1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/eventhandler.h> 63 #include <sys/kernel.h> 64 #include <sys/types.h> 65 #include <sys/limits.h> 66 #include <sys/queue.h> 67 #include <sys/malloc.h> 68 #include <sys/ktr.h> 69 #include <sys/lock.h> 70 #include <sys/sysctl.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/random.h> 74 #include <sys/rwlock.h> 75 #include <sys/sbuf.h> 76 #include <sys/sched.h> 77 #include <sys/smp.h> 78 #include <sys/taskqueue.h> 79 #include <sys/vmmeter.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_phys.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/uma.h> 91 #include <vm/uma_int.h> 92 #include <vm/uma_dbg.h> 93 94 #include <ddb/ddb.h> 95 96 #ifdef DEBUG_MEMGUARD 97 #include <vm/memguard.h> 98 #endif 99 100 /* 101 * This is the zone and keg from which all zones are spawned. 102 */ 103 static uma_zone_t kegs; 104 static uma_zone_t zones; 105 106 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 107 static uma_zone_t slabzone; 108 109 /* 110 * The initial hash tables come out of this zone so they can be allocated 111 * prior to malloc coming up. 112 */ 113 static uma_zone_t hashzone; 114 115 /* The boot-time adjusted value for cache line alignment. */ 116 int uma_align_cache = 64 - 1; 117 118 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 119 120 /* 121 * Are we allowed to allocate buckets? 122 */ 123 static int bucketdisable = 1; 124 125 /* Linked list of all kegs in the system */ 126 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 127 128 /* Linked list of all cache-only zones in the system */ 129 static LIST_HEAD(,uma_zone) uma_cachezones = 130 LIST_HEAD_INITIALIZER(uma_cachezones); 131 132 /* This RW lock protects the keg list */ 133 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 134 135 /* 136 * Pointer and counter to pool of pages, that is preallocated at 137 * startup to bootstrap UMA. 138 */ 139 static char *bootmem; 140 static int boot_pages; 141 142 static struct sx uma_drain_lock; 143 144 /* kmem soft limit. */ 145 static unsigned long uma_kmem_limit = LONG_MAX; 146 static volatile unsigned long uma_kmem_total; 147 148 /* Is the VM done starting up? */ 149 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 150 BOOT_RUNNING } booted = BOOT_COLD; 151 152 /* 153 * This is the handle used to schedule events that need to happen 154 * outside of the allocation fast path. 155 */ 156 static struct callout uma_callout; 157 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 158 159 /* 160 * This structure is passed as the zone ctor arg so that I don't have to create 161 * a special allocation function just for zones. 162 */ 163 struct uma_zctor_args { 164 const char *name; 165 size_t size; 166 uma_ctor ctor; 167 uma_dtor dtor; 168 uma_init uminit; 169 uma_fini fini; 170 uma_import import; 171 uma_release release; 172 void *arg; 173 uma_keg_t keg; 174 int align; 175 uint32_t flags; 176 }; 177 178 struct uma_kctor_args { 179 uma_zone_t zone; 180 size_t size; 181 uma_init uminit; 182 uma_fini fini; 183 int align; 184 uint32_t flags; 185 }; 186 187 struct uma_bucket_zone { 188 uma_zone_t ubz_zone; 189 char *ubz_name; 190 int ubz_entries; /* Number of items it can hold. */ 191 int ubz_maxsize; /* Maximum allocation size per-item. */ 192 }; 193 194 /* 195 * Compute the actual number of bucket entries to pack them in power 196 * of two sizes for more efficient space utilization. 197 */ 198 #define BUCKET_SIZE(n) \ 199 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 200 201 #define BUCKET_MAX BUCKET_SIZE(256) 202 203 struct uma_bucket_zone bucket_zones[] = { 204 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 205 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 206 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 207 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 208 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 209 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 210 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 211 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 212 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 213 { NULL, NULL, 0} 214 }; 215 216 /* 217 * Flags and enumerations to be passed to internal functions. 218 */ 219 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 220 221 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ 222 223 /* Prototypes.. */ 224 225 int uma_startup_count(int); 226 void uma_startup(void *, int); 227 void uma_startup1(void); 228 void uma_startup2(void); 229 230 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 231 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 232 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 233 static void page_free(void *, vm_size_t, uint8_t); 234 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int); 235 static void cache_drain(uma_zone_t); 236 static void bucket_drain(uma_zone_t, uma_bucket_t); 237 static void bucket_cache_drain(uma_zone_t zone); 238 static int keg_ctor(void *, int, void *, int); 239 static void keg_dtor(void *, int, void *); 240 static int zone_ctor(void *, int, void *, int); 241 static void zone_dtor(void *, int, void *); 242 static int zero_init(void *, int, int); 243 static void keg_small_init(uma_keg_t keg); 244 static void keg_large_init(uma_keg_t keg); 245 static void zone_foreach(void (*zfunc)(uma_zone_t)); 246 static void zone_timeout(uma_zone_t zone); 247 static int hash_alloc(struct uma_hash *); 248 static int hash_expand(struct uma_hash *, struct uma_hash *); 249 static void hash_free(struct uma_hash *hash); 250 static void uma_timeout(void *); 251 static void uma_startup3(void); 252 static void *zone_alloc_item(uma_zone_t, void *, int, int); 253 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 254 static void bucket_enable(void); 255 static void bucket_init(void); 256 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 257 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 258 static void bucket_zone_drain(void); 259 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 260 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 261 static uma_slab_t zone_fetch_slab_multi(uma_zone_t, uma_keg_t, int, int); 262 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 263 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 264 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 265 uma_fini fini, int align, uint32_t flags); 266 static int zone_import(uma_zone_t, void **, int, int, int); 267 static void zone_release(uma_zone_t, void **, int); 268 static void uma_zero_item(void *, uma_zone_t); 269 270 void uma_print_zone(uma_zone_t); 271 void uma_print_stats(void); 272 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 273 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 274 275 #ifdef INVARIANTS 276 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 277 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 278 #endif 279 280 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 281 282 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 283 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 284 285 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 286 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 287 288 static int zone_warnings = 1; 289 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 290 "Warn when UMA zones becomes full"); 291 292 /* Adjust bytes under management by UMA. */ 293 static inline void 294 uma_total_dec(unsigned long size) 295 { 296 297 atomic_subtract_long(&uma_kmem_total, size); 298 } 299 300 static inline void 301 uma_total_inc(unsigned long size) 302 { 303 304 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 305 uma_reclaim_wakeup(); 306 } 307 308 /* 309 * This routine checks to see whether or not it's safe to enable buckets. 310 */ 311 static void 312 bucket_enable(void) 313 { 314 bucketdisable = vm_page_count_min(); 315 } 316 317 /* 318 * Initialize bucket_zones, the array of zones of buckets of various sizes. 319 * 320 * For each zone, calculate the memory required for each bucket, consisting 321 * of the header and an array of pointers. 322 */ 323 static void 324 bucket_init(void) 325 { 326 struct uma_bucket_zone *ubz; 327 int size; 328 329 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 330 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 331 size += sizeof(void *) * ubz->ubz_entries; 332 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 333 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 334 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 335 } 336 } 337 338 /* 339 * Given a desired number of entries for a bucket, return the zone from which 340 * to allocate the bucket. 341 */ 342 static struct uma_bucket_zone * 343 bucket_zone_lookup(int entries) 344 { 345 struct uma_bucket_zone *ubz; 346 347 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 348 if (ubz->ubz_entries >= entries) 349 return (ubz); 350 ubz--; 351 return (ubz); 352 } 353 354 static int 355 bucket_select(int size) 356 { 357 struct uma_bucket_zone *ubz; 358 359 ubz = &bucket_zones[0]; 360 if (size > ubz->ubz_maxsize) 361 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 362 363 for (; ubz->ubz_entries != 0; ubz++) 364 if (ubz->ubz_maxsize < size) 365 break; 366 ubz--; 367 return (ubz->ubz_entries); 368 } 369 370 static uma_bucket_t 371 bucket_alloc(uma_zone_t zone, void *udata, int flags) 372 { 373 struct uma_bucket_zone *ubz; 374 uma_bucket_t bucket; 375 376 /* 377 * This is to stop us from allocating per cpu buckets while we're 378 * running out of vm.boot_pages. Otherwise, we would exhaust the 379 * boot pages. This also prevents us from allocating buckets in 380 * low memory situations. 381 */ 382 if (bucketdisable) 383 return (NULL); 384 /* 385 * To limit bucket recursion we store the original zone flags 386 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 387 * NOVM flag to persist even through deep recursions. We also 388 * store ZFLAG_BUCKET once we have recursed attempting to allocate 389 * a bucket for a bucket zone so we do not allow infinite bucket 390 * recursion. This cookie will even persist to frees of unused 391 * buckets via the allocation path or bucket allocations in the 392 * free path. 393 */ 394 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 395 udata = (void *)(uintptr_t)zone->uz_flags; 396 else { 397 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 398 return (NULL); 399 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 400 } 401 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 402 flags |= M_NOVM; 403 ubz = bucket_zone_lookup(zone->uz_count); 404 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 405 ubz++; 406 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 407 if (bucket) { 408 #ifdef INVARIANTS 409 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 410 #endif 411 bucket->ub_cnt = 0; 412 bucket->ub_entries = ubz->ubz_entries; 413 } 414 415 return (bucket); 416 } 417 418 static void 419 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 420 { 421 struct uma_bucket_zone *ubz; 422 423 KASSERT(bucket->ub_cnt == 0, 424 ("bucket_free: Freeing a non free bucket.")); 425 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 426 udata = (void *)(uintptr_t)zone->uz_flags; 427 ubz = bucket_zone_lookup(bucket->ub_entries); 428 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 429 } 430 431 static void 432 bucket_zone_drain(void) 433 { 434 struct uma_bucket_zone *ubz; 435 436 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 437 zone_drain(ubz->ubz_zone); 438 } 439 440 static void 441 zone_log_warning(uma_zone_t zone) 442 { 443 static const struct timeval warninterval = { 300, 0 }; 444 445 if (!zone_warnings || zone->uz_warning == NULL) 446 return; 447 448 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 449 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 450 } 451 452 static inline void 453 zone_maxaction(uma_zone_t zone) 454 { 455 456 if (zone->uz_maxaction.ta_func != NULL) 457 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 458 } 459 460 static void 461 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 462 { 463 uma_klink_t klink; 464 465 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 466 kegfn(klink->kl_keg); 467 } 468 469 /* 470 * Routine called by timeout which is used to fire off some time interval 471 * based calculations. (stats, hash size, etc.) 472 * 473 * Arguments: 474 * arg Unused 475 * 476 * Returns: 477 * Nothing 478 */ 479 static void 480 uma_timeout(void *unused) 481 { 482 bucket_enable(); 483 zone_foreach(zone_timeout); 484 485 /* Reschedule this event */ 486 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 487 } 488 489 /* 490 * Routine to perform timeout driven calculations. This expands the 491 * hashes and does per cpu statistics aggregation. 492 * 493 * Returns nothing. 494 */ 495 static void 496 keg_timeout(uma_keg_t keg) 497 { 498 499 KEG_LOCK(keg); 500 /* 501 * Expand the keg hash table. 502 * 503 * This is done if the number of slabs is larger than the hash size. 504 * What I'm trying to do here is completely reduce collisions. This 505 * may be a little aggressive. Should I allow for two collisions max? 506 */ 507 if (keg->uk_flags & UMA_ZONE_HASH && 508 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 509 struct uma_hash newhash; 510 struct uma_hash oldhash; 511 int ret; 512 513 /* 514 * This is so involved because allocating and freeing 515 * while the keg lock is held will lead to deadlock. 516 * I have to do everything in stages and check for 517 * races. 