1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * efficient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/bitset.h> 67 #include <sys/kernel.h> 68 #include <sys/types.h> 69 #include <sys/queue.h> 70 #include <sys/malloc.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/sysctl.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/random.h> 77 #include <sys/rwlock.h> 78 #include <sys/sbuf.h> 79 #include <sys/sched.h> 80 #include <sys/smp.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_param.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_kern.h> 91 #include <vm/vm_extern.h> 92 #include <vm/uma.h> 93 #include <vm/uma_int.h> 94 #include <vm/uma_dbg.h> 95 96 #include <ddb/ddb.h> 97 98 #ifdef DEBUG_MEMGUARD 99 #include <vm/memguard.h> 100 #endif 101 102 /* 103 * This is the zone and keg from which all zones are spawned. The idea is that 104 * even the zone & keg heads are allocated from the allocator, so we use the 105 * bss section to bootstrap us. 106 */ 107 static struct uma_keg masterkeg; 108 static struct uma_zone masterzone_k; 109 static struct uma_zone masterzone_z; 110 static uma_zone_t kegs = &masterzone_k; 111 static uma_zone_t zones = &masterzone_z; 112 113 /* This is the zone from which all of uma_slab_t's are allocated. */ 114 static uma_zone_t slabzone; 115 116 /* 117 * The initial hash tables come out of this zone so they can be allocated 118 * prior to malloc coming up. 119 */ 120 static uma_zone_t hashzone; 121 122 /* The boot-time adjusted value for cache line alignment. */ 123 int uma_align_cache = 64 - 1; 124 125 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 126 127 /* 128 * Are we allowed to allocate buckets? 129 */ 130 static int bucketdisable = 1; 131 132 /* Linked list of all kegs in the system */ 133 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 134 135 /* Linked list of all cache-only zones in the system */ 136 static LIST_HEAD(,uma_zone) uma_cachezones = 137 LIST_HEAD_INITIALIZER(uma_cachezones); 138 139 /* This RW lock protects the keg list */ 140 static struct rwlock_padalign uma_rwlock; 141 142 /* Linked list of boot time pages */ 143 static LIST_HEAD(,uma_slab) uma_boot_pages = 144 LIST_HEAD_INITIALIZER(uma_boot_pages); 145 146 /* This mutex protects the boot time pages list */ 147 static struct mtx_padalign uma_boot_pages_mtx; 148 149 static struct sx uma_drain_lock; 150 151 /* Is the VM done starting up? */ 152 static int booted = 0; 153 #define UMA_STARTUP 1 154 #define UMA_STARTUP2 2 155 156 /* 157 * This is the handle used to schedule events that need to happen 158 * outside of the allocation fast path. 159 */ 160 static struct callout uma_callout; 161 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 162 163 /* 164 * This structure is passed as the zone ctor arg so that I don't have to create 165 * a special allocation function just for zones. 166 */ 167 struct uma_zctor_args { 168 const char *name; 169 size_t size; 170 uma_ctor ctor; 171 uma_dtor dtor; 172 uma_init uminit; 173 uma_fini fini; 174 uma_import import; 175 uma_release release; 176 void *arg; 177 uma_keg_t keg; 178 int align; 179 uint32_t flags; 180 }; 181 182 struct uma_kctor_args { 183 uma_zone_t zone; 184 size_t size; 185 uma_init uminit; 186 uma_fini fini; 187 int align; 188 uint32_t flags; 189 }; 190 191 struct uma_bucket_zone { 192 uma_zone_t ubz_zone; 193 char *ubz_name; 194 int ubz_entries; /* Number of items it can hold. */ 195 int ubz_maxsize; /* Maximum allocation size per-item. */ 196 }; 197 198 /* 199 * Compute the actual number of bucket entries to pack them in power 200 * of two sizes for more efficient space utilization. 201 */ 202 #define BUCKET_SIZE(n) \ 203 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 204 205 #define BUCKET_MAX BUCKET_SIZE(256) 206 207 struct uma_bucket_zone bucket_zones[] = { 208 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 209 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 210 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 211 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 212 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 213 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 214 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 215 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 216 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 217 { NULL, NULL, 0} 218 }; 219 220 /* 221 * Flags and enumerations to be passed to internal functions. 222 */ 223 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 224 225 /* Prototypes.. */ 226 227 static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 228 static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 229 static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 230 static void page_free(void *, vm_size_t, uint8_t); 231 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 232 static void cache_drain(uma_zone_t); 233 static void bucket_drain(uma_zone_t, uma_bucket_t); 234 static void bucket_cache_drain(uma_zone_t zone); 235 static int keg_ctor(void *, int, void *, int); 236 static void keg_dtor(void *, int, void *); 237 static int zone_ctor(void *, int, void *, int); 238 static void zone_dtor(void *, int, void *); 239 static int zero_init(void *, int, int); 240 static void keg_small_init(uma_keg_t keg); 241 static void keg_large_init(uma_keg_t keg); 242 static void zone_foreach(void (*zfunc)(uma_zone_t)); 243 static void zone_timeout(uma_zone_t zone); 244 static int hash_alloc(struct uma_hash *); 245 static int hash_expand(struct uma_hash *, struct uma_hash *); 246 static void hash_free(struct uma_hash *hash); 247 static void uma_timeout(void *); 248 static void uma_startup3(void); 249 static void *zone_alloc_item(uma_zone_t, void *, int); 250 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 251 static void bucket_enable(void); 252 static void bucket_init(void); 253 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 254 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 255 static void bucket_zone_drain(void); 256 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 257 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 258 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 259 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 260 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 261 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 262 uma_fini fini, int align, uint32_t flags); 263 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 264 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 265 static void uma_zero_item(void *item, uma_zone_t zone); 266 267 void uma_print_zone(uma_zone_t); 268 void uma_print_stats(void); 269 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 270 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 271 272 #ifdef INVARIANTS 273 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 274 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 275 #endif 276 277 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 278 279 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 280 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 281 282 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 283 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 284 285 static int zone_warnings = 1; 286 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 287 "Warn when UMA zones becomes full"); 288 289 /* 290 * This routine checks to see whether or not it's safe to enable buckets. 291 */ 292 static void 293 bucket_enable(void) 294 { 295 bucketdisable = vm_page_count_min(); 296 } 297 298 /* 299 * Initialize bucket_zones, the array of zones of buckets of various sizes. 300 * 301 * For each zone, calculate the memory required for each bucket, consisting 302 * of the header and an array of pointers. 303 */ 304 static void 305 bucket_init(void) 306 { 307 struct uma_bucket_zone *ubz; 308 int size; 309 310 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 311 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 312 size += sizeof(void *) * ubz->ubz_entries; 313 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 314 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 315 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 316 } 317 } 318 319 /* 320 * Given a desired number of entries for a bucket, return the zone from which 321 * to allocate the bucket. 322 */ 323 static struct uma_bucket_zone * 324 bucket_zone_lookup(int entries) 325 { 326 struct uma_bucket_zone *ubz; 327 328 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 329 if (ubz->ubz_entries >= entries) 330 return (ubz); 331 ubz--; 332 return (ubz); 333 } 334 335 static int 336 bucket_select(int size) 337 { 338 struct uma_bucket_zone *ubz; 339 340 ubz = &bucket_zones[0]; 341 if (size > ubz->ubz_maxsize) 342 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 343 344 for (; ubz->ubz_entries != 0; ubz++) 345 if (ubz->ubz_maxsize < size) 346 break; 347 ubz--; 348 return (ubz->ubz_entries); 349 } 350 351 static uma_bucket_t 352 bucket_alloc(uma_zone_t zone, void *udata, int flags) 353 { 354 struct uma_bucket_zone *ubz; 355 uma_bucket_t bucket; 356 357 /* 358 * This is to stop us from allocating per cpu buckets while we're 359 * running out of vm.boot_pages. Otherwise, we would exhaust the 360 * boot pages. This also prevents us from allocating buckets in 361 * low memory situations. 362 */ 363 if (bucketdisable) 364 return (NULL); 365 /* 366 * To limit bucket recursion we store the original zone flags 367 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 368 * NOVM flag to persist even through deep recursions. We also 369 * store ZFLAG_BUCKET once we have recursed attempting to allocate 370 * a bucket for a bucket zone so we do not allow infinite bucket 371 * recursion. This cookie will even persist to frees of unused 372 * buckets via the allocation path or bucket allocations in the 373 * free path. 374 */ 375 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 376 udata = (void *)(uintptr_t)zone->uz_flags; 377 else { 378 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 379 return (NULL); 380 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 381 } 382 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 383 flags |= M_NOVM; 384 ubz = bucket_zone_lookup(zone->uz_count); 385 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 386 ubz++; 387 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 388 if (bucket) { 389 #ifdef INVARIANTS 390 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 391 #endif 392 bucket->ub_cnt = 0; 393 bucket->ub_entries = ubz->ubz_entries; 394 } 395 396 return (bucket); 397 } 398 399 static void 400 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 401 { 402 struct uma_bucket_zone *ubz; 403 404 KASSERT(bucket->ub_cnt == 0, 405 ("bucket_free: Freeing a non free bucket.")); 406 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 407 udata = (void *)(uintptr_t)zone->uz_flags; 408 ubz = bucket_zone_lookup(bucket->ub_entries); 409 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 410 } 411 412 static void 413 bucket_zone_drain(void) 414 { 415 struct uma_bucket_zone *ubz; 416 417 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 418 zone_drain(ubz->ubz_zone); 419 } 420 421 static void 422 zone_log_warning(uma_zone_t zone) 423 { 424 static const struct timeval warninterval = { 300, 0 }; 425 426 if (!zone_warnings || zone->uz_warning == NULL) 427 return; 428 429 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 430 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 431 } 432 433 static inline void 434 zone_maxaction(uma_zone_t zone) 435 { 436 437 if (zone->uz_maxaction.ta_func != NULL) 438 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 439 } 440 441 static void 442 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 443 { 444 uma_klink_t klink; 445 446 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 447 kegfn(klink->kl_keg); 448 } 449 450 /* 451 * Routine called by timeout which is used to fire off some time interval 452 * based calculations. (stats, hash size, etc.) 453 * 454 * Arguments: 455 * arg Unused 456 * 457 * Returns: 458 * Nothing 459 */ 460 static void 461 uma_timeout(void *unused) 462 { 463 bucket_enable(); 464 zone_foreach(zone_timeout); 465 466 /* Reschedule this event */ 467 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 468 } 469 470 /* 471 * Routine to perform timeout driven calculations. This expands the 472 * hashes and does per cpu statistics aggregation. 