1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/smp.h> 79 #include <sys/taskqueue.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_domainset.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_phys.h> 89 #include <vm/vm_pagequeue.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 #include <vm/uma_int.h> 95 #include <vm/uma_dbg.h> 96 97 #include <ddb/ddb.h> 98 99 #ifdef DEBUG_MEMGUARD 100 #include <vm/memguard.h> 101 #endif 102 103 /* 104 * This is the zone and keg from which all zones are spawned. 105 */ 106 static uma_zone_t kegs; 107 static uma_zone_t zones; 108 109 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 110 static uma_zone_t slabzone; 111 112 /* 113 * The initial hash tables come out of this zone so they can be allocated 114 * prior to malloc coming up. 115 */ 116 static uma_zone_t hashzone; 117 118 /* The boot-time adjusted value for cache line alignment. */ 119 int uma_align_cache = 64 - 1; 120 121 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 122 123 /* 124 * Are we allowed to allocate buckets? 125 */ 126 static int bucketdisable = 1; 127 128 /* Linked list of all kegs in the system */ 129 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 130 131 /* Linked list of all cache-only zones in the system */ 132 static LIST_HEAD(,uma_zone) uma_cachezones = 133 LIST_HEAD_INITIALIZER(uma_cachezones); 134 135 /* This RW lock protects the keg list */ 136 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 137 138 /* 139 * Pointer and counter to pool of pages, that is preallocated at 140 * startup to bootstrap UMA. 141 */ 142 static char *bootmem; 143 static int boot_pages; 144 145 static struct sx uma_reclaim_lock; 146 147 /* 148 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 149 * allocations don't trigger a wakeup of the reclaim thread. 150 */ 151 static unsigned long uma_kmem_limit = LONG_MAX; 152 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 153 "UMA kernel memory soft limit"); 154 static unsigned long uma_kmem_total; 155 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 156 "UMA kernel memory usage"); 157 158 /* Is the VM done starting up? */ 159 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 160 BOOT_RUNNING } booted = BOOT_COLD; 161 162 /* 163 * This is the handle used to schedule events that need to happen 164 * outside of the allocation fast path. 165 */ 166 static struct callout uma_callout; 167 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 168 169 /* 170 * This structure is passed as the zone ctor arg so that I don't have to create 171 * a special allocation function just for zones. 172 */ 173 struct uma_zctor_args { 174 const char *name; 175 size_t size; 176 uma_ctor ctor; 177 uma_dtor dtor; 178 uma_init uminit; 179 uma_fini fini; 180 uma_import import; 181 uma_release release; 182 void *arg; 183 uma_keg_t keg; 184 int align; 185 uint32_t flags; 186 }; 187 188 struct uma_kctor_args { 189 uma_zone_t zone; 190 size_t size; 191 uma_init uminit; 192 uma_fini fini; 193 int align; 194 uint32_t flags; 195 }; 196 197 struct uma_bucket_zone { 198 uma_zone_t ubz_zone; 199 char *ubz_name; 200 int ubz_entries; /* Number of items it can hold. */ 201 int ubz_maxsize; /* Maximum allocation size per-item. */ 202 }; 203 204 /* 205 * Compute the actual number of bucket entries to pack them in power 206 * of two sizes for more efficient space utilization. 207 */ 208 #define BUCKET_SIZE(n) \ 209 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 210 211 #define BUCKET_MAX BUCKET_SIZE(256) 212 #define BUCKET_MIN BUCKET_SIZE(4) 213 214 struct uma_bucket_zone bucket_zones[] = { 215 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 216 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 217 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 218 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 219 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 220 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 221 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 222 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 223 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 224 { NULL, NULL, 0} 225 }; 226 227 /* 228 * Flags and enumerations to be passed to internal functions. 229 */ 230 enum zfreeskip { 231 SKIP_NONE = 0, 232 SKIP_CNT = 0x00000001, 233 SKIP_DTOR = 0x00010000, 234 SKIP_FINI = 0x00020000, 235 }; 236 237 /* Prototypes.. */ 238 239 int uma_startup_count(int); 240 void uma_startup(void *, int); 241 void uma_startup1(void); 242 void uma_startup2(void); 243 244 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 245 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 246 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 247 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 248 static void page_free(void *, vm_size_t, uint8_t); 249 static void pcpu_page_free(void *, vm_size_t, uint8_t); 250 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 251 static void cache_drain(uma_zone_t); 252 static void bucket_drain(uma_zone_t, uma_bucket_t); 253 static void bucket_cache_reclaim(uma_zone_t zone, bool); 254 static int keg_ctor(void *, int, void *, int); 255 static void keg_dtor(void *, int, void *); 256 static int zone_ctor(void *, int, void *, int); 257 static void zone_dtor(void *, int, void *); 258 static int zero_init(void *, int, int); 259 static void keg_small_init(uma_keg_t keg); 260 static void keg_large_init(uma_keg_t keg); 261 static void zone_foreach(void (*zfunc)(uma_zone_t)); 262 static void zone_timeout(uma_zone_t zone); 263 static int hash_alloc(struct uma_hash *, u_int); 264 static int hash_expand(struct uma_hash *, struct uma_hash *); 265 static void hash_free(struct uma_hash *hash); 266 static void uma_timeout(void *); 267 static void uma_startup3(void); 268 static void *zone_alloc_item(uma_zone_t, void *, int, int); 269 static void *zone_alloc_item_locked(uma_zone_t, void *, int, int); 270 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 271 static void bucket_enable(void); 272 static void bucket_init(void); 273 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 274 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 275 static void bucket_zone_drain(void); 276 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int, int); 277 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 278 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 279 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 280 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 281 uma_fini fini, int align, uint32_t flags); 282 static int zone_import(uma_zone_t, void **, int, int, int); 283 static void zone_release(uma_zone_t, void **, int); 284 static void uma_zero_item(void *, uma_zone_t); 285 286 void uma_print_zone(uma_zone_t); 287 void uma_print_stats(void); 288 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 289 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 290 291 #ifdef INVARIANTS 292 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 293 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 294 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 295 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 296 297 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 298 "Memory allocation debugging"); 299 300 static u_int dbg_divisor = 1; 301 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 302 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 303 "Debug & thrash every this item in memory allocator"); 304 305 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 306 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 307 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 308 &uma_dbg_cnt, "memory items debugged"); 309 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 310 &uma_skip_cnt, "memory items skipped, not debugged"); 311 #endif 312 313 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 314 315 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 316 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 317 318 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 319 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 320 321 static int zone_warnings = 1; 322 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 323 "Warn when UMA zones becomes full"); 324 325 /* Adjust bytes under management by UMA. */ 326 static inline void 327 uma_total_dec(unsigned long size) 328 { 329 330 atomic_subtract_long(&uma_kmem_total, size); 331 } 332 333 static inline void 334 uma_total_inc(unsigned long size) 335 { 336 337 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 338 uma_reclaim_wakeup(); 339 } 340 341 /* 342 * This routine checks to see whether or not it's safe to enable buckets. 343 */ 344 static void 345 bucket_enable(void) 346 { 347 bucketdisable = vm_page_count_min(); 348 } 349 350 /* 351 * Initialize bucket_zones, the array of zones of buckets of various sizes. 352 * 353 * For each zone, calculate the memory required for each bucket, consisting 354 * of the header and an array of pointers. 355 */ 356 static void 357 bucket_init(void) 358 { 359 struct uma_bucket_zone *ubz; 360 int size; 361 362 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 363 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 364 size += sizeof(void *) * ubz->ubz_entries; 365 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 366 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 367 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 368 } 369 } 370 371 /* 372 * Given a desired number of entries for a bucket, return the zone from which 373 * to allocate the bucket. 374 */ 375 static struct uma_bucket_zone * 376 bucket_zone_lookup(int entries) 377 { 378 struct uma_bucket_zone *ubz; 379 380 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 381 if (ubz->ubz_entries >= entries) 382 return (ubz); 383 ubz--; 384 return (ubz); 385 } 386 387 static int 388 bucket_select(int size) 389 { 390 struct uma_bucket_zone *ubz; 391 392 ubz = &bucket_zones[0]; 393 if (size > ubz->ubz_maxsize) 394 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 395 396 for (; ubz->ubz_entries != 0; ubz++) 397 if (ubz->ubz_maxsize < size) 398 break; 399 ubz--; 400 return (ubz->ubz_entries); 401 } 402 403 static uma_bucket_t 404 bucket_alloc(uma_zone_t zone, void *udata, int flags) 405 { 406 struct uma_bucket_zone *ubz; 407 uma_bucket_t bucket; 408 409 /* 410 * This is to stop us from allocating per cpu buckets while we're 411 * running out of vm.boot_pages. Otherwise, we would exhaust the 412 * boot pages. This also prevents us from allocating buckets in 413 * low memory situations. 414 */ 415 if (bucketdisable) 416 return (NULL); 417 /* 418 * To limit bucket recursion we store the original zone flags 419 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 420 * NOVM flag to persist even through deep recursions. We also 421 * store ZFLAG_BUCKET once we have recursed attempting to allocate 422 * a bucket for a bucket zone so we do not allow infinite bucket 423 * recursion. This cookie will even persist to frees of unused 424 * buckets via the allocation path or bucket allocations in the 425 * free path. 426 */ 427 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 428 udata = (void *)(uintptr_t)zone->uz_flags; 429 else { 430 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 431 return (NULL); 432 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 433 } 434 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 435 flags |= M_NOVM; 436 ubz = bucket_zone_lookup(zone->uz_count); 437 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 438 ubz++; 439 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 440 if (bucket) { 441 #ifdef INVARIANTS 442 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 443 #endif 444 bucket->ub_cnt = 0; 445 bucket->ub_entries = ubz->ubz_entries; 446 } 447 448 return (bucket); 449 } 450 451 static void 452 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 453 { 454 struct uma_bucket_zone *ubz; 455 456 KASSERT(bucket->ub_cnt == 0, 457 ("bucket_free: Freeing a non free bucket.")); 458 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 459 udata = (void *)(uintptr_t)zone->uz_flags; 460 ubz = bucket_zone_lookup(bucket->ub_entries); 461 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 462 } 463 464 static void 465 bucket_zone_drain(void) 466 { 467 struct uma_bucket_zone *ubz; 468 469 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 470 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 471 } 472 473 /* 474 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 475 * zone's caches. 