1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/asan.h> 62 #include <sys/bitset.h> 63 #include <sys/domainset.h> 64 #include <sys/eventhandler.h> 65 #include <sys/kernel.h> 66 #include <sys/types.h> 67 #include <sys/limits.h> 68 #include <sys/queue.h> 69 #include <sys/malloc.h> 70 #include <sys/ktr.h> 71 #include <sys/lock.h> 72 #include <sys/msan.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/random.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/sched.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/smp.h> 81 #include <sys/smr.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 #include <sys/vmmeter.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_domainset.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_phys.h> 93 #include <vm/vm_pagequeue.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vm_dumpset.h> 98 #include <vm/uma.h> 99 #include <vm/uma_int.h> 100 #include <vm/uma_dbg.h> 101 102 #include <ddb/ddb.h> 103 104 #ifdef DEBUG_MEMGUARD 105 #include <vm/memguard.h> 106 #endif 107 108 #include <machine/md_var.h> 109 110 #ifdef INVARIANTS 111 #define UMA_ALWAYS_CTORDTOR 1 112 #else 113 #define UMA_ALWAYS_CTORDTOR 0 114 #endif 115 116 /* 117 * This is the zone and keg from which all zones are spawned. 118 */ 119 static uma_zone_t kegs; 120 static uma_zone_t zones; 121 122 /* 123 * On INVARIANTS builds, the slab contains a second bitset of the same size, 124 * "dbg_bits", which is laid out immediately after us_free. 125 */ 126 #ifdef INVARIANTS 127 #define SLAB_BITSETS 2 128 #else 129 #define SLAB_BITSETS 1 130 #endif 131 132 /* 133 * These are the two zones from which all offpage uma_slab_ts are allocated. 134 * 135 * One zone is for slab headers that can represent a larger number of items, 136 * making the slabs themselves more efficient, and the other zone is for 137 * headers that are smaller and represent fewer items, making the headers more 138 * efficient. 139 */ 140 #define SLABZONE_SIZE(setsize) \ 141 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 142 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 143 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 144 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 145 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 146 static uma_zone_t slabzones[2]; 147 148 /* 149 * The initial hash tables come out of this zone so they can be allocated 150 * prior to malloc coming up. 151 */ 152 static uma_zone_t hashzone; 153 154 /* The boot-time adjusted value for cache line alignment. */ 155 int uma_align_cache = 64 - 1; 156 157 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 158 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 159 160 /* 161 * Are we allowed to allocate buckets? 162 */ 163 static int bucketdisable = 1; 164 165 /* Linked list of all kegs in the system */ 166 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 167 168 /* Linked list of all cache-only zones in the system */ 169 static LIST_HEAD(,uma_zone) uma_cachezones = 170 LIST_HEAD_INITIALIZER(uma_cachezones); 171 172 /* 173 * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of 174 * zones. 175 */ 176 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 177 178 static struct sx uma_reclaim_lock; 179 180 /* 181 * First available virual address for boot time allocations. 182 */ 183 static vm_offset_t bootstart; 184 static vm_offset_t bootmem; 185 186 /* 187 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 188 * allocations don't trigger a wakeup of the reclaim thread. 189 */ 190 unsigned long uma_kmem_limit = LONG_MAX; 191 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 192 "UMA kernel memory soft limit"); 193 unsigned long uma_kmem_total; 194 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 195 "UMA kernel memory usage"); 196 197 /* Is the VM done starting up? */ 198 static enum { 199 BOOT_COLD, 200 BOOT_KVA, 201 BOOT_PCPU, 202 BOOT_RUNNING, 203 BOOT_SHUTDOWN, 204 } booted = BOOT_COLD; 205 206 /* 207 * This is the handle used to schedule events that need to happen 208 * outside of the allocation fast path. 209 */ 210 static struct timeout_task uma_timeout_task; 211 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 212 213 /* 214 * This structure is passed as the zone ctor arg so that I don't have to create 215 * a special allocation function just for zones. 216 */ 217 struct uma_zctor_args { 218 const char *name; 219 size_t size; 220 uma_ctor ctor; 221 uma_dtor dtor; 222 uma_init uminit; 223 uma_fini fini; 224 uma_import import; 225 uma_release release; 226 void *arg; 227 uma_keg_t keg; 228 int align; 229 uint32_t flags; 230 }; 231 232 struct uma_kctor_args { 233 uma_zone_t zone; 234 size_t size; 235 uma_init uminit; 236 uma_fini fini; 237 int align; 238 uint32_t flags; 239 }; 240 241 struct uma_bucket_zone { 242 uma_zone_t ubz_zone; 243 const char *ubz_name; 244 int ubz_entries; /* Number of items it can hold. */ 245 int ubz_maxsize; /* Maximum allocation size per-item. */ 246 }; 247 248 /* 249 * Compute the actual number of bucket entries to pack them in power 250 * of two sizes for more efficient space utilization. 251 */ 252 #define BUCKET_SIZE(n) \ 253 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 254 255 #define BUCKET_MAX BUCKET_SIZE(256) 256 257 struct uma_bucket_zone bucket_zones[] = { 258 /* Literal bucket sizes. */ 259 { NULL, "2 Bucket", 2, 4096 }, 260 { NULL, "4 Bucket", 4, 3072 }, 261 { NULL, "8 Bucket", 8, 2048 }, 262 { NULL, "16 Bucket", 16, 1024 }, 263 /* Rounded down power of 2 sizes for efficiency. */ 264 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 265 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 266 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 267 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 268 { NULL, NULL, 0} 269 }; 270 271 /* 272 * Flags and enumerations to be passed to internal functions. 273 */ 274 enum zfreeskip { 275 SKIP_NONE = 0, 276 SKIP_CNT = 0x00000001, 277 SKIP_DTOR = 0x00010000, 278 SKIP_FINI = 0x00020000, 279 }; 280 281 /* Prototypes.. */ 282 283 void uma_startup1(vm_offset_t); 284 void uma_startup2(void); 285 286 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 287 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 288 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 289 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 290 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 291 static void page_free(void *, vm_size_t, uint8_t); 292 static void pcpu_page_free(void *, vm_size_t, uint8_t); 293 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 294 static void cache_drain(uma_zone_t); 295 static void bucket_drain(uma_zone_t, uma_bucket_t); 296 static void bucket_cache_reclaim(uma_zone_t zone, bool, int); 297 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int); 298 static int keg_ctor(void *, int, void *, int); 299 static void keg_dtor(void *, int, void *); 300 static void keg_drain(uma_keg_t keg, int domain); 301 static int zone_ctor(void *, int, void *, int); 302 static void zone_dtor(void *, int, void *); 303 static inline void item_dtor(uma_zone_t zone, void *item, int size, 304 void *udata, enum zfreeskip skip); 305 static int zero_init(void *, int, int); 306 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 307 int itemdomain, bool ws); 308 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 309 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 310 static void zone_timeout(uma_zone_t zone, void *); 311 static int hash_alloc(struct uma_hash *, u_int); 312 static int hash_expand(struct uma_hash *, struct uma_hash *); 313 static void hash_free(struct uma_hash *hash); 314 static void uma_timeout(void *, int); 315 static void uma_shutdown(void); 316 static void *zone_alloc_item(uma_zone_t, void *, int, int); 317 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 318 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 319 static void zone_free_limit(uma_zone_t zone, int count); 320 static void bucket_enable(void); 321 static void bucket_init(void); 322 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 323 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 324 static void bucket_zone_drain(int domain); 325 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 326 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 327 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 328 static size_t slab_sizeof(int nitems); 329 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 330 uma_fini fini, int align, uint32_t flags); 331 static int zone_import(void *, void **, int, int, int); 332 static void zone_release(void *, void **, int); 333 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 334 static bool cache_free(uma_zone_t, uma_cache_t, void *, int); 335 336 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 337 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 338 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 339 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 340 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 341 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 342 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 343 344 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 345 346 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 347 "Memory allocation debugging"); 348 349 #ifdef INVARIANTS 350 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 351 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 352 353 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 354 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 355 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 356 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 357 358 static u_int dbg_divisor = 1; 359 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 360 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 361 "Debug & thrash every this item in memory allocator"); 362 363 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 364 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 365 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 366 &uma_dbg_cnt, "memory items debugged"); 367 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 368 &uma_skip_cnt, "memory items skipped, not debugged"); 369 #endif 370 371 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 372 "Universal Memory Allocator"); 373 374 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 375 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 376 377 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 378 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 379 380 static int zone_warnings = 1; 381 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 382 "Warn when UMA zones becomes full"); 383 384 static int multipage_slabs = 1; 385 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 386 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 387 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 388 "UMA may choose larger slab sizes for better efficiency"); 389 390 /* 391 * Select the slab zone for an offpage slab with the given maximum item count. 392 */ 393 static inline uma_zone_t 394 slabzone(int ipers) 395 { 396 397 return (slabzones[ipers > SLABZONE0_SETSIZE]); 398 } 399 400 /* 401 * This routine checks to see whether or not it's safe to enable buckets. 402 */ 403 static void 404 bucket_enable(void) 405 { 406 407 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 408 bucketdisable = vm_page_count_min(); 409 } 410 411 /* 412 * Initialize bucket_zones, the array of zones of buckets of various sizes. 413 * 414 * For each zone, calculate the memory required for each bucket, consisting 415 * of the header and an array of pointers. 416 */ 417 static void 418 bucket_init(void) 419 { 420 struct uma_bucket_zone *ubz; 421 int size; 422 423 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 424 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 425 size += sizeof(void *) * ubz->ubz_entries; 426 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 427 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 428 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 429 UMA_ZONE_FIRSTTOUCH); 430 } 431 } 432 433 /* 434 * Given a desired number of entries for a bucket, return the zone from which 435 * to allocate the bucket. 436 */ 437 static struct uma_bucket_zone * 438 bucket_zone_lookup(int entries) 439 { 440 struct uma_bucket_zone *ubz; 441 442 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 443 if (ubz->ubz_entries >= entries) 444 return (ubz); 445 ubz--; 446 return (ubz); 447 } 448 449 static int 450 bucket_select(int size) 451 { 452 struct uma_bucket_zone *ubz; 453 454 ubz = &bucket_zones[0]; 455 if (size > ubz->ubz_maxsize) 456 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 457 458 for (; ubz->ubz_entries != 0; ubz++) 459 if (ubz->ubz_maxsize < size) 460 break; 461 ubz--; 462 return (ubz->ubz_entries); 463 } 464 465 static uma_bucket_t 466 bucket_alloc(uma_zone_t zone, void *udata, int flags) 467 { 468 struct uma_bucket_zone *ubz; 469 uma_bucket_t bucket; 470 471 /* 472 * Don't allocate buckets early in boot. 473 */ 474 if (__predict_false(booted < BOOT_KVA)) 475 return (NULL); 476 477 /* 478 * To limit bucket recursion we store the original zone flags 479 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 480 * NOVM flag to persist even through deep recursions. We also 481 * store ZFLAG_BUCKET once we have recursed attempting to allocate 482 * a bucket for a bucket zone so we do not allow infinite bucket 483 * recursion. This cookie will even persist to frees of unused 484 * buckets via the allocation path or bucket allocations in the 485 * free path. 486 */ 487 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 488 udata = (void *)(uintptr_t)zone->uz_flags; 489 else { 490 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 491 return (NULL); 492 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 493 } 494 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 495 flags |= M_NOVM; 496 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size)); 497 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 498 ubz++; 499 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 500 if (bucket) { 501 #ifdef INVARIANTS 502 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 503 #endif 504 bucket->ub_cnt = 0; 505 bucket->ub_entries = min(ubz->ubz_entries, 506 zone->uz_bucket_size_max); 507 bucket->ub_seq = SMR_SEQ_INVALID; 508 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 509 zone->uz_name, zone, bucket); 510 } 511 512 return (bucket); 513 } 514 515 static void 516 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 517 { 518 struct uma_bucket_zone *ubz; 519 520 if (bucket->ub_cnt != 0) 521 bucket_drain(zone, bucket); 522 523 KASSERT(bucket->ub_cnt == 0, 524 ("bucket_free: Freeing a non free bucket.")); 525 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 526 ("bucket_free: Freeing an SMR bucket.")); 527 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 528 udata = (void *)(uintptr_t)zone->uz_flags; 529 ubz = bucket_zone_lookup(bucket->ub_entries); 530 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 531 } 532 533 static void 534 bucket_zone_drain(int domain) 535 { 536 struct uma_bucket_zone *ubz; 537 538 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 539 uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN, 540 domain); 541 } 542 543 #ifdef KASAN 544 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0, 545 "Base UMA allocation size not a multiple of the KASAN scale factor"); 546 547 static void 548 kasan_mark_item_valid(uma_zone_t zone, void *item) 549 { 550 void *pcpu_item; 551 size_t sz, rsz; 552 int i; 553 554 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 555 return; 556 557 sz = zone->uz_size; 558 rsz = roundup2(sz, KASAN_SHADOW_SCALE); 559 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 560 kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE); 561 } else { 562 pcpu_item = zpcpu_base_to_offset(item); 563 for (i = 0; i <= mp_maxid; i++) 564 kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz, 565 KASAN_GENERIC_REDZONE); 566 } 567 } 568 569 static void 570 kasan_mark_item_invalid(uma_zone_t zone, void *item) 571 { 572 void *pcpu_item; 573 size_t sz; 574 int i; 575 576 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 577 return; 578 579 sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE); 580 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 581 kasan_mark(item, 0, sz, KASAN_UMA_FREED); 582 } else { 583 pcpu_item = zpcpu_base_to_offset(item); 584 for (i = 0; i <= mp_maxid; i++) 585 kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz, 586 KASAN_UMA_FREED); 587 } 588 } 589 590 static void 591 kasan_mark_slab_valid(uma_keg_t keg, void *mem) 592 { 593 size_t sz; 594 595 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 596 sz = keg->uk_ppera * PAGE_SIZE; 597 kasan_mark(mem, sz, sz, 0); 598 } 599 } 600 601 static void 602 kasan_mark_slab_invalid(uma_keg_t keg, void *mem) 603 { 604 size_t sz; 605 606 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 607 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 608 sz = keg->uk_ppera * PAGE_SIZE; 609 else 610 sz = keg->uk_pgoff; 611 kasan_mark(mem, 0, sz, KASAN_UMA_FREED); 612 } 613 } 614 #else /* !KASAN */ 615 static void 616 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused) 617 { 618 } 619 620 static void 621 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused) 622 { 623 } 624 625 static void 626 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused) 627 { 628 } 629 630 static void 631 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused) 632 { 633 } 634 #endif /* KASAN */ 635 636 #ifdef KMSAN 637 static inline void 638 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item) 639 { 640 void *pcpu_item; 641 size_t sz; 642 int i; 643 644 if ((zone->uz_flags & 645 (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) { 646 /* 647 * Cache zones should not be instrumented by default, as UMA 648 * does not have enough information to do so correctly. 649 * Consumers can mark items themselves if it makes sense to do 650 * so. 651 * 652 * Items from secondary zones are initialized by the parent 653 * zone and thus cannot safely be marked by UMA. 654 * 655 * malloc zones are handled directly by malloc(9) and friends, 656 * since they can provide more precise origin tracking. 657 */ 658 return; 659 } 660 if (zone->uz_keg->uk_init != NULL) { 661 /* 662 * By definition, initialized items cannot be marked. The 663 * best we can do is mark items from these zones after they 664 * are freed to the keg. 665 */ 666 return; 667 } 668 669 sz = zone->uz_size; 670 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 671 kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 672 kmsan_mark(item, sz, KMSAN_STATE_UNINIT); 673 } else { 674 pcpu_item = zpcpu_base_to_offset(item); 675 for (i = 0; i <= mp_maxid; i++) { 676 kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz, 677 KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 678 kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz, 679 KMSAN_STATE_INITED); 680 } 681 } 682 } 683 #else /* !KMSAN */ 684 static inline void 685 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused) 686 { 687 } 688 #endif /* KMSAN */ 689 690 /* 691 * Acquire the domain lock and record contention. 692 */ 693 static uma_zone_domain_t 694 zone_domain_lock(uma_zone_t zone, int domain) 695 { 696 uma_zone_domain_t zdom; 697 bool lockfail; 698 699 zdom = ZDOM_GET(zone, domain); 700 lockfail = false; 701 if (ZDOM_OWNED(zdom)) 702 lockfail = true; 703 ZDOM_LOCK(zdom); 704 /* This is unsynchronized. The counter does not need to be precise. */ 705 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 706 zone->uz_bucket_size++; 707 return (zdom); 708 } 709 710 /* 711 * Search for the domain with the least cached items and return it if it 712 * is out of balance with the preferred domain. 713 */ 714 static __noinline int 715 zone_domain_lowest(uma_zone_t zone, int pref) 716 { 717 long least, nitems, prefitems; 718 int domain; 719 int i; 720 721 prefitems = least = LONG_MAX; 722 domain = 0; 723 for (i = 0; i < vm_ndomains; i++) { 724 nitems = ZDOM_GET(zone, i)->uzd_nitems; 725 if (nitems < least) { 726 domain = i; 727 least = nitems; 728 } 729 if (domain == pref) 730 prefitems = nitems; 731 } 732 if (prefitems < least * 2) 733 return (pref); 734 735 return (domain); 736 } 737 738 /* 739 * Search for the domain with the most cached items and return it or the 740 * preferred domain if it has enough to proceed. 741 */ 742 static __noinline int 743 zone_domain_highest(uma_zone_t zone, int pref) 744 { 745 long most, nitems; 746 int domain; 747 int i; 748 749 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 750 return (pref); 751 752 most = 0; 753 domain = 0; 754 for (i = 0; i < vm_ndomains; i++) { 755 nitems = ZDOM_GET(zone, i)->uzd_nitems; 756 if (nitems > most) { 757 domain = i; 758 most = nitems; 759 } 760 } 761 762 return (domain); 763 } 764 765 /* 766 * Set the maximum imax value. 767 */ 768 static void 769 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 770 { 771 long old; 772 773 old = zdom->uzd_imax; 774 do { 775 if (old >= nitems) 776 return; 777 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 778 779 /* 780 * We are at new maximum, so do the last WSS update for the old 781 * bimin and prepare to measure next allocation batch. 