); 4255 return (NULL); 4256 } 4257 4258 /* Avoid allocs targeting empty domains. */ 4259 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4260 domain = UMA_ANYDOMAIN; 4261 4262 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 4263 goto fail_cnt; 4264 4265 /* 4266 * We have to call both the zone's init (not the keg's init) 4267 * and the zone's ctor. This is because the item is going from 4268 * a keg slab directly to the user, and the user is expecting it 4269 * to be both zone-init'd as well as zone-ctor'd. 4270 */ 4271 if (zone->uz_init != NULL) { 4272 int error; 4273 4274 kasan_mark_item_valid(zone, item); 4275 error = zone->uz_init(item, zone->uz_size, flags); 4276 kasan_mark_item_invalid(zone, item); 4277 if (error != 0) { 4278 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 4279 goto fail_cnt; 4280 } 4281 } 4282 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 4283 item); 4284 if (item == NULL) 4285 goto fail; 4286 4287 counter_u64_add(zone->uz_allocs, 1); 4288 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 4289 zone->uz_name, zone); 4290 4291 return (item); 4292 4293 fail_cnt: 4294 counter_u64_add(zone->uz_fails, 1); 4295 fail: 4296 if (zone->uz_max_items > 0) 4297 zone_free_limit(zone, 1); 4298 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 4299 zone->uz_name, zone); 4300 4301 return (NULL); 4302 } 4303 4304 /* See uma.h */ 4305 void 4306 uma_zfree_smr(uma_zone_t zone, void *item) 4307 { 4308 uma_cache_t cache; 4309 uma_cache_bucket_t bucket; 4310 int itemdomain, uz_flags; 4311 4312 #ifdef UMA_ZALLOC_DEBUG 4313 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4314 ("uma_zfree_smr: called with non-SMR zone.")); 4315 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4316 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4317 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4318 return; 4319 #endif 4320 cache = &zone->uz_cpu[curcpu]; 4321 uz_flags = cache_uz_flags(cache); 4322 itemdomain = 0; 4323 #ifdef NUMA 4324 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4325 itemdomain = item_domain(item); 4326 #endif 4327 critical_enter(); 4328 do { 4329 cache = &zone->uz_cpu[curcpu]; 4330 /* SMR Zones must free to the free bucket. */ 4331 bucket = &cache->uc_freebucket; 4332 #ifdef NUMA 4333 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4334 PCPU_GET(domain) != itemdomain) { 4335 bucket = &cache->uc_crossbucket; 4336 } 4337 #endif 4338 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4339 cache_bucket_push(cache, bucket, item); 4340 critical_exit(); 4341 return; 4342 } 4343 } while (cache_free(zone, cache, NULL, item, itemdomain)); 4344 critical_exit(); 4345 4346 /* 4347 * If nothing else caught this, we'll just do an internal free. 4348 */ 4349 zone_free_item(zone, item, NULL, SKIP_NONE); 4350 } 4351 4352 /* See uma.h */ 4353 void 4354 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4355 { 4356 uma_cache_t cache; 4357 uma_cache_bucket_t bucket; 4358 int itemdomain, uz_flags; 4359 4360 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4361 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4362 4363 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4364 4365 #ifdef UMA_ZALLOC_DEBUG 4366 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4367 ("uma_zfree_arg: called with SMR zone.")); 4368 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4369 return; 4370 #endif 4371 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4372 if (item == NULL) 4373 return; 4374 4375 /* 4376 * We are accessing the per-cpu cache without a critical section to 4377 * fetch size and flags. This is acceptable, if we are preempted we 4378 * will simply read another cpu's line. 4379 */ 4380 cache = &zone->uz_cpu[curcpu]; 4381 uz_flags = cache_uz_flags(cache); 4382 if (UMA_ALWAYS_CTORDTOR || 4383 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4384 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4385 4386 /* 4387 * The race here is acceptable. If we miss it we'll just have to wait 4388 * a little longer for the limits to be reset. 4389 */ 4390 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4391 if (atomic_load_32(&zone->uz_sleepers) > 0) 4392 goto zfree_item; 4393 } 4394 4395 /* 4396 * If possible, free to the per-CPU cache. There are two 4397 * requirements for safe access to the per-CPU cache: (1) the thread 4398 * accessing the cache must not be preempted or yield during access, 4399 * and (2) the thread must not migrate CPUs without switching which 4400 * cache it accesses. We rely on a critical section to prevent 4401 * preemption and migration. We release the critical section in 4402 * order to acquire the zone mutex if we are unable to free to the 4403 * current cache; when we re-acquire the critical section, we must 4404 * detect and handle migration if it has occurred. 