473 * 474 * Returns nothing. 475 */ 476 static void 477 keg_timeout(uma_keg_t keg) 478 { 479 480 KEG_LOCK(keg); 481 /* 482 * Expand the keg hash table. 483 * 484 * This is done if the number of slabs is larger than the hash size. 485 * What I'm trying to do here is completely reduce collisions. This 486 * may be a little aggressive. Should I allow for two collisions max? 487 */ 488 if (keg->uk_flags & UMA_ZONE_HASH && 489 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 490 struct uma_hash newhash; 491 struct uma_hash oldhash; 492 int ret; 493 494 /* 495 * This is so involved because allocating and freeing 496 * while the keg lock is held will lead to deadlock. 497 * I have to do everything in stages and check for 498 * races. 499 */ 500 newhash = keg->uk_hash; 501 KEG_UNLOCK(keg); 502 ret = hash_alloc(&newhash); 503 KEG_LOCK(keg); 504 if (ret) { 505 if (hash_expand(&keg->uk_hash, &newhash)) { 506 oldhash = keg->uk_hash; 507 keg->uk_hash = newhash; 508 } else 509 oldhash = newhash; 510 511 KEG_UNLOCK(keg); 512 hash_free(&oldhash); 513 return; 514 } 515 } 516 KEG_UNLOCK(keg); 517 } 518 519 static void 520 zone_timeout(uma_zone_t zone) 521 { 522 523 zone_foreach_keg(zone, &keg_timeout); 524 } 525 526 /* 527 * Allocate and zero fill the next sized hash table from the appropriate 528 * backing store. 529 * 530 * Arguments: 531 * hash A new hash structure with the old hash size in uh_hashsize 532 * 533 * Returns: 534 * 1 on success and 0 on failure. 535 */ 536 static int 537 hash_alloc(struct uma_hash *hash) 538 { 539 int oldsize; 540 int alloc; 541 542 oldsize = hash->uh_hashsize; 543 544 /* We're just going to go to a power of two greater */ 545 if (oldsize) { 546 hash->uh_hashsize = oldsize * 2; 547 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 548 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 549 M_UMAHASH, M_NOWAIT); 550 } else { 551 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 552 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 553 M_WAITOK); 554 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 555 } 556 if (hash->uh_slab_hash) { 557 bzero(hash->uh_slab_hash, alloc); 558 hash->uh_hashmask = hash->uh_hashsize - 1; 559 return (1); 560 } 561 562 return (0); 563 } 564 565 /* 566 * Expands the hash table for HASH zones. This is done from zone_timeout 567 * to reduce collisions. This must not be done in the regular allocation 568 * path, otherwise, we can recurse on the vm while allocating pages. 569 * 570 * Arguments: 571 * oldhash The hash you want to expand 572 * newhash The hash structure for the new table 573 * 574 * Returns: 575 * Nothing 576 * 577 * Discussion: 578 */ 579 static int 580 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 581 { 582 uma_slab_t slab; 583 int hval; 584 int i; 585 586 if (!newhash->uh_slab_hash) 587 return (0); 588 589 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 590 return (0); 591 592 /* 593 * I need to investigate hash algorithms for resizing without a 594 * full rehash. 595 */ 596 597 for (i = 0; i < oldhash->uh_hashsize; i++) 598 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 599 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 600 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 601 hval = UMA_HASH(newhash, slab->us_data); 602 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 603 slab, us_hlink); 604 } 605 606 return (1); 607 } 608 609 /* 610 * Free the hash bucket to the appropriate backing store. 611 * 612 * Arguments: 613 * slab_hash The hash bucket we're freeing 614 * hashsize The number of entries in that hash bucket 615 * 616 * Returns: 617 * Nothing 618 */ 619 static void 620 hash_free(struct uma_hash *hash) 621 { 622 if (hash->uh_slab_hash == NULL) 623 return; 624 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 625 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 626 else 627 free(hash->uh_slab_hash, M_UMAHASH); 628 } 629 630 /* 631 * Frees all outstanding items in a bucket 632 * 633 * Arguments: 634 * zone The zone to free to, must be unlocked. 635 * bucket The free/alloc bucket with items, cpu queue must be locked. 636 * 637 * Returns: 638 * Nothing 639 */ 640 641 static void 642 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 643 { 644 int i; 645 646 if (bucket == NULL) 647 return; 648 649 if (zone->uz_fini) 650 for (i = 0; i < bucket->ub_cnt; i++) 651 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 652 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 653 bucket->ub_cnt = 0; 654 } 655 656 /* 657 * Drains the per cpu caches for a zone. 658 * 659 * NOTE: This may only be called while the zone is being turn down, and not 660 * during normal operation. This is necessary in order that we do not have 661 * to migrate CPUs to drain the per-CPU caches. 662 * 663 * Arguments: 664 * zone The zone to drain, must be unlocked. 665 * 666 * Returns: 667 * Nothing 668 */ 669 static void 670 cache_drain(uma_zone_t zone) 671 { 672 uma_cache_t cache; 673 int cpu; 674 675 /* 676 * XXX: It is safe to not lock the per-CPU caches, because we're 677 * tearing down the zone anyway. I.e., there will be no further use 678 * of the caches at this point. 679 * 680 * XXX: It would good to be able to assert that the zone is being 681 * torn down to prevent improper use of cache_drain(). 682 * 683 * XXX: We lock the zone before passing into bucket_cache_drain() as 684 * it is used elsewhere. Should the tear-down path be made special 685 * there in some form? 686 */ 687 CPU_FOREACH(cpu) { 688 cache = &zone->uz_cpu[cpu]; 689 bucket_drain(zone, cache->uc_allocbucket); 690 bucket_drain(zone, cache->uc_freebucket); 691 if (cache->uc_allocbucket != NULL) 692 bucket_free(zone, cache->uc_allocbucket, NULL); 693 if (cache->uc_freebucket != NULL) 694 bucket_free(zone, cache->uc_freebucket, NULL); 695 cache->uc_allocbucket = cache->uc_freebucket = NULL; 696 } 697 ZONE_LOCK(zone); 698 bucket_cache_drain(zone); 699 ZONE_UNLOCK(zone); 700 } 701 702 static void 703 cache_shrink(uma_zone_t zone) 704 { 705 706 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 707 return; 708 709 ZONE_LOCK(zone); 710 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 711 ZONE_UNLOCK(zone); 712 } 713 714 static void 715 cache_drain_safe_cpu(uma_zone_t zone) 716 { 717 uma_cache_t cache; 718 uma_bucket_t b1, b2; 719 720 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 721 return; 722 723 b1 = b2 = NULL; 724 ZONE_LOCK(zone); 725 critical_enter(); 726 cache = &zone->uz_cpu[curcpu]; 727 if (cache->uc_allocbucket) { 728 if (cache->uc_allocbucket->ub_cnt != 0) 729 LIST_INSERT_HEAD(&zone->uz_buckets, 730 cache->uc_allocbucket, ub_link); 731 else 732 b1 = cache->uc_allocbucket; 733 cache->uc_allocbucket = NULL; 734 } 735 if (cache->uc_freebucket) { 736 if (cache->uc_freebucket->ub_cnt != 0) 737 LIST_INSERT_HEAD(&zone->uz_buckets, 738 cache->uc_freebucket, ub_link); 739 else 740 b2 = cache->uc_freebucket; 741 cache->uc_freebucket = NULL; 742 } 743 critical_exit(); 744 ZONE_UNLOCK(zone); 745 if (b1) 746 bucket_free(zone, b1, NULL); 747 if (b2) 748 bucket_free(zone, b2, NULL); 749 } 750 751 /* 752 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 753 * This is an expensive call because it needs to bind to all CPUs 754 * one by one and enter a critical section on each of them in order 755 * to safely access their cache buckets. 756 * Zone lock must not be held on call this function. 757 */ 758 static void 759 cache_drain_safe(uma_zone_t zone) 760 { 761 int cpu; 762 763 /* 764 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 765 */ 766 if (zone) 767 cache_shrink(zone); 768 else 769 zone_foreach(cache_shrink); 770 771 CPU_FOREACH(cpu) { 772 thread_lock(curthread); 773 sched_bind(curthread, cpu); 774 thread_unlock(curthread); 775 776 if (zone) 777 cache_drain_safe_cpu(zone); 778 else 779 zone_foreach(cache_drain_safe_cpu); 780 } 781 thread_lock(curthread); 782 sched_unbind(curthread); 783 thread_unlock(curthread); 784 } 785 786 /* 787 * Drain the cached buckets from a zone. Expects a locked zone on entry. 788 */ 789 static void 790 bucket_cache_drain(uma_zone_t zone) 791 { 792 uma_bucket_t bucket; 793 794 /* 795 * Drain the bucket queues and free the buckets, we just keep two per 796 * cpu (alloc/free). 797 */ 798 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 799 LIST_REMOVE(bucket, ub_link); 800 ZONE_UNLOCK(zone); 801 bucket_drain(zone, bucket); 802 bucket_free(zone, bucket, NULL); 803 ZONE_LOCK(zone); 804 } 805 806 /* 807 * Shrink further bucket sizes. Price of single zone lock collision 808 * is probably lower then price of global cache drain. 809 */ 810 if (zone->uz_count > zone->uz_count_min) 811 zone->uz_count--; 812 } 813 814 static void 815 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 816 { 817 uint8_t *mem; 818 int i; 819 uint8_t flags; 820 821 mem = slab->us_data; 822 flags = slab->us_flags; 823 i = start; 824 if (keg->uk_fini != NULL) { 825 for (i--; i > -1; i--) 826 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 827 keg->uk_size); 828 } 829 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 830 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 831 #ifdef UMA_DEBUG 832 printf("%s: Returning %d bytes.\n", keg->uk_name, 833 PAGE_SIZE * keg->uk_ppera); 834 #endif 835 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 836 } 837 838 /* 839 * Frees pages from a keg back to the system. This is done on demand from 840 * the pageout daemon. 841 * 842 * Returns nothing. 843 */ 844 static void 845 keg_drain(uma_keg_t keg) 846 { 847 struct slabhead freeslabs = { 0 }; 848 uma_slab_t slab, tmp; 849 850 /* 851 * We don't want to take pages from statically allocated kegs at this 852 * time 853 */ 854 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 855 return; 856 857 #ifdef UMA_DEBUG 858 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 859 #endif 860 KEG_LOCK(keg); 861 if (keg->uk_free == 0) 862 goto finished; 863 864 LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) { 865 /* We have nowhere to free these to. */ 866 if (slab->us_flags & UMA_SLAB_BOOT) 867 continue; 868 869 LIST_REMOVE(slab, us_link); 870 keg->uk_pages -= keg->uk_ppera; 871 keg->uk_free -= keg->uk_ipers; 872 873 if (keg->uk_flags & UMA_ZONE_HASH) 874 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 875 876 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 877 } 878 finished: 879 KEG_UNLOCK(keg); 880 881 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 882 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 883 keg_free_slab(keg, slab, keg->uk_ipers); 884 } 885 } 886 887 static void 888 zone_drain_wait(uma_zone_t zone, int waitok) 889 { 890 891 /* 892 * Set draining to interlock with zone_dtor() so we can release our 893 * locks as we go. Only dtor() should do a WAITOK call since it 894 * is the only call that knows the structure will still be available 895 * when it wakes up. 896 */ 897 ZONE_LOCK(zone); 898 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 899 if (waitok == M_NOWAIT) 900 goto out; 901 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 902 } 903 zone->uz_flags |= UMA_ZFLAG_DRAINING; 904 bucket_cache_drain(zone); 905 ZONE_UNLOCK(zone); 906 /* 907 * The DRAINING flag protects us from being freed while 908 * we're running. Normally the uma_rwlock would protect us but we 909 * must be able to release and acquire the right lock for each keg. 910 */ 911 zone_foreach_keg(zone, &keg_drain); 912 ZONE_LOCK(zone); 913 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 914 wakeup(zone); 915 out: 916 ZONE_UNLOCK(zone); 917 } 918 919 void 920 zone_drain(uma_zone_t zone) 921 { 922 923 zone_drain_wait(zone, M_NOWAIT); 924 } 925 926 /* 927 * Allocate a new slab for a keg. This does not insert the slab onto a list. 928 * 929 * Arguments: 930 * wait Shall we wait? 931 * 932 * Returns: 933 * The slab that was allocated or NULL if there is no memory and the 934 * caller specified M_NOWAIT. 935 */ 936 static uma_slab_t 937 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 938 { 939 uma_alloc allocf; 940 uma_slab_t slab; 941 uint8_t *mem; 942 uint8_t flags; 943 int i; 944 945 mtx_assert(&keg->uk_lock, MA_OWNED); 946 slab = NULL; 947 mem = NULL; 948 949 #ifdef UMA_DEBUG 950 printf("alloc_slab: Allocating a new slab for %s\n", keg->uk_name); 951 #endif 952 allocf = keg->uk_allocf; 953 KEG_UNLOCK(keg); 954 955 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 956 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 957 if (slab == NULL) 958 goto out; 959 } 960 961 /* 962 * This reproduces the old vm_zone behavior of zero filling pages the 963 * first time they are added to a zone. 964 * 965 * Malloced items are zeroed in uma_zalloc. 