476 */ 477 static uma_bucket_t 478 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom) 479 { 480 uma_bucket_t bucket; 481 482 ZONE_LOCK_ASSERT(zone); 483 484 if ((bucket = TAILQ_FIRST(&zdom->uzd_buckets)) != NULL) { 485 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 486 TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); 487 zdom->uzd_nitems -= bucket->ub_cnt; 488 if (zdom->uzd_imin > zdom->uzd_nitems) 489 zdom->uzd_imin = zdom->uzd_nitems; 490 zone->uz_bkt_count -= bucket->ub_cnt; 491 } 492 return (bucket); 493 } 494 495 /* 496 * Insert a full bucket into the specified cache. The "ws" parameter indicates 497 * whether the bucket's contents should be counted as part of the zone's working 498 * set. 499 */ 500 static void 501 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 502 const bool ws) 503 { 504 505 ZONE_LOCK_ASSERT(zone); 506 KASSERT(!ws || zone->uz_bkt_count < zone->uz_bkt_max, 507 ("%s: zone %p overflow", __func__, zone)); 508 509 if (ws) 510 TAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 511 else 512 TAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 513 zdom->uzd_nitems += bucket->ub_cnt; 514 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 515 zdom->uzd_imax = zdom->uzd_nitems; 516 zone->uz_bkt_count += bucket->ub_cnt; 517 } 518 519 static void 520 zone_log_warning(uma_zone_t zone) 521 { 522 static const struct timeval warninterval = { 300, 0 }; 523 524 if (!zone_warnings || zone->uz_warning == NULL) 525 return; 526 527 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 528 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 529 } 530 531 static inline void 532 zone_maxaction(uma_zone_t zone) 533 { 534 535 if (zone->uz_maxaction.ta_func != NULL) 536 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 537 } 538 539 /* 540 * Routine called by timeout which is used to fire off some time interval 541 * based calculations. (stats, hash size, etc.) 542 * 543 * Arguments: 544 * arg Unused 545 * 546 * Returns: 547 * Nothing 548 */ 549 static void 550 uma_timeout(void *unused) 551 { 552 bucket_enable(); 553 zone_foreach(zone_timeout); 554 555 /* Reschedule this event */ 556 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 557 } 558 559 /* 560 * Update the working set size estimate for the zone's bucket cache. 561 * The constants chosen here are somewhat arbitrary. With an update period of 562 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 563 * last 100s. 564 */ 565 static void 566 zone_domain_update_wss(uma_zone_domain_t zdom) 567 { 568 long wss; 569 570 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 571 wss = zdom->uzd_imax - zdom->uzd_imin; 572 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 573 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 574 } 575 576 /* 577 * Routine to perform timeout driven calculations. This expands the 578 * hashes and does per cpu statistics aggregation. 579 * 580 * Returns nothing. 581 */ 582 static void 583 zone_timeout(uma_zone_t zone) 584 { 585 uma_keg_t keg; 586 u_int slabs; 587 588 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 589 goto update_wss; 590 591 keg = zone->uz_keg; 592 KEG_LOCK(keg); 593 /* 594 * Expand the keg hash table. 595 * 596 * This is done if the number of slabs is larger than the hash size. 597 * What I'm trying to do here is completely reduce collisions. This 598 * may be a little aggressive. Should I allow for two collisions max? 599 */ 600 if (keg->uk_flags & UMA_ZONE_HASH && 601 (slabs = keg->uk_pages / keg->uk_ppera) > 602 keg->uk_hash.uh_hashsize) { 603 struct uma_hash newhash; 604 struct uma_hash oldhash; 605 int ret; 606 607 /* 608 * This is so involved because allocating and freeing 609 * while the keg lock is held will lead to deadlock. 610 * I have to do everything in stages and check for 611 * races. 612 */ 613 KEG_UNLOCK(keg); 614 ret = hash_alloc(&newhash, 1 << fls(slabs)); 615 KEG_LOCK(keg); 616 if (ret) { 617 if (hash_expand(&keg->uk_hash, &newhash)) { 618 oldhash = keg->uk_hash; 619 keg->uk_hash = newhash; 620 } else 621 oldhash = newhash; 622 623 KEG_UNLOCK(keg); 624 hash_free(&oldhash); 625 return; 626 } 627 } 628 KEG_UNLOCK(keg); 629 630 update_wss: 631 ZONE_LOCK(zone); 632 for (int i = 0; i < vm_ndomains; i++) 633 zone_domain_update_wss(&zone->uz_domain[i]); 634 ZONE_UNLOCK(zone); 635 } 636 637 /* 638 * Allocate and zero fill the next sized hash table from the appropriate 639 * backing store. 640 * 641 * Arguments: 642 * hash A new hash structure with the old hash size in uh_hashsize 643 * 644 * Returns: 645 * 1 on success and 0 on failure. 646 */ 647 static int 648 hash_alloc(struct uma_hash *hash, u_int size) 649 { 650 size_t alloc; 651 652 KASSERT(powerof2(size), ("hash size must be power of 2")); 653 if (size > UMA_HASH_SIZE_INIT) { 654 hash->uh_hashsize = size; 655 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 656 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 657 M_UMAHASH, M_NOWAIT); 658 } else { 659 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 660 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 661 UMA_ANYDOMAIN, M_WAITOK); 662 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 663 } 664 if (hash->uh_slab_hash) { 665 bzero(hash->uh_slab_hash, alloc); 666 hash->uh_hashmask = hash->uh_hashsize - 1; 667 return (1); 668 } 669 670 return (0); 671 } 672 673 /* 674 * Expands the hash table for HASH zones. This is done from zone_timeout 675 * to reduce collisions. This must not be done in the regular allocation 676 * path, otherwise, we can recurse on the vm while allocating pages. 677 * 678 * Arguments: 679 * oldhash The hash you want to expand 680 * newhash The hash structure for the new table 681 * 682 * Returns: 683 * Nothing 684 * 685 * Discussion: 686 */ 687 static int 688 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 689 { 690 uma_slab_t slab; 691 u_int hval; 692 u_int idx; 693 694 if (!newhash->uh_slab_hash) 695 return (0); 696 697 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 698 return (0); 699 700 /* 701 * I need to investigate hash algorithms for resizing without a 702 * full rehash. 703 */ 704 705 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 706 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 707 slab = SLIST_FIRST(&oldhash->uh_slab_hash[idx]); 708 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[idx], us_hlink); 709 hval = UMA_HASH(newhash, slab->us_data); 710 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 711 slab, us_hlink); 712 } 713 714 return (1); 715 } 716 717 /* 718 * Free the hash bucket to the appropriate backing store. 719 * 720 * Arguments: 721 * slab_hash The hash bucket we're freeing 722 * hashsize The number of entries in that hash bucket 723 * 724 * Returns: 725 * Nothing 726 */ 727 static void 728 hash_free(struct uma_hash *hash) 729 { 730 if (hash->uh_slab_hash == NULL) 731 return; 732 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 733 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 734 else 735 free(hash->uh_slab_hash, M_UMAHASH); 736 } 737 738 /* 739 * Frees all outstanding items in a bucket 740 * 741 * Arguments: 742 * zone The zone to free to, must be unlocked. 743 * bucket The free/alloc bucket with items, cpu queue must be locked. 744 * 745 * Returns: 746 * Nothing 747 */ 748 749 static void 750 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 751 { 752 int i; 753 754 if (bucket == NULL) 755 return; 756 757 if (zone->uz_fini) 758 for (i = 0; i < bucket->ub_cnt; i++) 759 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 760 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 761 if (zone->uz_max_items > 0) { 762 ZONE_LOCK(zone); 763 zone->uz_items -= bucket->ub_cnt; 764 if (zone->uz_sleepers && zone->uz_items < zone->uz_max_items) 765 wakeup_one(zone); 766 ZONE_UNLOCK(zone); 767 } 768 bucket->ub_cnt = 0; 769 } 770 771 /* 772 * Drains the per cpu caches for a zone. 773 * 774 * NOTE: This may only be called while the zone is being turn down, and not 775 * during normal operation. This is necessary in order that we do not have 776 * to migrate CPUs to drain the per-CPU caches. 777 * 778 * Arguments: 779 * zone The zone to drain, must be unlocked. 780 * 781 * Returns: 782 * Nothing 783 */ 784 static void 785 cache_drain(uma_zone_t zone) 786 { 787 uma_cache_t cache; 788 int cpu; 789 790 /* 791 * XXX: It is safe to not lock the per-CPU caches, because we're 792 * tearing down the zone anyway. I.e., there will be no further use 793 * of the caches at this point. 794 * 795 * XXX: It would good to be able to assert that the zone is being 796 * torn down to prevent improper use of cache_drain(). 797 * 798 * XXX: We lock the zone before passing into bucket_cache_reclaim() as 799 * it is used elsewhere. Should the tear-down path be made special 800 * there in some form? 801 */ 802 CPU_FOREACH(cpu) { 803 cache = &zone->uz_cpu[cpu]; 804 bucket_drain(zone, cache->uc_allocbucket); 805 if (cache->uc_allocbucket != NULL) 806 bucket_free(zone, cache->uc_allocbucket, NULL); 807 cache->uc_allocbucket = NULL; 808 bucket_drain(zone, cache->uc_freebucket); 809 if (cache->uc_freebucket != NULL) 810 bucket_free(zone, cache->uc_freebucket, NULL); 811 cache->uc_freebucket = NULL; 812 bucket_drain(zone, cache->uc_crossbucket); 813 if (cache->uc_crossbucket != NULL) 814 bucket_free(zone, cache->uc_crossbucket, NULL); 815 cache->uc_crossbucket = NULL; 816 } 817 ZONE_LOCK(zone); 818 bucket_cache_reclaim(zone, true); 819 ZONE_UNLOCK(zone); 820 } 821 822 static void 823 cache_shrink(uma_zone_t zone) 824 { 825 826 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 827 return; 828 829 ZONE_LOCK(zone); 830 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 831 ZONE_UNLOCK(zone); 832 } 833 834 static void 835 cache_drain_safe_cpu(uma_zone_t zone) 836 { 837 uma_cache_t cache; 838 uma_bucket_t b1, b2, b3; 839 int domain; 840 841 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 842 return; 843 844 b1 = b2 = b3 = NULL; 845 ZONE_LOCK(zone); 846 critical_enter(); 847 if (zone->uz_flags & UMA_ZONE_NUMA) 848 domain = PCPU_GET(domain); 849 else 850 domain = 0; 851 cache = &zone->uz_cpu[curcpu]; 852 if (cache->uc_allocbucket) { 853 if (cache->uc_allocbucket->ub_cnt != 0) 854 zone_put_bucket(zone, &zone->uz_domain[domain], 855 cache->uc_allocbucket, false); 856 else 857 b1 = cache->uc_allocbucket; 858 cache->uc_allocbucket = NULL; 859 } 860 if (cache->uc_freebucket) { 861 if (cache->uc_freebucket->ub_cnt != 0) 862 zone_put_bucket(zone, &zone->uz_domain[domain], 863 cache->uc_freebucket, false); 864 else 865 b2 = cache->uc_freebucket; 866 cache->uc_freebucket = NULL; 867 } 868 b3 = cache->uc_crossbucket; 869 cache->uc_crossbucket = NULL; 870 critical_exit(); 871 ZONE_UNLOCK(zone); 872 if (b1) 873 bucket_free(zone, b1, NULL); 874 if (b2) 875 bucket_free(zone, b2, NULL); 876 if (b3) { 877 bucket_drain(zone, b3); 878 bucket_free(zone, b3, NULL); 879 } 880 } 881 882 /* 883 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 884 * This is an expensive call because it needs to bind to all CPUs 885 * one by one and enter a critical section on each of them in order 886 * to safely access their cache buckets. 887 * Zone lock must not be held on call this function. 888 */ 889 static void 890 pcpu_cache_drain_safe(uma_zone_t zone) 891 { 892 int cpu; 893 894 /* 895 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 896 */ 897 if (zone) 898 cache_shrink(zone); 899 else 900 zone_foreach(cache_shrink); 901 902 CPU_FOREACH(cpu) { 903 thread_lock(curthread); 904 sched_bind(curthread, cpu); 905 thread_unlock(curthread); 906 907 if (zone) 908 cache_drain_safe_cpu(zone); 909 else 910 zone_foreach(cache_drain_safe_cpu); 911 } 912 thread_lock(curthread); 913 sched_unbind(curthread); 914 thread_unlock(curthread); 915 } 916 917 /* 918 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 919 * requested a drain, otherwise the per-domain caches are trimmed to either 920 * estimated working set size. 921 */ 922 static void 923 bucket_cache_reclaim(uma_zone_t zone, bool drain) 924 { 925 uma_zone_domain_t zdom; 926 uma_bucket_t bucket; 927 long target, tofree; 928 int i; 929 930 for (i = 0; i < vm_ndomains; i++) { 931 zdom = &zone->uz_domain[i]; 932 933 /* 934 * If we were asked to drain the zone, we are done only once 935 * this bucket cache is empty. Otherwise, we reclaim items in 936 * excess of the zone's estimated working set size. If the 937 * difference nitems - imin is larger than the WSS estimate, 938 * then the estimate will grow at the end of this interval and 939 * we ignore the historical average. 940 */ 941 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 942 zdom->uzd_imin); 943 while (zdom->uzd_nitems > target) { 944 bucket = TAILQ_LAST(&zdom->uzd_buckets, uma_bucketlist); 945 if (bucket == NULL) 946 break; 947 tofree = bucket->ub_cnt; 948 TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); 949 zdom->uzd_nitems -= tofree; 950 951 /* 952 * Shift the bounds of the current WSS interval to avoid 953 * perturbing the estimate. 954 */ 955 zdom->uzd_imax -= lmin(zdom->uzd_imax, tofree); 956 zdom->uzd_imin -= lmin(zdom->uzd_imin, tofree); 957 958 ZONE_UNLOCK(zone); 959 bucket_drain(zone, bucket); 960 bucket_free(zone, bucket, NULL); 961 ZONE_LOCK(zone); 962 } 963 } 964 965 /* 966 * Shrink the zone bucket size to ensure that the per-CPU caches 967 * don't grow too large. 