1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/smr.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_domainset.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_param.h> 90 #include <vm/vm_phys.h> 91 #include <vm/vm_pagequeue.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/uma.h> 96 #include <vm/uma_int.h> 97 #include <vm/uma_dbg.h> 98 99 #include <ddb/ddb.h> 100 101 #ifdef DEBUG_MEMGUARD 102 #include <vm/memguard.h> 103 #endif 104 105 #include <machine/md_var.h> 106 107 #ifdef INVARIANTS 108 #define UMA_ALWAYS_CTORDTOR 1 109 #else 110 #define UMA_ALWAYS_CTORDTOR 0 111 #endif 112 113 /* 114 * This is the zone and keg from which all zones are spawned. 115 */ 116 static uma_zone_t kegs; 117 static uma_zone_t zones; 118 119 /* 120 * These are the two zones from which all offpage uma_slab_ts are allocated. 121 * 122 * One zone is for slab headers that can represent a larger number of items, 123 * making the slabs themselves more efficient, and the other zone is for 124 * headers that are smaller and represent fewer items, making the headers more 125 * efficient. 126 */ 127 #define SLABZONE_SIZE(setsize) \ 128 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 129 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 130 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 131 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 132 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 133 static uma_zone_t slabzones[2]; 134 135 /* 136 * The initial hash tables come out of this zone so they can be allocated 137 * prior to malloc coming up. 138 */ 139 static uma_zone_t hashzone; 140 141 /* The boot-time adjusted value for cache line alignment. */ 142 int uma_align_cache = 64 - 1; 143 144 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 145 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 146 147 /* 148 * Are we allowed to allocate buckets? 149 */ 150 static int bucketdisable = 1; 151 152 /* Linked list of all kegs in the system */ 153 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 154 155 /* Linked list of all cache-only zones in the system */ 156 static LIST_HEAD(,uma_zone) uma_cachezones = 157 LIST_HEAD_INITIALIZER(uma_cachezones); 158 159 /* This RW lock protects the keg list */ 160 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 161 162 /* 163 * First available virual address for boot time allocations. 164 */ 165 static vm_offset_t bootstart; 166 static vm_offset_t bootmem; 167 168 static struct sx uma_reclaim_lock; 169 170 /* 171 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 172 * allocations don't trigger a wakeup of the reclaim thread. 173 */ 174 unsigned long uma_kmem_limit = LONG_MAX; 175 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 176 "UMA kernel memory soft limit"); 177 unsigned long uma_kmem_total; 178 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 179 "UMA kernel memory usage"); 180 181 /* Is the VM done starting up? */ 182 static enum { 183 BOOT_COLD, 184 BOOT_KVA, 185 BOOT_RUNNING, 186 BOOT_SHUTDOWN, 187 } booted = BOOT_COLD; 188 189 /* 190 * This is the handle used to schedule events that need to happen 191 * outside of the allocation fast path. 192 */ 193 static struct callout uma_callout; 194 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 195 196 /* 197 * This structure is passed as the zone ctor arg so that I don't have to create 198 * a special allocation function just for zones. 199 */ 200 struct uma_zctor_args { 201 const char *name; 202 size_t size; 203 uma_ctor ctor; 204 uma_dtor dtor; 205 uma_init uminit; 206 uma_fini fini; 207 uma_import import; 208 uma_release release; 209 void *arg; 210 uma_keg_t keg; 211 int align; 212 uint32_t flags; 213 }; 214 215 struct uma_kctor_args { 216 uma_zone_t zone; 217 size_t size; 218 uma_init uminit; 219 uma_fini fini; 220 int align; 221 uint32_t flags; 222 }; 223 224 struct uma_bucket_zone { 225 uma_zone_t ubz_zone; 226 char *ubz_name; 227 int ubz_entries; /* Number of items it can hold. */ 228 int ubz_maxsize; /* Maximum allocation size per-item. */ 229 }; 230 231 /* 232 * Compute the actual number of bucket entries to pack them in power 233 * of two sizes for more efficient space utilization. 234 */ 235 #define BUCKET_SIZE(n) \ 236 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 237 238 #define BUCKET_MAX BUCKET_SIZE(256) 239 #define BUCKET_MIN 2 240 241 struct uma_bucket_zone bucket_zones[] = { 242 /* Literal bucket sizes. */ 243 { NULL, "2 Bucket", 2, 4096 }, 244 { NULL, "4 Bucket", 4, 3072 }, 245 { NULL, "8 Bucket", 8, 2048 }, 246 { NULL, "16 Bucket", 16, 1024 }, 247 /* Rounded down power of 2 sizes for efficiency. */ 248 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 249 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 250 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 251 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 252 { NULL, NULL, 0} 253 }; 254 255 /* 256 * Flags and enumerations to be passed to internal functions. 257 */ 258 enum zfreeskip { 259 SKIP_NONE = 0, 260 SKIP_CNT = 0x00000001, 261 SKIP_DTOR = 0x00010000, 262 SKIP_FINI = 0x00020000, 263 }; 264 265 /* Prototypes.. */ 266 267 void uma_startup1(vm_offset_t); 268 void uma_startup2(void); 269 270 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 271 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 272 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 273 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 274 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 275 static void page_free(void *, vm_size_t, uint8_t); 276 static void pcpu_page_free(void *, vm_size_t, uint8_t); 277 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 278 static void cache_drain(uma_zone_t); 279 static void bucket_drain(uma_zone_t, uma_bucket_t); 280 static void bucket_cache_reclaim(uma_zone_t zone, bool); 281 static int keg_ctor(void *, int, void *, int); 282 static void keg_dtor(void *, int, void *); 283 static int zone_ctor(void *, int, void *, int); 284 static void zone_dtor(void *, int, void *); 285 static inline void item_dtor(uma_zone_t zone, void *item, int size, 286 void *udata, enum zfreeskip skip); 287 static int zero_init(void *, int, int); 288 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 289 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 290 static void zone_timeout(uma_zone_t zone, void *); 291 static int hash_alloc(struct uma_hash *, u_int); 292 static int hash_expand(struct uma_hash *, struct uma_hash *); 293 static void hash_free(struct uma_hash *hash); 294 static void uma_timeout(void *); 295 static void uma_startup3(void); 296 static void uma_shutdown(void); 297 static void *zone_alloc_item(uma_zone_t, void *, int, int); 298 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 299 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 300 static void zone_free_limit(uma_zone_t zone, int count); 301 static void bucket_enable(void); 302 static void bucket_init(void); 303 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 304 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 305 static void bucket_zone_drain(void); 306 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 307 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 308 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 309 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 310 uma_fini fini, int align, uint32_t flags); 311 static int zone_import(void *, void **, int, int, int); 312 static void zone_release(void *, void **, int); 313 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 314 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 315 316 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 317 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 318 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 319 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 320 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 321 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 322 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 323 324 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 325 326 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 327 "Memory allocation debugging"); 328 329 #ifdef INVARIANTS 330 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 331 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 332 333 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 334 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 335 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 336 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 337 338 static u_int dbg_divisor = 1; 339 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 340 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 341 "Debug & thrash every this item in memory allocator"); 342 343 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 344 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 345 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 346 &uma_dbg_cnt, "memory items debugged"); 347 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 348 &uma_skip_cnt, "memory items skipped, not debugged"); 349 #endif 350 351 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 352 353 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW, 0, "Universal Memory Allocator"); 354 355 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 356 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 357 358 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 359 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 360 361 static int zone_warnings = 1; 362 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 363 "Warn when UMA zones becomes full"); 364 365 static int multipage_slabs = 1; 366 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 367 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 368 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 369 "UMA may choose larger slab sizes for better efficiency"); 370 371 /* 372 * Select the slab zone for an offpage slab with the given maximum item count. 373 */ 374 static inline uma_zone_t 375 slabzone(int ipers) 376 { 377 378 return (slabzones[ipers > SLABZONE0_SETSIZE]); 379 } 380 381 /* 382 * This routine checks to see whether or not it's safe to enable buckets. 383 */ 384 static void 385 bucket_enable(void) 386 { 387 388 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 389 bucketdisable = vm_page_count_min(); 390 } 391 392 /* 393 * Initialize bucket_zones, the array of zones of buckets of various sizes. 394 * 395 * For each zone, calculate the memory required for each bucket, consisting 396 * of the header and an array of pointers. 397 */ 398 static void 399 bucket_init(void) 400 { 401 struct uma_bucket_zone *ubz; 402 int size; 403 404 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 405 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 406 size += sizeof(void *) * ubz->ubz_entries; 407 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 408 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 409 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 410 UMA_ZONE_FIRSTTOUCH); 411 } 412 } 413 414 /* 415 * Given a desired number of entries for a bucket, return the zone from which 416 * to allocate the bucket. 417 */ 418 static struct uma_bucket_zone * 419 bucket_zone_lookup(int entries) 420 { 421 struct uma_bucket_zone *ubz; 422 423 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 424 if (ubz->ubz_entries >= entries) 425 return (ubz); 426 ubz--; 427 return (ubz); 428 } 429 430 static struct uma_bucket_zone * 431 bucket_zone_max(uma_zone_t zone, int nitems) 432 { 433 struct uma_bucket_zone *ubz; 434 int bpcpu; 435 436 bpcpu = 2; 437 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 438 /* Count the cross-domain bucket. */ 439 bpcpu++; 440 441 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 442 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 443 break; 444 if (ubz == &bucket_zones[0]) 445 ubz = NULL; 446 else 447 ubz--; 448 return (ubz); 449 } 450 451 static int 452 bucket_select(int size) 453 { 454 struct uma_bucket_zone *ubz; 455 456 ubz = &bucket_zones[0]; 457 if (size > ubz->ubz_maxsize) 458 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 459 460 for (; ubz->ubz_entries != 0; ubz++) 461 if (ubz->ubz_maxsize < size) 462 break; 463 ubz--; 464 return (ubz->ubz_entries); 465 } 466 467 static uma_bucket_t 468 bucket_alloc(uma_zone_t zone, void *udata, int flags) 469 { 470 struct uma_bucket_zone *ubz; 471 uma_bucket_t bucket; 472 473 /* 474 * Don't allocate buckets early in boot. 475 */ 476 if (__predict_false(booted < BOOT_KVA)) 477 return (NULL); 478 479 /* 480 * To limit bucket recursion we store the original zone flags 481 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 482 * NOVM flag to persist even through deep recursions. We also 483 * store ZFLAG_BUCKET once we have recursed attempting to allocate 484 * a bucket for a bucket zone so we do not allow infinite bucket 485 * recursion. This cookie will even persist to frees of unused 486 * buckets via the allocation path or bucket allocations in the 487 * free path. 488 */ 489 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 490 udata = (void *)(uintptr_t)zone->uz_flags; 491 else { 492 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 493 return (NULL); 494 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 495 } 496 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 497 flags |= M_NOVM; 498 ubz = bucket_zone_lookup(zone->uz_bucket_size); 499 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 500 ubz++; 501 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 502 if (bucket) { 503 #ifdef INVARIANTS 504 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 505 #endif 506 bucket->ub_cnt = 0; 507 bucket->ub_entries = ubz->ubz_entries; 508 bucket->ub_seq = SMR_SEQ_INVALID; 509 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 510 zone->uz_name, zone, bucket); 511 } 512 513 return (bucket); 514 } 515 516 static void 517 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 518 { 519 struct uma_bucket_zone *ubz; 520 521 KASSERT(bucket->ub_cnt == 0, 522 ("bucket_free: Freeing a non free bucket.")); 523 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 524 ("bucket_free: Freeing an SMR bucket.")); 525 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 526 udata = (void *)(uintptr_t)zone->uz_flags; 527 ubz = bucket_zone_lookup(bucket->ub_entries); 528 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 529 } 530 531 static void 532 bucket_zone_drain(void) 533 { 534 struct uma_bucket_zone *ubz; 535 536 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 537 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 538 } 539 540 /* 541 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 542 * zone's caches. If a bucket is found the zone is not locked on return. 543 */ 544 static uma_bucket_t 545 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom) 546 { 547 uma_bucket_t bucket; 548 int i; 549 bool dtor = false; 550 551 ZONE_LOCK_ASSERT(zone); 552 553 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 554 return (NULL); 555 556 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 557 bucket->ub_seq != SMR_SEQ_INVALID) { 558 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 559 return (NULL); 560 bucket->ub_seq = SMR_SEQ_INVALID; 561 dtor = (zone->uz_dtor != NULL) | UMA_ALWAYS_CTORDTOR; 562 } 563 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 564 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 565 zdom->uzd_nitems -= bucket->ub_cnt; 566 if (zdom->uzd_imin > zdom->uzd_nitems) 567 zdom->uzd_imin = zdom->uzd_nitems; 568 zone->uz_bkt_count -= bucket->ub_cnt; 569 ZONE_UNLOCK(zone); 570 if (dtor) 571 for (i = 0; i < bucket->ub_cnt; i++) 572 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 573 NULL, SKIP_NONE); 574 575 return (bucket); 576 } 577 578 /* 579 * Insert a full bucket into the specified cache. The "ws" parameter indicates 580 * whether the bucket's contents should be counted as part of the zone's working 581 * set. 582 */ 583 static void 584 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 585 const bool ws) 586 { 587 588 ZONE_LOCK_ASSERT(zone); 589 KASSERT(!ws || zone->uz_bkt_count < zone->uz_bkt_max, 590 ("%s: zone %p overflow", __func__, zone)); 591 592 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 593 zdom->uzd_nitems += bucket->ub_cnt; 594 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 595 zdom->uzd_imax = zdom->uzd_nitems; 596 zone->uz_bkt_count += bucket->ub_cnt; 597 } 598 599 /* Pops an item out of a per-cpu cache bucket. */ 600 static inline void * 601 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 602 { 603 void *item; 604 605 CRITICAL_ASSERT(curthread); 606 607 bucket->ucb_cnt--; 608 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 609 #ifdef INVARIANTS 610 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 611 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 612 #endif 613 cache->uc_allocs++; 614 615 return (item); 616 } 617 618 /* Pushes an item into a per-cpu cache bucket. */ 619 static inline void 620 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 621 { 622 623 CRITICAL_ASSERT(curthread); 624 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 625 ("uma_zfree: Freeing to non free bucket index.")); 626 627 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 628 bucket->ucb_cnt++; 629 cache->uc_frees++; 630 } 631 632 /* 633 * Unload a UMA bucket from a per-cpu cache. 634 */ 635 static inline uma_bucket_t 636 cache_bucket_unload(uma_cache_bucket_t bucket) 637 { 638 uma_bucket_t b; 639 640 b = bucket->ucb_bucket; 641 if (b != NULL) { 642 MPASS(b->ub_entries == bucket->ucb_entries); 643 b->ub_cnt = bucket->ucb_cnt; 644 bucket->ucb_bucket = NULL; 645 bucket->ucb_entries = bucket->ucb_cnt = 0; 646 } 647 648 return (b); 649 } 650 651 static inline uma_bucket_t 652 cache_bucket_unload_alloc(uma_cache_t cache) 653 { 654 655 return (cache_bucket_unload(&cache->uc_allocbucket)); 656 } 657 658 static inline uma_bucket_t 659 cache_bucket_unload_free(uma_cache_t cache) 660 { 661 662 return (cache_bucket_unload(&cache->uc_freebucket)); 663 } 664 665 static inline uma_bucket_t 666 cache_bucket_unload_cross(uma_cache_t cache) 667 { 668 669 return (cache_bucket_unload(&cache->uc_crossbucket)); 670 } 671 672 /* 673 * Load a bucket into a per-cpu cache bucket. 674 */ 675 static inline void 676 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 677 { 678 679 CRITICAL_ASSERT(curthread); 680 MPASS(bucket->ucb_bucket == NULL); 681 682 bucket->ucb_bucket = b; 683 bucket->ucb_cnt = b->ub_cnt; 684 bucket->ucb_entries = b->ub_entries; 685 } 686 687 static inline void 688 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 689 { 690 691 cache_bucket_load(&cache->uc_allocbucket, b); 692 } 693 694 static inline void 695 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 696 { 697 698 cache_bucket_load(&cache->uc_freebucket, b); 699 } 700 701 #ifdef NUMA 702 static inline void 703 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 704 { 705 706 cache_bucket_load(&cache->uc_crossbucket, b); 707 } 708 #endif 709 710 /* 711 * Copy and preserve ucb_spare. 