782 */ 783 if (zdom->uzd_wss < old - zdom->uzd_bimin) 784 zdom->uzd_wss = old - zdom->uzd_bimin; 785 zdom->uzd_bimin = nitems; 786 } 787 788 /* 789 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 790 * zone's caches. If a bucket is found the zone is not locked on return. 791 */ 792 static uma_bucket_t 793 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 794 { 795 uma_bucket_t bucket; 796 long cnt; 797 int i; 798 bool dtor = false; 799 800 ZDOM_LOCK_ASSERT(zdom); 801 802 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 803 return (NULL); 804 805 /* SMR Buckets can not be re-used until readers expire. */ 806 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 807 bucket->ub_seq != SMR_SEQ_INVALID) { 808 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 809 return (NULL); 810 bucket->ub_seq = SMR_SEQ_INVALID; 811 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 812 if (STAILQ_NEXT(bucket, ub_link) != NULL) 813 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 814 } 815 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 816 817 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt, 818 ("%s: item count underflow (%ld, %d)", 819 __func__, zdom->uzd_nitems, bucket->ub_cnt)); 820 KASSERT(bucket->ub_cnt > 0, 821 ("%s: empty bucket in bucket cache", __func__)); 822 zdom->uzd_nitems -= bucket->ub_cnt; 823 824 if (reclaim) { 825 /* 826 * Shift the bounds of the current WSS interval to avoid 827 * perturbing the estimates. 828 */ 829 cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt); 830 atomic_subtract_long(&zdom->uzd_imax, cnt); 831 zdom->uzd_bimin -= cnt; 832 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 833 if (zdom->uzd_limin >= bucket->ub_cnt) { 834 zdom->uzd_limin -= bucket->ub_cnt; 835 } else { 836 zdom->uzd_limin = 0; 837 zdom->uzd_timin = 0; 838 } 839 } else if (zdom->uzd_bimin > zdom->uzd_nitems) { 840 zdom->uzd_bimin = zdom->uzd_nitems; 841 if (zdom->uzd_imin > zdom->uzd_nitems) 842 zdom->uzd_imin = zdom->uzd_nitems; 843 } 844 845 ZDOM_UNLOCK(zdom); 846 if (dtor) 847 for (i = 0; i < bucket->ub_cnt; i++) 848 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 849 NULL, SKIP_NONE); 850 851 return (bucket); 852 } 853 854 /* 855 * Insert a full bucket into the specified cache. The "ws" parameter indicates 856 * whether the bucket's contents should be counted as part of the zone's working 857 * set. The bucket may be freed if it exceeds the bucket limit. 858 */ 859 static void 860 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 861 const bool ws) 862 { 863 uma_zone_domain_t zdom; 864 865 /* We don't cache empty buckets. This can happen after a reclaim. */ 866 if (bucket->ub_cnt == 0) 867 goto out; 868 zdom = zone_domain_lock(zone, domain); 869 870 /* 871 * Conditionally set the maximum number of items. 872 */ 873 zdom->uzd_nitems += bucket->ub_cnt; 874 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 875 if (ws) { 876 zone_domain_imax_set(zdom, zdom->uzd_nitems); 877 } else { 878 /* 879 * Shift the bounds of the current WSS interval to 880 * avoid perturbing the estimates. 881 */ 882 atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt); 883 zdom->uzd_imin += bucket->ub_cnt; 884 zdom->uzd_bimin += bucket->ub_cnt; 885 zdom->uzd_limin += bucket->ub_cnt; 886 } 887 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 888 zdom->uzd_seq = bucket->ub_seq; 889 890 /* 891 * Try to promote reuse of recently used items. For items 892 * protected by SMR, try to defer reuse to minimize polling. 893 */ 894 if (bucket->ub_seq == SMR_SEQ_INVALID) 895 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 896 else 897 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 898 ZDOM_UNLOCK(zdom); 899 return; 900 } 901 zdom->uzd_nitems -= bucket->ub_cnt; 902 ZDOM_UNLOCK(zdom); 903 out: 904 bucket_free(zone, bucket, udata); 905 } 906 907 /* Pops an item out of a per-cpu cache bucket. */ 908 static inline void * 909 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 910 { 911 void *item; 912 913 CRITICAL_ASSERT(curthread); 914 915 bucket->ucb_cnt--; 916 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 917 #ifdef INVARIANTS 918 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 919 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 920 #endif 921 cache->uc_allocs++; 922 923 return (item); 924 } 925 926 /* Pushes an item into a per-cpu cache bucket. */ 927 static inline void 928 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 929 { 930 931 CRITICAL_ASSERT(curthread); 932 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 933 ("uma_zfree: Freeing to non free bucket index.")); 934 935 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 936 bucket->ucb_cnt++; 937 cache->uc_frees++; 938 } 939 940 /* 941 * Unload a UMA bucket from a per-cpu cache. 942 */ 943 static inline uma_bucket_t 944 cache_bucket_unload(uma_cache_bucket_t bucket) 945 { 946 uma_bucket_t b; 947 948 b = bucket->ucb_bucket; 949 if (b != NULL) { 950 MPASS(b->ub_entries == bucket->ucb_entries); 951 b->ub_cnt = bucket->ucb_cnt; 952 bucket->ucb_bucket = NULL; 953 bucket->ucb_entries = bucket->ucb_cnt = 0; 954 } 955 956 return (b); 957 } 958 959 static inline uma_bucket_t 960 cache_bucket_unload_alloc(uma_cache_t cache) 961 { 962 963 return (cache_bucket_unload(&cache->uc_allocbucket)); 964 } 965 966 static inline uma_bucket_t 967 cache_bucket_unload_free(uma_cache_t cache) 968 { 969 970 return (cache_bucket_unload(&cache->uc_freebucket)); 971 } 972 973 static inline uma_bucket_t 974 cache_bucket_unload_cross(uma_cache_t cache) 975 { 976 977 return (cache_bucket_unload(&cache->uc_crossbucket)); 978 } 979 980 /* 981 * Load a bucket into a per-cpu cache bucket. 982 */ 983 static inline void 984 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 985 { 986 987 CRITICAL_ASSERT(curthread); 988 MPASS(bucket->ucb_bucket == NULL); 989 MPASS(b->ub_seq == SMR_SEQ_INVALID); 990 991 bucket->ucb_bucket = b; 992 bucket->ucb_cnt = b->ub_cnt; 993 bucket->ucb_entries = b->ub_entries; 994 } 995 996 static inline void 997 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 998 { 999 1000 cache_bucket_load(&cache->uc_allocbucket, b); 1001 } 1002 1003 static inline void 1004 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 1005 { 1006 1007 cache_bucket_load(&cache->uc_freebucket, b); 1008 } 1009 1010 #ifdef NUMA 1011 static inline void 1012 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 1013 { 1014 1015 cache_bucket_load(&cache->uc_crossbucket, b); 1016 } 1017 #endif 1018 1019 /* 1020 * Copy and preserve ucb_spare. 1021 */ 1022 static inline void 1023 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1024 { 1025 1026 b1->ucb_bucket = b2->ucb_bucket; 1027 b1->ucb_entries = b2->ucb_entries; 1028 b1->ucb_cnt = b2->ucb_cnt; 1029 } 1030 1031 /* 1032 * Swap two cache buckets. 1033 */ 1034 static inline void 1035 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1036 { 1037 struct uma_cache_bucket b3; 1038 1039 CRITICAL_ASSERT(curthread); 1040 1041 cache_bucket_copy(&b3, b1); 1042 cache_bucket_copy(b1, b2); 1043 cache_bucket_copy(b2, &b3); 1044 } 1045 1046 /* 1047 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 1048 */ 1049 static uma_bucket_t 1050 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 1051 { 1052 uma_zone_domain_t zdom; 1053 uma_bucket_t bucket; 1054 smr_seq_t seq; 1055 1056 /* 1057 * Avoid the lock if possible. 1058 */ 1059 zdom = ZDOM_GET(zone, domain); 1060 if (zdom->uzd_nitems == 0) 1061 return (NULL); 1062 1063 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 1064 (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID && 1065 !smr_poll(zone->uz_smr, seq, false)) 1066 return (NULL); 1067 1068 /* 1069 * Check the zone's cache of buckets. 1070 */ 1071 zdom = zone_domain_lock(zone, domain); 1072 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) 1073 return (bucket); 1074 ZDOM_UNLOCK(zdom); 1075 1076 return (NULL); 1077 } 1078 1079 static void 1080 zone_log_warning(uma_zone_t zone) 1081 { 1082 static const struct timeval warninterval = { 300, 0 }; 1083 1084 if (!zone_warnings || zone->uz_warning == NULL) 1085 return; 1086 1087 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 1088 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 1089 } 1090 1091 static inline void 1092 zone_maxaction(uma_zone_t zone) 1093 { 1094 1095 if (zone->uz_maxaction.ta_func != NULL) 1096 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 1097 } 1098 1099 /* 1100 * Routine called by timeout which is used to fire off some time interval 1101 * based calculations. (stats, hash size, etc.) 1102 * 1103 * Arguments: 1104 * arg Unused 1105 * 1106 * Returns: 1107 * Nothing 1108 */ 1109 static void 1110 uma_timeout(void *context __unused, int pending __unused) 1111 { 1112 bucket_enable(); 1113 zone_foreach(zone_timeout, NULL); 1114 1115 /* Reschedule this event */ 1116 taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task, 1117 UMA_TIMEOUT * hz); 1118 } 1119 1120 /* 1121 * Update the working set size estimates for the zone's bucket cache. 1122 * The constants chosen here are somewhat arbitrary. 1123 */ 1124 static void 1125 zone_domain_update_wss(uma_zone_domain_t zdom) 1126 { 1127 long m; 1128 1129 ZDOM_LOCK_ASSERT(zdom); 1130 MPASS(zdom->uzd_imax >= zdom->uzd_nitems); 1131 MPASS(zdom->uzd_nitems >= zdom->uzd_bimin); 1132 MPASS(zdom->uzd_bimin >= zdom->uzd_imin); 1133 1134 /* 1135 * Estimate WSS as modified moving average of biggest allocation 1136 * batches for each period over few minutes (UMA_TIMEOUT of 20s). 1137 */ 1138 zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4, 1139 zdom->uzd_imax - zdom->uzd_bimin); 1140 1141 /* 1142 * Estimate longtime minimum item count as a combination of recent 1143 * minimum item count, adjusted by WSS for safety, and the modified 1144 * moving average over the last several hours (UMA_TIMEOUT of 20s). 1145 * timin measures time since limin tried to go negative, that means 1146 * we were dangerously close to or got out of cache. 1147 */ 1148 m = zdom->uzd_imin - zdom->uzd_wss; 1149 if (m >= 0) { 1150 if (zdom->uzd_limin >= m) 1151 zdom->uzd_limin = m; 1152 else 1153 zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256; 1154 zdom->uzd_timin++; 1155 } else { 1156 zdom->uzd_limin = 0; 1157 zdom->uzd_timin = 0; 1158 } 1159 1160 /* To reduce period edge effects on WSS keep half of the imax. */ 1161 atomic_subtract_long(&zdom->uzd_imax, 1162 (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2); 1163 zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems; 1164 } 1165 1166 /* 1167 * Routine to perform timeout driven calculations. This expands the 1168 * hashes and does per cpu statistics aggregation. 1169 * 1170 * Returns nothing. 1171 */ 1172 static void 1173 zone_timeout(uma_zone_t zone, void *unused) 1174 { 1175 uma_keg_t keg; 1176 u_int slabs, pages; 1177 1178 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 1179 goto trim; 1180 1181 keg = zone->uz_keg; 1182 1183 /* 1184 * Hash zones are non-numa by definition so the first domain 1185 * is the only one present. 1186 */ 1187 KEG_LOCK(keg, 0); 1188 pages = keg->uk_domain[0].ud_pages; 1189 1190 /* 1191 * Expand the keg hash table. 1192 * 1193 * This is done if the number of slabs is larger than the hash size. 1194 * What I'm trying to do here is completely reduce collisions. This 1195 * may be a little aggressive. Should I allow for two collisions max? 1196 */ 1197 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1198 struct uma_hash newhash; 1199 struct uma_hash oldhash; 1200 int ret; 1201 1202 /* 1203 * This is so involved because allocating and freeing 1204 * while the keg lock is held will lead to deadlock. 1205 * I have to do everything in stages and check for 1206 * races. 1207 */ 1208 KEG_UNLOCK(keg, 0); 1209 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1210 KEG_LOCK(keg, 0); 1211 if (ret) { 1212 if (hash_expand(&keg->uk_hash, &newhash)) { 1213 oldhash = keg->uk_hash; 1214 keg->uk_hash = newhash; 1215 } else 1216 oldhash = newhash; 1217 1218 KEG_UNLOCK(keg, 0); 1219 hash_free(&oldhash); 1220 goto trim; 1221 } 1222 } 1223 KEG_UNLOCK(keg, 0); 1224 1225 trim: 1226 /* Trim caches not used for a long time. */ 1227 if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) { 1228 for (int i = 0; i < vm_ndomains; i++) { 1229 if (bucket_cache_reclaim_domain(zone, false, false, i) && 1230 (zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1231 keg_drain(zone->uz_keg, i); 1232 } 1233 } 1234 } 1235 1236 /* 1237 * Allocate and zero fill the next sized hash table from the appropriate 1238 * backing store. 1239 * 1240 * Arguments: 1241 * hash A new hash structure with the old hash size in uh_hashsize 1242 * 1243 * Returns: 1244 * 1 on success and 0 on failure. 1245 */ 1246 static int 1247 hash_alloc(struct uma_hash *hash, u_int size) 1248 { 1249 size_t alloc; 1250 1251 KASSERT(powerof2(size), ("hash size must be power of 2")); 1252 if (size > UMA_HASH_SIZE_INIT) { 1253 hash->uh_hashsize = size; 1254 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1255 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1256 } else { 1257 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1258 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1259 UMA_ANYDOMAIN, M_WAITOK); 1260 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1261 } 1262 if (hash->uh_slab_hash) { 1263 bzero(hash->uh_slab_hash, alloc); 1264 hash->uh_hashmask = hash->uh_hashsize - 1; 1265 return (1); 1266 } 1267 1268 return (0); 1269 } 1270 1271 /* 1272 * Expands the hash table for HASH zones. This is done from zone_timeout 1273 * to reduce collisions. This must not be done in the regular allocation 1274 * path, otherwise, we can recurse on the vm while allocating pages. 1275 * 1276 * Arguments: 1277 * oldhash The hash you want to expand 1278 * newhash The hash structure for the new table 1279 * 1280 * Returns: 1281 * Nothing 1282 * 1283 * Discussion: 1284 */ 1285 static int 1286 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1287 { 1288 uma_hash_slab_t slab; 1289 u_int hval; 1290 u_int idx; 1291 1292 if (!newhash->uh_slab_hash) 1293 return (0); 1294 1295 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1296 return (0); 1297 1298 /* 1299 * I need to investigate hash algorithms for resizing without a 1300 * full rehash. 1301 */ 1302 1303 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1304 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1305 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1306 LIST_REMOVE(slab, uhs_hlink); 1307 hval = UMA_HASH(newhash, slab->uhs_data); 1308 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1309 slab, uhs_hlink); 1310 } 1311 1312 return (1); 1313 } 1314 1315 /* 1316 * Free the hash bucket to the appropriate backing store. 1317 * 1318 * Arguments: 1319 * slab_hash The hash bucket we're freeing 1320 * hashsize The number of entries in that hash bucket 1321 * 1322 * Returns: 1323 * Nothing 1324 */ 1325 static void 1326 hash_free(struct uma_hash *hash) 1327 { 1328 if (hash->uh_slab_hash == NULL) 1329 return; 1330 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1331 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1332 else 1333 free(hash->uh_slab_hash, M_UMAHASH); 1334 } 1335 1336 /* 1337 * Frees all outstanding items in a bucket 1338 * 1339 * Arguments: 1340 * zone The zone to free to, must be unlocked. 1341 * bucket The free/alloc bucket with items. 1342 * 1343 * Returns: 1344 * Nothing 1345 */ 1346 static void 1347 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1348 { 1349 int i; 1350 1351 if (bucket->ub_cnt == 0) 1352 return; 1353 1354 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1355 bucket->ub_seq != SMR_SEQ_INVALID) { 1356 smr_wait(zone->uz_smr, bucket->ub_seq); 1357 bucket->ub_seq = SMR_SEQ_INVALID; 1358 for (i = 0; i < bucket->ub_cnt; i++) 1359 item_dtor(zone, bucket->ub_bucket[i], 1360 zone->uz_size, NULL, SKIP_NONE); 1361 } 1362 if (zone->uz_fini) 1363 for (i = 0; i < bucket->ub_cnt; i++) { 1364 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 1365 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1366 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 1367 } 1368 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1369 if (zone->uz_max_items > 0) 1370 zone_free_limit(zone, bucket->ub_cnt); 1371 #ifdef INVARIANTS 1372 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1373 #endif 1374 bucket->ub_cnt = 0; 1375 } 1376 1377 /* 1378 * Drains the per cpu caches for a zone. 1379 * 1380 * NOTE: This may only be called while the zone is being torn down, and not 1381 * during normal operation. This is necessary in order that we do not have 1382 * to migrate CPUs to drain the per-CPU caches. 1383 * 1384 * Arguments: 1385 * zone The zone to drain, must be unlocked. 1386 * 1387 * Returns: 1388 * Nothing 1389 */ 1390 static void 1391 cache_drain(uma_zone_t zone) 1392 { 1393 uma_cache_t cache; 1394 uma_bucket_t bucket; 1395 smr_seq_t seq; 1396 int cpu; 1397 1398 /* 1399 * XXX: It is safe to not lock the per-CPU caches, because we're 1400 * tearing down the zone anyway. I.e., there will be no further use 1401 * of the caches at this point. 1402 * 1403 * XXX: It would good to be able to assert that the zone is being 1404 * torn down to prevent improper use of cache_drain(). 1405 */ 1406 seq = SMR_SEQ_INVALID; 1407 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1408 seq = smr_advance(zone->uz_smr); 1409 CPU_FOREACH(cpu) { 1410 cache = &zone->uz_cpu[cpu]; 1411 bucket = cache_bucket_unload_alloc(cache); 1412 if (bucket != NULL) 1413 bucket_free(zone, bucket, NULL); 1414 bucket = cache_bucket_unload_free(cache); 1415 if (bucket != NULL) { 1416 bucket->ub_seq = seq; 1417 bucket_free(zone, bucket, NULL); 1418 } 1419 bucket = cache_bucket_unload_cross(cache); 1420 if (bucket != NULL) { 1421 bucket->ub_seq = seq; 1422 bucket_free(zone, bucket, NULL); 1423 } 1424 } 1425 bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN); 1426 } 1427 1428 static void 1429 cache_shrink(uma_zone_t zone, void *unused) 1430 { 1431 1432 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1433 return; 1434 1435 ZONE_LOCK(zone); 1436 zone->uz_bucket_size = 1437 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1438 ZONE_UNLOCK(zone); 1439 } 1440 1441 static void 1442 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1443 { 1444 uma_cache_t cache; 1445 uma_bucket_t b1, b2, b3; 1446 int domain; 1447 1448 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1449 return; 1450 1451 b1 = b2 = b3 = NULL; 1452 critical_enter(); 1453 cache = &zone->uz_cpu[curcpu]; 1454 domain = PCPU_GET(domain); 1455 b1 = cache_bucket_unload_alloc(cache); 1456 1457 /* 1458 * Don't flush SMR zone buckets. This leaves the zone without a 1459 * bucket and forces every free to synchronize(). 1460 */ 1461 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1462 b2 = cache_bucket_unload_free(cache); 1463 b3 = cache_bucket_unload_cross(cache); 1464 } 1465 critical_exit(); 1466 1467 if (b1 != NULL) 1468 zone_free_bucket(zone, b1, NULL, domain, false); 1469 if (b2 != NULL) 1470 zone_free_bucket(zone, b2, NULL, domain, false); 1471 if (b3 != NULL) { 1472 /* Adjust the domain so it goes to zone_free_cross. */ 1473 domain = (domain + 1) % vm_ndomains; 1474 zone_free_bucket(zone, b3, NULL, domain, false); 1475 } 1476 } 1477 1478 /* 1479 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1480 * This is an expensive call because it needs to bind to all CPUs 1481 * one by one and enter a critical section on each of them in order 1482 * to safely access their cache buckets. 1483 * Zone lock must not be held on call this function. 1484 */ 1485 static void 1486 pcpu_cache_drain_safe(uma_zone_t zone) 1487 { 1488 int cpu; 1489 1490 /* 1491 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1492 */ 1493 if (zone) 1494 cache_shrink(zone, NULL); 1495 else 1496 zone_foreach(cache_shrink, NULL); 1497 1498 CPU_FOREACH(cpu) { 1499 thread_lock(curthread); 1500 sched_bind(curthread, cpu); 1501 thread_unlock(curthread); 1502 1503 if (zone) 1504 cache_drain_safe_cpu(zone, NULL); 1505 else 1506 zone_foreach(cache_drain_safe_cpu, NULL); 1507 } 1508 thread_lock(curthread); 1509 sched_unbind(curthread); 1510 thread_unlock(curthread); 1511 } 1512 1513 /* 1514 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1515 * requested a drain, otherwise the per-domain caches are trimmed to either 1516 * estimated working set size. 1517 */ 1518 static bool 1519 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain) 1520 { 1521 uma_zone_domain_t zdom; 1522 uma_bucket_t bucket; 1523 long target; 1524 bool done = false; 1525 1526 /* 1527 * The cross bucket is partially filled and not part of 1528 * the item count. Reclaim it individually here. 1529 */ 1530 zdom = ZDOM_GET(zone, domain); 1531 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1532 ZONE_CROSS_LOCK(zone); 1533 bucket = zdom->uzd_cross; 1534 zdom->uzd_cross = NULL; 1535 ZONE_CROSS_UNLOCK(zone); 1536 if (bucket != NULL) 1537 bucket_free(zone, bucket, NULL); 1538 } 1539 1540 /* 1541 * If we were asked to drain the zone, we are done only once 1542 * this bucket cache is empty. If trim, we reclaim items in 1543 * excess of the zone's estimated working set size. Multiple 1544 * consecutive calls will shrink the WSS and so reclaim more. 1545 * If neither drain nor trim, then voluntarily reclaim 1/4 1546 * (to reduce first spike) of items not used for a long time. 1547 */ 1548 ZDOM_LOCK(zdom); 1549 zone_domain_update_wss(zdom); 1550 if (drain) 1551 target = 0; 1552 else if (trim) 1553 target = zdom->uzd_wss; 1554 else if (zdom->uzd_timin > 900 / UMA_TIMEOUT) 1555 target = zdom->uzd_nitems - zdom->uzd_limin / 4; 1556 else { 1557 ZDOM_UNLOCK(zdom); 1558 return (done); 1559 } 1560 while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL && 1561 zdom->uzd_nitems >= target + bucket->ub_cnt) { 1562 bucket = zone_fetch_bucket(zone, zdom, true); 1563 if (bucket == NULL) 1564 break; 1565 bucket_free(zone, bucket, NULL); 1566 done = true; 1567 ZDOM_LOCK(zdom); 1568 } 1569 ZDOM_UNLOCK(zdom); 1570 return (done); 1571 } 1572 1573 static void 1574 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain) 1575 { 1576 int i; 1577 1578 /* 1579 * Shrink the zone bucket size to ensure that the per-CPU caches 1580 * don't grow too large. 