968 */ 969 if (zone->uz_count > zone->uz_count_min) 970 zone->uz_count--; 971 } 972 973 static void 974 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 975 { 976 uint8_t *mem; 977 int i; 978 uint8_t flags; 979 980 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 981 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 982 983 mem = slab->us_data; 984 flags = slab->us_flags; 985 i = start; 986 if (keg->uk_fini != NULL) { 987 for (i--; i > -1; i--) 988 #ifdef INVARIANTS 989 /* 990 * trash_fini implies that dtor was trash_dtor. trash_fini 991 * would check that memory hasn't been modified since free, 992 * which executed trash_dtor. 993 * That's why we need to run uma_dbg_kskip() check here, 994 * albeit we don't make skip check for other init/fini 995 * invocations. 996 */ 997 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) || 998 keg->uk_fini != trash_fini) 999 #endif 1000 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 1001 keg->uk_size); 1002 } 1003 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1004 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1005 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1006 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1007 } 1008 1009 /* 1010 * Frees pages from a keg back to the system. This is done on demand from 1011 * the pageout daemon. 1012 * 1013 * Returns nothing. 1014 */ 1015 static void 1016 keg_drain(uma_keg_t keg) 1017 { 1018 struct slabhead freeslabs = { 0 }; 1019 uma_domain_t dom; 1020 uma_slab_t slab, tmp; 1021 int i; 1022 1023 /* 1024 * We don't want to take pages from statically allocated kegs at this 1025 * time 1026 */ 1027 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1028 return; 1029 1030 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 1031 keg->uk_name, keg, keg->uk_free); 1032 KEG_LOCK(keg); 1033 if (keg->uk_free == 0) 1034 goto finished; 1035 1036 for (i = 0; i < vm_ndomains; i++) { 1037 dom = &keg->uk_domain[i]; 1038 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 1039 /* We have nowhere to free these to. */ 1040 if (slab->us_flags & UMA_SLAB_BOOT) 1041 continue; 1042 1043 LIST_REMOVE(slab, us_link); 1044 keg->uk_pages -= keg->uk_ppera; 1045 keg->uk_free -= keg->uk_ipers; 1046 1047 if (keg->uk_flags & UMA_ZONE_HASH) 1048 UMA_HASH_REMOVE(&keg->uk_hash, slab, 1049 slab->us_data); 1050 1051 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 1052 } 1053 } 1054 1055 finished: 1056 KEG_UNLOCK(keg); 1057 1058 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 1059 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 1060 keg_free_slab(keg, slab, keg->uk_ipers); 1061 } 1062 } 1063 1064 static void 1065 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1066 { 1067 1068 /* 1069 * Set draining to interlock with zone_dtor() so we can release our 1070 * locks as we go. Only dtor() should do a WAITOK call since it 1071 * is the only call that knows the structure will still be available 1072 * when it wakes up. 1073 */ 1074 ZONE_LOCK(zone); 1075 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1076 if (waitok == M_NOWAIT) 1077 goto out; 1078 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 1079 } 1080 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1081 bucket_cache_reclaim(zone, drain); 1082 ZONE_UNLOCK(zone); 1083 1084 /* 1085 * The DRAINING flag protects us from being freed while 1086 * we're running. Normally the uma_rwlock would protect us but we 1087 * must be able to release and acquire the right lock for each keg. 1088 */ 1089 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1090 keg_drain(zone->uz_keg); 1091 ZONE_LOCK(zone); 1092 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1093 wakeup(zone); 1094 out: 1095 ZONE_UNLOCK(zone); 1096 } 1097 1098 static void 1099 zone_drain(uma_zone_t zone) 1100 { 1101 1102 zone_reclaim(zone, M_NOWAIT, true); 1103 } 1104 1105 static void 1106 zone_trim(uma_zone_t zone) 1107 { 1108 1109 zone_reclaim(zone, M_NOWAIT, false); 1110 } 1111 1112 /* 1113 * Allocate a new slab for a keg. This does not insert the slab onto a list. 1114 * If the allocation was successful, the keg lock will be held upon return, 1115 * otherwise the keg will be left unlocked. 1116 * 1117 * Arguments: 1118 * flags Wait flags for the item initialization routine 1119 * aflags Wait flags for the slab allocation 1120 * 1121 * Returns: 1122 * The slab that was allocated or NULL if there is no memory and the 1123 * caller specified M_NOWAIT. 1124 */ 1125 static uma_slab_t 1126 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1127 int aflags) 1128 { 1129 uma_alloc allocf; 1130 uma_slab_t slab; 1131 unsigned long size; 1132 uint8_t *mem; 1133 uint8_t sflags; 1134 int i; 1135 1136 KASSERT(domain >= 0 && domain < vm_ndomains, 1137 ("keg_alloc_slab: domain %d out of range", domain)); 1138 KEG_LOCK_ASSERT(keg); 1139 MPASS(zone->uz_lockptr == &keg->uk_lock); 1140 1141 allocf = keg->uk_allocf; 1142 KEG_UNLOCK(keg); 1143 1144 slab = NULL; 1145 mem = NULL; 1146 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1147 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, aflags); 1148 if (slab == NULL) 1149 goto out; 1150 } 1151 1152 /* 1153 * This reproduces the old vm_zone behavior of zero filling pages the 1154 * first time they are added to a zone. 1155 * 1156 * Malloced items are zeroed in uma_zalloc. 1157 */ 1158 1159 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1160 aflags |= M_ZERO; 1161 else 1162 aflags &= ~M_ZERO; 1163 1164 if (keg->uk_flags & UMA_ZONE_NODUMP) 1165 aflags |= M_NODUMP; 1166 1167 /* zone is passed for legacy reasons. */ 1168 size = keg->uk_ppera * PAGE_SIZE; 1169 mem = allocf(zone, size, domain, &sflags, aflags); 1170 if (mem == NULL) { 1171 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1172 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1173 slab = NULL; 1174 goto out; 1175 } 1176 uma_total_inc(size); 1177 1178 /* Point the slab into the allocated memory */ 1179 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1180 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1181 1182 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1183 for (i = 0; i < keg->uk_ppera; i++) 1184 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1185 1186 slab->us_keg = keg; 1187 slab->us_data = mem; 1188 slab->us_freecount = keg->uk_ipers; 1189 slab->us_flags = sflags; 1190 slab->us_domain = domain; 1191 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1192 #ifdef INVARIANTS 1193 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1194 #endif 1195 1196 if (keg->uk_init != NULL) { 1197 for (i = 0; i < keg->uk_ipers; i++) 1198 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1199 keg->uk_size, flags) != 0) 1200 break; 1201 if (i != keg->uk_ipers) { 1202 keg_free_slab(keg, slab, i); 1203 slab = NULL; 1204 goto out; 1205 } 1206 } 1207 KEG_LOCK(keg); 1208 1209 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1210 slab, keg->uk_name, keg); 1211 1212 if (keg->uk_flags & UMA_ZONE_HASH) 1213 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1214 1215 keg->uk_pages += keg->uk_ppera; 1216 keg->uk_free += keg->uk_ipers; 1217 1218 out: 1219 return (slab); 1220 } 1221 1222 /* 1223 * This function is intended to be used early on in place of page_alloc() so 1224 * that we may use the boot time page cache to satisfy allocations before 1225 * the VM is ready. 1226 */ 1227 static void * 1228 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1229 int wait) 1230 { 1231 uma_keg_t keg; 1232 void *mem; 1233 int pages; 1234 1235 keg = zone->uz_keg; 1236 /* 1237 * If we are in BOOT_BUCKETS or higher, than switch to real 1238 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1239 */ 1240 switch (booted) { 1241 case BOOT_COLD: 1242 case BOOT_STRAPPED: 1243 break; 1244 case BOOT_PAGEALLOC: 1245 if (keg->uk_ppera > 1) 1246 break; 1247 case BOOT_BUCKETS: 1248 case BOOT_RUNNING: 1249 #ifdef UMA_MD_SMALL_ALLOC 1250 keg->uk_allocf = (keg->uk_ppera > 1) ? 1251 page_alloc : uma_small_alloc; 1252 #else 1253 keg->uk_allocf = page_alloc; 1254 #endif 1255 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1256 } 1257 1258 /* 1259 * Check our small startup cache to see if it has pages remaining. 1260 */ 1261 pages = howmany(bytes, PAGE_SIZE); 1262 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1263 if (pages > boot_pages) 1264 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1265 #ifdef DIAGNOSTIC 1266 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1267 boot_pages); 1268 #endif 1269 mem = bootmem; 1270 boot_pages -= pages; 1271 bootmem += pages * PAGE_SIZE; 1272 *pflag = UMA_SLAB_BOOT; 1273 1274 return (mem); 1275 } 1276 1277 /* 1278 * Allocates a number of pages from the system 1279 * 1280 * Arguments: 1281 * bytes The number of bytes requested 1282 * wait Shall we wait? 1283 * 1284 * Returns: 1285 * A pointer to the alloced memory or possibly 1286 * NULL if M_NOWAIT is set. 1287 */ 1288 static void * 1289 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1290 int wait) 1291 { 1292 void *p; /* Returned page */ 1293 1294 *pflag = UMA_SLAB_KERNEL; 1295 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1296 1297 return (p); 1298 } 1299 1300 static void * 1301 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1302 int wait) 1303 { 1304 struct pglist alloctail; 1305 vm_offset_t addr, zkva; 1306 int cpu, flags; 1307 vm_page_t p, p_next; 1308 #ifdef NUMA 1309 struct pcpu *pc; 1310 #endif 1311 1312 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1313 1314 TAILQ_INIT(&alloctail); 1315 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1316 malloc2vm_flags(wait); 1317 *pflag = UMA_SLAB_KERNEL; 1318 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1319 if (CPU_ABSENT(cpu)) { 1320 p = vm_page_alloc(NULL, 0, flags); 1321 } else { 1322 #ifndef NUMA 1323 p = vm_page_alloc(NULL, 0, flags); 1324 #else 1325 pc = pcpu_find(cpu); 1326 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); 1327 if (__predict_false(p == NULL)) 1328 p = vm_page_alloc(NULL, 0, flags); 1329 #endif 1330 } 1331 if (__predict_false(p == NULL)) 1332 goto fail; 1333 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1334 } 1335 if ((addr = kva_alloc(bytes)) == 0) 1336 goto fail; 1337 zkva = addr; 1338 TAILQ_FOREACH(p, &alloctail, listq) { 1339 pmap_qenter(zkva, &p, 1); 1340 zkva += PAGE_SIZE; 1341 } 1342 return ((void*)addr); 1343 fail: 1344 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1345 vm_page_unwire_noq(p); 1346 vm_page_free(p); 1347 } 1348 return (NULL); 1349 } 1350 1351 /* 1352 * Allocates a number of pages from within an object 1353 * 1354 * Arguments: 1355 * bytes The number of bytes requested 1356 * wait Shall we wait? 1357 * 1358 * Returns: 1359 * A pointer to the alloced memory or possibly 1360 * NULL if M_NOWAIT is set. 1361 */ 1362 static void * 1363 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1364 int wait) 1365 { 1366 TAILQ_HEAD(, vm_page) alloctail; 1367 u_long npages; 1368 vm_offset_t retkva, zkva; 1369 vm_page_t p, p_next; 1370 uma_keg_t keg; 1371 1372 TAILQ_INIT(&alloctail); 1373 keg = zone->uz_keg; 1374 1375 npages = howmany(bytes, PAGE_SIZE); 1376 while (npages > 0) { 1377 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1378 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1379 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1380 VM_ALLOC_NOWAIT)); 1381 if (p != NULL) { 1382 /* 1383 * Since the page does not belong to an object, its 1384 * listq is unused. 