712 */ 713 static inline void 714 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 715 { 716 717 b1->ucb_bucket = b2->ucb_bucket; 718 b1->ucb_entries = b2->ucb_entries; 719 b1->ucb_cnt = b2->ucb_cnt; 720 } 721 722 /* 723 * Swap two cache buckets. 724 */ 725 static inline void 726 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 727 { 728 struct uma_cache_bucket b3; 729 730 CRITICAL_ASSERT(curthread); 731 732 cache_bucket_copy(&b3, b1); 733 cache_bucket_copy(b1, b2); 734 cache_bucket_copy(b2, &b3); 735 } 736 737 static void 738 zone_log_warning(uma_zone_t zone) 739 { 740 static const struct timeval warninterval = { 300, 0 }; 741 742 if (!zone_warnings || zone->uz_warning == NULL) 743 return; 744 745 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 746 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 747 } 748 749 static inline void 750 zone_maxaction(uma_zone_t zone) 751 { 752 753 if (zone->uz_maxaction.ta_func != NULL) 754 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 755 } 756 757 /* 758 * Routine called by timeout which is used to fire off some time interval 759 * based calculations. (stats, hash size, etc.) 760 * 761 * Arguments: 762 * arg Unused 763 * 764 * Returns: 765 * Nothing 766 */ 767 static void 768 uma_timeout(void *unused) 769 { 770 bucket_enable(); 771 zone_foreach(zone_timeout, NULL); 772 773 /* Reschedule this event */ 774 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 775 } 776 777 /* 778 * Update the working set size estimate for the zone's bucket cache. 779 * The constants chosen here are somewhat arbitrary. With an update period of 780 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 781 * last 100s. 782 */ 783 static void 784 zone_domain_update_wss(uma_zone_domain_t zdom) 785 { 786 long wss; 787 788 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 789 wss = zdom->uzd_imax - zdom->uzd_imin; 790 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 791 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 792 } 793 794 /* 795 * Routine to perform timeout driven calculations. This expands the 796 * hashes and does per cpu statistics aggregation. 797 * 798 * Returns nothing. 799 */ 800 static void 801 zone_timeout(uma_zone_t zone, void *unused) 802 { 803 uma_keg_t keg; 804 u_int slabs, pages; 805 806 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 807 goto update_wss; 808 809 keg = zone->uz_keg; 810 811 /* 812 * Hash zones are non-numa by definition so the first domain 813 * is the only one present. 814 */ 815 KEG_LOCK(keg, 0); 816 pages = keg->uk_domain[0].ud_pages; 817 818 /* 819 * Expand the keg hash table. 820 * 821 * This is done if the number of slabs is larger than the hash size. 822 * What I'm trying to do here is completely reduce collisions. This 823 * may be a little aggressive. Should I allow for two collisions max? 824 */ 825 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 826 struct uma_hash newhash; 827 struct uma_hash oldhash; 828 int ret; 829 830 /* 831 * This is so involved because allocating and freeing 832 * while the keg lock is held will lead to deadlock. 833 * I have to do everything in stages and check for 834 * races. 835 */ 836 KEG_UNLOCK(keg, 0); 837 ret = hash_alloc(&newhash, 1 << fls(slabs)); 838 KEG_LOCK(keg, 0); 839 if (ret) { 840 if (hash_expand(&keg->uk_hash, &newhash)) { 841 oldhash = keg->uk_hash; 842 keg->uk_hash = newhash; 843 } else 844 oldhash = newhash; 845 846 KEG_UNLOCK(keg, 0); 847 hash_free(&oldhash); 848 goto update_wss; 849 } 850 } 851 KEG_UNLOCK(keg, 0); 852 853 update_wss: 854 ZONE_LOCK(zone); 855 for (int i = 0; i < vm_ndomains; i++) 856 zone_domain_update_wss(&zone->uz_domain[i]); 857 ZONE_UNLOCK(zone); 858 } 859 860 /* 861 * Allocate and zero fill the next sized hash table from the appropriate 862 * backing store. 863 * 864 * Arguments: 865 * hash A new hash structure with the old hash size in uh_hashsize 866 * 867 * Returns: 868 * 1 on success and 0 on failure. 869 */ 870 static int 871 hash_alloc(struct uma_hash *hash, u_int size) 872 { 873 size_t alloc; 874 875 KASSERT(powerof2(size), ("hash size must be power of 2")); 876 if (size > UMA_HASH_SIZE_INIT) { 877 hash->uh_hashsize = size; 878 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 879 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 880 } else { 881 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 882 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 883 UMA_ANYDOMAIN, M_WAITOK); 884 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 885 } 886 if (hash->uh_slab_hash) { 887 bzero(hash->uh_slab_hash, alloc); 888 hash->uh_hashmask = hash->uh_hashsize - 1; 889 return (1); 890 } 891 892 return (0); 893 } 894 895 /* 896 * Expands the hash table for HASH zones. This is done from zone_timeout 897 * to reduce collisions. This must not be done in the regular allocation 898 * path, otherwise, we can recurse on the vm while allocating pages. 899 * 900 * Arguments: 901 * oldhash The hash you want to expand 902 * newhash The hash structure for the new table 903 * 904 * Returns: 905 * Nothing 906 * 907 * Discussion: 908 */ 909 static int 910 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 911 { 912 uma_hash_slab_t slab; 913 u_int hval; 914 u_int idx; 915 916 if (!newhash->uh_slab_hash) 917 return (0); 918 919 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 920 return (0); 921 922 /* 923 * I need to investigate hash algorithms for resizing without a 924 * full rehash. 925 */ 926 927 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 928 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 929 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 930 LIST_REMOVE(slab, uhs_hlink); 931 hval = UMA_HASH(newhash, slab->uhs_data); 932 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 933 slab, uhs_hlink); 934 } 935 936 return (1); 937 } 938 939 /* 940 * Free the hash bucket to the appropriate backing store. 941 * 942 * Arguments: 943 * slab_hash The hash bucket we're freeing 944 * hashsize The number of entries in that hash bucket 945 * 946 * Returns: 947 * Nothing 948 */ 949 static void 950 hash_free(struct uma_hash *hash) 951 { 952 if (hash->uh_slab_hash == NULL) 953 return; 954 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 955 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 956 else 957 free(hash->uh_slab_hash, M_UMAHASH); 958 } 959 960 /* 961 * Frees all outstanding items in a bucket 962 * 963 * Arguments: 964 * zone The zone to free to, must be unlocked. 965 * bucket The free/alloc bucket with items. 966 * 967 * Returns: 968 * Nothing 969 */ 970 971 static void 972 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 973 { 974 int i; 975 976 if (bucket == NULL || bucket->ub_cnt == 0) 977 return; 978 979 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 980 bucket->ub_seq != SMR_SEQ_INVALID) { 981 smr_wait(zone->uz_smr, bucket->ub_seq); 982 for (i = 0; i < bucket->ub_cnt; i++) 983 item_dtor(zone, bucket->ub_bucket[i], 984 zone->uz_size, NULL, SKIP_NONE); 985 bucket->ub_seq = SMR_SEQ_INVALID; 986 } 987 if (zone->uz_fini) 988 for (i = 0; i < bucket->ub_cnt; i++) 989 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 990 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 991 if (zone->uz_max_items > 0) 992 zone_free_limit(zone, bucket->ub_cnt); 993 #ifdef INVARIANTS 994 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 995 #endif 996 bucket->ub_cnt = 0; 997 } 998 999 /* 1000 * Drains the per cpu caches for a zone. 1001 * 1002 * NOTE: This may only be called while the zone is being torn down, and not 1003 * during normal operation. This is necessary in order that we do not have 1004 * to migrate CPUs to drain the per-CPU caches. 1005 * 1006 * Arguments: 1007 * zone The zone to drain, must be unlocked. 1008 * 1009 * Returns: 1010 * Nothing 1011 */ 1012 static void 1013 cache_drain(uma_zone_t zone) 1014 { 1015 uma_cache_t cache; 1016 uma_bucket_t bucket; 1017 int cpu; 1018 1019 /* 1020 * XXX: It is safe to not lock the per-CPU caches, because we're 1021 * tearing down the zone anyway. I.e., there will be no further use 1022 * of the caches at this point. 1023 * 1024 * XXX: It would good to be able to assert that the zone is being 1025 * torn down to prevent improper use of cache_drain(). 1026 */ 1027 CPU_FOREACH(cpu) { 1028 cache = &zone->uz_cpu[cpu]; 1029 bucket = cache_bucket_unload_alloc(cache); 1030 if (bucket != NULL) { 1031 bucket_drain(zone, bucket); 1032 bucket_free(zone, bucket, NULL); 1033 } 1034 bucket = cache_bucket_unload_free(cache); 1035 if (bucket != NULL) { 1036 bucket_drain(zone, bucket); 1037 bucket_free(zone, bucket, NULL); 1038 } 1039 bucket = cache_bucket_unload_cross(cache); 1040 if (bucket != NULL) { 1041 bucket_drain(zone, bucket); 1042 bucket_free(zone, bucket, NULL); 1043 } 1044 } 1045 bucket_cache_reclaim(zone, true); 1046 } 1047 1048 static void 1049 cache_shrink(uma_zone_t zone, void *unused) 1050 { 1051 1052 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1053 return; 1054 1055 ZONE_LOCK(zone); 1056 zone->uz_bucket_size = 1057 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1058 ZONE_UNLOCK(zone); 1059 } 1060 1061 static void 1062 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1063 { 1064 uma_cache_t cache; 1065 uma_bucket_t b1, b2, b3; 1066 int domain; 1067 1068 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1069 return; 1070 1071 b1 = b2 = b3 = NULL; 1072 ZONE_LOCK(zone); 1073 critical_enter(); 1074 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 1075 domain = PCPU_GET(domain); 1076 else 1077 domain = 0; 1078 cache = &zone->uz_cpu[curcpu]; 1079 b1 = cache_bucket_unload_alloc(cache); 1080 if (b1 != NULL && b1->ub_cnt != 0) { 1081 zone_put_bucket(zone, &zone->uz_domain[domain], b1, false); 1082 b1 = NULL; 1083 } 1084 1085 /* 1086 * Don't flush SMR zone buckets. This leaves the zone without a 1087 * bucket and forces every free to synchronize(). 1088 */ 1089 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1090 goto out; 1091 b2 = cache_bucket_unload_free(cache); 1092 if (b2 != NULL && b2->ub_cnt != 0) { 1093 zone_put_bucket(zone, &zone->uz_domain[domain], b2, false); 1094 b2 = NULL; 1095 } 1096 b3 = cache_bucket_unload_cross(cache); 1097 1098 out: 1099 critical_exit(); 1100 ZONE_UNLOCK(zone); 1101 if (b1) 1102 bucket_free(zone, b1, NULL); 1103 if (b2) 1104 bucket_free(zone, b2, NULL); 1105 if (b3) { 1106 bucket_drain(zone, b3); 1107 bucket_free(zone, b3, NULL); 1108 } 1109 } 1110 1111 /* 1112 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1113 * This is an expensive call because it needs to bind to all CPUs 1114 * one by one and enter a critical section on each of them in order 1115 * to safely access their cache buckets. 1116 * Zone lock must not be held on call this function. 1117 */ 1118 static void 1119 pcpu_cache_drain_safe(uma_zone_t zone) 1120 { 1121 int cpu; 1122 1123 /* 1124 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1125 */ 1126 if (zone) 1127 cache_shrink(zone, NULL); 1128 else 1129 zone_foreach(cache_shrink, NULL); 1130 1131 CPU_FOREACH(cpu) { 1132 thread_lock(curthread); 1133 sched_bind(curthread, cpu); 1134 thread_unlock(curthread); 1135 1136 if (zone) 1137 cache_drain_safe_cpu(zone, NULL); 1138 else 1139 zone_foreach(cache_drain_safe_cpu, NULL); 1140 } 1141 thread_lock(curthread); 1142 sched_unbind(curthread); 1143 thread_unlock(curthread); 1144 } 1145 1146 /* 1147 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1148 * requested a drain, otherwise the per-domain caches are trimmed to either 1149 * estimated working set size. 1150 */ 1151 static void 1152 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1153 { 1154 uma_zone_domain_t zdom; 1155 uma_bucket_t bucket; 1156 long target, tofree; 1157 int i; 1158 1159 for (i = 0; i < vm_ndomains; i++) { 1160 /* 1161 * The cross bucket is partially filled and not part of 1162 * the item count. Reclaim it individually here. 1163 */ 1164 zdom = &zone->uz_domain[i]; 1165 ZONE_CROSS_LOCK(zone); 1166 bucket = zdom->uzd_cross; 1167 zdom->uzd_cross = NULL; 1168 ZONE_CROSS_UNLOCK(zone); 1169 if (bucket != NULL) { 1170 bucket_drain(zone, bucket); 1171 bucket_free(zone, bucket, NULL); 1172 } 1173 1174 /* 1175 * Shrink the zone bucket size to ensure that the per-CPU caches 1176 * don't grow too large. 1177 */ 1178 ZONE_LOCK(zone); 1179 if (i == 0 && zone->uz_bucket_size > zone->uz_bucket_size_min) 1180 zone->uz_bucket_size--; 1181 1182 /* 1183 * If we were asked to drain the zone, we are done only once 1184 * this bucket cache is empty. Otherwise, we reclaim items in 1185 * excess of the zone's estimated working set size. If the 1186 * difference nitems - imin is larger than the WSS estimate, 1187 * then the estimate will grow at the end of this interval and 1188 * we ignore the historical average. 1189 */ 1190 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1191 zdom->uzd_imin); 1192 while (zdom->uzd_nitems > target) { 1193 bucket = STAILQ_FIRST(&zdom->uzd_buckets); 1194 if (bucket == NULL) 1195 break; 1196 tofree = bucket->ub_cnt; 1197 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 1198 zdom->uzd_nitems -= tofree; 1199 1200 /* 1201 * Shift the bounds of the current WSS interval to avoid 1202 * perturbing the estimate. 1203 */ 1204 zdom->uzd_imax -= lmin(zdom->uzd_imax, tofree); 1205 zdom->uzd_imin -= lmin(zdom->uzd_imin, tofree); 1206 1207 ZONE_UNLOCK(zone); 1208 bucket_drain(zone, bucket); 1209 bucket_free(zone, bucket, NULL); 1210 ZONE_LOCK(zone); 1211 } 1212 ZONE_UNLOCK(zone); 1213 } 1214 } 1215 1216 static void 1217 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1218 { 1219 uint8_t *mem; 1220 int i; 1221 uint8_t flags; 1222 1223 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1224 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1225 1226 mem = slab_data(slab, keg); 1227 flags = slab->us_flags; 1228 i = start; 1229 if (keg->uk_fini != NULL) { 1230 for (i--; i > -1; i--) 1231 #ifdef INVARIANTS 1232 /* 1233 * trash_fini implies that dtor was trash_dtor. trash_fini 1234 * would check that memory hasn't been modified since free, 1235 * which executed trash_dtor. 1236 * That's why we need to run uma_dbg_kskip() check here, 1237 * albeit we don't make skip check for other init/fini 1238 * invocations. 1239 */ 1240 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1241 keg->uk_fini != trash_fini) 1242 #endif 1243 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1244 } 1245 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1246 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1247 NULL, SKIP_NONE); 1248 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1249 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1250 } 1251 1252 /* 1253 * Frees pages from a keg back to the system. This is done on demand from 1254 * the pageout daemon. 1255 * 1256 * Returns nothing. 1257 */ 1258 static void 1259 keg_drain(uma_keg_t keg) 1260 { 1261 struct slabhead freeslabs; 1262 uma_domain_t dom; 1263 uma_slab_t slab, tmp; 1264 int i, n; 1265 1266 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1267 return; 1268 1269 for (i = 0; i < vm_ndomains; i++) { 1270 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1271 keg->uk_name, keg, i, dom->ud_free_items); 1272 dom = &keg->uk_domain[i]; 1273 LIST_INIT(&freeslabs); 1274 1275 KEG_LOCK(keg, i); 1276 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1277 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 1278 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1279 } 1280 n = dom->ud_free_slabs; 1281 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1282 dom->ud_free_slabs = 0; 1283 dom->ud_free_items -= n * keg->uk_ipers; 1284 dom->ud_pages -= n * keg->uk_ppera; 1285 KEG_UNLOCK(keg, i); 1286 1287 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1288 keg_free_slab(keg, slab, keg->uk_ipers); 1289 } 1290 } 1291 1292 static void 1293 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1294 { 1295 1296 /* 1297 * Set draining to interlock with zone_dtor() so we can release our 1298 * locks as we go. Only dtor() should do a WAITOK call since it 1299 * is the only call that knows the structure will still be available 1300 * when it wakes up. 1301 */ 1302 ZONE_LOCK(zone); 1303 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1304 if (waitok == M_NOWAIT) 1305 goto out; 1306 msleep(zone, &zone->uz_lock, PVM, "zonedrain", 1); 1307 } 1308 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1309 ZONE_UNLOCK(zone); 1310 bucket_cache_reclaim(zone, drain); 1311 1312 /* 1313 * The DRAINING flag protects us from being freed while 1314 * we're running. Normally the uma_rwlock would protect us but we 1315 * must be able to release and acquire the right lock for each keg. 1316 */ 1317 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1318 keg_drain(zone->uz_keg); 1319 ZONE_LOCK(zone); 1320 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1321 wakeup(zone); 1322 out: 1323 ZONE_UNLOCK(zone); 1324 } 1325 1326 static void 1327 zone_drain(uma_zone_t zone, void *unused) 1328 { 1329 1330 zone_reclaim(zone, M_NOWAIT, true); 1331 } 1332 1333 static void 1334 zone_trim(uma_zone_t zone, void *unused) 1335 { 1336 1337 zone_reclaim(zone, M_NOWAIT, false); 1338 } 1339 1340 /* 1341 * Allocate a new slab for a keg and inserts it into the partial slab list. 1342 * The keg should be unlocked on entry. If the allocation succeeds it will 1343 * be locked on return. 1344 * 1345 * Arguments: 1346 * flags Wait flags for the item initialization routine 1347 * aflags Wait flags for the slab allocation 1348 * 1349 * Returns: 1350 * The slab that was allocated or NULL if there is no memory and the 1351 * caller specified M_NOWAIT. 1352 */ 1353 static uma_slab_t 1354 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1355 int aflags) 1356 { 1357 uma_domain_t dom; 1358 uma_alloc allocf; 1359 uma_slab_t slab; 1360 unsigned long size; 1361 uint8_t *mem; 1362 uint8_t sflags; 1363 int i; 1364 1365 KASSERT(domain >= 0 && domain < vm_ndomains, 1366 ("keg_alloc_slab: domain %d out of range", domain)); 1367 1368 allocf = keg->uk_allocf; 1369 slab = NULL; 1370 mem = NULL; 1371 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1372 uma_hash_slab_t hslab; 1373 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1374 domain, aflags); 1375 if (hslab == NULL) 1376 goto fail; 1377 slab = &hslab->uhs_slab; 1378 } 1379 1380 /* 1381 * This reproduces the old vm_zone behavior of zero filling pages the 1382 * first time they are added to a zone. 1383 * 1384 * Malloced items are zeroed in uma_zalloc. 