4405 */ 4406 itemdomain = 0; 4407 #ifdef NUMA 4408 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4409 itemdomain = item_domain(item); 4410 #endif 4411 critical_enter(); 4412 do { 4413 cache = &zone->uz_cpu[curcpu]; 4414 /* 4415 * Try to free into the allocbucket first to give LIFO 4416 * ordering for cache-hot datastructures. Spill over 4417 * into the freebucket if necessary. Alloc will swap 4418 * them if one runs dry. 4419 */ 4420 bucket = &cache->uc_allocbucket; 4421 #ifdef NUMA 4422 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4423 PCPU_GET(domain) != itemdomain) { 4424 bucket = &cache->uc_crossbucket; 4425 } else 4426 #endif 4427 if (bucket->ucb_cnt == bucket->ucb_entries && 4428 cache->uc_freebucket.ucb_cnt < 4429 cache->uc_freebucket.ucb_entries) 4430 cache_bucket_swap(&cache->uc_freebucket, 4431 &cache->uc_allocbucket); 4432 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4433 cache_bucket_push(cache, bucket, item); 4434 critical_exit(); 4435 return; 4436 } 4437 } while (cache_free(zone, cache, udata, item, itemdomain)); 4438 critical_exit(); 4439 4440 /* 4441 * If nothing else caught this, we'll just do an internal free. 4442 */ 4443 zfree_item: 4444 zone_free_item(zone, item, udata, SKIP_DTOR); 4445 } 4446 4447 #ifdef NUMA 4448 /* 4449 * sort crossdomain free buckets to domain correct buckets and cache 4450 * them. 4451 */ 4452 static void 4453 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4454 { 4455 struct uma_bucketlist emptybuckets, fullbuckets; 4456 uma_zone_domain_t zdom; 4457 uma_bucket_t b; 4458 smr_seq_t seq; 4459 void *item; 4460 int domain; 4461 4462 CTR3(KTR_UMA, 4463 "uma_zfree: zone %s(%p) draining cross bucket %p", 4464 zone->uz_name, zone, bucket); 4465 4466 /* 4467 * It is possible for buckets to arrive here out of order so we fetch 4468 * the current smr seq rather than accepting the bucket's. 4469 */ 4470 seq = SMR_SEQ_INVALID; 4471 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4472 seq = smr_advance(zone->uz_smr); 4473 4474 /* 4475 * To avoid having ndomain * ndomain buckets for sorting we have a 4476 * lock on the current crossfree bucket. A full matrix with 4477 * per-domain locking could be used if necessary. 4478 */ 4479 STAILQ_INIT(&emptybuckets); 4480 STAILQ_INIT(&fullbuckets); 4481 ZONE_CROSS_LOCK(zone); 4482 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) { 4483 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4484 domain = item_domain(item); 4485 zdom = ZDOM_GET(zone, domain); 4486 if (zdom->uzd_cross == NULL) { 4487 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4488 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4489 zdom->uzd_cross = b; 4490 } else { 4491 /* 4492 * Avoid allocating a bucket with the cross lock 4493 * held, since allocation can trigger a 4494 * cross-domain free and bucket zones may 4495 * allocate from each other. 4496 */ 4497 ZONE_CROSS_UNLOCK(zone); 4498 b = bucket_alloc(zone, udata, M_NOWAIT); 4499 if (b == NULL) 4500 goto out; 4501 ZONE_CROSS_LOCK(zone); 4502 if (zdom->uzd_cross != NULL) { 4503 STAILQ_INSERT_HEAD(&emptybuckets, b, 4504 ub_link); 4505 } else { 4506 zdom->uzd_cross = b; 4507 } 4508 } 4509 } 4510 b = zdom->uzd_cross; 4511 b->ub_bucket[b->ub_cnt++] = item; 4512 b->ub_seq = seq; 4513 if (b->ub_cnt == b->ub_entries) { 4514 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4515 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) 4516 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4517 zdom->uzd_cross = b; 4518 } 4519 } 4520 ZONE_CROSS_UNLOCK(zone); 4521 out: 4522 if (bucket->ub_cnt == 0) 4523 bucket->ub_seq = SMR_SEQ_INVALID; 4524 bucket_free(zone, bucket, udata); 4525 4526 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4527 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4528 bucket_free(zone, b, udata); 4529 } 4530 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4531 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4532 domain = item_domain(b->ub_bucket[0]); 4533 zone_put_bucket(zone, domain, b, udata, true); 4534 } 4535 } 4536 #endif 4537 4538 static void 4539 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4540 int itemdomain, bool ws) 4541 { 4542 4543 #ifdef NUMA 4544 /* 4545 * Buckets coming from the wrong domain will be entirely for the 4546 * only other domain on two domain systems. In this case we can 4547 * simply cache them. Otherwise we need to sort them back to 4548 * correct domains. 4549 */ 4550 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4551 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4552 zone_free_cross(zone, bucket, udata); 4553 return; 4554 } 4555 #endif 4556 4557 /* 4558 * Attempt to save the bucket in the zone's domain bucket cache. 4559 */ 4560 CTR3(KTR_UMA, 4561 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4562 zone->uz_name, zone, bucket); 4563 /* ub_cnt is pointing to the last free item */ 4564 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4565 itemdomain = zone_domain_lowest(zone, itemdomain); 4566 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4567 } 4568 4569 /* 4570 * Populate a free or cross bucket for the current cpu cache. Free any 4571 * existing full bucket either to the zone cache or back to the slab layer. 4572 * 4573 * Enters and returns in a critical section. false return indicates that 4574 * we can not satisfy this free in the cache layer. true indicates that 4575 * the caller should retry. 4576 */ 4577 static __noinline bool 4578 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4579 int itemdomain) 4580 { 4581 uma_cache_bucket_t cbucket; 4582 uma_bucket_t newbucket, bucket; 4583 4584 CRITICAL_ASSERT(curthread); 4585 4586 if (zone->uz_bucket_size == 0) 4587 return false; 4588 4589 cache = &zone->uz_cpu[curcpu]; 4590 newbucket = NULL; 4591 4592 /* 4593 * FIRSTTOUCH domains need to free to the correct zdom. When 4594 * enabled this is the zdom of the item. The bucket is the 4595 * cross bucket if the current domain and itemdomain do not match. 