1581 */ 1582 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1583 zone->uz_bucket_size--; 1584 1585 if (domain != UMA_ANYDOMAIN && 1586 (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) { 1587 bucket_cache_reclaim_domain(zone, drain, true, domain); 1588 } else { 1589 for (i = 0; i < vm_ndomains; i++) 1590 bucket_cache_reclaim_domain(zone, drain, true, i); 1591 } 1592 } 1593 1594 static void 1595 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1596 { 1597 uint8_t *mem; 1598 size_t size; 1599 int i; 1600 uint8_t flags; 1601 1602 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1603 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1604 1605 mem = slab_data(slab, keg); 1606 size = PAGE_SIZE * keg->uk_ppera; 1607 1608 kasan_mark_slab_valid(keg, mem); 1609 if (keg->uk_fini != NULL) { 1610 for (i = start - 1; i > -1; i--) 1611 #ifdef INVARIANTS 1612 /* 1613 * trash_fini implies that dtor was trash_dtor. trash_fini 1614 * would check that memory hasn't been modified since free, 1615 * which executed trash_dtor. 1616 * That's why we need to run uma_dbg_kskip() check here, 1617 * albeit we don't make skip check for other init/fini 1618 * invocations. 1619 */ 1620 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1621 keg->uk_fini != trash_fini) 1622 #endif 1623 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1624 } 1625 flags = slab->us_flags; 1626 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1627 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1628 NULL, SKIP_NONE); 1629 } 1630 keg->uk_freef(mem, size, flags); 1631 uma_total_dec(size); 1632 } 1633 1634 static void 1635 keg_drain_domain(uma_keg_t keg, int domain) 1636 { 1637 struct slabhead freeslabs; 1638 uma_domain_t dom; 1639 uma_slab_t slab, tmp; 1640 uint32_t i, stofree, stokeep, partial; 1641 1642 dom = &keg->uk_domain[domain]; 1643 LIST_INIT(&freeslabs); 1644 1645 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1646 keg->uk_name, keg, domain, dom->ud_free_items); 1647 1648 KEG_LOCK(keg, domain); 1649 1650 /* 1651 * Are the free items in partially allocated slabs sufficient to meet 1652 * the reserve? If not, compute the number of fully free slabs that must 1653 * be kept. 1654 */ 1655 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers; 1656 if (partial < keg->uk_reserve) { 1657 stokeep = min(dom->ud_free_slabs, 1658 howmany(keg->uk_reserve - partial, keg->uk_ipers)); 1659 } else { 1660 stokeep = 0; 1661 } 1662 stofree = dom->ud_free_slabs - stokeep; 1663 1664 /* 1665 * Partition the free slabs into two sets: those that must be kept in 1666 * order to maintain the reserve, and those that may be released back to 1667 * the system. Since one set may be much larger than the other, 1668 * populate the smaller of the two sets and swap them if necessary. 1669 */ 1670 for (i = min(stofree, stokeep); i > 0; i--) { 1671 slab = LIST_FIRST(&dom->ud_free_slab); 1672 LIST_REMOVE(slab, us_link); 1673 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1674 } 1675 if (stofree > stokeep) 1676 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1677 1678 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1679 LIST_FOREACH(slab, &freeslabs, us_link) 1680 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1681 } 1682 dom->ud_free_items -= stofree * keg->uk_ipers; 1683 dom->ud_free_slabs -= stofree; 1684 dom->ud_pages -= stofree * keg->uk_ppera; 1685 KEG_UNLOCK(keg, domain); 1686 1687 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1688 keg_free_slab(keg, slab, keg->uk_ipers); 1689 } 1690 1691 /* 1692 * Frees pages from a keg back to the system. This is done on demand from 1693 * the pageout daemon. 1694 * 1695 * Returns nothing. 1696 */ 1697 static void 1698 keg_drain(uma_keg_t keg, int domain) 1699 { 1700 int i; 1701 1702 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0) 1703 return; 1704 if (domain != UMA_ANYDOMAIN) { 1705 keg_drain_domain(keg, domain); 1706 } else { 1707 for (i = 0; i < vm_ndomains; i++) 1708 keg_drain_domain(keg, i); 1709 } 1710 } 1711 1712 static void 1713 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain) 1714 { 1715 /* 1716 * Count active reclaim operations in order to interlock with 1717 * zone_dtor(), which removes the zone from global lists before 1718 * attempting to reclaim items itself. 1719 * 1720 * The zone may be destroyed while sleeping, so only zone_dtor() should 1721 * specify M_WAITOK. 1722 */ 1723 ZONE_LOCK(zone); 1724 if (waitok == M_WAITOK) { 1725 while (zone->uz_reclaimers > 0) 1726 msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1); 1727 } 1728 zone->uz_reclaimers++; 1729 ZONE_UNLOCK(zone); 1730 bucket_cache_reclaim(zone, drain, domain); 1731 1732 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1733 keg_drain(zone->uz_keg, domain); 1734 ZONE_LOCK(zone); 1735 zone->uz_reclaimers--; 1736 if (zone->uz_reclaimers == 0) 1737 wakeup(zone); 1738 ZONE_UNLOCK(zone); 1739 } 1740 1741 /* 1742 * Allocate a new slab for a keg and inserts it into the partial slab list. 1743 * The keg should be unlocked on entry. If the allocation succeeds it will 1744 * be locked on return. 1745 * 1746 * Arguments: 1747 * flags Wait flags for the item initialization routine 1748 * aflags Wait flags for the slab allocation 1749 * 1750 * Returns: 1751 * The slab that was allocated or NULL if there is no memory and the 1752 * caller specified M_NOWAIT. 1753 */ 1754 static uma_slab_t 1755 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1756 int aflags) 1757 { 1758 uma_domain_t dom; 1759 uma_slab_t slab; 1760 unsigned long size; 1761 uint8_t *mem; 1762 uint8_t sflags; 1763 int i; 1764 1765 KASSERT(domain >= 0 && domain < vm_ndomains, 1766 ("keg_alloc_slab: domain %d out of range", domain)); 1767 1768 slab = NULL; 1769 mem = NULL; 1770 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1771 uma_hash_slab_t hslab; 1772 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1773 domain, aflags); 1774 if (hslab == NULL) 1775 goto fail; 1776 slab = &hslab->uhs_slab; 1777 } 1778 1779 /* 1780 * This reproduces the old vm_zone behavior of zero filling pages the 1781 * first time they are added to a zone. 1782 * 1783 * Malloced items are zeroed in uma_zalloc. 1784 */ 1785 1786 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1787 aflags |= M_ZERO; 1788 else 1789 aflags &= ~M_ZERO; 1790 1791 if (keg->uk_flags & UMA_ZONE_NODUMP) 1792 aflags |= M_NODUMP; 1793 1794 /* zone is passed for legacy reasons. */ 1795 size = keg->uk_ppera * PAGE_SIZE; 1796 mem = keg->uk_allocf(zone, size, domain, &sflags, aflags); 1797 if (mem == NULL) { 1798 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1799 zone_free_item(slabzone(keg->uk_ipers), 1800 slab_tohashslab(slab), NULL, SKIP_NONE); 1801 goto fail; 1802 } 1803 uma_total_inc(size); 1804 1805 /* For HASH zones all pages go to the same uma_domain. */ 1806 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1807 domain = 0; 1808 1809 kmsan_mark(mem, size, 1810 (aflags & M_ZERO) != 0 ? KMSAN_STATE_INITED : KMSAN_STATE_UNINIT); 1811 1812 /* Point the slab into the allocated memory */ 1813 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1814 slab = (uma_slab_t)(mem + keg->uk_pgoff); 1815 else 1816 slab_tohashslab(slab)->uhs_data = mem; 1817 1818 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1819 for (i = 0; i < keg->uk_ppera; i++) 1820 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1821 zone, slab); 1822 1823 slab->us_freecount = keg->uk_ipers; 1824 slab->us_flags = sflags; 1825 slab->us_domain = domain; 1826 1827 BIT_FILL(keg->uk_ipers, &slab->us_free); 1828 #ifdef INVARIANTS 1829 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1830 #endif 1831 1832 if (keg->uk_init != NULL) { 1833 for (i = 0; i < keg->uk_ipers; i++) 1834 if (keg->uk_init(slab_item(slab, keg, i), 1835 keg->uk_size, flags) != 0) 1836 break; 1837 if (i != keg->uk_ipers) { 1838 keg_free_slab(keg, slab, i); 1839 goto fail; 1840 } 1841 } 1842 kasan_mark_slab_invalid(keg, mem); 1843 KEG_LOCK(keg, domain); 1844 1845 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1846 slab, keg->uk_name, keg); 1847 1848 if (keg->uk_flags & UMA_ZFLAG_HASH) 1849 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1850 1851 /* 1852 * If we got a slab here it's safe to mark it partially used 1853 * and return. We assume that the caller is going to remove 1854 * at least one item. 1855 */ 1856 dom = &keg->uk_domain[domain]; 1857 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1858 dom->ud_pages += keg->uk_ppera; 1859 dom->ud_free_items += keg->uk_ipers; 1860 1861 return (slab); 1862 1863 fail: 1864 return (NULL); 1865 } 1866 1867 /* 1868 * This function is intended to be used early on in place of page_alloc(). It 1869 * performs contiguous physical memory allocations and uses a bump allocator for 1870 * KVA, so is usable before the kernel map is initialized. 1871 */ 1872 static void * 1873 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1874 int wait) 1875 { 1876 vm_paddr_t pa; 1877 vm_page_t m; 1878 int i, pages; 1879 1880 pages = howmany(bytes, PAGE_SIZE); 1881 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1882 1883 *pflag = UMA_SLAB_BOOT; 1884 m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) | 1885 VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, 1886 VM_MEMATTR_DEFAULT); 1887 if (m == NULL) 1888 return (NULL); 1889 1890 pa = VM_PAGE_TO_PHYS(m); 1891 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1892 #if defined(__aarch64__) || defined(__amd64__) || \ 1893 defined(__riscv) || defined(__powerpc64__) 1894 if ((wait & M_NODUMP) == 0) 1895 dump_add_page(pa); 1896 #endif 1897 } 1898 1899 /* Allocate KVA and indirectly advance bootmem. */ 1900 return ((void *)pmap_map(&bootmem, m->phys_addr, 1901 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE)); 1902 } 1903 1904 static void 1905 startup_free(void *mem, vm_size_t bytes) 1906 { 1907 vm_offset_t va; 1908 vm_page_t m; 1909 1910 va = (vm_offset_t)mem; 1911 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1912 1913 /* 1914 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid 1915 * unmapping ranges of the direct map. 1916 */ 1917 if (va >= bootstart && va + bytes <= bootmem) 1918 pmap_remove(kernel_pmap, va, va + bytes); 1919 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1920 #if defined(__aarch64__) || defined(__amd64__) || \ 1921 defined(__riscv) || defined(__powerpc64__) 1922 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1923 #endif 1924 vm_page_unwire_noq(m); 1925 vm_page_free(m); 1926 } 1927 } 1928 1929 /* 1930 * Allocates a number of pages from the system 1931 * 1932 * Arguments: 1933 * bytes The number of bytes requested 1934 * wait Shall we wait? 1935 * 1936 * Returns: 1937 * A pointer to the alloced memory or possibly 1938 * NULL if M_NOWAIT is set. 1939 */ 1940 static void * 1941 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1942 int wait) 1943 { 1944 void *p; /* Returned page */ 1945 1946 *pflag = UMA_SLAB_KERNEL; 1947 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1948 1949 return (p); 1950 } 1951 1952 static void * 1953 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1954 int wait) 1955 { 1956 struct pglist alloctail; 1957 vm_offset_t addr, zkva; 1958 int cpu, flags; 1959 vm_page_t p, p_next; 1960 #ifdef NUMA 1961 struct pcpu *pc; 1962 #endif 1963 1964 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1965 1966 TAILQ_INIT(&alloctail); 1967 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait); 1968 *pflag = UMA_SLAB_KERNEL; 1969 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1970 if (CPU_ABSENT(cpu)) { 1971 p = vm_page_alloc_noobj(flags); 1972 } else { 1973 #ifndef NUMA 1974 p = vm_page_alloc_noobj(flags); 1975 #else 1976 pc = pcpu_find(cpu); 1977 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1978 p = NULL; 1979 else 1980 p = vm_page_alloc_noobj_domain(pc->pc_domain, 1981 flags); 1982 if (__predict_false(p == NULL)) 1983 p = vm_page_alloc_noobj(flags); 1984 #endif 1985 } 1986 if (__predict_false(p == NULL)) 1987 goto fail; 1988 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1989 } 1990 if ((addr = kva_alloc(bytes)) == 0) 1991 goto fail; 1992 zkva = addr; 1993 TAILQ_FOREACH(p, &alloctail, listq) { 1994 pmap_qenter(zkva, &p, 1); 1995 zkva += PAGE_SIZE; 1996 } 1997 return ((void*)addr); 1998 fail: 1999 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 2000 vm_page_unwire_noq(p); 2001 vm_page_free(p); 2002 } 2003 return (NULL); 2004 } 2005 2006 /* 2007 * Allocates a number of pages not belonging to a VM object 2008 * 2009 * Arguments: 2010 * bytes The number of bytes requested 2011 * wait Shall we wait? 2012 * 2013 * Returns: 2014 * A pointer to the alloced memory or possibly 2015 * NULL if M_NOWAIT is set. 2016 */ 2017 static void * 2018 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 2019 int wait) 2020 { 2021 TAILQ_HEAD(, vm_page) alloctail; 2022 u_long npages; 2023 vm_offset_t retkva, zkva; 2024 vm_page_t p, p_next; 2025 uma_keg_t keg; 2026 int req; 2027 2028 TAILQ_INIT(&alloctail); 2029 keg = zone->uz_keg; 2030 req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 2031 if ((wait & M_WAITOK) != 0) 2032 req |= VM_ALLOC_WAITOK; 2033 2034 npages = howmany(bytes, PAGE_SIZE); 2035 while (npages > 0) { 2036 p = vm_page_alloc_noobj_domain(domain, req); 2037 if (p != NULL) { 2038 /* 2039 * Since the page does not belong to an object, its 2040 * listq is unused. 2041 */ 2042 TAILQ_INSERT_TAIL(&alloctail, p, listq); 2043 npages--; 2044 continue; 2045 } 2046 /* 2047 * Page allocation failed, free intermediate pages and 2048 * exit. 2049 */ 2050 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 2051 vm_page_unwire_noq(p); 2052 vm_page_free(p); 2053 } 2054 return (NULL); 2055 } 2056 *flags = UMA_SLAB_PRIV; 2057 zkva = keg->uk_kva + 2058 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 2059 retkva = zkva; 2060 TAILQ_FOREACH(p, &alloctail, listq) { 2061 pmap_qenter(zkva, &p, 1); 2062 zkva += PAGE_SIZE; 2063 } 2064 2065 return ((void *)retkva); 2066 } 2067 2068 /* 2069 * Allocate physically contiguous pages. 2070 */ 2071 static void * 2072 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 2073 int wait) 2074 { 2075 2076 *pflag = UMA_SLAB_KERNEL; 2077 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 2078 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 2079 } 2080 2081 /* 2082 * Frees a number of pages to the system 2083 * 2084 * Arguments: 2085 * mem A pointer to the memory to be freed 2086 * size The size of the memory being freed 2087 * flags The original p->us_flags field 2088 * 2089 * Returns: 2090 * Nothing 2091 */ 2092 static void 2093 page_free(void *mem, vm_size_t size, uint8_t flags) 2094 { 2095 2096 if ((flags & UMA_SLAB_BOOT) != 0) { 2097 startup_free(mem, size); 2098 return; 2099 } 2100 2101 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 2102 ("UMA: page_free used with invalid flags %x", flags)); 2103 2104 kmem_free((vm_offset_t)mem, size); 2105 } 2106 2107 /* 2108 * Frees pcpu zone allocations 2109 * 2110 * Arguments: 2111 * mem A pointer to the memory to be freed 2112 * size The size of the memory being freed 2113 * flags The original p->us_flags field 2114 * 2115 * Returns: 2116 * Nothing 2117 */ 2118 static void 2119 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 2120 { 2121 vm_offset_t sva, curva; 2122 vm_paddr_t paddr; 2123 vm_page_t m; 2124 2125 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 2126 2127 if ((flags & UMA_SLAB_BOOT) != 0) { 2128 startup_free(mem, size); 2129 return; 2130 } 2131 2132 sva = (vm_offset_t)mem; 2133 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 2134 paddr = pmap_kextract(curva); 2135 m = PHYS_TO_VM_PAGE(paddr); 2136 vm_page_unwire_noq(m); 2137 vm_page_free(m); 2138 } 2139 pmap_qremove(sva, size >> PAGE_SHIFT); 2140 kva_free(sva, size); 2141 } 2142 2143 /* 2144 * Zero fill initializer 2145 * 2146 * Arguments/Returns follow uma_init specifications 2147 */ 2148 static int 2149 zero_init(void *mem, int size, int flags) 2150 { 2151 bzero(mem, size); 2152 return (0); 2153 } 2154 2155 #ifdef INVARIANTS 2156 static struct noslabbits * 2157 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 2158 { 2159 2160 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 2161 } 2162 #endif 2163 2164 /* 2165 * Actual size of embedded struct slab (!OFFPAGE). 2166 */ 2167 static size_t 2168 slab_sizeof(int nitems) 2169 { 2170 size_t s; 2171 2172 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 2173 return (roundup(s, UMA_ALIGN_PTR + 1)); 2174 } 2175 2176 #define UMA_FIXPT_SHIFT 31 2177 #define UMA_FRAC_FIXPT(n, d) \ 2178 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 2179 #define UMA_FIXPT_PCT(f) \ 2180 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 2181 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 2182 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 2183 2184 /* 2185 * Compute the number of items that will fit in a slab. If hdr is true, the 2186 * item count may be limited to provide space in the slab for an inline slab 2187 * header. Otherwise, all slab space will be provided for item storage. 2188 */ 2189 static u_int 2190 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 2191 { 2192 u_int ipers; 2193 u_int padpi; 2194 2195 /* The padding between items is not needed after the last item. */ 2196 padpi = rsize - size; 2197 2198 if (hdr) { 2199 /* 2200 * Start with the maximum item count and remove items until 2201 * the slab header first alongside the allocatable memory. 2202 */ 2203 for (ipers = MIN(SLAB_MAX_SETSIZE, 2204 (slabsize + padpi - slab_sizeof(1)) / rsize); 2205 ipers > 0 && 2206 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 2207 ipers--) 2208 continue; 2209 } else { 2210 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 2211 } 2212 2213 return (ipers); 2214 } 2215 2216 struct keg_layout_result { 2217 u_int format; 2218 u_int slabsize; 2219 u_int ipers; 2220 u_int eff; 2221 }; 2222 2223 static void 2224 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 2225 struct keg_layout_result *kl) 2226 { 2227 u_int total; 2228 2229 kl->format = fmt; 2230 kl->slabsize = slabsize; 2231 2232 /* Handle INTERNAL as inline with an extra page. */ 2233 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 2234 kl->format &= ~UMA_ZFLAG_INTERNAL; 2235 kl->slabsize += PAGE_SIZE; 2236 } 2237 2238 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2239 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2240 2241 /* Account for memory used by an offpage slab header. */ 2242 total = kl->slabsize; 2243 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2244 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2245 2246 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2247 } 2248 2249 /* 2250 * Determine the format of a uma keg. This determines where the slab header 2251 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2252 * 2253 * Arguments 2254 * keg The zone we should initialize 2255 * 2256 * Returns 2257 * Nothing 2258 */ 2259 static void 2260 keg_layout(uma_keg_t keg) 2261 { 2262 struct keg_layout_result kl = {}, kl_tmp; 2263 u_int fmts[2]; 2264 u_int alignsize; 2265 u_int nfmt; 2266 u_int pages; 2267 u_int rsize; 2268 u_int slabsize; 2269 u_int i, j; 2270 2271 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2272 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2273 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2274 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2275 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2276 PRINT_UMA_ZFLAGS)); 2277 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2278 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2279 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2280 PRINT_UMA_ZFLAGS)); 2281 2282 alignsize = keg->uk_align + 1; 2283 #ifdef KASAN 2284 /* 2285 * ASAN requires that each allocation be aligned to the shadow map 2286 * scale factor. 2287 */ 2288 if (alignsize < KASAN_SHADOW_SCALE) 2289 alignsize = KASAN_SHADOW_SCALE; 2290 #endif 2291 2292 /* 2293 * Calculate the size of each allocation (rsize) according to 2294 * alignment. If the requested size is smaller than we have 2295 * allocation bits for we round it up. 2296 */ 2297 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2298 rsize = roundup2(rsize, alignsize); 2299 2300 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2301 /* 2302 * We want one item to start on every align boundary in a page. 2303 * To do this we will span pages. We will also extend the item 2304 * by the size of align if it is an even multiple of align. 