1385 */ 1386 1387 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1388 aflags |= M_ZERO; 1389 else 1390 aflags &= ~M_ZERO; 1391 1392 if (keg->uk_flags & UMA_ZONE_NODUMP) 1393 aflags |= M_NODUMP; 1394 1395 /* zone is passed for legacy reasons. */ 1396 size = keg->uk_ppera * PAGE_SIZE; 1397 mem = allocf(zone, size, domain, &sflags, aflags); 1398 if (mem == NULL) { 1399 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1400 zone_free_item(slabzone(keg->uk_ipers), 1401 slab_tohashslab(slab), NULL, SKIP_NONE); 1402 goto fail; 1403 } 1404 uma_total_inc(size); 1405 1406 /* For HASH zones all pages go to the same uma_domain. */ 1407 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1408 domain = 0; 1409 1410 /* Point the slab into the allocated memory */ 1411 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1412 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1413 else 1414 slab_tohashslab(slab)->uhs_data = mem; 1415 1416 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1417 for (i = 0; i < keg->uk_ppera; i++) 1418 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1419 zone, slab); 1420 1421 slab->us_freecount = keg->uk_ipers; 1422 slab->us_flags = sflags; 1423 slab->us_domain = domain; 1424 1425 BIT_FILL(keg->uk_ipers, &slab->us_free); 1426 #ifdef INVARIANTS 1427 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1428 #endif 1429 1430 if (keg->uk_init != NULL) { 1431 for (i = 0; i < keg->uk_ipers; i++) 1432 if (keg->uk_init(slab_item(slab, keg, i), 1433 keg->uk_size, flags) != 0) 1434 break; 1435 if (i != keg->uk_ipers) { 1436 keg_free_slab(keg, slab, i); 1437 goto fail; 1438 } 1439 } 1440 KEG_LOCK(keg, domain); 1441 1442 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1443 slab, keg->uk_name, keg); 1444 1445 if (keg->uk_flags & UMA_ZFLAG_HASH) 1446 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1447 1448 /* 1449 * If we got a slab here it's safe to mark it partially used 1450 * and return. We assume that the caller is going to remove 1451 * at least one item. 1452 */ 1453 dom = &keg->uk_domain[domain]; 1454 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1455 dom->ud_pages += keg->uk_ppera; 1456 dom->ud_free_items += keg->uk_ipers; 1457 1458 return (slab); 1459 1460 fail: 1461 return (NULL); 1462 } 1463 1464 /* 1465 * This function is intended to be used early on in place of page_alloc() so 1466 * that we may use the boot time page cache to satisfy allocations before 1467 * the VM is ready. 1468 */ 1469 static void * 1470 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1471 int wait) 1472 { 1473 vm_paddr_t pa; 1474 vm_page_t m; 1475 void *mem; 1476 int pages; 1477 int i; 1478 1479 pages = howmany(bytes, PAGE_SIZE); 1480 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1481 1482 *pflag = UMA_SLAB_BOOT; 1483 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1484 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1485 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1486 if (m == NULL) 1487 return (NULL); 1488 1489 pa = VM_PAGE_TO_PHYS(m); 1490 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1491 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1492 defined(__riscv) || defined(__powerpc64__) 1493 if ((wait & M_NODUMP) == 0) 1494 dump_add_page(pa); 1495 #endif 1496 } 1497 /* Allocate KVA and indirectly advance bootmem. */ 1498 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1499 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1500 if ((wait & M_ZERO) != 0) 1501 bzero(mem, pages * PAGE_SIZE); 1502 1503 return (mem); 1504 } 1505 1506 static void 1507 startup_free(void *mem, vm_size_t bytes) 1508 { 1509 vm_offset_t va; 1510 vm_page_t m; 1511 1512 va = (vm_offset_t)mem; 1513 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1514 pmap_remove(kernel_pmap, va, va + bytes); 1515 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1516 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1517 defined(__riscv) || defined(__powerpc64__) 1518 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1519 #endif 1520 vm_page_unwire_noq(m); 1521 vm_page_free(m); 1522 } 1523 } 1524 1525 /* 1526 * Allocates a number of pages from the system 1527 * 1528 * Arguments: 1529 * bytes The number of bytes requested 1530 * wait Shall we wait? 1531 * 1532 * Returns: 1533 * A pointer to the alloced memory or possibly 1534 * NULL if M_NOWAIT is set. 1535 */ 1536 static void * 1537 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1538 int wait) 1539 { 1540 void *p; /* Returned page */ 1541 1542 *pflag = UMA_SLAB_KERNEL; 1543 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1544 1545 return (p); 1546 } 1547 1548 static void * 1549 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1550 int wait) 1551 { 1552 struct pglist alloctail; 1553 vm_offset_t addr, zkva; 1554 int cpu, flags; 1555 vm_page_t p, p_next; 1556 #ifdef NUMA 1557 struct pcpu *pc; 1558 #endif 1559 1560 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1561 1562 TAILQ_INIT(&alloctail); 1563 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1564 malloc2vm_flags(wait); 1565 *pflag = UMA_SLAB_KERNEL; 1566 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1567 if (CPU_ABSENT(cpu)) { 1568 p = vm_page_alloc(NULL, 0, flags); 1569 } else { 1570 #ifndef NUMA 1571 p = vm_page_alloc(NULL, 0, flags); 1572 #else 1573 pc = pcpu_find(cpu); 1574 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1575 p = NULL; 1576 else 1577 p = vm_page_alloc_domain(NULL, 0, 1578 pc->pc_domain, flags); 1579 if (__predict_false(p == NULL)) 1580 p = vm_page_alloc(NULL, 0, flags); 1581 #endif 1582 } 1583 if (__predict_false(p == NULL)) 1584 goto fail; 1585 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1586 } 1587 if ((addr = kva_alloc(bytes)) == 0) 1588 goto fail; 1589 zkva = addr; 1590 TAILQ_FOREACH(p, &alloctail, listq) { 1591 pmap_qenter(zkva, &p, 1); 1592 zkva += PAGE_SIZE; 1593 } 1594 return ((void*)addr); 1595 fail: 1596 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1597 vm_page_unwire_noq(p); 1598 vm_page_free(p); 1599 } 1600 return (NULL); 1601 } 1602 1603 /* 1604 * Allocates a number of pages from within an object 1605 * 1606 * Arguments: 1607 * bytes The number of bytes requested 1608 * wait Shall we wait? 1609 * 1610 * Returns: 1611 * A pointer to the alloced memory or possibly 1612 * NULL if M_NOWAIT is set. 1613 */ 1614 static void * 1615 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1616 int wait) 1617 { 1618 TAILQ_HEAD(, vm_page) alloctail; 1619 u_long npages; 1620 vm_offset_t retkva, zkva; 1621 vm_page_t p, p_next; 1622 uma_keg_t keg; 1623 1624 TAILQ_INIT(&alloctail); 1625 keg = zone->uz_keg; 1626 1627 npages = howmany(bytes, PAGE_SIZE); 1628 while (npages > 0) { 1629 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1630 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1631 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1632 VM_ALLOC_NOWAIT)); 1633 if (p != NULL) { 1634 /* 1635 * Since the page does not belong to an object, its 1636 * listq is unused. 1637 */ 1638 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1639 npages--; 1640 continue; 1641 } 1642 /* 1643 * Page allocation failed, free intermediate pages and 1644 * exit. 1645 */ 1646 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1647 vm_page_unwire_noq(p); 1648 vm_page_free(p); 1649 } 1650 return (NULL); 1651 } 1652 *flags = UMA_SLAB_PRIV; 1653 zkva = keg->uk_kva + 1654 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1655 retkva = zkva; 1656 TAILQ_FOREACH(p, &alloctail, listq) { 1657 pmap_qenter(zkva, &p, 1); 1658 zkva += PAGE_SIZE; 1659 } 1660 1661 return ((void *)retkva); 1662 } 1663 1664 /* 1665 * Allocate physically contiguous pages. 1666 */ 1667 static void * 1668 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1669 int wait) 1670 { 1671 1672 *pflag = UMA_SLAB_KERNEL; 1673 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 1674 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 1675 } 1676 1677 /* 1678 * Frees a number of pages to the system 1679 * 1680 * Arguments: 1681 * mem A pointer to the memory to be freed 1682 * size The size of the memory being freed 1683 * flags The original p->us_flags field 1684 * 1685 * Returns: 1686 * Nothing 1687 */ 1688 static void 1689 page_free(void *mem, vm_size_t size, uint8_t flags) 1690 { 1691 1692 if ((flags & UMA_SLAB_BOOT) != 0) { 1693 startup_free(mem, size); 1694 return; 1695 } 1696 1697 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 1698 ("UMA: page_free used with invalid flags %x", flags)); 1699 1700 kmem_free((vm_offset_t)mem, size); 1701 } 1702 1703 /* 1704 * Frees pcpu zone allocations 1705 * 1706 * Arguments: 1707 * mem A pointer to the memory to be freed 1708 * size The size of the memory being freed 1709 * flags The original p->us_flags field 1710 * 1711 * Returns: 1712 * Nothing 1713 */ 1714 static void 1715 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1716 { 1717 vm_offset_t sva, curva; 1718 vm_paddr_t paddr; 1719 vm_page_t m; 1720 1721 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1722 1723 if ((flags & UMA_SLAB_BOOT) != 0) { 1724 startup_free(mem, size); 1725 return; 1726 } 1727 1728 sva = (vm_offset_t)mem; 1729 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1730 paddr = pmap_kextract(curva); 1731 m = PHYS_TO_VM_PAGE(paddr); 1732 vm_page_unwire_noq(m); 1733 vm_page_free(m); 1734 } 1735 pmap_qremove(sva, size >> PAGE_SHIFT); 1736 kva_free(sva, size); 1737 } 1738 1739 1740 /* 1741 * Zero fill initializer 1742 * 1743 * Arguments/Returns follow uma_init specifications 1744 */ 1745 static int 1746 zero_init(void *mem, int size, int flags) 1747 { 1748 bzero(mem, size); 1749 return (0); 1750 } 1751 1752 #ifdef INVARIANTS 1753 struct noslabbits * 1754 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1755 { 1756 1757 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1758 } 1759 #endif 1760 1761 /* 1762 * Actual size of embedded struct slab (!OFFPAGE). 1763 */ 1764 size_t 1765 slab_sizeof(int nitems) 1766 { 1767 size_t s; 1768 1769 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1770 return (roundup(s, UMA_ALIGN_PTR + 1)); 1771 } 1772 1773 /* 1774 * Size of memory for embedded slabs (!OFFPAGE). 1775 */ 1776 size_t 1777 slab_space(int nitems) 1778 { 1779 return (UMA_SLAB_SIZE - slab_sizeof(nitems)); 1780 } 1781 1782 #define UMA_FIXPT_SHIFT 31 1783 #define UMA_FRAC_FIXPT(n, d) \ 1784 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1785 #define UMA_FIXPT_PCT(f) \ 1786 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1787 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1788 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1789 1790 /* 1791 * Compute the number of items that will fit in a slab. If hdr is true, the 1792 * item count may be limited to provide space in the slab for an inline slab 1793 * header. Otherwise, all slab space will be provided for item storage. 1794 */ 1795 static u_int 1796 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1797 { 1798 u_int ipers; 1799 u_int padpi; 1800 1801 /* The padding between items is not needed after the last item. */ 1802 padpi = rsize - size; 1803 1804 if (hdr) { 1805 /* 1806 * Start with the maximum item count and remove items until 1807 * the slab header first alongside the allocatable memory. 1808 */ 1809 for (ipers = MIN(SLAB_MAX_SETSIZE, 1810 (slabsize + padpi - slab_sizeof(1)) / rsize); 1811 ipers > 0 && 1812 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 1813 ipers--) 1814 continue; 1815 } else { 1816 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 1817 } 1818 1819 return (ipers); 1820 } 1821 1822 /* 1823 * Compute the number of items that will fit in a slab for a startup zone. 1824 */ 1825 int 1826 slab_ipers(size_t size, int align) 1827 { 1828 int rsize; 1829 1830 rsize = roundup(size, align + 1); /* Assume no CACHESPREAD */ 1831 return (slab_ipers_hdr(size, rsize, UMA_SLAB_SIZE, true)); 1832 } 1833 1834 struct keg_layout_result { 1835 u_int format; 1836 u_int slabsize; 1837 u_int ipers; 1838 u_int eff; 1839 }; 1840 1841 static void 1842 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 1843 struct keg_layout_result *kl) 1844 { 1845 u_int total; 1846 1847 kl->format = fmt; 1848 kl->slabsize = slabsize; 1849 1850 /* Handle INTERNAL as inline with an extra page. */ 1851 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 1852 kl->format &= ~UMA_ZFLAG_INTERNAL; 1853 kl->slabsize += PAGE_SIZE; 1854 } 1855 1856 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 1857 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 1858 1859 /* Account for memory used by an offpage slab header. */ 1860 total = kl->slabsize; 1861 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 1862 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 1863 1864 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 1865 } 1866 1867 /* 1868 * Determine the format of a uma keg. This determines where the slab header 1869 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 1870 * 1871 * Arguments 1872 * keg The zone we should initialize 1873 * 1874 * Returns 1875 * Nothing 1876 */ 1877 static void 1878 keg_layout(uma_keg_t keg) 1879 { 1880 struct keg_layout_result kl = {}, kl_tmp; 1881 u_int fmts[2]; 1882 u_int alignsize; 1883 u_int nfmt; 1884 u_int pages; 1885 u_int rsize; 1886 u_int slabsize; 1887 u_int i, j; 1888 1889 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1890 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 1891 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 1892 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 1893 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 1894 PRINT_UMA_ZFLAGS)); 1895 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 1896 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 1897 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 1898 PRINT_UMA_ZFLAGS)); 1899 1900 alignsize = keg->uk_align + 1; 1901 1902 /* 1903 * Calculate the size of each allocation (rsize) according to 1904 * alignment. If the requested size is smaller than we have 1905 * allocation bits for we round it up. 1906 */ 1907 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 1908 rsize = roundup2(rsize, alignsize); 1909 1910 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 1911 /* 1912 * We want one item to start on every align boundary in a page. 1913 * To do this we will span pages. We will also extend the item 1914 * by the size of align if it is an even multiple of align. 1915 * Otherwise, it would fall on the same boundary every time. 1916 */ 1917 if ((rsize & alignsize) == 0) 1918 rsize += alignsize; 1919 slabsize = rsize * (PAGE_SIZE / alignsize); 1920 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 1921 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 1922 slabsize = round_page(slabsize); 1923 } else { 1924 /* 1925 * Start with a slab size of as many pages as it takes to 1926 * represent a single item. We will try to fit as many 1927 * additional items into the slab as possible. 1928 */ 1929 slabsize = round_page(keg->uk_size); 1930 } 1931 1932 /* Build a list of all of the available formats for this keg. */ 1933 nfmt = 0; 1934 1935 /* Evaluate an inline slab layout. */ 1936 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 1937 fmts[nfmt++] = 0; 1938 1939 /* TODO: vm_page-embedded slab. */ 1940 1941 /* 1942 * We can't do OFFPAGE if we're internal or if we've been 1943 * asked to not go to the VM for buckets. If we do this we 1944 * may end up going to the VM for slabs which we do not want 1945 * to do if we're UMA_ZONE_VM, which clearly forbids it. 1946 * In those cases, evaluate a pseudo-format called INTERNAL 1947 * which has an inline slab header and one extra page to 1948 * guarantee that it fits. 1949 * 1950 * Otherwise, see if using an OFFPAGE slab will improve our 1951 * efficiency. 1952 */ 1953 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 1954 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 1955 else 1956 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 1957 1958 /* 1959 * Choose a slab size and format which satisfy the minimum efficiency. 1960 * Prefer the smallest slab size that meets the constraints. 1961 * 1962 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 1963 * for small items (up to PAGE_SIZE), the iteration increment is one 1964 * page; and for large items, the increment is one item. 1965 */ 1966 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 1967 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 1968 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 1969 rsize, i)); 1970 for ( ; ; i++) { 1971 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 1972 round_page(rsize * (i - 1) + keg->uk_size); 1973 1974 for (j = 0; j < nfmt; j++) { 1975 /* Only if we have no viable format yet. */ 1976 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 1977 kl.ipers > 0) 1978 continue; 1979 1980 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 1981 if (kl_tmp.eff <= kl.eff) 1982 continue; 1983 1984 kl = kl_tmp; 1985 1986 CTR6(KTR_UMA, "keg %s layout: format %#x " 1987 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 1988 keg->uk_name, kl.format, kl.ipers, rsize, 1989 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 1990 1991 /* Stop when we reach the minimum efficiency. */ 1992 if (kl.eff >= UMA_MIN_EFF) 1993 break; 1994 } 1995 1996 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 1997 slabsize >= SLAB_MAX_SETSIZE * rsize || 1998 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 1999 break; 2000 } 2001 2002 pages = atop(kl.slabsize); 2003 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2004 pages *= mp_maxid + 1; 2005 2006 keg->uk_rsize = rsize; 2007 keg->uk_ipers = kl.ipers; 2008 keg->uk_ppera = pages; 2009 keg->uk_flags |= kl.format; 2010 2011 /* 2012 * How do we find the slab header if it is offpage or if not all item 2013 * start addresses are in the same page? We could solve the latter 2014 * case with vaddr alignment, but we don't. 2015 */ 2016 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2017 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2018 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2019 keg->uk_flags |= UMA_ZFLAG_HASH; 2020 else 2021 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2022 } 2023 2024 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2025 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2026 pages); 2027 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2028 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2029 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2030 keg->uk_ipers, pages)); 2031 } 2032 2033 /* 2034 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2035 * the keg onto the global keg list. 2036 * 2037 * Arguments/Returns follow uma_ctor specifications 2038 * udata Actually uma_kctor_args 2039 */ 2040 static int 2041 keg_ctor(void *mem, int size, void *udata, int flags) 2042 { 2043 struct uma_kctor_args *arg = udata; 2044 uma_keg_t keg = mem; 2045 uma_zone_t zone; 2046 int i; 2047 2048 bzero(keg, size); 2049 keg->uk_size = arg->size; 2050 keg->uk_init = arg->uminit; 2051 keg->uk_fini = arg->fini; 2052 keg->uk_align = arg->align; 2053 keg->uk_reserve = 0; 2054 keg->uk_flags = arg->flags; 2055 2056 /* 2057 * We use a global round-robin policy by default. Zones with 2058 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2059 * case the iterator is never run. 2060 */ 2061 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2062 keg->uk_dr.dr_iter = 0; 2063 2064 /* 2065 * The master zone is passed to us at keg-creation time. 2066 */ 2067 zone = arg->zone; 2068 keg->uk_name = zone->uz_name; 2069 2070 if (arg->flags & UMA_ZONE_ZINIT) 2071 keg->uk_init = zero_init; 2072 2073 if (arg->flags & UMA_ZONE_MALLOC) 2074 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2075 2076 #ifndef SMP 2077 keg->uk_flags &= ~UMA_ZONE_PCPU; 2078 #endif 2079 2080 keg_layout(keg); 2081 2082 /* 2083 * Use a first-touch NUMA policy for all kegs that pmap_extract() 2084 * will work on with the exception of critical VM structures 2085 * necessary for paging. 