518 */ 519 newhash = keg->uk_hash; 520 KEG_UNLOCK(keg); 521 ret = hash_alloc(&newhash); 522 KEG_LOCK(keg); 523 if (ret) { 524 if (hash_expand(&keg->uk_hash, &newhash)) { 525 oldhash = keg->uk_hash; 526 keg->uk_hash = newhash; 527 } else 528 oldhash = newhash; 529 530 KEG_UNLOCK(keg); 531 hash_free(&oldhash); 532 return; 533 } 534 } 535 KEG_UNLOCK(keg); 536 } 537 538 static void 539 zone_timeout(uma_zone_t zone) 540 { 541 542 zone_foreach_keg(zone, &keg_timeout); 543 } 544 545 /* 546 * Allocate and zero fill the next sized hash table from the appropriate 547 * backing store. 548 * 549 * Arguments: 550 * hash A new hash structure with the old hash size in uh_hashsize 551 * 552 * Returns: 553 * 1 on success and 0 on failure. 554 */ 555 static int 556 hash_alloc(struct uma_hash *hash) 557 { 558 int oldsize; 559 int alloc; 560 561 oldsize = hash->uh_hashsize; 562 563 /* We're just going to go to a power of two greater */ 564 if (oldsize) { 565 hash->uh_hashsize = oldsize * 2; 566 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 567 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 568 M_UMAHASH, M_NOWAIT); 569 } else { 570 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 571 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 572 UMA_ANYDOMAIN, M_WAITOK); 573 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 574 } 575 if (hash->uh_slab_hash) { 576 bzero(hash->uh_slab_hash, alloc); 577 hash->uh_hashmask = hash->uh_hashsize - 1; 578 return (1); 579 } 580 581 return (0); 582 } 583 584 /* 585 * Expands the hash table for HASH zones. This is done from zone_timeout 586 * to reduce collisions. This must not be done in the regular allocation 587 * path, otherwise, we can recurse on the vm while allocating pages. 588 * 589 * Arguments: 590 * oldhash The hash you want to expand 591 * newhash The hash structure for the new table 592 * 593 * Returns: 594 * Nothing 595 * 596 * Discussion: 597 */ 598 static int 599 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 600 { 601 uma_slab_t slab; 602 int hval; 603 int i; 604 605 if (!newhash->uh_slab_hash) 606 return (0); 607 608 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 609 return (0); 610 611 /* 612 * I need to investigate hash algorithms for resizing without a 613 * full rehash. 614 */ 615 616 for (i = 0; i < oldhash->uh_hashsize; i++) 617 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 618 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 619 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 620 hval = UMA_HASH(newhash, slab->us_data); 621 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 622 slab, us_hlink); 623 } 624 625 return (1); 626 } 627 628 /* 629 * Free the hash bucket to the appropriate backing store. 630 * 631 * Arguments: 632 * slab_hash The hash bucket we're freeing 633 * hashsize The number of entries in that hash bucket 634 * 635 * Returns: 636 * Nothing 637 */ 638 static void 639 hash_free(struct uma_hash *hash) 640 { 641 if (hash->uh_slab_hash == NULL) 642 return; 643 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 644 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 645 else 646 free(hash->uh_slab_hash, M_UMAHASH); 647 } 648 649 /* 650 * Frees all outstanding items in a bucket 651 * 652 * Arguments: 653 * zone The zone to free to, must be unlocked. 654 * bucket The free/alloc bucket with items, cpu queue must be locked. 655 * 656 * Returns: 657 * Nothing 658 */ 659 660 static void 661 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 662 { 663 int i; 664 665 if (bucket == NULL) 666 return; 667 668 if (zone->uz_fini) 669 for (i = 0; i < bucket->ub_cnt; i++) 670 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 671 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 672 bucket->ub_cnt = 0; 673 } 674 675 /* 676 * Drains the per cpu caches for a zone. 677 * 678 * NOTE: This may only be called while the zone is being turn down, and not 679 * during normal operation. This is necessary in order that we do not have 680 * to migrate CPUs to drain the per-CPU caches. 681 * 682 * Arguments: 683 * zone The zone to drain, must be unlocked. 684 * 685 * Returns: 686 * Nothing 687 */ 688 static void 689 cache_drain(uma_zone_t zone) 690 { 691 uma_cache_t cache; 692 int cpu; 693 694 /* 695 * XXX: It is safe to not lock the per-CPU caches, because we're 696 * tearing down the zone anyway. I.e., there will be no further use 697 * of the caches at this point. 698 * 699 * XXX: It would good to be able to assert that the zone is being 700 * torn down to prevent improper use of cache_drain(). 701 * 702 * XXX: We lock the zone before passing into bucket_cache_drain() as 703 * it is used elsewhere. Should the tear-down path be made special 704 * there in some form? 705 */ 706 CPU_FOREACH(cpu) { 707 cache = &zone->uz_cpu[cpu]; 708 bucket_drain(zone, cache->uc_allocbucket); 709 bucket_drain(zone, cache->uc_freebucket); 710 if (cache->uc_allocbucket != NULL) 711 bucket_free(zone, cache->uc_allocbucket, NULL); 712 if (cache->uc_freebucket != NULL) 713 bucket_free(zone, cache->uc_freebucket, NULL); 714 cache->uc_allocbucket = cache->uc_freebucket = NULL; 715 } 716 ZONE_LOCK(zone); 717 bucket_cache_drain(zone); 718 ZONE_UNLOCK(zone); 719 } 720 721 static void 722 cache_shrink(uma_zone_t zone) 723 { 724 725 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 726 return; 727 728 ZONE_LOCK(zone); 729 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 730 ZONE_UNLOCK(zone); 731 } 732 733 static void 734 cache_drain_safe_cpu(uma_zone_t zone) 735 { 736 uma_cache_t cache; 737 uma_bucket_t b1, b2; 738 int domain; 739 740 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 741 return; 742 743 b1 = b2 = NULL; 744 ZONE_LOCK(zone); 745 critical_enter(); 746 if (zone->uz_flags & UMA_ZONE_NUMA) 747 domain = PCPU_GET(domain); 748 else 749 domain = 0; 750 cache = &zone->uz_cpu[curcpu]; 751 if (cache->uc_allocbucket) { 752 if (cache->uc_allocbucket->ub_cnt != 0) 753 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 754 cache->uc_allocbucket, ub_link); 755 else 756 b1 = cache->uc_allocbucket; 757 cache->uc_allocbucket = NULL; 758 } 759 if (cache->uc_freebucket) { 760 if (cache->uc_freebucket->ub_cnt != 0) 761 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 762 cache->uc_freebucket, ub_link); 763 else 764 b2 = cache->uc_freebucket; 765 cache->uc_freebucket = NULL; 766 } 767 critical_exit(); 768 ZONE_UNLOCK(zone); 769 if (b1) 770 bucket_free(zone, b1, NULL); 771 if (b2) 772 bucket_free(zone, b2, NULL); 773 } 774 775 /* 776 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 777 * This is an expensive call because it needs to bind to all CPUs 778 * one by one and enter a critical section on each of them in order 779 * to safely access their cache buckets. 780 * Zone lock must not be held on call this function. 781 */ 782 static void 783 cache_drain_safe(uma_zone_t zone) 784 { 785 int cpu; 786 787 /* 788 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 789 */ 790 if (zone) 791 cache_shrink(zone); 792 else 793 zone_foreach(cache_shrink); 794 795 CPU_FOREACH(cpu) { 796 thread_lock(curthread); 797 sched_bind(curthread, cpu); 798 thread_unlock(curthread); 799 800 if (zone) 801 cache_drain_safe_cpu(zone); 802 else 803 zone_foreach(cache_drain_safe_cpu); 804 } 805 thread_lock(curthread); 806 sched_unbind(curthread); 807 thread_unlock(curthread); 808 } 809 810 /* 811 * Drain the cached buckets from a zone. Expects a locked zone on entry. 812 */ 813 static void 814 bucket_cache_drain(uma_zone_t zone) 815 { 816 uma_zone_domain_t zdom; 817 uma_bucket_t bucket; 818 int i; 819 820 /* 821 * Drain the bucket queues and free the buckets. 822 */ 823 for (i = 0; i < vm_ndomains; i++) { 824 zdom = &zone->uz_domain[i]; 825 while ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 826 LIST_REMOVE(bucket, ub_link); 827 ZONE_UNLOCK(zone); 828 bucket_drain(zone, bucket); 829 bucket_free(zone, bucket, NULL); 830 ZONE_LOCK(zone); 831 } 832 } 833 834 /* 835 * Shrink further bucket sizes. Price of single zone lock collision 836 * is probably lower then price of global cache drain. 837 */ 838 if (zone->uz_count > zone->uz_count_min) 839 zone->uz_count--; 840 } 841 842 static void 843 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 844 { 845 uint8_t *mem; 846 int i; 847 uint8_t flags; 848 849 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 850 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 851 852 mem = slab->us_data; 853 flags = slab->us_flags; 854 i = start; 855 if (keg->uk_fini != NULL) { 856 for (i--; i > -1; i--) 857 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 858 keg->uk_size); 859 } 860 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 861 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 862 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 863 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 864 } 865 866 /* 867 * Frees pages from a keg back to the system. This is done on demand from 868 * the pageout daemon. 869 * 870 * Returns nothing. 871 */ 872 static void 873 keg_drain(uma_keg_t keg) 874 { 875 struct slabhead freeslabs = { 0 }; 876 uma_domain_t dom; 877 uma_slab_t slab, tmp; 878 int i; 879 880 /* 881 * We don't want to take pages from statically allocated kegs at this 882 * time 883 */ 884 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 885 return; 886 887 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 888 keg->uk_name, keg, keg->uk_free); 889 KEG_LOCK(keg); 890 if (keg->uk_free == 0) 891 goto finished; 892 893 for (i = 0; i < vm_ndomains; i++) { 894 dom = &keg->uk_domain[i]; 895 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 896 /* We have nowhere to free these to. */ 897 if (slab->us_flags & UMA_SLAB_BOOT) 898 continue; 899 900 LIST_REMOVE(slab, us_link); 901 keg->uk_pages -= keg->uk_ppera; 902 keg->uk_free -= keg->uk_ipers; 903 904 if (keg->uk_flags & UMA_ZONE_HASH) 905 UMA_HASH_REMOVE(&keg->uk_hash, slab, 906 slab->us_data); 907 908 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 909 } 910 } 911 912 finished: 913 KEG_UNLOCK(keg); 914 915 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 916 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 917 keg_free_slab(keg, slab, keg->uk_ipers); 918 } 919 } 920 921 static void 922 zone_drain_wait(uma_zone_t zone, int waitok) 923 { 924 925 /* 926 * Set draining to interlock with zone_dtor() so we can release our 927 * locks as we go. Only dtor() should do a WAITOK call since it 928 * is the only call that knows the structure will still be available 929 * when it wakes up. 930 */ 931 ZONE_LOCK(zone); 932 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 933 if (waitok == M_NOWAIT) 934 goto out; 935 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 936 } 937 zone->uz_flags |= UMA_ZFLAG_DRAINING; 938 bucket_cache_drain(zone); 939 ZONE_UNLOCK(zone); 940 /* 941 * The DRAINING flag protects us from being freed while 942 * we're running. Normally the uma_rwlock would protect us but we 943 * must be able to release and acquire the right lock for each keg. 944 */ 945 zone_foreach_keg(zone, &keg_drain); 946 ZONE_LOCK(zone); 947 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 948 wakeup(zone); 949 out: 950 ZONE_UNLOCK(zone); 951 } 952 953 void 954 zone_drain(uma_zone_t zone) 955 { 956 957 zone_drain_wait(zone, M_NOWAIT); 958 } 959 960 /* 961 * Allocate a new slab for a keg. This does not insert the slab onto a list. 962 * 963 * Arguments: 964 * wait Shall we wait? 965 * 966 * Returns: 967 * The slab that was allocated or NULL if there is no memory and the 968 * caller specified M_NOWAIT. 969 */ 970 static uma_slab_t 971 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int wait) 972 { 973 uma_alloc allocf; 974 uma_slab_t slab; 975 unsigned long size; 976 uint8_t *mem; 977 uint8_t flags; 978 int i; 979 980 KASSERT(domain >= 0 && domain < vm_ndomains, 981 ("keg_alloc_slab: domain %d out of range", domain)); 982 mtx_assert(&keg->uk_lock, MA_OWNED); 983 slab = NULL; 984 mem = NULL; 985 986 allocf = keg->uk_allocf; 987 KEG_UNLOCK(keg); 988 size = keg->uk_ppera * PAGE_SIZE; 989 990 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 991 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, wait); 992 if (slab == NULL) 993 goto out; 994 } 995 996 /* 997 * This reproduces the old vm_zone behavior of zero filling pages the 998 * first time they are added to a zone. 999 * 1000 * Malloced items are zeroed in uma_zalloc. 1001 */ 1002 1003 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1004 wait |= M_ZERO; 1005 else 1006 wait &= ~M_ZERO; 1007 1008 if (keg->uk_flags & UMA_ZONE_NODUMP) 1009 wait |= M_NODUMP; 1010 1011 /* zone is passed for legacy reasons. */ 1012 mem = allocf(zone, size, domain, &flags, wait); 1013 if (mem == NULL) { 1014 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1015 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1016 slab = NULL; 1017 goto out; 1018 } 1019 uma_total_inc(size); 1020 1021 /* Point the slab into the allocated memory */ 1022 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1023 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1024 1025 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1026 for (i = 0; i < keg->uk_ppera; i++) 1027 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1028 1029 slab->us_keg = keg; 1030 slab->us_data = mem; 1031 slab->us_freecount = keg->uk_ipers; 1032 slab->us_flags = flags; 1033 slab->us_domain = domain; 1034 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1035 #ifdef INVARIANTS 1036 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1037 #endif 1038 1039 if (keg->uk_init != NULL) { 1040 for (i = 0; i < keg->uk_ipers; i++) 1041 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1042 keg->uk_size, wait) != 0) 1043 break; 1044 if (i != keg->uk_ipers) { 1045 keg_free_slab(keg, slab, i); 1046 slab = NULL; 1047 goto out; 1048 } 1049 } 1050 out: 1051 KEG_LOCK(keg); 1052 1053 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1054 slab, keg->uk_name, keg); 1055 1056 if (slab != NULL) { 1057 if (keg->uk_flags & UMA_ZONE_HASH) 1058 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1059 1060 keg->uk_pages += keg->uk_ppera; 1061 keg->uk_free += keg->uk_ipers; 1062 } 1063 1064 return (slab); 1065 } 1066 1067 /* 1068 * This function is intended to be used early on in place of page_alloc() so 1069 * that we may use the boot time page cache to satisfy allocations before 1070 * the VM is ready. 