2305 * Otherwise, it would fall on the same boundary every time. 2306 */ 2307 if ((rsize & alignsize) == 0) 2308 rsize += alignsize; 2309 slabsize = rsize * (PAGE_SIZE / alignsize); 2310 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2311 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2312 slabsize = round_page(slabsize); 2313 } else { 2314 /* 2315 * Start with a slab size of as many pages as it takes to 2316 * represent a single item. We will try to fit as many 2317 * additional items into the slab as possible. 2318 */ 2319 slabsize = round_page(keg->uk_size); 2320 } 2321 2322 /* Build a list of all of the available formats for this keg. */ 2323 nfmt = 0; 2324 2325 /* Evaluate an inline slab layout. */ 2326 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2327 fmts[nfmt++] = 0; 2328 2329 /* TODO: vm_page-embedded slab. */ 2330 2331 /* 2332 * We can't do OFFPAGE if we're internal or if we've been 2333 * asked to not go to the VM for buckets. If we do this we 2334 * may end up going to the VM for slabs which we do not want 2335 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2336 * In those cases, evaluate a pseudo-format called INTERNAL 2337 * which has an inline slab header and one extra page to 2338 * guarantee that it fits. 2339 * 2340 * Otherwise, see if using an OFFPAGE slab will improve our 2341 * efficiency. 2342 */ 2343 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2344 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2345 else 2346 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2347 2348 /* 2349 * Choose a slab size and format which satisfy the minimum efficiency. 2350 * Prefer the smallest slab size that meets the constraints. 2351 * 2352 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2353 * for small items (up to PAGE_SIZE), the iteration increment is one 2354 * page; and for large items, the increment is one item. 2355 */ 2356 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2357 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2358 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2359 rsize, i)); 2360 for ( ; ; i++) { 2361 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2362 round_page(rsize * (i - 1) + keg->uk_size); 2363 2364 for (j = 0; j < nfmt; j++) { 2365 /* Only if we have no viable format yet. */ 2366 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2367 kl.ipers > 0) 2368 continue; 2369 2370 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2371 if (kl_tmp.eff <= kl.eff) 2372 continue; 2373 2374 kl = kl_tmp; 2375 2376 CTR6(KTR_UMA, "keg %s layout: format %#x " 2377 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2378 keg->uk_name, kl.format, kl.ipers, rsize, 2379 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2380 2381 /* Stop when we reach the minimum efficiency. */ 2382 if (kl.eff >= UMA_MIN_EFF) 2383 break; 2384 } 2385 2386 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2387 slabsize >= SLAB_MAX_SETSIZE * rsize || 2388 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2389 break; 2390 } 2391 2392 pages = atop(kl.slabsize); 2393 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2394 pages *= mp_maxid + 1; 2395 2396 keg->uk_rsize = rsize; 2397 keg->uk_ipers = kl.ipers; 2398 keg->uk_ppera = pages; 2399 keg->uk_flags |= kl.format; 2400 2401 /* 2402 * How do we find the slab header if it is offpage or if not all item 2403 * start addresses are in the same page? We could solve the latter 2404 * case with vaddr alignment, but we don't. 2405 */ 2406 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2407 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2408 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2409 keg->uk_flags |= UMA_ZFLAG_HASH; 2410 else 2411 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2412 } 2413 2414 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2415 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2416 pages); 2417 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2418 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2419 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2420 keg->uk_ipers, pages)); 2421 } 2422 2423 /* 2424 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2425 * the keg onto the global keg list. 2426 * 2427 * Arguments/Returns follow uma_ctor specifications 2428 * udata Actually uma_kctor_args 2429 */ 2430 static int 2431 keg_ctor(void *mem, int size, void *udata, int flags) 2432 { 2433 struct uma_kctor_args *arg = udata; 2434 uma_keg_t keg = mem; 2435 uma_zone_t zone; 2436 int i; 2437 2438 bzero(keg, size); 2439 keg->uk_size = arg->size; 2440 keg->uk_init = arg->uminit; 2441 keg->uk_fini = arg->fini; 2442 keg->uk_align = arg->align; 2443 keg->uk_reserve = 0; 2444 keg->uk_flags = arg->flags; 2445 2446 /* 2447 * We use a global round-robin policy by default. Zones with 2448 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2449 * case the iterator is never run. 2450 */ 2451 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2452 keg->uk_dr.dr_iter = 0; 2453 2454 /* 2455 * The primary zone is passed to us at keg-creation time. 2456 */ 2457 zone = arg->zone; 2458 keg->uk_name = zone->uz_name; 2459 2460 if (arg->flags & UMA_ZONE_ZINIT) 2461 keg->uk_init = zero_init; 2462 2463 if (arg->flags & UMA_ZONE_MALLOC) 2464 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2465 2466 #ifndef SMP 2467 keg->uk_flags &= ~UMA_ZONE_PCPU; 2468 #endif 2469 2470 keg_layout(keg); 2471 2472 /* 2473 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2474 * work on. Use round-robin for everything else. 2475 * 2476 * Zones may override the default by specifying either. 2477 */ 2478 #ifdef NUMA 2479 if ((keg->uk_flags & 2480 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2481 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2482 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2483 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2484 #endif 2485 2486 /* 2487 * If we haven't booted yet we need allocations to go through the 2488 * startup cache until the vm is ready. 2489 */ 2490 #ifdef UMA_MD_SMALL_ALLOC 2491 if (keg->uk_ppera == 1) 2492 keg->uk_allocf = uma_small_alloc; 2493 else 2494 #endif 2495 if (booted < BOOT_KVA) 2496 keg->uk_allocf = startup_alloc; 2497 else if (keg->uk_flags & UMA_ZONE_PCPU) 2498 keg->uk_allocf = pcpu_page_alloc; 2499 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2500 keg->uk_allocf = contig_alloc; 2501 else 2502 keg->uk_allocf = page_alloc; 2503 #ifdef UMA_MD_SMALL_ALLOC 2504 if (keg->uk_ppera == 1) 2505 keg->uk_freef = uma_small_free; 2506 else 2507 #endif 2508 if (keg->uk_flags & UMA_ZONE_PCPU) 2509 keg->uk_freef = pcpu_page_free; 2510 else 2511 keg->uk_freef = page_free; 2512 2513 /* 2514 * Initialize keg's locks. 2515 */ 2516 for (i = 0; i < vm_ndomains; i++) 2517 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2518 2519 /* 2520 * If we're putting the slab header in the actual page we need to 2521 * figure out where in each page it goes. See slab_sizeof 2522 * definition. 2523 */ 2524 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2525 size_t shsize; 2526 2527 shsize = slab_sizeof(keg->uk_ipers); 2528 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2529 /* 2530 * The only way the following is possible is if with our 2531 * UMA_ALIGN_PTR adjustments we are now bigger than 2532 * UMA_SLAB_SIZE. I haven't checked whether this is 2533 * mathematically possible for all cases, so we make 2534 * sure here anyway. 2535 */ 2536 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2537 ("zone %s ipers %d rsize %d size %d slab won't fit", 2538 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2539 } 2540 2541 if (keg->uk_flags & UMA_ZFLAG_HASH) 2542 hash_alloc(&keg->uk_hash, 0); 2543 2544 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2545 2546 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2547 2548 rw_wlock(&uma_rwlock); 2549 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2550 rw_wunlock(&uma_rwlock); 2551 return (0); 2552 } 2553 2554 static void 2555 zone_kva_available(uma_zone_t zone, void *unused) 2556 { 2557 uma_keg_t keg; 2558 2559 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2560 return; 2561 KEG_GET(zone, keg); 2562 2563 if (keg->uk_allocf == startup_alloc) { 2564 /* Switch to the real allocator. */ 2565 if (keg->uk_flags & UMA_ZONE_PCPU) 2566 keg->uk_allocf = pcpu_page_alloc; 2567 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2568 keg->uk_ppera > 1) 2569 keg->uk_allocf = contig_alloc; 2570 else 2571 keg->uk_allocf = page_alloc; 2572 } 2573 } 2574 2575 static void 2576 zone_alloc_counters(uma_zone_t zone, void *unused) 2577 { 2578 2579 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2580 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2581 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2582 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2583 } 2584 2585 static void 2586 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2587 { 2588 uma_zone_domain_t zdom; 2589 uma_domain_t dom; 2590 uma_keg_t keg; 2591 struct sysctl_oid *oid, *domainoid; 2592 int domains, i, cnt; 2593 static const char *nokeg = "cache zone"; 2594 char *c; 2595 2596 /* 2597 * Make a sysctl safe copy of the zone name by removing 2598 * any special characters and handling dups by appending 2599 * an index. 2600 */ 2601 if (zone->uz_namecnt != 0) { 2602 /* Count the number of decimal digits and '_' separator. */ 2603 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2604 cnt /= 10; 2605 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2606 M_UMA, M_WAITOK); 2607 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2608 zone->uz_namecnt); 2609 } else 2610 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2611 for (c = zone->uz_ctlname; *c != '\0'; c++) 2612 if (strchr("./\\ -", *c) != NULL) 2613 *c = '_'; 2614 2615 /* 2616 * Basic parameters at the root. 2617 */ 2618 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2619 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2620 oid = zone->uz_oid; 2621 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2622 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2623 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2624 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2625 zone, 0, sysctl_handle_uma_zone_flags, "A", 2626 "Allocator configuration flags"); 2627 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2628 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2629 "Desired per-cpu cache size"); 2630 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2631 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2632 "Maximum allowed per-cpu cache size"); 2633 2634 /* 2635 * keg if present. 2636 */ 2637 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2638 domains = vm_ndomains; 2639 else 2640 domains = 1; 2641 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2642 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2643 keg = zone->uz_keg; 2644 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2645 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2646 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2647 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2648 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2649 "Real object size with alignment"); 2650 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2651 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2652 "pages per-slab allocation"); 2653 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2654 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2655 "items available per-slab"); 2656 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2657 "align", CTLFLAG_RD, &keg->uk_align, 0, 2658 "item alignment mask"); 2659 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2660 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0, 2661 "number of reserved items"); 2662 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2663 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2664 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2665 "Slab utilization (100 - internal fragmentation %)"); 2666 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2667 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2668 for (i = 0; i < domains; i++) { 2669 dom = &keg->uk_domain[i]; 2670 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2671 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2672 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2673 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2674 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2675 "Total pages currently allocated from VM"); 2676 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2677 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2678 "Items free in the slab layer"); 2679 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2680 "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0, 2681 "Unused slabs"); 2682 } 2683 } else 2684 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2685 "name", CTLFLAG_RD, nokeg, "Keg name"); 2686 2687 /* 2688 * Information about zone limits. 2689 */ 2690 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2691 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2692 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2693 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2694 zone, 0, sysctl_handle_uma_zone_items, "QU", 2695 "Current number of allocated items if limit is set"); 2696 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2697 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2698 "Maximum number of allocated and cached items"); 2699 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2700 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2701 "Number of threads sleeping at limit"); 2702 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2703 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2704 "Total zone limit sleeps"); 2705 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2706 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2707 "Maximum number of items in each domain's bucket cache"); 2708 2709 /* 2710 * Per-domain zone information. 2711 */ 2712 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2713 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2714 for (i = 0; i < domains; i++) { 2715 zdom = ZDOM_GET(zone, i); 2716 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2717 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2718 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2719 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2720 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2721 "number of items in this domain"); 2722 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2723 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2724 "maximum item count in this period"); 2725 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2726 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2727 "minimum item count in this period"); 2728 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2729 "bimin", CTLFLAG_RD, &zdom->uzd_bimin, 2730 "Minimum item count in this batch"); 2731 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2732 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2733 "Working set size"); 2734 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2735 "limin", CTLFLAG_RD, &zdom->uzd_limin, 2736 "Long time minimum item count"); 2737 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2738 "timin", CTLFLAG_RD, &zdom->uzd_timin, 0, 2739 "Time since zero long time minimum item count"); 2740 } 2741 2742 /* 2743 * General statistics. 2744 */ 2745 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2746 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2747 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2748 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2749 zone, 1, sysctl_handle_uma_zone_cur, "I", 2750 "Current number of allocated items"); 2751 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2752 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2753 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2754 "Total allocation calls"); 2755 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2756 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2757 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2758 "Total free calls"); 2759 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2760 "fails", CTLFLAG_RD, &zone->uz_fails, 2761 "Number of allocation failures"); 2762 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2763 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2764 "Free calls from the wrong domain"); 2765 } 2766 2767 struct uma_zone_count { 2768 const char *name; 2769 int count; 2770 }; 2771 2772 static void 2773 zone_count(uma_zone_t zone, void *arg) 2774 { 2775 struct uma_zone_count *cnt; 2776 2777 cnt = arg; 2778 /* 2779 * Some zones are rapidly created with identical names and 2780 * destroyed out of order. This can lead to gaps in the count. 2781 * Use one greater than the maximum observed for this name. 2782 */ 2783 if (strcmp(zone->uz_name, cnt->name) == 0) 2784 cnt->count = MAX(cnt->count, 2785 zone->uz_namecnt + 1); 2786 } 2787 2788 static void 2789 zone_update_caches(uma_zone_t zone) 2790 { 2791 int i; 2792 2793 for (i = 0; i <= mp_maxid; i++) { 2794 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2795 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2796 } 2797 } 2798 2799 /* 2800 * Zone header ctor. This initializes all fields, locks, etc. 2801 * 2802 * Arguments/Returns follow uma_ctor specifications 2803 * udata Actually uma_zctor_args 2804 */ 2805 static int 2806 zone_ctor(void *mem, int size, void *udata, int flags) 2807 { 2808 struct uma_zone_count cnt; 2809 struct uma_zctor_args *arg = udata; 2810 uma_zone_domain_t zdom; 2811 uma_zone_t zone = mem; 2812 uma_zone_t z; 2813 uma_keg_t keg; 2814 int i; 2815 2816 bzero(zone, size); 2817 zone->uz_name = arg->name; 2818 zone->uz_ctor = arg->ctor; 2819 zone->uz_dtor = arg->dtor; 2820 zone->uz_init = NULL; 2821 zone->uz_fini = NULL; 2822 zone->uz_sleeps = 0; 2823 zone->uz_bucket_size = 0; 2824 zone->uz_bucket_size_min = 0; 2825 zone->uz_bucket_size_max = BUCKET_MAX; 2826 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2827 zone->uz_warning = NULL; 2828 /* The domain structures follow the cpu structures. */ 2829 zone->uz_bucket_max = ULONG_MAX; 2830 timevalclear(&zone->uz_ratecheck); 2831 2832 /* Count the number of duplicate names. */ 2833 cnt.name = arg->name; 2834 cnt.count = 0; 2835 zone_foreach(zone_count, &cnt); 2836 zone->uz_namecnt = cnt.count; 2837 ZONE_CROSS_LOCK_INIT(zone); 2838 2839 for (i = 0; i < vm_ndomains; i++) { 2840 zdom = ZDOM_GET(zone, i); 2841 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2842 STAILQ_INIT(&zdom->uzd_buckets); 2843 } 2844 2845 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 2846 if (arg->uminit == trash_init && arg->fini == trash_fini) 2847 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2848 #elif defined(KASAN) 2849 if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0) 2850 arg->flags |= UMA_ZONE_NOKASAN; 2851 #endif 2852 2853 /* 2854 * This is a pure cache zone, no kegs. 2855 */ 2856 if (arg->import) { 2857 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2858 ("zone_ctor: Import specified for non-cache zone.")); 2859 zone->uz_flags = arg->flags; 2860 zone->uz_size = arg->size; 2861 zone->uz_import = arg->import; 2862 zone->uz_release = arg->release; 2863 zone->uz_arg = arg->arg; 2864 #ifdef NUMA 2865 /* 2866 * Cache zones are round-robin unless a policy is 2867 * specified because they may have incompatible 2868 * constraints. 2869 */ 2870 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2871 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2872 #endif 2873 rw_wlock(&uma_rwlock); 2874 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2875 rw_wunlock(&uma_rwlock); 2876 goto out; 2877 } 2878 2879 /* 2880 * Use the regular zone/keg/slab allocator. 