1385 */ 1386 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1387 npages--; 1388 continue; 1389 } 1390 /* 1391 * Page allocation failed, free intermediate pages and 1392 * exit. 1393 */ 1394 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1395 vm_page_unwire_noq(p); 1396 vm_page_free(p); 1397 } 1398 return (NULL); 1399 } 1400 *flags = UMA_SLAB_PRIV; 1401 zkva = keg->uk_kva + 1402 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1403 retkva = zkva; 1404 TAILQ_FOREACH(p, &alloctail, listq) { 1405 pmap_qenter(zkva, &p, 1); 1406 zkva += PAGE_SIZE; 1407 } 1408 1409 return ((void *)retkva); 1410 } 1411 1412 /* 1413 * Frees a number of pages to the system 1414 * 1415 * Arguments: 1416 * mem A pointer to the memory to be freed 1417 * size The size of the memory being freed 1418 * flags The original p->us_flags field 1419 * 1420 * Returns: 1421 * Nothing 1422 */ 1423 static void 1424 page_free(void *mem, vm_size_t size, uint8_t flags) 1425 { 1426 1427 if ((flags & UMA_SLAB_KERNEL) == 0) 1428 panic("UMA: page_free used with invalid flags %x", flags); 1429 1430 kmem_free((vm_offset_t)mem, size); 1431 } 1432 1433 /* 1434 * Frees pcpu zone allocations 1435 * 1436 * Arguments: 1437 * mem A pointer to the memory to be freed 1438 * size The size of the memory being freed 1439 * flags The original p->us_flags field 1440 * 1441 * Returns: 1442 * Nothing 1443 */ 1444 static void 1445 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1446 { 1447 vm_offset_t sva, curva; 1448 vm_paddr_t paddr; 1449 vm_page_t m; 1450 1451 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1452 sva = (vm_offset_t)mem; 1453 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1454 paddr = pmap_kextract(curva); 1455 m = PHYS_TO_VM_PAGE(paddr); 1456 vm_page_unwire_noq(m); 1457 vm_page_free(m); 1458 } 1459 pmap_qremove(sva, size >> PAGE_SHIFT); 1460 kva_free(sva, size); 1461 } 1462 1463 1464 /* 1465 * Zero fill initializer 1466 * 1467 * Arguments/Returns follow uma_init specifications 1468 */ 1469 static int 1470 zero_init(void *mem, int size, int flags) 1471 { 1472 bzero(mem, size); 1473 return (0); 1474 } 1475 1476 /* 1477 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1478 * 1479 * Arguments 1480 * keg The zone we should initialize 1481 * 1482 * Returns 1483 * Nothing 1484 */ 1485 static void 1486 keg_small_init(uma_keg_t keg) 1487 { 1488 u_int rsize; 1489 u_int memused; 1490 u_int wastedspace; 1491 u_int shsize; 1492 u_int slabsize; 1493 1494 if (keg->uk_flags & UMA_ZONE_PCPU) { 1495 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1496 1497 slabsize = UMA_PCPU_ALLOC_SIZE; 1498 keg->uk_ppera = ncpus; 1499 } else { 1500 slabsize = UMA_SLAB_SIZE; 1501 keg->uk_ppera = 1; 1502 } 1503 1504 /* 1505 * Calculate the size of each allocation (rsize) according to 1506 * alignment. If the requested size is smaller than we have 1507 * allocation bits for we round it up. 1508 */ 1509 rsize = keg->uk_size; 1510 if (rsize < slabsize / SLAB_SETSIZE) 1511 rsize = slabsize / SLAB_SETSIZE; 1512 if (rsize & keg->uk_align) 1513 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1514 keg->uk_rsize = rsize; 1515 1516 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1517 keg->uk_rsize < UMA_PCPU_ALLOC_SIZE, 1518 ("%s: size %u too large", __func__, keg->uk_rsize)); 1519 1520 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1521 shsize = 0; 1522 else 1523 shsize = SIZEOF_UMA_SLAB; 1524 1525 if (rsize <= slabsize - shsize) 1526 keg->uk_ipers = (slabsize - shsize) / rsize; 1527 else { 1528 /* Handle special case when we have 1 item per slab, so 1529 * alignment requirement can be relaxed. */ 1530 KASSERT(keg->uk_size <= slabsize - shsize, 1531 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1532 keg->uk_ipers = 1; 1533 } 1534 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1535 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1536 1537 memused = keg->uk_ipers * rsize + shsize; 1538 wastedspace = slabsize - memused; 1539 1540 /* 1541 * We can't do OFFPAGE if we're internal or if we've been 1542 * asked to not go to the VM for buckets. If we do this we 1543 * may end up going to the VM for slabs which we do not 1544 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1545 * of UMA_ZONE_VM, which clearly forbids it. 1546 */ 1547 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1548 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1549 return; 1550 1551 /* 1552 * See if using an OFFPAGE slab will limit our waste. Only do 1553 * this if it permits more items per-slab. 1554 * 1555 * XXX We could try growing slabsize to limit max waste as well. 1556 * Historically this was not done because the VM could not 1557 * efficiently handle contiguous allocations. 1558 */ 1559 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1560 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1561 keg->uk_ipers = slabsize / keg->uk_rsize; 1562 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1563 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1564 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1565 "keg: %s(%p), calculated wastedspace = %d, " 1566 "maximum wasted space allowed = %d, " 1567 "calculated ipers = %d, " 1568 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1569 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1570 slabsize - keg->uk_ipers * keg->uk_rsize); 1571 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1572 } 1573 1574 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1575 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1576 keg->uk_flags |= UMA_ZONE_HASH; 1577 } 1578 1579 /* 1580 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1581 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1582 * more complicated. 1583 * 1584 * Arguments 1585 * keg The keg we should initialize 1586 * 1587 * Returns 1588 * Nothing 1589 */ 1590 static void 1591 keg_large_init(uma_keg_t keg) 1592 { 1593 1594 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1595 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1596 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1597 1598 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1599 keg->uk_ipers = 1; 1600 keg->uk_rsize = keg->uk_size; 1601 1602 /* Check whether we have enough space to not do OFFPAGE. */ 1603 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0 && 1604 PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < SIZEOF_UMA_SLAB) { 1605 /* 1606 * We can't do OFFPAGE if we're internal, in which case 1607 * we need an extra page per allocation to contain the 1608 * slab header. 1609 */ 1610 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1611 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1612 else 1613 keg->uk_ppera++; 1614 } 1615 1616 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1617 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1618 keg->uk_flags |= UMA_ZONE_HASH; 1619 } 1620 1621 static void 1622 keg_cachespread_init(uma_keg_t keg) 1623 { 1624 int alignsize; 1625 int trailer; 1626 int pages; 1627 int rsize; 1628 1629 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1630 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1631 1632 alignsize = keg->uk_align + 1; 1633 rsize = keg->uk_size; 1634 /* 1635 * We want one item to start on every align boundary in a page. To 1636 * do this we will span pages. We will also extend the item by the 1637 * size of align if it is an even multiple of align. Otherwise, it 1638 * would fall on the same boundary every time. 1639 */ 1640 if (rsize & keg->uk_align) 1641 rsize = (rsize & ~keg->uk_align) + alignsize; 1642 if ((rsize & alignsize) == 0) 1643 rsize += alignsize; 1644 trailer = rsize - keg->uk_size; 1645 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1646 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1647 keg->uk_rsize = rsize; 1648 keg->uk_ppera = pages; 1649 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1650 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1651 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1652 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1653 keg->uk_ipers)); 1654 } 1655 1656 /* 1657 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1658 * the keg onto the global keg list. 1659 * 1660 * Arguments/Returns follow uma_ctor specifications 1661 * udata Actually uma_kctor_args 1662 */ 1663 static int 1664 keg_ctor(void *mem, int size, void *udata, int flags) 1665 { 1666 struct uma_kctor_args *arg = udata; 1667 uma_keg_t keg = mem; 1668 uma_zone_t zone; 1669 1670 bzero(keg, size); 1671 keg->uk_size = arg->size; 1672 keg->uk_init = arg->uminit; 1673 keg->uk_fini = arg->fini; 1674 keg->uk_align = arg->align; 1675 keg->uk_free = 0; 1676 keg->uk_reserve = 0; 1677 keg->uk_pages = 0; 1678 keg->uk_flags = arg->flags; 1679 keg->uk_slabzone = NULL; 1680 1681 /* 1682 * We use a global round-robin policy by default. Zones with 1683 * UMA_ZONE_NUMA set will use first-touch instead, in which case the 1684 * iterator is never run. 1685 */ 1686 keg->uk_dr.dr_policy = DOMAINSET_RR(); 1687 keg->uk_dr.dr_iter = 0; 1688 1689 /* 1690 * The master zone is passed to us at keg-creation time. 1691 */ 1692 zone = arg->zone; 1693 keg->uk_name = zone->uz_name; 1694 1695 if (arg->flags & UMA_ZONE_VM) 1696 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1697 1698 if (arg->flags & UMA_ZONE_ZINIT) 1699 keg->uk_init = zero_init; 1700 1701 if (arg->flags & UMA_ZONE_MALLOC) 1702 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1703 1704 if (arg->flags & UMA_ZONE_PCPU) 1705 #ifdef SMP 1706 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1707 #else 1708 keg->uk_flags &= ~UMA_ZONE_PCPU; 1709 #endif 1710 1711 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1712 keg_cachespread_init(keg); 1713 } else { 1714 if (keg->uk_size > UMA_SLAB_SPACE) 1715 keg_large_init(keg); 1716 else 1717 keg_small_init(keg); 1718 } 1719 1720 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1721 keg->uk_slabzone = slabzone; 1722 1723 /* 1724 * If we haven't booted yet we need allocations to go through the 1725 * startup cache until the vm is ready. 1726 */ 1727 if (booted < BOOT_PAGEALLOC) 1728 keg->uk_allocf = startup_alloc; 1729 #ifdef UMA_MD_SMALL_ALLOC 1730 else if (keg->uk_ppera == 1) 1731 keg->uk_allocf = uma_small_alloc; 1732 #endif 1733 else if (keg->uk_flags & UMA_ZONE_PCPU) 1734 keg->uk_allocf = pcpu_page_alloc; 1735 else 1736 keg->uk_allocf = page_alloc; 1737 #ifdef UMA_MD_SMALL_ALLOC 1738 if (keg->uk_ppera == 1) 1739 keg->uk_freef = uma_small_free; 1740 else 1741 #endif 1742 if (keg->uk_flags & UMA_ZONE_PCPU) 1743 keg->uk_freef = pcpu_page_free; 1744 else 1745 keg->uk_freef = page_free; 1746 1747 /* 1748 * Initialize keg's lock 1749 */ 1750 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1751 1752 /* 1753 * If we're putting the slab header in the actual page we need to 1754 * figure out where in each page it goes. See SIZEOF_UMA_SLAB 1755 * macro definition. 1756 */ 1757 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1758 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - SIZEOF_UMA_SLAB; 1759 /* 1760 * The only way the following is possible is if with our 1761 * UMA_ALIGN_PTR adjustments we are now bigger than 1762 * UMA_SLAB_SIZE. I haven't checked whether this is 1763 * mathematically possible for all cases, so we make 1764 * sure here anyway. 1765 */ 1766 KASSERT(keg->uk_pgoff + sizeof(struct uma_slab) <= 1767 PAGE_SIZE * keg->uk_ppera, 1768 ("zone %s ipers %d rsize %d size %d slab won't fit", 1769 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 1770 } 1771 1772 if (keg->uk_flags & UMA_ZONE_HASH) 1773 hash_alloc(&keg->uk_hash, 0); 1774 1775 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1776 keg, zone->uz_name, zone, 1777 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1778 keg->uk_free); 1779 1780 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1781 1782 rw_wlock(&uma_rwlock); 1783 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1784 rw_wunlock(&uma_rwlock); 1785 return (0); 1786 } 1787 1788 static void 1789 zone_alloc_counters(uma_zone_t zone) 1790 { 1791 1792 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 1793 zone->uz_frees = counter_u64_alloc(M_WAITOK); 1794 zone->uz_fails = counter_u64_alloc(M_WAITOK); 1795 } 1796 1797 /* 1798 * Zone header ctor. This initializes all fields, locks, etc. 1799 * 1800 * Arguments/Returns follow uma_ctor specifications 1801 * udata Actually uma_zctor_args 1802 */ 1803 static int 1804 zone_ctor(void *mem, int size, void *udata, int flags) 1805 { 1806 struct uma_zctor_args *arg = udata; 1807 uma_zone_t zone = mem; 1808 uma_zone_t z; 1809 uma_keg_t keg; 1810 int i; 1811 1812 bzero(zone, size); 1813 zone->uz_name = arg->name; 1814 zone->uz_ctor = arg->ctor; 1815 zone->uz_dtor = arg->dtor; 1816 zone->uz_init = NULL; 1817 zone->uz_fini = NULL; 1818 zone->uz_sleeps = 0; 1819 zone->uz_xdomain = 0; 1820 zone->uz_count = 0; 1821 zone->uz_count_min = 0; 1822 zone->uz_count_max = BUCKET_MAX; 1823 zone->uz_flags = 0; 1824 zone->uz_warning = NULL; 1825 /* The domain structures follow the cpu structures. */ 1826 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1827 zone->uz_bkt_max = ULONG_MAX; 1828 timevalclear(&zone->uz_ratecheck); 1829 1830 if (__predict_true(booted == BOOT_RUNNING)) 1831 zone_alloc_counters(zone); 1832 else { 1833 zone->uz_allocs = EARLY_COUNTER; 1834 zone->uz_frees = EARLY_COUNTER; 1835 zone->uz_fails = EARLY_COUNTER; 1836 } 1837 1838 for (i = 0; i < vm_ndomains; i++) 1839 TAILQ_INIT(&zone->uz_domain[i].uzd_buckets); 1840 1841 /* 1842 * This is a pure cache zone, no kegs. 1843 */ 1844 if (arg->import) { 1845 if (arg->flags & UMA_ZONE_VM) 1846 arg->flags |= UMA_ZFLAG_CACHEONLY; 1847 zone->uz_flags = arg->flags; 1848 zone->uz_size = arg->size; 1849 zone->uz_import = arg->import; 1850 zone->uz_release = arg->release; 1851 zone->uz_arg = arg->arg; 1852 zone->uz_lockptr = &zone->uz_lock; 1853 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1854 rw_wlock(&uma_rwlock); 1855 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1856 rw_wunlock(&uma_rwlock); 1857 goto out; 1858 } 1859 1860 /* 1861 * Use the regular zone/keg/slab allocator. 