4596 */ 4597 cbucket = &cache->uc_freebucket; 4598 #ifdef NUMA 4599 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4600 if (PCPU_GET(domain) != itemdomain) { 4601 cbucket = &cache->uc_crossbucket; 4602 if (cbucket->ucb_cnt != 0) 4603 counter_u64_add(zone->uz_xdomain, 4604 cbucket->ucb_cnt); 4605 } 4606 } 4607 #endif 4608 bucket = cache_bucket_unload(cbucket); 4609 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4610 ("cache_free: Entered with non-full free bucket.")); 4611 4612 /* We are no longer associated with this CPU. */ 4613 critical_exit(); 4614 4615 /* 4616 * Don't let SMR zones operate without a free bucket. Force 4617 * a synchronize and re-use this one. We will only degrade 4618 * to a synchronize every bucket_size items rather than every 4619 * item if we fail to allocate a bucket. 4620 */ 4621 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4622 if (bucket != NULL) 4623 bucket->ub_seq = smr_advance(zone->uz_smr); 4624 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4625 if (newbucket == NULL && bucket != NULL) { 4626 bucket_drain(zone, bucket); 4627 newbucket = bucket; 4628 bucket = NULL; 4629 } 4630 } else if (!bucketdisable) 4631 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4632 4633 if (bucket != NULL) 4634 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4635 4636 critical_enter(); 4637 if ((bucket = newbucket) == NULL) 4638 return (false); 4639 cache = &zone->uz_cpu[curcpu]; 4640 #ifdef NUMA 4641 /* 4642 * Check to see if we should be populating the cross bucket. If it 4643 * is already populated we will fall through and attempt to populate 4644 * the free bucket. 4645 */ 4646 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4647 if (PCPU_GET(domain) != itemdomain && 4648 cache->uc_crossbucket.ucb_bucket == NULL) { 4649 cache_bucket_load_cross(cache, bucket); 4650 return (true); 4651 } 4652 } 4653 #endif 4654 /* 4655 * We may have lost the race to fill the bucket or switched CPUs. 4656 */ 4657 if (cache->uc_freebucket.ucb_bucket != NULL) { 4658 critical_exit(); 4659 bucket_free(zone, bucket, udata); 4660 critical_enter(); 4661 } else 4662 cache_bucket_load_free(cache, bucket); 4663 4664 return (true); 4665 } 4666 4667 static void 4668 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4669 { 4670 uma_keg_t keg; 4671 uma_domain_t dom; 4672 int freei; 4673 4674 keg = zone->uz_keg; 4675 KEG_LOCK_ASSERT(keg, slab->us_domain); 4676 4677 /* Do we need to remove from any lists? */ 4678 dom = &keg->uk_domain[slab->us_domain]; 4679 if (slab->us_freecount + 1 == keg->uk_ipers) { 4680 LIST_REMOVE(slab, us_link); 4681 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4682 dom->ud_free_slabs++; 4683 } else if (slab->us_freecount == 0) { 4684 LIST_REMOVE(slab, us_link); 4685 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4686 } 4687 4688 /* Slab management. */ 4689 freei = slab_item_index(slab, keg, item); 4690 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4691 slab->us_freecount++; 4692 4693 /* Keg statistics. */ 4694 dom->ud_free_items++; 4695 } 4696 4697 static void 4698 zone_release(void *arg, void **bucket, int cnt) 4699 { 4700 struct mtx *lock; 4701 uma_zone_t zone; 4702 uma_slab_t slab; 4703 uma_keg_t keg; 4704 uint8_t *mem; 4705 void *item; 4706 int i; 4707 4708 zone = arg; 4709 keg = zone->uz_keg; 4710 lock = NULL; 4711 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4712 lock = KEG_LOCK(keg, 0); 4713 for (i = 0; i < cnt; i++) { 4714 item = bucket[i]; 4715 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4716 slab = vtoslab((vm_offset_t)item); 4717 } else { 4718 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4719 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4720 slab = hash_sfind(&keg->uk_hash, mem); 4721 else 4722 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4723 } 4724 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4725 if (lock != NULL) 4726 mtx_unlock(lock); 4727 lock = KEG_LOCK(keg, slab->us_domain); 4728 } 4729 slab_free_item(zone, slab, item); 4730 } 4731 if (lock != NULL) 4732 mtx_unlock(lock); 4733 } 4734 4735 /* 4736 * Frees a single item to any zone. 4737 * 4738 * Arguments: 4739 * zone The zone to free to 4740 * item The item we're freeing 4741 * udata User supplied data for the dtor 4742 * skip Skip dtors and finis 4743 */ 4744 static __noinline void 4745 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4746 { 4747 4748 /* 4749 * If a free is sent directly to an SMR zone we have to 4750 * synchronize immediately because the item can instantly 4751 * be reallocated. This should only happen in degenerate 4752 * cases when no memory is available for per-cpu caches. 4753 */ 4754 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4755 smr_synchronize(zone->uz_smr); 4756 4757 item_dtor(zone, item, zone->uz_size, udata, skip); 4758 4759 if (skip < SKIP_FINI && zone->uz_fini) { 4760 kasan_mark_item_valid(zone, item); 4761 zone->uz_fini(item, zone->uz_size); 4762 kasan_mark_item_invalid(zone, item); 4763 } 4764 4765 zone->uz_release(zone->uz_arg, &item, 1); 4766 4767 if (skip & SKIP_CNT) 4768 return; 4769 4770 counter_u64_add(zone->uz_frees, 1); 4771 4772 if (zone->uz_max_items > 0) 4773 zone_free_limit(zone, 1); 4774 } 4775 4776 /* See uma.h */ 4777 int 4778 uma_zone_set_max(uma_zone_t zone, int nitems) 4779 { 4780 4781 /* 4782 * If the limit is small, we may need to constrain the maximum per-CPU 4783 * cache size, or disable caching entirely. 