2881 */ 2882 zone->uz_import = zone_import; 2883 zone->uz_release = zone_release; 2884 zone->uz_arg = zone; 2885 keg = arg->keg; 2886 2887 if (arg->flags & UMA_ZONE_SECONDARY) { 2888 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2889 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2890 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2891 zone->uz_init = arg->uminit; 2892 zone->uz_fini = arg->fini; 2893 zone->uz_flags |= UMA_ZONE_SECONDARY; 2894 rw_wlock(&uma_rwlock); 2895 ZONE_LOCK(zone); 2896 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2897 if (LIST_NEXT(z, uz_link) == NULL) { 2898 LIST_INSERT_AFTER(z, zone, uz_link); 2899 break; 2900 } 2901 } 2902 ZONE_UNLOCK(zone); 2903 rw_wunlock(&uma_rwlock); 2904 } else if (keg == NULL) { 2905 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2906 arg->align, arg->flags)) == NULL) 2907 return (ENOMEM); 2908 } else { 2909 struct uma_kctor_args karg; 2910 int error; 2911 2912 /* We should only be here from uma_startup() */ 2913 karg.size = arg->size; 2914 karg.uminit = arg->uminit; 2915 karg.fini = arg->fini; 2916 karg.align = arg->align; 2917 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2918 karg.zone = zone; 2919 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2920 flags); 2921 if (error) 2922 return (error); 2923 } 2924 2925 /* Inherit properties from the keg. */ 2926 zone->uz_keg = keg; 2927 zone->uz_size = keg->uk_size; 2928 zone->uz_flags |= (keg->uk_flags & 2929 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2930 2931 out: 2932 if (booted >= BOOT_PCPU) { 2933 zone_alloc_counters(zone, NULL); 2934 if (booted >= BOOT_RUNNING) 2935 zone_alloc_sysctl(zone, NULL); 2936 } else { 2937 zone->uz_allocs = EARLY_COUNTER; 2938 zone->uz_frees = EARLY_COUNTER; 2939 zone->uz_fails = EARLY_COUNTER; 2940 } 2941 2942 /* Caller requests a private SMR context. */ 2943 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2944 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2945 2946 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2947 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2948 ("Invalid zone flag combination")); 2949 if (arg->flags & UMA_ZFLAG_INTERNAL) 2950 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2951 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2952 zone->uz_bucket_size = BUCKET_MAX; 2953 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2954 zone->uz_bucket_size = 0; 2955 else 2956 zone->uz_bucket_size = bucket_select(zone->uz_size); 2957 zone->uz_bucket_size_min = zone->uz_bucket_size; 2958 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2959 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2960 zone_update_caches(zone); 2961 2962 return (0); 2963 } 2964 2965 /* 2966 * Keg header dtor. This frees all data, destroys locks, frees the hash 2967 * table and removes the keg from the global list. 2968 * 2969 * Arguments/Returns follow uma_dtor specifications 2970 * udata unused 2971 */ 2972 static void 2973 keg_dtor(void *arg, int size, void *udata) 2974 { 2975 uma_keg_t keg; 2976 uint32_t free, pages; 2977 int i; 2978 2979 keg = (uma_keg_t)arg; 2980 free = pages = 0; 2981 for (i = 0; i < vm_ndomains; i++) { 2982 free += keg->uk_domain[i].ud_free_items; 2983 pages += keg->uk_domain[i].ud_pages; 2984 KEG_LOCK_FINI(keg, i); 2985 } 2986 if (pages != 0) 2987 printf("Freed UMA keg (%s) was not empty (%u items). " 2988 " Lost %u pages of memory.\n", 2989 keg->uk_name ? keg->uk_name : "", 2990 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2991 2992 hash_free(&keg->uk_hash); 2993 } 2994 2995 /* 2996 * Zone header dtor. 2997 * 2998 * Arguments/Returns follow uma_dtor specifications 2999 * udata unused 3000 */ 3001 static void 3002 zone_dtor(void *arg, int size, void *udata) 3003 { 3004 uma_zone_t zone; 3005 uma_keg_t keg; 3006 int i; 3007 3008 zone = (uma_zone_t)arg; 3009 3010 sysctl_remove_oid(zone->uz_oid, 1, 1); 3011 3012 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 3013 cache_drain(zone); 3014 3015 rw_wlock(&uma_rwlock); 3016 LIST_REMOVE(zone, uz_link); 3017 rw_wunlock(&uma_rwlock); 3018 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3019 keg = zone->uz_keg; 3020 keg->uk_reserve = 0; 3021 } 3022 zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true); 3023 3024 /* 3025 * We only destroy kegs from non secondary/non cache zones. 3026 */ 3027 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3028 keg = zone->uz_keg; 3029 rw_wlock(&uma_rwlock); 3030 LIST_REMOVE(keg, uk_link); 3031 rw_wunlock(&uma_rwlock); 3032 zone_free_item(kegs, keg, NULL, SKIP_NONE); 3033 } 3034 counter_u64_free(zone->uz_allocs); 3035 counter_u64_free(zone->uz_frees); 3036 counter_u64_free(zone->uz_fails); 3037 counter_u64_free(zone->uz_xdomain); 3038 free(zone->uz_ctlname, M_UMA); 3039 for (i = 0; i < vm_ndomains; i++) 3040 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 3041 ZONE_CROSS_LOCK_FINI(zone); 3042 } 3043 3044 static void 3045 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3046 { 3047 uma_keg_t keg; 3048 uma_zone_t zone; 3049 3050 LIST_FOREACH(keg, &uma_kegs, uk_link) { 3051 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 3052 zfunc(zone, arg); 3053 } 3054 LIST_FOREACH(zone, &uma_cachezones, uz_link) 3055 zfunc(zone, arg); 3056 } 3057 3058 /* 3059 * Traverses every zone in the system and calls a callback 3060 * 3061 * Arguments: 3062 * zfunc A pointer to a function which accepts a zone 3063 * as an argument. 3064 * 3065 * Returns: 3066 * Nothing 3067 */ 3068 static void 3069 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3070 { 3071 3072 rw_rlock(&uma_rwlock); 3073 zone_foreach_unlocked(zfunc, arg); 3074 rw_runlock(&uma_rwlock); 3075 } 3076 3077 /* 3078 * Initialize the kernel memory allocator. This is done after pages can be 3079 * allocated but before general KVA is available. 3080 */ 3081 void 3082 uma_startup1(vm_offset_t virtual_avail) 3083 { 3084 struct uma_zctor_args args; 3085 size_t ksize, zsize, size; 3086 uma_keg_t primarykeg; 3087 uintptr_t m; 3088 int domain; 3089 uint8_t pflag; 3090 3091 bootstart = bootmem = virtual_avail; 3092 3093 rw_init(&uma_rwlock, "UMA lock"); 3094 sx_init(&uma_reclaim_lock, "umareclaim"); 3095 3096 ksize = sizeof(struct uma_keg) + 3097 (sizeof(struct uma_domain) * vm_ndomains); 3098 ksize = roundup(ksize, UMA_SUPER_ALIGN); 3099 zsize = sizeof(struct uma_zone) + 3100 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 3101 (sizeof(struct uma_zone_domain) * vm_ndomains); 3102 zsize = roundup(zsize, UMA_SUPER_ALIGN); 3103 3104 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 3105 size = (zsize * 2) + ksize; 3106 for (domain = 0; domain < vm_ndomains; domain++) { 3107 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 3108 M_NOWAIT | M_ZERO); 3109 if (m != 0) 3110 break; 3111 } 3112 zones = (uma_zone_t)m; 3113 m += zsize; 3114 kegs = (uma_zone_t)m; 3115 m += zsize; 3116 primarykeg = (uma_keg_t)m; 3117 3118 /* "manually" create the initial zone */ 3119 memset(&args, 0, sizeof(args)); 3120 args.name = "UMA Kegs"; 3121 args.size = ksize; 3122 args.ctor = keg_ctor; 3123 args.dtor = keg_dtor; 3124 args.uminit = zero_init; 3125 args.fini = NULL; 3126 args.keg = primarykeg; 3127 args.align = UMA_SUPER_ALIGN - 1; 3128 args.flags = UMA_ZFLAG_INTERNAL; 3129 zone_ctor(kegs, zsize, &args, M_WAITOK); 3130 3131 args.name = "UMA Zones"; 3132 args.size = zsize; 3133 args.ctor = zone_ctor; 3134 args.dtor = zone_dtor; 3135 args.uminit = zero_init; 3136 args.fini = NULL; 3137 args.keg = NULL; 3138 args.align = UMA_SUPER_ALIGN - 1; 3139 args.flags = UMA_ZFLAG_INTERNAL; 3140 zone_ctor(zones, zsize, &args, M_WAITOK); 3141 3142 /* Now make zones for slab headers */ 3143 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 3144 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3145 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 3146 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3147 3148 hashzone = uma_zcreate("UMA Hash", 3149 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 3150 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3151 3152 bucket_init(); 3153 smr_init(); 3154 } 3155 3156 #ifndef UMA_MD_SMALL_ALLOC 3157 extern void vm_radix_reserve_kva(void); 3158 #endif 3159 3160 /* 3161 * Advertise the availability of normal kva allocations and switch to 3162 * the default back-end allocator. Marks the KVA we consumed on startup 3163 * as used in the map. 3164 */ 3165 void 3166 uma_startup2(void) 3167 { 3168 3169 if (bootstart != bootmem) { 3170 vm_map_lock(kernel_map); 3171 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 3172 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 3173 vm_map_unlock(kernel_map); 3174 } 3175 3176 #ifndef UMA_MD_SMALL_ALLOC 3177 /* Set up radix zone to use noobj_alloc. */ 3178 vm_radix_reserve_kva(); 3179 #endif 3180 3181 booted = BOOT_KVA; 3182 zone_foreach_unlocked(zone_kva_available, NULL); 3183 bucket_enable(); 3184 } 3185 3186 /* 3187 * Allocate counters as early as possible so that boot-time allocations are 3188 * accounted more precisely. 3189 */ 3190 static void 3191 uma_startup_pcpu(void *arg __unused) 3192 { 3193 3194 zone_foreach_unlocked(zone_alloc_counters, NULL); 3195 booted = BOOT_PCPU; 3196 } 3197 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 3198 3199 /* 3200 * Finish our initialization steps. 3201 */ 3202 static void 3203 uma_startup3(void *arg __unused) 3204 { 3205 3206 #ifdef INVARIANTS 3207 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 3208 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 3209 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 3210 #endif 3211 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 3212 booted = BOOT_RUNNING; 3213 3214 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 3215 EVENTHANDLER_PRI_FIRST); 3216 } 3217 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 3218 3219 static void 3220 uma_startup4(void *arg __unused) 3221 { 3222 TIMEOUT_TASK_INIT(taskqueue_thread, &uma_timeout_task, 0, uma_timeout, 3223 NULL); 3224 taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task, 3225 UMA_TIMEOUT * hz); 3226 } 3227 SYSINIT(uma_startup4, SI_SUB_TASKQ, SI_ORDER_ANY, uma_startup4, NULL); 3228 3229 static void 3230 uma_shutdown(void) 3231 { 3232 3233 booted = BOOT_SHUTDOWN; 3234 } 3235 3236 static uma_keg_t 3237 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 3238 int align, uint32_t flags) 3239 { 3240 struct uma_kctor_args args; 3241 3242 args.size = size; 3243 args.uminit = uminit; 3244 args.fini = fini; 3245 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 3246 args.flags = flags; 3247 args.zone = zone; 3248 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 3249 } 3250 3251 /* Public functions */ 3252 /* See uma.h */ 3253 void 3254 uma_set_align(int align) 3255 { 3256 3257 if (align != UMA_ALIGN_CACHE) 3258 uma_align_cache = align; 3259 } 3260 3261 /* See uma.h */ 3262 uma_zone_t 3263 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 3264 uma_init uminit, uma_fini fini, int align, uint32_t flags) 3265 3266 { 3267 struct uma_zctor_args args; 3268 uma_zone_t res; 3269 3270 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 3271 align, name)); 3272 3273 /* This stuff is essential for the zone ctor */ 3274 memset(&args, 0, sizeof(args)); 3275 args.name = name; 3276 args.size = size; 3277 args.ctor = ctor; 3278 args.dtor = dtor; 3279 args.uminit = uminit; 3280 args.fini = fini; 3281 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 3282 /* 3283 * Inject procedures which check for memory use after free if we are 3284 * allowed to scramble the memory while it is not allocated. This 3285 * requires that: UMA is actually able to access the memory, no init 3286 * or fini procedures, no dependency on the initial value of the 3287 * memory, and no (legitimate) use of the memory after free. Note, 3288 * the ctor and dtor do not need to be empty. 3289 */ 3290 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3291 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3292 args.uminit = trash_init; 3293 args.fini = trash_fini; 3294 } 3295 #endif 3296 args.align = align; 3297 args.flags = flags; 3298 args.keg = NULL; 3299 3300 sx_xlock(&uma_reclaim_lock); 3301 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3302 sx_xunlock(&uma_reclaim_lock); 3303 3304 return (res); 3305 } 3306 3307 /* See uma.h */ 3308 uma_zone_t 3309 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3310 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3311 { 3312 struct uma_zctor_args args; 3313 uma_keg_t keg; 3314 uma_zone_t res; 3315 3316 keg = primary->uz_keg; 3317 memset(&args, 0, sizeof(args)); 3318 args.name = name; 3319 args.size = keg->uk_size; 3320 args.ctor = ctor; 3321 args.dtor = dtor; 3322 args.uminit = zinit; 3323 args.fini = zfini; 3324 args.align = keg->uk_align; 3325 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3326 args.keg = keg; 3327 3328 sx_xlock(&uma_reclaim_lock); 3329 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3330 sx_xunlock(&uma_reclaim_lock); 3331 3332 return (res); 3333 } 3334 3335 /* See uma.h */ 3336 uma_zone_t 3337 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3338 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3339 void *arg, int flags) 3340 { 3341 struct uma_zctor_args args; 3342 3343 memset(&args, 0, sizeof(args)); 3344 args.name = name; 3345 args.size = size; 3346 args.ctor = ctor; 3347 args.dtor = dtor; 3348 args.uminit = zinit; 3349 args.fini = zfini; 3350 args.import = zimport; 3351 args.release = zrelease; 3352 args.arg = arg; 3353 args.align = 0; 3354 args.flags = flags | UMA_ZFLAG_CACHE; 3355 3356 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3357 } 3358 3359 /* See uma.h */ 3360 void 3361 uma_zdestroy(uma_zone_t zone) 3362 { 3363 3364 /* 3365 * Large slabs are expensive to reclaim, so don't bother doing 3366 * unnecessary work if we're shutting down. 3367 */ 3368 if (booted == BOOT_SHUTDOWN && 3369 zone->uz_fini == NULL && zone->uz_release == zone_release) 3370 return; 3371 sx_xlock(&uma_reclaim_lock); 3372 zone_free_item(zones, zone, NULL, SKIP_NONE); 3373 sx_xunlock(&uma_reclaim_lock); 3374 } 3375 3376 void 3377 uma_zwait(uma_zone_t zone) 3378 { 3379 3380 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3381 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3382 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3383 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3384 else 3385 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3386 } 3387 3388 void * 3389 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3390 { 3391 void *item, *pcpu_item; 3392 #ifdef SMP 3393 int i; 3394 3395 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3396 #endif 3397 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3398 if (item == NULL) 3399 return (NULL); 3400 pcpu_item = zpcpu_base_to_offset(item); 3401 if (flags & M_ZERO) { 3402 #ifdef SMP 3403 for (i = 0; i <= mp_maxid; i++) 3404 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3405 #else 3406 bzero(item, zone->uz_size); 3407 #endif 3408 } 3409 return (pcpu_item); 3410 } 3411 3412 /* 3413 * A stub while both regular and pcpu cases are identical. 3414 */ 3415 void 3416 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3417 { 3418 void *item; 3419 3420 #ifdef SMP 3421 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3422 #endif 3423 3424 /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */ 3425 if (pcpu_item == NULL) 3426 return; 3427 3428 item = zpcpu_offset_to_base(pcpu_item); 3429 uma_zfree_arg(zone, item, udata); 3430 } 3431 3432 static inline void * 3433 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3434 void *item) 3435 { 3436 #ifdef INVARIANTS 3437 bool skipdbg; 3438 #endif 3439 3440 kasan_mark_item_valid(zone, item); 3441 kmsan_mark_item_uninitialized(zone, item); 3442 3443 #ifdef INVARIANTS 3444 skipdbg = uma_dbg_zskip(zone, item); 3445 if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 && 3446 zone->uz_ctor != trash_ctor) 3447 trash_ctor(item, size, udata, flags); 3448 #endif 3449 3450 /* Check flags before loading ctor pointer. */ 3451 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3452 __predict_false(zone->uz_ctor != NULL) && 3453 zone->uz_ctor(item, size, udata, flags) != 0) { 3454 counter_u64_add(zone->uz_fails, 1); 3455 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3456 return (NULL); 3457 } 3458 #ifdef INVARIANTS 3459 if (!skipdbg) 3460 uma_dbg_alloc(zone, NULL, item); 3461 #endif 3462 if (__predict_false(flags & M_ZERO)) 3463 return (memset(item, 0, size)); 3464 3465 return (item); 3466 } 3467 3468 static inline void 3469 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3470 enum zfreeskip skip) 3471 { 3472 #ifdef INVARIANTS 3473 bool skipdbg; 3474 3475 skipdbg = uma_dbg_zskip(zone, item); 3476 if (skip == SKIP_NONE && !skipdbg) { 3477 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3478 uma_dbg_free(zone, udata, item); 3479 else 3480 uma_dbg_free(zone, NULL, item); 3481 } 3482 #endif 3483 if (__predict_true(skip < SKIP_DTOR)) { 3484 if (zone->uz_dtor != NULL) 3485 zone->uz_dtor(item, size, udata); 3486 #ifdef INVARIANTS 3487 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3488 zone->uz_dtor != trash_dtor) 3489 trash_dtor(item, size, udata); 3490 #endif 3491 } 3492 kasan_mark_item_invalid(zone, item); 3493 } 3494 3495 #ifdef NUMA 3496 static int 3497 item_domain(void *item) 3498 { 3499 int domain; 3500 3501 domain = vm_phys_domain(vtophys(item)); 3502 KASSERT(domain >= 0 && domain < vm_ndomains, 3503 ("%s: unknown domain for item %p", __func__, item)); 3504 return (domain); 3505 } 3506 #endif 3507 3508 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3509 #if defined(INVARIANTS) && (defined(DDB) || defined(STACK)) 3510 #include <sys/stack.h> 3511 #endif 3512 #define UMA_ZALLOC_DEBUG 3513 static int 3514 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3515 { 3516 int error; 3517 3518 error = 0; 3519 #ifdef WITNESS 3520 if (flags & M_WAITOK) { 3521 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3522 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3523 } 3524 #endif 3525 3526 #ifdef INVARIANTS 3527 KASSERT((flags & M_EXEC) == 0, 3528 ("uma_zalloc_debug: called with M_EXEC")); 3529 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3530 ("uma_zalloc_debug: called within spinlock or critical section")); 3531 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3532 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3533 3534 _Static_assert(M_NOWAIT != 0 && M_WAITOK != 0, 3535 "M_NOWAIT and M_WAITOK must be non-zero for this assertion:"); 3536 #if 0 3537 /* 3538 * Give the #elif clause time to find problems, then remove it 3539 * and enable this. (Remove <sys/stack.h> above, too.) 3540 */ 3541 KASSERT((flags & (M_NOWAIT|M_WAITOK)) == M_NOWAIT || 3542 (flags & (M_NOWAIT|M_WAITOK)) == M_WAITOK, 3543 ("uma_zalloc_debug: must pass one of M_NOWAIT or M_WAITOK")); 3544 #elif defined(DDB) || defined(STACK) 3545 if (__predict_false((flags & (M_NOWAIT|M_WAITOK)) != M_NOWAIT && 3546 (flags & (M_NOWAIT|M_WAITOK)) != M_WAITOK)) { 3547 static int stack_count; 3548 struct stack st; 3549 3550 if (stack_count < 10) { 3551 ++stack_count; 3552 printf("uma_zalloc* called with bad WAIT flags:\n"); 3553 stack_save(&st); 3554 stack_print(&st); 3555 } 3556 } 3557 #endif 3558 #endif 3559 3560 #ifdef DEBUG_MEMGUARD 3561 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3562 void *item; 3563 item = memguard_alloc(zone->uz_size, flags); 3564 if (item != NULL) { 3565 error = EJUSTRETURN; 3566 if (zone->uz_init != NULL && 3567 zone->uz_init(item, zone->uz_size, flags) != 0) { 3568 *itemp = NULL; 3569 return (error); 3570 } 3571 if (zone->uz_ctor != NULL && 3572 zone->uz_ctor(item, zone->uz_size, udata, 3573 flags) != 0) { 3574 counter_u64_add(zone->uz_fails, 1); 3575 if (zone->uz_fini != NULL) 3576 zone->uz_fini(item, zone->uz_size); 3577 *itemp = NULL; 3578 return (error); 3579 } 3580 *itemp = item; 3581 return (error); 3582 } 3583 /* This is unfortunate but should not be fatal. */ 3584 } 3585 #endif 3586 return (error); 3587 } 3588 3589 static int 3590 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3591 { 3592 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3593 ("uma_zfree_debug: called with spinlock or critical section held")); 3594 3595 #ifdef DEBUG_MEMGUARD 3596 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3597 if (zone->uz_dtor != NULL) 3598 zone->uz_dtor(item, zone->uz_size, udata); 3599 if (zone->uz_fini != NULL) 3600 zone->uz_fini(item, zone->uz_size); 3601 memguard_free(item); 3602 return (EJUSTRETURN); 3603 } 3604 #endif 3605 return (0); 3606 } 3607 #endif 3608 3609 static inline void * 3610 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3611 void *udata, int flags) 3612 { 3613 void *item; 3614 int size, uz_flags; 3615 3616 item = cache_bucket_pop(cache, bucket); 3617 size = cache_uz_size(cache); 3618 uz_flags = cache_uz_flags(cache); 3619 critical_exit(); 3620 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3621 } 3622 3623 static __noinline void * 3624 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3625 { 3626 uma_cache_bucket_t bucket; 3627 int domain; 3628 3629 while (cache_alloc(zone, cache, udata, flags)) { 3630 cache = &zone->uz_cpu[curcpu]; 3631 bucket = &cache->uc_allocbucket; 3632 if (__predict_false(bucket->ucb_cnt == 0)) 3633 continue; 3634 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3635 } 3636 critical_exit(); 3637 3638 /* 3639 * We can not get a bucket so try to return a single item. 3640 */ 3641 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3642 domain = PCPU_GET(domain); 3643 else 3644 domain = UMA_ANYDOMAIN; 3645 return (zone_alloc_item(zone, udata, domain, flags)); 3646 } 3647 3648 /* See uma.h */ 3649 void * 3650 uma_zalloc_smr(uma_zone_t zone, int flags) 3651 { 3652 uma_cache_bucket_t bucket; 3653 uma_cache_t cache; 3654 3655 CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name, 3656 zone, flags); 3657 3658 #ifdef UMA_ZALLOC_DEBUG 3659 void *item; 3660 3661 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3662 ("uma_zalloc_arg: called with non-SMR zone.")); 3663 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3664 return (item); 3665 #endif 3666 3667 critical_enter(); 3668 cache = &zone->uz_cpu[curcpu]; 3669 bucket = &cache->uc_allocbucket; 3670 if (__predict_false(bucket->ucb_cnt == 0)) 3671 return (cache_alloc_retry(zone, cache, NULL, flags)); 3672 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3673 } 3674 3675 /* See uma.h */ 3676 void * 3677 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3678 { 3679 uma_cache_bucket_t bucket; 3680 uma_cache_t cache; 3681 3682 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3683 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3684 3685 /* This is the fast path allocation */ 3686 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3687 zone, flags); 3688 3689 #ifdef UMA_ZALLOC_DEBUG 3690 void *item; 3691 3692 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3693 ("uma_zalloc_arg: called with SMR zone.")); 3694 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3695 return (item); 3696 #endif 3697 3698 /* 3699 * If possible, allocate from the per-CPU cache. There are two 3700 * requirements for safe access to the per-CPU cache: (1) the thread 3701 * accessing the cache must not be preempted or yield during access, 3702 * and (2) the thread must not migrate CPUs without switching which 3703 * cache it accesses. We rely on a critical section to prevent 3704 * preemption and migration. We release the critical section in 3705 * order to acquire the zone mutex if we are unable to allocate from 3706 * the current cache; when we re-acquire the critical section, we 3707 * must detect and handle migration if it has occurred. 