2086 * 2087 * Zones may override the default by specifying either. 2088 */ 2089 #ifdef NUMA 2090 if ((keg->uk_flags & 2091 (UMA_ZFLAG_HASH | UMA_ZONE_VM | UMA_ZONE_ROUNDROBIN)) == 0) 2092 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2093 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2094 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2095 #endif 2096 2097 /* 2098 * If we haven't booted yet we need allocations to go through the 2099 * startup cache until the vm is ready. 2100 */ 2101 #ifdef UMA_MD_SMALL_ALLOC 2102 if (keg->uk_ppera == 1) 2103 keg->uk_allocf = uma_small_alloc; 2104 else 2105 #endif 2106 if (booted < BOOT_KVA) 2107 keg->uk_allocf = startup_alloc; 2108 else if (keg->uk_flags & UMA_ZONE_PCPU) 2109 keg->uk_allocf = pcpu_page_alloc; 2110 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2111 keg->uk_allocf = contig_alloc; 2112 else 2113 keg->uk_allocf = page_alloc; 2114 #ifdef UMA_MD_SMALL_ALLOC 2115 if (keg->uk_ppera == 1) 2116 keg->uk_freef = uma_small_free; 2117 else 2118 #endif 2119 if (keg->uk_flags & UMA_ZONE_PCPU) 2120 keg->uk_freef = pcpu_page_free; 2121 else 2122 keg->uk_freef = page_free; 2123 2124 /* 2125 * Initialize keg's locks. 2126 */ 2127 for (i = 0; i < vm_ndomains; i++) 2128 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2129 2130 /* 2131 * If we're putting the slab header in the actual page we need to 2132 * figure out where in each page it goes. See slab_sizeof 2133 * definition. 2134 */ 2135 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2136 size_t shsize; 2137 2138 shsize = slab_sizeof(keg->uk_ipers); 2139 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2140 /* 2141 * The only way the following is possible is if with our 2142 * UMA_ALIGN_PTR adjustments we are now bigger than 2143 * UMA_SLAB_SIZE. I haven't checked whether this is 2144 * mathematically possible for all cases, so we make 2145 * sure here anyway. 2146 */ 2147 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2148 ("zone %s ipers %d rsize %d size %d slab won't fit", 2149 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2150 } 2151 2152 if (keg->uk_flags & UMA_ZFLAG_HASH) 2153 hash_alloc(&keg->uk_hash, 0); 2154 2155 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2156 2157 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2158 2159 rw_wlock(&uma_rwlock); 2160 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2161 rw_wunlock(&uma_rwlock); 2162 return (0); 2163 } 2164 2165 static void 2166 zone_kva_available(uma_zone_t zone, void *unused) 2167 { 2168 uma_keg_t keg; 2169 2170 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2171 return; 2172 KEG_GET(zone, keg); 2173 2174 if (keg->uk_allocf == startup_alloc) { 2175 /* Switch to the real allocator. */ 2176 if (keg->uk_flags & UMA_ZONE_PCPU) 2177 keg->uk_allocf = pcpu_page_alloc; 2178 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2179 keg->uk_ppera > 1) 2180 keg->uk_allocf = contig_alloc; 2181 else 2182 keg->uk_allocf = page_alloc; 2183 } 2184 } 2185 2186 static void 2187 zone_alloc_counters(uma_zone_t zone, void *unused) 2188 { 2189 2190 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2191 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2192 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2193 } 2194 2195 static void 2196 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2197 { 2198 uma_zone_domain_t zdom; 2199 uma_domain_t dom; 2200 uma_keg_t keg; 2201 struct sysctl_oid *oid, *domainoid; 2202 int domains, i, cnt; 2203 static const char *nokeg = "cache zone"; 2204 char *c; 2205 2206 /* 2207 * Make a sysctl safe copy of the zone name by removing 2208 * any special characters and handling dups by appending 2209 * an index. 2210 */ 2211 if (zone->uz_namecnt != 0) { 2212 /* Count the number of decimal digits and '_' separator. */ 2213 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2214 cnt /= 10; 2215 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2216 M_UMA, M_WAITOK); 2217 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2218 zone->uz_namecnt); 2219 } else 2220 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2221 for (c = zone->uz_ctlname; *c != '\0'; c++) 2222 if (strchr("./\\ -", *c) != NULL) 2223 *c = '_'; 2224 2225 /* 2226 * Basic parameters at the root. 2227 */ 2228 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2229 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD, NULL, ""); 2230 oid = zone->uz_oid; 2231 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2232 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2233 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2234 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2235 zone, 0, sysctl_handle_uma_zone_flags, "A", 2236 "Allocator configuration flags"); 2237 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2238 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2239 "Desired per-cpu cache size"); 2240 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2241 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2242 "Maximum allowed per-cpu cache size"); 2243 2244 /* 2245 * keg if present. 2246 */ 2247 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2248 domains = vm_ndomains; 2249 else 2250 domains = 1; 2251 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2252 "keg", CTLFLAG_RD, NULL, ""); 2253 keg = zone->uz_keg; 2254 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2255 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2256 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2257 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2258 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2259 "Real object size with alignment"); 2260 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2261 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2262 "pages per-slab allocation"); 2263 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2264 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2265 "items available per-slab"); 2266 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2267 "align", CTLFLAG_RD, &keg->uk_align, 0, 2268 "item alignment mask"); 2269 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2270 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2271 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2272 "Slab utilization (100 - internal fragmentation %)"); 2273 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2274 OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); 2275 for (i = 0; i < domains; i++) { 2276 dom = &keg->uk_domain[i]; 2277 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2278 OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, 2279 NULL, ""); 2280 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2281 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2282 "Total pages currently allocated from VM"); 2283 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2284 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2285 "items free in the slab layer"); 2286 } 2287 } else 2288 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2289 "name", CTLFLAG_RD, nokeg, "Keg name"); 2290 2291 /* 2292 * Information about zone limits. 2293 */ 2294 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2295 "limit", CTLFLAG_RD, NULL, ""); 2296 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2297 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2298 zone, 0, sysctl_handle_uma_zone_items, "QU", 2299 "current number of allocated items if limit is set"); 2300 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2301 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2302 "Maximum number of cached items"); 2303 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2304 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2305 "Number of threads sleeping at limit"); 2306 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2307 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2308 "Total zone limit sleeps"); 2309 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2310 "bucket_max", CTLFLAG_RD, &zone->uz_bkt_max, 0, 2311 "Maximum number of items in the bucket cache"); 2312 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2313 "bucket_cnt", CTLFLAG_RD, &zone->uz_bkt_count, 0, 2314 "Number of items in the bucket cache"); 2315 2316 /* 2317 * Per-domain zone information. 2318 */ 2319 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2320 OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); 2321 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2322 domains = 1; 2323 for (i = 0; i < domains; i++) { 2324 zdom = &zone->uz_domain[i]; 2325 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2326 OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, NULL, ""); 2327 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2328 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2329 "number of items in this domain"); 2330 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2331 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2332 "maximum item count in this period"); 2333 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2334 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2335 "minimum item count in this period"); 2336 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2337 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2338 "Working set size"); 2339 } 2340 2341 /* 2342 * General statistics. 2343 */ 2344 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2345 "stats", CTLFLAG_RD, NULL, ""); 2346 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2347 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2348 zone, 1, sysctl_handle_uma_zone_cur, "I", 2349 "Current number of allocated items"); 2350 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2351 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2352 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2353 "Total allocation calls"); 2354 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2355 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2356 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2357 "Total free calls"); 2358 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2359 "fails", CTLFLAG_RD, &zone->uz_fails, 2360 "Number of allocation failures"); 2361 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2362 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 0, 2363 "Free calls from the wrong domain"); 2364 } 2365 2366 struct uma_zone_count { 2367 const char *name; 2368 int count; 2369 }; 2370 2371 static void 2372 zone_count(uma_zone_t zone, void *arg) 2373 { 2374 struct uma_zone_count *cnt; 2375 2376 cnt = arg; 2377 /* 2378 * Some zones are rapidly created with identical names and 2379 * destroyed out of order. This can lead to gaps in the count. 2380 * Use one greater than the maximum observed for this name. 2381 */ 2382 if (strcmp(zone->uz_name, cnt->name) == 0) 2383 cnt->count = MAX(cnt->count, 2384 zone->uz_namecnt + 1); 2385 } 2386 2387 static void 2388 zone_update_caches(uma_zone_t zone) 2389 { 2390 int i; 2391 2392 for (i = 0; i <= mp_maxid; i++) { 2393 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2394 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2395 } 2396 } 2397 2398 /* 2399 * Zone header ctor. This initializes all fields, locks, etc. 2400 * 2401 * Arguments/Returns follow uma_ctor specifications 2402 * udata Actually uma_zctor_args 2403 */ 2404 static int 2405 zone_ctor(void *mem, int size, void *udata, int flags) 2406 { 2407 struct uma_zone_count cnt; 2408 struct uma_zctor_args *arg = udata; 2409 uma_zone_t zone = mem; 2410 uma_zone_t z; 2411 uma_keg_t keg; 2412 int i; 2413 2414 bzero(zone, size); 2415 zone->uz_name = arg->name; 2416 zone->uz_ctor = arg->ctor; 2417 zone->uz_dtor = arg->dtor; 2418 zone->uz_init = NULL; 2419 zone->uz_fini = NULL; 2420 zone->uz_sleeps = 0; 2421 zone->uz_xdomain = 0; 2422 zone->uz_bucket_size = 0; 2423 zone->uz_bucket_size_min = 0; 2424 zone->uz_bucket_size_max = BUCKET_MAX; 2425 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2426 zone->uz_warning = NULL; 2427 /* The domain structures follow the cpu structures. */ 2428 zone->uz_domain = 2429 (struct uma_zone_domain *)&zone->uz_cpu[mp_maxid + 1]; 2430 zone->uz_bkt_max = ULONG_MAX; 2431 timevalclear(&zone->uz_ratecheck); 2432 2433 /* Count the number of duplicate names. */ 2434 cnt.name = arg->name; 2435 cnt.count = 0; 2436 zone_foreach(zone_count, &cnt); 2437 zone->uz_namecnt = cnt.count; 2438 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 2439 ZONE_CROSS_LOCK_INIT(zone); 2440 2441 for (i = 0; i < vm_ndomains; i++) 2442 STAILQ_INIT(&zone->uz_domain[i].uzd_buckets); 2443 2444 #ifdef INVARIANTS 2445 if (arg->uminit == trash_init && arg->fini == trash_fini) 2446 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2447 #endif 2448 2449 /* 2450 * This is a pure cache zone, no kegs. 2451 */ 2452 if (arg->import) { 2453 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2454 ("zone_ctor: Import specified for non-cache zone.")); 2455 zone->uz_flags = arg->flags; 2456 zone->uz_size = arg->size; 2457 zone->uz_import = arg->import; 2458 zone->uz_release = arg->release; 2459 zone->uz_arg = arg->arg; 2460 rw_wlock(&uma_rwlock); 2461 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2462 rw_wunlock(&uma_rwlock); 2463 goto out; 2464 } 2465 2466 /* 2467 * Use the regular zone/keg/slab allocator. 2468 */ 2469 zone->uz_import = zone_import; 2470 zone->uz_release = zone_release; 2471 zone->uz_arg = zone; 2472 keg = arg->keg; 2473 2474 if (arg->flags & UMA_ZONE_SECONDARY) { 2475 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2476 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2477 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2478 zone->uz_init = arg->uminit; 2479 zone->uz_fini = arg->fini; 2480 zone->uz_flags |= UMA_ZONE_SECONDARY; 2481 rw_wlock(&uma_rwlock); 2482 ZONE_LOCK(zone); 2483 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2484 if (LIST_NEXT(z, uz_link) == NULL) { 2485 LIST_INSERT_AFTER(z, zone, uz_link); 2486 break; 2487 } 2488 } 2489 ZONE_UNLOCK(zone); 2490 rw_wunlock(&uma_rwlock); 2491 } else if (keg == NULL) { 2492 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2493 arg->align, arg->flags)) == NULL) 2494 return (ENOMEM); 2495 } else { 2496 struct uma_kctor_args karg; 2497 int error; 2498 2499 /* We should only be here from uma_startup() */ 2500 karg.size = arg->size; 2501 karg.uminit = arg->uminit; 2502 karg.fini = arg->fini; 2503 karg.align = arg->align; 2504 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2505 karg.zone = zone; 2506 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2507 flags); 2508 if (error) 2509 return (error); 2510 } 2511 2512 /* Inherit properties from the keg. */ 2513 zone->uz_keg = keg; 2514 zone->uz_size = keg->uk_size; 2515 zone->uz_flags |= (keg->uk_flags & 2516 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2517 2518 out: 2519 if (__predict_true(booted >= BOOT_RUNNING)) { 2520 zone_alloc_counters(zone, NULL); 2521 zone_alloc_sysctl(zone, NULL); 2522 } else { 2523 zone->uz_allocs = EARLY_COUNTER; 2524 zone->uz_frees = EARLY_COUNTER; 2525 zone->uz_fails = EARLY_COUNTER; 2526 } 2527 2528 /* Caller requests a private SMR context. */ 2529 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2530 zone->uz_smr = smr_create(zone->uz_name); 2531 2532 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2533 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2534 ("Invalid zone flag combination")); 2535 if (arg->flags & UMA_ZFLAG_INTERNAL) 2536 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2537 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2538 zone->uz_bucket_size = BUCKET_MAX; 2539 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2540 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2541 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2542 zone->uz_bucket_size = 0; 2543 else 2544 zone->uz_bucket_size = bucket_select(zone->uz_size); 2545 zone->uz_bucket_size_min = zone->uz_bucket_size; 2546 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2547 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2548 zone_update_caches(zone); 2549 2550 return (0); 2551 } 2552 2553 /* 2554 * Keg header dtor. This frees all data, destroys locks, frees the hash 2555 * table and removes the keg from the global list. 2556 * 2557 * Arguments/Returns follow uma_dtor specifications 2558 * udata unused 2559 */ 2560 static void 2561 keg_dtor(void *arg, int size, void *udata) 2562 { 2563 uma_keg_t keg; 2564 uint32_t free, pages; 2565 int i; 2566 2567 keg = (uma_keg_t)arg; 2568 free = pages = 0; 2569 for (i = 0; i < vm_ndomains; i++) { 2570 free += keg->uk_domain[i].ud_free_items; 2571 pages += keg->uk_domain[i].ud_pages; 2572 KEG_LOCK_FINI(keg, i); 2573 } 2574 if (pages != 0) 2575 printf("Freed UMA keg (%s) was not empty (%u items). " 2576 " Lost %u pages of memory.\n", 2577 keg->uk_name ? keg->uk_name : "", 2578 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2579 2580 hash_free(&keg->uk_hash); 2581 } 2582 2583 /* 2584 * Zone header dtor. 2585 * 2586 * Arguments/Returns follow uma_dtor specifications 2587 * udata unused 2588 */ 2589 static void 2590 zone_dtor(void *arg, int size, void *udata) 2591 { 2592 uma_zone_t zone; 2593 uma_keg_t keg; 2594 2595 zone = (uma_zone_t)arg; 2596 2597 sysctl_remove_oid(zone->uz_oid, 1, 1); 2598 2599 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2600 cache_drain(zone); 2601 2602 rw_wlock(&uma_rwlock); 2603 LIST_REMOVE(zone, uz_link); 2604 rw_wunlock(&uma_rwlock); 2605 /* 2606 * XXX there are some races here where 2607 * the zone can be drained but zone lock 2608 * released and then refilled before we 2609 * remove it... we dont care for now 2610 */ 2611 zone_reclaim(zone, M_WAITOK, true); 2612 /* 2613 * We only destroy kegs from non secondary/non cache zones. 2614 */ 2615 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2616 keg = zone->uz_keg; 2617 rw_wlock(&uma_rwlock); 2618 LIST_REMOVE(keg, uk_link); 2619 rw_wunlock(&uma_rwlock); 2620 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2621 } 2622 counter_u64_free(zone->uz_allocs); 2623 counter_u64_free(zone->uz_frees); 2624 counter_u64_free(zone->uz_fails); 2625 free(zone->uz_ctlname, M_UMA); 2626 ZONE_LOCK_FINI(zone); 2627 ZONE_CROSS_LOCK_FINI(zone); 2628 } 2629 2630 static void 2631 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2632 { 2633 uma_keg_t keg; 2634 uma_zone_t zone; 2635 2636 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2637 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2638 zfunc(zone, arg); 2639 } 2640 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2641 zfunc(zone, arg); 2642 } 2643 2644 /* 2645 * Traverses every zone in the system and calls a callback 2646 * 2647 * Arguments: 2648 * zfunc A pointer to a function which accepts a zone 2649 * as an argument. 