1071 */ 1072 static void * 1073 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1074 int wait) 1075 { 1076 uma_keg_t keg; 1077 void *mem; 1078 int pages; 1079 1080 keg = zone_first_keg(zone); 1081 1082 /* 1083 * If we are in BOOT_BUCKETS or higher, than switch to real 1084 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1085 */ 1086 switch (booted) { 1087 case BOOT_COLD: 1088 case BOOT_STRAPPED: 1089 break; 1090 case BOOT_PAGEALLOC: 1091 if (keg->uk_ppera > 1) 1092 break; 1093 case BOOT_BUCKETS: 1094 case BOOT_RUNNING: 1095 #ifdef UMA_MD_SMALL_ALLOC 1096 keg->uk_allocf = (keg->uk_ppera > 1) ? 1097 page_alloc : uma_small_alloc; 1098 #else 1099 keg->uk_allocf = page_alloc; 1100 #endif 1101 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1102 } 1103 1104 /* 1105 * Check our small startup cache to see if it has pages remaining. 1106 */ 1107 pages = howmany(bytes, PAGE_SIZE); 1108 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1109 if (pages > boot_pages) 1110 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1111 #ifdef DIAGNOSTIC 1112 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1113 boot_pages); 1114 #endif 1115 mem = bootmem; 1116 boot_pages -= pages; 1117 bootmem += pages * PAGE_SIZE; 1118 *pflag = UMA_SLAB_BOOT; 1119 1120 return (mem); 1121 } 1122 1123 /* 1124 * Allocates a number of pages from the system 1125 * 1126 * Arguments: 1127 * bytes The number of bytes requested 1128 * wait Shall we wait? 1129 * 1130 * Returns: 1131 * A pointer to the alloced memory or possibly 1132 * NULL if M_NOWAIT is set. 1133 */ 1134 static void * 1135 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1136 int wait) 1137 { 1138 void *p; /* Returned page */ 1139 1140 *pflag = UMA_SLAB_KERNEL; 1141 p = (void *) kmem_malloc_domain(domain, bytes, wait); 1142 1143 return (p); 1144 } 1145 1146 /* 1147 * Allocates a number of pages from within an object 1148 * 1149 * Arguments: 1150 * bytes The number of bytes requested 1151 * wait Shall we wait? 1152 * 1153 * Returns: 1154 * A pointer to the alloced memory or possibly 1155 * NULL if M_NOWAIT is set. 1156 */ 1157 static void * 1158 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1159 int wait) 1160 { 1161 TAILQ_HEAD(, vm_page) alloctail; 1162 u_long npages; 1163 vm_offset_t retkva, zkva; 1164 vm_page_t p, p_next; 1165 uma_keg_t keg; 1166 1167 TAILQ_INIT(&alloctail); 1168 keg = zone_first_keg(zone); 1169 1170 npages = howmany(bytes, PAGE_SIZE); 1171 while (npages > 0) { 1172 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1173 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1174 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1175 VM_ALLOC_NOWAIT)); 1176 if (p != NULL) { 1177 /* 1178 * Since the page does not belong to an object, its 1179 * listq is unused. 1180 */ 1181 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1182 npages--; 1183 continue; 1184 } 1185 /* 1186 * Page allocation failed, free intermediate pages and 1187 * exit. 1188 */ 1189 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1190 vm_page_unwire(p, PQ_NONE); 1191 vm_page_free(p); 1192 } 1193 return (NULL); 1194 } 1195 *flags = UMA_SLAB_PRIV; 1196 zkva = keg->uk_kva + 1197 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1198 retkva = zkva; 1199 TAILQ_FOREACH(p, &alloctail, listq) { 1200 pmap_qenter(zkva, &p, 1); 1201 zkva += PAGE_SIZE; 1202 } 1203 1204 return ((void *)retkva); 1205 } 1206 1207 /* 1208 * Frees a number of pages to the system 1209 * 1210 * Arguments: 1211 * mem A pointer to the memory to be freed 1212 * size The size of the memory being freed 1213 * flags The original p->us_flags field 1214 * 1215 * Returns: 1216 * Nothing 1217 */ 1218 static void 1219 page_free(void *mem, vm_size_t size, uint8_t flags) 1220 { 1221 struct vmem *vmem; 1222 1223 if (flags & UMA_SLAB_KERNEL) 1224 vmem = kernel_arena; 1225 else 1226 panic("UMA: page_free used with invalid flags %x", flags); 1227 1228 kmem_free(vmem, (vm_offset_t)mem, size); 1229 } 1230 1231 /* 1232 * Zero fill initializer 1233 * 1234 * Arguments/Returns follow uma_init specifications 1235 */ 1236 static int 1237 zero_init(void *mem, int size, int flags) 1238 { 1239 bzero(mem, size); 1240 return (0); 1241 } 1242 1243 /* 1244 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1245 * 1246 * Arguments 1247 * keg The zone we should initialize 1248 * 1249 * Returns 1250 * Nothing 1251 */ 1252 static void 1253 keg_small_init(uma_keg_t keg) 1254 { 1255 u_int rsize; 1256 u_int memused; 1257 u_int wastedspace; 1258 u_int shsize; 1259 u_int slabsize; 1260 1261 if (keg->uk_flags & UMA_ZONE_PCPU) { 1262 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1263 1264 slabsize = sizeof(struct pcpu); 1265 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1266 PAGE_SIZE); 1267 } else { 1268 slabsize = UMA_SLAB_SIZE; 1269 keg->uk_ppera = 1; 1270 } 1271 1272 /* 1273 * Calculate the size of each allocation (rsize) according to 1274 * alignment. If the requested size is smaller than we have 1275 * allocation bits for we round it up. 1276 */ 1277 rsize = keg->uk_size; 1278 if (rsize < slabsize / SLAB_SETSIZE) 1279 rsize = slabsize / SLAB_SETSIZE; 1280 if (rsize & keg->uk_align) 1281 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1282 keg->uk_rsize = rsize; 1283 1284 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1285 keg->uk_rsize < sizeof(struct pcpu), 1286 ("%s: size %u too large", __func__, keg->uk_rsize)); 1287 1288 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1289 shsize = 0; 1290 else 1291 shsize = sizeof(struct uma_slab); 1292 1293 keg->uk_ipers = (slabsize - shsize) / rsize; 1294 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1295 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1296 1297 memused = keg->uk_ipers * rsize + shsize; 1298 wastedspace = slabsize - memused; 1299 1300 /* 1301 * We can't do OFFPAGE if we're internal or if we've been 1302 * asked to not go to the VM for buckets. If we do this we 1303 * may end up going to the VM for slabs which we do not 1304 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1305 * of UMA_ZONE_VM, which clearly forbids it. 1306 */ 1307 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1308 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1309 return; 1310 1311 /* 1312 * See if using an OFFPAGE slab will limit our waste. Only do 1313 * this if it permits more items per-slab. 1314 * 1315 * XXX We could try growing slabsize to limit max waste as well. 1316 * Historically this was not done because the VM could not 1317 * efficiently handle contiguous allocations. 1318 */ 1319 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1320 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1321 keg->uk_ipers = slabsize / keg->uk_rsize; 1322 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1323 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1324 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1325 "keg: %s(%p), calculated wastedspace = %d, " 1326 "maximum wasted space allowed = %d, " 1327 "calculated ipers = %d, " 1328 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1329 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1330 slabsize - keg->uk_ipers * keg->uk_rsize); 1331 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1332 } 1333 1334 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1335 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1336 keg->uk_flags |= UMA_ZONE_HASH; 1337 } 1338 1339 /* 1340 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1341 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1342 * more complicated. 1343 * 1344 * Arguments 1345 * keg The keg we should initialize 1346 * 1347 * Returns 1348 * Nothing 1349 */ 1350 static void 1351 keg_large_init(uma_keg_t keg) 1352 { 1353 u_int shsize; 1354 1355 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1356 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1357 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1358 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1359 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1360 1361 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1362 keg->uk_ipers = 1; 1363 keg->uk_rsize = keg->uk_size; 1364 1365 /* Check whether we have enough space to not do OFFPAGE. */ 1366 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1367 shsize = sizeof(struct uma_slab); 1368 if (shsize & UMA_ALIGN_PTR) 1369 shsize = (shsize & ~UMA_ALIGN_PTR) + 1370 (UMA_ALIGN_PTR + 1); 1371 1372 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) { 1373 /* 1374 * We can't do OFFPAGE if we're internal, in which case 1375 * we need an extra page per allocation to contain the 1376 * slab header. 1377 */ 1378 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1379 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1380 else 1381 keg->uk_ppera++; 1382 } 1383 } 1384 1385 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1386 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1387 keg->uk_flags |= UMA_ZONE_HASH; 1388 } 1389 1390 static void 1391 keg_cachespread_init(uma_keg_t keg) 1392 { 1393 int alignsize; 1394 int trailer; 1395 int pages; 1396 int rsize; 1397 1398 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1399 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1400 1401 alignsize = keg->uk_align + 1; 1402 rsize = keg->uk_size; 1403 /* 1404 * We want one item to start on every align boundary in a page. To 1405 * do this we will span pages. We will also extend the item by the 1406 * size of align if it is an even multiple of align. Otherwise, it 1407 * would fall on the same boundary every time. 1408 */ 1409 if (rsize & keg->uk_align) 1410 rsize = (rsize & ~keg->uk_align) + alignsize; 1411 if ((rsize & alignsize) == 0) 1412 rsize += alignsize; 1413 trailer = rsize - keg->uk_size; 1414 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1415 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1416 keg->uk_rsize = rsize; 1417 keg->uk_ppera = pages; 1418 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1419 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1420 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1421 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1422 keg->uk_ipers)); 1423 } 1424 1425 /* 1426 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1427 * the keg onto the global keg list. 1428 * 1429 * Arguments/Returns follow uma_ctor specifications 1430 * udata Actually uma_kctor_args 1431 */ 1432 static int 1433 keg_ctor(void *mem, int size, void *udata, int flags) 1434 { 1435 struct uma_kctor_args *arg = udata; 1436 uma_keg_t keg = mem; 1437 uma_zone_t zone; 1438 1439 bzero(keg, size); 1440 keg->uk_size = arg->size; 1441 keg->uk_init = arg->uminit; 1442 keg->uk_fini = arg->fini; 1443 keg->uk_align = arg->align; 1444 keg->uk_cursor = 0; 1445 keg->uk_free = 0; 1446 keg->uk_reserve = 0; 1447 keg->uk_pages = 0; 1448 keg->uk_flags = arg->flags; 1449 keg->uk_slabzone = NULL; 1450 1451 /* 1452 * The master zone is passed to us at keg-creation time. 1453 */ 1454 zone = arg->zone; 1455 keg->uk_name = zone->uz_name; 1456 1457 if (arg->flags & UMA_ZONE_VM) 1458 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1459 1460 if (arg->flags & UMA_ZONE_ZINIT) 1461 keg->uk_init = zero_init; 1462 1463 if (arg->flags & UMA_ZONE_MALLOC) 1464 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1465 1466 if (arg->flags & UMA_ZONE_PCPU) 1467 #ifdef SMP 1468 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1469 #else 1470 keg->uk_flags &= ~UMA_ZONE_PCPU; 1471 #endif 1472 1473 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1474 keg_cachespread_init(keg); 1475 } else { 1476 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1477 keg_large_init(keg); 1478 else 1479 keg_small_init(keg); 1480 } 1481 1482 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1483 keg->uk_slabzone = slabzone; 1484 1485 /* 1486 * If we haven't booted yet we need allocations to go through the 1487 * startup cache until the vm is ready. 1488 */ 1489 if (booted < BOOT_PAGEALLOC) 1490 keg->uk_allocf = startup_alloc; 1491 #ifdef UMA_MD_SMALL_ALLOC 1492 else if (keg->uk_ppera == 1) 1493 keg->uk_allocf = uma_small_alloc; 1494 #endif 1495 else 1496 keg->uk_allocf = page_alloc; 1497 #ifdef UMA_MD_SMALL_ALLOC 1498 if (keg->uk_ppera == 1) 1499 keg->uk_freef = uma_small_free; 1500 else 1501 #endif 1502 keg->uk_freef = page_free; 1503 1504 /* 1505 * Initialize keg's lock 1506 */ 1507 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1508 1509 /* 1510 * If we're putting the slab header in the actual page we need to 1511 * figure out where in each page it goes. This calculates a right 1512 * justified offset into the memory on an ALIGN_PTR boundary. 