3708 */ 3709 critical_enter(); 3710 cache = &zone->uz_cpu[curcpu]; 3711 bucket = &cache->uc_allocbucket; 3712 if (__predict_false(bucket->ucb_cnt == 0)) 3713 return (cache_alloc_retry(zone, cache, udata, flags)); 3714 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3715 } 3716 3717 /* 3718 * Replenish an alloc bucket and possibly restore an old one. Called in 3719 * a critical section. Returns in a critical section. 3720 * 3721 * A false return value indicates an allocation failure. 3722 * A true return value indicates success and the caller should retry. 3723 */ 3724 static __noinline bool 3725 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3726 { 3727 uma_bucket_t bucket; 3728 int curdomain, domain; 3729 bool new; 3730 3731 CRITICAL_ASSERT(curthread); 3732 3733 /* 3734 * If we have run out of items in our alloc bucket see 3735 * if we can switch with the free bucket. 3736 * 3737 * SMR Zones can't re-use the free bucket until the sequence has 3738 * expired. 3739 */ 3740 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3741 cache->uc_freebucket.ucb_cnt != 0) { 3742 cache_bucket_swap(&cache->uc_freebucket, 3743 &cache->uc_allocbucket); 3744 return (true); 3745 } 3746 3747 /* 3748 * Discard any empty allocation bucket while we hold no locks. 3749 */ 3750 bucket = cache_bucket_unload_alloc(cache); 3751 critical_exit(); 3752 3753 if (bucket != NULL) { 3754 KASSERT(bucket->ub_cnt == 0, 3755 ("cache_alloc: Entered with non-empty alloc bucket.")); 3756 bucket_free(zone, bucket, udata); 3757 } 3758 3759 /* 3760 * Attempt to retrieve the item from the per-CPU cache has failed, so 3761 * we must go back to the zone. This requires the zdom lock, so we 3762 * must drop the critical section, then re-acquire it when we go back 3763 * to the cache. Since the critical section is released, we may be 3764 * preempted or migrate. As such, make sure not to maintain any 3765 * thread-local state specific to the cache from prior to releasing 3766 * the critical section. 3767 */ 3768 domain = PCPU_GET(domain); 3769 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3770 VM_DOMAIN_EMPTY(domain)) 3771 domain = zone_domain_highest(zone, domain); 3772 bucket = cache_fetch_bucket(zone, cache, domain); 3773 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { 3774 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3775 new = true; 3776 } else { 3777 new = false; 3778 } 3779 3780 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3781 zone->uz_name, zone, bucket); 3782 if (bucket == NULL) { 3783 critical_enter(); 3784 return (false); 3785 } 3786 3787 /* 3788 * See if we lost the race or were migrated. Cache the 3789 * initialized bucket to make this less likely or claim 3790 * the memory directly. 3791 */ 3792 critical_enter(); 3793 cache = &zone->uz_cpu[curcpu]; 3794 if (cache->uc_allocbucket.ucb_bucket == NULL && 3795 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3796 (curdomain = PCPU_GET(domain)) == domain || 3797 VM_DOMAIN_EMPTY(curdomain))) { 3798 if (new) 3799 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3800 bucket->ub_cnt); 3801 cache_bucket_load_alloc(cache, bucket); 3802 return (true); 3803 } 3804 3805 /* 3806 * We lost the race, release this bucket and start over. 3807 */ 3808 critical_exit(); 3809 zone_put_bucket(zone, domain, bucket, udata, !new); 3810 critical_enter(); 3811 3812 return (true); 3813 } 3814 3815 void * 3816 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3817 { 3818 #ifdef NUMA 3819 uma_bucket_t bucket; 3820 uma_zone_domain_t zdom; 3821 void *item; 3822 #endif 3823 3824 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3825 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3826 3827 /* This is the fast path allocation */ 3828 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3829 zone->uz_name, zone, domain, flags); 3830 3831 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3832 ("uma_zalloc_domain: called with SMR zone.")); 3833 #ifdef NUMA 3834 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0, 3835 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone.")); 3836 3837 if (vm_ndomains == 1) 3838 return (uma_zalloc_arg(zone, udata, flags)); 3839 3840 #ifdef UMA_ZALLOC_DEBUG 3841 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3842 return (item); 3843 #endif 3844 3845 /* 3846 * Try to allocate from the bucket cache before falling back to the keg. 3847 * We could try harder and attempt to allocate from per-CPU caches or 3848 * the per-domain cross-domain buckets, but the complexity is probably 3849 * not worth it. It is more important that frees of previous 3850 * cross-domain allocations do not blow up the cache. 3851 */ 3852 zdom = zone_domain_lock(zone, domain); 3853 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 3854 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3855 #ifdef INVARIANTS 3856 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL; 3857 #endif 3858 bucket->ub_cnt--; 3859 zone_put_bucket(zone, domain, bucket, udata, true); 3860 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, 3861 flags, item); 3862 if (item != NULL) { 3863 KASSERT(item_domain(item) == domain, 3864 ("%s: bucket cache item %p from wrong domain", 3865 __func__, item)); 3866 counter_u64_add(zone->uz_allocs, 1); 3867 } 3868 return (item); 3869 } 3870 ZDOM_UNLOCK(zdom); 3871 return (zone_alloc_item(zone, udata, domain, flags)); 3872 #else 3873 return (uma_zalloc_arg(zone, udata, flags)); 3874 #endif 3875 } 3876 3877 /* 3878 * Find a slab with some space. Prefer slabs that are partially used over those 3879 * that are totally full. This helps to reduce fragmentation. 3880 * 3881 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3882 * only 'domain'. 3883 */ 3884 static uma_slab_t 3885 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3886 { 3887 uma_domain_t dom; 3888 uma_slab_t slab; 3889 int start; 3890 3891 KASSERT(domain >= 0 && domain < vm_ndomains, 3892 ("keg_first_slab: domain %d out of range", domain)); 3893 KEG_LOCK_ASSERT(keg, domain); 3894 3895 slab = NULL; 3896 start = domain; 3897 do { 3898 dom = &keg->uk_domain[domain]; 3899 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3900 return (slab); 3901 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3902 LIST_REMOVE(slab, us_link); 3903 dom->ud_free_slabs--; 3904 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3905 return (slab); 3906 } 3907 if (rr) 3908 domain = (domain + 1) % vm_ndomains; 3909 } while (domain != start); 3910 3911 return (NULL); 3912 } 3913 3914 /* 3915 * Fetch an existing slab from a free or partial list. Returns with the 3916 * keg domain lock held if a slab was found or unlocked if not. 3917 */ 3918 static uma_slab_t 3919 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3920 { 3921 uma_slab_t slab; 3922 uint32_t reserve; 3923 3924 /* HASH has a single free list. */ 3925 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3926 domain = 0; 3927 3928 KEG_LOCK(keg, domain); 3929 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3930 if (keg->uk_domain[domain].ud_free_items <= reserve || 3931 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3932 KEG_UNLOCK(keg, domain); 3933 return (NULL); 3934 } 3935 return (slab); 3936 } 3937 3938 static uma_slab_t 3939 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3940 { 3941 struct vm_domainset_iter di; 3942 uma_slab_t slab; 3943 int aflags, domain; 3944 bool rr; 3945 3946 KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM), 3947 ("%s: invalid flags %#x", __func__, flags)); 3948 3949 restart: 3950 /* 3951 * Use the keg's policy if upper layers haven't already specified a 3952 * domain (as happens with first-touch zones). 3953 * 3954 * To avoid races we run the iterator with the keg lock held, but that 3955 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3956 * clear M_WAITOK and handle low memory conditions locally. 3957 */ 3958 rr = rdomain == UMA_ANYDOMAIN; 3959 if (rr) { 3960 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3961 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3962 &aflags); 3963 } else { 3964 aflags = flags; 3965 domain = rdomain; 3966 } 3967 3968 for (;;) { 3969 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3970 if (slab != NULL) 3971 return (slab); 3972 3973 /* 3974 * M_NOVM is used to break the recursion that can otherwise 3975 * occur if low-level memory management routines use UMA. 3976 */ 3977 if ((flags & M_NOVM) == 0) { 3978 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3979 if (slab != NULL) 3980 return (slab); 3981 } 3982 3983 if (!rr) { 3984 if ((flags & M_USE_RESERVE) != 0) { 3985 /* 3986 * Drain reserves from other domains before 3987 * giving up or sleeping. It may be useful to 3988 * support per-domain reserves eventually. 3989 */ 3990 rdomain = UMA_ANYDOMAIN; 3991 goto restart; 3992 } 3993 if ((flags & M_WAITOK) == 0) 3994 break; 3995 vm_wait_domain(domain); 3996 } else if (vm_domainset_iter_policy(&di, &domain) != 0) { 3997 if ((flags & M_WAITOK) != 0) { 3998 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 3999 goto restart; 4000 } 4001 break; 4002 } 4003 } 4004 4005 /* 4006 * We might not have been able to get a slab but another cpu 4007 * could have while we were unlocked. Check again before we 4008 * fail. 4009 */ 4010 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 4011 return (slab); 4012 4013 return (NULL); 4014 } 4015 4016 static void * 4017 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 4018 { 4019 uma_domain_t dom; 4020 void *item; 4021 int freei; 4022 4023 KEG_LOCK_ASSERT(keg, slab->us_domain); 4024 4025 dom = &keg->uk_domain[slab->us_domain]; 4026 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 4027 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 4028 item = slab_item(slab, keg, freei); 4029 slab->us_freecount--; 4030 dom->ud_free_items--; 4031 4032 /* 4033 * Move this slab to the full list. It must be on the partial list, so 4034 * we do not need to update the free slab count. In particular, 4035 * keg_fetch_slab() always returns slabs on the partial list. 4036 */ 4037 if (slab->us_freecount == 0) { 4038 LIST_REMOVE(slab, us_link); 4039 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 4040 } 4041 4042 return (item); 4043 } 4044 4045 static int 4046 zone_import(void *arg, void **bucket, int max, int domain, int flags) 4047 { 4048 uma_domain_t dom; 4049 uma_zone_t zone; 4050 uma_slab_t slab; 4051 uma_keg_t keg; 4052 #ifdef NUMA 4053 int stripe; 4054 #endif 4055 int i; 4056 4057 zone = arg; 4058 slab = NULL; 4059 keg = zone->uz_keg; 4060 /* Try to keep the buckets totally full */ 4061 for (i = 0; i < max; ) { 4062 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 4063 break; 4064 #ifdef NUMA 4065 stripe = howmany(max, vm_ndomains); 4066 #endif 4067 dom = &keg->uk_domain[slab->us_domain]; 4068 do { 4069 bucket[i++] = slab_alloc_item(keg, slab); 4070 if (keg->uk_reserve > 0 && 4071 dom->ud_free_items <= keg->uk_reserve) { 4072 /* 4073 * Avoid depleting the reserve after a 4074 * successful item allocation, even if 4075 * M_USE_RESERVE is specified. 4076 */ 4077 KEG_UNLOCK(keg, slab->us_domain); 4078 goto out; 4079 } 4080 #ifdef NUMA 4081 /* 4082 * If the zone is striped we pick a new slab for every 4083 * N allocations. Eliminating this conditional will 4084 * instead pick a new domain for each bucket rather 4085 * than stripe within each bucket. The current option 4086 * produces more fragmentation and requires more cpu 4087 * time but yields better distribution. 4088 */ 4089 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 4090 vm_ndomains > 1 && --stripe == 0) 4091 break; 4092 #endif 4093 } while (slab->us_freecount != 0 && i < max); 4094 KEG_UNLOCK(keg, slab->us_domain); 4095 4096 /* Don't block if we allocated any successfully. */ 4097 flags &= ~M_WAITOK; 4098 flags |= M_NOWAIT; 4099 } 4100 out: 4101 return i; 4102 } 4103 4104 static int 4105 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 4106 { 4107 uint64_t old, new, total, max; 4108 4109 /* 4110 * The hard case. We're going to sleep because there were existing 4111 * sleepers or because we ran out of items. This routine enforces 4112 * fairness by keeping fifo order. 4113 * 4114 * First release our ill gotten gains and make some noise. 4115 */ 4116 for (;;) { 4117 zone_free_limit(zone, count); 4118 zone_log_warning(zone); 4119 zone_maxaction(zone); 4120 if (flags & M_NOWAIT) 4121 return (0); 4122 4123 /* 4124 * We need to allocate an item or set ourself as a sleeper 4125 * while the sleepq lock is held to avoid wakeup races. This 4126 * is essentially a home rolled semaphore. 4127 */ 4128 sleepq_lock(&zone->uz_max_items); 4129 old = zone->uz_items; 4130 do { 4131 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 4132 /* Cache the max since we will evaluate twice. */ 4133 max = zone->uz_max_items; 4134 if (UZ_ITEMS_SLEEPERS(old) != 0 || 4135 UZ_ITEMS_COUNT(old) >= max) 4136 new = old + UZ_ITEMS_SLEEPER; 4137 else 4138 new = old + MIN(count, max - old); 4139 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 4140 4141 /* We may have successfully allocated under the sleepq lock. */ 4142 if (UZ_ITEMS_SLEEPERS(new) == 0) { 4143 sleepq_release(&zone->uz_max_items); 4144 return (new - old); 4145 } 4146 4147 /* 4148 * This is in a different cacheline from uz_items so that we 4149 * don't constantly invalidate the fastpath cacheline when we 4150 * adjust item counts. This could be limited to toggling on 4151 * transitions. 4152 */ 4153 atomic_add_32(&zone->uz_sleepers, 1); 4154 atomic_add_64(&zone->uz_sleeps, 1); 4155 4156 /* 4157 * We have added ourselves as a sleeper. The sleepq lock 4158 * protects us from wakeup races. Sleep now and then retry. 4159 */ 4160 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 4161 sleepq_wait(&zone->uz_max_items, PVM); 4162 4163 /* 4164 * After wakeup, remove ourselves as a sleeper and try 4165 * again. We no longer have the sleepq lock for protection. 4166 * 4167 * Subract ourselves as a sleeper while attempting to add 4168 * our count. 4169 */ 4170 atomic_subtract_32(&zone->uz_sleepers, 1); 4171 old = atomic_fetchadd_64(&zone->uz_items, 4172 -(UZ_ITEMS_SLEEPER - count)); 4173 /* We're no longer a sleeper. */ 4174 old -= UZ_ITEMS_SLEEPER; 4175 4176 /* 4177 * If we're still at the limit, restart. Notably do not 4178 * block on other sleepers. Cache the max value to protect 4179 * against changes via sysctl. 4180 */ 4181 total = UZ_ITEMS_COUNT(old); 4182 max = zone->uz_max_items; 4183 if (total >= max) 4184 continue; 4185 /* Truncate if necessary, otherwise wake other sleepers. */ 4186 if (total + count > max) { 4187 zone_free_limit(zone, total + count - max); 4188 count = max - total; 4189 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 4190 wakeup_one(&zone->uz_max_items); 4191 4192 return (count); 4193 } 4194 } 4195 4196 /* 4197 * Allocate 'count' items from our max_items limit. Returns the number 4198 * available. If M_NOWAIT is not specified it will sleep until at least 4199 * one item can be allocated. 4200 */ 4201 static int 4202 zone_alloc_limit(uma_zone_t zone, int count, int flags) 4203 { 4204 uint64_t old; 4205 uint64_t max; 4206 4207 max = zone->uz_max_items; 4208 MPASS(max > 0); 4209 4210 /* 4211 * We expect normal allocations to succeed with a simple 4212 * fetchadd. 4213 */ 4214 old = atomic_fetchadd_64(&zone->uz_items, count); 4215 if (__predict_true(old + count <= max)) 4216 return (count); 4217 4218 /* 4219 * If we had some items and no sleepers just return the 4220 * truncated value. We have to release the excess space 4221 * though because that may wake sleepers who weren't woken 4222 * because we were temporarily over the limit. 4223 */ 4224 if (old < max) { 4225 zone_free_limit(zone, (old + count) - max); 4226 return (max - old); 4227 } 4228 return (zone_alloc_limit_hard(zone, count, flags)); 4229 } 4230 4231 /* 4232 * Free a number of items back to the limit. 4233 */ 4234 static void 4235 zone_free_limit(uma_zone_t zone, int count) 4236 { 4237 uint64_t old; 4238 4239 MPASS(count > 0); 4240 4241 /* 4242 * In the common case we either have no sleepers or 4243 * are still over the limit and can just return. 4244 */ 4245 old = atomic_fetchadd_64(&zone->uz_items, -count); 4246 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 4247 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 4248 return; 4249 4250 /* 4251 * Moderate the rate of wakeups. Sleepers will continue 4252 * to generate wakeups if necessary. 4253 */ 4254 wakeup_one(&zone->uz_max_items); 4255 } 4256 4257 static uma_bucket_t 4258 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 4259 { 4260 uma_bucket_t bucket; 4261 int error, maxbucket, cnt; 4262 4263 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 4264 zone, domain); 4265 4266 /* Avoid allocs targeting empty domains. */ 4267 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4268 domain = UMA_ANYDOMAIN; 4269 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4270 domain = UMA_ANYDOMAIN; 4271 4272 if (zone->uz_max_items > 0) 4273 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 4274 M_NOWAIT); 4275 else 4276 maxbucket = zone->uz_bucket_size; 4277 if (maxbucket == 0) 4278 return (NULL); 4279 4280 /* Don't wait for buckets, preserve caller's NOVM setting. */ 4281 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 4282 if (bucket == NULL) { 4283 cnt = 0; 4284 goto out; 4285 } 4286 4287 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 4288 MIN(maxbucket, bucket->ub_entries), domain, flags); 4289 4290 /* 4291 * Initialize the memory if necessary. 4292 */ 4293 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 4294 int i; 4295 4296 for (i = 0; i < bucket->ub_cnt; i++) { 4297 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 4298 error = zone->uz_init(bucket->ub_bucket[i], 4299 zone->uz_size, flags); 4300 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 4301 if (error != 0) 4302 break; 4303 } 4304 4305 /* 4306 * If we couldn't initialize the whole bucket, put the 4307 * rest back onto the freelist. 4308 */ 4309 if (i != bucket->ub_cnt) { 4310 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 4311 bucket->ub_cnt - i); 4312 #ifdef INVARIANTS 4313 bzero(&bucket->ub_bucket[i], 4314 sizeof(void *) * (bucket->ub_cnt - i)); 4315 #endif 4316 bucket->ub_cnt = i; 4317 } 4318 } 4319 4320 cnt = bucket->ub_cnt; 4321 if (bucket->ub_cnt == 0) { 4322 bucket_free(zone, bucket, udata); 4323 counter_u64_add(zone->uz_fails, 1); 4324 bucket = NULL; 4325 } 4326 out: 4327 if (zone->uz_max_items > 0 && cnt < maxbucket) 4328 zone_free_limit(zone, maxbucket - cnt); 4329 4330 return (bucket); 4331 } 4332 4333 /* 4334 * Allocates a single item from a zone. 4335 * 4336 * Arguments 4337 * zone The zone to alloc for. 4338 * udata The data to be passed to the constructor. 4339 * domain The domain to allocate from or UMA_ANYDOMAIN. 