2650 * 2651 * Returns: 2652 * Nothing 2653 */ 2654 static void 2655 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2656 { 2657 2658 rw_rlock(&uma_rwlock); 2659 zone_foreach_unlocked(zfunc, arg); 2660 rw_runlock(&uma_rwlock); 2661 } 2662 2663 /* 2664 * Initialize the kernel memory allocator. This is done after pages can be 2665 * allocated but before general KVA is available. 2666 */ 2667 void 2668 uma_startup1(vm_offset_t virtual_avail) 2669 { 2670 struct uma_zctor_args args; 2671 size_t ksize, zsize, size; 2672 uma_keg_t masterkeg; 2673 uintptr_t m; 2674 uint8_t pflag; 2675 2676 bootstart = bootmem = virtual_avail; 2677 2678 rw_init(&uma_rwlock, "UMA lock"); 2679 sx_init(&uma_reclaim_lock, "umareclaim"); 2680 2681 ksize = sizeof(struct uma_keg) + 2682 (sizeof(struct uma_domain) * vm_ndomains); 2683 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2684 zsize = sizeof(struct uma_zone) + 2685 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2686 (sizeof(struct uma_zone_domain) * vm_ndomains); 2687 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2688 2689 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2690 size = (zsize * 2) + ksize; 2691 m = (uintptr_t)startup_alloc(NULL, size, 0, &pflag, M_NOWAIT | M_ZERO); 2692 zones = (uma_zone_t)m; 2693 m += zsize; 2694 kegs = (uma_zone_t)m; 2695 m += zsize; 2696 masterkeg = (uma_keg_t)m; 2697 2698 /* "manually" create the initial zone */ 2699 memset(&args, 0, sizeof(args)); 2700 args.name = "UMA Kegs"; 2701 args.size = ksize; 2702 args.ctor = keg_ctor; 2703 args.dtor = keg_dtor; 2704 args.uminit = zero_init; 2705 args.fini = NULL; 2706 args.keg = masterkeg; 2707 args.align = UMA_SUPER_ALIGN - 1; 2708 args.flags = UMA_ZFLAG_INTERNAL; 2709 zone_ctor(kegs, zsize, &args, M_WAITOK); 2710 2711 args.name = "UMA Zones"; 2712 args.size = zsize; 2713 args.ctor = zone_ctor; 2714 args.dtor = zone_dtor; 2715 args.uminit = zero_init; 2716 args.fini = NULL; 2717 args.keg = NULL; 2718 args.align = UMA_SUPER_ALIGN - 1; 2719 args.flags = UMA_ZFLAG_INTERNAL; 2720 zone_ctor(zones, zsize, &args, M_WAITOK); 2721 2722 /* Now make zones for slab headers */ 2723 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2724 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2725 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2726 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2727 2728 hashzone = uma_zcreate("UMA Hash", 2729 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2730 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2731 2732 bucket_init(); 2733 smr_init(); 2734 } 2735 2736 #ifndef UMA_MD_SMALL_ALLOC 2737 extern void vm_radix_reserve_kva(void); 2738 #endif 2739 2740 /* 2741 * Advertise the availability of normal kva allocations and switch to 2742 * the default back-end allocator. Marks the KVA we consumed on startup 2743 * as used in the map. 2744 */ 2745 void 2746 uma_startup2(void) 2747 { 2748 2749 if (bootstart != bootmem) { 2750 vm_map_lock(kernel_map); 2751 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2752 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2753 vm_map_unlock(kernel_map); 2754 } 2755 2756 #ifndef UMA_MD_SMALL_ALLOC 2757 /* Set up radix zone to use noobj_alloc. */ 2758 vm_radix_reserve_kva(); 2759 #endif 2760 2761 booted = BOOT_KVA; 2762 zone_foreach_unlocked(zone_kva_available, NULL); 2763 bucket_enable(); 2764 } 2765 2766 /* 2767 * Finish our initialization steps. 2768 */ 2769 static void 2770 uma_startup3(void) 2771 { 2772 2773 #ifdef INVARIANTS 2774 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2775 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2776 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2777 #endif 2778 zone_foreach_unlocked(zone_alloc_counters, NULL); 2779 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2780 callout_init(&uma_callout, 1); 2781 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2782 booted = BOOT_RUNNING; 2783 2784 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2785 EVENTHANDLER_PRI_FIRST); 2786 } 2787 2788 static void 2789 uma_shutdown(void) 2790 { 2791 2792 booted = BOOT_SHUTDOWN; 2793 } 2794 2795 static uma_keg_t 2796 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2797 int align, uint32_t flags) 2798 { 2799 struct uma_kctor_args args; 2800 2801 args.size = size; 2802 args.uminit = uminit; 2803 args.fini = fini; 2804 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2805 args.flags = flags; 2806 args.zone = zone; 2807 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2808 } 2809 2810 /* Public functions */ 2811 /* See uma.h */ 2812 void 2813 uma_set_align(int align) 2814 { 2815 2816 if (align != UMA_ALIGN_CACHE) 2817 uma_align_cache = align; 2818 } 2819 2820 /* See uma.h */ 2821 uma_zone_t 2822 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2823 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2824 2825 { 2826 struct uma_zctor_args args; 2827 uma_zone_t res; 2828 2829 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2830 align, name)); 2831 2832 /* This stuff is essential for the zone ctor */ 2833 memset(&args, 0, sizeof(args)); 2834 args.name = name; 2835 args.size = size; 2836 args.ctor = ctor; 2837 args.dtor = dtor; 2838 args.uminit = uminit; 2839 args.fini = fini; 2840 #ifdef INVARIANTS 2841 /* 2842 * Inject procedures which check for memory use after free if we are 2843 * allowed to scramble the memory while it is not allocated. This 2844 * requires that: UMA is actually able to access the memory, no init 2845 * or fini procedures, no dependency on the initial value of the 2846 * memory, and no (legitimate) use of the memory after free. Note, 2847 * the ctor and dtor do not need to be empty. 2848 */ 2849 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 2850 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 2851 args.uminit = trash_init; 2852 args.fini = trash_fini; 2853 } 2854 #endif 2855 args.align = align; 2856 args.flags = flags; 2857 args.keg = NULL; 2858 2859 sx_slock(&uma_reclaim_lock); 2860 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2861 sx_sunlock(&uma_reclaim_lock); 2862 2863 return (res); 2864 } 2865 2866 /* See uma.h */ 2867 uma_zone_t 2868 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2869 uma_init zinit, uma_fini zfini, uma_zone_t master) 2870 { 2871 struct uma_zctor_args args; 2872 uma_keg_t keg; 2873 uma_zone_t res; 2874 2875 keg = master->uz_keg; 2876 memset(&args, 0, sizeof(args)); 2877 args.name = name; 2878 args.size = keg->uk_size; 2879 args.ctor = ctor; 2880 args.dtor = dtor; 2881 args.uminit = zinit; 2882 args.fini = zfini; 2883 args.align = keg->uk_align; 2884 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2885 args.keg = keg; 2886 2887 sx_slock(&uma_reclaim_lock); 2888 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2889 sx_sunlock(&uma_reclaim_lock); 2890 2891 return (res); 2892 } 2893 2894 /* See uma.h */ 2895 uma_zone_t 2896 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2897 uma_init zinit, uma_fini zfini, uma_import zimport, 2898 uma_release zrelease, void *arg, int flags) 2899 { 2900 struct uma_zctor_args args; 2901 2902 memset(&args, 0, sizeof(args)); 2903 args.name = name; 2904 args.size = size; 2905 args.ctor = ctor; 2906 args.dtor = dtor; 2907 args.uminit = zinit; 2908 args.fini = zfini; 2909 args.import = zimport; 2910 args.release = zrelease; 2911 args.arg = arg; 2912 args.align = 0; 2913 args.flags = flags | UMA_ZFLAG_CACHE; 2914 2915 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2916 } 2917 2918 /* See uma.h */ 2919 void 2920 uma_zdestroy(uma_zone_t zone) 2921 { 2922 2923 /* 2924 * Large slabs are expensive to reclaim, so don't bother doing 2925 * unnecessary work if we're shutting down. 2926 */ 2927 if (booted == BOOT_SHUTDOWN && 2928 zone->uz_fini == NULL && zone->uz_release == zone_release) 2929 return; 2930 sx_slock(&uma_reclaim_lock); 2931 zone_free_item(zones, zone, NULL, SKIP_NONE); 2932 sx_sunlock(&uma_reclaim_lock); 2933 } 2934 2935 void 2936 uma_zwait(uma_zone_t zone) 2937 { 2938 void *item; 2939 2940 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2941 uma_zfree(zone, item); 2942 } 2943 2944 void * 2945 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2946 { 2947 void *item, *pcpu_item; 2948 #ifdef SMP 2949 int i; 2950 2951 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2952 #endif 2953 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2954 if (item == NULL) 2955 return (NULL); 2956 pcpu_item = zpcpu_base_to_offset(item); 2957 if (flags & M_ZERO) { 2958 #ifdef SMP 2959 for (i = 0; i <= mp_maxid; i++) 2960 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 2961 #else 2962 bzero(item, zone->uz_size); 2963 #endif 2964 } 2965 return (pcpu_item); 2966 } 2967 2968 /* 2969 * A stub while both regular and pcpu cases are identical. 2970 */ 2971 void 2972 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 2973 { 2974 void *item; 2975 2976 #ifdef SMP 2977 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2978 #endif 2979 item = zpcpu_offset_to_base(pcpu_item); 2980 uma_zfree_arg(zone, item, udata); 2981 } 2982 2983 static inline void * 2984 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 2985 void *item) 2986 { 2987 #ifdef INVARIANTS 2988 bool skipdbg; 2989 2990 skipdbg = uma_dbg_zskip(zone, item); 2991 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 2992 zone->uz_ctor != trash_ctor) 2993 trash_ctor(item, size, udata, flags); 2994 #endif 2995 /* Check flags before loading ctor pointer. */ 2996 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 2997 __predict_false(zone->uz_ctor != NULL) && 2998 zone->uz_ctor(item, size, udata, flags) != 0) { 2999 counter_u64_add(zone->uz_fails, 1); 3000 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3001 return (NULL); 3002 } 3003 #ifdef INVARIANTS 3004 if (!skipdbg) 3005 uma_dbg_alloc(zone, NULL, item); 3006 #endif 3007 if (flags & M_ZERO) 3008 bzero(item, size); 3009 3010 return (item); 3011 } 3012 3013 static inline void 3014 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3015 enum zfreeskip skip) 3016 { 3017 #ifdef INVARIANTS 3018 bool skipdbg; 3019 3020 skipdbg = uma_dbg_zskip(zone, item); 3021 if (skip == SKIP_NONE && !skipdbg) { 3022 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3023 uma_dbg_free(zone, udata, item); 3024 else 3025 uma_dbg_free(zone, NULL, item); 3026 } 3027 #endif 3028 if (__predict_true(skip < SKIP_DTOR)) { 3029 if (zone->uz_dtor != NULL) 3030 zone->uz_dtor(item, size, udata); 3031 #ifdef INVARIANTS 3032 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3033 zone->uz_dtor != trash_dtor) 3034 trash_dtor(item, size, udata); 3035 #endif 3036 } 3037 } 3038 3039 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3040 #define UMA_ZALLOC_DEBUG 3041 static int 3042 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3043 { 3044 int error; 3045 3046 error = 0; 3047 #ifdef WITNESS 3048 if (flags & M_WAITOK) { 3049 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3050 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3051 } 3052 #endif 3053 3054 #ifdef INVARIANTS 3055 KASSERT((flags & M_EXEC) == 0, 3056 ("uma_zalloc_debug: called with M_EXEC")); 3057 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3058 ("uma_zalloc_debug: called within spinlock or critical section")); 3059 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3060 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3061 #endif 3062 3063 #ifdef DEBUG_MEMGUARD 3064 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3065 void *item; 3066 item = memguard_alloc(zone->uz_size, flags); 3067 if (item != NULL) { 3068 error = EJUSTRETURN; 3069 if (zone->uz_init != NULL && 3070 zone->uz_init(item, zone->uz_size, flags) != 0) { 3071 *itemp = NULL; 3072 return (error); 3073 } 3074 if (zone->uz_ctor != NULL && 3075 zone->uz_ctor(item, zone->uz_size, udata, 3076 flags) != 0) { 3077 counter_u64_add(zone->uz_fails, 1); 3078 zone->uz_fini(item, zone->uz_size); 3079 *itemp = NULL; 3080 return (error); 3081 } 3082 *itemp = item; 3083 return (error); 3084 } 3085 /* This is unfortunate but should not be fatal. */ 3086 } 3087 #endif 3088 return (error); 3089 } 3090 3091 static int 3092 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3093 { 3094 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3095 ("uma_zfree_debug: called with spinlock or critical section held")); 3096 3097 #ifdef DEBUG_MEMGUARD 3098 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3099 if (zone->uz_dtor != NULL) 3100 zone->uz_dtor(item, zone->uz_size, udata); 3101 if (zone->uz_fini != NULL) 3102 zone->uz_fini(item, zone->uz_size); 3103 memguard_free(item); 3104 return (EJUSTRETURN); 3105 } 3106 #endif 3107 return (0); 3108 } 3109 #endif 3110 3111 static __noinline void * 3112 uma_zalloc_single(uma_zone_t zone, void *udata, int flags) 3113 { 3114 int domain; 3115 3116 /* 3117 * We can not get a bucket so try to return a single item. 3118 */ 3119 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3120 domain = PCPU_GET(domain); 3121 else 3122 domain = UMA_ANYDOMAIN; 3123 return (zone_alloc_item(zone, udata, domain, flags)); 3124 } 3125 3126 /* See uma.h */ 3127 void * 3128 uma_zalloc_smr(uma_zone_t zone, int flags) 3129 { 3130 uma_cache_bucket_t bucket; 3131 uma_cache_t cache; 3132 void *item; 3133 int size, uz_flags; 3134 3135 #ifdef UMA_ZALLOC_DEBUG 3136 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3137 ("uma_zalloc_arg: called with non-SMR zone.\n")); 3138 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3139 return (item); 3140 #endif 3141 3142 critical_enter(); 3143 do { 3144 cache = &zone->uz_cpu[curcpu]; 3145 bucket = &cache->uc_allocbucket; 3146 size = cache_uz_size(cache); 3147 uz_flags = cache_uz_flags(cache); 3148 if (__predict_true(bucket->ucb_cnt != 0)) { 3149 item = cache_bucket_pop(cache, bucket); 3150 critical_exit(); 3151 return (item_ctor(zone, uz_flags, size, NULL, flags, 3152 item)); 3153 } 3154 } while (cache_alloc(zone, cache, NULL, flags)); 3155 critical_exit(); 3156 3157 return (uma_zalloc_single(zone, NULL, flags)); 3158 } 3159 3160 /* See uma.h */ 3161 void * 3162 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3163 { 3164 uma_cache_bucket_t bucket; 3165 uma_cache_t cache; 3166 void *item; 3167 int size, uz_flags; 3168 3169 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3170 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3171 3172 /* This is the fast path allocation */ 3173 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3174 zone, flags); 3175 3176 #ifdef UMA_ZALLOC_DEBUG 3177 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3178 ("uma_zalloc_arg: called with SMR zone.\n")); 3179 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3180 return (item); 3181 #endif 3182 3183 /* 3184 * If possible, allocate from the per-CPU cache. There are two 3185 * requirements for safe access to the per-CPU cache: (1) the thread 3186 * accessing the cache must not be preempted or yield during access, 3187 * and (2) the thread must not migrate CPUs without switching which 3188 * cache it accesses. We rely on a critical section to prevent 3189 * preemption and migration. We release the critical section in 3190 * order to acquire the zone mutex if we are unable to allocate from 3191 * the current cache; when we re-acquire the critical section, we 3192 * must detect and handle migration if it has occurred. 3193 */ 3194 critical_enter(); 3195 do { 3196 cache = &zone->uz_cpu[curcpu]; 3197 bucket = &cache->uc_allocbucket; 3198 size = cache_uz_size(cache); 3199 uz_flags = cache_uz_flags(cache); 3200 if (__predict_true(bucket->ucb_cnt != 0)) { 3201 item = cache_bucket_pop(cache, bucket); 3202 critical_exit(); 3203 return (item_ctor(zone, uz_flags, size, udata, flags, 3204 item)); 3205 } 3206 } while (cache_alloc(zone, cache, udata, flags)); 3207 critical_exit(); 3208 3209 return (uma_zalloc_single(zone, udata, flags)); 3210 } 3211 3212 /* 3213 * Replenish an alloc bucket and possibly restore an old one. Called in 3214 * a critical section. Returns in a critical section. 3215 * 3216 * A false return value indicates an allocation failure. 3217 * A true return value indicates success and the caller should retry. 3218 */ 3219 static __noinline bool 3220 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3221 { 3222 uma_zone_domain_t zdom; 3223 uma_bucket_t bucket; 3224 int domain; 3225 bool lockfail; 3226 3227 CRITICAL_ASSERT(curthread); 3228 3229 /* 3230 * If we have run out of items in our alloc bucket see 3231 * if we can switch with the free bucket. 3232 * 3233 * SMR Zones can't re-use the free bucket until the sequence has 3234 * expired. 3235 */ 3236 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && 3237 cache->uc_freebucket.ucb_cnt != 0) { 3238 cache_bucket_swap(&cache->uc_freebucket, 3239 &cache->uc_allocbucket); 3240 return (true); 3241 } 3242 3243 /* 3244 * Discard any empty allocation bucket while we hold no locks. 3245 */ 3246 bucket = cache_bucket_unload_alloc(cache); 3247 critical_exit(); 3248 if (bucket != NULL) 3249 bucket_free(zone, bucket, udata); 3250 3251 /* Short-circuit for zones without buckets and low memory. */ 3252 if (zone->uz_bucket_size == 0 || bucketdisable) { 3253 critical_enter(); 3254 return (false); 3255 } 3256 3257 /* 3258 * Attempt to retrieve the item from the per-CPU cache has failed, so 3259 * we must go back to the zone. This requires the zone lock, so we 3260 * must drop the critical section, then re-acquire it when we go back 3261 * to the cache. Since the critical section is released, we may be 3262 * preempted or migrate. As such, make sure not to maintain any 3263 * thread-local state specific to the cache from prior to releasing 3264 * the critical section. 3265 */ 3266 lockfail = 0; 3267 if (ZONE_TRYLOCK(zone) == 0) { 3268 /* Record contention to size the buckets. */ 3269 ZONE_LOCK(zone); 3270 lockfail = 1; 3271 } 3272 3273 /* See if we lost the race to fill the cache. */ 3274 critical_enter(); 3275 cache = &zone->uz_cpu[curcpu]; 3276 if (cache->uc_allocbucket.ucb_bucket != NULL) { 3277 ZONE_UNLOCK(zone); 3278 return (true); 3279 } 3280 3281 /* 3282 * Check the zone's cache of buckets. 3283 */ 3284 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) { 3285 domain = PCPU_GET(domain); 3286 zdom = &zone->uz_domain[domain]; 3287 } else { 3288 domain = UMA_ANYDOMAIN; 3289 zdom = &zone->uz_domain[0]; 3290 } 3291 3292 if ((bucket = zone_fetch_bucket(zone, zdom)) != NULL) { 3293 KASSERT(bucket->ub_cnt != 0, 3294 ("uma_zalloc_arg: Returning an empty bucket.")); 3295 cache_bucket_load_alloc(cache, bucket); 3296 return (true); 3297 } 3298 /* We are no longer associated with this CPU. */ 3299 critical_exit(); 3300 3301 /* 3302 * We bump the uz count when the cache size is insufficient to 3303 * handle the working set. 3304 */ 3305 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 3306 zone->uz_bucket_size++; 3307 ZONE_UNLOCK(zone); 3308 3309 /* 3310 * Fill a bucket and attempt to use it as the alloc bucket. 