1862 */ 1863 zone->uz_import = (uma_import)zone_import; 1864 zone->uz_release = (uma_release)zone_release; 1865 zone->uz_arg = zone; 1866 keg = arg->keg; 1867 1868 if (arg->flags & UMA_ZONE_SECONDARY) { 1869 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1870 zone->uz_init = arg->uminit; 1871 zone->uz_fini = arg->fini; 1872 zone->uz_lockptr = &keg->uk_lock; 1873 zone->uz_flags |= UMA_ZONE_SECONDARY; 1874 rw_wlock(&uma_rwlock); 1875 ZONE_LOCK(zone); 1876 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1877 if (LIST_NEXT(z, uz_link) == NULL) { 1878 LIST_INSERT_AFTER(z, zone, uz_link); 1879 break; 1880 } 1881 } 1882 ZONE_UNLOCK(zone); 1883 rw_wunlock(&uma_rwlock); 1884 } else if (keg == NULL) { 1885 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1886 arg->align, arg->flags)) == NULL) 1887 return (ENOMEM); 1888 } else { 1889 struct uma_kctor_args karg; 1890 int error; 1891 1892 /* We should only be here from uma_startup() */ 1893 karg.size = arg->size; 1894 karg.uminit = arg->uminit; 1895 karg.fini = arg->fini; 1896 karg.align = arg->align; 1897 karg.flags = arg->flags; 1898 karg.zone = zone; 1899 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1900 flags); 1901 if (error) 1902 return (error); 1903 } 1904 1905 zone->uz_keg = keg; 1906 zone->uz_size = keg->uk_size; 1907 zone->uz_flags |= (keg->uk_flags & 1908 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1909 1910 /* 1911 * Some internal zones don't have room allocated for the per cpu 1912 * caches. If we're internal, bail out here. 1913 */ 1914 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1915 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1916 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1917 return (0); 1918 } 1919 1920 out: 1921 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 1922 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 1923 ("Invalid zone flag combination")); 1924 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) { 1925 zone->uz_count = BUCKET_MAX; 1926 } else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) { 1927 zone->uz_count = BUCKET_MIN; 1928 zone->uz_count_max = BUCKET_MIN; 1929 } else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 1930 zone->uz_count = 0; 1931 else 1932 zone->uz_count = bucket_select(zone->uz_size); 1933 zone->uz_count_min = zone->uz_count; 1934 1935 return (0); 1936 } 1937 1938 /* 1939 * Keg header dtor. This frees all data, destroys locks, frees the hash 1940 * table and removes the keg from the global list. 1941 * 1942 * Arguments/Returns follow uma_dtor specifications 1943 * udata unused 1944 */ 1945 static void 1946 keg_dtor(void *arg, int size, void *udata) 1947 { 1948 uma_keg_t keg; 1949 1950 keg = (uma_keg_t)arg; 1951 KEG_LOCK(keg); 1952 if (keg->uk_free != 0) { 1953 printf("Freed UMA keg (%s) was not empty (%d items). " 1954 " Lost %d pages of memory.\n", 1955 keg->uk_name ? keg->uk_name : "", 1956 keg->uk_free, keg->uk_pages); 1957 } 1958 KEG_UNLOCK(keg); 1959 1960 hash_free(&keg->uk_hash); 1961 1962 KEG_LOCK_FINI(keg); 1963 } 1964 1965 /* 1966 * Zone header dtor. 1967 * 1968 * Arguments/Returns follow uma_dtor specifications 1969 * udata unused 1970 */ 1971 static void 1972 zone_dtor(void *arg, int size, void *udata) 1973 { 1974 uma_zone_t zone; 1975 uma_keg_t keg; 1976 1977 zone = (uma_zone_t)arg; 1978 1979 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1980 cache_drain(zone); 1981 1982 rw_wlock(&uma_rwlock); 1983 LIST_REMOVE(zone, uz_link); 1984 rw_wunlock(&uma_rwlock); 1985 /* 1986 * XXX there are some races here where 1987 * the zone can be drained but zone lock 1988 * released and then refilled before we 1989 * remove it... we dont care for now 1990 */ 1991 zone_reclaim(zone, M_WAITOK, true); 1992 /* 1993 * We only destroy kegs from non secondary/non cache zones. 1994 */ 1995 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 1996 keg = zone->uz_keg; 1997 rw_wlock(&uma_rwlock); 1998 LIST_REMOVE(keg, uk_link); 1999 rw_wunlock(&uma_rwlock); 2000 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2001 } 2002 counter_u64_free(zone->uz_allocs); 2003 counter_u64_free(zone->uz_frees); 2004 counter_u64_free(zone->uz_fails); 2005 if (zone->uz_lockptr == &zone->uz_lock) 2006 ZONE_LOCK_FINI(zone); 2007 } 2008 2009 /* 2010 * Traverses every zone in the system and calls a callback 2011 * 2012 * Arguments: 2013 * zfunc A pointer to a function which accepts a zone 2014 * as an argument. 2015 * 2016 * Returns: 2017 * Nothing 2018 */ 2019 static void 2020 zone_foreach(void (*zfunc)(uma_zone_t)) 2021 { 2022 uma_keg_t keg; 2023 uma_zone_t zone; 2024 2025 /* 2026 * Before BOOT_RUNNING we are guaranteed to be single 2027 * threaded, so locking isn't needed. Startup functions 2028 * are allowed to use M_WAITOK. 2029 */ 2030 if (__predict_true(booted == BOOT_RUNNING)) 2031 rw_rlock(&uma_rwlock); 2032 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2033 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2034 zfunc(zone); 2035 } 2036 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2037 zfunc(zone); 2038 if (__predict_true(booted == BOOT_RUNNING)) 2039 rw_runlock(&uma_rwlock); 2040 } 2041 2042 /* 2043 * Count how many pages do we need to bootstrap. VM supplies 2044 * its need in early zones in the argument, we add up our zones, 2045 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 2046 * zone of zones and zone of kegs are accounted separately. 2047 */ 2048 #define UMA_BOOT_ZONES 11 2049 /* Zone of zones and zone of kegs have arbitrary alignment. */ 2050 #define UMA_BOOT_ALIGN 32 2051 static int zsize, ksize; 2052 int 2053 uma_startup_count(int vm_zones) 2054 { 2055 int zones, pages; 2056 2057 ksize = sizeof(struct uma_keg) + 2058 (sizeof(struct uma_domain) * vm_ndomains); 2059 zsize = sizeof(struct uma_zone) + 2060 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2061 (sizeof(struct uma_zone_domain) * vm_ndomains); 2062 2063 /* 2064 * Memory for the zone of kegs and its keg, 2065 * and for zone of zones. 2066 */ 2067 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 2068 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 2069 2070 #ifdef UMA_MD_SMALL_ALLOC 2071 zones = UMA_BOOT_ZONES; 2072 #else 2073 zones = UMA_BOOT_ZONES + vm_zones; 2074 vm_zones = 0; 2075 #endif 2076 2077 /* Memory for the rest of startup zones, UMA and VM, ... */ 2078 if (zsize > UMA_SLAB_SPACE) { 2079 /* See keg_large_init(). */ 2080 u_int ppera; 2081 2082 ppera = howmany(roundup2(zsize, UMA_BOOT_ALIGN), PAGE_SIZE); 2083 if (PAGE_SIZE * ppera - roundup2(zsize, UMA_BOOT_ALIGN) < 2084 SIZEOF_UMA_SLAB) 2085 ppera++; 2086 pages += (zones + vm_zones) * ppera; 2087 } else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 2088 /* See keg_small_init() special case for uk_ppera = 1. */ 2089 pages += zones; 2090 else 2091 pages += howmany(zones, 2092 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 2093 2094 /* ... and their kegs. Note that zone of zones allocates a keg! */ 2095 pages += howmany(zones + 1, 2096 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 2097 2098 /* 2099 * Most of startup zones are not going to be offpages, that's 2100 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 2101 * calculations. Some large bucket zones will be offpage, and 2102 * thus will allocate hashes. We take conservative approach 2103 * and assume that all zones may allocate hash. This may give 2104 * us some positive inaccuracy, usually an extra single page. 2105 */ 2106 pages += howmany(zones, UMA_SLAB_SPACE / 2107 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 2108 2109 return (pages); 2110 } 2111 2112 void 2113 uma_startup(void *mem, int npages) 2114 { 2115 struct uma_zctor_args args; 2116 uma_keg_t masterkeg; 2117 uintptr_t m; 2118 2119 #ifdef DIAGNOSTIC 2120 printf("Entering %s with %d boot pages configured\n", __func__, npages); 2121 #endif 2122 2123 rw_init(&uma_rwlock, "UMA lock"); 2124 2125 /* Use bootpages memory for the zone of zones and zone of kegs. */ 2126 m = (uintptr_t)mem; 2127 zones = (uma_zone_t)m; 2128 m += roundup(zsize, CACHE_LINE_SIZE); 2129 kegs = (uma_zone_t)m; 2130 m += roundup(zsize, CACHE_LINE_SIZE); 2131 masterkeg = (uma_keg_t)m; 2132 m += roundup(ksize, CACHE_LINE_SIZE); 2133 m = roundup(m, PAGE_SIZE); 2134 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 2135 mem = (void *)m; 2136 2137 /* "manually" create the initial zone */ 2138 memset(&args, 0, sizeof(args)); 2139 args.name = "UMA Kegs"; 2140 args.size = ksize; 2141 args.ctor = keg_ctor; 2142 args.dtor = keg_dtor; 2143 args.uminit = zero_init; 2144 args.fini = NULL; 2145 args.keg = masterkeg; 2146 args.align = UMA_BOOT_ALIGN - 1; 2147 args.flags = UMA_ZFLAG_INTERNAL; 2148 zone_ctor(kegs, zsize, &args, M_WAITOK); 2149 2150 bootmem = mem; 2151 boot_pages = npages; 2152 2153 args.name = "UMA Zones"; 2154 args.size = zsize; 2155 args.ctor = zone_ctor; 2156 args.dtor = zone_dtor; 2157 args.uminit = zero_init; 2158 args.fini = NULL; 2159 args.keg = NULL; 2160 args.align = UMA_BOOT_ALIGN - 1; 2161 args.flags = UMA_ZFLAG_INTERNAL; 2162 zone_ctor(zones, zsize, &args, M_WAITOK); 2163 2164 /* Now make a zone for slab headers */ 2165 slabzone = uma_zcreate("UMA Slabs", 2166 sizeof(struct uma_slab), 2167 NULL, NULL, NULL, NULL, 2168 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2169 2170 hashzone = uma_zcreate("UMA Hash", 2171 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2172 NULL, NULL, NULL, NULL, 2173 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2174 2175 bucket_init(); 2176 2177 booted = BOOT_STRAPPED; 2178 } 2179 2180 void 2181 uma_startup1(void) 2182 { 2183 2184 #ifdef DIAGNOSTIC 2185 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2186 #endif 2187 booted = BOOT_PAGEALLOC; 2188 } 2189 2190 void 2191 uma_startup2(void) 2192 { 2193 2194 #ifdef DIAGNOSTIC 2195 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2196 #endif 2197 booted = BOOT_BUCKETS; 2198 sx_init(&uma_reclaim_lock, "umareclaim"); 2199 bucket_enable(); 2200 } 2201 2202 /* 2203 * Initialize our callout handle 2204 * 2205 */ 2206 static void 2207 uma_startup3(void) 2208 { 2209 2210 #ifdef INVARIANTS 2211 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2212 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2213 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2214 #endif 2215 zone_foreach(zone_alloc_counters); 2216 callout_init(&uma_callout, 1); 2217 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2218 booted = BOOT_RUNNING; 2219 } 2220 2221 static uma_keg_t 2222 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2223 int align, uint32_t flags) 2224 { 2225 struct uma_kctor_args args; 2226 2227 args.size = size; 2228 args.uminit = uminit; 2229 args.fini = fini; 2230 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2231 args.flags = flags; 2232 args.zone = zone; 2233 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2234 } 2235 2236 /* Public functions */ 2237 /* See uma.h */ 2238 void 2239 uma_set_align(int align) 2240 { 2241 2242 if (align != UMA_ALIGN_CACHE) 2243 uma_align_cache = align; 2244 } 2245 2246 /* See uma.h */ 2247 uma_zone_t 2248 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2249 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2250 2251 { 2252 struct uma_zctor_args args; 2253 uma_zone_t res; 2254 bool locked; 2255 2256 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2257 align, name)); 2258 2259 /* Sets all zones to a first-touch domain policy. */ 2260 #ifdef UMA_FIRSTTOUCH 2261 flags |= UMA_ZONE_NUMA; 2262 #endif 2263 2264 /* This stuff is essential for the zone ctor */ 2265 memset(&args, 0, sizeof(args)); 2266 args.name = name; 2267 args.size = size; 2268 args.ctor = ctor; 2269 args.dtor = dtor; 2270 args.uminit = uminit; 2271 args.fini = fini; 2272 #ifdef INVARIANTS 2273 /* 2274 * If a zone is being created with an empty constructor and 2275 * destructor, pass UMA constructor/destructor which checks for 2276 * memory use after free. 2277 */ 2278 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2279 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2280 args.ctor = trash_ctor; 2281 args.dtor = trash_dtor; 2282 args.uminit = trash_init; 2283 args.fini = trash_fini; 2284 } 2285 #endif 2286 args.align = align; 2287 args.flags = flags; 2288 args.keg = NULL; 2289 2290 if (booted < BOOT_BUCKETS) { 2291 locked = false; 2292 } else { 2293 sx_slock(&uma_reclaim_lock); 2294 locked = true; 2295 } 2296 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2297 if (locked) 2298 sx_sunlock(&uma_reclaim_lock); 2299 return (res); 2300 } 2301 2302 /* See uma.h */ 2303 uma_zone_t 2304 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2305 uma_init zinit, uma_fini zfini, uma_zone_t master) 2306 { 2307 struct uma_zctor_args args; 2308 uma_keg_t keg; 2309 uma_zone_t res; 2310 bool locked; 2311 2312 keg = master->uz_keg; 2313 memset(&args, 0, sizeof(args)); 2314 args.name = name; 2315 args.size = keg->uk_size; 2316 args.ctor = ctor; 2317 args.dtor = dtor; 2318 args.uminit = zinit; 2319 args.fini = zfini; 2320 args.align = keg->uk_align; 2321 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2322 args.keg = keg; 2323 2324 if (booted < BOOT_BUCKETS) { 2325 locked = false; 2326 } else { 2327 sx_slock(&uma_reclaim_lock); 2328 locked = true; 2329 } 2330 /* XXX Attaches only one keg of potentially many. */ 2331 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2332 if (locked) 2333 sx_sunlock(&uma_reclaim_lock); 2334 return (res); 2335 } 2336 2337 /* See uma.h */ 2338 uma_zone_t 2339 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2340 uma_init zinit, uma_fini zfini, uma_import zimport, 2341 uma_release zrelease, void *arg, int flags) 2342 { 2343 struct uma_zctor_args args; 2344 2345 memset(&args, 0, sizeof(args)); 2346 args.name = name; 2347 args.size = size; 2348 args.ctor = ctor; 2349 args.dtor = dtor; 2350 args.uminit = zinit; 2351 args.fini = zfini; 2352 args.import = zimport; 2353 args.release = zrelease; 2354 args.arg = arg; 2355 args.align = 0; 2356 args.flags = flags | UMA_ZFLAG_CACHE; 2357 2358 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2359 } 2360 2361 /* See uma.h */ 2362 void 2363 uma_zdestroy(uma_zone_t zone) 2364 { 2365 2366 sx_slock(&uma_reclaim_lock); 2367 zone_free_item(zones, zone, NULL, SKIP_NONE); 2368 sx_sunlock(&uma_reclaim_lock); 2369 } 2370 2371 void 2372 uma_zwait(uma_zone_t zone) 2373 { 2374 void *item; 2375 2376 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2377 uma_zfree(zone, item); 2378 } 2379 2380 void * 2381 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2382 { 2383 void *item; 2384 #ifdef SMP 2385 int i; 2386 2387 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2388 #endif 2389 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2390 if (item != NULL && (flags & M_ZERO)) { 2391 #ifdef SMP 2392 for (i = 0; i <= mp_maxid; i++) 2393 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2394 #else 2395 bzero(item, zone->uz_size); 2396 #endif 2397 } 2398 return (item); 2399 } 2400 2401 /* 2402 * A stub while both regular and pcpu cases are identical. 