4340 * flags M_WAITOK, M_NOWAIT, M_ZERO. 4341 * 4342 * Returns 4343 * NULL if there is no memory and M_NOWAIT is set 4344 * An item if successful 4345 */ 4346 4347 static void * 4348 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 4349 { 4350 void *item; 4351 4352 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { 4353 counter_u64_add(zone->uz_fails, 1); 4354 return (NULL); 4355 } 4356 4357 /* Avoid allocs targeting empty domains. */ 4358 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4359 domain = UMA_ANYDOMAIN; 4360 4361 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 4362 goto fail_cnt; 4363 4364 /* 4365 * We have to call both the zone's init (not the keg's init) 4366 * and the zone's ctor. This is because the item is going from 4367 * a keg slab directly to the user, and the user is expecting it 4368 * to be both zone-init'd as well as zone-ctor'd. 4369 */ 4370 if (zone->uz_init != NULL) { 4371 int error; 4372 4373 kasan_mark_item_valid(zone, item); 4374 error = zone->uz_init(item, zone->uz_size, flags); 4375 kasan_mark_item_invalid(zone, item); 4376 if (error != 0) { 4377 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 4378 goto fail_cnt; 4379 } 4380 } 4381 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 4382 item); 4383 if (item == NULL) 4384 goto fail; 4385 4386 counter_u64_add(zone->uz_allocs, 1); 4387 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 4388 zone->uz_name, zone); 4389 4390 return (item); 4391 4392 fail_cnt: 4393 counter_u64_add(zone->uz_fails, 1); 4394 fail: 4395 if (zone->uz_max_items > 0) 4396 zone_free_limit(zone, 1); 4397 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 4398 zone->uz_name, zone); 4399 4400 return (NULL); 4401 } 4402 4403 /* See uma.h */ 4404 void 4405 uma_zfree_smr(uma_zone_t zone, void *item) 4406 { 4407 uma_cache_t cache; 4408 uma_cache_bucket_t bucket; 4409 int itemdomain; 4410 #ifdef NUMA 4411 int uz_flags; 4412 #endif 4413 4414 CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p", 4415 zone->uz_name, zone, item); 4416 4417 #ifdef UMA_ZALLOC_DEBUG 4418 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4419 ("uma_zfree_smr: called with non-SMR zone.")); 4420 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4421 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4422 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4423 return; 4424 #endif 4425 cache = &zone->uz_cpu[curcpu]; 4426 itemdomain = 0; 4427 #ifdef NUMA 4428 uz_flags = cache_uz_flags(cache); 4429 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4430 itemdomain = item_domain(item); 4431 #endif 4432 critical_enter(); 4433 do { 4434 cache = &zone->uz_cpu[curcpu]; 4435 /* SMR Zones must free to the free bucket. */ 4436 bucket = &cache->uc_freebucket; 4437 #ifdef NUMA 4438 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4439 PCPU_GET(domain) != itemdomain) { 4440 bucket = &cache->uc_crossbucket; 4441 } 4442 #endif 4443 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4444 cache_bucket_push(cache, bucket, item); 4445 critical_exit(); 4446 return; 4447 } 4448 } while (cache_free(zone, cache, NULL, itemdomain)); 4449 critical_exit(); 4450 4451 /* 4452 * If nothing else caught this, we'll just do an internal free. 4453 */ 4454 zone_free_item(zone, item, NULL, SKIP_NONE); 4455 } 4456 4457 /* See uma.h */ 4458 void 4459 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4460 { 4461 uma_cache_t cache; 4462 uma_cache_bucket_t bucket; 4463 int itemdomain, uz_flags; 4464 4465 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4466 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4467 4468 CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p", 4469 zone->uz_name, zone, item); 4470 4471 #ifdef UMA_ZALLOC_DEBUG 4472 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4473 ("uma_zfree_arg: called with SMR zone.")); 4474 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4475 return; 4476 #endif 4477 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4478 if (item == NULL) 4479 return; 4480 4481 /* 4482 * We are accessing the per-cpu cache without a critical section to 4483 * fetch size and flags. This is acceptable, if we are preempted we 4484 * will simply read another cpu's line. 4485 */ 4486 cache = &zone->uz_cpu[curcpu]; 4487 uz_flags = cache_uz_flags(cache); 4488 if (UMA_ALWAYS_CTORDTOR || 4489 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4490 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4491 4492 /* 4493 * The race here is acceptable. If we miss it we'll just have to wait 4494 * a little longer for the limits to be reset. 4495 */ 4496 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4497 if (atomic_load_32(&zone->uz_sleepers) > 0) 4498 goto zfree_item; 4499 } 4500 4501 /* 4502 * If possible, free to the per-CPU cache. There are two 4503 * requirements for safe access to the per-CPU cache: (1) the thread 4504 * accessing the cache must not be preempted or yield during access, 4505 * and (2) the thread must not migrate CPUs without switching which 4506 * cache it accesses. We rely on a critical section to prevent 4507 * preemption and migration. We release the critical section in 4508 * order to acquire the zone mutex if we are unable to free to the 4509 * current cache; when we re-acquire the critical section, we must 4510 * detect and handle migration if it has occurred. 4511 */ 4512 itemdomain = 0; 4513 #ifdef NUMA 4514 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4515 itemdomain = item_domain(item); 4516 #endif 4517 critical_enter(); 4518 do { 4519 cache = &zone->uz_cpu[curcpu]; 4520 /* 4521 * Try to free into the allocbucket first to give LIFO 4522 * ordering for cache-hot datastructures. Spill over 4523 * into the freebucket if necessary. Alloc will swap 4524 * them if one runs dry. 4525 */ 4526 bucket = &cache->uc_allocbucket; 4527 #ifdef NUMA 4528 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4529 PCPU_GET(domain) != itemdomain) { 4530 bucket = &cache->uc_crossbucket; 4531 } else 4532 #endif 4533 if (bucket->ucb_cnt == bucket->ucb_entries && 4534 cache->uc_freebucket.ucb_cnt < 4535 cache->uc_freebucket.ucb_entries) 4536 cache_bucket_swap(&cache->uc_freebucket, 4537 &cache->uc_allocbucket); 4538 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4539 cache_bucket_push(cache, bucket, item); 4540 critical_exit(); 4541 return; 4542 } 4543 } while (cache_free(zone, cache, udata, itemdomain)); 4544 critical_exit(); 4545 4546 /* 4547 * If nothing else caught this, we'll just do an internal free. 4548 */ 4549 zfree_item: 4550 zone_free_item(zone, item, udata, SKIP_DTOR); 4551 } 4552 4553 #ifdef NUMA 4554 /* 4555 * sort crossdomain free buckets to domain correct buckets and cache 4556 * them. 4557 */ 4558 static void 4559 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4560 { 4561 struct uma_bucketlist emptybuckets, fullbuckets; 4562 uma_zone_domain_t zdom; 4563 uma_bucket_t b; 4564 smr_seq_t seq; 4565 void *item; 4566 int domain; 4567 4568 CTR3(KTR_UMA, 4569 "uma_zfree: zone %s(%p) draining cross bucket %p", 4570 zone->uz_name, zone, bucket); 4571 4572 /* 4573 * It is possible for buckets to arrive here out of order so we fetch 4574 * the current smr seq rather than accepting the bucket's. 4575 */ 4576 seq = SMR_SEQ_INVALID; 4577 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4578 seq = smr_advance(zone->uz_smr); 4579 4580 /* 4581 * To avoid having ndomain * ndomain buckets for sorting we have a 4582 * lock on the current crossfree bucket. A full matrix with 4583 * per-domain locking could be used if necessary. 4584 */ 4585 STAILQ_INIT(&emptybuckets); 4586 STAILQ_INIT(&fullbuckets); 4587 ZONE_CROSS_LOCK(zone); 4588 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) { 4589 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4590 domain = item_domain(item); 4591 zdom = ZDOM_GET(zone, domain); 4592 if (zdom->uzd_cross == NULL) { 4593 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4594 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4595 zdom->uzd_cross = b; 4596 } else { 4597 /* 4598 * Avoid allocating a bucket with the cross lock 4599 * held, since allocation can trigger a 4600 * cross-domain free and bucket zones may 4601 * allocate from each other. 4602 */ 4603 ZONE_CROSS_UNLOCK(zone); 4604 b = bucket_alloc(zone, udata, M_NOWAIT); 4605 if (b == NULL) 4606 goto out; 4607 ZONE_CROSS_LOCK(zone); 4608 if (zdom->uzd_cross != NULL) { 4609 STAILQ_INSERT_HEAD(&emptybuckets, b, 4610 ub_link); 4611 } else { 4612 zdom->uzd_cross = b; 4613 } 4614 } 4615 } 4616 b = zdom->uzd_cross; 4617 b->ub_bucket[b->ub_cnt++] = item; 4618 b->ub_seq = seq; 4619 if (b->ub_cnt == b->ub_entries) { 4620 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4621 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) 4622 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4623 zdom->uzd_cross = b; 4624 } 4625 } 4626 ZONE_CROSS_UNLOCK(zone); 4627 out: 4628 if (bucket->ub_cnt == 0) 4629 bucket->ub_seq = SMR_SEQ_INVALID; 4630 bucket_free(zone, bucket, udata); 4631 4632 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4633 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4634 bucket_free(zone, b, udata); 4635 } 4636 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4637 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4638 domain = item_domain(b->ub_bucket[0]); 4639 zone_put_bucket(zone, domain, b, udata, true); 4640 } 4641 } 4642 #endif 4643 4644 static void 4645 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4646 int itemdomain, bool ws) 4647 { 4648 4649 #ifdef NUMA 4650 /* 4651 * Buckets coming from the wrong domain will be entirely for the 4652 * only other domain on two domain systems. In this case we can 4653 * simply cache them. Otherwise we need to sort them back to 4654 * correct domains. 4655 */ 4656 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4657 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4658 zone_free_cross(zone, bucket, udata); 4659 return; 4660 } 4661 #endif 4662 4663 /* 4664 * Attempt to save the bucket in the zone's domain bucket cache. 4665 */ 4666 CTR3(KTR_UMA, 4667 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4668 zone->uz_name, zone, bucket); 4669 /* ub_cnt is pointing to the last free item */ 4670 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4671 itemdomain = zone_domain_lowest(zone, itemdomain); 4672 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4673 } 4674 4675 /* 4676 * Populate a free or cross bucket for the current cpu cache. Free any 4677 * existing full bucket either to the zone cache or back to the slab layer. 4678 * 4679 * Enters and returns in a critical section. false return indicates that 4680 * we can not satisfy this free in the cache layer. true indicates that 4681 * the caller should retry. 4682 */ 4683 static __noinline bool 4684 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain) 4685 { 4686 uma_cache_bucket_t cbucket; 4687 uma_bucket_t newbucket, bucket; 4688 4689 CRITICAL_ASSERT(curthread); 4690 4691 if (zone->uz_bucket_size == 0) 4692 return false; 4693 4694 cache = &zone->uz_cpu[curcpu]; 4695 newbucket = NULL; 4696 4697 /* 4698 * FIRSTTOUCH domains need to free to the correct zdom. When 4699 * enabled this is the zdom of the item. The bucket is the 4700 * cross bucket if the current domain and itemdomain do not match. 4701 */ 4702 cbucket = &cache->uc_freebucket; 4703 #ifdef NUMA 4704 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4705 if (PCPU_GET(domain) != itemdomain) { 4706 cbucket = &cache->uc_crossbucket; 4707 if (cbucket->ucb_cnt != 0) 4708 counter_u64_add(zone->uz_xdomain, 4709 cbucket->ucb_cnt); 4710 } 4711 } 4712 #endif 4713 bucket = cache_bucket_unload(cbucket); 4714 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4715 ("cache_free: Entered with non-full free bucket.")); 4716 4717 /* We are no longer associated with this CPU. */ 4718 critical_exit(); 4719 4720 /* 4721 * Don't let SMR zones operate without a free bucket. Force 4722 * a synchronize and re-use this one. We will only degrade 4723 * to a synchronize every bucket_size items rather than every 4724 * item if we fail to allocate a bucket. 4725 */ 4726 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4727 if (bucket != NULL) 4728 bucket->ub_seq = smr_advance(zone->uz_smr); 4729 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4730 if (newbucket == NULL && bucket != NULL) { 4731 bucket_drain(zone, bucket); 4732 newbucket = bucket; 4733 bucket = NULL; 4734 } 4735 } else if (!bucketdisable) 4736 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4737 4738 if (bucket != NULL) 4739 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4740 4741 critical_enter(); 4742 if ((bucket = newbucket) == NULL) 4743 return (false); 4744 cache = &zone->uz_cpu[curcpu]; 4745 #ifdef NUMA 4746 /* 4747 * Check to see if we should be populating the cross bucket. If it 4748 * is already populated we will fall through and attempt to populate 4749 * the free bucket. 4750 */ 4751 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4752 if (PCPU_GET(domain) != itemdomain && 4753 cache->uc_crossbucket.ucb_bucket == NULL) { 4754 cache_bucket_load_cross(cache, bucket); 4755 return (true); 4756 } 4757 } 4758 #endif 4759 /* 4760 * We may have lost the race to fill the bucket or switched CPUs. 4761 */ 4762 if (cache->uc_freebucket.ucb_bucket != NULL) { 4763 critical_exit(); 4764 bucket_free(zone, bucket, udata); 4765 critical_enter(); 4766 } else 4767 cache_bucket_load_free(cache, bucket); 4768 4769 return (true); 4770 } 4771 4772 static void 4773 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4774 { 4775 uma_keg_t keg; 4776 uma_domain_t dom; 4777 int freei; 4778 4779 keg = zone->uz_keg; 4780 KEG_LOCK_ASSERT(keg, slab->us_domain); 4781 4782 /* Do we need to remove from any lists? */ 4783 dom = &keg->uk_domain[slab->us_domain]; 4784 if (slab->us_freecount + 1 == keg->uk_ipers) { 4785 LIST_REMOVE(slab, us_link); 4786 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4787 dom->ud_free_slabs++; 4788 } else if (slab->us_freecount == 0) { 4789 LIST_REMOVE(slab, us_link); 4790 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4791 } 4792 4793 /* Slab management. */ 4794 freei = slab_item_index(slab, keg, item); 4795 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4796 slab->us_freecount++; 4797 4798 /* Keg statistics. */ 4799 dom->ud_free_items++; 4800 } 4801 4802 static void 4803 zone_release(void *arg, void **bucket, int cnt) 4804 { 4805 struct mtx *lock; 4806 uma_zone_t zone; 4807 uma_slab_t slab; 4808 uma_keg_t keg; 4809 uint8_t *mem; 4810 void *item; 4811 int i; 4812 4813 zone = arg; 4814 keg = zone->uz_keg; 4815 lock = NULL; 4816 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4817 lock = KEG_LOCK(keg, 0); 4818 for (i = 0; i < cnt; i++) { 4819 item = bucket[i]; 4820 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4821 slab = vtoslab((vm_offset_t)item); 4822 } else { 4823 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4824 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4825 slab = hash_sfind(&keg->uk_hash, mem); 4826 else 4827 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4828 } 4829 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4830 if (lock != NULL) 4831 mtx_unlock(lock); 4832 lock = KEG_LOCK(keg, slab->us_domain); 4833 } 4834 slab_free_item(zone, slab, item); 4835 } 4836 if (lock != NULL) 4837 mtx_unlock(lock); 4838 } 4839 4840 /* 4841 * Frees a single item to any zone. 4842 * 4843 * Arguments: 4844 * zone The zone to free to 4845 * item The item we're freeing 4846 * udata User supplied data for the dtor 4847 * skip Skip dtors and finis 4848 */ 4849 static __noinline void 4850 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4851 { 4852 4853 /* 4854 * If a free is sent directly to an SMR zone we have to 4855 * synchronize immediately because the item can instantly 4856 * be reallocated. This should only happen in degenerate 4857 * cases when no memory is available for per-cpu caches. 4858 */ 4859 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4860 smr_synchronize(zone->uz_smr); 4861 4862 item_dtor(zone, item, zone->uz_size, udata, skip); 4863 4864 if (skip < SKIP_FINI && zone->uz_fini) { 4865 kasan_mark_item_valid(zone, item); 4866 zone->uz_fini(item, zone->uz_size); 4867 kasan_mark_item_invalid(zone, item); 4868 } 4869 4870 zone->uz_release(zone->uz_arg, &item, 1); 4871 4872 if (skip & SKIP_CNT) 4873 return; 4874 4875 counter_u64_add(zone->uz_frees, 1); 4876 4877 if (zone->uz_max_items > 0) 4878 zone_free_limit(zone, 1); 4879 } 4880 4881 /* See uma.h */ 4882 int 4883 uma_zone_set_max(uma_zone_t zone, int nitems) 4884 { 4885 4886 /* 4887 * If the limit is small, we may need to constrain the maximum per-CPU 4888 * cache size, or disable caching entirely. 4889 */ 4890 uma_zone_set_maxcache(zone, nitems); 4891 4892 /* 4893 * XXX This can misbehave if the zone has any allocations with 4894 * no limit and a limit is imposed. There is currently no 4895 * way to clear a limit. 4896 */ 4897 ZONE_LOCK(zone); 4898 if (zone->uz_max_items == 0) 4899 ZONE_ASSERT_COLD(zone); 4900 zone->uz_max_items = nitems; 4901 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4902 zone_update_caches(zone); 4903 /* We may need to wake waiters. */ 4904 wakeup(&zone->uz_max_items); 4905 ZONE_UNLOCK(zone); 4906 4907 return (nitems); 4908 } 4909 4910 /* See uma.h */ 4911 void 4912 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4913 { 4914 int bpcpu, bpdom, bsize, nb; 4915 4916 ZONE_LOCK(zone); 4917 4918 /* 4919 * Compute a lower bound on the number of items that may be cached in 4920 * the zone. Each CPU gets at least two buckets, and for cross-domain 4921 * frees we use an additional bucket per CPU and per domain. Select the 4922 * largest bucket size that does not exceed half of the requested limit, 4923 * with the left over space given to the full bucket cache. 4924 */ 4925 bpdom = 0; 4926 bpcpu = 2; 4927 #ifdef NUMA 4928 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) { 4929 bpcpu++; 4930 bpdom++; 4931 } 4932 #endif 4933 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains; 4934 bsize = nitems / nb / 2; 4935 if (bsize > BUCKET_MAX) 4936 bsize = BUCKET_MAX; 4937 else if (bsize == 0 && nitems / nb > 0) 4938 bsize = 1; 4939 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize; 4940 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4941 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4942 zone->uz_bucket_max = nitems - nb * bsize; 4943 ZONE_UNLOCK(zone); 4944 } 4945 4946 /* See uma.h */ 4947 int 4948 uma_zone_get_max(uma_zone_t zone) 4949 { 4950 int nitems; 4951 4952 nitems = atomic_load_64(&zone->uz_max_items); 4953 4954 return (nitems); 4955 } 4956 4957 /* See uma.h */ 4958 void 4959 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4960 { 4961 4962 ZONE_ASSERT_COLD(zone); 4963 zone->uz_warning = warning; 4964 } 4965 4966 /* See uma.h */ 4967 void 4968 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4969 { 4970 4971 ZONE_ASSERT_COLD(zone); 4972 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4973 } 4974 4975 /* See uma.h */ 4976 int 4977 uma_zone_get_cur(uma_zone_t zone) 4978 { 4979 int64_t nitems; 4980 u_int i; 4981 4982 nitems = 0; 4983 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4984 nitems = counter_u64_fetch(zone->uz_allocs) - 4985 counter_u64_fetch(zone->uz_frees); 4986 CPU_FOREACH(i) 4987 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4988 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4989 4990 return (nitems < 0 ? 0 : nitems); 4991 } 4992 4993 static uint64_t 4994 uma_zone_get_allocs(uma_zone_t zone) 4995 { 4996 uint64_t nitems; 4997 u_int i; 4998 4999 nitems = 0; 5000 if (zone->uz_allocs != EARLY_COUNTER) 5001 nitems = counter_u64_fetch(zone->uz_allocs); 5002 CPU_FOREACH(i) 5003 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 5004 5005 return (nitems); 5006 } 5007 5008 static uint64_t 5009 uma_zone_get_frees(uma_zone_t zone) 5010 { 5011 uint64_t nitems; 5012 u_int i; 5013 5014 nitems = 0; 5015 if (zone->uz_frees != EARLY_COUNTER) 5016 nitems = counter_u64_fetch(zone->uz_frees); 5017 CPU_FOREACH(i) 5018 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 5019 5020 return (nitems); 5021 } 5022 5023 #ifdef INVARIANTS 5024 /* Used only for KEG_ASSERT_COLD(). */ 5025 static uint64_t 5026 uma_keg_get_allocs(uma_keg_t keg) 5027 { 5028 uma_zone_t z; 5029 uint64_t nitems; 5030 5031 nitems = 0; 5032 LIST_FOREACH(z, &keg->uk_zones, uz_link) 5033 nitems += uma_zone_get_allocs(z); 5034 5035 return (nitems); 5036 } 5037 #endif 5038 5039 /* See uma.h */ 5040 void 5041 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 5042 { 5043 uma_keg_t keg; 5044 5045 KEG_GET(zone, keg); 5046 KEG_ASSERT_COLD(keg); 5047 keg->uk_init = uminit; 5048 } 5049 5050 /* See uma.h */ 5051 void 5052 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 5053 { 5054 uma_keg_t keg; 5055 5056 KEG_GET(zone, keg); 5057 KEG_ASSERT_COLD(keg); 5058 keg->uk_fini = fini; 5059 } 5060 5061 /* See uma.h */ 5062 void 5063 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 5064 { 5065 5066 ZONE_ASSERT_COLD(zone); 5067 zone->uz_init = zinit; 5068 } 5069 5070 /* See uma.h */ 5071 void 5072 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 5073 { 5074 5075 ZONE_ASSERT_COLD(zone); 5076 zone->uz_fini = zfini; 5077 } 5078 5079 /* See uma.h */ 5080 void 5081 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 5082 { 5083 uma_keg_t keg; 5084 5085 KEG_GET(zone, keg); 5086 KEG_ASSERT_COLD(keg); 5087 keg->uk_freef = freef; 5088 } 5089 5090 /* See uma.h */ 5091 void 5092 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 5093 { 5094 uma_keg_t keg; 5095 5096 KEG_GET(zone, keg); 5097 KEG_ASSERT_COLD(keg); 5098 keg->uk_allocf = allocf; 5099 } 5100 5101 /* See uma.h */ 5102 void 5103 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 5104 { 5105 5106 ZONE_ASSERT_COLD(zone); 5107 5108 KASSERT(smr != NULL, ("Got NULL smr")); 5109 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 5110 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 5111 zone->uz_flags |= UMA_ZONE_SMR; 5112 zone->uz_smr = smr; 5113 zone_update_caches(zone); 5114 } 5115 5116 smr_t 5117 uma_zone_get_smr(uma_zone_t zone) 5118 { 5119 5120 return (zone->uz_smr); 5121 } 5122 5123 /* See uma.h */ 5124 void 5125 uma_zone_reserve(uma_zone_t zone, int items) 5126 { 5127 uma_keg_t keg; 5128 5129 KEG_GET(zone, keg); 5130 KEG_ASSERT_COLD(keg); 5131 keg->uk_reserve = items; 5132 } 5133 5134 /* See uma.h */ 5135 int 5136 uma_zone_reserve_kva(uma_zone_t zone, int count) 5137 { 5138 uma_keg_t keg; 5139 vm_offset_t kva; 5140 u_int pages; 5141 5142 KEG_GET(zone, keg); 5143 KEG_ASSERT_COLD(keg); 5144 ZONE_ASSERT_COLD(zone); 5145 5146 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 5147 5148 #ifdef UMA_MD_SMALL_ALLOC 5149 if (keg->uk_ppera > 1) { 5150 #else 5151 if (1) { 5152 #endif 5153 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 5154 if (kva == 0) 5155 return (0); 5156 } else 5157 kva = 0; 5158 5159 MPASS(keg->uk_kva == 0); 5160 keg->uk_kva = kva; 5161 keg->uk_offset = 0; 5162 zone->uz_max_items = pages * keg->uk_ipers; 5163 #ifdef UMA_MD_SMALL_ALLOC 5164 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 5165 #else 5166 keg->uk_allocf = noobj_alloc; 5167 #endif 5168 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5169 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5170 zone_update_caches(zone); 5171 5172 return (1); 5173 } 5174 5175 /* See uma.h */ 5176 void 5177 uma_prealloc(uma_zone_t zone, int items) 5178 { 5179 struct vm_domainset_iter di; 5180 uma_domain_t dom; 5181 uma_slab_t slab; 5182 uma_keg_t keg; 5183 int aflags, domain, slabs; 5184 5185 KEG_GET(zone, keg); 5186 slabs = howmany(items, keg->uk_ipers); 5187 while (slabs-- > 0) { 5188 aflags = M_NOWAIT; 5189 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 5190 &aflags); 5191 for (;;) { 5192 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 5193 aflags); 5194 if (slab != NULL) { 5195 dom = &keg->uk_domain[slab->us_domain]; 5196 /* 5197 * keg_alloc_slab() always returns a slab on the 5198 * partial list. 5199 */ 5200 LIST_REMOVE(slab, us_link); 5201 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 5202 us_link); 5203 dom->ud_free_slabs++; 5204 KEG_UNLOCK(keg, slab->us_domain); 5205 break; 5206 } 5207 if (vm_domainset_iter_policy(&di, &domain) != 0) 5208 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 5209 } 5210 } 5211 } 5212 5213 /* 5214 * Returns a snapshot of memory consumption in bytes. 