4784 */ 4785 uma_zone_set_maxcache(zone, nitems); 4786 4787 /* 4788 * XXX This can misbehave if the zone has any allocations with 4789 * no limit and a limit is imposed. There is currently no 4790 * way to clear a limit. 4791 */ 4792 ZONE_LOCK(zone); 4793 zone->uz_max_items = nitems; 4794 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4795 zone_update_caches(zone); 4796 /* We may need to wake waiters. */ 4797 wakeup(&zone->uz_max_items); 4798 ZONE_UNLOCK(zone); 4799 4800 return (nitems); 4801 } 4802 4803 /* See uma.h */ 4804 void 4805 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4806 { 4807 int bpcpu, bpdom, bsize, nb; 4808 4809 ZONE_LOCK(zone); 4810 4811 /* 4812 * Compute a lower bound on the number of items that may be cached in 4813 * the zone. Each CPU gets at least two buckets, and for cross-domain 4814 * frees we use an additional bucket per CPU and per domain. Select the 4815 * largest bucket size that does not exceed half of the requested limit, 4816 * with the left over space given to the full bucket cache. 4817 */ 4818 bpdom = 0; 4819 bpcpu = 2; 4820 #ifdef NUMA 4821 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) { 4822 bpcpu++; 4823 bpdom++; 4824 } 4825 #endif 4826 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains; 4827 bsize = nitems / nb / 2; 4828 if (bsize > BUCKET_MAX) 4829 bsize = BUCKET_MAX; 4830 else if (bsize == 0 && nitems / nb > 0) 4831 bsize = 1; 4832 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize; 4833 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4834 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4835 zone->uz_bucket_max = nitems - nb * bsize; 4836 ZONE_UNLOCK(zone); 4837 } 4838 4839 /* See uma.h */ 4840 int 4841 uma_zone_get_max(uma_zone_t zone) 4842 { 4843 int nitems; 4844 4845 nitems = atomic_load_64(&zone->uz_max_items); 4846 4847 return (nitems); 4848 } 4849 4850 /* See uma.h */ 4851 void 4852 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4853 { 4854 4855 ZONE_ASSERT_COLD(zone); 4856 zone->uz_warning = warning; 4857 } 4858 4859 /* See uma.h */ 4860 void 4861 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4862 { 4863 4864 ZONE_ASSERT_COLD(zone); 4865 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4866 } 4867 4868 /* See uma.h */ 4869 int 4870 uma_zone_get_cur(uma_zone_t zone) 4871 { 4872 int64_t nitems; 4873 u_int i; 4874 4875 nitems = 0; 4876 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4877 nitems = counter_u64_fetch(zone->uz_allocs) - 4878 counter_u64_fetch(zone->uz_frees); 4879 CPU_FOREACH(i) 4880 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4881 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4882 4883 return (nitems < 0 ? 0 : nitems); 4884 } 4885 4886 static uint64_t 4887 uma_zone_get_allocs(uma_zone_t zone) 4888 { 4889 uint64_t nitems; 4890 u_int i; 4891 4892 nitems = 0; 4893 if (zone->uz_allocs != EARLY_COUNTER) 4894 nitems = counter_u64_fetch(zone->uz_allocs); 4895 CPU_FOREACH(i) 4896 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4897 4898 return (nitems); 4899 } 4900 4901 static uint64_t 4902 uma_zone_get_frees(uma_zone_t zone) 4903 { 4904 uint64_t nitems; 4905 u_int i; 4906 4907 nitems = 0; 4908 if (zone->uz_frees != EARLY_COUNTER) 4909 nitems = counter_u64_fetch(zone->uz_frees); 4910 CPU_FOREACH(i) 4911 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4912 4913 return (nitems); 4914 } 4915 4916 #ifdef INVARIANTS 4917 /* Used only for KEG_ASSERT_COLD(). */ 4918 static uint64_t 4919 uma_keg_get_allocs(uma_keg_t keg) 4920 { 4921 uma_zone_t z; 4922 uint64_t nitems; 4923 4924 nitems = 0; 4925 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4926 nitems += uma_zone_get_allocs(z); 4927 4928 return (nitems); 4929 } 4930 #endif 4931 4932 /* See uma.h */ 4933 void 4934 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4935 { 4936 uma_keg_t keg; 4937 4938 KEG_GET(zone, keg); 4939 KEG_ASSERT_COLD(keg); 4940 keg->uk_init = uminit; 4941 } 4942 4943 /* See uma.h */ 4944 void 4945 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4946 { 4947 uma_keg_t keg; 4948 4949 KEG_GET(zone, keg); 4950 KEG_ASSERT_COLD(keg); 4951 keg->uk_fini = fini; 4952 } 4953 4954 /* See uma.h */ 4955 void 4956 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4957 { 4958 4959 ZONE_ASSERT_COLD(zone); 4960 zone->uz_init = zinit; 4961 } 4962 4963 /* See uma.h */ 4964 void 4965 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4966 { 4967 4968 ZONE_ASSERT_COLD(zone); 4969 zone->uz_fini = zfini; 4970 } 4971 4972 /* See uma.h */ 4973 void 4974 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4975 { 4976 uma_keg_t keg; 4977 4978 KEG_GET(zone, keg); 4979 KEG_ASSERT_COLD(keg); 4980 keg->uk_freef = freef; 4981 } 4982 4983 /* See uma.h */ 4984 void 4985 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4986 { 4987 uma_keg_t keg; 4988 4989 KEG_GET(zone, keg); 4990 KEG_ASSERT_COLD(keg); 4991 keg->uk_allocf = allocf; 4992 } 4993 4994 /* See uma.h */ 4995 void 4996 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4997 { 4998 4999 ZONE_ASSERT_COLD(zone); 5000 5001 KASSERT(smr != NULL, ("Got NULL smr")); 5002 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 5003 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 5004 zone->uz_flags |= UMA_ZONE_SMR; 