2403 */ 2404 void 2405 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2406 { 2407 2408 #ifdef SMP 2409 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2410 #endif 2411 uma_zfree_arg(zone, item, udata); 2412 } 2413 2414 /* See uma.h */ 2415 void * 2416 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2417 { 2418 uma_zone_domain_t zdom; 2419 uma_bucket_t bucket; 2420 uma_cache_t cache; 2421 void *item; 2422 int cpu, domain, lockfail, maxbucket; 2423 #ifdef INVARIANTS 2424 bool skipdbg; 2425 #endif 2426 2427 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2428 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2429 2430 /* This is the fast path allocation */ 2431 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2432 curthread, zone->uz_name, zone, flags); 2433 2434 if (flags & M_WAITOK) { 2435 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2436 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2437 } 2438 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2439 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2440 ("uma_zalloc_arg: called with spinlock or critical section held")); 2441 if (zone->uz_flags & UMA_ZONE_PCPU) 2442 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2443 "with M_ZERO passed")); 2444 2445 #ifdef DEBUG_MEMGUARD 2446 if (memguard_cmp_zone(zone)) { 2447 item = memguard_alloc(zone->uz_size, flags); 2448 if (item != NULL) { 2449 if (zone->uz_init != NULL && 2450 zone->uz_init(item, zone->uz_size, flags) != 0) 2451 return (NULL); 2452 if (zone->uz_ctor != NULL && 2453 zone->uz_ctor(item, zone->uz_size, udata, 2454 flags) != 0) { 2455 zone->uz_fini(item, zone->uz_size); 2456 return (NULL); 2457 } 2458 return (item); 2459 } 2460 /* This is unfortunate but should not be fatal. */ 2461 } 2462 #endif 2463 /* 2464 * If possible, allocate from the per-CPU cache. There are two 2465 * requirements for safe access to the per-CPU cache: (1) the thread 2466 * accessing the cache must not be preempted or yield during access, 2467 * and (2) the thread must not migrate CPUs without switching which 2468 * cache it accesses. We rely on a critical section to prevent 2469 * preemption and migration. We release the critical section in 2470 * order to acquire the zone mutex if we are unable to allocate from 2471 * the current cache; when we re-acquire the critical section, we 2472 * must detect and handle migration if it has occurred. 2473 */ 2474 zalloc_restart: 2475 critical_enter(); 2476 cpu = curcpu; 2477 cache = &zone->uz_cpu[cpu]; 2478 2479 zalloc_start: 2480 bucket = cache->uc_allocbucket; 2481 if (bucket != NULL && bucket->ub_cnt > 0) { 2482 bucket->ub_cnt--; 2483 item = bucket->ub_bucket[bucket->ub_cnt]; 2484 #ifdef INVARIANTS 2485 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2486 #endif 2487 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2488 cache->uc_allocs++; 2489 critical_exit(); 2490 #ifdef INVARIANTS 2491 skipdbg = uma_dbg_zskip(zone, item); 2492 #endif 2493 if (zone->uz_ctor != NULL && 2494 #ifdef INVARIANTS 2495 (!skipdbg || zone->uz_ctor != trash_ctor || 2496 zone->uz_dtor != trash_dtor) && 2497 #endif 2498 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2499 counter_u64_add(zone->uz_fails, 1); 2500 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2501 return (NULL); 2502 } 2503 #ifdef INVARIANTS 2504 if (!skipdbg) 2505 uma_dbg_alloc(zone, NULL, item); 2506 #endif 2507 if (flags & M_ZERO) 2508 uma_zero_item(item, zone); 2509 return (item); 2510 } 2511 2512 /* 2513 * We have run out of items in our alloc bucket. 2514 * See if we can switch with our free bucket. 2515 */ 2516 bucket = cache->uc_freebucket; 2517 if (bucket != NULL && bucket->ub_cnt > 0) { 2518 CTR2(KTR_UMA, 2519 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2520 zone->uz_name, zone); 2521 cache->uc_freebucket = cache->uc_allocbucket; 2522 cache->uc_allocbucket = bucket; 2523 goto zalloc_start; 2524 } 2525 2526 /* 2527 * Discard any empty allocation bucket while we hold no locks. 2528 */ 2529 bucket = cache->uc_allocbucket; 2530 cache->uc_allocbucket = NULL; 2531 critical_exit(); 2532 if (bucket != NULL) 2533 bucket_free(zone, bucket, udata); 2534 2535 /* Short-circuit for zones without buckets and low memory. */ 2536 if (zone->uz_count == 0 || bucketdisable) { 2537 ZONE_LOCK(zone); 2538 if (zone->uz_flags & UMA_ZONE_NUMA) 2539 domain = PCPU_GET(domain); 2540 else 2541 domain = UMA_ANYDOMAIN; 2542 goto zalloc_item; 2543 } 2544 2545 /* 2546 * Attempt to retrieve the item from the per-CPU cache has failed, so 2547 * we must go back to the zone. This requires the zone lock, so we 2548 * must drop the critical section, then re-acquire it when we go back 2549 * to the cache. Since the critical section is released, we may be 2550 * preempted or migrate. As such, make sure not to maintain any 2551 * thread-local state specific to the cache from prior to releasing 2552 * the critical section. 2553 */ 2554 lockfail = 0; 2555 if (ZONE_TRYLOCK(zone) == 0) { 2556 /* Record contention to size the buckets. */ 2557 ZONE_LOCK(zone); 2558 lockfail = 1; 2559 } 2560 critical_enter(); 2561 cpu = curcpu; 2562 cache = &zone->uz_cpu[cpu]; 2563 2564 /* See if we lost the race to fill the cache. */ 2565 if (cache->uc_allocbucket != NULL) { 2566 ZONE_UNLOCK(zone); 2567 goto zalloc_start; 2568 } 2569 2570 /* 2571 * Check the zone's cache of buckets. 2572 */ 2573 if (zone->uz_flags & UMA_ZONE_NUMA) { 2574 domain = PCPU_GET(domain); 2575 zdom = &zone->uz_domain[domain]; 2576 } else { 2577 domain = UMA_ANYDOMAIN; 2578 zdom = &zone->uz_domain[0]; 2579 } 2580 2581 if ((bucket = zone_fetch_bucket(zone, zdom)) != NULL) { 2582 KASSERT(bucket->ub_cnt != 0, 2583 ("uma_zalloc_arg: Returning an empty bucket.")); 2584 cache->uc_allocbucket = bucket; 2585 ZONE_UNLOCK(zone); 2586 goto zalloc_start; 2587 } 2588 /* We are no longer associated with this CPU. */ 2589 critical_exit(); 2590 2591 /* 2592 * We bump the uz count when the cache size is insufficient to 2593 * handle the working set. 2594 */ 2595 if (lockfail && zone->uz_count < zone->uz_count_max) 2596 zone->uz_count++; 2597 2598 if (zone->uz_max_items > 0) { 2599 if (zone->uz_items >= zone->uz_max_items) 2600 goto zalloc_item; 2601 maxbucket = MIN(zone->uz_count, 2602 zone->uz_max_items - zone->uz_items); 2603 zone->uz_items += maxbucket; 2604 } else 2605 maxbucket = zone->uz_count; 2606 ZONE_UNLOCK(zone); 2607 2608 /* 2609 * Now lets just fill a bucket and put it on the free list. If that 2610 * works we'll restart the allocation from the beginning and it 2611 * will use the just filled bucket. 2612 */ 2613 bucket = zone_alloc_bucket(zone, udata, domain, flags, maxbucket); 2614 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2615 zone->uz_name, zone, bucket); 2616 ZONE_LOCK(zone); 2617 if (bucket != NULL) { 2618 if (zone->uz_max_items > 0 && bucket->ub_cnt < maxbucket) { 2619 MPASS(zone->uz_items >= maxbucket - bucket->ub_cnt); 2620 zone->uz_items -= maxbucket - bucket->ub_cnt; 2621 if (zone->uz_sleepers > 0 && 2622 zone->uz_items < zone->uz_max_items) 2623 wakeup_one(zone); 2624 } 2625 critical_enter(); 2626 cpu = curcpu; 2627 cache = &zone->uz_cpu[cpu]; 2628 2629 /* 2630 * See if we lost the race or were migrated. Cache the 2631 * initialized bucket to make this less likely or claim 2632 * the memory directly. 2633 */ 2634 if (cache->uc_allocbucket == NULL && 2635 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 2636 domain == PCPU_GET(domain))) { 2637 cache->uc_allocbucket = bucket; 2638 zdom->uzd_imax += bucket->ub_cnt; 2639 } else if (zone->uz_bkt_count >= zone->uz_bkt_max) { 2640 critical_exit(); 2641 ZONE_UNLOCK(zone); 2642 bucket_drain(zone, bucket); 2643 bucket_free(zone, bucket, udata); 2644 goto zalloc_restart; 2645 } else 2646 zone_put_bucket(zone, zdom, bucket, false); 2647 ZONE_UNLOCK(zone); 2648 goto zalloc_start; 2649 } else if (zone->uz_max_items > 0) { 2650 zone->uz_items -= maxbucket; 2651 if (zone->uz_sleepers > 0 && 2652 zone->uz_items + 1 < zone->uz_max_items) 2653 wakeup_one(zone); 2654 } 2655 2656 /* 2657 * We may not be able to get a bucket so return an actual item. 2658 */ 2659 zalloc_item: 2660 item = zone_alloc_item_locked(zone, udata, domain, flags); 2661 2662 return (item); 2663 } 2664 2665 void * 2666 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2667 { 2668 2669 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2670 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2671 2672 /* This is the fast path allocation */ 2673 CTR5(KTR_UMA, 2674 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2675 curthread, zone->uz_name, zone, domain, flags); 2676 2677 if (flags & M_WAITOK) { 2678 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2679 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2680 } 2681 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2682 ("uma_zalloc_domain: called with spinlock or critical section held")); 2683 2684 return (zone_alloc_item(zone, udata, domain, flags)); 2685 } 2686 2687 /* 2688 * Find a slab with some space. Prefer slabs that are partially used over those 2689 * that are totally full. This helps to reduce fragmentation. 2690 * 2691 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2692 * only 'domain'. 2693 */ 2694 static uma_slab_t 2695 keg_first_slab(uma_keg_t keg, int domain, bool rr) 2696 { 2697 uma_domain_t dom; 2698 uma_slab_t slab; 2699 int start; 2700 2701 KASSERT(domain >= 0 && domain < vm_ndomains, 2702 ("keg_first_slab: domain %d out of range", domain)); 2703 KEG_LOCK_ASSERT(keg); 2704 2705 slab = NULL; 2706 start = domain; 2707 do { 2708 dom = &keg->uk_domain[domain]; 2709 if (!LIST_EMPTY(&dom->ud_part_slab)) 2710 return (LIST_FIRST(&dom->ud_part_slab)); 2711 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2712 slab = LIST_FIRST(&dom->ud_free_slab); 2713 LIST_REMOVE(slab, us_link); 2714 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2715 return (slab); 2716 } 2717 if (rr) 2718 domain = (domain + 1) % vm_ndomains; 2719 } while (domain != start); 2720 2721 return (NULL); 2722 } 2723 2724 static uma_slab_t 2725 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 2726 { 2727 uint32_t reserve; 2728 2729 KEG_LOCK_ASSERT(keg); 2730 2731 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 2732 if (keg->uk_free <= reserve) 2733 return (NULL); 2734 return (keg_first_slab(keg, domain, rr)); 2735 } 2736 2737 static uma_slab_t 2738 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 2739 { 2740 struct vm_domainset_iter di; 2741 uma_domain_t dom; 2742 uma_slab_t slab; 2743 int aflags, domain; 2744 bool rr; 2745 2746 restart: 2747 KEG_LOCK_ASSERT(keg); 2748 2749 /* 2750 * Use the keg's policy if upper layers haven't already specified a 2751 * domain (as happens with first-touch zones). 2752 * 2753 * To avoid races we run the iterator with the keg lock held, but that 2754 * means that we cannot allow the vm_domainset layer to sleep. Thus, 2755 * clear M_WAITOK and handle low memory conditions locally. 