3311 */ 3312 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3313 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3314 zone->uz_name, zone, bucket); 3315 if (bucket == NULL) { 3316 critical_enter(); 3317 return (false); 3318 } 3319 3320 /* 3321 * See if we lost the race or were migrated. Cache the 3322 * initialized bucket to make this less likely or claim 3323 * the memory directly. 3324 */ 3325 ZONE_LOCK(zone); 3326 critical_enter(); 3327 cache = &zone->uz_cpu[curcpu]; 3328 if (cache->uc_allocbucket.ucb_bucket == NULL && 3329 ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0 || 3330 domain == PCPU_GET(domain))) { 3331 cache_bucket_load_alloc(cache, bucket); 3332 zdom->uzd_imax += bucket->ub_cnt; 3333 } else if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3334 critical_exit(); 3335 ZONE_UNLOCK(zone); 3336 bucket_drain(zone, bucket); 3337 bucket_free(zone, bucket, udata); 3338 critical_enter(); 3339 return (true); 3340 } else 3341 zone_put_bucket(zone, zdom, bucket, false); 3342 ZONE_UNLOCK(zone); 3343 return (true); 3344 } 3345 3346 void * 3347 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3348 { 3349 3350 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3351 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3352 3353 /* This is the fast path allocation */ 3354 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3355 zone->uz_name, zone, domain, flags); 3356 3357 if (flags & M_WAITOK) { 3358 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3359 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3360 } 3361 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3362 ("uma_zalloc_domain: called with spinlock or critical section held")); 3363 3364 return (zone_alloc_item(zone, udata, domain, flags)); 3365 } 3366 3367 /* 3368 * Find a slab with some space. Prefer slabs that are partially used over those 3369 * that are totally full. This helps to reduce fragmentation. 3370 * 3371 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3372 * only 'domain'. 3373 */ 3374 static uma_slab_t 3375 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3376 { 3377 uma_domain_t dom; 3378 uma_slab_t slab; 3379 int start; 3380 3381 KASSERT(domain >= 0 && domain < vm_ndomains, 3382 ("keg_first_slab: domain %d out of range", domain)); 3383 KEG_LOCK_ASSERT(keg, domain); 3384 3385 slab = NULL; 3386 start = domain; 3387 do { 3388 dom = &keg->uk_domain[domain]; 3389 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3390 return (slab); 3391 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3392 LIST_REMOVE(slab, us_link); 3393 dom->ud_free_slabs--; 3394 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3395 return (slab); 3396 } 3397 if (rr) 3398 domain = (domain + 1) % vm_ndomains; 3399 } while (domain != start); 3400 3401 return (NULL); 3402 } 3403 3404 /* 3405 * Fetch an existing slab from a free or partial list. Returns with the 3406 * keg domain lock held if a slab was found or unlocked if not. 3407 */ 3408 static uma_slab_t 3409 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3410 { 3411 uma_slab_t slab; 3412 uint32_t reserve; 3413 3414 /* HASH has a single free list. */ 3415 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3416 domain = 0; 3417 3418 KEG_LOCK(keg, domain); 3419 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3420 if (keg->uk_domain[domain].ud_free_items <= reserve || 3421 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3422 KEG_UNLOCK(keg, domain); 3423 return (NULL); 3424 } 3425 return (slab); 3426 } 3427 3428 static uma_slab_t 3429 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3430 { 3431 struct vm_domainset_iter di; 3432 uma_slab_t slab; 3433 int aflags, domain; 3434 bool rr; 3435 3436 restart: 3437 /* 3438 * Use the keg's policy if upper layers haven't already specified a 3439 * domain (as happens with first-touch zones). 3440 * 3441 * To avoid races we run the iterator with the keg lock held, but that 3442 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3443 * clear M_WAITOK and handle low memory conditions locally. 3444 */ 3445 rr = rdomain == UMA_ANYDOMAIN; 3446 if (rr) { 3447 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3448 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3449 &aflags); 3450 } else { 3451 aflags = flags; 3452 domain = rdomain; 3453 } 3454 3455 for (;;) { 3456 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3457 if (slab != NULL) 3458 return (slab); 3459 3460 /* 3461 * M_NOVM means don't ask at all! 3462 */ 3463 if (flags & M_NOVM) 3464 break; 3465 3466 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3467 if (slab != NULL) 3468 return (slab); 3469 if (!rr && (flags & M_WAITOK) == 0) 3470 break; 3471 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3472 if ((flags & M_WAITOK) != 0) { 3473 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3474 goto restart; 3475 } 3476 break; 3477 } 3478 } 3479 3480 /* 3481 * We might not have been able to get a slab but another cpu 3482 * could have while we were unlocked. Check again before we 3483 * fail. 3484 */ 3485 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3486 return (slab); 3487 3488 return (NULL); 3489 } 3490 3491 static void * 3492 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3493 { 3494 uma_domain_t dom; 3495 void *item; 3496 int freei; 3497 3498 KEG_LOCK_ASSERT(keg, slab->us_domain); 3499 3500 dom = &keg->uk_domain[slab->us_domain]; 3501 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3502 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3503 item = slab_item(slab, keg, freei); 3504 slab->us_freecount--; 3505 dom->ud_free_items--; 3506 3507 /* 3508 * Move this slab to the full list. It must be on the partial list, so 3509 * we do not need to update the free slab count. In particular, 3510 * keg_fetch_slab() always returns slabs on the partial list. 3511 */ 3512 if (slab->us_freecount == 0) { 3513 LIST_REMOVE(slab, us_link); 3514 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3515 } 3516 3517 return (item); 3518 } 3519 3520 static int 3521 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3522 { 3523 uma_domain_t dom; 3524 uma_zone_t zone; 3525 uma_slab_t slab; 3526 uma_keg_t keg; 3527 #ifdef NUMA 3528 int stripe; 3529 #endif 3530 int i; 3531 3532 zone = arg; 3533 slab = NULL; 3534 keg = zone->uz_keg; 3535 /* Try to keep the buckets totally full */ 3536 for (i = 0; i < max; ) { 3537 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3538 break; 3539 #ifdef NUMA 3540 stripe = howmany(max, vm_ndomains); 3541 #endif 3542 dom = &keg->uk_domain[slab->us_domain]; 3543 while (slab->us_freecount && i < max) { 3544 bucket[i++] = slab_alloc_item(keg, slab); 3545 if (dom->ud_free_items <= keg->uk_reserve) 3546 break; 3547 #ifdef NUMA 3548 /* 3549 * If the zone is striped we pick a new slab for every 3550 * N allocations. Eliminating this conditional will 3551 * instead pick a new domain for each bucket rather 3552 * than stripe within each bucket. The current option 3553 * produces more fragmentation and requires more cpu 3554 * time but yields better distribution. 3555 */ 3556 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3557 vm_ndomains > 1 && --stripe == 0) 3558 break; 3559 #endif 3560 } 3561 KEG_UNLOCK(keg, slab->us_domain); 3562 /* Don't block if we allocated any successfully. */ 3563 flags &= ~M_WAITOK; 3564 flags |= M_NOWAIT; 3565 } 3566 3567 return i; 3568 } 3569 3570 static int 3571 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3572 { 3573 uint64_t old, new, total, max; 3574 3575 /* 3576 * The hard case. We're going to sleep because there were existing 3577 * sleepers or because we ran out of items. This routine enforces 3578 * fairness by keeping fifo order. 3579 * 3580 * First release our ill gotten gains and make some noise. 3581 */ 3582 for (;;) { 3583 zone_free_limit(zone, count); 3584 zone_log_warning(zone); 3585 zone_maxaction(zone); 3586 if (flags & M_NOWAIT) 3587 return (0); 3588 3589 /* 3590 * We need to allocate an item or set ourself as a sleeper 3591 * while the sleepq lock is held to avoid wakeup races. This 3592 * is essentially a home rolled semaphore. 3593 */ 3594 sleepq_lock(&zone->uz_max_items); 3595 old = zone->uz_items; 3596 do { 3597 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3598 /* Cache the max since we will evaluate twice. */ 3599 max = zone->uz_max_items; 3600 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3601 UZ_ITEMS_COUNT(old) >= max) 3602 new = old + UZ_ITEMS_SLEEPER; 3603 else 3604 new = old + MIN(count, max - old); 3605 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3606 3607 /* We may have successfully allocated under the sleepq lock. */ 3608 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3609 sleepq_release(&zone->uz_max_items); 3610 return (new - old); 3611 } 3612 3613 /* 3614 * This is in a different cacheline from uz_items so that we 3615 * don't constantly invalidate the fastpath cacheline when we 3616 * adjust item counts. This could be limited to toggling on 3617 * transitions. 3618 */ 3619 atomic_add_32(&zone->uz_sleepers, 1); 3620 atomic_add_64(&zone->uz_sleeps, 1); 3621 3622 /* 3623 * We have added ourselves as a sleeper. The sleepq lock 3624 * protects us from wakeup races. Sleep now and then retry. 3625 */ 3626 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3627 sleepq_wait(&zone->uz_max_items, PVM); 3628 3629 /* 3630 * After wakeup, remove ourselves as a sleeper and try 3631 * again. We no longer have the sleepq lock for protection. 3632 * 3633 * Subract ourselves as a sleeper while attempting to add 3634 * our count. 3635 */ 3636 atomic_subtract_32(&zone->uz_sleepers, 1); 3637 old = atomic_fetchadd_64(&zone->uz_items, 3638 -(UZ_ITEMS_SLEEPER - count)); 3639 /* We're no longer a sleeper. */ 3640 old -= UZ_ITEMS_SLEEPER; 3641 3642 /* 3643 * If we're still at the limit, restart. Notably do not 3644 * block on other sleepers. Cache the max value to protect 3645 * against changes via sysctl. 3646 */ 3647 total = UZ_ITEMS_COUNT(old); 3648 max = zone->uz_max_items; 3649 if (total >= max) 3650 continue; 3651 /* Truncate if necessary, otherwise wake other sleepers. */ 3652 if (total + count > max) { 3653 zone_free_limit(zone, total + count - max); 3654 count = max - total; 3655 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3656 wakeup_one(&zone->uz_max_items); 3657 3658 return (count); 3659 } 3660 } 3661 3662 /* 3663 * Allocate 'count' items from our max_items limit. Returns the number 3664 * available. If M_NOWAIT is not specified it will sleep until at least 3665 * one item can be allocated. 3666 */ 3667 static int 3668 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3669 { 3670 uint64_t old; 3671 uint64_t max; 3672 3673 max = zone->uz_max_items; 3674 MPASS(max > 0); 3675 3676 /* 3677 * We expect normal allocations to succeed with a simple 3678 * fetchadd. 3679 */ 3680 old = atomic_fetchadd_64(&zone->uz_items, count); 3681 if (__predict_true(old + count <= max)) 3682 return (count); 3683 3684 /* 3685 * If we had some items and no sleepers just return the 3686 * truncated value. We have to release the excess space 3687 * though because that may wake sleepers who weren't woken 3688 * because we were temporarily over the limit. 3689 */ 3690 if (old < max) { 3691 zone_free_limit(zone, (old + count) - max); 3692 return (max - old); 3693 } 3694 return (zone_alloc_limit_hard(zone, count, flags)); 3695 } 3696 3697 /* 3698 * Free a number of items back to the limit. 3699 */ 3700 static void 3701 zone_free_limit(uma_zone_t zone, int count) 3702 { 3703 uint64_t old; 3704 3705 MPASS(count > 0); 3706 3707 /* 3708 * In the common case we either have no sleepers or 3709 * are still over the limit and can just return. 3710 */ 3711 old = atomic_fetchadd_64(&zone->uz_items, -count); 3712 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3713 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3714 return; 3715 3716 /* 3717 * Moderate the rate of wakeups. Sleepers will continue 3718 * to generate wakeups if necessary. 3719 */ 3720 wakeup_one(&zone->uz_max_items); 3721 } 3722 3723 static uma_bucket_t 3724 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3725 { 3726 uma_bucket_t bucket; 3727 int maxbucket, cnt; 3728 3729 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3730 zone, domain); 3731 3732 /* Avoid allocs targeting empty domains. */ 3733 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3734 domain = UMA_ANYDOMAIN; 3735 3736 if (zone->uz_max_items > 0) 3737 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3738 M_NOWAIT); 3739 else 3740 maxbucket = zone->uz_bucket_size; 3741 if (maxbucket == 0) 3742 return (false); 3743 3744 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3745 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3746 if (bucket == NULL) { 3747 cnt = 0; 3748 goto out; 3749 } 3750 3751 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3752 MIN(maxbucket, bucket->ub_entries), domain, flags); 3753 3754 /* 3755 * Initialize the memory if necessary. 3756 */ 3757 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3758 int i; 3759 3760 for (i = 0; i < bucket->ub_cnt; i++) 3761 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3762 flags) != 0) 3763 break; 3764 /* 3765 * If we couldn't initialize the whole bucket, put the 3766 * rest back onto the freelist. 3767 */ 3768 if (i != bucket->ub_cnt) { 3769 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3770 bucket->ub_cnt - i); 3771 #ifdef INVARIANTS 3772 bzero(&bucket->ub_bucket[i], 3773 sizeof(void *) * (bucket->ub_cnt - i)); 3774 #endif 3775 bucket->ub_cnt = i; 3776 } 3777 } 3778 3779 cnt = bucket->ub_cnt; 3780 if (bucket->ub_cnt == 0) { 3781 bucket_free(zone, bucket, udata); 3782 counter_u64_add(zone->uz_fails, 1); 3783 bucket = NULL; 3784 } 3785 out: 3786 if (zone->uz_max_items > 0 && cnt < maxbucket) 3787 zone_free_limit(zone, maxbucket - cnt); 3788 3789 return (bucket); 3790 } 3791 3792 /* 3793 * Allocates a single item from a zone. 3794 * 3795 * Arguments 3796 * zone The zone to alloc for. 3797 * udata The data to be passed to the constructor. 3798 * domain The domain to allocate from or UMA_ANYDOMAIN. 3799 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3800 * 3801 * Returns 3802 * NULL if there is no memory and M_NOWAIT is set 3803 * An item if successful 3804 */ 3805 3806 static void * 3807 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3808 { 3809 void *item; 3810 3811 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) 3812 return (NULL); 3813 3814 /* Avoid allocs targeting empty domains. */ 3815 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3816 domain = UMA_ANYDOMAIN; 3817 3818 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3819 goto fail_cnt; 3820 3821 /* 3822 * We have to call both the zone's init (not the keg's init) 3823 * and the zone's ctor. This is because the item is going from 3824 * a keg slab directly to the user, and the user is expecting it 3825 * to be both zone-init'd as well as zone-ctor'd. 3826 */ 3827 if (zone->uz_init != NULL) { 3828 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3829 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3830 goto fail_cnt; 3831 } 3832 } 3833 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 3834 item); 3835 if (item == NULL) 3836 goto fail; 3837 3838 counter_u64_add(zone->uz_allocs, 1); 3839 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3840 zone->uz_name, zone); 3841 3842 return (item); 3843 3844 fail_cnt: 3845 counter_u64_add(zone->uz_fails, 1); 3846 fail: 3847 if (zone->uz_max_items > 0) 3848 zone_free_limit(zone, 1); 3849 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3850 zone->uz_name, zone); 3851 3852 return (NULL); 3853 } 3854 3855 /* See uma.h */ 3856 void 3857 uma_zfree_smr(uma_zone_t zone, void *item) 3858 { 3859 uma_cache_t cache; 3860 uma_cache_bucket_t bucket; 3861 int domain, itemdomain, uz_flags; 3862 3863 #ifdef UMA_ZALLOC_DEBUG 3864 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3865 ("uma_zfree_smr: called with non-SMR zone.\n")); 3866 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 3867 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 3868 return; 3869 #endif 3870 cache = &zone->uz_cpu[curcpu]; 3871 uz_flags = cache_uz_flags(cache); 3872 domain = itemdomain = 0; 3873 #ifdef NUMA 3874 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 3875 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3876 #endif 3877 critical_enter(); 3878 do { 3879 cache = &zone->uz_cpu[curcpu]; 3880 /* SMR Zones must free to the free bucket. */ 3881 bucket = &cache->uc_freebucket; 3882 #ifdef NUMA 3883 domain = PCPU_GET(domain); 3884 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 3885 domain != itemdomain) { 3886 bucket = &cache->uc_crossbucket; 3887 } 3888 #endif 3889 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 3890 cache_bucket_push(cache, bucket, item); 3891 critical_exit(); 3892 return; 3893 } 3894 } while (cache_free(zone, cache, NULL, item, itemdomain)); 3895 critical_exit(); 3896 3897 /* 3898 * If nothing else caught this, we'll just do an internal free. 3899 */ 3900 zone_free_item(zone, item, NULL, SKIP_NONE); 3901 } 3902 3903 /* See uma.h */ 3904 void 3905 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3906 { 3907 uma_cache_t cache; 3908 uma_cache_bucket_t bucket; 3909 int domain, itemdomain, uz_flags; 3910 3911 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3912 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3913 3914 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 3915 3916 #ifdef UMA_ZALLOC_DEBUG 3917 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3918 ("uma_zfree_arg: called with SMR zone.\n")); 3919 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 3920 return; 3921 #endif 3922 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3923 if (item == NULL) 3924 return; 3925 3926 /* 3927 * We are accessing the per-cpu cache without a critical section to 3928 * fetch size and flags. This is acceptable, if we are preempted we 3929 * will simply read another cpu's line. 3930 */ 3931 cache = &zone->uz_cpu[curcpu]; 3932 uz_flags = cache_uz_flags(cache); 3933 if (UMA_ALWAYS_CTORDTOR || 3934 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 3935 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 3936 3937 /* 3938 * The race here is acceptable. If we miss it we'll just have to wait 3939 * a little longer for the limits to be reset. 3940 */ 3941 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 3942 if (zone->uz_sleepers > 0) 3943 goto zfree_item; 3944 } 3945 3946 /* 3947 * If possible, free to the per-CPU cache. There are two 3948 * requirements for safe access to the per-CPU cache: (1) the thread 3949 * accessing the cache must not be preempted or yield during access, 3950 * and (2) the thread must not migrate CPUs without switching which 3951 * cache it accesses. We rely on a critical section to prevent 3952 * preemption and migration. We release the critical section in 3953 * order to acquire the zone mutex if we are unable to free to the 3954 * current cache; when we re-acquire the critical section, we must 3955 * detect and handle migration if it has occurred. 