5005 zone->uz_smr = smr; 5006 zone_update_caches(zone); 5007 } 5008 5009 smr_t 5010 uma_zone_get_smr(uma_zone_t zone) 5011 { 5012 5013 return (zone->uz_smr); 5014 } 5015 5016 /* See uma.h */ 5017 void 5018 uma_zone_reserve(uma_zone_t zone, int items) 5019 { 5020 uma_keg_t keg; 5021 5022 KEG_GET(zone, keg); 5023 KEG_ASSERT_COLD(keg); 5024 keg->uk_reserve = items; 5025 } 5026 5027 /* See uma.h */ 5028 int 5029 uma_zone_reserve_kva(uma_zone_t zone, int count) 5030 { 5031 uma_keg_t keg; 5032 vm_offset_t kva; 5033 u_int pages; 5034 5035 KEG_GET(zone, keg); 5036 KEG_ASSERT_COLD(keg); 5037 ZONE_ASSERT_COLD(zone); 5038 5039 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 5040 5041 #ifdef UMA_MD_SMALL_ALLOC 5042 if (keg->uk_ppera > 1) { 5043 #else 5044 if (1) { 5045 #endif 5046 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 5047 if (kva == 0) 5048 return (0); 5049 } else 5050 kva = 0; 5051 5052 MPASS(keg->uk_kva == 0); 5053 keg->uk_kva = kva; 5054 keg->uk_offset = 0; 5055 zone->uz_max_items = pages * keg->uk_ipers; 5056 #ifdef UMA_MD_SMALL_ALLOC 5057 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 5058 #else 5059 keg->uk_allocf = noobj_alloc; 5060 #endif 5061 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5062 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5063 zone_update_caches(zone); 5064 5065 return (1); 5066 } 5067 5068 /* See uma.h */ 5069 void 5070 uma_prealloc(uma_zone_t zone, int items) 5071 { 5072 struct vm_domainset_iter di; 5073 uma_domain_t dom; 5074 uma_slab_t slab; 5075 uma_keg_t keg; 5076 int aflags, domain, slabs; 5077 5078 KEG_GET(zone, keg); 5079 slabs = howmany(items, keg->uk_ipers); 5080 while (slabs-- > 0) { 5081 aflags = M_NOWAIT; 5082 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 5083 &aflags); 5084 for (;;) { 5085 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 5086 aflags); 5087 if (slab != NULL) { 5088 dom = &keg->uk_domain[slab->us_domain]; 5089 /* 5090 * keg_alloc_slab() always returns a slab on the 5091 * partial list. 5092 */ 5093 LIST_REMOVE(slab, us_link); 5094 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 5095 us_link); 5096 dom->ud_free_slabs++; 5097 KEG_UNLOCK(keg, slab->us_domain); 5098 break; 5099 } 5100 if (vm_domainset_iter_policy(&di, &domain) != 0) 5101 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 5102 } 5103 } 5104 } 5105 5106 /* 5107 * Returns a snapshot of memory consumption in bytes. 5108 */ 5109 size_t 5110 uma_zone_memory(uma_zone_t zone) 5111 { 5112 size_t sz; 5113 int i; 5114 5115 sz = 0; 5116 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 5117 for (i = 0; i < vm_ndomains; i++) 5118 sz += ZDOM_GET(zone, i)->uzd_nitems; 5119 return (sz * zone->uz_size); 5120 } 5121 for (i = 0; i < vm_ndomains; i++) 5122 sz += zone->uz_keg->uk_domain[i].ud_pages; 5123 5124 return (sz * PAGE_SIZE); 5125 } 5126 5127 /* See uma.h */ 5128 void 5129 uma_reclaim(int req) 5130 { 5131 uma_reclaim_domain(req, UMA_ANYDOMAIN); 5132 } 5133 5134 void 5135 uma_reclaim_domain(int req, int domain) 5136 { 5137 void *arg; 5138 5139 bucket_enable(); 5140 5141 arg = (void *)(uintptr_t)domain; 5142 sx_slock(&uma_reclaim_lock); 5143 switch (req) { 5144 case UMA_RECLAIM_TRIM: 5145 zone_foreach(zone_trim, arg); 5146 break; 5147 case UMA_RECLAIM_DRAIN: 5148 zone_foreach(zone_drain, arg); 5149 break; 5150 case UMA_RECLAIM_DRAIN_CPU: 5151 zone_foreach(zone_drain, arg); 5152 pcpu_cache_drain_safe(NULL); 5153 zone_foreach(zone_drain, arg); 5154 break; 5155 default: 5156 panic("unhandled reclamation request %d", req); 5157 } 5158 5159 /* 5160 * Some slabs may have been freed but this zone will be visited early 5161 * we visit again so that we can free pages that are empty once other 5162 * zones are drained. We have to do the same for buckets. 5163 */ 5164 zone_drain(slabzones[0], arg); 5165 zone_drain(slabzones[1], arg); 5166 bucket_zone_drain(domain); 5167 sx_sunlock(&uma_reclaim_lock); 5168 } 5169 5170 static volatile int uma_reclaim_needed; 5171 5172 void 5173 uma_reclaim_wakeup(void) 5174 { 5175 5176 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 5177 wakeup(uma_reclaim); 5178 } 5179 5180 void 5181 uma_reclaim_worker(void *arg __unused) 5182 { 5183 5184 for (;;) { 5185 sx_xlock(&uma_reclaim_lock); 5186 while (atomic_load_int(&uma_reclaim_needed) == 0) 5187 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 5188 hz); 5189 sx_xunlock(&uma_reclaim_lock); 5190 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 5191 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 5192 atomic_store_int(&uma_reclaim_needed, 0); 5193 /* Don't fire more than once per-second. */ 5194 pause("umarclslp", hz); 5195 } 5196 } 5197 5198 /* See uma.h */ 5199 void 5200 uma_zone_reclaim(uma_zone_t zone, int req) 5201 { 5202 uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN); 5203 } 5204 5205 void 5206 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain) 5207 { 5208 void *arg; 5209 5210 arg = (void *)(uintptr_t)domain; 5211 switch (req) { 5212 case UMA_RECLAIM_TRIM: 5213 zone_trim(zone, arg); 5214 break; 5215 case UMA_RECLAIM_DRAIN: 5216 zone_drain(zone, arg); 5217 break; 5218 case UMA_RECLAIM_DRAIN_CPU: 5219 pcpu_cache_drain_safe(zone); 5220 zone_drain(zone, arg); 5221 break; 5222 default: 5223 panic("unhandled reclamation request %d", req); 5224 } 5225 } 5226 5227 /* See uma.h */ 5228 int 5229 uma_zone_exhausted(uma_zone_t zone) 5230 { 5231 5232 return (atomic_load_32(&zone->uz_sleepers) > 0); 5233 } 5234 5235 unsigned long 5236 uma_limit(void) 5237 { 5238 5239 return (uma_kmem_limit); 5240 } 5241 5242 void 5243 uma_set_limit(unsigned long limit) 5244 { 5245 5246 uma_kmem_limit = limit; 5247 } 5248 5249 unsigned long 5250 uma_size(void) 5251 { 5252 5253 return (atomic_load_long(&uma_kmem_total)); 5254 } 5255 5256 long 5257 uma_avail(void) 5258 { 5259 5260 return (uma_kmem_limit - uma_size()); 5261 } 5262 5263 #ifdef DDB 5264 /* 5265 * Generate statistics across both the zone and its per-cpu cache's. Return 5266 * desired statistics if the pointer is non-NULL for that statistic. 