2756 */ 2757 rr = rdomain == UMA_ANYDOMAIN; 2758 if (rr) { 2759 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 2760 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 2761 &aflags); 2762 } else { 2763 aflags = flags; 2764 domain = rdomain; 2765 } 2766 2767 for (;;) { 2768 slab = keg_fetch_free_slab(keg, domain, rr, flags); 2769 if (slab != NULL) { 2770 MPASS(slab->us_keg == keg); 2771 return (slab); 2772 } 2773 2774 /* 2775 * M_NOVM means don't ask at all! 2776 */ 2777 if (flags & M_NOVM) 2778 break; 2779 2780 KASSERT(zone->uz_max_items == 0 || 2781 zone->uz_items <= zone->uz_max_items, 2782 ("%s: zone %p overflow", __func__, zone)); 2783 2784 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 2785 /* 2786 * If we got a slab here it's safe to mark it partially used 2787 * and return. We assume that the caller is going to remove 2788 * at least one item. 2789 */ 2790 if (slab) { 2791 MPASS(slab->us_keg == keg); 2792 dom = &keg->uk_domain[slab->us_domain]; 2793 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2794 return (slab); 2795 } 2796 KEG_LOCK(keg); 2797 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 2798 if ((flags & M_WAITOK) != 0) { 2799 KEG_UNLOCK(keg); 2800 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 2801 KEG_LOCK(keg); 2802 goto restart; 2803 } 2804 break; 2805 } 2806 } 2807 2808 /* 2809 * We might not have been able to get a slab but another cpu 2810 * could have while we were unlocked. Check again before we 2811 * fail. 2812 */ 2813 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) { 2814 MPASS(slab->us_keg == keg); 2815 return (slab); 2816 } 2817 return (NULL); 2818 } 2819 2820 static uma_slab_t 2821 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2822 { 2823 uma_slab_t slab; 2824 2825 if (keg == NULL) { 2826 keg = zone->uz_keg; 2827 KEG_LOCK(keg); 2828 } 2829 2830 for (;;) { 2831 slab = keg_fetch_slab(keg, zone, domain, flags); 2832 if (slab) 2833 return (slab); 2834 if (flags & (M_NOWAIT | M_NOVM)) 2835 break; 2836 } 2837 KEG_UNLOCK(keg); 2838 return (NULL); 2839 } 2840 2841 static void * 2842 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2843 { 2844 uma_domain_t dom; 2845 void *item; 2846 uint8_t freei; 2847 2848 MPASS(keg == slab->us_keg); 2849 KEG_LOCK_ASSERT(keg); 2850 2851 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2852 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2853 item = slab->us_data + (keg->uk_rsize * freei); 2854 slab->us_freecount--; 2855 keg->uk_free--; 2856 2857 /* Move this slab to the full list */ 2858 if (slab->us_freecount == 0) { 2859 LIST_REMOVE(slab, us_link); 2860 dom = &keg->uk_domain[slab->us_domain]; 2861 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2862 } 2863 2864 return (item); 2865 } 2866 2867 static int 2868 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2869 { 2870 uma_slab_t slab; 2871 uma_keg_t keg; 2872 #ifdef NUMA 2873 int stripe; 2874 #endif 2875 int i; 2876 2877 slab = NULL; 2878 keg = NULL; 2879 /* Try to keep the buckets totally full */ 2880 for (i = 0; i < max; ) { 2881 if ((slab = zone_fetch_slab(zone, keg, domain, flags)) == NULL) 2882 break; 2883 keg = slab->us_keg; 2884 #ifdef NUMA 2885 stripe = howmany(max, vm_ndomains); 2886 #endif 2887 while (slab->us_freecount && i < max) { 2888 bucket[i++] = slab_alloc_item(keg, slab); 2889 if (keg->uk_free <= keg->uk_reserve) 2890 break; 2891 #ifdef NUMA 2892 /* 2893 * If the zone is striped we pick a new slab for every 2894 * N allocations. Eliminating this conditional will 2895 * instead pick a new domain for each bucket rather 2896 * than stripe within each bucket. The current option 2897 * produces more fragmentation and requires more cpu 2898 * time but yields better distribution. 2899 */ 2900 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2901 vm_ndomains > 1 && --stripe == 0) 2902 break; 2903 #endif 2904 } 2905 /* Don't block if we allocated any successfully. */ 2906 flags &= ~M_WAITOK; 2907 flags |= M_NOWAIT; 2908 } 2909 if (slab != NULL) 2910 KEG_UNLOCK(keg); 2911 2912 return i; 2913 } 2914 2915 static uma_bucket_t 2916 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags, int max) 2917 { 2918 uma_bucket_t bucket; 2919 2920 CTR1(KTR_UMA, "zone_alloc:_bucket domain %d)", domain); 2921 2922 /* Avoid allocs targeting empty domains. */ 2923 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 2924 domain = UMA_ANYDOMAIN; 2925 2926 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2927 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2928 if (bucket == NULL) 2929 return (NULL); 2930 2931 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2932 MIN(max, bucket->ub_entries), domain, flags); 2933 2934 /* 2935 * Initialize the memory if necessary. 2936 */ 2937 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2938 int i; 2939 2940 for (i = 0; i < bucket->ub_cnt; i++) 2941 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2942 flags) != 0) 2943 break; 2944 /* 2945 * If we couldn't initialize the whole bucket, put the 2946 * rest back onto the freelist. 2947 */ 2948 if (i != bucket->ub_cnt) { 2949 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2950 bucket->ub_cnt - i); 2951 #ifdef INVARIANTS 2952 bzero(&bucket->ub_bucket[i], 2953 sizeof(void *) * (bucket->ub_cnt - i)); 2954 #endif 2955 bucket->ub_cnt = i; 2956 } 2957 } 2958 2959 if (bucket->ub_cnt == 0) { 2960 bucket_free(zone, bucket, udata); 2961 counter_u64_add(zone->uz_fails, 1); 2962 return (NULL); 2963 } 2964 2965 return (bucket); 2966 } 2967 2968 /* 2969 * Allocates a single item from a zone. 2970 * 2971 * Arguments 2972 * zone The zone to alloc for. 2973 * udata The data to be passed to the constructor. 2974 * domain The domain to allocate from or UMA_ANYDOMAIN. 2975 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2976 * 2977 * Returns 2978 * NULL if there is no memory and M_NOWAIT is set 2979 * An item if successful 2980 */ 2981 2982 static void * 2983 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 2984 { 2985 2986 ZONE_LOCK(zone); 2987 return (zone_alloc_item_locked(zone, udata, domain, flags)); 2988 } 2989 2990 /* 2991 * Returns with zone unlocked. 2992 */ 2993 static void * 2994 zone_alloc_item_locked(uma_zone_t zone, void *udata, int domain, int flags) 2995 { 2996 void *item; 2997 #ifdef INVARIANTS 2998 bool skipdbg; 2999 #endif 3000 3001 ZONE_LOCK_ASSERT(zone); 3002 3003 if (zone->uz_max_items > 0) { 3004 if (zone->uz_items >= zone->uz_max_items) { 3005 zone_log_warning(zone); 3006 zone_maxaction(zone); 3007 if (flags & M_NOWAIT) { 3008 ZONE_UNLOCK(zone); 3009 return (NULL); 3010 } 3011 zone->uz_sleeps++; 3012 zone->uz_sleepers++; 3013 while (zone->uz_items >= zone->uz_max_items) 3014 mtx_sleep(zone, zone->uz_lockptr, PVM, 3015 "zonelimit", 0); 3016 zone->uz_sleepers--; 3017 if (zone->uz_sleepers > 0 && 3018 zone->uz_items + 1 < zone->uz_max_items) 3019 wakeup_one(zone); 3020 } 3021 zone->uz_items++; 3022 } 3023 ZONE_UNLOCK(zone); 3024 3025 /* Avoid allocs targeting empty domains. */ 3026 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3027 domain = UMA_ANYDOMAIN; 3028 3029 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3030 goto fail; 3031 3032 #ifdef INVARIANTS 3033 skipdbg = uma_dbg_zskip(zone, item); 3034 #endif 3035 /* 3036 * We have to call both the zone's init (not the keg's init) 3037 * and the zone's ctor. This is because the item is going from 3038 * a keg slab directly to the user, and the user is expecting it 3039 * to be both zone-init'd as well as zone-ctor'd. 3040 */ 3041 if (zone->uz_init != NULL) { 3042 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3043 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3044 goto fail; 3045 } 3046 } 3047 if (zone->uz_ctor != NULL && 3048 #ifdef INVARIANTS 3049 (!skipdbg || zone->uz_ctor != trash_ctor || 3050 zone->uz_dtor != trash_dtor) && 3051 #endif 3052 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 3053 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3054 goto fail; 3055 } 3056 #ifdef INVARIANTS 3057 if (!skipdbg) 3058 uma_dbg_alloc(zone, NULL, item); 3059 #endif 3060 if (flags & M_ZERO) 3061 uma_zero_item(item, zone); 3062 3063 counter_u64_add(zone->uz_allocs, 1); 3064 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3065 zone->uz_name, zone); 3066 3067 return (item); 3068 3069 fail: 3070 if (zone->uz_max_items > 0) { 3071 ZONE_LOCK(zone); 3072 zone->uz_items--; 3073 ZONE_UNLOCK(zone); 3074 } 3075 counter_u64_add(zone->uz_fails, 1); 3076 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3077 zone->uz_name, zone); 3078 return (NULL); 3079 } 3080 3081 /* See uma.h */ 3082 void 3083 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3084 { 3085 uma_cache_t cache; 3086 uma_bucket_t bucket; 3087 uma_zone_domain_t zdom; 3088 int cpu, domain; 3089 #ifdef UMA_XDOMAIN 3090 int itemdomain; 3091 #endif 3092 bool lockfail; 3093 #ifdef INVARIANTS 3094 bool skipdbg; 3095 #endif 3096 3097 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3098 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3099 3100 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 3101 zone->uz_name); 3102 3103 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3104 ("uma_zfree_arg: called with spinlock or critical section held")); 3105 3106 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3107 if (item == NULL) 3108 return; 3109 #ifdef DEBUG_MEMGUARD 3110 if (is_memguard_addr(item)) { 3111 if (zone->uz_dtor != NULL) 3112 zone->uz_dtor(item, zone->uz_size, udata); 3113 if (zone->uz_fini != NULL) 3114 zone->uz_fini(item, zone->uz_size); 3115 memguard_free(item); 3116 return; 3117 } 3118 #endif 3119 #ifdef INVARIANTS 3120 skipdbg = uma_dbg_zskip(zone, item); 3121 if (skipdbg == false) { 3122 if (zone->uz_flags & UMA_ZONE_MALLOC) 3123 uma_dbg_free(zone, udata, item); 3124 else 3125 uma_dbg_free(zone, NULL, item); 3126 } 3127 if (zone->uz_dtor != NULL && (!skipdbg || 3128 zone->uz_dtor != trash_dtor || zone->uz_ctor != trash_ctor)) 3129 #else 3130 if (zone->uz_dtor != NULL) 3131 #endif 3132 zone->uz_dtor(item, zone->uz_size, udata); 3133 3134 /* 3135 * The race here is acceptable. If we miss it we'll just have to wait 3136 * a little longer for the limits to be reset. 3137 */ 3138 if (zone->uz_sleepers > 0) 3139 goto zfree_item; 3140 3141 #ifdef UMA_XDOMAIN 3142 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 3143 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3144 #endif 3145 3146 /* 3147 * If possible, free to the per-CPU cache. There are two 3148 * requirements for safe access to the per-CPU cache: (1) the thread 3149 * accessing the cache must not be preempted or yield during access, 3150 * and (2) the thread must not migrate CPUs without switching which 3151 * cache it accesses. We rely on a critical section to prevent 3152 * preemption and migration. We release the critical section in 3153 * order to acquire the zone mutex if we are unable to free to the 3154 * current cache; when we re-acquire the critical section, we must 3155 * detect and handle migration if it has occurred. 3156 */ 3157 zfree_restart: 3158 critical_enter(); 3159 cpu = curcpu; 3160 cache = &zone->uz_cpu[cpu]; 3161 3162 zfree_start: 3163 domain = PCPU_GET(domain); 3164 #ifdef UMA_XDOMAIN 3165 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0) 3166 itemdomain = domain; 3167 #endif 3168 /* 3169 * Try to free into the allocbucket first to give LIFO ordering 3170 * for cache-hot datastructures. Spill over into the freebucket 3171 * if necessary. Alloc will swap them if one runs dry. 3172 */ 3173 #ifdef UMA_XDOMAIN 3174 if (domain != itemdomain) { 3175 bucket = cache->uc_crossbucket; 3176 } else 3177 #endif 3178 { 3179 bucket = cache->uc_allocbucket; 3180 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 3181 bucket = cache->uc_freebucket; 3182 } 3183 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3184 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 3185 ("uma_zfree: Freeing to non free bucket index.")); 3186 bucket->ub_bucket[bucket->ub_cnt] = item; 3187 bucket->ub_cnt++; 3188 cache->uc_frees++; 3189 critical_exit(); 3190 return; 3191 } 3192 3193 /* 3194 * We must go back the zone, which requires acquiring the zone lock, 3195 * which in turn means we must release and re-acquire the critical 3196 * section. Since the critical section is released, we may be 3197 * preempted or migrate. As such, make sure not to maintain any 3198 * thread-local state specific to the cache from prior to releasing 3199 * the critical section. 