5215 */ 5216 size_t 5217 uma_zone_memory(uma_zone_t zone) 5218 { 5219 size_t sz; 5220 int i; 5221 5222 sz = 0; 5223 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 5224 for (i = 0; i < vm_ndomains; i++) 5225 sz += ZDOM_GET(zone, i)->uzd_nitems; 5226 return (sz * zone->uz_size); 5227 } 5228 for (i = 0; i < vm_ndomains; i++) 5229 sz += zone->uz_keg->uk_domain[i].ud_pages; 5230 5231 return (sz * PAGE_SIZE); 5232 } 5233 5234 struct uma_reclaim_args { 5235 int domain; 5236 int req; 5237 }; 5238 5239 static void 5240 uma_reclaim_domain_cb(uma_zone_t zone, void *arg) 5241 { 5242 struct uma_reclaim_args *args; 5243 5244 args = arg; 5245 if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) 5246 uma_zone_reclaim_domain(zone, args->req, args->domain); 5247 } 5248 5249 /* See uma.h */ 5250 void 5251 uma_reclaim(int req) 5252 { 5253 uma_reclaim_domain(req, UMA_ANYDOMAIN); 5254 } 5255 5256 void 5257 uma_reclaim_domain(int req, int domain) 5258 { 5259 struct uma_reclaim_args args; 5260 5261 bucket_enable(); 5262 5263 args.domain = domain; 5264 args.req = req; 5265 5266 sx_slock(&uma_reclaim_lock); 5267 switch (req) { 5268 case UMA_RECLAIM_TRIM: 5269 case UMA_RECLAIM_DRAIN: 5270 zone_foreach(uma_reclaim_domain_cb, &args); 5271 break; 5272 case UMA_RECLAIM_DRAIN_CPU: 5273 zone_foreach(uma_reclaim_domain_cb, &args); 5274 pcpu_cache_drain_safe(NULL); 5275 zone_foreach(uma_reclaim_domain_cb, &args); 5276 break; 5277 default: 5278 panic("unhandled reclamation request %d", req); 5279 } 5280 5281 /* 5282 * Some slabs may have been freed but this zone will be visited early 5283 * we visit again so that we can free pages that are empty once other 5284 * zones are drained. We have to do the same for buckets. 5285 */ 5286 uma_zone_reclaim_domain(slabzones[0], UMA_RECLAIM_DRAIN, domain); 5287 uma_zone_reclaim_domain(slabzones[1], UMA_RECLAIM_DRAIN, domain); 5288 bucket_zone_drain(domain); 5289 sx_sunlock(&uma_reclaim_lock); 5290 } 5291 5292 static volatile int uma_reclaim_needed; 5293 5294 void 5295 uma_reclaim_wakeup(void) 5296 { 5297 5298 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 5299 wakeup(uma_reclaim); 5300 } 5301 5302 void 5303 uma_reclaim_worker(void *arg __unused) 5304 { 5305 5306 for (;;) { 5307 sx_xlock(&uma_reclaim_lock); 5308 while (atomic_load_int(&uma_reclaim_needed) == 0) 5309 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 5310 hz); 5311 sx_xunlock(&uma_reclaim_lock); 5312 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 5313 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 5314 atomic_store_int(&uma_reclaim_needed, 0); 5315 /* Don't fire more than once per-second. */ 5316 pause("umarclslp", hz); 5317 } 5318 } 5319 5320 /* See uma.h */ 5321 void 5322 uma_zone_reclaim(uma_zone_t zone, int req) 5323 { 5324 uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN); 5325 } 5326 5327 void 5328 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain) 5329 { 5330 switch (req) { 5331 case UMA_RECLAIM_TRIM: 5332 zone_reclaim(zone, domain, M_NOWAIT, false); 5333 break; 5334 case UMA_RECLAIM_DRAIN: 5335 zone_reclaim(zone, domain, M_NOWAIT, true); 5336 break; 5337 case UMA_RECLAIM_DRAIN_CPU: 5338 pcpu_cache_drain_safe(zone); 5339 zone_reclaim(zone, domain, M_NOWAIT, true); 5340 break; 5341 default: 5342 panic("unhandled reclamation request %d", req); 5343 } 5344 } 5345 5346 /* See uma.h */ 5347 int 5348 uma_zone_exhausted(uma_zone_t zone) 5349 { 5350 5351 return (atomic_load_32(&zone->uz_sleepers) > 0); 5352 } 5353 5354 unsigned long 5355 uma_limit(void) 5356 { 5357 5358 return (uma_kmem_limit); 5359 } 5360 5361 void 5362 uma_set_limit(unsigned long limit) 5363 { 5364 5365 uma_kmem_limit = limit; 5366 } 5367 5368 unsigned long 5369 uma_size(void) 5370 { 5371 5372 return (atomic_load_long(&uma_kmem_total)); 5373 } 5374 5375 long 5376 uma_avail(void) 5377 { 5378 5379 return (uma_kmem_limit - uma_size()); 5380 } 5381 5382 #ifdef DDB 5383 /* 5384 * Generate statistics across both the zone and its per-cpu cache's. Return 5385 * desired statistics if the pointer is non-NULL for that statistic. 5386 * 5387 * Note: does not update the zone statistics, as it can't safely clear the 5388 * per-CPU cache statistic. 5389 * 5390 */ 5391 static void 5392 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 5393 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 5394 { 5395 uma_cache_t cache; 5396 uint64_t allocs, frees, sleeps, xdomain; 5397 int cachefree, cpu; 5398 5399 allocs = frees = sleeps = xdomain = 0; 5400 cachefree = 0; 5401 CPU_FOREACH(cpu) { 5402 cache = &z->uz_cpu[cpu]; 5403 cachefree += cache->uc_allocbucket.ucb_cnt; 5404 cachefree += cache->uc_freebucket.ucb_cnt; 5405 xdomain += cache->uc_crossbucket.ucb_cnt; 5406 cachefree += cache->uc_crossbucket.ucb_cnt; 5407 allocs += cache->uc_allocs; 5408 frees += cache->uc_frees; 5409 } 5410 allocs += counter_u64_fetch(z->uz_allocs); 5411 frees += counter_u64_fetch(z->uz_frees); 5412 xdomain += counter_u64_fetch(z->uz_xdomain); 5413 sleeps += z->uz_sleeps; 5414 if (cachefreep != NULL) 5415 *cachefreep = cachefree; 5416 if (allocsp != NULL) 5417 *allocsp = allocs; 5418 if (freesp != NULL) 5419 *freesp = frees; 5420 if (sleepsp != NULL) 5421 *sleepsp = sleeps; 5422 if (xdomainp != NULL) 5423 *xdomainp = xdomain; 5424 } 5425 #endif /* DDB */ 5426 5427 static int 5428 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 5429 { 5430 uma_keg_t kz; 5431 uma_zone_t z; 5432 int count; 5433 5434 count = 0; 5435 rw_rlock(&uma_rwlock); 5436 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5437 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5438 count++; 5439 } 5440 LIST_FOREACH(z, &uma_cachezones, uz_link) 5441 count++; 5442 5443 rw_runlock(&uma_rwlock); 5444 return (sysctl_handle_int(oidp, &count, 0, req)); 5445 } 5446 5447 static void 5448 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 5449 struct uma_percpu_stat *ups, bool internal) 5450 { 5451 uma_zone_domain_t zdom; 5452 uma_cache_t cache; 5453 int i; 5454 5455 for (i = 0; i < vm_ndomains; i++) { 5456 zdom = ZDOM_GET(z, i); 5457 uth->uth_zone_free += zdom->uzd_nitems; 5458 } 5459 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 5460 uth->uth_frees = counter_u64_fetch(z->uz_frees); 5461 uth->uth_fails = counter_u64_fetch(z->uz_fails); 5462 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 5463 uth->uth_sleeps = z->uz_sleeps; 5464 5465 for (i = 0; i < mp_maxid + 1; i++) { 5466 bzero(&ups[i], sizeof(*ups)); 5467 if (internal || CPU_ABSENT(i)) 5468 continue; 5469 cache = &z->uz_cpu[i]; 5470 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 5471 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5472 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5473 ups[i].ups_allocs = cache->uc_allocs; 5474 ups[i].ups_frees = cache->uc_frees; 5475 } 5476 } 5477 5478 static int 5479 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5480 { 5481 struct uma_stream_header ush; 5482 struct uma_type_header uth; 5483 struct uma_percpu_stat *ups; 5484 struct sbuf sbuf; 5485 uma_keg_t kz; 5486 uma_zone_t z; 5487 uint64_t items; 5488 uint32_t kfree, pages; 5489 int count, error, i; 5490 5491 error = sysctl_wire_old_buffer(req, 0); 5492 if (error != 0) 5493 return (error); 5494 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5495 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5496 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5497 5498 count = 0; 5499 rw_rlock(&uma_rwlock); 5500 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5501 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5502 count++; 5503 } 5504 5505 LIST_FOREACH(z, &uma_cachezones, uz_link) 5506 count++; 5507 5508 /* 5509 * Insert stream header. 5510 */ 5511 bzero(&ush, sizeof(ush)); 5512 ush.ush_version = UMA_STREAM_VERSION; 5513 ush.ush_maxcpus = (mp_maxid + 1); 5514 ush.ush_count = count; 5515 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5516 5517 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5518 kfree = pages = 0; 5519 for (i = 0; i < vm_ndomains; i++) { 5520 kfree += kz->uk_domain[i].ud_free_items; 5521 pages += kz->uk_domain[i].ud_pages; 5522 } 5523 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5524 bzero(&uth, sizeof(uth)); 5525 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5526 uth.uth_align = kz->uk_align; 5527 uth.uth_size = kz->uk_size; 5528 uth.uth_rsize = kz->uk_rsize; 5529 if (z->uz_max_items > 0) { 5530 items = UZ_ITEMS_COUNT(z->uz_items); 5531 uth.uth_pages = (items / kz->uk_ipers) * 5532 kz->uk_ppera; 5533 } else 5534 uth.uth_pages = pages; 5535 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5536 kz->uk_ppera; 5537 uth.uth_limit = z->uz_max_items; 5538 uth.uth_keg_free = kfree; 5539 5540 /* 5541 * A zone is secondary is it is not the first entry 5542 * on the keg's zone list. 5543 */ 5544 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5545 (LIST_FIRST(&kz->uk_zones) != z)) 5546 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5547 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5548 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5549 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5550 for (i = 0; i < mp_maxid + 1; i++) 5551 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5552 } 5553 } 5554 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5555 bzero(&uth, sizeof(uth)); 5556 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5557 uth.uth_size = z->uz_size; 5558 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5559 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5560 for (i = 0; i < mp_maxid + 1; i++) 5561 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5562 } 5563 5564 rw_runlock(&uma_rwlock); 5565 error = sbuf_finish(&sbuf); 5566 sbuf_delete(&sbuf); 5567 free(ups, M_TEMP); 5568 return (error); 5569 } 5570 5571 int 5572 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5573 { 5574 uma_zone_t zone = *(uma_zone_t *)arg1; 5575 int error, max; 5576 5577 max = uma_zone_get_max(zone); 5578 error = sysctl_handle_int(oidp, &max, 0, req); 5579 if (error || !req->newptr) 5580 return (error); 5581 5582 uma_zone_set_max(zone, max); 5583 5584 return (0); 5585 } 5586 5587 int 5588 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5589 { 5590 uma_zone_t zone; 5591 int cur; 5592 5593 /* 5594 * Some callers want to add sysctls for global zones that 5595 * may not yet exist so they pass a pointer to a pointer. 5596 */ 5597 if (arg2 == 0) 5598 zone = *(uma_zone_t *)arg1; 5599 else 5600 zone = arg1; 5601 cur = uma_zone_get_cur(zone); 5602 return (sysctl_handle_int(oidp, &cur, 0, req)); 5603 } 5604 5605 static int 5606 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5607 { 5608 uma_zone_t zone = arg1; 5609 uint64_t cur; 5610 5611 cur = uma_zone_get_allocs(zone); 5612 return (sysctl_handle_64(oidp, &cur, 0, req)); 5613 } 5614 5615 static int 5616 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5617 { 5618 uma_zone_t zone = arg1; 5619 uint64_t cur; 5620 5621 cur = uma_zone_get_frees(zone); 5622 return (sysctl_handle_64(oidp, &cur, 0, req)); 5623 } 5624 5625 static int 5626 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5627 { 5628 struct sbuf sbuf; 5629 uma_zone_t zone = arg1; 5630 int error; 5631 5632 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5633 if (zone->uz_flags != 0) 5634 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5635 else 5636 sbuf_printf(&sbuf, "0"); 5637 error = sbuf_finish(&sbuf); 5638 sbuf_delete(&sbuf); 5639 5640 return (error); 5641 } 5642 5643 static int 5644 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5645 { 5646 uma_keg_t keg = arg1; 5647 int avail, effpct, total; 5648 5649 total = keg->uk_ppera * PAGE_SIZE; 5650 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5651 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5652 /* 5653 * We consider the client's requested size and alignment here, not the 5654 * real size determination uk_rsize, because we also adjust the real 5655 * size for internal implementation reasons (max bitset size). 5656 */ 5657 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5658 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5659 avail *= mp_maxid + 1; 5660 effpct = 100 * avail / total; 5661 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5662 } 5663 5664 static int 5665 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5666 { 5667 uma_zone_t zone = arg1; 5668 uint64_t cur; 5669 5670 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5671 return (sysctl_handle_64(oidp, &cur, 0, req)); 5672 } 5673 5674 #ifdef INVARIANTS 5675 static uma_slab_t 5676 uma_dbg_getslab(uma_zone_t zone, void *item) 5677 { 5678 uma_slab_t slab; 5679 uma_keg_t keg; 5680 uint8_t *mem; 5681 5682 /* 5683 * It is safe to return the slab here even though the 5684 * zone is unlocked because the item's allocation state 5685 * essentially holds a reference. 5686 */ 5687 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5688 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5689 return (NULL); 5690 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5691 return (vtoslab((vm_offset_t)mem)); 5692 keg = zone->uz_keg; 5693 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5694 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5695 KEG_LOCK(keg, 0); 5696 slab = hash_sfind(&keg->uk_hash, mem); 5697 KEG_UNLOCK(keg, 0); 5698 5699 return (slab); 5700 } 5701 5702 static bool 5703 uma_dbg_zskip(uma_zone_t zone, void *mem) 5704 { 5705 5706 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5707 return (true); 5708 5709 return (uma_dbg_kskip(zone->uz_keg, mem)); 5710 } 5711 5712 static bool 5713 uma_dbg_kskip(uma_keg_t keg, void *mem) 5714 { 5715 uintptr_t idx; 5716 5717 if (dbg_divisor == 0) 5718 return (true); 5719 5720 if (dbg_divisor == 1) 5721 return (false); 5722 5723 idx = (uintptr_t)mem >> PAGE_SHIFT; 5724 if (keg->uk_ipers > 1) { 5725 idx *= keg->uk_ipers; 5726 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5727 } 5728 5729 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5730 counter_u64_add(uma_skip_cnt, 1); 5731 return (true); 5732 } 5733 counter_u64_add(uma_dbg_cnt, 1); 5734 5735 return (false); 5736 } 5737 5738 /* 5739 * Set up the slab's freei data such that uma_dbg_free can function. 5740 * 5741 */ 5742 static void 5743 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5744 { 5745 uma_keg_t keg; 5746 int freei; 5747 5748 if (slab == NULL) { 5749 slab = uma_dbg_getslab(zone, item); 5750 if (slab == NULL) 5751 panic("uma: item %p did not belong to zone %s", 5752 item, zone->uz_name); 5753 } 5754 keg = zone->uz_keg; 5755 freei = slab_item_index(slab, keg, item); 5756 5757 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei, 5758 slab_dbg_bits(slab, keg))) 5759 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)", 5760 item, zone, zone->uz_name, slab, freei); 5761 } 5762 5763 /* 5764 * Verifies freed addresses. Checks for alignment, valid slab membership 5765 * and duplicate frees. 5766 * 5767 */ 5768 static void 5769 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5770 { 5771 uma_keg_t keg; 5772 int freei; 5773 5774 if (slab == NULL) { 5775 slab = uma_dbg_getslab(zone, item); 5776 if (slab == NULL) 5777 panic("uma: Freed item %p did not belong to zone %s", 5778 item, zone->uz_name); 5779 } 5780 keg = zone->uz_keg; 5781 freei = slab_item_index(slab, keg, item); 5782 5783 if (freei >= keg->uk_ipers) 5784 panic("Invalid free of %p from zone %p(%s) slab %p(%d)", 5785 item, zone, zone->uz_name, slab, freei); 5786 5787 if (slab_item(slab, keg, freei) != item) 5788 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)", 5789 item, zone, zone->uz_name, slab, freei); 5790 5791 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei, 5792 slab_dbg_bits(slab, keg))) 5793 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)", 5794 item, zone, zone->uz_name, slab, freei); 5795 } 5796 #endif /* INVARIANTS */ 5797 5798 #ifdef DDB 5799 static int64_t 5800 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5801 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5802 { 5803 uint64_t frees; 5804 int i; 5805 5806 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5807 *allocs = counter_u64_fetch(z->uz_allocs); 5808 frees = counter_u64_fetch(z->uz_frees); 5809 *sleeps = z->uz_sleeps; 5810 *cachefree = 0; 5811 *xdomain = 0; 5812 } else 5813 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5814 xdomain); 5815 for (i = 0; i < vm_ndomains; i++) { 5816 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5817 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5818 (LIST_FIRST(&kz->uk_zones) != z))) 5819 *cachefree += kz->uk_domain[i].ud_free_items; 5820 } 5821 *used = *allocs - frees; 5822 return (((int64_t)*used + *cachefree) * kz->uk_size); 5823 } 5824 5825 DB_SHOW_COMMAND_FLAGS(uma, db_show_uma, DB_CMD_MEMSAFE) 5826 { 5827 const char *fmt_hdr, *fmt_entry; 5828 uma_keg_t kz; 5829 uma_zone_t z; 5830 uint64_t allocs, used, sleeps, xdomain; 5831 long cachefree; 5832 /* variables for sorting */ 5833 uma_keg_t cur_keg; 5834 uma_zone_t cur_zone, last_zone; 5835 int64_t cur_size, last_size, size; 5836 int ties; 5837 5838 /* /i option produces machine-parseable CSV output */ 5839 if (modif[0] == 'i') { 5840 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5841 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5842 } else { 5843 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5844 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5845 } 5846 5847 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5848 "Sleeps", "Bucket", "Total Mem", "XFree"); 5849 5850 /* Sort the zones with largest size first. */ 5851 last_zone = NULL; 5852 last_size = INT64_MAX; 5853 for (;;) { 5854 cur_zone = NULL; 5855 cur_size = -1; 5856 ties = 0; 5857 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5858 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5859 /* 5860 * In the case of size ties, print out zones 5861 * in the order they are encountered. That is, 5862 * when we encounter the most recently output 5863 * zone, we have already printed all preceding 5864 * ties, and we must print all following ties. 5865 */ 5866 if (z == last_zone) { 5867 ties = 1; 5868 continue; 5869 } 5870 size = get_uma_stats(kz, z, &allocs, &used, 5871 &sleeps, &cachefree, &xdomain); 5872 if (size > cur_size && size < last_size + ties) 5873 { 5874 cur_size = size; 5875 cur_zone = z; 5876 cur_keg = kz; 5877 } 5878 } 5879 } 5880 if (cur_zone == NULL) 5881 break; 5882 5883 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5884 &sleeps, &cachefree, &xdomain); 5885 db_printf(fmt_entry, cur_zone->uz_name, 5886 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5887 (uintmax_t)allocs, (uintmax_t)sleeps, 5888 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5889 xdomain); 5890 5891 if (db_pager_quit) 5892 return; 5893 last_zone = cur_zone; 5894 last_size = cur_size; 5895 } 5896 } 5897 5898 DB_SHOW_COMMAND_FLAGS(umacache, db_show_umacache, DB_CMD_MEMSAFE) 5899 { 5900 uma_zone_t z; 5901 uint64_t allocs, frees; 5902 long cachefree; 5903 int i; 5904 5905 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5906 "Requests", "Bucket"); 5907 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5908 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5909 for (i = 0; i < vm_ndomains; i++) 5910 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5911 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5912 z->uz_name, (uintmax_t)z->uz_size, 5913 (intmax_t)(allocs - frees), cachefree, 5914 (uintmax_t)allocs, z->uz_bucket_size); 5915 if (db_pager_quit) 5916 return; 5917 } 5918 } 5919 #endif /* DDB */ 5920