5267 * 5268 * Note: does not update the zone statistics, as it can't safely clear the 5269 * per-CPU cache statistic. 5270 * 5271 */ 5272 static void 5273 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 5274 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 5275 { 5276 uma_cache_t cache; 5277 uint64_t allocs, frees, sleeps, xdomain; 5278 int cachefree, cpu; 5279 5280 allocs = frees = sleeps = xdomain = 0; 5281 cachefree = 0; 5282 CPU_FOREACH(cpu) { 5283 cache = &z->uz_cpu[cpu]; 5284 cachefree += cache->uc_allocbucket.ucb_cnt; 5285 cachefree += cache->uc_freebucket.ucb_cnt; 5286 xdomain += cache->uc_crossbucket.ucb_cnt; 5287 cachefree += cache->uc_crossbucket.ucb_cnt; 5288 allocs += cache->uc_allocs; 5289 frees += cache->uc_frees; 5290 } 5291 allocs += counter_u64_fetch(z->uz_allocs); 5292 frees += counter_u64_fetch(z->uz_frees); 5293 xdomain += counter_u64_fetch(z->uz_xdomain); 5294 sleeps += z->uz_sleeps; 5295 if (cachefreep != NULL) 5296 *cachefreep = cachefree; 5297 if (allocsp != NULL) 5298 *allocsp = allocs; 5299 if (freesp != NULL) 5300 *freesp = frees; 5301 if (sleepsp != NULL) 5302 *sleepsp = sleeps; 5303 if (xdomainp != NULL) 5304 *xdomainp = xdomain; 5305 } 5306 #endif /* DDB */ 5307 5308 static int 5309 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 5310 { 5311 uma_keg_t kz; 5312 uma_zone_t z; 5313 int count; 5314 5315 count = 0; 5316 rw_rlock(&uma_rwlock); 5317 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5318 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5319 count++; 5320 } 5321 LIST_FOREACH(z, &uma_cachezones, uz_link) 5322 count++; 5323 5324 rw_runlock(&uma_rwlock); 5325 return (sysctl_handle_int(oidp, &count, 0, req)); 5326 } 5327 5328 static void 5329 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 5330 struct uma_percpu_stat *ups, bool internal) 5331 { 5332 uma_zone_domain_t zdom; 5333 uma_cache_t cache; 5334 int i; 5335 5336 for (i = 0; i < vm_ndomains; i++) { 5337 zdom = ZDOM_GET(z, i); 5338 uth->uth_zone_free += zdom->uzd_nitems; 5339 } 5340 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 5341 uth->uth_frees = counter_u64_fetch(z->uz_frees); 5342 uth->uth_fails = counter_u64_fetch(z->uz_fails); 5343 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 5344 uth->uth_sleeps = z->uz_sleeps; 5345 5346 for (i = 0; i < mp_maxid + 1; i++) { 5347 bzero(&ups[i], sizeof(*ups)); 5348 if (internal || CPU_ABSENT(i)) 5349 continue; 5350 cache = &z->uz_cpu[i]; 5351 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 5352 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5353 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5354 ups[i].ups_allocs = cache->uc_allocs; 5355 ups[i].ups_frees = cache->uc_frees; 5356 } 5357 } 5358 5359 static int 5360 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5361 { 5362 struct uma_stream_header ush; 5363 struct uma_type_header uth; 5364 struct uma_percpu_stat *ups; 5365 struct sbuf sbuf; 5366 uma_keg_t kz; 5367 uma_zone_t z; 5368 uint64_t items; 5369 uint32_t kfree, pages; 5370 int count, error, i; 5371 5372 error = sysctl_wire_old_buffer(req, 0); 5373 if (error != 0) 5374 return (error); 5375 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5376 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5377 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5378 5379 count = 0; 5380 rw_rlock(&uma_rwlock); 5381 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5382 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5383 count++; 5384 } 5385 5386 LIST_FOREACH(z, &uma_cachezones, uz_link) 5387 count++; 5388 5389 /* 5390 * Insert stream header. 5391 */ 5392 bzero(&ush, sizeof(ush)); 5393 ush.ush_version = UMA_STREAM_VERSION; 5394 ush.ush_maxcpus = (mp_maxid + 1); 5395 ush.ush_count = count; 5396 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5397 5398 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5399 kfree = pages = 0; 5400 for (i = 0; i < vm_ndomains; i++) { 5401 kfree += kz->uk_domain[i].ud_free_items; 5402 pages += kz->uk_domain[i].ud_pages; 5403 } 5404 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5405 bzero(&uth, sizeof(uth)); 5406 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5407 uth.uth_align = kz->uk_align; 5408 uth.uth_size = kz->uk_size; 5409 uth.uth_rsize = kz->uk_rsize; 5410 if (z->uz_max_items > 0) { 5411 items = UZ_ITEMS_COUNT(z->uz_items); 5412 uth.uth_pages = (items / kz->uk_ipers) * 5413 kz->uk_ppera; 5414 } else 5415 uth.uth_pages = pages; 5416 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5417 kz->uk_ppera; 5418 uth.uth_limit = z->uz_max_items; 5419 uth.uth_keg_free = kfree; 5420 5421 /* 5422 * A zone is secondary is it is not the first entry 5423 * on the keg's zone list. 5424 */ 5425 