1513 */ 1514 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1515 u_int totsize; 1516 1517 /* Size of the slab struct and free list */ 1518 totsize = sizeof(struct uma_slab); 1519 1520 if (totsize & UMA_ALIGN_PTR) 1521 totsize = (totsize & ~UMA_ALIGN_PTR) + 1522 (UMA_ALIGN_PTR + 1); 1523 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1524 1525 /* 1526 * The only way the following is possible is if with our 1527 * UMA_ALIGN_PTR adjustments we are now bigger than 1528 * UMA_SLAB_SIZE. I haven't checked whether this is 1529 * mathematically possible for all cases, so we make 1530 * sure here anyway. 1531 */ 1532 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1533 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1534 printf("zone %s ipers %d rsize %d size %d\n", 1535 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1536 keg->uk_size); 1537 panic("UMA slab won't fit."); 1538 } 1539 } 1540 1541 if (keg->uk_flags & UMA_ZONE_HASH) 1542 hash_alloc(&keg->uk_hash); 1543 1544 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1545 keg, zone->uz_name, zone, 1546 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1547 keg->uk_free); 1548 1549 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1550 1551 rw_wlock(&uma_rwlock); 1552 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1553 rw_wunlock(&uma_rwlock); 1554 return (0); 1555 } 1556 1557 /* 1558 * Zone header ctor. This initializes all fields, locks, etc. 1559 * 1560 * Arguments/Returns follow uma_ctor specifications 1561 * udata Actually uma_zctor_args 1562 */ 1563 static int 1564 zone_ctor(void *mem, int size, void *udata, int flags) 1565 { 1566 struct uma_zctor_args *arg = udata; 1567 uma_zone_t zone = mem; 1568 uma_zone_t z; 1569 uma_keg_t keg; 1570 1571 bzero(zone, size); 1572 zone->uz_name = arg->name; 1573 zone->uz_ctor = arg->ctor; 1574 zone->uz_dtor = arg->dtor; 1575 zone->uz_slab = zone_fetch_slab; 1576 zone->uz_init = NULL; 1577 zone->uz_fini = NULL; 1578 zone->uz_allocs = 0; 1579 zone->uz_frees = 0; 1580 zone->uz_fails = 0; 1581 zone->uz_sleeps = 0; 1582 zone->uz_count = 0; 1583 zone->uz_count_min = 0; 1584 zone->uz_flags = 0; 1585 zone->uz_warning = NULL; 1586 /* The domain structures follow the cpu structures. */ 1587 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1588 timevalclear(&zone->uz_ratecheck); 1589 keg = arg->keg; 1590 1591 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1592 1593 /* 1594 * This is a pure cache zone, no kegs. 1595 */ 1596 if (arg->import) { 1597 if (arg->flags & UMA_ZONE_VM) 1598 arg->flags |= UMA_ZFLAG_CACHEONLY; 1599 zone->uz_flags = arg->flags; 1600 zone->uz_size = arg->size; 1601 zone->uz_import = arg->import; 1602 zone->uz_release = arg->release; 1603 zone->uz_arg = arg->arg; 1604 zone->uz_lockptr = &zone->uz_lock; 1605 rw_wlock(&uma_rwlock); 1606 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1607 rw_wunlock(&uma_rwlock); 1608 goto out; 1609 } 1610 1611 /* 1612 * Use the regular zone/keg/slab allocator. 1613 */ 1614 zone->uz_import = (uma_import)zone_import; 1615 zone->uz_release = (uma_release)zone_release; 1616 zone->uz_arg = zone; 1617 1618 if (arg->flags & UMA_ZONE_SECONDARY) { 1619 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1620 zone->uz_init = arg->uminit; 1621 zone->uz_fini = arg->fini; 1622 zone->uz_lockptr = &keg->uk_lock; 1623 zone->uz_flags |= UMA_ZONE_SECONDARY; 1624 rw_wlock(&uma_rwlock); 1625 ZONE_LOCK(zone); 1626 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1627 if (LIST_NEXT(z, uz_link) == NULL) { 1628 LIST_INSERT_AFTER(z, zone, uz_link); 1629 break; 1630 } 1631 } 1632 ZONE_UNLOCK(zone); 1633 rw_wunlock(&uma_rwlock); 1634 } else if (keg == NULL) { 1635 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1636 arg->align, arg->flags)) == NULL) 1637 return (ENOMEM); 1638 } else { 1639 struct uma_kctor_args karg; 1640 int error; 1641 1642 /* We should only be here from uma_startup() */ 1643 karg.size = arg->size; 1644 karg.uminit = arg->uminit; 1645 karg.fini = arg->fini; 1646 karg.align = arg->align; 1647 karg.flags = arg->flags; 1648 karg.zone = zone; 1649 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1650 flags); 1651 if (error) 1652 return (error); 1653 } 1654 1655 /* 1656 * Link in the first keg. 1657 */ 1658 zone->uz_klink.kl_keg = keg; 1659 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1660 zone->uz_lockptr = &keg->uk_lock; 1661 zone->uz_size = keg->uk_size; 1662 zone->uz_flags |= (keg->uk_flags & 1663 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1664 1665 /* 1666 * Some internal zones don't have room allocated for the per cpu 1667 * caches. If we're internal, bail out here. 1668 */ 1669 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1670 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1671 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1672 return (0); 1673 } 1674 1675 out: 1676 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1677 zone->uz_count = bucket_select(zone->uz_size); 1678 else 1679 zone->uz_count = BUCKET_MAX; 1680 zone->uz_count_min = zone->uz_count; 1681 1682 return (0); 1683 } 1684 1685 /* 1686 * Keg header dtor. This frees all data, destroys locks, frees the hash 1687 * table and removes the keg from the global list. 1688 * 1689 * Arguments/Returns follow uma_dtor specifications 1690 * udata unused 1691 */ 1692 static void 1693 keg_dtor(void *arg, int size, void *udata) 1694 { 1695 uma_keg_t keg; 1696 1697 keg = (uma_keg_t)arg; 1698 KEG_LOCK(keg); 1699 if (keg->uk_free != 0) { 1700 printf("Freed UMA keg (%s) was not empty (%d items). " 1701 " Lost %d pages of memory.\n", 1702 keg->uk_name ? keg->uk_name : "", 1703 keg->uk_free, keg->uk_pages); 1704 } 1705 KEG_UNLOCK(keg); 1706 1707 hash_free(&keg->uk_hash); 1708 1709 KEG_LOCK_FINI(keg); 1710 } 1711 1712 /* 1713 * Zone header dtor. 1714 * 1715 * Arguments/Returns follow uma_dtor specifications 1716 * udata unused 1717 */ 1718 static void 1719 zone_dtor(void *arg, int size, void *udata) 1720 { 1721 uma_klink_t klink; 1722 uma_zone_t zone; 1723 uma_keg_t keg; 1724 1725 zone = (uma_zone_t)arg; 1726 keg = zone_first_keg(zone); 1727 1728 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1729 cache_drain(zone); 1730 1731 rw_wlock(&uma_rwlock); 1732 LIST_REMOVE(zone, uz_link); 1733 rw_wunlock(&uma_rwlock); 1734 /* 1735 * XXX there are some races here where 1736 * the zone can be drained but zone lock 1737 * released and then refilled before we 1738 * remove it... we dont care for now 1739 */ 1740 zone_drain_wait(zone, M_WAITOK); 1741 /* 1742 * Unlink all of our kegs. 1743 */ 1744 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1745 klink->kl_keg = NULL; 1746 LIST_REMOVE(klink, kl_link); 1747 if (klink == &zone->uz_klink) 1748 continue; 1749 free(klink, M_TEMP); 1750 } 1751 /* 1752 * We only destroy kegs from non secondary zones. 1753 */ 1754 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1755 rw_wlock(&uma_rwlock); 1756 LIST_REMOVE(keg, uk_link); 1757 rw_wunlock(&uma_rwlock); 1758 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1759 } 1760 ZONE_LOCK_FINI(zone); 1761 } 1762 1763 /* 1764 * Traverses every zone in the system and calls a callback 1765 * 1766 * Arguments: 1767 * zfunc A pointer to a function which accepts a zone 1768 * as an argument. 1769 * 1770 * Returns: 1771 * Nothing 1772 */ 1773 static void 1774 zone_foreach(void (*zfunc)(uma_zone_t)) 1775 { 1776 uma_keg_t keg; 1777 uma_zone_t zone; 1778 1779 rw_rlock(&uma_rwlock); 1780 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1781 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1782 zfunc(zone); 1783 } 1784 rw_runlock(&uma_rwlock); 1785 } 1786 1787 /* 1788 * Count how many pages do we need to bootstrap. VM supplies 1789 * its need in early zones in the argument, we add up our zones, 1790 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 1791 * zone of zones and zone of kegs are accounted separately. 1792 */ 1793 #define UMA_BOOT_ZONES 11 1794 /* Zone of zones and zone of kegs have arbitrary alignment. */ 1795 #define UMA_BOOT_ALIGN 32 1796 static int zsize, ksize; 1797 int 1798 uma_startup_count(int vm_zones) 1799 { 1800 int zones, pages; 1801 1802 ksize = sizeof(struct uma_keg) + 1803 (sizeof(struct uma_domain) * vm_ndomains); 1804 zsize = sizeof(struct uma_zone) + 1805 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 1806 (sizeof(struct uma_zone_domain) * vm_ndomains); 1807 1808 /* 1809 * Memory for the zone of kegs and its keg, 1810 * and for zone of zones. 1811 */ 1812 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 1813 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 1814 1815 #ifdef UMA_MD_SMALL_ALLOC 1816 zones = UMA_BOOT_ZONES; 1817 #else 1818 zones = UMA_BOOT_ZONES + vm_zones; 1819 vm_zones = 0; 1820 #endif 1821 1822 /* Memory for the rest of startup zones, UMA and VM, ... */ 1823 if (zsize > UMA_SLAB_SIZE) 1824 pages += (zones + vm_zones) * 1825 howmany(roundup2(zsize, UMA_BOOT_ALIGN), UMA_SLAB_SIZE); 1826 else 1827 pages += howmany(zones, 1828 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 1829 1830 /* ... and their kegs. Note that zone of zones allocates a keg! */ 1831 pages += howmany(zones + 1, 1832 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 1833 1834 /* 1835 * Most of startup zones are not going to be offpages, that's 1836 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 1837 * calculations. Some large bucket zones will be offpage, and 1838 * thus will allocate hashes. We take conservative approach 1839 * and assume that all zones may allocate hash. This may give 1840 * us some positive inaccuracy, usually an extra single page. 1841 */ 1842 pages += howmany(zones, UMA_SLAB_SPACE / 1843 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 1844 1845 return (pages); 1846 } 1847 1848 void 1849 uma_startup(void *mem, int npages) 1850 { 1851 struct uma_zctor_args args; 1852 uma_keg_t masterkeg; 1853 uintptr_t m; 1854 1855 #ifdef DIAGNOSTIC 1856 printf("Entering %s with %d boot pages configured\n", __func__, npages); 1857 #endif 1858 1859 rw_init(&uma_rwlock, "UMA lock"); 1860 1861 /* Use bootpages memory for the zone of zones and zone of kegs. */ 1862 m = (uintptr_t)mem; 1863 zones = (uma_zone_t)m; 1864 m += roundup(zsize, CACHE_LINE_SIZE); 1865 kegs = (uma_zone_t)m; 1866 m += roundup(zsize, CACHE_LINE_SIZE); 1867 masterkeg = (uma_keg_t)m; 1868 m += roundup(ksize, CACHE_LINE_SIZE); 1869 m = roundup(m, PAGE_SIZE); 1870 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 1871 mem = (void *)m; 1872 1873 /* "manually" create the initial zone */ 1874 memset(&args, 0, sizeof(args)); 1875 args.name = "UMA Kegs"; 1876 args.size = ksize; 1877 args.ctor = keg_ctor; 1878 args.dtor = keg_dtor; 1879 args.uminit = zero_init; 1880 args.fini = NULL; 1881 args.keg = masterkeg; 1882 args.align = UMA_BOOT_ALIGN - 1; 1883 args.flags = UMA_ZFLAG_INTERNAL; 1884 zone_ctor(kegs, zsize, &args, M_WAITOK); 1885 1886 bootmem = mem; 1887 boot_pages = npages; 1888 1889 args.name = "UMA Zones"; 1890 args.size = zsize; 1891 args.ctor = zone_ctor; 1892 args.dtor = zone_dtor; 1893 args.uminit = zero_init; 1894 args.fini = NULL; 1895 args.keg = NULL; 1896 args.align = UMA_BOOT_ALIGN - 1; 1897 args.flags = UMA_ZFLAG_INTERNAL; 1898 zone_ctor(zones, zsize, &args, M_WAITOK); 1899 1900 /* Now make a zone for slab headers */ 1901 slabzone = uma_zcreate("UMA Slabs", 1902 sizeof(struct uma_slab), 1903 NULL, NULL, NULL, NULL, 1904 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1905 1906 hashzone = uma_zcreate("UMA Hash", 1907 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1908 NULL, NULL, NULL, NULL, 1909 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1910 1911 bucket_init(); 1912 1913 booted = BOOT_STRAPPED; 1914 } 1915 1916 void 1917 uma_startup1(void) 1918 { 1919 1920 #ifdef DIAGNOSTIC 1921 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 1922 #endif 1923 booted = BOOT_PAGEALLOC; 1924 } 1925 1926 void 1927 uma_startup2(void) 1928 { 1929 1930 #ifdef DIAGNOSTIC 1931 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 1932 #endif 1933 booted = BOOT_BUCKETS; 1934 sx_init(&uma_drain_lock, "umadrain"); 1935 bucket_enable(); 1936 } 1937 1938 /* 1939 * Initialize our callout handle 1940 * 1941 */ 1942 static void 1943 uma_startup3(void) 1944 { 1945 1946 booted = BOOT_RUNNING; 1947 callout_init(&uma_callout, 1); 1948 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1949 } 1950 1951 static uma_keg_t 1952 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1953 int align, uint32_t flags) 1954 { 1955 struct uma_kctor_args args; 1956 1957 args.size = size; 1958 args.uminit = uminit; 1959 args.fini = fini; 1960 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1961 args.flags = flags; 1962 args.zone = zone; 1963 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 1964 } 1965 1966 /* Public functions */ 1967 /* See uma.h */ 1968 void 1969 uma_set_align(int align) 1970 { 1971 1972 if (align != UMA_ALIGN_CACHE) 1973 uma_align_cache = align; 1974 } 1975 1976 /* See uma.h */ 1977 uma_zone_t 1978 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1979 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1980 1981 { 1982 struct uma_zctor_args args; 1983 uma_zone_t res; 1984 bool locked; 1985 1986 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 1987 align, name)); 1988 1989 /* This stuff is essential for the zone ctor */ 1990 memset(&args, 0, sizeof(args)); 1991 args.name = name; 1992 args.size = size; 1993 args.ctor = ctor; 1994 args.dtor = dtor; 1995 args.uminit = uminit; 1996 args.fini = fini; 1997 #ifdef INVARIANTS 1998 /* 1999 * If a zone is being created with an empty constructor and 2000 * destructor, pass UMA constructor/destructor which checks for 2001 * memory use after free. 