966 */ 967 968 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 969 wait |= M_ZERO; 970 else 971 wait &= ~M_ZERO; 972 973 if (keg->uk_flags & UMA_ZONE_NODUMP) 974 wait |= M_NODUMP; 975 976 /* zone is passed for legacy reasons. */ 977 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 978 if (mem == NULL) { 979 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 980 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 981 slab = NULL; 982 goto out; 983 } 984 985 /* Point the slab into the allocated memory */ 986 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 987 slab = (uma_slab_t )(mem + keg->uk_pgoff); 988 989 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 990 for (i = 0; i < keg->uk_ppera; i++) 991 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 992 993 slab->us_keg = keg; 994 slab->us_data = mem; 995 slab->us_freecount = keg->uk_ipers; 996 slab->us_flags = flags; 997 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 998 #ifdef INVARIANTS 999 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1000 #endif 1001 1002 if (keg->uk_init != NULL) { 1003 for (i = 0; i < keg->uk_ipers; i++) 1004 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1005 keg->uk_size, wait) != 0) 1006 break; 1007 if (i != keg->uk_ipers) { 1008 keg_free_slab(keg, slab, i); 1009 slab = NULL; 1010 goto out; 1011 } 1012 } 1013 out: 1014 KEG_LOCK(keg); 1015 1016 if (slab != NULL) { 1017 if (keg->uk_flags & UMA_ZONE_HASH) 1018 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1019 1020 keg->uk_pages += keg->uk_ppera; 1021 keg->uk_free += keg->uk_ipers; 1022 } 1023 1024 return (slab); 1025 } 1026 1027 /* 1028 * This function is intended to be used early on in place of page_alloc() so 1029 * that we may use the boot time page cache to satisfy allocations before 1030 * the VM is ready. 1031 */ 1032 static void * 1033 startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1034 { 1035 uma_keg_t keg; 1036 uma_slab_t tmps; 1037 int pages, check_pages; 1038 1039 keg = zone_first_keg(zone); 1040 pages = howmany(bytes, PAGE_SIZE); 1041 check_pages = pages - 1; 1042 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1043 1044 /* 1045 * Check our small startup cache to see if it has pages remaining. 1046 */ 1047 mtx_lock(&uma_boot_pages_mtx); 1048 1049 /* First check if we have enough room. */ 1050 tmps = LIST_FIRST(&uma_boot_pages); 1051 while (tmps != NULL && check_pages-- > 0) 1052 tmps = LIST_NEXT(tmps, us_link); 1053 if (tmps != NULL) { 1054 /* 1055 * It's ok to lose tmps references. The last one will 1056 * have tmps->us_data pointing to the start address of 1057 * "pages" contiguous pages of memory. 1058 */ 1059 while (pages-- > 0) { 1060 tmps = LIST_FIRST(&uma_boot_pages); 1061 LIST_REMOVE(tmps, us_link); 1062 } 1063 mtx_unlock(&uma_boot_pages_mtx); 1064 *pflag = tmps->us_flags; 1065 return (tmps->us_data); 1066 } 1067 mtx_unlock(&uma_boot_pages_mtx); 1068 if (booted < UMA_STARTUP2) 1069 panic("UMA: Increase vm.boot_pages"); 1070 /* 1071 * Now that we've booted reset these users to their real allocator. 1072 */ 1073 #ifdef UMA_MD_SMALL_ALLOC 1074 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1075 #else 1076 keg->uk_allocf = page_alloc; 1077 #endif 1078 return keg->uk_allocf(zone, bytes, pflag, wait); 1079 } 1080 1081 /* 1082 * Allocates a number of pages from the system 1083 * 1084 * Arguments: 1085 * bytes The number of bytes requested 1086 * wait Shall we wait? 1087 * 1088 * Returns: 1089 * A pointer to the alloced memory or possibly 1090 * NULL if M_NOWAIT is set. 1091 */ 1092 static void * 1093 page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1094 { 1095 void *p; /* Returned page */ 1096 1097 *pflag = UMA_SLAB_KMEM; 1098 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1099 1100 return (p); 1101 } 1102 1103 /* 1104 * Allocates a number of pages from within an object 1105 * 1106 * Arguments: 1107 * bytes The number of bytes requested 1108 * wait Shall we wait? 1109 * 1110 * Returns: 1111 * A pointer to the alloced memory or possibly 1112 * NULL if M_NOWAIT is set. 1113 */ 1114 static void * 1115 noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait) 1116 { 1117 TAILQ_HEAD(, vm_page) alloctail; 1118 u_long npages; 1119 vm_offset_t retkva, zkva; 1120 vm_page_t p, p_next; 1121 uma_keg_t keg; 1122 1123 TAILQ_INIT(&alloctail); 1124 keg = zone_first_keg(zone); 1125 1126 npages = howmany(bytes, PAGE_SIZE); 1127 while (npages > 0) { 1128 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1129 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); 1130 if (p != NULL) { 1131 /* 1132 * Since the page does not belong to an object, its 1133 * listq is unused. 1134 */ 1135 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1136 npages--; 1137 continue; 1138 } 1139 if (wait & M_WAITOK) { 1140 VM_WAIT; 1141 continue; 1142 } 1143 1144 /* 1145 * Page allocation failed, free intermediate pages and 1146 * exit. 1147 */ 1148 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1149 vm_page_unwire(p, PQ_NONE); 1150 vm_page_free(p); 1151 } 1152 return (NULL); 1153 } 1154 *flags = UMA_SLAB_PRIV; 1155 zkva = keg->uk_kva + 1156 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1157 retkva = zkva; 1158 TAILQ_FOREACH(p, &alloctail, listq) { 1159 pmap_qenter(zkva, &p, 1); 1160 zkva += PAGE_SIZE; 1161 } 1162 1163 return ((void *)retkva); 1164 } 1165 1166 /* 1167 * Frees a number of pages to the system 1168 * 1169 * Arguments: 1170 * mem A pointer to the memory to be freed 1171 * size The size of the memory being freed 1172 * flags The original p->us_flags field 1173 * 1174 * Returns: 1175 * Nothing 1176 */ 1177 static void 1178 page_free(void *mem, vm_size_t size, uint8_t flags) 1179 { 1180 struct vmem *vmem; 1181 1182 if (flags & UMA_SLAB_KMEM) 1183 vmem = kmem_arena; 1184 else if (flags & UMA_SLAB_KERNEL) 1185 vmem = kernel_arena; 1186 else 1187 panic("UMA: page_free used with invalid flags %d", flags); 1188 1189 kmem_free(vmem, (vm_offset_t)mem, size); 1190 } 1191 1192 /* 1193 * Zero fill initializer 1194 * 1195 * Arguments/Returns follow uma_init specifications 1196 */ 1197 static int 1198 zero_init(void *mem, int size, int flags) 1199 { 1200 bzero(mem, size); 1201 return (0); 1202 } 1203 1204 /* 1205 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1206 * 1207 * Arguments 1208 * keg The zone we should initialize 1209 * 1210 * Returns 1211 * Nothing 1212 */ 1213 static void 1214 keg_small_init(uma_keg_t keg) 1215 { 1216 u_int rsize; 1217 u_int memused; 1218 u_int wastedspace; 1219 u_int shsize; 1220 1221 if (keg->uk_flags & UMA_ZONE_PCPU) { 1222 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1223 1224 keg->uk_slabsize = sizeof(struct pcpu); 1225 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1226 PAGE_SIZE); 1227 } else { 1228 keg->uk_slabsize = UMA_SLAB_SIZE; 1229 keg->uk_ppera = 1; 1230 } 1231 1232 /* 1233 * Calculate the size of each allocation (rsize) according to 1234 * alignment. If the requested size is smaller than we have 1235 * allocation bits for we round it up. 1236 */ 1237 rsize = keg->uk_size; 1238 if (rsize < keg->uk_slabsize / SLAB_SETSIZE) 1239 rsize = keg->uk_slabsize / SLAB_SETSIZE; 1240 if (rsize & keg->uk_align) 1241 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1242 keg->uk_rsize = rsize; 1243 1244 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1245 keg->uk_rsize < sizeof(struct pcpu), 1246 ("%s: size %u too large", __func__, keg->uk_rsize)); 1247 1248 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1249 shsize = 0; 1250 else 1251 shsize = sizeof(struct uma_slab); 1252 1253 keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize; 1254 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1255 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1256 1257 memused = keg->uk_ipers * rsize + shsize; 1258 wastedspace = keg->uk_slabsize - memused; 1259 1260 /* 1261 * We can't do OFFPAGE if we're internal or if we've been 1262 * asked to not go to the VM for buckets. If we do this we 1263 * may end up going to the VM for slabs which we do not 1264 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1265 * of UMA_ZONE_VM, which clearly forbids it. 1266 */ 1267 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1268 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1269 return; 1270 1271 /* 1272 * See if using an OFFPAGE slab will limit our waste. Only do 1273 * this if it permits more items per-slab. 1274 * 1275 * XXX We could try growing slabsize to limit max waste as well. 1276 * Historically this was not done because the VM could not 1277 * efficiently handle contiguous allocations. 1278 */ 1279 if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) && 1280 (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) { 1281 keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize; 1282 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1283 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1284 #ifdef UMA_DEBUG 1285 printf("UMA decided we need offpage slab headers for " 1286 "keg: %s, calculated wastedspace = %d, " 1287 "maximum wasted space allowed = %d, " 1288 "calculated ipers = %d, " 1289 "new wasted space = %d\n", keg->uk_name, wastedspace, 1290 keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1291 keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize); 1292 #endif 1293 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1294 } 1295 1296 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1297 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1298 keg->uk_flags |= UMA_ZONE_HASH; 1299 } 1300 1301 /* 1302 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1303 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1304 * more complicated. 1305 * 1306 * Arguments 1307 * keg The keg we should initialize 1308 * 1309 * Returns 1310 * Nothing 1311 */ 1312 static void 1313 keg_large_init(uma_keg_t keg) 1314 { 1315 u_int shsize; 1316 1317 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1318 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1319 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1320 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1321 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1322 1323 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1324 keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE; 1325 keg->uk_ipers = 1; 1326 keg->uk_rsize = keg->uk_size; 1327 1328 /* We can't do OFFPAGE if we're internal, bail out here. */ 1329 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1330 return; 1331 1332 /* Check whether we have enough space to not do OFFPAGE. */ 1333 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1334 shsize = sizeof(struct uma_slab); 1335 if (shsize & UMA_ALIGN_PTR) 1336 shsize = (shsize & ~UMA_ALIGN_PTR) + 1337 (UMA_ALIGN_PTR + 1); 1338 1339 if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize) 1340 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1341 } 1342 1343 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1344 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1345 keg->uk_flags |= UMA_ZONE_HASH; 1346 } 1347 1348 static void 1349 keg_cachespread_init(uma_keg_t keg) 1350 { 1351 int alignsize; 1352 int trailer; 1353 int pages; 1354 int rsize; 1355 1356 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1357 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1358 1359 alignsize = keg->uk_align + 1; 1360 rsize = keg->uk_size; 1361 /* 1362 * We want one item to start on every align boundary in a page. To 1363 * do this we will span pages. We will also extend the item by the 1364 * size of align if it is an even multiple of align. Otherwise, it 1365 * would fall on the same boundary every time. 1366 */ 1367 if (rsize & keg->uk_align) 1368 rsize = (rsize & ~keg->uk_align) + alignsize; 1369 if ((rsize & alignsize) == 0) 1370 rsize += alignsize; 1371 trailer = rsize - keg->uk_size; 1372 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1373 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1374 keg->uk_rsize = rsize; 1375 keg->uk_ppera = pages; 1376 keg->uk_slabsize = UMA_SLAB_SIZE; 1377 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1378 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1379 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1380 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1381 keg->uk_ipers)); 1382 } 1383 1384 /* 1385 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1386 * the keg onto the global keg list. 1387 * 1388 * Arguments/Returns follow uma_ctor specifications 1389 * udata Actually uma_kctor_args 1390 */ 1391 static int 1392 keg_ctor(void *mem, int size, void *udata, int flags) 1393 { 1394 struct uma_kctor_args *arg = udata; 1395 uma_keg_t keg = mem; 1396 uma_zone_t zone; 1397 1398 bzero(keg, size); 1399 keg->uk_size = arg->size; 1400 keg->uk_init = arg->uminit; 1401 keg->uk_fini = arg->fini; 1402 keg->uk_align = arg->align; 1403 keg->uk_free = 0; 1404 keg->uk_reserve = 0; 1405 keg->uk_pages = 0; 1406 keg->uk_flags = arg->flags; 1407 keg->uk_allocf = page_alloc; 1408 keg->uk_freef = page_free; 1409 keg->uk_slabzone = NULL; 1410 1411 /* 1412 * The master zone is passed to us at keg-creation time. 1413 */ 1414 zone = arg->zone; 1415 keg->uk_name = zone->uz_name; 1416 1417 if (arg->flags & UMA_ZONE_VM) 1418 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1419 1420 if (arg->flags & UMA_ZONE_ZINIT) 1421 keg->uk_init = zero_init; 1422 1423 if (arg->flags & UMA_ZONE_MALLOC) 1424 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1425 1426 if (arg->flags & UMA_ZONE_PCPU) 1427 #ifdef SMP 1428 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1429 #else 1430 keg->uk_flags &= ~UMA_ZONE_PCPU; 1431 #endif 1432 1433 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1434 keg_cachespread_init(keg); 1435 } else { 1436 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1437 keg_large_init(keg); 1438 else 1439 keg_small_init(keg); 1440 } 1441 1442 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1443 keg->uk_slabzone = slabzone; 1444 1445 /* 1446 * If we haven't booted yet we need allocations to go through the 1447 * startup cache until the vm is ready. 