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5426 (LIST_FIRST(&kz->uk_zones) != z)) 5427 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5428 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5429 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5430 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5431 for (i = 0; i < mp_maxid + 1; i++) 5432 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5433 } 5434 } 5435 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5436 bzero(&uth, sizeof(uth)); 5437 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5438 uth.uth_size = z->uz_size; 5439 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5440 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5441 for (i = 0; i < mp_maxid + 1; i++) 5442 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5443 } 5444 5445 rw_runlock(&uma_rwlock); 5446 error = sbuf_finish(&sbuf); 5447 sbuf_delete(&sbuf); 5448 free(ups, M_TEMP); 5449 return (error); 5450 } 5451 5452 int 5453 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5454 { 5455 uma_zone_t zone = *(uma_zone_t *)arg1; 5456 int error, max; 5457 5458 max = uma_zone_get_max(zone); 5459 error = sysctl_handle_int(oidp, &max, 0, req); 5460 if (error || !req->newptr) 5461 return (error); 5462 5463 uma_zone_set_max(zone, max); 5464 5465 return (0); 5466 } 5467 5468 int 5469 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5470 { 5471 uma_zone_t zone; 5472 int cur; 5473 5474 /* 5475 * Some callers want to add sysctls for global zones that 5476 * may not yet exist so they pass a pointer to a pointer. 5477 */ 5478 if (arg2 == 0) 5479 zone = *(uma_zone_t *)arg1; 5480 else 5481 zone = arg1; 5482 cur = uma_zone_get_cur(zone); 5483 return (sysctl_handle_int(oidp, &cur, 0, req)); 5484 } 5485 5486 static int 5487 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5488 { 5489 uma_zone_t zone = arg1; 5490 uint64_t cur; 5491 5492 cur = uma_zone_get_allocs(zone); 5493 return (sysctl_handle_64(oidp, &cur, 0, req)); 5494 } 5495 5496 static int 5497 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5498 { 5499 uma_zone_t zone = arg1; 5500 uint64_t cur; 5501 5502 cur = uma_zone_get_frees(zone); 5503 return (sysctl_handle_64(oidp, &cur, 0, req)); 5504 } 5505 5506 static int 5507 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5508 { 5509 struct sbuf sbuf; 5510 uma_zone_t zone = arg1; 5511 int error; 5512 5513 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5514 if (zone->uz_flags != 0) 5515 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5516 else 5517 sbuf_printf(&sbuf, "0"); 5518 error = sbuf_finish(&sbuf); 5519 sbuf_delete(&sbuf); 5520 5521 return (error); 5522 } 5523 5524 static int 5525 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5526 { 5527 uma_keg_t keg = arg1; 5528 int avail, effpct, total; 5529 5530 total = keg->uk_ppera * PAGE_SIZE; 5531 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5532 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5533 /* 5534 * We consider the client's requested size and alignment here, not the 5535 * real size determination uk_rsize, because we also adjust the real 5536 * size for internal implementation reasons (max bitset size). 5537 */ 5538 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5539 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5540 avail *= mp_maxid + 1; 5541 effpct = 100 * avail / total; 5542 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5543 } 5544 5545 static int 5546 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5547 { 5548 uma_zone_t zone = arg1; 5549 uint64_t cur; 5550 5551 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5552 return (sysctl_handle_64(oidp, &cur, 0, req)); 5553 } 5554 5555 #ifdef INVARIANTS 5556 static uma_slab_t 5557 uma_dbg_getslab(uma_zone_t zone, void *item) 5558 { 5559 uma_slab_t slab; 5560 uma_keg_t keg; 5561 uint8_t *mem; 5562 5563 /* 5564 * It is safe to return the slab here even though the 5565 * zone is unlocked because the item's allocation state 5566 * essentially holds a reference. 5567 */ 5568 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5569 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5570 return (NULL); 5571 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5572 return (vtoslab((vm_offset_t)mem)); 5573 keg = zone->uz_keg; 5574 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5575 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5576 KEG_LOCK(keg, 0); 5577 slab = hash_sfind(&keg->uk_hash, mem); 5578 KEG_UNLOCK(keg, 0); 5579 5580 return (slab); 5581 } 5582 5583 static bool 5584 uma_dbg_zskip(uma_zone_t zone, void *mem) 5585 { 5586 5587 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5588 return (true); 5589 5590 return (uma_dbg_kskip(zone->uz_keg, mem)); 5591 } 5592 5593 static bool 5594 uma_dbg_kskip(uma_keg_t keg, void *mem) 5595 { 5596 uintptr_t idx; 5597 5598 if (dbg_divisor == 0) 5599 return (true); 5600 5601 if (dbg_divisor == 1) 5602 return (false); 5603 5604 idx = (uintptr_t)mem >> PAGE_SHIFT; 5605 if (keg->uk_ipers > 1) { 5606 idx *= keg->uk_ipers; 5607 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5608 } 5609 5610 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5611 counter_u64_add(uma_skip_cnt, 1); 5612 return (true); 5613 } 5614 counter_u64_add(uma_dbg_cnt, 1); 5615 5616 return (false); 5617 } 5618 5619 /* 5620 * Set up the slab's freei data such that uma_dbg_free can function. 