2002 */ 2003 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2004 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2005 args.ctor = trash_ctor; 2006 args.dtor = trash_dtor; 2007 args.uminit = trash_init; 2008 args.fini = trash_fini; 2009 } 2010 #endif 2011 args.align = align; 2012 args.flags = flags; 2013 args.keg = NULL; 2014 2015 if (booted < BOOT_BUCKETS) { 2016 locked = false; 2017 } else { 2018 sx_slock(&uma_drain_lock); 2019 locked = true; 2020 } 2021 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2022 if (locked) 2023 sx_sunlock(&uma_drain_lock); 2024 return (res); 2025 } 2026 2027 /* See uma.h */ 2028 uma_zone_t 2029 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2030 uma_init zinit, uma_fini zfini, uma_zone_t master) 2031 { 2032 struct uma_zctor_args args; 2033 uma_keg_t keg; 2034 uma_zone_t res; 2035 bool locked; 2036 2037 keg = zone_first_keg(master); 2038 memset(&args, 0, sizeof(args)); 2039 args.name = name; 2040 args.size = keg->uk_size; 2041 args.ctor = ctor; 2042 args.dtor = dtor; 2043 args.uminit = zinit; 2044 args.fini = zfini; 2045 args.align = keg->uk_align; 2046 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2047 args.keg = keg; 2048 2049 if (booted < BOOT_BUCKETS) { 2050 locked = false; 2051 } else { 2052 sx_slock(&uma_drain_lock); 2053 locked = true; 2054 } 2055 /* XXX Attaches only one keg of potentially many. */ 2056 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2057 if (locked) 2058 sx_sunlock(&uma_drain_lock); 2059 return (res); 2060 } 2061 2062 /* See uma.h */ 2063 uma_zone_t 2064 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2065 uma_init zinit, uma_fini zfini, uma_import zimport, 2066 uma_release zrelease, void *arg, int flags) 2067 { 2068 struct uma_zctor_args args; 2069 2070 memset(&args, 0, sizeof(args)); 2071 args.name = name; 2072 args.size = size; 2073 args.ctor = ctor; 2074 args.dtor = dtor; 2075 args.uminit = zinit; 2076 args.fini = zfini; 2077 args.import = zimport; 2078 args.release = zrelease; 2079 args.arg = arg; 2080 args.align = 0; 2081 args.flags = flags; 2082 2083 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2084 } 2085 2086 static void 2087 zone_lock_pair(uma_zone_t a, uma_zone_t b) 2088 { 2089 if (a < b) { 2090 ZONE_LOCK(a); 2091 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2092 } else { 2093 ZONE_LOCK(b); 2094 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2095 } 2096 } 2097 2098 static void 2099 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2100 { 2101 2102 ZONE_UNLOCK(a); 2103 ZONE_UNLOCK(b); 2104 } 2105 2106 int 2107 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2108 { 2109 uma_klink_t klink; 2110 uma_klink_t kl; 2111 int error; 2112 2113 error = 0; 2114 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2115 2116 zone_lock_pair(zone, master); 2117 /* 2118 * zone must use vtoslab() to resolve objects and must already be 2119 * a secondary. 2120 */ 2121 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2122 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2123 error = EINVAL; 2124 goto out; 2125 } 2126 /* 2127 * The new master must also use vtoslab(). 2128 */ 2129 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2130 error = EINVAL; 2131 goto out; 2132 } 2133 2134 /* 2135 * The underlying object must be the same size. rsize 2136 * may be different. 2137 */ 2138 if (master->uz_size != zone->uz_size) { 2139 error = E2BIG; 2140 goto out; 2141 } 2142 /* 2143 * Put it at the end of the list. 2144 */ 2145 klink->kl_keg = zone_first_keg(master); 2146 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2147 if (LIST_NEXT(kl, kl_link) == NULL) { 2148 LIST_INSERT_AFTER(kl, klink, kl_link); 2149 break; 2150 } 2151 } 2152 klink = NULL; 2153 zone->uz_flags |= UMA_ZFLAG_MULTI; 2154 zone->uz_slab = zone_fetch_slab_multi; 2155 2156 out: 2157 zone_unlock_pair(zone, master); 2158 if (klink != NULL) 2159 free(klink, M_TEMP); 2160 2161 return (error); 2162 } 2163 2164 2165 /* See uma.h */ 2166 void 2167 uma_zdestroy(uma_zone_t zone) 2168 { 2169 2170 sx_slock(&uma_drain_lock); 2171 zone_free_item(zones, zone, NULL, SKIP_NONE); 2172 sx_sunlock(&uma_drain_lock); 2173 } 2174 2175 void 2176 uma_zwait(uma_zone_t zone) 2177 { 2178 void *item; 2179 2180 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2181 uma_zfree(zone, item); 2182 } 2183 2184 /* See uma.h */ 2185 void * 2186 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2187 { 2188 uma_zone_domain_t zdom; 2189 uma_bucket_t bucket; 2190 uma_cache_t cache; 2191 void *item; 2192 int cpu, domain, lockfail; 2193 2194 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2195 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2196 2197 /* This is the fast path allocation */ 2198 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2199 curthread, zone->uz_name, zone, flags); 2200 2201 if (flags & M_WAITOK) { 2202 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2203 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2204 } 2205 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2206 ("uma_zalloc_arg: called with spinlock or critical section held")); 2207 2208 #ifdef DEBUG_MEMGUARD 2209 if (memguard_cmp_zone(zone)) { 2210 item = memguard_alloc(zone->uz_size, flags); 2211 if (item != NULL) { 2212 if (zone->uz_init != NULL && 2213 zone->uz_init(item, zone->uz_size, flags) != 0) 2214 return (NULL); 2215 if (zone->uz_ctor != NULL && 2216 zone->uz_ctor(item, zone->uz_size, udata, 2217 flags) != 0) { 2218 zone->uz_fini(item, zone->uz_size); 2219 return (NULL); 2220 } 2221 return (item); 2222 } 2223 /* This is unfortunate but should not be fatal. */ 2224 } 2225 #endif 2226 /* 2227 * If possible, allocate from the per-CPU cache. There are two 2228 * requirements for safe access to the per-CPU cache: (1) the thread 2229 * accessing the cache must not be preempted or yield during access, 2230 * and (2) the thread must not migrate CPUs without switching which 2231 * cache it accesses. We rely on a critical section to prevent 2232 * preemption and migration. We release the critical section in 2233 * order to acquire the zone mutex if we are unable to allocate from 2234 * the current cache; when we re-acquire the critical section, we 2235 * must detect and handle migration if it has occurred. 2236 */ 2237 critical_enter(); 2238 cpu = curcpu; 2239 cache = &zone->uz_cpu[cpu]; 2240 2241 zalloc_start: 2242 bucket = cache->uc_allocbucket; 2243 if (bucket != NULL && bucket->ub_cnt > 0) { 2244 bucket->ub_cnt--; 2245 item = bucket->ub_bucket[bucket->ub_cnt]; 2246 #ifdef INVARIANTS 2247 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2248 #endif 2249 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2250 cache->uc_allocs++; 2251 critical_exit(); 2252 if (zone->uz_ctor != NULL && 2253 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2254 atomic_add_long(&zone->uz_fails, 1); 2255 zone_free_item(zone, item, udata, SKIP_DTOR); 2256 return (NULL); 2257 } 2258 #ifdef INVARIANTS 2259 uma_dbg_alloc(zone, NULL, item); 2260 #endif 2261 if (flags & M_ZERO) 2262 uma_zero_item(item, zone); 2263 return (item); 2264 } 2265 2266 /* 2267 * We have run out of items in our alloc bucket. 2268 * See if we can switch with our free bucket. 2269 */ 2270 bucket = cache->uc_freebucket; 2271 if (bucket != NULL && bucket->ub_cnt > 0) { 2272 CTR2(KTR_UMA, 2273 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2274 zone->uz_name, zone); 2275 cache->uc_freebucket = cache->uc_allocbucket; 2276 cache->uc_allocbucket = bucket; 2277 goto zalloc_start; 2278 } 2279 2280 /* 2281 * Discard any empty allocation bucket while we hold no locks. 2282 */ 2283 bucket = cache->uc_allocbucket; 2284 cache->uc_allocbucket = NULL; 2285 critical_exit(); 2286 if (bucket != NULL) 2287 bucket_free(zone, bucket, udata); 2288 2289 if (zone->uz_flags & UMA_ZONE_NUMA) 2290 domain = PCPU_GET(domain); 2291 else 2292 domain = UMA_ANYDOMAIN; 2293 2294 /* Short-circuit for zones without buckets and low memory. */ 2295 if (zone->uz_count == 0 || bucketdisable) 2296 goto zalloc_item; 2297 2298 /* 2299 * Attempt to retrieve the item from the per-CPU cache has failed, so 2300 * we must go back to the zone. This requires the zone lock, so we 2301 * must drop the critical section, then re-acquire it when we go back 2302 * to the cache. Since the critical section is released, we may be 2303 * preempted or migrate. As such, make sure not to maintain any 2304 * thread-local state specific to the cache from prior to releasing 2305 * the critical section. 2306 */ 2307 lockfail = 0; 2308 if (ZONE_TRYLOCK(zone) == 0) { 2309 /* Record contention to size the buckets. */ 2310 ZONE_LOCK(zone); 2311 lockfail = 1; 2312 } 2313 critical_enter(); 2314 cpu = curcpu; 2315 cache = &zone->uz_cpu[cpu]; 2316 2317 /* 2318 * Since we have locked the zone we may as well send back our stats. 2319 */ 2320 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2321 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2322 cache->uc_allocs = 0; 2323 cache->uc_frees = 0; 2324 2325 /* See if we lost the race to fill the cache. */ 2326 if (cache->uc_allocbucket != NULL) { 2327 ZONE_UNLOCK(zone); 2328 goto zalloc_start; 2329 } 2330 2331 /* 2332 * Check the zone's cache of buckets. 2333 */ 2334 if (domain == UMA_ANYDOMAIN) 2335 zdom = &zone->uz_domain[0]; 2336 else 2337 zdom = &zone->uz_domain[domain]; 2338 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 2339 KASSERT(bucket->ub_cnt != 0, 2340 ("uma_zalloc_arg: Returning an empty bucket.")); 2341 2342 LIST_REMOVE(bucket, ub_link); 2343 cache->uc_allocbucket = bucket; 2344 ZONE_UNLOCK(zone); 2345 goto zalloc_start; 2346 } 2347 /* We are no longer associated with this CPU. */ 2348 critical_exit(); 2349 2350 /* 2351 * We bump the uz count when the cache size is insufficient to 2352 * handle the working set. 2353 */ 2354 if (lockfail && zone->uz_count < BUCKET_MAX) 2355 zone->uz_count++; 2356 ZONE_UNLOCK(zone); 2357 2358 /* 2359 * Now lets just fill a bucket and put it on the free list. If that 2360 * works we'll restart the allocation from the beginning and it 2361 * will use the just filled bucket. 2362 */ 2363 bucket = zone_alloc_bucket(zone, udata, domain, flags); 2364 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2365 zone->uz_name, zone, bucket); 2366 if (bucket != NULL) { 2367 ZONE_LOCK(zone); 2368 critical_enter(); 2369 cpu = curcpu; 2370 cache = &zone->uz_cpu[cpu]; 2371 /* 2372 * See if we lost the race or were migrated. Cache the 2373 * initialized bucket to make this less likely or claim 2374 * the memory directly. 2375 */ 2376 if (cache->uc_allocbucket != NULL || 2377 (zone->uz_flags & UMA_ZONE_NUMA && 2378 domain != PCPU_GET(domain))) 2379 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 2380 else 2381 cache->uc_allocbucket = bucket; 2382 ZONE_UNLOCK(zone); 2383 goto zalloc_start; 2384 } 2385 2386 /* 2387 * We may not be able to get a bucket so return an actual item. 2388 */ 2389 zalloc_item: 2390 item = zone_alloc_item(zone, udata, domain, flags); 2391 2392 return (item); 2393 } 2394 2395 void * 2396 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2397 { 2398 2399 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2400 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2401 2402 /* This is the fast path allocation */ 2403 CTR5(KTR_UMA, 2404 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2405 curthread, zone->uz_name, zone, domain, flags); 2406 2407 if (flags & M_WAITOK) { 2408 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2409 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2410 } 2411 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2412 ("uma_zalloc_domain: called with spinlock or critical section held")); 2413 2414 return (zone_alloc_item(zone, udata, domain, flags)); 2415 } 2416 2417 /* 2418 * Find a slab with some space. Prefer slabs that are partially used over those 2419 * that are totally full. This helps to reduce fragmentation. 2420 * 2421 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2422 * only 'domain'. 2423 */ 2424 static uma_slab_t 2425 keg_first_slab(uma_keg_t keg, int domain, int rr) 2426 { 2427 uma_domain_t dom; 2428 uma_slab_t slab; 2429 int start; 2430 2431 KASSERT(domain >= 0 && domain < vm_ndomains, 2432 ("keg_first_slab: domain %d out of range", domain)); 2433 2434 slab = NULL; 2435 start = domain; 2436 do { 2437 dom = &keg->uk_domain[domain]; 2438 if (!LIST_EMPTY(&dom->ud_part_slab)) 2439 return (LIST_FIRST(&dom->ud_part_slab)); 2440 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2441 slab = LIST_FIRST(&dom->ud_free_slab); 2442 LIST_REMOVE(slab, us_link); 2443 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2444 return (slab); 2445 } 2446 if (rr) 2447 domain = (domain + 1) % vm_ndomains; 2448 } while (domain != start); 2449 2450 return (NULL); 2451 } 2452 2453 static uma_slab_t 2454 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, int flags) 2455 { 2456 uma_domain_t dom; 2457 uma_slab_t slab; 2458 int allocflags, domain, reserve, rr, start; 2459 2460 mtx_assert(&keg->uk_lock, MA_OWNED); 2461 slab = NULL; 2462 reserve = 0; 2463 allocflags = flags; 2464 if ((flags & M_USE_RESERVE) == 0) 2465 reserve = keg->uk_reserve; 2466 2467 /* 2468 * Round-robin for non first-touch zones when there is more than one 2469 * domain. 