1448 */ 1449 if (keg->uk_ppera == 1) { 1450 #ifdef UMA_MD_SMALL_ALLOC 1451 keg->uk_allocf = uma_small_alloc; 1452 keg->uk_freef = uma_small_free; 1453 1454 if (booted < UMA_STARTUP) 1455 keg->uk_allocf = startup_alloc; 1456 #else 1457 if (booted < UMA_STARTUP2) 1458 keg->uk_allocf = startup_alloc; 1459 #endif 1460 } else if (booted < UMA_STARTUP2 && 1461 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1462 keg->uk_allocf = startup_alloc; 1463 1464 /* 1465 * Initialize keg's lock 1466 */ 1467 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1468 1469 /* 1470 * If we're putting the slab header in the actual page we need to 1471 * figure out where in each page it goes. This calculates a right 1472 * justified offset into the memory on an ALIGN_PTR boundary. 1473 */ 1474 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1475 u_int totsize; 1476 1477 /* Size of the slab struct and free list */ 1478 totsize = sizeof(struct uma_slab); 1479 1480 if (totsize & UMA_ALIGN_PTR) 1481 totsize = (totsize & ~UMA_ALIGN_PTR) + 1482 (UMA_ALIGN_PTR + 1); 1483 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1484 1485 /* 1486 * The only way the following is possible is if with our 1487 * UMA_ALIGN_PTR adjustments we are now bigger than 1488 * UMA_SLAB_SIZE. I haven't checked whether this is 1489 * mathematically possible for all cases, so we make 1490 * sure here anyway. 1491 */ 1492 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1493 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1494 printf("zone %s ipers %d rsize %d size %d\n", 1495 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1496 keg->uk_size); 1497 panic("UMA slab won't fit."); 1498 } 1499 } 1500 1501 if (keg->uk_flags & UMA_ZONE_HASH) 1502 hash_alloc(&keg->uk_hash); 1503 1504 #ifdef UMA_DEBUG 1505 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n", 1506 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1507 keg->uk_ipers, keg->uk_ppera, 1508 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1509 #endif 1510 1511 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1512 1513 rw_wlock(&uma_rwlock); 1514 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1515 rw_wunlock(&uma_rwlock); 1516 return (0); 1517 } 1518 1519 /* 1520 * Zone header ctor. This initializes all fields, locks, etc. 1521 * 1522 * Arguments/Returns follow uma_ctor specifications 1523 * udata Actually uma_zctor_args 1524 */ 1525 static int 1526 zone_ctor(void *mem, int size, void *udata, int flags) 1527 { 1528 struct uma_zctor_args *arg = udata; 1529 uma_zone_t zone = mem; 1530 uma_zone_t z; 1531 uma_keg_t keg; 1532 1533 bzero(zone, size); 1534 zone->uz_name = arg->name; 1535 zone->uz_ctor = arg->ctor; 1536 zone->uz_dtor = arg->dtor; 1537 zone->uz_slab = zone_fetch_slab; 1538 zone->uz_init = NULL; 1539 zone->uz_fini = NULL; 1540 zone->uz_allocs = 0; 1541 zone->uz_frees = 0; 1542 zone->uz_fails = 0; 1543 zone->uz_sleeps = 0; 1544 zone->uz_count = 0; 1545 zone->uz_count_min = 0; 1546 zone->uz_flags = 0; 1547 zone->uz_warning = NULL; 1548 timevalclear(&zone->uz_ratecheck); 1549 keg = arg->keg; 1550 1551 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1552 1553 /* 1554 * This is a pure cache zone, no kegs. 1555 */ 1556 if (arg->import) { 1557 if (arg->flags & UMA_ZONE_VM) 1558 arg->flags |= UMA_ZFLAG_CACHEONLY; 1559 zone->uz_flags = arg->flags; 1560 zone->uz_size = arg->size; 1561 zone->uz_import = arg->import; 1562 zone->uz_release = arg->release; 1563 zone->uz_arg = arg->arg; 1564 zone->uz_lockptr = &zone->uz_lock; 1565 rw_wlock(&uma_rwlock); 1566 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1567 rw_wunlock(&uma_rwlock); 1568 goto out; 1569 } 1570 1571 /* 1572 * Use the regular zone/keg/slab allocator. 1573 */ 1574 zone->uz_import = (uma_import)zone_import; 1575 zone->uz_release = (uma_release)zone_release; 1576 zone->uz_arg = zone; 1577 1578 if (arg->flags & UMA_ZONE_SECONDARY) { 1579 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1580 zone->uz_init = arg->uminit; 1581 zone->uz_fini = arg->fini; 1582 zone->uz_lockptr = &keg->uk_lock; 1583 zone->uz_flags |= UMA_ZONE_SECONDARY; 1584 rw_wlock(&uma_rwlock); 1585 ZONE_LOCK(zone); 1586 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1587 if (LIST_NEXT(z, uz_link) == NULL) { 1588 LIST_INSERT_AFTER(z, zone, uz_link); 1589 break; 1590 } 1591 } 1592 ZONE_UNLOCK(zone); 1593 rw_wunlock(&uma_rwlock); 1594 } else if (keg == NULL) { 1595 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1596 arg->align, arg->flags)) == NULL) 1597 return (ENOMEM); 1598 } else { 1599 struct uma_kctor_args karg; 1600 int error; 1601 1602 /* We should only be here from uma_startup() */ 1603 karg.size = arg->size; 1604 karg.uminit = arg->uminit; 1605 karg.fini = arg->fini; 1606 karg.align = arg->align; 1607 karg.flags = arg->flags; 1608 karg.zone = zone; 1609 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1610 flags); 1611 if (error) 1612 return (error); 1613 } 1614 1615 /* 1616 * Link in the first keg. 1617 */ 1618 zone->uz_klink.kl_keg = keg; 1619 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1620 zone->uz_lockptr = &keg->uk_lock; 1621 zone->uz_size = keg->uk_size; 1622 zone->uz_flags |= (keg->uk_flags & 1623 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1624 1625 /* 1626 * Some internal zones don't have room allocated for the per cpu 1627 * caches. If we're internal, bail out here. 1628 */ 1629 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1630 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1631 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1632 return (0); 1633 } 1634 1635 out: 1636 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1637 zone->uz_count = bucket_select(zone->uz_size); 1638 else 1639 zone->uz_count = BUCKET_MAX; 1640 zone->uz_count_min = zone->uz_count; 1641 1642 return (0); 1643 } 1644 1645 /* 1646 * Keg header dtor. This frees all data, destroys locks, frees the hash 1647 * table and removes the keg from the global list. 1648 * 1649 * Arguments/Returns follow uma_dtor specifications 1650 * udata unused 1651 */ 1652 static void 1653 keg_dtor(void *arg, int size, void *udata) 1654 { 1655 uma_keg_t keg; 1656 1657 keg = (uma_keg_t)arg; 1658 KEG_LOCK(keg); 1659 if (keg->uk_free != 0) { 1660 printf("Freed UMA keg (%s) was not empty (%d items). " 1661 " Lost %d pages of memory.\n", 1662 keg->uk_name ? keg->uk_name : "", 1663 keg->uk_free, keg->uk_pages); 1664 } 1665 KEG_UNLOCK(keg); 1666 1667 hash_free(&keg->uk_hash); 1668 1669 KEG_LOCK_FINI(keg); 1670 } 1671 1672 /* 1673 * Zone header dtor. 1674 * 1675 * Arguments/Returns follow uma_dtor specifications 1676 * udata unused 1677 */ 1678 static void 1679 zone_dtor(void *arg, int size, void *udata) 1680 { 1681 uma_klink_t klink; 1682 uma_zone_t zone; 1683 uma_keg_t keg; 1684 1685 zone = (uma_zone_t)arg; 1686 keg = zone_first_keg(zone); 1687 1688 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1689 cache_drain(zone); 1690 1691 rw_wlock(&uma_rwlock); 1692 LIST_REMOVE(zone, uz_link); 1693 rw_wunlock(&uma_rwlock); 1694 /* 1695 * XXX there are some races here where 1696 * the zone can be drained but zone lock 1697 * released and then refilled before we 1698 * remove it... we dont care for now 1699 */ 1700 zone_drain_wait(zone, M_WAITOK); 1701 /* 1702 * Unlink all of our kegs. 1703 */ 1704 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1705 klink->kl_keg = NULL; 1706 LIST_REMOVE(klink, kl_link); 1707 if (klink == &zone->uz_klink) 1708 continue; 1709 free(klink, M_TEMP); 1710 } 1711 /* 1712 * We only destroy kegs from non secondary zones. 1713 */ 1714 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1715 rw_wlock(&uma_rwlock); 1716 LIST_REMOVE(keg, uk_link); 1717 rw_wunlock(&uma_rwlock); 1718 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1719 } 1720 ZONE_LOCK_FINI(zone); 1721 } 1722 1723 /* 1724 * Traverses every zone in the system and calls a callback 1725 * 1726 * Arguments: 1727 * zfunc A pointer to a function which accepts a zone 1728 * as an argument. 1729 * 1730 * Returns: 1731 * Nothing 1732 */ 1733 static void 1734 zone_foreach(void (*zfunc)(uma_zone_t)) 1735 { 1736 uma_keg_t keg; 1737 uma_zone_t zone; 1738 1739 rw_rlock(&uma_rwlock); 1740 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1741 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1742 zfunc(zone); 1743 } 1744 rw_runlock(&uma_rwlock); 1745 } 1746 1747 /* Public functions */ 1748 /* See uma.h */ 1749 void 1750 uma_startup(void *bootmem, int boot_pages) 1751 { 1752 struct uma_zctor_args args; 1753 uma_slab_t slab; 1754 int i; 1755 1756 #ifdef UMA_DEBUG 1757 printf("Creating uma keg headers zone and keg.\n"); 1758 #endif 1759 rw_init(&uma_rwlock, "UMA lock"); 1760 1761 /* "manually" create the initial zone */ 1762 memset(&args, 0, sizeof(args)); 1763 args.name = "UMA Kegs"; 1764 args.size = sizeof(struct uma_keg); 1765 args.ctor = keg_ctor; 1766 args.dtor = keg_dtor; 1767 args.uminit = zero_init; 1768 args.fini = NULL; 1769 args.keg = &masterkeg; 1770 args.align = 32 - 1; 1771 args.flags = UMA_ZFLAG_INTERNAL; 1772 /* The initial zone has no Per cpu queues so it's smaller */ 1773 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1774 1775 #ifdef UMA_DEBUG 1776 printf("Filling boot free list.\n"); 1777 #endif 1778 for (i = 0; i < boot_pages; i++) { 1779 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1780 slab->us_data = (uint8_t *)slab; 1781 slab->us_flags = UMA_SLAB_BOOT; 1782 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1783 } 1784 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1785 1786 #ifdef UMA_DEBUG 1787 printf("Creating uma zone headers zone and keg.\n"); 1788 #endif 1789 args.name = "UMA Zones"; 1790 args.size = sizeof(struct uma_zone) + 1791 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1792 args.ctor = zone_ctor; 1793 args.dtor = zone_dtor; 1794 args.uminit = zero_init; 1795 args.fini = NULL; 1796 args.keg = NULL; 1797 args.align = 32 - 1; 1798 args.flags = UMA_ZFLAG_INTERNAL; 1799 /* The initial zone has no Per cpu queues so it's smaller */ 1800 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1801 1802 #ifdef UMA_DEBUG 1803 printf("Creating slab and hash zones.\n"); 1804 #endif 1805 1806 /* Now make a zone for slab headers */ 1807 slabzone = uma_zcreate("UMA Slabs", 1808 sizeof(struct uma_slab), 1809 NULL, NULL, NULL, NULL, 1810 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1811 1812 hashzone = uma_zcreate("UMA Hash", 1813 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1814 NULL, NULL, NULL, NULL, 1815 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1816 1817 bucket_init(); 1818 1819 booted = UMA_STARTUP; 1820 1821 #ifdef UMA_DEBUG 1822 printf("UMA startup complete.