5621 * 5622 */ 5623 static void 5624 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5625 { 5626 uma_keg_t keg; 5627 int freei; 5628 5629 if (slab == NULL) { 5630 slab = uma_dbg_getslab(zone, item); 5631 if (slab == NULL) 5632 panic("uma: item %p did not belong to zone %s", 5633 item, zone->uz_name); 5634 } 5635 keg = zone->uz_keg; 5636 freei = slab_item_index(slab, keg, item); 5637 5638 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei, 5639 slab_dbg_bits(slab, keg))) 5640 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)", 5641 item, zone, zone->uz_name, slab, freei); 5642 } 5643 5644 /* 5645 * Verifies freed addresses. Checks for alignment, valid slab membership 5646 * and duplicate frees. 5647 * 5648 */ 5649 static void 5650 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5651 { 5652 uma_keg_t keg; 5653 int freei; 5654 5655 if (slab == NULL) { 5656 slab = uma_dbg_getslab(zone, item); 5657 if (slab == NULL) 5658 panic("uma: Freed item %p did not belong to zone %s", 5659 item, zone->uz_name); 5660 } 5661 keg = zone->uz_keg; 5662 freei = slab_item_index(slab, keg, item); 5663 5664 if (freei >= keg->uk_ipers) 5665 panic("Invalid free of %p from zone %p(%s) slab %p(%d)", 5666 item, zone, zone->uz_name, slab, freei); 5667 5668 if (slab_item(slab, keg, freei) != item) 5669 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)", 5670 item, zone, zone->uz_name, slab, freei); 5671 5672 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei, 5673 slab_dbg_bits(slab, keg))) 5674 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)", 5675 item, zone, zone->uz_name, slab, freei); 5676 } 5677 #endif /* INVARIANTS */ 5678 5679 #ifdef DDB 5680 static int64_t 5681 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5682 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5683 { 5684 uint64_t frees; 5685 int i; 5686 5687 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5688 *allocs = counter_u64_fetch(z->uz_allocs); 5689 frees = counter_u64_fetch(z->uz_frees); 5690 *sleeps = z->uz_sleeps; 5691 *cachefree = 0; 5692 *xdomain = 0; 5693 } else 5694 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5695 xdomain); 5696 for (i = 0; i < vm_ndomains; i++) { 5697 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5698 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5699 (LIST_FIRST(&kz->uk_zones) != z))) 5700 *cachefree += kz->uk_domain[i].ud_free_items; 5701 } 5702 *used = *allocs - frees; 5703 return (((int64_t)*used + *cachefree) * kz->uk_size); 5704 } 5705 5706 DB_SHOW_COMMAND(uma, db_show_uma) 5707 { 5708 const char *fmt_hdr, *fmt_entry; 5709 uma_keg_t kz; 5710 uma_zone_t z; 5711 uint64_t allocs, used, sleeps, xdomain; 5712 long cachefree; 5713 /* variables for sorting */ 5714 uma_keg_t cur_keg; 5715 uma_zone_t cur_zone, last_zone; 5716 int64_t cur_size, last_size, size; 5717 int ties; 5718 5719 /* /i option produces machine-parseable CSV output */ 5720 if (modif[0] == 'i') { 5721 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5722 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5723 } else { 5724 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5725 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5726 } 5727 5728 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5729 "Sleeps", "Bucket", "Total Mem", "XFree"); 5730 5731 /* Sort the zones with largest size first. */ 5732 last_zone = NULL; 5733 last_size = INT64_MAX; 5734 for (;;) { 5735 cur_zone = NULL; 5736 cur_size = -1; 5737 ties = 0; 5738 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5739 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5740 /* 5741 * In the case of size ties, print out zones 5742 * in the order they are encountered. That is, 5743 * when we encounter the most recently output 5744 * zone, we have already printed all preceding 5745 * ties, and we must print all following ties. 5746 */ 5747 if (z == last_zone) { 5748 ties = 1; 5749 continue; 5750 } 5751 size = get_uma_stats(kz, z, &allocs, &used, 5752 &sleeps, &cachefree, &xdomain); 5753 if (size > cur_size && size < last_size + ties) 5754 { 5755 cur_size = size; 5756 cur_zone = z; 5757 cur_keg = kz; 5758 } 5759 } 5760 } 5761 if (cur_zone == NULL) 5762 break; 5763 5764 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5765 &sleeps, &cachefree, &xdomain); 5766 db_printf(fmt_entry, cur_zone->uz_name, 5767 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5768 (uintmax_t)allocs, (uintmax_t)sleeps, 5769 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5770 xdomain); 5771 5772 if (db_pager_quit) 5773 return; 5774 last_zone = cur_zone; 5775 last_size = cur_size; 5776 } 5777 } 5778 5779 DB_SHOW_COMMAND(umacache, db_show_umacache) 5780 { 5781 uma_zone_t z; 5782 uint64_t allocs, frees; 5783 long cachefree; 5784 int i; 5785 5786 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5787 "Requests", "Bucket"); 5788 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5789 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5790 for (i = 0; i < vm_ndomains; i++) 5791 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5792 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5793 z->uz_name, (uintmax_t)z->uz_size, 5794 (intmax_t)(allocs - frees), cachefree, 5795 (uintmax_t)allocs, z->uz_bucket_size); 5796 if (db_pager_quit) 5797 return; 5798 } 5799 } 5800 #endif /* DDB */ 5801