2470 */ 2471 if (vm_ndomains == 1) 2472 rdomain = 0; 2473 rr = rdomain == UMA_ANYDOMAIN; 2474 if (rr) { 2475 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2476 domain = start = keg->uk_cursor; 2477 /* Only block on the second pass. */ 2478 if ((flags & (M_WAITOK | M_NOVM)) == M_WAITOK) 2479 allocflags = (allocflags & ~M_WAITOK) | M_NOWAIT; 2480 } else 2481 domain = start = rdomain; 2482 2483 again: 2484 do { 2485 if (keg->uk_free > reserve && 2486 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2487 MPASS(slab->us_keg == keg); 2488 return (slab); 2489 } 2490 2491 /* 2492 * M_NOVM means don't ask at all! 2493 */ 2494 if (flags & M_NOVM) 2495 break; 2496 2497 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2498 keg->uk_flags |= UMA_ZFLAG_FULL; 2499 /* 2500 * If this is not a multi-zone, set the FULL bit. 2501 * Otherwise slab_multi() takes care of it. 2502 */ 2503 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2504 zone->uz_flags |= UMA_ZFLAG_FULL; 2505 zone_log_warning(zone); 2506 zone_maxaction(zone); 2507 } 2508 if (flags & M_NOWAIT) 2509 return (NULL); 2510 zone->uz_sleeps++; 2511 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2512 continue; 2513 } 2514 slab = keg_alloc_slab(keg, zone, domain, allocflags); 2515 /* 2516 * If we got a slab here it's safe to mark it partially used 2517 * and return. We assume that the caller is going to remove 2518 * at least one item. 2519 */ 2520 if (slab) { 2521 MPASS(slab->us_keg == keg); 2522 dom = &keg->uk_domain[slab->us_domain]; 2523 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2524 return (slab); 2525 } 2526 if (rr) { 2527 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2528 domain = keg->uk_cursor; 2529 } 2530 } while (domain != start); 2531 2532 /* Retry domain scan with blocking. */ 2533 if (allocflags != flags) { 2534 allocflags = flags; 2535 goto again; 2536 } 2537 2538 /* 2539 * We might not have been able to get a slab but another cpu 2540 * could have while we were unlocked. Check again before we 2541 * fail. 2542 */ 2543 if (keg->uk_free > reserve && 2544 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2545 MPASS(slab->us_keg == keg); 2546 return (slab); 2547 } 2548 return (NULL); 2549 } 2550 2551 static uma_slab_t 2552 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2553 { 2554 uma_slab_t slab; 2555 2556 if (keg == NULL) { 2557 keg = zone_first_keg(zone); 2558 KEG_LOCK(keg); 2559 } 2560 2561 for (;;) { 2562 slab = keg_fetch_slab(keg, zone, domain, flags); 2563 if (slab) 2564 return (slab); 2565 if (flags & (M_NOWAIT | M_NOVM)) 2566 break; 2567 } 2568 KEG_UNLOCK(keg); 2569 return (NULL); 2570 } 2571 2572 /* 2573 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2574 * with the keg locked. On NULL no lock is held. 2575 * 2576 * The last pointer is used to seed the search. It is not required. 2577 */ 2578 static uma_slab_t 2579 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int domain, int rflags) 2580 { 2581 uma_klink_t klink; 2582 uma_slab_t slab; 2583 uma_keg_t keg; 2584 int flags; 2585 int empty; 2586 int full; 2587 2588 /* 2589 * Don't wait on the first pass. This will skip limit tests 2590 * as well. We don't want to block if we can find a provider 2591 * without blocking. 2592 */ 2593 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2594 /* 2595 * Use the last slab allocated as a hint for where to start 2596 * the search. 2597 */ 2598 if (last != NULL) { 2599 slab = keg_fetch_slab(last, zone, domain, flags); 2600 if (slab) 2601 return (slab); 2602 KEG_UNLOCK(last); 2603 } 2604 /* 2605 * Loop until we have a slab incase of transient failures 2606 * while M_WAITOK is specified. I'm not sure this is 100% 2607 * required but we've done it for so long now. 2608 */ 2609 for (;;) { 2610 empty = 0; 2611 full = 0; 2612 /* 2613 * Search the available kegs for slabs. Be careful to hold the 2614 * correct lock while calling into the keg layer. 2615 */ 2616 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2617 keg = klink->kl_keg; 2618 KEG_LOCK(keg); 2619 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2620 slab = keg_fetch_slab(keg, zone, domain, flags); 2621 if (slab) 2622 return (slab); 2623 } 2624 if (keg->uk_flags & UMA_ZFLAG_FULL) 2625 full++; 2626 else 2627 empty++; 2628 KEG_UNLOCK(keg); 2629 } 2630 if (rflags & (M_NOWAIT | M_NOVM)) 2631 break; 2632 flags = rflags; 2633 /* 2634 * All kegs are full. XXX We can't atomically check all kegs 2635 * and sleep so just sleep for a short period and retry. 2636 */ 2637 if (full && !empty) { 2638 ZONE_LOCK(zone); 2639 zone->uz_flags |= UMA_ZFLAG_FULL; 2640 zone->uz_sleeps++; 2641 zone_log_warning(zone); 2642 zone_maxaction(zone); 2643 msleep(zone, zone->uz_lockptr, PVM, 2644 "zonelimit", hz/100); 2645 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2646 ZONE_UNLOCK(zone); 2647 continue; 2648 } 2649 } 2650 return (NULL); 2651 } 2652 2653 static void * 2654 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2655 { 2656 uma_domain_t dom; 2657 void *item; 2658 uint8_t freei; 2659 2660 MPASS(keg == slab->us_keg); 2661 mtx_assert(&keg->uk_lock, MA_OWNED); 2662 2663 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2664 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2665 item = slab->us_data + (keg->uk_rsize * freei); 2666 slab->us_freecount--; 2667 keg->uk_free--; 2668 2669 /* Move this slab to the full list */ 2670 if (slab->us_freecount == 0) { 2671 LIST_REMOVE(slab, us_link); 2672 dom = &keg->uk_domain[slab->us_domain]; 2673 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2674 } 2675 2676 return (item); 2677 } 2678 2679 static int 2680 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2681 { 2682 uma_slab_t slab; 2683 uma_keg_t keg; 2684 int stripe; 2685 int i; 2686 2687 slab = NULL; 2688 keg = NULL; 2689 /* Try to keep the buckets totally full */ 2690 for (i = 0; i < max; ) { 2691 if ((slab = zone->uz_slab(zone, keg, domain, flags)) == NULL) 2692 break; 2693 keg = slab->us_keg; 2694 stripe = howmany(max, vm_ndomains); 2695 while (slab->us_freecount && i < max) { 2696 bucket[i++] = slab_alloc_item(keg, slab); 2697 if (keg->uk_free <= keg->uk_reserve) 2698 break; 2699 #ifdef NUMA 2700 /* 2701 * If the zone is striped we pick a new slab for every 2702 * N allocations. Eliminating this conditional will 2703 * instead pick a new domain for each bucket rather 2704 * than stripe within each bucket. The current option 2705 * produces more fragmentation and requires more cpu 2706 * time but yields better distribution. 2707 */ 2708 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2709 vm_ndomains > 1 && --stripe == 0) 2710 break; 2711 #endif 2712 } 2713 /* Don't block if we allocated any successfully. */ 2714 flags &= ~M_WAITOK; 2715 flags |= M_NOWAIT; 2716 } 2717 if (slab != NULL) 2718 KEG_UNLOCK(keg); 2719 2720 return i; 2721 } 2722 2723 static uma_bucket_t 2724 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 2725 { 2726 uma_bucket_t bucket; 2727 int max; 2728 2729 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2730 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2731 if (bucket == NULL) 2732 return (NULL); 2733 2734 max = MIN(bucket->ub_entries, zone->uz_count); 2735 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2736 max, domain, flags); 2737 2738 /* 2739 * Initialize the memory if necessary. 2740 */ 2741 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2742 int i; 2743 2744 for (i = 0; i < bucket->ub_cnt; i++) 2745 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2746 flags) != 0) 2747 break; 2748 /* 2749 * If we couldn't initialize the whole bucket, put the 2750 * rest back onto the freelist. 2751 */ 2752 if (i != bucket->ub_cnt) { 2753 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2754 bucket->ub_cnt - i); 2755 #ifdef INVARIANTS 2756 bzero(&bucket->ub_bucket[i], 2757 sizeof(void *) * (bucket->ub_cnt - i)); 2758 #endif 2759 bucket->ub_cnt = i; 2760 } 2761 } 2762 2763 if (bucket->ub_cnt == 0) { 2764 bucket_free(zone, bucket, udata); 2765 atomic_add_long(&zone->uz_fails, 1); 2766 return (NULL); 2767 } 2768 2769 return (bucket); 2770 } 2771 2772 /* 2773 * Allocates a single item from a zone. 2774 * 2775 * Arguments 2776 * zone The zone to alloc for. 2777 * udata The data to be passed to the constructor. 2778 * domain The domain to allocate from or UMA_ANYDOMAIN. 2779 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2780 * 2781 * Returns 2782 * NULL if there is no memory and M_NOWAIT is set 2783 * An item if successful 2784 */ 2785 2786 static void * 2787 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 2788 { 2789 void *item; 2790 2791 item = NULL; 2792 2793 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 2794 goto fail; 2795 atomic_add_long(&zone->uz_allocs, 1); 2796 2797 /* 2798 * We have to call both the zone's init (not the keg's init) 2799 * and the zone's ctor. This is because the item is going from 2800 * a keg slab directly to the user, and the user is expecting it 2801 * to be both zone-init'd as well as zone-ctor'd. 2802 */ 2803 if (zone->uz_init != NULL) { 2804 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2805 zone_free_item(zone, item, udata, SKIP_FINI); 2806 goto fail; 2807 } 2808 } 2809 if (zone->uz_ctor != NULL) { 2810 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2811 zone_free_item(zone, item, udata, SKIP_DTOR); 2812 goto fail; 2813 } 2814 } 2815 #ifdef INVARIANTS 2816 uma_dbg_alloc(zone, NULL, item); 2817 #endif 2818 if (flags & M_ZERO) 2819 uma_zero_item(item, zone); 2820 2821 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 2822 zone->uz_name, zone); 2823 2824 return (item); 2825 2826 fail: 2827 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 2828 zone->uz_name, zone); 2829 atomic_add_long(&zone->uz_fails, 1); 2830 return (NULL); 2831 } 2832 2833 /* See uma.h */ 2834 void 2835 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2836 { 2837 uma_cache_t cache; 2838 uma_bucket_t bucket; 2839 uma_zone_domain_t zdom; 2840 int cpu, domain, lockfail; 2841 2842 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2843 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2844 2845 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2846 zone->uz_name); 2847 2848 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2849 ("uma_zfree_arg: called with spinlock or critical section held")); 2850 2851 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2852 if (item == NULL) 2853 return; 2854 #ifdef DEBUG_MEMGUARD 2855 if (is_memguard_addr(item)) { 2856 if (zone->uz_dtor != NULL) 2857 zone->uz_dtor(item, zone->uz_size, udata); 2858 if (zone->uz_fini != NULL) 2859 zone->uz_fini(item, zone->uz_size); 2860 memguard_free(item); 2861 return; 2862 } 2863 #endif 2864 #ifdef INVARIANTS 2865 if (zone->uz_flags & UMA_ZONE_MALLOC) 2866 uma_dbg_free(zone, udata, item); 2867 else 2868 uma_dbg_free(zone, NULL, item); 2869 #endif 2870 if (zone->uz_dtor != NULL) 2871 zone->uz_dtor(item, zone->uz_size, udata); 2872 2873 /* 2874 * The race here is acceptable. If we miss it we'll just have to wait 2875 * a little longer for the limits to be reset. 2876 */ 2877 if (zone->uz_flags & UMA_ZFLAG_FULL) 2878 goto zfree_item; 2879 2880 /* 2881 * If possible, free to the per-CPU cache. There are two 2882 * requirements for safe access to the per-CPU cache: (1) the thread 2883 * accessing the cache must not be preempted or yield during access, 2884 * and (2) the thread must not migrate CPUs without switching which 2885 * cache it accesses. We rely on a critical section to prevent 2886 * preemption and migration. We release the critical section in 2887 * order to acquire the zone mutex if we are unable to free to the 2888 * current cache; when we re-acquire the critical section, we must 2889 * detect and handle migration if it has occurred. 2890 */ 2891 zfree_restart: 2892 critical_enter(); 2893 cpu = curcpu; 2894 cache = &zone->uz_cpu[cpu]; 2895 2896 zfree_start: 2897 /* 2898 * Try to free into the allocbucket first to give LIFO ordering 2899 * for cache-hot datastructures. Spill over into the freebucket 2900 * if necessary. Alloc will swap them if one runs dry. 2901 */ 2902 bucket = cache->uc_allocbucket; 2903 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2904 bucket = cache->uc_freebucket; 2905 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2906 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2907 ("uma_zfree: Freeing to non free bucket index.")); 2908 bucket->ub_bucket[bucket->ub_cnt] = item; 2909 bucket->ub_cnt++; 2910 cache->uc_frees++; 2911 critical_exit(); 2912 return; 2913 } 2914 2915 /* 2916 * We must go back the zone, which requires acquiring the zone lock, 2917 * which in turn means we must release and re-acquire the critical 2918 * section. Since the critical section is released, we may be 2919 * preempted or migrate. As such, make sure not to maintain any 2920 * thread-local state specific to the cache from prior to releasing 2921 * the critical section. 2922 */ 2923 critical_exit(); 2924 if (zone->uz_count == 0 || bucketdisable) 2925 goto zfree_item; 2926 2927 lockfail = 0; 2928 if (ZONE_TRYLOCK(zone) == 0) { 2929 /* Record contention to size the buckets. */ 2930 ZONE_LOCK(zone); 2931 lockfail = 1; 2932 } 2933 critical_enter(); 2934 cpu = curcpu; 2935 cache = &zone->uz_cpu[cpu]; 2936 2937 /* 2938 * Since we have locked the zone we may as well send back our stats. 