\n"); 1823 #endif 1824 } 1825 1826 /* see uma.h */ 1827 void 1828 uma_startup2(void) 1829 { 1830 booted = UMA_STARTUP2; 1831 bucket_enable(); 1832 sx_init(&uma_drain_lock, "umadrain"); 1833 #ifdef UMA_DEBUG 1834 printf("UMA startup2 complete.\n"); 1835 #endif 1836 } 1837 1838 /* 1839 * Initialize our callout handle 1840 * 1841 */ 1842 1843 static void 1844 uma_startup3(void) 1845 { 1846 #ifdef UMA_DEBUG 1847 printf("Starting callout.\n"); 1848 #endif 1849 callout_init(&uma_callout, 1); 1850 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1851 #ifdef UMA_DEBUG 1852 printf("UMA startup3 complete.\n"); 1853 #endif 1854 } 1855 1856 static uma_keg_t 1857 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1858 int align, uint32_t flags) 1859 { 1860 struct uma_kctor_args args; 1861 1862 args.size = size; 1863 args.uminit = uminit; 1864 args.fini = fini; 1865 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1866 args.flags = flags; 1867 args.zone = zone; 1868 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1869 } 1870 1871 /* See uma.h */ 1872 void 1873 uma_set_align(int align) 1874 { 1875 1876 if (align != UMA_ALIGN_CACHE) 1877 uma_align_cache = align; 1878 } 1879 1880 /* See uma.h */ 1881 uma_zone_t 1882 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1883 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1884 1885 { 1886 struct uma_zctor_args args; 1887 uma_zone_t res; 1888 bool locked; 1889 1890 /* This stuff is essential for the zone ctor */ 1891 memset(&args, 0, sizeof(args)); 1892 args.name = name; 1893 args.size = size; 1894 args.ctor = ctor; 1895 args.dtor = dtor; 1896 args.uminit = uminit; 1897 args.fini = fini; 1898 #ifdef INVARIANTS 1899 /* 1900 * If a zone is being created with an empty constructor and 1901 * destructor, pass UMA constructor/destructor which checks for 1902 * memory use after free. 1903 */ 1904 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 1905 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 1906 args.ctor = trash_ctor; 1907 args.dtor = trash_dtor; 1908 args.uminit = trash_init; 1909 args.fini = trash_fini; 1910 } 1911 #endif 1912 args.align = align; 1913 args.flags = flags; 1914 args.keg = NULL; 1915 1916 if (booted < UMA_STARTUP2) { 1917 locked = false; 1918 } else { 1919 sx_slock(&uma_drain_lock); 1920 locked = true; 1921 } 1922 res = zone_alloc_item(zones, &args, M_WAITOK); 1923 if (locked) 1924 sx_sunlock(&uma_drain_lock); 1925 return (res); 1926 } 1927 1928 /* See uma.h */ 1929 uma_zone_t 1930 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1931 uma_init zinit, uma_fini zfini, uma_zone_t master) 1932 { 1933 struct uma_zctor_args args; 1934 uma_keg_t keg; 1935 uma_zone_t res; 1936 bool locked; 1937 1938 keg = zone_first_keg(master); 1939 memset(&args, 0, sizeof(args)); 1940 args.name = name; 1941 args.size = keg->uk_size; 1942 args.ctor = ctor; 1943 args.dtor = dtor; 1944 args.uminit = zinit; 1945 args.fini = zfini; 1946 args.align = keg->uk_align; 1947 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1948 args.keg = keg; 1949 1950 if (booted < UMA_STARTUP2) { 1951 locked = false; 1952 } else { 1953 sx_slock(&uma_drain_lock); 1954 locked = true; 1955 } 1956 /* XXX Attaches only one keg of potentially many. */ 1957 res = zone_alloc_item(zones, &args, M_WAITOK); 1958 if (locked) 1959 sx_sunlock(&uma_drain_lock); 1960 return (res); 1961 } 1962 1963 /* See uma.h */ 1964 uma_zone_t 1965 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 1966 uma_init zinit, uma_fini zfini, uma_import zimport, 1967 uma_release zrelease, void *arg, int flags) 1968 { 1969 struct uma_zctor_args args; 1970 1971 memset(&args, 0, sizeof(args)); 1972 args.name = name; 1973 args.size = size; 1974 args.ctor = ctor; 1975 args.dtor = dtor; 1976 args.uminit = zinit; 1977 args.fini = zfini; 1978 args.import = zimport; 1979 args.release = zrelease; 1980 args.arg = arg; 1981 args.align = 0; 1982 args.flags = flags; 1983 1984 return (zone_alloc_item(zones, &args, M_WAITOK)); 1985 } 1986 1987 static void 1988 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1989 { 1990 if (a < b) { 1991 ZONE_LOCK(a); 1992 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 1993 } else { 1994 ZONE_LOCK(b); 1995 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 1996 } 1997 } 1998 1999 static void 2000 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2001 { 2002 2003 ZONE_UNLOCK(a); 2004 ZONE_UNLOCK(b); 2005 } 2006 2007 int 2008 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2009 { 2010 uma_klink_t klink; 2011 uma_klink_t kl; 2012 int error; 2013 2014 error = 0; 2015 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2016 2017 zone_lock_pair(zone, master); 2018 /* 2019 * zone must use vtoslab() to resolve objects and must already be 2020 * a secondary. 2021 */ 2022 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2023 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2024 error = EINVAL; 2025 goto out; 2026 } 2027 /* 2028 * The new master must also use vtoslab(). 2029 */ 2030 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2031 error = EINVAL; 2032 goto out; 2033 } 2034 2035 /* 2036 * The underlying object must be the same size. rsize 2037 * may be different. 2038 */ 2039 if (master->uz_size != zone->uz_size) { 2040 error = E2BIG; 2041 goto out; 2042 } 2043 /* 2044 * Put it at the end of the list. 2045 */ 2046 klink->kl_keg = zone_first_keg(master); 2047 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2048 if (LIST_NEXT(kl, kl_link) == NULL) { 2049 LIST_INSERT_AFTER(kl, klink, kl_link); 2050 break; 2051 } 2052 } 2053 klink = NULL; 2054 zone->uz_flags |= UMA_ZFLAG_MULTI; 2055 zone->uz_slab = zone_fetch_slab_multi; 2056 2057 out: 2058 zone_unlock_pair(zone, master); 2059 if (klink != NULL) 2060 free(klink, M_TEMP); 2061 2062 return (error); 2063 } 2064 2065 2066 /* See uma.h */ 2067 void 2068 uma_zdestroy(uma_zone_t zone) 2069 { 2070 2071 sx_slock(&uma_drain_lock); 2072 zone_free_item(zones, zone, NULL, SKIP_NONE); 2073 sx_sunlock(&uma_drain_lock); 2074 } 2075 2076 /* See uma.h */ 2077 void * 2078 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2079 { 2080 void *item; 2081 uma_cache_t cache; 2082 uma_bucket_t bucket; 2083 int lockfail; 2084 int cpu; 2085 2086 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2087 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2088 2089 /* This is the fast path allocation */ 2090 #ifdef UMA_DEBUG_ALLOC_1 2091 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 2092 #endif 2093 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 2094 zone->uz_name, flags); 2095 2096 if (flags & M_WAITOK) { 2097 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2098 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2099 } 2100 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2101 ("uma_zalloc_arg: called with spinlock or critical section held")); 2102 2103 #ifdef DEBUG_MEMGUARD 2104 if (memguard_cmp_zone(zone)) { 2105 item = memguard_alloc(zone->uz_size, flags); 2106 if (item != NULL) { 2107 if (zone->uz_init != NULL && 2108 zone->uz_init(item, zone->uz_size, flags) != 0) 2109 return (NULL); 2110 if (zone->uz_ctor != NULL && 2111 zone->uz_ctor(item, zone->uz_size, udata, 2112 flags) != 0) { 2113 zone->uz_fini(item, zone->uz_size); 2114 return (NULL); 2115 } 2116 return (item); 2117 } 2118 /* This is unfortunate but should not be fatal. */ 2119 } 2120 #endif 2121 /* 2122 * If possible, allocate from the per-CPU cache. There are two 2123 * requirements for safe access to the per-CPU cache: (1) the thread 2124 * accessing the cache must not be preempted or yield during access, 2125 * and (2) the thread must not migrate CPUs without switching which 2126 * cache it accesses. We rely on a critical section to prevent 2127 * preemption and migration. We release the critical section in 2128 * order to acquire the zone mutex if we are unable to allocate from 2129 * the current cache; when we re-acquire the critical section, we 2130 * must detect and handle migration if it has occurred. 2131 */ 2132 critical_enter(); 2133 cpu = curcpu; 2134 cache = &zone->uz_cpu[cpu]; 2135 2136 zalloc_start: 2137 bucket = cache->uc_allocbucket; 2138 if (bucket != NULL && bucket->ub_cnt > 0) { 2139 bucket->ub_cnt--; 2140 item = bucket->ub_bucket[bucket->ub_cnt]; 2141 #ifdef INVARIANTS 2142 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2143 #endif 2144 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2145 cache->uc_allocs++; 2146 critical_exit(); 2147 if (zone->uz_ctor != NULL && 2148 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2149 atomic_add_long(&zone->uz_fails, 1); 2150 zone_free_item(zone, item, udata, SKIP_DTOR); 2151 return (NULL); 2152 } 2153 #ifdef INVARIANTS 2154 uma_dbg_alloc(zone, NULL, item); 2155 #endif 2156 if (flags & M_ZERO) 2157 uma_zero_item(item, zone); 2158 return (item); 2159 } 2160 2161 /* 2162 * We have run out of items in our alloc bucket. 2163 * See if we can switch with our free bucket. 2164 */ 2165 bucket = cache->uc_freebucket; 2166 if (bucket != NULL && bucket->ub_cnt > 0) { 2167 #ifdef UMA_DEBUG_ALLOC 2168 printf("uma_zalloc: Swapping empty with alloc.\n"); 2169 #endif 2170 cache->uc_freebucket = cache->uc_allocbucket; 2171 cache->uc_allocbucket = bucket; 2172 goto zalloc_start; 2173 } 2174 2175 /* 2176 * Discard any empty allocation bucket while we hold no locks. 2177 */ 2178 bucket = cache->uc_allocbucket; 2179 cache->uc_allocbucket = NULL; 2180 critical_exit(); 2181 if (bucket != NULL) 2182 bucket_free(zone, bucket, udata); 2183 2184 /* Short-circuit for zones without buckets and low memory. */ 2185 if (zone->uz_count == 0 || bucketdisable) 2186 goto zalloc_item; 2187 2188 /* 2189 * Attempt to retrieve the item from the per-CPU cache has failed, so 2190 * we must go back to the zone. This requires the zone lock, so we 2191 * must drop the critical section, then re-acquire it when we go back 2192 * to the cache. Since the critical section is released, we may be 2193 * preempted or migrate. As such, make sure not to maintain any 2194 * thread-local state specific to the cache from prior to releasing 2195 * the critical section. 2196 */ 2197 lockfail = 0; 2198 if (ZONE_TRYLOCK(zone) == 0) { 2199 /* Record contention to size the buckets. */ 2200 ZONE_LOCK(zone); 2201 lockfail = 1; 2202 } 2203 critical_enter(); 2204 cpu = curcpu; 2205 cache = &zone->uz_cpu[cpu]; 2206 2207 /* 2208 * Since we have locked the zone we may as well send back our stats. 2209 */ 2210 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2211 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2212 cache->uc_allocs = 0; 2213 cache->uc_frees = 0; 2214 2215 /* See if we lost the race to fill the cache. */ 2216 if (cache->uc_allocbucket != NULL) { 2217 ZONE_UNLOCK(zone); 2218 goto zalloc_start; 2219 } 2220 2221 /* 2222 * Check the zone's cache of buckets. 2223 */ 2224 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2225 KASSERT(bucket->ub_cnt != 0, 2226 ("uma_zalloc_arg: Returning an empty bucket.")); 2227 2228 LIST_REMOVE(bucket, ub_link); 2229 cache->uc_allocbucket = bucket; 2230 ZONE_UNLOCK(zone); 2231 goto zalloc_start; 2232 } 2233 /* We are no longer associated with this CPU. */ 2234 critical_exit(); 2235 2236 /* 2237 * We bump the uz count when the cache size is insufficient to 2238 * handle the working set. 2239 */ 2240 if (lockfail && zone->uz_count < BUCKET_MAX) 2241 zone->uz_count++; 2242 ZONE_UNLOCK(zone); 2243 2244 /* 2245 * Now lets just fill a bucket and put it on the free list. If that 2246 * works we'll restart the allocation from the beginning and it 2247 * will use the just filled bucket. 2248 */ 2249 bucket = zone_alloc_bucket(zone, udata, flags); 2250 if (bucket != NULL) { 2251 ZONE_LOCK(zone); 2252 critical_enter(); 2253 cpu = curcpu; 2254 cache = &zone->uz_cpu[cpu]; 2255 /* 2256 * See if we lost the race or were migrated. Cache the 2257 * initialized bucket to make this less likely or claim 2258 * the memory directly. 