3956 */ 3957 domain = itemdomain = 0; 3958 #ifdef NUMA 3959 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 3960 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3961 #endif 3962 critical_enter(); 3963 do { 3964 cache = &zone->uz_cpu[curcpu]; 3965 /* 3966 * Try to free into the allocbucket first to give LIFO 3967 * ordering for cache-hot datastructures. Spill over 3968 * into the freebucket if necessary. Alloc will swap 3969 * them if one runs dry. 3970 */ 3971 bucket = &cache->uc_allocbucket; 3972 #ifdef NUMA 3973 domain = PCPU_GET(domain); 3974 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 3975 domain != itemdomain) { 3976 bucket = &cache->uc_crossbucket; 3977 } else 3978 #endif 3979 if (bucket->ucb_cnt >= bucket->ucb_entries) 3980 bucket = &cache->uc_freebucket; 3981 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 3982 cache_bucket_push(cache, bucket, item); 3983 critical_exit(); 3984 return; 3985 } 3986 } while (cache_free(zone, cache, udata, item, itemdomain)); 3987 critical_exit(); 3988 3989 /* 3990 * If nothing else caught this, we'll just do an internal free. 3991 */ 3992 zfree_item: 3993 zone_free_item(zone, item, udata, SKIP_DTOR); 3994 } 3995 3996 #ifdef NUMA 3997 /* 3998 * sort crossdomain free buckets to domain correct buckets and cache 3999 * them. 4000 */ 4001 static void 4002 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4003 { 4004 struct uma_bucketlist fullbuckets; 4005 uma_zone_domain_t zdom; 4006 uma_bucket_t b; 4007 void *item; 4008 int domain; 4009 4010 CTR3(KTR_UMA, 4011 "uma_zfree: zone %s(%p) draining cross bucket %p", 4012 zone->uz_name, zone, bucket); 4013 4014 STAILQ_INIT(&fullbuckets); 4015 4016 /* 4017 * To avoid having ndomain * ndomain buckets for sorting we have a 4018 * lock on the current crossfree bucket. A full matrix with 4019 * per-domain locking could be used if necessary. 4020 */ 4021 ZONE_CROSS_LOCK(zone); 4022 while (bucket->ub_cnt > 0) { 4023 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4024 domain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4025 zdom = &zone->uz_domain[domain]; 4026 if (zdom->uzd_cross == NULL) { 4027 zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT); 4028 if (zdom->uzd_cross == NULL) 4029 break; 4030 } 4031 zdom->uzd_cross->ub_bucket[zdom->uzd_cross->ub_cnt++] = item; 4032 if (zdom->uzd_cross->ub_cnt == zdom->uzd_cross->ub_entries) { 4033 STAILQ_INSERT_HEAD(&fullbuckets, zdom->uzd_cross, 4034 ub_link); 4035 zdom->uzd_cross = NULL; 4036 } 4037 bucket->ub_cnt--; 4038 } 4039 ZONE_CROSS_UNLOCK(zone); 4040 if (!STAILQ_EMPTY(&fullbuckets)) { 4041 ZONE_LOCK(zone); 4042 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4043 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4044 bucket->ub_seq = smr_current(zone->uz_smr); 4045 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4046 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 4047 ZONE_UNLOCK(zone); 4048 bucket_drain(zone, b); 4049 bucket_free(zone, b, udata); 4050 ZONE_LOCK(zone); 4051 } else { 4052 domain = _vm_phys_domain( 4053 pmap_kextract( 4054 (vm_offset_t)b->ub_bucket[0])); 4055 zdom = &zone->uz_domain[domain]; 4056 zone_put_bucket(zone, zdom, b, true); 4057 } 4058 } 4059 ZONE_UNLOCK(zone); 4060 } 4061 if (bucket->ub_cnt != 0) 4062 bucket_drain(zone, bucket); 4063 bucket->ub_seq = SMR_SEQ_INVALID; 4064 bucket_free(zone, bucket, udata); 4065 } 4066 #endif 4067 4068 static void 4069 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4070 int domain, int itemdomain) 4071 { 4072 uma_zone_domain_t zdom; 4073 4074 #ifdef NUMA 4075 /* 4076 * Buckets coming from the wrong domain will be entirely for the 4077 * only other domain on two domain systems. In this case we can 4078 * simply cache them. Otherwise we need to sort them back to 4079 * correct domains. 4080 */ 4081 if (domain != itemdomain && vm_ndomains > 2) { 4082 zone_free_cross(zone, bucket, udata); 4083 return; 4084 } 4085 #endif 4086 4087 /* 4088 * Attempt to save the bucket in the zone's domain bucket cache. 4089 * 4090 * We bump the uz count when the cache size is insufficient to 4091 * handle the working set. 4092 */ 4093 if (ZONE_TRYLOCK(zone) == 0) { 4094 /* Record contention to size the buckets. */ 4095 ZONE_LOCK(zone); 4096 if (zone->uz_bucket_size < zone->uz_bucket_size_max) 4097 zone->uz_bucket_size++; 4098 } 4099 4100 CTR3(KTR_UMA, 4101 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4102 zone->uz_name, zone, bucket); 4103 /* ub_cnt is pointing to the last free item */ 4104 KASSERT(bucket->ub_cnt == bucket->ub_entries, 4105 ("uma_zfree: Attempting to insert partial bucket onto the full list.\n")); 4106 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 4107 ZONE_UNLOCK(zone); 4108 bucket_drain(zone, bucket); 4109 bucket_free(zone, bucket, udata); 4110 } else { 4111 zdom = &zone->uz_domain[itemdomain]; 4112 zone_put_bucket(zone, zdom, bucket, true); 4113 ZONE_UNLOCK(zone); 4114 } 4115 } 4116 4117 /* 4118 * Populate a free or cross bucket for the current cpu cache. Free any 4119 * existing full bucket either to the zone cache or back to the slab layer. 4120 * 4121 * Enters and returns in a critical section. false return indicates that 4122 * we can not satisfy this free in the cache layer. true indicates that 4123 * the caller should retry. 4124 */ 4125 static __noinline bool 4126 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4127 int itemdomain) 4128 { 4129 uma_cache_bucket_t cbucket; 4130 uma_bucket_t newbucket, bucket; 4131 int domain; 4132 4133 CRITICAL_ASSERT(curthread); 4134 4135 if (zone->uz_bucket_size == 0) 4136 return false; 4137 4138 cache = &zone->uz_cpu[curcpu]; 4139 newbucket = NULL; 4140 4141 /* 4142 * FIRSTTOUCH domains need to free to the correct zdom. When 4143 * enabled this is the zdom of the item. The bucket is the 4144 * cross bucket if the current domain and itemdomain do not match. 4145 */ 4146 cbucket = &cache->uc_freebucket; 4147 #ifdef NUMA 4148 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) { 4149 domain = PCPU_GET(domain); 4150 if (domain != itemdomain) { 4151 cbucket = &cache->uc_crossbucket; 4152 if (cbucket->ucb_cnt != 0) 4153 atomic_add_64(&zone->uz_xdomain, 4154 cbucket->ucb_cnt); 4155 } 4156 } else 4157 #endif 4158 itemdomain = domain = 0; 4159 bucket = cache_bucket_unload(cbucket); 4160 4161 /* We are no longer associated with this CPU. */ 4162 critical_exit(); 4163 4164 /* 4165 * Don't let SMR zones operate without a free bucket. Force 4166 * a synchronize and re-use this one. We will only degrade 4167 * to a synchronize every bucket_size items rather than every 4168 * item if we fail to allocate a bucket. 4169 */ 4170 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4171 if (bucket != NULL) 4172 bucket->ub_seq = smr_advance(zone->uz_smr); 4173 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4174 if (newbucket == NULL && bucket != NULL) { 4175 bucket_drain(zone, bucket); 4176 newbucket = bucket; 4177 bucket = NULL; 4178 } 4179 } else if (!bucketdisable) 4180 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4181 4182 if (bucket != NULL) 4183 zone_free_bucket(zone, bucket, udata, domain, itemdomain); 4184 4185 critical_enter(); 4186 if ((bucket = newbucket) == NULL) 4187 return (false); 4188 cache = &zone->uz_cpu[curcpu]; 4189 #ifdef NUMA 4190 /* 4191 * Check to see if we should be populating the cross bucket. If it 4192 * is already populated we will fall through and attempt to populate 4193 * the free bucket. 4194 */ 4195 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) { 4196 domain = PCPU_GET(domain); 4197 if (domain != itemdomain && 4198 cache->uc_crossbucket.ucb_bucket == NULL) { 4199 cache_bucket_load_cross(cache, bucket); 4200 return (true); 4201 } 4202 } 4203 #endif 4204 /* 4205 * We may have lost the race to fill the bucket or switched CPUs. 4206 */ 4207 if (cache->uc_freebucket.ucb_bucket != NULL) { 4208 critical_exit(); 4209 bucket_free(zone, bucket, udata); 4210 critical_enter(); 4211 } else 4212 cache_bucket_load_free(cache, bucket); 4213 4214 return (true); 4215 } 4216 4217 void 4218 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 4219 { 4220 4221 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4222 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4223 4224 CTR2(KTR_UMA, "uma_zfree_domain zone %s(%p)", zone->uz_name, zone); 4225 4226 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 4227 ("uma_zfree_domain: called with spinlock or critical section held")); 4228 4229 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4230 if (item == NULL) 4231 return; 4232 zone_free_item(zone, item, udata, SKIP_NONE); 4233 } 4234 4235 static void 4236 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4237 { 4238 uma_keg_t keg; 4239 uma_domain_t dom; 4240 int freei; 4241 4242 keg = zone->uz_keg; 4243 KEG_LOCK_ASSERT(keg, slab->us_domain); 4244 4245 /* Do we need to remove from any lists? */ 4246 dom = &keg->uk_domain[slab->us_domain]; 4247 if (slab->us_freecount + 1 == keg->uk_ipers) { 4248 LIST_REMOVE(slab, us_link); 4249 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4250 dom->ud_free_slabs++; 4251 } else if (slab->us_freecount == 0) { 4252 LIST_REMOVE(slab, us_link); 4253 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4254 } 4255 4256 /* Slab management. */ 4257 freei = slab_item_index(slab, keg, item); 4258 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4259 slab->us_freecount++; 4260 4261 /* Keg statistics. */ 4262 dom->ud_free_items++; 4263 } 4264 4265 static void 4266 zone_release(void *arg, void **bucket, int cnt) 4267 { 4268 struct mtx *lock; 4269 uma_zone_t zone; 4270 uma_slab_t slab; 4271 uma_keg_t keg; 4272 uint8_t *mem; 4273 void *item; 4274 int i; 4275 4276 zone = arg; 4277 keg = zone->uz_keg; 4278 lock = NULL; 4279 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4280 lock = KEG_LOCK(keg, 0); 4281 for (i = 0; i < cnt; i++) { 4282 item = bucket[i]; 4283 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4284 slab = vtoslab((vm_offset_t)item); 4285 } else { 4286 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4287 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4288 slab = hash_sfind(&keg->uk_hash, mem); 4289 else 4290 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4291 } 4292 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4293 if (lock != NULL) 4294 mtx_unlock(lock); 4295 lock = KEG_LOCK(keg, slab->us_domain); 4296 } 4297 slab_free_item(zone, slab, item); 4298 } 4299 if (lock != NULL) 4300 mtx_unlock(lock); 4301 } 4302 4303 /* 4304 * Frees a single item to any zone. 4305 * 4306 * Arguments: 4307 * zone The zone to free to 4308 * item The item we're freeing 4309 * udata User supplied data for the dtor 4310 * skip Skip dtors and finis 4311 */ 4312 static void 4313 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4314 { 4315 4316 /* 4317 * If a free is sent directly to an SMR zone we have to 4318 * synchronize immediately because the item can instantly 4319 * be reallocated. This should only happen in degenerate 4320 * cases when no memory is available for per-cpu caches. 4321 */ 4322 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4323 smr_synchronize(zone->uz_smr); 4324 4325 item_dtor(zone, item, zone->uz_size, udata, skip); 4326 4327 if (skip < SKIP_FINI && zone->uz_fini) 4328 zone->uz_fini(item, zone->uz_size); 4329 4330 zone->uz_release(zone->uz_arg, &item, 1); 4331 4332 if (skip & SKIP_CNT) 4333 return; 4334 4335 counter_u64_add(zone->uz_frees, 1); 4336 4337 if (zone->uz_max_items > 0) 4338 zone_free_limit(zone, 1); 4339 } 4340 4341 /* See uma.h */ 4342 int 4343 uma_zone_set_max(uma_zone_t zone, int nitems) 4344 { 4345 struct uma_bucket_zone *ubz; 4346 int count; 4347 4348 /* 4349 * XXX This can misbehave if the zone has any allocations with 4350 * no limit and a limit is imposed. There is currently no 4351 * way to clear a limit. 4352 */ 4353 ZONE_LOCK(zone); 4354 ubz = bucket_zone_max(zone, nitems); 4355 count = ubz != NULL ? ubz->ubz_entries : 0; 4356 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 4357 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4358 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4359 zone->uz_max_items = nitems; 4360 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4361 zone_update_caches(zone); 4362 /* We may need to wake waiters. */ 4363 wakeup(&zone->uz_max_items); 4364 ZONE_UNLOCK(zone); 4365 4366 return (nitems); 4367 } 4368 4369 /* See uma.h */ 4370 void 4371 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4372 { 4373 struct uma_bucket_zone *ubz; 4374 int bpcpu; 4375 4376 ZONE_LOCK(zone); 4377 ubz = bucket_zone_max(zone, nitems); 4378 if (ubz != NULL) { 4379 bpcpu = 2; 4380 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4381 /* Count the cross-domain bucket. */ 4382 bpcpu++; 4383 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 4384 zone->uz_bucket_size_max = ubz->ubz_entries; 4385 } else { 4386 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 4387 } 4388 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4389 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4390 zone->uz_bkt_max = nitems; 4391 ZONE_UNLOCK(zone); 4392 } 4393 4394 /* See uma.h */ 4395 int 4396 uma_zone_get_max(uma_zone_t zone) 4397 { 4398 int nitems; 4399 4400 nitems = atomic_load_64(&zone->uz_max_items); 4401 4402 return (nitems); 4403 } 4404 4405 /* See uma.h */ 4406 void 4407 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4408 { 4409 4410 ZONE_ASSERT_COLD(zone); 4411 zone->uz_warning = warning; 4412 } 4413 4414 /* See uma.h */ 4415 void 4416 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4417 { 4418 4419 ZONE_ASSERT_COLD(zone); 4420 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4421 } 4422 4423 /* See uma.h */ 4424 int 4425 uma_zone_get_cur(uma_zone_t zone) 4426 { 4427 int64_t nitems; 4428 u_int i; 4429 4430 nitems = 0; 4431 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4432 nitems = counter_u64_fetch(zone->uz_allocs) - 4433 counter_u64_fetch(zone->uz_frees); 4434 CPU_FOREACH(i) 4435 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4436 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4437 4438 return (nitems < 0 ? 0 : nitems); 4439 } 4440 4441 static uint64_t 4442 uma_zone_get_allocs(uma_zone_t zone) 4443 { 4444 uint64_t nitems; 4445 u_int i; 4446 4447 nitems = 0; 4448 if (zone->uz_allocs != EARLY_COUNTER) 4449 nitems = counter_u64_fetch(zone->uz_allocs); 4450 CPU_FOREACH(i) 4451 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4452 4453 return (nitems); 4454 } 4455 4456 static uint64_t 4457 uma_zone_get_frees(uma_zone_t zone) 4458 { 4459 uint64_t nitems; 4460 u_int i; 4461 4462 nitems = 0; 4463 if (zone->uz_frees != EARLY_COUNTER) 4464 nitems = counter_u64_fetch(zone->uz_frees); 4465 CPU_FOREACH(i) 4466 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4467 4468 return (nitems); 4469 } 4470 4471 #ifdef INVARIANTS 4472 /* Used only for KEG_ASSERT_COLD(). */ 4473 static uint64_t 4474 uma_keg_get_allocs(uma_keg_t keg) 4475 { 4476 uma_zone_t z; 4477 uint64_t nitems; 4478 4479 nitems = 0; 4480 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4481 nitems += uma_zone_get_allocs(z); 4482 4483 return (nitems); 4484 } 4485 #endif 4486 4487 /* See uma.h */ 4488 void 4489 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4490 { 4491 uma_keg_t keg; 4492 4493 KEG_GET(zone, keg); 4494 KEG_ASSERT_COLD(keg); 4495 keg->uk_init = uminit; 4496 } 4497 4498 /* See uma.h */ 4499 void 4500 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4501 { 4502 uma_keg_t keg; 4503 4504 KEG_GET(zone, keg); 4505 KEG_ASSERT_COLD(keg); 4506 keg->uk_fini = fini; 4507 } 4508 4509 /* See uma.h */ 4510 void 4511 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4512 { 4513 4514 ZONE_ASSERT_COLD(zone); 4515 zone->uz_init = zinit; 4516 } 4517 4518 /* See uma.h */ 4519 void 4520 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4521 { 4522 4523 ZONE_ASSERT_COLD(zone); 4524 zone->uz_fini = zfini; 4525 } 4526 4527 /* See uma.h */ 4528 void 4529 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4530 { 4531 uma_keg_t keg; 4532 4533 KEG_GET(zone, keg); 4534 KEG_ASSERT_COLD(keg); 4535 keg->uk_freef = freef; 4536 } 4537 4538 /* See uma.h */ 4539 void 4540 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4541 { 4542 uma_keg_t keg; 4543 4544 KEG_GET(zone, keg); 4545 KEG_ASSERT_COLD(keg); 4546 keg->uk_allocf = allocf; 4547 } 4548 4549 /* See uma.h */ 4550 void 4551 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4552 { 4553 4554 ZONE_ASSERT_COLD(zone); 4555 4556 zone->uz_flags |= UMA_ZONE_SMR; 4557 zone->uz_smr = smr; 4558 zone_update_caches(zone); 4559 } 4560 4561 smr_t 4562 uma_zone_get_smr(uma_zone_t zone) 4563 { 4564 4565 return (zone->uz_smr); 4566 } 4567 4568 /* See uma.h */ 4569 void 4570 uma_zone_reserve(uma_zone_t zone, int items) 4571 { 4572 uma_keg_t keg; 4573 4574 KEG_GET(zone, keg); 4575 KEG_ASSERT_COLD(keg); 4576 keg->uk_reserve = items; 4577 } 4578 4579 /* See uma.h */ 4580 int 4581 uma_zone_reserve_kva(uma_zone_t zone, int count) 4582 { 4583 uma_keg_t keg; 4584 vm_offset_t kva; 4585 u_int pages; 4586 4587 KEG_GET(zone, keg); 4588 KEG_ASSERT_COLD(keg); 4589 ZONE_ASSERT_COLD(zone); 4590 4591 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4592 4593 #ifdef UMA_MD_SMALL_ALLOC 4594 if (keg->uk_ppera > 1) { 4595 #else 4596 if (1) { 4597 #endif 4598 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4599 if (kva == 0) 4600 return (0); 4601 } else 4602 kva = 0; 4603 4604 ZONE_LOCK(zone); 4605 MPASS(keg->uk_kva == 0); 4606 keg->uk_kva = kva; 4607 keg->uk_offset = 0; 4608 zone->uz_max_items = pages * keg->uk_ipers; 4609 #ifdef UMA_MD_SMALL_ALLOC 4610 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4611 #else 4612 keg->uk_allocf = noobj_alloc; 4613 #endif 4614 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4615 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4616 zone_update_caches(zone); 4617 ZONE_UNLOCK(zone); 4618 4619 return (1); 4620 } 4621 4622 /* See uma.h */ 4623 void 4624 uma_prealloc(uma_zone_t zone, int items) 4625 { 4626 struct vm_domainset_iter di; 4627 uma_domain_t dom; 4628 uma_slab_t slab; 4629 uma_keg_t keg; 4630 int aflags, domain, slabs; 4631 4632 KEG_GET(zone, keg); 4633 slabs = howmany(items, keg->uk_ipers); 4634 while (slabs-- > 0) { 4635 aflags = M_NOWAIT; 4636 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4637 &aflags); 4638 for (;;) { 4639 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4640 aflags); 4641 if (slab != NULL) { 4642 dom = &keg->uk_domain[slab->us_domain]; 4643 /* 4644 * keg_alloc_slab() always returns a slab on the 4645 * partial list. 4646 */ 4647 LIST_REMOVE(slab, us_link); 4648 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4649 us_link); 4650 dom->ud_free_slabs++; 4651 KEG_UNLOCK(keg, slab->us_domain); 4652 break; 4653 } 4654 if (vm_domainset_iter_policy(&di, &domain) != 0) 4655 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 4656 } 4657 } 4658 } 4659 4660 /* See uma.h */ 4661 void 4662 uma_reclaim(int req) 4663 { 4664 4665 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4666 sx_xlock(&uma_reclaim_lock); 4667 bucket_enable(); 4668 4669 switch (req) { 4670 case UMA_RECLAIM_TRIM: 4671 zone_foreach(zone_trim, NULL); 4672 break; 4673 case UMA_RECLAIM_DRAIN: 4674 case UMA_RECLAIM_DRAIN_CPU: 4675 zone_foreach(zone_drain, NULL); 4676 if (req == UMA_RECLAIM_DRAIN_CPU) { 4677 pcpu_cache_drain_safe(NULL); 4678 zone_foreach(zone_drain, NULL); 4679 } 4680 break; 4681 default: 4682 panic("unhandled reclamation request %d", req); 4683 } 4684 4685 /* 4686 * Some slabs may have been freed but this zone will be visited early 4687 * we visit again so that we can free pages that are empty once other 4688 * zones are drained. We have to do the same for buckets. 