2939 */ 2940 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2941 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2942 cache->uc_allocs = 0; 2943 cache->uc_frees = 0; 2944 2945 bucket = cache->uc_freebucket; 2946 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2947 ZONE_UNLOCK(zone); 2948 goto zfree_start; 2949 } 2950 cache->uc_freebucket = NULL; 2951 /* We are no longer associated with this CPU. */ 2952 critical_exit(); 2953 2954 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 2955 domain = PCPU_GET(domain); 2956 else 2957 domain = 0; 2958 zdom = &zone->uz_domain[0]; 2959 2960 /* Can we throw this on the zone full list? */ 2961 if (bucket != NULL) { 2962 CTR3(KTR_UMA, 2963 "uma_zfree: zone %s(%p) putting bucket %p on free list", 2964 zone->uz_name, zone, bucket); 2965 /* ub_cnt is pointing to the last free item */ 2966 KASSERT(bucket->ub_cnt != 0, 2967 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2968 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 2969 } 2970 2971 /* 2972 * We bump the uz count when the cache size is insufficient to 2973 * handle the working set. 2974 */ 2975 if (lockfail && zone->uz_count < BUCKET_MAX) 2976 zone->uz_count++; 2977 ZONE_UNLOCK(zone); 2978 2979 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2980 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 2981 zone->uz_name, zone, bucket); 2982 if (bucket) { 2983 critical_enter(); 2984 cpu = curcpu; 2985 cache = &zone->uz_cpu[cpu]; 2986 if (cache->uc_freebucket == NULL && 2987 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 2988 domain == PCPU_GET(domain))) { 2989 cache->uc_freebucket = bucket; 2990 goto zfree_start; 2991 } 2992 /* 2993 * We lost the race, start over. We have to drop our 2994 * critical section to free the bucket. 2995 */ 2996 critical_exit(); 2997 bucket_free(zone, bucket, udata); 2998 goto zfree_restart; 2999 } 3000 3001 /* 3002 * If nothing else caught this, we'll just do an internal free. 3003 */ 3004 zfree_item: 3005 zone_free_item(zone, item, udata, SKIP_DTOR); 3006 3007 return; 3008 } 3009 3010 void 3011 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3012 { 3013 3014 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3015 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 3016 3017 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3018 zone->uz_name); 3019 3020 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3021 ("uma_zfree_domain: called with spinlock or critical section held")); 3022 3023 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3024 if (item == NULL) 3025 return; 3026 zone_free_item(zone, item, udata, SKIP_NONE); 3027 } 3028 3029 static void 3030 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 3031 { 3032 uma_domain_t dom; 3033 uint8_t freei; 3034 3035 mtx_assert(&keg->uk_lock, MA_OWNED); 3036 MPASS(keg == slab->us_keg); 3037 3038 dom = &keg->uk_domain[slab->us_domain]; 3039 3040 /* Do we need to remove from any lists? */ 3041 if (slab->us_freecount+1 == keg->uk_ipers) { 3042 LIST_REMOVE(slab, us_link); 3043 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3044 } else if (slab->us_freecount == 0) { 3045 LIST_REMOVE(slab, us_link); 3046 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3047 } 3048 3049 /* Slab management. */ 3050 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3051 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3052 slab->us_freecount++; 3053 3054 /* Keg statistics. */ 3055 keg->uk_free++; 3056 } 3057 3058 static void 3059 zone_release(uma_zone_t zone, void **bucket, int cnt) 3060 { 3061 void *item; 3062 uma_slab_t slab; 3063 uma_keg_t keg; 3064 uint8_t *mem; 3065 int clearfull; 3066 int i; 3067 3068 clearfull = 0; 3069 keg = zone_first_keg(zone); 3070 KEG_LOCK(keg); 3071 for (i = 0; i < cnt; i++) { 3072 item = bucket[i]; 3073 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3074 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3075 if (zone->uz_flags & UMA_ZONE_HASH) { 3076 slab = hash_sfind(&keg->uk_hash, mem); 3077 } else { 3078 mem += keg->uk_pgoff; 3079 slab = (uma_slab_t)mem; 3080 } 3081 } else { 3082 slab = vtoslab((vm_offset_t)item); 3083 if (slab->us_keg != keg) { 3084 KEG_UNLOCK(keg); 3085 keg = slab->us_keg; 3086 KEG_LOCK(keg); 3087 } 3088 } 3089 slab_free_item(keg, slab, item); 3090 if (keg->uk_flags & UMA_ZFLAG_FULL) { 3091 if (keg->uk_pages < keg->uk_maxpages) { 3092 keg->uk_flags &= ~UMA_ZFLAG_FULL; 3093 clearfull = 1; 3094 } 3095 3096 /* 3097 * We can handle one more allocation. Since we're 3098 * clearing ZFLAG_FULL, wake up all procs blocked 3099 * on pages. This should be uncommon, so keeping this 3100 * simple for now (rather than adding count of blocked 3101 * threads etc). 3102 */ 3103 wakeup(keg); 3104 } 3105 } 3106 KEG_UNLOCK(keg); 3107 if (clearfull) { 3108 ZONE_LOCK(zone); 3109 zone->uz_flags &= ~UMA_ZFLAG_FULL; 3110 wakeup(zone); 3111 ZONE_UNLOCK(zone); 3112 } 3113 3114 } 3115 3116 /* 3117 * Frees a single item to any zone. 3118 * 3119 * Arguments: 3120 * zone The zone to free to 3121 * item The item we're freeing 3122 * udata User supplied data for the dtor 3123 * skip Skip dtors and finis 3124 */ 3125 static void 3126 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3127 { 3128 3129 #ifdef INVARIANTS 3130 if (skip == SKIP_NONE) { 3131 if (zone->uz_flags & UMA_ZONE_MALLOC) 3132 uma_dbg_free(zone, udata, item); 3133 else 3134 uma_dbg_free(zone, NULL, item); 3135 } 3136 #endif 3137 if (skip < SKIP_DTOR && zone->uz_dtor) 3138 zone->uz_dtor(item, zone->uz_size, udata); 3139 3140 if (skip < SKIP_FINI && zone->uz_fini) 3141 zone->uz_fini(item, zone->uz_size); 3142 3143 atomic_add_long(&zone->uz_frees, 1); 3144 zone->uz_release(zone->uz_arg, &item, 1); 3145 } 3146 3147 /* See uma.h */ 3148 int 3149 uma_zone_set_max(uma_zone_t zone, int nitems) 3150 { 3151 uma_keg_t keg; 3152 3153 keg = zone_first_keg(zone); 3154 if (keg == NULL) 3155 return (0); 3156 KEG_LOCK(keg); 3157 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 3158 if (keg->uk_maxpages * keg->uk_ipers < nitems) 3159 keg->uk_maxpages += keg->uk_ppera; 3160 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3161 KEG_UNLOCK(keg); 3162 3163 return (nitems); 3164 } 3165 3166 /* See uma.h */ 3167 int 3168 uma_zone_get_max(uma_zone_t zone) 3169 { 3170 int nitems; 3171 uma_keg_t keg; 3172 3173 keg = zone_first_keg(zone); 3174 if (keg == NULL) 3175 return (0); 3176 KEG_LOCK(keg); 3177 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3178 KEG_UNLOCK(keg); 3179 3180 return (nitems); 3181 } 3182 3183 /* See uma.h */ 3184 void 3185 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3186 { 3187 3188 ZONE_LOCK(zone); 3189 zone->uz_warning = warning; 3190 ZONE_UNLOCK(zone); 3191 } 3192 3193 /* See uma.h */ 3194 void 3195 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3196 { 3197 3198 ZONE_LOCK(zone); 3199 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3200 ZONE_UNLOCK(zone); 3201 } 3202 3203 /* See uma.h */ 3204 int 3205 uma_zone_get_cur(uma_zone_t zone) 3206 { 3207 int64_t nitems; 3208 u_int i; 3209 3210 ZONE_LOCK(zone); 3211 nitems = zone->uz_allocs - zone->uz_frees; 3212 CPU_FOREACH(i) { 3213 /* 3214 * See the comment in sysctl_vm_zone_stats() regarding the 3215 * safety of accessing the per-cpu caches. With the zone lock 3216 * held, it is safe, but can potentially result in stale data. 3217 */ 3218 nitems += zone->uz_cpu[i].uc_allocs - 3219 zone->uz_cpu[i].uc_frees; 3220 } 3221 ZONE_UNLOCK(zone); 3222 3223 return (nitems < 0 ? 0 : nitems); 3224 } 3225 3226 /* See uma.h */ 3227 void 3228 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3229 { 3230 uma_keg_t keg; 3231 3232 keg = zone_first_keg(zone); 3233 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3234 KEG_LOCK(keg); 3235 KASSERT(keg->uk_pages == 0, 3236 ("uma_zone_set_init on non-empty keg")); 3237 keg->uk_init = uminit; 3238 KEG_UNLOCK(keg); 3239 } 3240 3241 /* See uma.h */ 3242 void 3243 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3244 { 3245 uma_keg_t keg; 3246 3247 keg = zone_first_keg(zone); 3248 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3249 KEG_LOCK(keg); 3250 KASSERT(keg->uk_pages == 0, 3251 ("uma_zone_set_fini on non-empty keg")); 3252 keg->uk_fini = fini; 3253 KEG_UNLOCK(keg); 3254 } 3255 3256 /* See uma.h */ 3257 void 3258 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3259 { 3260 3261 ZONE_LOCK(zone); 3262 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3263 ("uma_zone_set_zinit on non-empty keg")); 3264 zone->uz_init = zinit; 3265 ZONE_UNLOCK(zone); 3266 } 3267 3268 /* See uma.h */ 3269 void 3270 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3271 { 3272 3273 ZONE_LOCK(zone); 3274 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3275 ("uma_zone_set_zfini on non-empty keg")); 3276 zone->uz_fini = zfini; 3277 ZONE_UNLOCK(zone); 3278 } 3279 3280 /* See uma.h */ 3281 /* XXX uk_freef is not actually used with the zone locked */ 3282 void 3283 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3284 { 3285 uma_keg_t keg; 3286 3287 keg = zone_first_keg(zone); 3288 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3289 KEG_LOCK(keg); 3290 keg->uk_freef = freef; 3291 KEG_UNLOCK(keg); 3292 } 3293 3294 /* See uma.h */ 3295 /* XXX uk_allocf is not actually used with the zone locked */ 3296 void 3297 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3298 { 3299 uma_keg_t keg; 3300 3301 keg = zone_first_keg(zone); 3302 KEG_LOCK(keg); 3303 keg->uk_allocf = allocf; 3304 KEG_UNLOCK(keg); 3305 } 3306 3307 /* See uma.h */ 3308 void 3309 uma_zone_reserve(uma_zone_t zone, int items) 3310 { 3311 uma_keg_t keg; 3312 3313 keg = zone_first_keg(zone); 3314 if (keg == NULL) 3315 return; 3316 KEG_LOCK(keg); 3317 keg->uk_reserve = items; 3318 KEG_UNLOCK(keg); 3319 3320 return; 3321 } 3322 3323 /* See uma.h */ 3324 int 3325 uma_zone_reserve_kva(uma_zone_t zone, int count) 3326 { 3327 uma_keg_t keg; 3328 vm_offset_t kva; 3329 u_int pages; 3330 3331 keg = zone_first_keg(zone); 3332 if (keg == NULL) 3333 return (0); 3334 pages = count / keg->uk_ipers; 3335 3336 if (pages * keg->uk_ipers < count) 3337 pages++; 3338 pages *= keg->uk_ppera; 3339 3340 #ifdef UMA_MD_SMALL_ALLOC 3341 if (keg->uk_ppera > 1) { 3342 #else 3343 if (1) { 3344 #endif 3345 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3346 if (kva == 0) 3347 return (0); 3348 } else 3349 kva = 0; 3350 KEG_LOCK(keg); 3351 keg->uk_kva = kva; 3352 keg->uk_offset = 0; 3353 keg->uk_maxpages = pages; 3354 #ifdef UMA_MD_SMALL_ALLOC 3355 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3356 #else 3357 keg->uk_allocf = noobj_alloc; 3358 #endif 3359 keg->uk_flags |= UMA_ZONE_NOFREE; 3360 KEG_UNLOCK(keg); 3361 3362 return (1); 3363 } 3364 3365 /* See uma.h */ 3366 void 3367 uma_prealloc(uma_zone_t zone, int items) 3368 { 3369 uma_domain_t dom; 3370 uma_slab_t slab; 3371 uma_keg_t keg; 3372 int domain, slabs; 3373 3374 keg = zone_first_keg(zone); 3375 if (keg == NULL) 3376 return; 3377 KEG_LOCK(keg); 3378 slabs = items / keg->uk_ipers; 3379 domain = 0; 3380 if (slabs * keg->uk_ipers < items) 3381 slabs++; 3382 while (slabs > 0) { 3383 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK); 3384 if (slab == NULL) 3385 break; 3386 MPASS(slab->us_keg == keg); 3387 dom = &keg->uk_domain[slab->us_domain]; 3388 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3389 slabs--; 3390 domain = (domain + 1) % vm_ndomains; 3391 } 3392 KEG_UNLOCK(keg); 3393 } 3394 3395 /* See uma.h */ 3396 static void 3397 uma_reclaim_locked(bool kmem_danger) 3398 { 3399 3400 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3401 sx_assert(&uma_drain_lock, SA_XLOCKED); 3402 bucket_enable(); 3403 zone_foreach(zone_drain); 3404 if (vm_page_count_min() || kmem_danger) { 3405 cache_drain_safe(NULL); 3406 zone_foreach(zone_drain); 3407 } 3408 /* 3409 * Some slabs may have been freed but this zone will be visited early 3410 * we visit again so that we can free pages that are empty once other 3411 * zones are drained. We have to do the same for buckets. 3412 */ 3413 zone_drain(slabzone); 3414 bucket_zone_drain(); 3415 } 3416 3417 void 3418 uma_reclaim(void) 3419 { 3420 3421 sx_xlock(&uma_drain_lock); 3422 uma_reclaim_locked(false); 3423 sx_xunlock(&uma_drain_lock); 3424 } 3425 3426 static volatile int uma_reclaim_needed; 3427 3428 void 3429 uma_reclaim_wakeup(void) 3430 { 3431 3432 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3433 wakeup(uma_reclaim); 3434 } 3435 3436 void 3437 uma_reclaim_worker(void *arg __unused) 3438 { 3439 3440 for (;;) { 3441 sx_xlock(&uma_drain_lock); 3442 while (atomic_load_int(&uma_reclaim_needed) == 0) 3443 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3444 hz); 3445 sx_xunlock(&uma_drain_lock); 3446 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3447 sx_xlock(&uma_drain_lock); 3448 uma_reclaim_locked(true); 3449 atomic_store_int(&uma_reclaim_needed, 0); 3450 sx_xunlock(&uma_drain_lock); 3451 /* Don't fire more than once per-second. */ 3452 pause("umarclslp", hz); 3453 } 3454 } 3455 3456 /* See uma.h */ 3457 int 3458 uma_zone_exhausted(uma_zone_t zone) 3459 { 3460 int full; 3461 3462 ZONE_LOCK(zone); 3463 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3464 ZONE_UNLOCK(zone); 3465 return (full); 3466 } 3467 3468 int 3469 uma_zone_exhausted_nolock(uma_zone_t zone) 3470 { 3471 return (zone->uz_flags & UMA_ZFLAG_FULL); 3472 } 3473 3474 void * 3475 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3476 { 3477 vm_offset_t addr; 3478 uma_slab_t slab; 3479 3480 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3481 if (slab == NULL) 3482 return (NULL); 3483 if (domain == UMA_ANYDOMAIN) 3484 addr = kmem_malloc(kernel_arena, size, wait); 3485 else 3486 addr = kmem_malloc_domain(domain, size, wait); 3487 if (addr != 0) { 3488 vsetslab(addr, slab); 3489 slab->us_data = (void *)addr; 3490 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3491 slab->us_size = size; 3492 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3493 pmap_kextract(addr))); 3494 uma_total_inc(size); 3495 } else { 3496 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3497 } 3498 3499 return ((void *)addr); 3500 } 3501 3502 void * 3503 