2259 */ 2260 if (cache->uc_allocbucket == NULL) 2261 cache->uc_allocbucket = bucket; 2262 else 2263 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2264 ZONE_UNLOCK(zone); 2265 goto zalloc_start; 2266 } 2267 2268 /* 2269 * We may not be able to get a bucket so return an actual item. 2270 */ 2271 #ifdef UMA_DEBUG 2272 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2273 #endif 2274 2275 zalloc_item: 2276 item = zone_alloc_item(zone, udata, flags); 2277 2278 return (item); 2279 } 2280 2281 static uma_slab_t 2282 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2283 { 2284 uma_slab_t slab; 2285 int reserve; 2286 2287 mtx_assert(&keg->uk_lock, MA_OWNED); 2288 slab = NULL; 2289 reserve = 0; 2290 if ((flags & M_USE_RESERVE) == 0) 2291 reserve = keg->uk_reserve; 2292 2293 for (;;) { 2294 /* 2295 * Find a slab with some space. Prefer slabs that are partially 2296 * used over those that are totally full. This helps to reduce 2297 * fragmentation. 2298 */ 2299 if (keg->uk_free > reserve) { 2300 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2301 slab = LIST_FIRST(&keg->uk_part_slab); 2302 } else { 2303 slab = LIST_FIRST(&keg->uk_free_slab); 2304 LIST_REMOVE(slab, us_link); 2305 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2306 us_link); 2307 } 2308 MPASS(slab->us_keg == keg); 2309 return (slab); 2310 } 2311 2312 /* 2313 * M_NOVM means don't ask at all! 2314 */ 2315 if (flags & M_NOVM) 2316 break; 2317 2318 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2319 keg->uk_flags |= UMA_ZFLAG_FULL; 2320 /* 2321 * If this is not a multi-zone, set the FULL bit. 2322 * Otherwise slab_multi() takes care of it. 2323 */ 2324 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2325 zone->uz_flags |= UMA_ZFLAG_FULL; 2326 zone_log_warning(zone); 2327 zone_maxaction(zone); 2328 } 2329 if (flags & M_NOWAIT) 2330 break; 2331 zone->uz_sleeps++; 2332 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2333 continue; 2334 } 2335 slab = keg_alloc_slab(keg, zone, flags); 2336 /* 2337 * If we got a slab here it's safe to mark it partially used 2338 * and return. We assume that the caller is going to remove 2339 * at least one item. 2340 */ 2341 if (slab) { 2342 MPASS(slab->us_keg == keg); 2343 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2344 return (slab); 2345 } 2346 /* 2347 * We might not have been able to get a slab but another cpu 2348 * could have while we were unlocked. Check again before we 2349 * fail. 2350 */ 2351 flags |= M_NOVM; 2352 } 2353 return (slab); 2354 } 2355 2356 static uma_slab_t 2357 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2358 { 2359 uma_slab_t slab; 2360 2361 if (keg == NULL) { 2362 keg = zone_first_keg(zone); 2363 KEG_LOCK(keg); 2364 } 2365 2366 for (;;) { 2367 slab = keg_fetch_slab(keg, zone, flags); 2368 if (slab) 2369 return (slab); 2370 if (flags & (M_NOWAIT | M_NOVM)) 2371 break; 2372 } 2373 KEG_UNLOCK(keg); 2374 return (NULL); 2375 } 2376 2377 /* 2378 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2379 * with the keg locked. On NULL no lock is held. 2380 * 2381 * The last pointer is used to seed the search. It is not required. 2382 */ 2383 static uma_slab_t 2384 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2385 { 2386 uma_klink_t klink; 2387 uma_slab_t slab; 2388 uma_keg_t keg; 2389 int flags; 2390 int empty; 2391 int full; 2392 2393 /* 2394 * Don't wait on the first pass. This will skip limit tests 2395 * as well. We don't want to block if we can find a provider 2396 * without blocking. 2397 */ 2398 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2399 /* 2400 * Use the last slab allocated as a hint for where to start 2401 * the search. 2402 */ 2403 if (last != NULL) { 2404 slab = keg_fetch_slab(last, zone, flags); 2405 if (slab) 2406 return (slab); 2407 KEG_UNLOCK(last); 2408 } 2409 /* 2410 * Loop until we have a slab incase of transient failures 2411 * while M_WAITOK is specified. I'm not sure this is 100% 2412 * required but we've done it for so long now. 2413 */ 2414 for (;;) { 2415 empty = 0; 2416 full = 0; 2417 /* 2418 * Search the available kegs for slabs. Be careful to hold the 2419 * correct lock while calling into the keg layer. 2420 */ 2421 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2422 keg = klink->kl_keg; 2423 KEG_LOCK(keg); 2424 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2425 slab = keg_fetch_slab(keg, zone, flags); 2426 if (slab) 2427 return (slab); 2428 } 2429 if (keg->uk_flags & UMA_ZFLAG_FULL) 2430 full++; 2431 else 2432 empty++; 2433 KEG_UNLOCK(keg); 2434 } 2435 if (rflags & (M_NOWAIT | M_NOVM)) 2436 break; 2437 flags = rflags; 2438 /* 2439 * All kegs are full. XXX We can't atomically check all kegs 2440 * and sleep so just sleep for a short period and retry. 2441 */ 2442 if (full && !empty) { 2443 ZONE_LOCK(zone); 2444 zone->uz_flags |= UMA_ZFLAG_FULL; 2445 zone->uz_sleeps++; 2446 zone_log_warning(zone); 2447 zone_maxaction(zone); 2448 msleep(zone, zone->uz_lockptr, PVM, 2449 "zonelimit", hz/100); 2450 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2451 ZONE_UNLOCK(zone); 2452 continue; 2453 } 2454 } 2455 return (NULL); 2456 } 2457 2458 static void * 2459 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2460 { 2461 void *item; 2462 uint8_t freei; 2463 2464 MPASS(keg == slab->us_keg); 2465 mtx_assert(&keg->uk_lock, MA_OWNED); 2466 2467 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2468 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2469 item = slab->us_data + (keg->uk_rsize * freei); 2470 slab->us_freecount--; 2471 keg->uk_free--; 2472 2473 /* Move this slab to the full list */ 2474 if (slab->us_freecount == 0) { 2475 LIST_REMOVE(slab, us_link); 2476 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2477 } 2478 2479 return (item); 2480 } 2481 2482 static int 2483 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2484 { 2485 uma_slab_t slab; 2486 uma_keg_t keg; 2487 int i; 2488 2489 slab = NULL; 2490 keg = NULL; 2491 /* Try to keep the buckets totally full */ 2492 for (i = 0; i < max; ) { 2493 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2494 break; 2495 keg = slab->us_keg; 2496 while (slab->us_freecount && i < max) { 2497 bucket[i++] = slab_alloc_item(keg, slab); 2498 if (keg->uk_free <= keg->uk_reserve) 2499 break; 2500 } 2501 /* Don't grab more than one slab at a time. */ 2502 flags &= ~M_WAITOK; 2503 flags |= M_NOWAIT; 2504 } 2505 if (slab != NULL) 2506 KEG_UNLOCK(keg); 2507 2508 return i; 2509 } 2510 2511 static uma_bucket_t 2512 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2513 { 2514 uma_bucket_t bucket; 2515 int max; 2516 2517 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2518 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2519 if (bucket == NULL) 2520 return (NULL); 2521 2522 max = MIN(bucket->ub_entries, zone->uz_count); 2523 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2524 max, flags); 2525 2526 /* 2527 * Initialize the memory if necessary. 2528 */ 2529 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2530 int i; 2531 2532 for (i = 0; i < bucket->ub_cnt; i++) 2533 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2534 flags) != 0) 2535 break; 2536 /* 2537 * If we couldn't initialize the whole bucket, put the 2538 * rest back onto the freelist. 2539 */ 2540 if (i != bucket->ub_cnt) { 2541 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2542 bucket->ub_cnt - i); 2543 #ifdef INVARIANTS 2544 bzero(&bucket->ub_bucket[i], 2545 sizeof(void *) * (bucket->ub_cnt - i)); 2546 #endif 2547 bucket->ub_cnt = i; 2548 } 2549 } 2550 2551 if (bucket->ub_cnt == 0) { 2552 bucket_free(zone, bucket, udata); 2553 atomic_add_long(&zone->uz_fails, 1); 2554 return (NULL); 2555 } 2556 2557 return (bucket); 2558 } 2559 2560 /* 2561 * Allocates a single item from a zone. 2562 * 2563 * Arguments 2564 * zone The zone to alloc for. 2565 * udata The data to be passed to the constructor. 2566 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2567 * 2568 * Returns 2569 * NULL if there is no memory and M_NOWAIT is set 2570 * An item if successful 2571 */ 2572 2573 static void * 2574 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2575 { 2576 void *item; 2577 2578 item = NULL; 2579 2580 #ifdef UMA_DEBUG_ALLOC 2581 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2582 #endif 2583 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2584 goto fail; 2585 atomic_add_long(&zone->uz_allocs, 1); 2586 2587 /* 2588 * We have to call both the zone's init (not the keg's init) 2589 * and the zone's ctor. This is because the item is going from 2590 * a keg slab directly to the user, and the user is expecting it 2591 * to be both zone-init'd as well as zone-ctor'd. 2592 */ 2593 if (zone->uz_init != NULL) { 2594 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2595 zone_free_item(zone, item, udata, SKIP_FINI); 2596 goto fail; 2597 } 2598 } 2599 if (zone->uz_ctor != NULL) { 2600 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2601 zone_free_item(zone, item, udata, SKIP_DTOR); 2602 goto fail; 2603 } 2604 } 2605 #ifdef INVARIANTS 2606 uma_dbg_alloc(zone, NULL, item); 2607 #endif 2608 if (flags & M_ZERO) 2609 uma_zero_item(item, zone); 2610 2611 return (item); 2612 2613 fail: 2614 atomic_add_long(&zone->uz_fails, 1); 2615 return (NULL); 2616 } 2617 2618 /* See uma.h */ 2619 void 2620 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2621 { 2622 uma_cache_t cache; 2623 uma_bucket_t bucket; 2624 int lockfail; 2625 int cpu; 2626 2627 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2628 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2629 2630 #ifdef UMA_DEBUG_ALLOC_1 2631 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2632 #endif 2633 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2634 zone->uz_name); 2635 2636 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2637 ("uma_zfree_arg: called with spinlock or critical section held")); 2638 2639 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2640 if (item == NULL) 2641 return; 2642 #ifdef DEBUG_MEMGUARD 2643 if (is_memguard_addr(item)) { 2644 if (zone->uz_dtor != NULL) 2645 zone->uz_dtor(item, zone->uz_size, udata); 2646 if (zone->uz_fini != NULL) 2647 zone->uz_fini(item, zone->uz_size); 2648 memguard_free(item); 2649 return; 2650 } 2651 #endif 2652 #ifdef INVARIANTS 2653 if (zone->uz_flags & UMA_ZONE_MALLOC) 2654 uma_dbg_free(zone, udata, item); 2655 else 2656 uma_dbg_free(zone, NULL, item); 2657 #endif 2658 if (zone->uz_dtor != NULL) 2659 zone->uz_dtor(item, zone->uz_size, udata); 2660 2661 /* 2662 * The race here is acceptable. If we miss it we'll just have to wait 2663 * a little longer for the limits to be reset. 2664 */ 2665 if (zone->uz_flags & UMA_ZFLAG_FULL) 2666 goto zfree_item; 2667 2668 /* 2669 * If possible, free to the per-CPU cache. There are two 2670 * requirements for safe access to the per-CPU cache: (1) the thread 2671 * accessing the cache must not be preempted or yield during access, 2672 * and (2) the thread must not migrate CPUs without switching which 2673 * cache it accesses. We rely on a critical section to prevent 2674 * preemption and migration. We release the critical section in 2675 * order to acquire the zone mutex if we are unable to free to the 2676 * current cache; when we re-acquire the critical section, we must 2677 * detect and handle migration if it has occurred. 2678 */ 2679 zfree_restart: 2680 critical_enter(); 2681 cpu = curcpu; 2682 cache = &zone->uz_cpu[cpu]; 2683 2684 zfree_start: 2685 /* 2686 * Try to free into the allocbucket first to give LIFO ordering 2687 * for cache-hot datastructures. Spill over into the freebucket 2688 * if necessary. Alloc will swap them if one runs dry. 2689 */ 2690 bucket = cache->uc_allocbucket; 2691 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2692 bucket = cache->uc_freebucket; 2693 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2694 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2695 ("uma_zfree: Freeing to non free bucket index.")); 2696 bucket->ub_bucket[bucket->ub_cnt] = item; 2697 bucket->ub_cnt++; 2698 cache->uc_frees++; 2699 critical_exit(); 2700 return; 2701 } 2702 2703 /* 2704 * We must go back the zone, which requires acquiring the zone lock, 2705 * which in turn means we must release and re-acquire the critical 2706 * section. Since the critical section is released, we may be 2707 * preempted or migrate. As such, make sure not to maintain any 2708 * thread-local state specific to the cache from prior to releasing 2709 * the critical section. 2710 */ 2711 critical_exit(); 2712 if (zone->uz_count == 0 || bucketdisable) 2713 goto zfree_item; 2714 2715 lockfail = 0; 2716 if (ZONE_TRYLOCK(zone) == 0) { 2717 /* Record contention to size the buckets. */ 2718 ZONE_LOCK(zone); 2719 lockfail = 1; 2720 } 2721 critical_enter(); 2722 cpu = curcpu; 2723 cache = &zone->uz_cpu[cpu]; 2724 2725 /* 2726 * Since we have locked the zone we may as well send back our stats. 