4689 */ 4690 zone_drain(slabzones[0], NULL); 4691 zone_drain(slabzones[1], NULL); 4692 bucket_zone_drain(); 4693 sx_xunlock(&uma_reclaim_lock); 4694 } 4695 4696 static volatile int uma_reclaim_needed; 4697 4698 void 4699 uma_reclaim_wakeup(void) 4700 { 4701 4702 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4703 wakeup(uma_reclaim); 4704 } 4705 4706 void 4707 uma_reclaim_worker(void *arg __unused) 4708 { 4709 4710 for (;;) { 4711 sx_xlock(&uma_reclaim_lock); 4712 while (atomic_load_int(&uma_reclaim_needed) == 0) 4713 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4714 hz); 4715 sx_xunlock(&uma_reclaim_lock); 4716 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4717 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4718 atomic_store_int(&uma_reclaim_needed, 0); 4719 /* Don't fire more than once per-second. */ 4720 pause("umarclslp", hz); 4721 } 4722 } 4723 4724 /* See uma.h */ 4725 void 4726 uma_zone_reclaim(uma_zone_t zone, int req) 4727 { 4728 4729 switch (req) { 4730 case UMA_RECLAIM_TRIM: 4731 zone_trim(zone, NULL); 4732 break; 4733 case UMA_RECLAIM_DRAIN: 4734 zone_drain(zone, NULL); 4735 break; 4736 case UMA_RECLAIM_DRAIN_CPU: 4737 pcpu_cache_drain_safe(zone); 4738 zone_drain(zone, NULL); 4739 break; 4740 default: 4741 panic("unhandled reclamation request %d", req); 4742 } 4743 } 4744 4745 /* See uma.h */ 4746 int 4747 uma_zone_exhausted(uma_zone_t zone) 4748 { 4749 4750 return (atomic_load_32(&zone->uz_sleepers) > 0); 4751 } 4752 4753 unsigned long 4754 uma_limit(void) 4755 { 4756 4757 return (uma_kmem_limit); 4758 } 4759 4760 void 4761 uma_set_limit(unsigned long limit) 4762 { 4763 4764 uma_kmem_limit = limit; 4765 } 4766 4767 unsigned long 4768 uma_size(void) 4769 { 4770 4771 return (atomic_load_long(&uma_kmem_total)); 4772 } 4773 4774 long 4775 uma_avail(void) 4776 { 4777 4778 return (uma_kmem_limit - uma_size()); 4779 } 4780 4781 #ifdef DDB 4782 /* 4783 * Generate statistics across both the zone and its per-cpu cache's. Return 4784 * desired statistics if the pointer is non-NULL for that statistic. 4785 * 4786 * Note: does not update the zone statistics, as it can't safely clear the 4787 * per-CPU cache statistic. 4788 * 4789 */ 4790 static void 4791 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4792 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4793 { 4794 uma_cache_t cache; 4795 uint64_t allocs, frees, sleeps, xdomain; 4796 int cachefree, cpu; 4797 4798 allocs = frees = sleeps = xdomain = 0; 4799 cachefree = 0; 4800 CPU_FOREACH(cpu) { 4801 cache = &z->uz_cpu[cpu]; 4802 cachefree += cache->uc_allocbucket.ucb_cnt; 4803 cachefree += cache->uc_freebucket.ucb_cnt; 4804 xdomain += cache->uc_crossbucket.ucb_cnt; 4805 cachefree += cache->uc_crossbucket.ucb_cnt; 4806 allocs += cache->uc_allocs; 4807 frees += cache->uc_frees; 4808 } 4809 allocs += counter_u64_fetch(z->uz_allocs); 4810 frees += counter_u64_fetch(z->uz_frees); 4811 sleeps += z->uz_sleeps; 4812 xdomain += z->uz_xdomain; 4813 if (cachefreep != NULL) 4814 *cachefreep = cachefree; 4815 if (allocsp != NULL) 4816 *allocsp = allocs; 4817 if (freesp != NULL) 4818 *freesp = frees; 4819 if (sleepsp != NULL) 4820 *sleepsp = sleeps; 4821 if (xdomainp != NULL) 4822 *xdomainp = xdomain; 4823 } 4824 #endif /* DDB */ 4825 4826 static int 4827 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4828 { 4829 uma_keg_t kz; 4830 uma_zone_t z; 4831 int count; 4832 4833 count = 0; 4834 rw_rlock(&uma_rwlock); 4835 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4836 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4837 count++; 4838 } 4839 LIST_FOREACH(z, &uma_cachezones, uz_link) 4840 count++; 4841 4842 rw_runlock(&uma_rwlock); 4843 return (sysctl_handle_int(oidp, &count, 0, req)); 4844 } 4845 4846 static void 4847 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4848 struct uma_percpu_stat *ups, bool internal) 4849 { 4850 uma_zone_domain_t zdom; 4851 uma_cache_t cache; 4852 int i; 4853 4854 4855 for (i = 0; i < vm_ndomains; i++) { 4856 zdom = &z->uz_domain[i]; 4857 uth->uth_zone_free += zdom->uzd_nitems; 4858 } 4859 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4860 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4861 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4862 uth->uth_sleeps = z->uz_sleeps; 4863 uth->uth_xdomain = z->uz_xdomain; 4864 4865 /* 4866 * While it is not normally safe to access the cache bucket pointers 4867 * while not on the CPU that owns the cache, we only allow the pointers 4868 * to be exchanged without the zone lock held, not invalidated, so 4869 * accept the possible race associated with bucket exchange during 4870 * monitoring. Use atomic_load_ptr() to ensure that the bucket pointers 4871 * are loaded only once. 4872 */ 4873 for (i = 0; i < mp_maxid + 1; i++) { 4874 bzero(&ups[i], sizeof(*ups)); 4875 if (internal || CPU_ABSENT(i)) 4876 continue; 4877 cache = &z->uz_cpu[i]; 4878 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 4879 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 4880 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 4881 ups[i].ups_allocs = cache->uc_allocs; 4882 ups[i].ups_frees = cache->uc_frees; 4883 } 4884 } 4885 4886 static int 4887 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 4888 { 4889 struct uma_stream_header ush; 4890 struct uma_type_header uth; 4891 struct uma_percpu_stat *ups; 4892 struct sbuf sbuf; 4893 uma_keg_t kz; 4894 uma_zone_t z; 4895 uint64_t items; 4896 uint32_t kfree, pages; 4897 int count, error, i; 4898 4899 error = sysctl_wire_old_buffer(req, 0); 4900 if (error != 0) 4901 return (error); 4902 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 4903 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 4904 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 4905 4906 count = 0; 4907 rw_rlock(&uma_rwlock); 4908 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4909 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4910 count++; 4911 } 4912 4913 LIST_FOREACH(z, &uma_cachezones, uz_link) 4914 count++; 4915 4916 /* 4917 * Insert stream header. 4918 */ 4919 bzero(&ush, sizeof(ush)); 4920 ush.ush_version = UMA_STREAM_VERSION; 4921 ush.ush_maxcpus = (mp_maxid + 1); 4922 ush.ush_count = count; 4923 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 4924 4925 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4926 kfree = pages = 0; 4927 for (i = 0; i < vm_ndomains; i++) { 4928 kfree += kz->uk_domain[i].ud_free_items; 4929 pages += kz->uk_domain[i].ud_pages; 4930 } 4931 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4932 bzero(&uth, sizeof(uth)); 4933 ZONE_LOCK(z); 4934 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4935 uth.uth_align = kz->uk_align; 4936 uth.uth_size = kz->uk_size; 4937 uth.uth_rsize = kz->uk_rsize; 4938 if (z->uz_max_items > 0) { 4939 items = UZ_ITEMS_COUNT(z->uz_items); 4940 uth.uth_pages = (items / kz->uk_ipers) * 4941 kz->uk_ppera; 4942 } else 4943 uth.uth_pages = pages; 4944 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 4945 kz->uk_ppera; 4946 uth.uth_limit = z->uz_max_items; 4947 uth.uth_keg_free = kfree; 4948 4949 /* 4950 * A zone is secondary is it is not the first entry 4951 * on the keg's zone list. 4952 */ 4953 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 4954 (LIST_FIRST(&kz->uk_zones) != z)) 4955 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 4956 uma_vm_zone_stats(&uth, z, &sbuf, ups, 4957 kz->uk_flags & UMA_ZFLAG_INTERNAL); 4958 ZONE_UNLOCK(z); 4959 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4960 for (i = 0; i < mp_maxid + 1; i++) 4961 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4962 } 4963 } 4964 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4965 bzero(&uth, sizeof(uth)); 4966 ZONE_LOCK(z); 4967 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4968 uth.uth_size = z->uz_size; 4969 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 4970 ZONE_UNLOCK(z); 4971 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4972 for (i = 0; i < mp_maxid + 1; i++) 4973 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4974 } 4975 4976 rw_runlock(&uma_rwlock); 4977 error = sbuf_finish(&sbuf); 4978 sbuf_delete(&sbuf); 4979 free(ups, M_TEMP); 4980 return (error); 4981 } 4982 4983 int 4984 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4985 { 4986 uma_zone_t zone = *(uma_zone_t *)arg1; 4987 int error, max; 4988 4989 max = uma_zone_get_max(zone); 4990 error = sysctl_handle_int(oidp, &max, 0, req); 4991 if (error || !req->newptr) 4992 return (error); 4993 4994 uma_zone_set_max(zone, max); 4995 4996 return (0); 4997 } 4998 4999 int 5000 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5001 { 5002 uma_zone_t zone; 5003 int cur; 5004 5005 /* 5006 * Some callers want to add sysctls for global zones that 5007 * may not yet exist so they pass a pointer to a pointer. 5008 */ 5009 if (arg2 == 0) 5010 zone = *(uma_zone_t *)arg1; 5011 else 5012 zone = arg1; 5013 cur = uma_zone_get_cur(zone); 5014 return (sysctl_handle_int(oidp, &cur, 0, req)); 5015 } 5016 5017 static int 5018 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5019 { 5020 uma_zone_t zone = arg1; 5021 uint64_t cur; 5022 5023 cur = uma_zone_get_allocs(zone); 5024 return (sysctl_handle_64(oidp, &cur, 0, req)); 5025 } 5026 5027 static int 5028 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5029 { 5030 uma_zone_t zone = arg1; 5031 uint64_t cur; 5032 5033 cur = uma_zone_get_frees(zone); 5034 return (sysctl_handle_64(oidp, &cur, 0, req)); 5035 } 5036 5037 static int 5038 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5039 { 5040 struct sbuf sbuf; 5041 uma_zone_t zone = arg1; 5042 int error; 5043 5044 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5045 if (zone->uz_flags != 0) 5046 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5047 else 5048 sbuf_printf(&sbuf, "0"); 5049 error = sbuf_finish(&sbuf); 5050 sbuf_delete(&sbuf); 5051 5052 return (error); 5053 } 5054 5055 static int 5056 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5057 { 5058 uma_keg_t keg = arg1; 5059 int avail, effpct, total; 5060 5061 total = keg->uk_ppera * PAGE_SIZE; 5062 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5063 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5064 /* 5065 * We consider the client's requested size and alignment here, not the 5066 * real size determination uk_rsize, because we also adjust the real 5067 * size for internal implementation reasons (max bitset size). 5068 */ 5069 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5070 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5071 avail *= mp_maxid + 1; 5072 effpct = 100 * avail / total; 5073 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5074 } 5075 5076 static int 5077 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5078 { 5079 uma_zone_t zone = arg1; 5080 uint64_t cur; 5081 5082 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5083 return (sysctl_handle_64(oidp, &cur, 0, req)); 5084 } 5085 5086 #ifdef INVARIANTS 5087 static uma_slab_t 5088 uma_dbg_getslab(uma_zone_t zone, void *item) 5089 { 5090 uma_slab_t slab; 5091 uma_keg_t keg; 5092 uint8_t *mem; 5093 5094 /* 5095 * It is safe to return the slab here even though the 5096 * zone is unlocked because the item's allocation state 5097 * essentially holds a reference. 5098 */ 5099 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5100 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5101 return (NULL); 5102 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5103 return (vtoslab((vm_offset_t)mem)); 5104 keg = zone->uz_keg; 5105 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5106 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5107 KEG_LOCK(keg, 0); 5108 slab = hash_sfind(&keg->uk_hash, mem); 5109 KEG_UNLOCK(keg, 0); 5110 5111 return (slab); 5112 } 5113 5114 static bool 5115 uma_dbg_zskip(uma_zone_t zone, void *mem) 5116 { 5117 5118 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5119 return (true); 5120 5121 return (uma_dbg_kskip(zone->uz_keg, mem)); 5122 } 5123 5124 static bool 5125 uma_dbg_kskip(uma_keg_t keg, void *mem) 5126 { 5127 uintptr_t idx; 5128 5129 if (dbg_divisor == 0) 5130 return (true); 5131 5132 if (dbg_divisor == 1) 5133 return (false); 5134 5135 idx = (uintptr_t)mem >> PAGE_SHIFT; 5136 if (keg->uk_ipers > 1) { 5137 idx *= keg->uk_ipers; 5138 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5139 } 5140 5141 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5142 counter_u64_add(uma_skip_cnt, 1); 5143 return (true); 5144 } 5145 counter_u64_add(uma_dbg_cnt, 1); 5146 5147 return (false); 5148 } 5149 5150 /* 5151 * Set up the slab's freei data such that uma_dbg_free can function. 5152 * 5153 */ 5154 static void 5155 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5156 { 5157 uma_keg_t keg; 5158 int freei; 5159 5160 if (slab == NULL) { 5161 slab = uma_dbg_getslab(zone, item); 5162 if (slab == NULL) 5163 panic("uma: item %p did not belong to zone %s\n", 5164 item, zone->uz_name); 5165 } 5166 keg = zone->uz_keg; 5167 freei = slab_item_index(slab, keg, item); 5168 5169 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5170 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 5171 item, zone, zone->uz_name, slab, freei); 5172 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5173 } 5174 5175 /* 5176 * Verifies freed addresses. Checks for alignment, valid slab membership 5177 * and duplicate frees. 5178 * 5179 */ 5180 static void 5181 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5182 { 5183 uma_keg_t keg; 5184 int freei; 5185 5186 if (slab == NULL) { 5187 slab = uma_dbg_getslab(zone, item); 5188 if (slab == NULL) 5189 panic("uma: Freed item %p did not belong to zone %s\n", 5190 item, zone->uz_name); 5191 } 5192 keg = zone->uz_keg; 5193 freei = slab_item_index(slab, keg, item); 5194 5195 if (freei >= keg->uk_ipers) 5196 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 5197 item, zone, zone->uz_name, slab, freei); 5198 5199 if (slab_item(slab, keg, freei) != item) 5200 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 5201 item, zone, zone->uz_name, slab, freei); 5202 5203 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5204 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 5205 item, zone, zone->uz_name, slab, freei); 5206 5207 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5208 } 5209 #endif /* INVARIANTS */ 5210 5211 #ifdef DDB 5212 static int64_t 5213 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5214 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5215 { 5216 uint64_t frees; 5217 int i; 5218 5219 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5220 *allocs = counter_u64_fetch(z->uz_allocs); 5221 frees = counter_u64_fetch(z->uz_frees); 5222 *sleeps = z->uz_sleeps; 5223 *cachefree = 0; 5224 *xdomain = 0; 5225 } else 5226 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5227 xdomain); 5228 for (i = 0; i < vm_ndomains; i++) { 5229 *cachefree += z->uz_domain[i].uzd_nitems; 5230 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5231 (LIST_FIRST(&kz->uk_zones) != z))) 5232 *cachefree += kz->uk_domain[i].ud_free_items; 5233 } 5234 *used = *allocs - frees; 5235 return (((int64_t)*used + *cachefree) * kz->uk_size); 5236 } 5237 5238 DB_SHOW_COMMAND(uma, db_show_uma) 5239 { 5240 const char *fmt_hdr, *fmt_entry; 5241 uma_keg_t kz; 5242 uma_zone_t z; 5243 uint64_t allocs, used, sleeps, xdomain; 5244 long cachefree; 5245 /* variables for sorting */ 5246 uma_keg_t cur_keg; 5247 uma_zone_t cur_zone, last_zone; 5248 int64_t cur_size, last_size, size; 5249 int ties; 5250 5251 /* /i option produces machine-parseable CSV output */ 5252 if (modif[0] == 'i') { 5253 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5254 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5255 } else { 5256 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5257 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5258 } 5259 5260 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5261 "Sleeps", "Bucket", "Total Mem", "XFree"); 5262 5263 /* Sort the zones with largest size first. */ 5264 last_zone = NULL; 5265 last_size = INT64_MAX; 5266 for (;;) { 5267 cur_zone = NULL; 5268 cur_size = -1; 5269 ties = 0; 5270 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5271 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5272 /* 5273 * In the case of size ties, print out zones 5274 * in the order they are encountered. That is, 5275 * when we encounter the most recently output 5276 * zone, we have already printed all preceding 5277 * ties, and we must print all following ties. 5278 */ 5279 if (z == last_zone) { 5280 ties = 1; 5281 continue; 5282 } 5283 size = get_uma_stats(kz, z, &allocs, &used, 5284 &sleeps, &cachefree, &xdomain); 5285 if (size > cur_size && size < last_size + ties) 5286 { 5287 cur_size = size; 5288 cur_zone = z; 5289 cur_keg = kz; 5290 } 5291 } 5292 } 5293 if (cur_zone == NULL) 5294 break; 5295 5296 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5297 &sleeps, &cachefree, &xdomain); 5298 db_printf(fmt_entry, cur_zone->uz_name, 5299 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5300 (uintmax_t)allocs, (uintmax_t)sleeps, 5301 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5302 xdomain); 5303 5304 if (db_pager_quit) 5305 return; 5306 last_zone = cur_zone; 5307 last_size = cur_size; 5308 } 5309 } 5310 5311 DB_SHOW_COMMAND(umacache, db_show_umacache) 5312 { 5313 uma_zone_t z; 5314 uint64_t allocs, frees; 5315 long cachefree; 5316 int i; 5317 5318 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5319 "Requests", "Bucket"); 5320 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5321 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5322 for (i = 0; i < vm_ndomains; i++) 5323 cachefree += z->uz_domain[i].uzd_nitems; 5324 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5325 z->uz_name, (uintmax_t)z->uz_size, 5326 (intmax_t)(allocs - frees), cachefree, 5327 (uintmax_t)allocs, z->uz_bucket_size); 5328 if (db_pager_quit) 5329 return; 5330 } 5331 } 5332 #endif /* DDB */ 5333