uma_large_malloc(vm_size_t size, int wait) 3504 { 3505 3506 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3507 } 3508 3509 void 3510 uma_large_free(uma_slab_t slab) 3511 { 3512 3513 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3514 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3515 kmem_free(kernel_arena, (vm_offset_t)slab->us_data, slab->us_size); 3516 uma_total_dec(slab->us_size); 3517 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3518 } 3519 3520 static void 3521 uma_zero_item(void *item, uma_zone_t zone) 3522 { 3523 int i; 3524 3525 if (zone->uz_flags & UMA_ZONE_PCPU) { 3526 CPU_FOREACH(i) 3527 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3528 } else 3529 bzero(item, zone->uz_size); 3530 } 3531 3532 unsigned long 3533 uma_limit(void) 3534 { 3535 3536 return (uma_kmem_limit); 3537 } 3538 3539 void 3540 uma_set_limit(unsigned long limit) 3541 { 3542 3543 uma_kmem_limit = limit; 3544 } 3545 3546 unsigned long 3547 uma_size(void) 3548 { 3549 3550 return (uma_kmem_total); 3551 } 3552 3553 long 3554 uma_avail(void) 3555 { 3556 3557 return (uma_kmem_limit - uma_kmem_total); 3558 } 3559 3560 void 3561 uma_print_stats(void) 3562 { 3563 zone_foreach(uma_print_zone); 3564 } 3565 3566 static void 3567 slab_print(uma_slab_t slab) 3568 { 3569 printf("slab: keg %p, data %p, freecount %d\n", 3570 slab->us_keg, slab->us_data, slab->us_freecount); 3571 } 3572 3573 static void 3574 cache_print(uma_cache_t cache) 3575 { 3576 printf("alloc: %p(%d), free: %p(%d)\n", 3577 cache->uc_allocbucket, 3578 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3579 cache->uc_freebucket, 3580 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3581 } 3582 3583 static void 3584 uma_print_keg(uma_keg_t keg) 3585 { 3586 uma_domain_t dom; 3587 uma_slab_t slab; 3588 int i; 3589 3590 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3591 "out %d free %d limit %d\n", 3592 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3593 keg->uk_ipers, keg->uk_ppera, 3594 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3595 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3596 for (i = 0; i < vm_ndomains; i++) { 3597 dom = &keg->uk_domain[i]; 3598 printf("Part slabs:\n"); 3599 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3600 slab_print(slab); 3601 printf("Free slabs:\n"); 3602 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3603 slab_print(slab); 3604 printf("Full slabs:\n"); 3605 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3606 slab_print(slab); 3607 } 3608 } 3609 3610 void 3611 uma_print_zone(uma_zone_t zone) 3612 { 3613 uma_cache_t cache; 3614 uma_klink_t kl; 3615 int i; 3616 3617 printf("zone: %s(%p) size %d flags %#x\n", 3618 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3619 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3620 uma_print_keg(kl->kl_keg); 3621 CPU_FOREACH(i) { 3622 cache = &zone->uz_cpu[i]; 3623 printf("CPU %d Cache:\n", i); 3624 cache_print(cache); 3625 } 3626 } 3627 3628 #ifdef DDB 3629 /* 3630 * Generate statistics across both the zone and its per-cpu cache's. Return 3631 * desired statistics if the pointer is non-NULL for that statistic. 3632 * 3633 * Note: does not update the zone statistics, as it can't safely clear the 3634 * per-CPU cache statistic. 3635 * 3636 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3637 * safe from off-CPU; we should modify the caches to track this information 3638 * directly so that we don't have to. 3639 */ 3640 static void 3641 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3642 uint64_t *freesp, uint64_t *sleepsp) 3643 { 3644 uma_cache_t cache; 3645 uint64_t allocs, frees, sleeps; 3646 int cachefree, cpu; 3647 3648 allocs = frees = sleeps = 0; 3649 cachefree = 0; 3650 CPU_FOREACH(cpu) { 3651 cache = &z->uz_cpu[cpu]; 3652 if (cache->uc_allocbucket != NULL) 3653 cachefree += cache->uc_allocbucket->ub_cnt; 3654 if (cache->uc_freebucket != NULL) 3655 cachefree += cache->uc_freebucket->ub_cnt; 3656 allocs += cache->uc_allocs; 3657 frees += cache->uc_frees; 3658 } 3659 allocs += z->uz_allocs; 3660 frees += z->uz_frees; 3661 sleeps += z->uz_sleeps; 3662 if (cachefreep != NULL) 3663 *cachefreep = cachefree; 3664 if (allocsp != NULL) 3665 *allocsp = allocs; 3666 if (freesp != NULL) 3667 *freesp = frees; 3668 if (sleepsp != NULL) 3669 *sleepsp = sleeps; 3670 } 3671 #endif /* DDB */ 3672 3673 static int 3674 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3675 { 3676 uma_keg_t kz; 3677 uma_zone_t z; 3678 int count; 3679 3680 count = 0; 3681 rw_rlock(&uma_rwlock); 3682 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3683 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3684 count++; 3685 } 3686 rw_runlock(&uma_rwlock); 3687 return (sysctl_handle_int(oidp, &count, 0, req)); 3688 } 3689 3690 static int 3691 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3692 { 3693 struct uma_stream_header ush; 3694 struct uma_type_header uth; 3695 struct uma_percpu_stat *ups; 3696 uma_bucket_t bucket; 3697 uma_zone_domain_t zdom; 3698 struct sbuf sbuf; 3699 uma_cache_t cache; 3700 uma_klink_t kl; 3701 uma_keg_t kz; 3702 uma_zone_t z; 3703 uma_keg_t k; 3704 int count, error, i; 3705 3706 error = sysctl_wire_old_buffer(req, 0); 3707 if (error != 0) 3708 return (error); 3709 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3710 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3711 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 3712 3713 count = 0; 3714 rw_rlock(&uma_rwlock); 3715 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3716 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3717 count++; 3718 } 3719 3720 /* 3721 * Insert stream header. 3722 */ 3723 bzero(&ush, sizeof(ush)); 3724 ush.ush_version = UMA_STREAM_VERSION; 3725 ush.ush_maxcpus = (mp_maxid + 1); 3726 ush.ush_count = count; 3727 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3728 3729 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3730 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3731 bzero(&uth, sizeof(uth)); 3732 ZONE_LOCK(z); 3733 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3734 uth.uth_align = kz->uk_align; 3735 uth.uth_size = kz->uk_size; 3736 uth.uth_rsize = kz->uk_rsize; 3737 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3738 k = kl->kl_keg; 3739 uth.uth_maxpages += k->uk_maxpages; 3740 uth.uth_pages += k->uk_pages; 3741 uth.uth_keg_free += k->uk_free; 3742 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3743 * k->uk_ipers; 3744 } 3745 3746 /* 3747 * A zone is secondary is it is not the first entry 3748 * on the keg's zone list. 3749 */ 3750 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3751 (LIST_FIRST(&kz->uk_zones) != z)) 3752 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3753 3754 for (i = 0; i < vm_ndomains; i++) { 3755 zdom = &z->uz_domain[i]; 3756 LIST_FOREACH(bucket, &zdom->uzd_buckets, 3757 ub_link) 3758 uth.uth_zone_free += bucket->ub_cnt; 3759 } 3760 uth.uth_allocs = z->uz_allocs; 3761 uth.uth_frees = z->uz_frees; 3762 uth.uth_fails = z->uz_fails; 3763 uth.uth_sleeps = z->uz_sleeps; 3764 /* 3765 * While it is not normally safe to access the cache 3766 * bucket pointers while not on the CPU that owns the 3767 * cache, we only allow the pointers to be exchanged 3768 * without the zone lock held, not invalidated, so 3769 * accept the possible race associated with bucket 3770 * exchange during monitoring. 3771 */ 3772 for (i = 0; i < mp_maxid + 1; i++) { 3773 bzero(&ups[i], sizeof(*ups)); 3774 if (kz->uk_flags & UMA_ZFLAG_INTERNAL || 3775 CPU_ABSENT(i)) 3776 continue; 3777 cache = &z->uz_cpu[i]; 3778 if (cache->uc_allocbucket != NULL) 3779 ups[i].ups_cache_free += 3780 cache->uc_allocbucket->ub_cnt; 3781 if (cache->uc_freebucket != NULL) 3782 ups[i].ups_cache_free += 3783 cache->uc_freebucket->ub_cnt; 3784 ups[i].ups_allocs = cache->uc_allocs; 3785 ups[i].ups_frees = cache->uc_frees; 3786 } 3787 ZONE_UNLOCK(z); 3788 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3789 for (i = 0; i < mp_maxid + 1; i++) 3790 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 3791 } 3792 } 3793 rw_runlock(&uma_rwlock); 3794 error = sbuf_finish(&sbuf); 3795 sbuf_delete(&sbuf); 3796 free(ups, M_TEMP); 3797 return (error); 3798 } 3799 3800 int 3801 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3802 { 3803 uma_zone_t zone = *(uma_zone_t *)arg1; 3804 int error, max; 3805 3806 max = uma_zone_get_max(zone); 3807 error = sysctl_handle_int(oidp, &max, 0, req); 3808 if (error || !req->newptr) 3809 return (error); 3810 3811 uma_zone_set_max(zone, max); 3812 3813 return (0); 3814 } 3815 3816 int 3817 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3818 { 3819 uma_zone_t zone = *(uma_zone_t *)arg1; 3820 int cur; 3821 3822 cur = uma_zone_get_cur(zone); 3823 return (sysctl_handle_int(oidp, &cur, 0, req)); 3824 } 3825 3826 #ifdef INVARIANTS 3827 static uma_slab_t 3828 uma_dbg_getslab(uma_zone_t zone, void *item) 3829 { 3830 uma_slab_t slab; 3831 uma_keg_t keg; 3832 uint8_t *mem; 3833 3834 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3835 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3836 slab = vtoslab((vm_offset_t)mem); 3837 } else { 3838 /* 3839 * It is safe to return the slab here even though the 3840 * zone is unlocked because the item's allocation state 3841 * essentially holds a reference. 3842 */ 3843 ZONE_LOCK(zone); 3844 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3845 if (keg->uk_flags & UMA_ZONE_HASH) 3846 slab = hash_sfind(&keg->uk_hash, mem); 3847 else 3848 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3849 ZONE_UNLOCK(zone); 3850 } 3851 3852 return (slab); 3853 } 3854 3855 /* 3856 * Set up the slab's freei data such that uma_dbg_free can function. 3857 * 3858 */ 3859 static void 3860 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 3861 { 3862 uma_keg_t keg; 3863 int freei; 3864 3865 if (zone_first_keg(zone) == NULL) 3866 return; 3867 if (slab == NULL) { 3868 slab = uma_dbg_getslab(zone, item); 3869 if (slab == NULL) 3870 panic("uma: item %p did not belong to zone %s\n", 3871 item, zone->uz_name); 3872 } 3873 keg = slab->us_keg; 3874 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3875 3876 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3877 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 3878 item, zone, zone->uz_name, slab, freei); 3879 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3880 3881 return; 3882 } 3883 3884 /* 3885 * Verifies freed addresses. Checks for alignment, valid slab membership 3886 * and duplicate frees. 3887 * 3888 */ 3889 static void 3890 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 3891 { 3892 uma_keg_t keg; 3893 int freei; 3894 3895 if (zone_first_keg(zone) == NULL) 3896 return; 3897 if (slab == NULL) { 3898 slab = uma_dbg_getslab(zone, item); 3899 if (slab == NULL) 3900 panic("uma: Freed item %p did not belong to zone %s\n", 3901 item, zone->uz_name); 3902 } 3903 keg = slab->us_keg; 3904 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3905 3906 if (freei >= keg->uk_ipers) 3907 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 3908 item, zone, zone->uz_name, slab, freei); 3909 3910 if (((freei * keg->uk_rsize) + slab->us_data) != item) 3911 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 3912 item, zone, zone->uz_name, slab, freei); 3913 3914 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3915 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 3916 item, zone, zone->uz_name, slab, freei); 3917 3918 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3919 } 3920 #endif /* INVARIANTS */ 3921 3922 #ifdef DDB 3923 DB_SHOW_COMMAND(uma, db_show_uma) 3924 { 3925 uma_bucket_t bucket; 3926 uma_keg_t kz; 3927 uma_zone_t z; 3928 uma_zone_domain_t zdom; 3929 uint64_t allocs, frees, sleeps; 3930 int cachefree, i; 3931 3932 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3933 "Free", "Requests", "Sleeps", "Bucket"); 3934 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3935 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3936 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3937 allocs = z->uz_allocs; 3938 frees = z->uz_frees; 3939 sleeps = z->uz_sleeps; 3940 cachefree = 0; 3941 } else 3942 uma_zone_sumstat(z, &cachefree, &allocs, 3943 &frees, &sleeps); 3944 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3945 (LIST_FIRST(&kz->uk_zones) != z))) 3946 cachefree += kz->uk_free; 3947 for (i = 0; i < vm_ndomains; i++) { 3948 zdom = &z->uz_domain[i]; 3949 LIST_FOREACH(bucket, &zdom->uzd_buckets, 3950 ub_link) 3951 cachefree += bucket->ub_cnt; 3952 } 3953 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3954 z->uz_name, (uintmax_t)kz->uk_size, 3955 (intmax_t)(allocs - frees), cachefree, 3956 (uintmax_t)allocs, sleeps, z->uz_count); 3957 if (db_pager_quit) 3958 return; 3959 } 3960 } 3961 } 3962 3963 DB_SHOW_COMMAND(umacache, db_show_umacache) 3964 { 3965 uma_bucket_t bucket; 3966 uma_zone_t z; 3967 uma_zone_domain_t zdom; 3968 uint64_t allocs, frees; 3969 int cachefree, i; 3970 3971 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3972 "Requests", "Bucket"); 3973 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3974 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3975 for (i = 0; i < vm_ndomains; i++) { 3976 zdom = &z->uz_domain[i]; 3977 LIST_FOREACH(bucket, &zdom->uzd_buckets, ub_link) 3978 cachefree += bucket->ub_cnt; 3979 } 3980 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3981 z->uz_name, (uintmax_t)z->uz_size, 3982 (intmax_t)(allocs - frees), cachefree, 3983 (uintmax_t)allocs, z->uz_count); 3984 if (db_pager_quit) 3985 return; 3986 } 3987 } 3988 #endif /* DDB */ 3989