2727 */ 2728 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2729 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2730 cache->uc_allocs = 0; 2731 cache->uc_frees = 0; 2732 2733 bucket = cache->uc_freebucket; 2734 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2735 ZONE_UNLOCK(zone); 2736 goto zfree_start; 2737 } 2738 cache->uc_freebucket = NULL; 2739 /* We are no longer associated with this CPU. */ 2740 critical_exit(); 2741 2742 /* Can we throw this on the zone full list? */ 2743 if (bucket != NULL) { 2744 #ifdef UMA_DEBUG_ALLOC 2745 printf("uma_zfree: Putting old bucket on the free list.\n"); 2746 #endif 2747 /* ub_cnt is pointing to the last free item */ 2748 KASSERT(bucket->ub_cnt != 0, 2749 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2750 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2751 } 2752 2753 /* 2754 * We bump the uz count when the cache size is insufficient to 2755 * handle the working set. 2756 */ 2757 if (lockfail && zone->uz_count < BUCKET_MAX) 2758 zone->uz_count++; 2759 ZONE_UNLOCK(zone); 2760 2761 #ifdef UMA_DEBUG_ALLOC 2762 printf("uma_zfree: Allocating new free bucket.\n"); 2763 #endif 2764 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2765 if (bucket) { 2766 critical_enter(); 2767 cpu = curcpu; 2768 cache = &zone->uz_cpu[cpu]; 2769 if (cache->uc_freebucket == NULL) { 2770 cache->uc_freebucket = bucket; 2771 goto zfree_start; 2772 } 2773 /* 2774 * We lost the race, start over. We have to drop our 2775 * critical section to free the bucket. 2776 */ 2777 critical_exit(); 2778 bucket_free(zone, bucket, udata); 2779 goto zfree_restart; 2780 } 2781 2782 /* 2783 * If nothing else caught this, we'll just do an internal free. 2784 */ 2785 zfree_item: 2786 zone_free_item(zone, item, udata, SKIP_DTOR); 2787 2788 return; 2789 } 2790 2791 static void 2792 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2793 { 2794 uint8_t freei; 2795 2796 mtx_assert(&keg->uk_lock, MA_OWNED); 2797 MPASS(keg == slab->us_keg); 2798 2799 /* Do we need to remove from any lists? */ 2800 if (slab->us_freecount+1 == keg->uk_ipers) { 2801 LIST_REMOVE(slab, us_link); 2802 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2803 } else if (slab->us_freecount == 0) { 2804 LIST_REMOVE(slab, us_link); 2805 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2806 } 2807 2808 /* Slab management. */ 2809 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2810 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2811 slab->us_freecount++; 2812 2813 /* Keg statistics. */ 2814 keg->uk_free++; 2815 } 2816 2817 static void 2818 zone_release(uma_zone_t zone, void **bucket, int cnt) 2819 { 2820 void *item; 2821 uma_slab_t slab; 2822 uma_keg_t keg; 2823 uint8_t *mem; 2824 int clearfull; 2825 int i; 2826 2827 clearfull = 0; 2828 keg = zone_first_keg(zone); 2829 KEG_LOCK(keg); 2830 for (i = 0; i < cnt; i++) { 2831 item = bucket[i]; 2832 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2833 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2834 if (zone->uz_flags & UMA_ZONE_HASH) { 2835 slab = hash_sfind(&keg->uk_hash, mem); 2836 } else { 2837 mem += keg->uk_pgoff; 2838 slab = (uma_slab_t)mem; 2839 } 2840 } else { 2841 slab = vtoslab((vm_offset_t)item); 2842 if (slab->us_keg != keg) { 2843 KEG_UNLOCK(keg); 2844 keg = slab->us_keg; 2845 KEG_LOCK(keg); 2846 } 2847 } 2848 slab_free_item(keg, slab, item); 2849 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2850 if (keg->uk_pages < keg->uk_maxpages) { 2851 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2852 clearfull = 1; 2853 } 2854 2855 /* 2856 * We can handle one more allocation. Since we're 2857 * clearing ZFLAG_FULL, wake up all procs blocked 2858 * on pages. This should be uncommon, so keeping this 2859 * simple for now (rather than adding count of blocked 2860 * threads etc). 2861 */ 2862 wakeup(keg); 2863 } 2864 } 2865 KEG_UNLOCK(keg); 2866 if (clearfull) { 2867 ZONE_LOCK(zone); 2868 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2869 wakeup(zone); 2870 ZONE_UNLOCK(zone); 2871 } 2872 2873 } 2874 2875 /* 2876 * Frees a single item to any zone. 2877 * 2878 * Arguments: 2879 * zone The zone to free to 2880 * item The item we're freeing 2881 * udata User supplied data for the dtor 2882 * skip Skip dtors and finis 2883 */ 2884 static void 2885 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2886 { 2887 2888 #ifdef INVARIANTS 2889 if (skip == SKIP_NONE) { 2890 if (zone->uz_flags & UMA_ZONE_MALLOC) 2891 uma_dbg_free(zone, udata, item); 2892 else 2893 uma_dbg_free(zone, NULL, item); 2894 } 2895 #endif 2896 if (skip < SKIP_DTOR && zone->uz_dtor) 2897 zone->uz_dtor(item, zone->uz_size, udata); 2898 2899 if (skip < SKIP_FINI && zone->uz_fini) 2900 zone->uz_fini(item, zone->uz_size); 2901 2902 atomic_add_long(&zone->uz_frees, 1); 2903 zone->uz_release(zone->uz_arg, &item, 1); 2904 } 2905 2906 /* See uma.h */ 2907 int 2908 uma_zone_set_max(uma_zone_t zone, int nitems) 2909 { 2910 uma_keg_t keg; 2911 2912 keg = zone_first_keg(zone); 2913 if (keg == NULL) 2914 return (0); 2915 KEG_LOCK(keg); 2916 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2917 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2918 keg->uk_maxpages += keg->uk_ppera; 2919 nitems = keg->uk_maxpages * keg->uk_ipers; 2920 KEG_UNLOCK(keg); 2921 2922 return (nitems); 2923 } 2924 2925 /* See uma.h */ 2926 int 2927 uma_zone_get_max(uma_zone_t zone) 2928 { 2929 int nitems; 2930 uma_keg_t keg; 2931 2932 keg = zone_first_keg(zone); 2933 if (keg == NULL) 2934 return (0); 2935 KEG_LOCK(keg); 2936 nitems = keg->uk_maxpages * keg->uk_ipers; 2937 KEG_UNLOCK(keg); 2938 2939 return (nitems); 2940 } 2941 2942 /* See uma.h */ 2943 void 2944 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2945 { 2946 2947 ZONE_LOCK(zone); 2948 zone->uz_warning = warning; 2949 ZONE_UNLOCK(zone); 2950 } 2951 2952 /* See uma.h */ 2953 void 2954 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 2955 { 2956 2957 ZONE_LOCK(zone); 2958 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 2959 ZONE_UNLOCK(zone); 2960 } 2961 2962 /* See uma.h */ 2963 int 2964 uma_zone_get_cur(uma_zone_t zone) 2965 { 2966 int64_t nitems; 2967 u_int i; 2968 2969 ZONE_LOCK(zone); 2970 nitems = zone->uz_allocs - zone->uz_frees; 2971 CPU_FOREACH(i) { 2972 /* 2973 * See the comment in sysctl_vm_zone_stats() regarding the 2974 * safety of accessing the per-cpu caches. With the zone lock 2975 * held, it is safe, but can potentially result in stale data. 2976 */ 2977 nitems += zone->uz_cpu[i].uc_allocs - 2978 zone->uz_cpu[i].uc_frees; 2979 } 2980 ZONE_UNLOCK(zone); 2981 2982 return (nitems < 0 ? 0 : nitems); 2983 } 2984 2985 /* See uma.h */ 2986 void 2987 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2988 { 2989 uma_keg_t keg; 2990 2991 keg = zone_first_keg(zone); 2992 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2993 KEG_LOCK(keg); 2994 KASSERT(keg->uk_pages == 0, 2995 ("uma_zone_set_init on non-empty keg")); 2996 keg->uk_init = uminit; 2997 KEG_UNLOCK(keg); 2998 } 2999 3000 /* See uma.h */ 3001 void 3002 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3003 { 3004 uma_keg_t keg; 3005 3006 keg = zone_first_keg(zone); 3007 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3008 KEG_LOCK(keg); 3009 KASSERT(keg->uk_pages == 0, 3010 ("uma_zone_set_fini on non-empty keg")); 3011 keg->uk_fini = fini; 3012 KEG_UNLOCK(keg); 3013 } 3014 3015 /* See uma.h */ 3016 void 3017 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3018 { 3019 3020 ZONE_LOCK(zone); 3021 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3022 ("uma_zone_set_zinit on non-empty keg")); 3023 zone->uz_init = zinit; 3024 ZONE_UNLOCK(zone); 3025 } 3026 3027 /* See uma.h */ 3028 void 3029 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3030 { 3031 3032 ZONE_LOCK(zone); 3033 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3034 ("uma_zone_set_zfini on non-empty keg")); 3035 zone->uz_fini = zfini; 3036 ZONE_UNLOCK(zone); 3037 } 3038 3039 /* See uma.h */ 3040 /* XXX uk_freef is not actually used with the zone locked */ 3041 void 3042 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3043 { 3044 uma_keg_t keg; 3045 3046 keg = zone_first_keg(zone); 3047 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3048 KEG_LOCK(keg); 3049 keg->uk_freef = freef; 3050 KEG_UNLOCK(keg); 3051 } 3052 3053 /* See uma.h */ 3054 /* XXX uk_allocf is not actually used with the zone locked */ 3055 void 3056 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3057 { 3058 uma_keg_t keg; 3059 3060 keg = zone_first_keg(zone); 3061 KEG_LOCK(keg); 3062 keg->uk_allocf = allocf; 3063 KEG_UNLOCK(keg); 3064 } 3065 3066 /* See uma.h */ 3067 void 3068 uma_zone_reserve(uma_zone_t zone, int items) 3069 { 3070 uma_keg_t keg; 3071 3072 keg = zone_first_keg(zone); 3073 if (keg == NULL) 3074 return; 3075 KEG_LOCK(keg); 3076 keg->uk_reserve = items; 3077 KEG_UNLOCK(keg); 3078 3079 return; 3080 } 3081 3082 /* See uma.h */ 3083 int 3084 uma_zone_reserve_kva(uma_zone_t zone, int count) 3085 { 3086 uma_keg_t keg; 3087 vm_offset_t kva; 3088 u_int pages; 3089 3090 keg = zone_first_keg(zone); 3091 if (keg == NULL) 3092 return (0); 3093 pages = count / keg->uk_ipers; 3094 3095 if (pages * keg->uk_ipers < count) 3096 pages++; 3097 3098 #ifdef UMA_MD_SMALL_ALLOC 3099 if (keg->uk_ppera > 1) { 3100 #else 3101 if (1) { 3102 #endif 3103 kva = kva_alloc((vm_size_t)pages * UMA_SLAB_SIZE); 3104 if (kva == 0) 3105 return (0); 3106 } else 3107 kva = 0; 3108 KEG_LOCK(keg); 3109 keg->uk_kva = kva; 3110 keg->uk_offset = 0; 3111 keg->uk_maxpages = pages; 3112 #ifdef UMA_MD_SMALL_ALLOC 3113 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3114 #else 3115 keg->uk_allocf = noobj_alloc; 3116 #endif 3117 keg->uk_flags |= UMA_ZONE_NOFREE; 3118 KEG_UNLOCK(keg); 3119 3120 return (1); 3121 } 3122 3123 /* See uma.h */ 3124 void 3125 uma_prealloc(uma_zone_t zone, int items) 3126 { 3127 int slabs; 3128 uma_slab_t slab; 3129 uma_keg_t keg; 3130 3131 keg = zone_first_keg(zone); 3132 if (keg == NULL) 3133 return; 3134 KEG_LOCK(keg); 3135 slabs = items / keg->uk_ipers; 3136 if (slabs * keg->uk_ipers < items) 3137 slabs++; 3138 while (slabs > 0) { 3139 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3140 if (slab == NULL) 3141 break; 3142 MPASS(slab->us_keg == keg); 3143 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3144 slabs--; 3145 } 3146 KEG_UNLOCK(keg); 3147 } 3148 3149 /* See uma.h */ 3150 static void 3151 uma_reclaim_locked(bool kmem_danger) 3152 { 3153 3154 #ifdef UMA_DEBUG 3155 printf("UMA: vm asked us to release pages!\n"); 3156 #endif 3157 sx_assert(&uma_drain_lock, SA_XLOCKED); 3158 bucket_enable(); 3159 zone_foreach(zone_drain); 3160 if (vm_page_count_min() || kmem_danger) { 3161 cache_drain_safe(NULL); 3162 zone_foreach(zone_drain); 3163 } 3164 /* 3165 * Some slabs may have been freed but this zone will be visited early 3166 * we visit again so that we can free pages that are empty once other 3167 * zones are drained. We have to do the same for buckets. 3168 */ 3169 zone_drain(slabzone); 3170 bucket_zone_drain(); 3171 } 3172 3173 void 3174 uma_reclaim(void) 3175 { 3176 3177 sx_xlock(&uma_drain_lock); 3178 uma_reclaim_locked(false); 3179 sx_xunlock(&uma_drain_lock); 3180 } 3181 3182 static int uma_reclaim_needed; 3183 3184 void 3185 uma_reclaim_wakeup(void) 3186 { 3187 3188 uma_reclaim_needed = 1; 3189 wakeup(&uma_reclaim_needed); 3190 } 3191 3192 void 3193 uma_reclaim_worker(void *arg __unused) 3194 { 3195 3196 sx_xlock(&uma_drain_lock); 3197 for (;;) { 3198 sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM, 3199 "umarcl", 0); 3200 if (uma_reclaim_needed) { 3201 uma_reclaim_needed = 0; 3202 uma_reclaim_locked(true); 3203 } 3204 } 3205 } 3206 3207 /* See uma.h */ 3208 int 3209 uma_zone_exhausted(uma_zone_t zone) 3210 { 3211 int full; 3212 3213 ZONE_LOCK(zone); 3214 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3215 ZONE_UNLOCK(zone); 3216 return (full); 3217 } 3218 3219 int 3220 uma_zone_exhausted_nolock(uma_zone_t zone) 3221 { 3222 return (zone->uz_flags & UMA_ZFLAG_FULL); 3223 } 3224 3225 void * 3226 uma_large_malloc(vm_size_t size, int wait) 3227 { 3228 void *mem; 3229 uma_slab_t slab; 3230 uint8_t flags; 3231 3232 slab = zone_alloc_item(slabzone, NULL, wait); 3233 if (slab == NULL) 3234 return (NULL); 3235 mem = page_alloc(NULL, size, &flags, wait); 3236 if (mem) { 3237 vsetslab((vm_offset_t)mem, slab); 3238 slab->us_data = mem; 3239 slab->us_flags = flags | UMA_SLAB_MALLOC; 3240 slab->us_size = size; 3241 } else { 3242 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3243 } 3244 3245 return (mem); 3246 } 3247 3248 void 3249 uma_large_free(uma_slab_t slab) 3250 { 3251 3252 page_free(slab->us_data, slab->us_size, slab->us_flags); 3253 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3254 } 3255 3256 static void 3257 uma_zero_item(void *item, uma_zone_t zone) 3258 { 3259 int i; 3260 3261 if (zone->uz_flags & UMA_ZONE_PCPU) { 3262 CPU_FOREACH(i) 3263 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3264 } else 3265 bzero(item, zone->uz_size); 3266 } 3267 3268 void 3269 uma_print_stats(void) 3270 { 3271 zone_foreach(uma_print_zone); 3272 } 3273 3274 static void 3275 slab_print(uma_slab_t slab) 3276 { 3277 printf("slab: keg %p, data %p, freecount %d\n", 3278 slab->us_keg, slab->us_data, slab->us_freecount); 3279 } 3280 3281 static void 3282 cache_print(uma_cache_t cache) 3283 { 3284 printf("alloc: %p(%d), free: %p(%d)\n", 3285 cache->uc_allocbucket, 3286 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3287 cache->uc_freebucket, 3288 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3289 } 3290 3291 static void 3292 uma_print_keg(uma_keg_t keg) 3293 { 3294 uma_slab_t slab; 3295 3296 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3297 "out %d free %d limit %d\n", 3298 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3299 keg->uk_ipers, keg->uk_ppera, 3300 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3301 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3302 printf("Part slabs:\n"); 3303 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3304 slab_print(slab); 3305 printf("Free slabs:\n"); 3306 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3307 slab_print(slab); 3308 printf("Full slabs:\n"); 3309 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3310 slab_print(slab); 3311 } 3312 3313 void 3314 uma_print_zone(uma_zone_t zone) 3315 { 3316 uma_cache_t cache; 3317 uma_klink_t kl; 3318 int i; 3319 3320 printf("zone: %s(%p) size %d flags %#x\n", 3321 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3322 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3323 uma_print_keg(kl->kl_keg); 3324 CPU_FOREACH(i) { 3325 cache = &zone->uz_cpu[i]; 3326 printf("CPU %d Cache:\n", i); 3327 cache_print(cache); 3328 } 3329 } 3330 3331 #ifdef DDB 3332 /* 3333 * Generate statistics across both the zone and its per-cpu cache's. Return 3334 * desired statistics if the pointer is non-NULL for that statistic. 3335 * 3336 * Note: does not update the zone statistics, as it can't safely clear the 3337 * per-CPU cache statistic. 3338 * 3339 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3340 * safe from off-CPU; we should modify the caches to track this information 3341 * directly so that we don't have to. 3342 */ 3343 static void 3344 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3345 uint64_t *freesp, uint64_t *sleepsp) 3346 { 3347 uma_cache_t cache; 3348 uint64_t allocs, frees, sleeps; 3349 int cachefree, cpu; 3350 3351 allocs = frees = sleeps = 0; 3352 cachefree = 0; 3353 CPU_FOREACH(cpu) { 3354 cache = &z->uz_cpu[cpu]; 3355 if (cache->uc_allocbucket != NULL) 3356 cachefree += cache->uc_allocbucket->ub_cnt; 3357 if (cache->uc_freebucket != NULL) 3358 cachefree += cache->uc_freebucket->ub_cnt; 3359 allocs += cache->uc_allocs; 3360 frees += cache->uc_frees; 3361 } 3362 allocs += z->uz_allocs; 3363 frees += z->uz_frees; 3364 sleeps += z->uz_sleeps; 3365 if (cachefreep != NULL) 3366 *cachefreep = cachefree; 3367 if (allocsp != NULL) 3368 *allocsp = allocs; 3369 if (freesp != NULL) 3370 *freesp = frees; 3371 if (sleepsp != NULL) 3372 *sleepsp = sleeps; 3373 } 3374 #endif /* DDB */ 3375 3376 static int 3377 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3378 { 3379 uma_keg_t kz; 3380 uma_zone_t z; 3381 int count; 3382 3383 count = 0; 3384 rw_rlock(&uma_rwlock); 3385 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3386 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3387 count++; 3388 } 3389 rw_runlock(&uma_rwlock); 3390 return (sysctl_handle_int(oidp, &count, 0, req)); 3391 } 3392 3393 static int 3394 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3395 { 3396 struct uma_stream_header ush; 3397 struct uma_type_header uth; 3398 struct uma_percpu_stat ups; 3399 uma_bucket_t bucket; 3400 struct sbuf sbuf; 3401 uma_cache_t cache; 3402 uma_klink_t kl; 3403 uma_keg_t kz; 3404 uma_zone_t z; 3405 uma_keg_t k; 3406 int count, error, i; 3407 3408 error = sysctl_wire_old_buffer(req, 0); 3409 if (error != 0) 3410 return (error); 3411 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3412 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3413 3414 count = 0; 3415 rw_rlock(&uma_rwlock); 3416 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3417 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3418 count++; 3419 } 3420 3421 /* 3422 * Insert stream header. 3423 */ 3424 bzero(&ush, sizeof(ush)); 3425 ush.ush_version = UMA_STREAM_VERSION; 3426 ush.ush_maxcpus = (mp_maxid + 1); 3427 ush.ush_count = count; 3428 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3429 3430 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3431 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3432 bzero(&uth, sizeof(uth)); 3433 ZONE_LOCK(z); 3434 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3435 uth.uth_align = kz->uk_align; 3436 uth.uth_size = kz->uk_size; 3437 uth.uth_rsize = kz->uk_rsize; 3438 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3439 k = kl->kl_keg; 3440 uth.uth_maxpages += k->uk_maxpages; 3441 uth.uth_pages += k->uk_pages; 3442 uth.uth_keg_free += k->uk_free; 3443 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3444 * k->uk_ipers; 3445 } 3446 3447 /* 3448 * A zone is secondary is it is not the first entry 3449 * on the keg's zone list. 3450 */ 3451 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3452 (LIST_FIRST(&kz->uk_zones) != z)) 3453 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3454 3455 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3456 uth.uth_zone_free += bucket->ub_cnt; 3457 uth.uth_allocs = z->uz_allocs; 3458 uth.uth_frees = z->uz_frees; 3459 uth.uth_fails = z->uz_fails; 3460 uth.uth_sleeps = z->uz_sleeps; 3461 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3462 /* 3463 * While it is not normally safe to access the cache 3464 * bucket pointers while not on the CPU that owns the 3465 * cache, we only allow the pointers to be exchanged 3466 * without the zone lock held, not invalidated, so 3467 * accept the possible race associated with bucket 3468 * exchange during monitoring. 3469 */ 3470 for (i = 0; i < (mp_maxid + 1); i++) { 3471 bzero(&ups, sizeof(ups)); 3472 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3473 goto skip; 3474 if (CPU_ABSENT(i)) 3475 goto skip; 3476 cache = &z->uz_cpu[i]; 3477 if (cache->uc_allocbucket != NULL) 3478 ups.ups_cache_free += 3479 cache->uc_allocbucket->ub_cnt; 3480 if (cache->uc_freebucket != NULL) 3481 ups.ups_cache_free += 3482 cache->uc_freebucket->ub_cnt; 3483 ups.ups_allocs = cache->uc_allocs; 3484 ups.ups_frees = cache->uc_frees; 3485 skip: 3486 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3487 } 3488 ZONE_UNLOCK(z); 3489 } 3490 } 3491 rw_runlock(&uma_rwlock); 3492 error = sbuf_finish(&sbuf); 3493 sbuf_delete(&sbuf); 3494 return (error); 3495 } 3496 3497 int 3498 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3499 { 3500 uma_zone_t zone = *(uma_zone_t *)arg1; 3501 int error, max; 3502 3503 max = uma_zone_get_max(zone); 3504 error = sysctl_handle_int(oidp, &max, 0, req); 3505 if (error || !req->newptr) 3506 return (error); 3507 3508 uma_zone_set_max(zone, max); 3509 3510 return (0); 3511 } 3512 3513 int 3514 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3515 { 3516 uma_zone_t zone = *(uma_zone_t *)arg1; 3517 int cur; 3518 3519 cur = uma_zone_get_cur(zone); 3520 return (sysctl_handle_int(oidp, &cur, 0, req)); 3521 } 3522 3523 #ifdef INVARIANTS 3524 static uma_slab_t 3525 uma_dbg_getslab(uma_zone_t zone, void *item) 3526 { 3527 uma_slab_t slab; 3528 uma_keg_t keg; 3529 uint8_t *mem; 3530 3531 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3532 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3533 slab = vtoslab((vm_offset_t)mem); 3534 } else { 3535 /* 3536 * It is safe to return the slab here even though the 3537 * zone is unlocked because the item's allocation state 3538 * essentially holds a reference. 3539 */ 3540 ZONE_LOCK(zone); 3541 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3542 if (keg->uk_flags & UMA_ZONE_HASH) 3543 slab = hash_sfind(&keg->uk_hash, mem); 3544 else 3545 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3546 ZONE_UNLOCK(zone); 3547 } 3548 3549 return (slab); 3550 } 3551 3552 /* 3553 * Set up the slab's freei data such that uma_dbg_free can function. 3554 * 3555 */ 3556 static void 3557 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 3558 { 3559 uma_keg_t keg; 3560 int freei; 3561 3562 if (zone_first_keg(zone) == NULL) 3563 return; 3564 if (slab == NULL) { 3565 slab = uma_dbg_getslab(zone, item); 3566 if (slab == NULL) 3567 panic("uma: item %p did not belong to zone %s\n", 3568 item, zone->uz_name); 3569 } 3570 keg = slab->us_keg; 3571 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3572 3573 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3574 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 3575 item, zone, zone->uz_name, slab, freei); 3576 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3577 3578 return; 3579 } 3580 3581 /* 3582 * Verifies freed addresses. Checks for alignment, valid slab membership 3583 * and duplicate frees. 3584 * 3585 */ 3586 static void 3587 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 3588 { 3589 uma_keg_t keg; 3590 int freei; 3591 3592 if (zone_first_keg(zone) == NULL) 3593 return; 3594 if (slab == NULL) { 3595 slab = uma_dbg_getslab(zone, item); 3596 if (slab == NULL) 3597 panic("uma: Freed item %p did not belong to zone %s\n", 3598 item, zone->uz_name); 3599 } 3600 keg = slab->us_keg; 3601 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3602 3603 if (freei >= keg->uk_ipers) 3604 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 3605 item, zone, zone->uz_name, slab, freei); 3606 3607 if (((freei * keg->uk_rsize) + slab->us_data) != item) 3608 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 3609 item, zone, zone->uz_name, slab, freei); 3610 3611 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3612 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 3613 item, zone, zone->uz_name, slab, freei); 3614 3615 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3616 } 3617 #endif /* INVARIANTS */ 3618 3619 #ifdef DDB 3620 DB_SHOW_COMMAND(uma, db_show_uma) 3621 { 3622 uint64_t allocs, frees, sleeps; 3623 uma_bucket_t bucket; 3624 uma_keg_t kz; 3625 uma_zone_t z; 3626 int cachefree; 3627 3628 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3629 "Free", "Requests", "Sleeps", "Bucket"); 3630 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3631 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3632 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3633 allocs = z->uz_allocs; 3634 frees = z->uz_frees; 3635 sleeps = z->uz_sleeps; 3636 cachefree = 0; 3637 } else 3638 uma_zone_sumstat(z, &cachefree, &allocs, 3639 &frees, &sleeps); 3640 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3641 (LIST_FIRST(&kz->uk_zones) != z))) 3642 cachefree += kz->uk_free; 3643 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3644 cachefree += bucket->ub_cnt; 3645 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3646 z->uz_name, (uintmax_t)kz->uk_size, 3647 (intmax_t)(allocs - frees), cachefree, 3648 (uintmax_t)allocs, sleeps, z->uz_count); 3649 if (db_pager_quit) 3650 return; 3651 } 3652 } 3653 } 3654 3655 DB_SHOW_COMMAND(umacache, db_show_umacache) 3656 { 3657 uint64_t allocs, frees; 3658 uma_bucket_t bucket; 3659 uma_zone_t z; 3660 int cachefree; 3661 3662 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3663 "Requests", "Bucket"); 3664 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3665 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3666 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3667 cachefree += bucket->ub_cnt; 3668 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3669 z->uz_name, (uintmax_t)z->uz_size, 3670 (intmax_t)(allocs - frees), cachefree, 3671 (uintmax_t)allocs, z->uz_count); 3672 if (db_pager_quit) 3673 return; 3674 } 3675 } 3676 #endif /* DDB */ 3677