3200 */ 3201 critical_exit(); 3202 if (zone->uz_count == 0 || bucketdisable) 3203 goto zfree_item; 3204 3205 lockfail = false; 3206 if (ZONE_TRYLOCK(zone) == 0) { 3207 /* Record contention to size the buckets. */ 3208 ZONE_LOCK(zone); 3209 lockfail = true; 3210 } 3211 critical_enter(); 3212 cpu = curcpu; 3213 domain = PCPU_GET(domain); 3214 cache = &zone->uz_cpu[cpu]; 3215 3216 #ifdef UMA_XDOMAIN 3217 if (domain != itemdomain) 3218 bucket = cache->uc_crossbucket; 3219 else 3220 #endif 3221 bucket = cache->uc_freebucket; 3222 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3223 ZONE_UNLOCK(zone); 3224 goto zfree_start; 3225 } 3226 #ifdef UMA_XDOMAIN 3227 if (domain != itemdomain) 3228 cache->uc_crossbucket = NULL; 3229 else 3230 #endif 3231 cache->uc_freebucket = NULL; 3232 /* We are no longer associated with this CPU. */ 3233 critical_exit(); 3234 3235 #ifdef UMA_XDOMAIN 3236 if (domain != itemdomain) { 3237 if (bucket != NULL) { 3238 zone->uz_xdomain += bucket->ub_cnt; 3239 if (vm_ndomains > 2 || 3240 zone->uz_bkt_count >= zone->uz_bkt_max) { 3241 ZONE_UNLOCK(zone); 3242 bucket_drain(zone, bucket); 3243 bucket_free(zone, bucket, udata); 3244 } else { 3245 zdom = &zone->uz_domain[itemdomain]; 3246 zone_put_bucket(zone, zdom, bucket, true); 3247 ZONE_UNLOCK(zone); 3248 } 3249 } else 3250 ZONE_UNLOCK(zone); 3251 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3252 if (bucket == NULL) 3253 goto zfree_item; 3254 critical_enter(); 3255 cpu = curcpu; 3256 cache = &zone->uz_cpu[cpu]; 3257 if (cache->uc_crossbucket == NULL) { 3258 cache->uc_crossbucket = bucket; 3259 goto zfree_start; 3260 } 3261 critical_exit(); 3262 bucket_free(zone, bucket, udata); 3263 goto zfree_restart; 3264 } 3265 #endif 3266 3267 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { 3268 zdom = &zone->uz_domain[domain]; 3269 } else { 3270 domain = 0; 3271 zdom = &zone->uz_domain[0]; 3272 } 3273 3274 /* Can we throw this on the zone full list? */ 3275 if (bucket != NULL) { 3276 CTR3(KTR_UMA, 3277 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3278 zone->uz_name, zone, bucket); 3279 /* ub_cnt is pointing to the last free item */ 3280 KASSERT(bucket->ub_cnt == bucket->ub_entries, 3281 ("uma_zfree: Attempting to insert not full bucket onto the full list.\n")); 3282 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3283 ZONE_UNLOCK(zone); 3284 bucket_drain(zone, bucket); 3285 bucket_free(zone, bucket, udata); 3286 goto zfree_restart; 3287 } else 3288 zone_put_bucket(zone, zdom, bucket, true); 3289 } 3290 3291 /* 3292 * We bump the uz count when the cache size is insufficient to 3293 * handle the working set. 3294 */ 3295 if (lockfail && zone->uz_count < zone->uz_count_max) 3296 zone->uz_count++; 3297 ZONE_UNLOCK(zone); 3298 3299 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3300 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3301 zone->uz_name, zone, bucket); 3302 if (bucket) { 3303 critical_enter(); 3304 cpu = curcpu; 3305 cache = &zone->uz_cpu[cpu]; 3306 if (cache->uc_freebucket == NULL && 3307 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3308 domain == PCPU_GET(domain))) { 3309 cache->uc_freebucket = bucket; 3310 goto zfree_start; 3311 } 3312 /* 3313 * We lost the race, start over. We have to drop our 3314 * critical section to free the bucket. 3315 */ 3316 critical_exit(); 3317 bucket_free(zone, bucket, udata); 3318 goto zfree_restart; 3319 } 3320 3321 /* 3322 * If nothing else caught this, we'll just do an internal free. 3323 */ 3324 zfree_item: 3325 zone_free_item(zone, item, udata, SKIP_DTOR); 3326 } 3327 3328 void 3329 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3330 { 3331 3332 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3333 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3334 3335 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3336 zone->uz_name); 3337 3338 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3339 ("uma_zfree_domain: called with spinlock or critical section held")); 3340 3341 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3342 if (item == NULL) 3343 return; 3344 zone_free_item(zone, item, udata, SKIP_NONE); 3345 } 3346 3347 static void 3348 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 3349 { 3350 uma_keg_t keg; 3351 uma_domain_t dom; 3352 uint8_t freei; 3353 3354 keg = zone->uz_keg; 3355 MPASS(zone->uz_lockptr == &keg->uk_lock); 3356 KEG_LOCK_ASSERT(keg); 3357 MPASS(keg == slab->us_keg); 3358 3359 dom = &keg->uk_domain[slab->us_domain]; 3360 3361 /* Do we need to remove from any lists? */ 3362 if (slab->us_freecount+1 == keg->uk_ipers) { 3363 LIST_REMOVE(slab, us_link); 3364 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3365 } else if (slab->us_freecount == 0) { 3366 LIST_REMOVE(slab, us_link); 3367 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3368 } 3369 3370 /* Slab management. */ 3371 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3372 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3373 slab->us_freecount++; 3374 3375 /* Keg statistics. */ 3376 keg->uk_free++; 3377 } 3378 3379 static void 3380 zone_release(uma_zone_t zone, void **bucket, int cnt) 3381 { 3382 void *item; 3383 uma_slab_t slab; 3384 uma_keg_t keg; 3385 uint8_t *mem; 3386 int i; 3387 3388 keg = zone->uz_keg; 3389 KEG_LOCK(keg); 3390 for (i = 0; i < cnt; i++) { 3391 item = bucket[i]; 3392 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3393 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3394 if (zone->uz_flags & UMA_ZONE_HASH) { 3395 slab = hash_sfind(&keg->uk_hash, mem); 3396 } else { 3397 mem += keg->uk_pgoff; 3398 slab = (uma_slab_t)mem; 3399 } 3400 } else { 3401 slab = vtoslab((vm_offset_t)item); 3402 MPASS(slab->us_keg == keg); 3403 } 3404 slab_free_item(zone, slab, item); 3405 } 3406 KEG_UNLOCK(keg); 3407 } 3408 3409 /* 3410 * Frees a single item to any zone. 3411 * 3412 * Arguments: 3413 * zone The zone to free to 3414 * item The item we're freeing 3415 * udata User supplied data for the dtor 3416 * skip Skip dtors and finis 3417 */ 3418 static void 3419 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3420 { 3421 #ifdef INVARIANTS 3422 bool skipdbg; 3423 3424 skipdbg = uma_dbg_zskip(zone, item); 3425 if (skip == SKIP_NONE && !skipdbg) { 3426 if (zone->uz_flags & UMA_ZONE_MALLOC) 3427 uma_dbg_free(zone, udata, item); 3428 else 3429 uma_dbg_free(zone, NULL, item); 3430 } 3431 3432 if (skip < SKIP_DTOR && zone->uz_dtor != NULL && 3433 (!skipdbg || zone->uz_dtor != trash_dtor || 3434 zone->uz_ctor != trash_ctor)) 3435 #else 3436 if (skip < SKIP_DTOR && zone->uz_dtor != NULL) 3437 #endif 3438 zone->uz_dtor(item, zone->uz_size, udata); 3439 3440 if (skip < SKIP_FINI && zone->uz_fini) 3441 zone->uz_fini(item, zone->uz_size); 3442 3443 zone->uz_release(zone->uz_arg, &item, 1); 3444 3445 if (skip & SKIP_CNT) 3446 return; 3447 3448 counter_u64_add(zone->uz_frees, 1); 3449 3450 if (zone->uz_max_items > 0) { 3451 ZONE_LOCK(zone); 3452 zone->uz_items--; 3453 if (zone->uz_sleepers > 0 && 3454 zone->uz_items < zone->uz_max_items) 3455 wakeup_one(zone); 3456 ZONE_UNLOCK(zone); 3457 } 3458 } 3459 3460 /* See uma.h */ 3461 int 3462 uma_zone_set_max(uma_zone_t zone, int nitems) 3463 { 3464 struct uma_bucket_zone *ubz; 3465 3466 /* 3467 * If limit is very low we may need to limit how 3468 * much items are allowed in CPU caches. 3469 */ 3470 ubz = &bucket_zones[0]; 3471 for (; ubz->ubz_entries != 0; ubz++) 3472 if (ubz->ubz_entries * 2 * mp_ncpus > nitems) 3473 break; 3474 if (ubz == &bucket_zones[0]) 3475 nitems = ubz->ubz_entries * 2 * mp_ncpus; 3476 else 3477 ubz--; 3478 3479 ZONE_LOCK(zone); 3480 zone->uz_count_max = zone->uz_count = ubz->ubz_entries; 3481 if (zone->uz_count_min > zone->uz_count_max) 3482 zone->uz_count_min = zone->uz_count_max; 3483 zone->uz_max_items = nitems; 3484 ZONE_UNLOCK(zone); 3485 3486 return (nitems); 3487 } 3488 3489 /* See uma.h */ 3490 int 3491 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 3492 { 3493 3494 ZONE_LOCK(zone); 3495 zone->uz_bkt_max = nitems; 3496 ZONE_UNLOCK(zone); 3497 3498 return (nitems); 3499 } 3500 3501 /* See uma.h */ 3502 int 3503 uma_zone_get_max(uma_zone_t zone) 3504 { 3505 int nitems; 3506 3507 ZONE_LOCK(zone); 3508 nitems = zone->uz_max_items; 3509 ZONE_UNLOCK(zone); 3510 3511 return (nitems); 3512 } 3513 3514 /* See uma.h */ 3515 void 3516 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3517 { 3518 3519 ZONE_LOCK(zone); 3520 zone->uz_warning = warning; 3521 ZONE_UNLOCK(zone); 3522 } 3523 3524 /* See uma.h */ 3525 void 3526 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3527 { 3528 3529 ZONE_LOCK(zone); 3530 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3531 ZONE_UNLOCK(zone); 3532 } 3533 3534 /* See uma.h */ 3535 int 3536 uma_zone_get_cur(uma_zone_t zone) 3537 { 3538 int64_t nitems; 3539 u_int i; 3540 3541 ZONE_LOCK(zone); 3542 nitems = counter_u64_fetch(zone->uz_allocs) - 3543 counter_u64_fetch(zone->uz_frees); 3544 CPU_FOREACH(i) { 3545 /* 3546 * See the comment in uma_vm_zone_stats() regarding the 3547 * safety of accessing the per-cpu caches. With the zone lock 3548 * held, it is safe, but can potentially result in stale data. 3549 */ 3550 nitems += zone->uz_cpu[i].uc_allocs - 3551 zone->uz_cpu[i].uc_frees; 3552 } 3553 ZONE_UNLOCK(zone); 3554 3555 return (nitems < 0 ? 0 : nitems); 3556 } 3557 3558 /* See uma.h */ 3559 void 3560 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3561 { 3562 uma_keg_t keg; 3563 3564 KEG_GET(zone, keg); 3565 KEG_LOCK(keg); 3566 KASSERT(keg->uk_pages == 0, 3567 ("uma_zone_set_init on non-empty keg")); 3568 keg->uk_init = uminit; 3569 KEG_UNLOCK(keg); 3570 } 3571 3572 /* See uma.h */ 3573 void 3574 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3575 { 3576 uma_keg_t keg; 3577 3578 KEG_GET(zone, keg); 3579 KEG_LOCK(keg); 3580 KASSERT(keg->uk_pages == 0, 3581 ("uma_zone_set_fini on non-empty keg")); 3582 keg->uk_fini = fini; 3583 KEG_UNLOCK(keg); 3584 } 3585 3586 /* See uma.h */ 3587 void 3588 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3589 { 3590 3591 ZONE_LOCK(zone); 3592 KASSERT(zone->uz_keg->uk_pages == 0, 3593 ("uma_zone_set_zinit on non-empty keg")); 3594 zone->uz_init = zinit; 3595 ZONE_UNLOCK(zone); 3596 } 3597 3598 /* See uma.h */ 3599 void 3600 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3601 { 3602 3603 ZONE_LOCK(zone); 3604 KASSERT(zone->uz_keg->uk_pages == 0, 3605 ("uma_zone_set_zfini on non-empty keg")); 3606 zone->uz_fini = zfini; 3607 ZONE_UNLOCK(zone); 3608 } 3609 3610 /* See uma.h */ 3611 /* XXX uk_freef is not actually used with the zone locked */ 3612 void 3613 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3614 { 3615 uma_keg_t keg; 3616 3617 KEG_GET(zone, keg); 3618 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3619 KEG_LOCK(keg); 3620 keg->uk_freef = freef; 3621 KEG_UNLOCK(keg); 3622 } 3623 3624 /* See uma.h */ 3625 /* XXX uk_allocf is not actually used with the zone locked */ 3626 void 3627 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3628 { 3629 uma_keg_t keg; 3630 3631 KEG_GET(zone, keg); 3632 KEG_LOCK(keg); 3633 keg->uk_allocf = allocf; 3634 KEG_UNLOCK(keg); 3635 } 3636 3637 /* See uma.h */ 3638 void 3639 uma_zone_reserve(uma_zone_t zone, int items) 3640 { 3641 uma_keg_t keg; 3642 3643 KEG_GET(zone, keg); 3644 KEG_LOCK(keg); 3645 keg->uk_reserve = items; 3646 KEG_UNLOCK(keg); 3647 } 3648 3649 /* See uma.h */ 3650 int 3651 uma_zone_reserve_kva(uma_zone_t zone, int count) 3652 { 3653 uma_keg_t keg; 3654 vm_offset_t kva; 3655 u_int pages; 3656 3657 KEG_GET(zone, keg); 3658 3659 pages = count / keg->uk_ipers; 3660 if (pages * keg->uk_ipers < count) 3661 pages++; 3662 pages *= keg->uk_ppera; 3663 3664 #ifdef UMA_MD_SMALL_ALLOC 3665 if (keg->uk_ppera > 1) { 3666 #else 3667 if (1) { 3668 #endif 3669 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3670 if (kva == 0) 3671 return (0); 3672 } else 3673 kva = 0; 3674 3675 ZONE_LOCK(zone); 3676 MPASS(keg->uk_kva == 0); 3677 keg->uk_kva = kva; 3678 keg->uk_offset = 0; 3679 zone->uz_max_items = pages * keg->uk_ipers; 3680 #ifdef UMA_MD_SMALL_ALLOC 3681 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3682 #else 3683 keg->uk_allocf = noobj_alloc; 3684 #endif 3685 keg->uk_flags |= UMA_ZONE_NOFREE; 3686 ZONE_UNLOCK(zone); 3687 3688 return (1); 3689 } 3690 3691 /* See uma.h */ 3692 void 3693 uma_prealloc(uma_zone_t zone, int items) 3694 { 3695 struct vm_domainset_iter di; 3696 uma_domain_t dom; 3697 uma_slab_t slab; 3698 uma_keg_t keg; 3699 int aflags, domain, slabs; 3700 3701 KEG_GET(zone, keg); 3702 KEG_LOCK(keg); 3703 slabs = items / keg->uk_ipers; 3704 if (slabs * keg->uk_ipers < items) 3705 slabs++; 3706 while (slabs-- > 0) { 3707 aflags = M_NOWAIT; 3708 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3709 &aflags); 3710 for (;;) { 3711 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 3712 aflags); 3713 if (slab != NULL) { 3714 MPASS(slab->us_keg == keg); 3715 dom = &keg->uk_domain[slab->us_domain]; 3716 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 3717 us_link); 3718 break; 3719 } 3720 KEG_LOCK(keg); 3721 if (vm_domainset_iter_policy(&di, &domain) != 0) { 3722 KEG_UNLOCK(keg); 3723 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3724 KEG_LOCK(keg); 3725 } 3726 } 3727 } 3728 KEG_UNLOCK(keg); 3729 } 3730 3731 /* See uma.h */ 3732 void 3733 uma_reclaim(int req) 3734 { 3735 3736 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3737 sx_xlock(&uma_reclaim_lock); 3738 bucket_enable(); 3739 3740 switch (req) { 3741 case UMA_RECLAIM_TRIM: 3742 zone_foreach(zone_trim); 3743 break; 3744 case UMA_RECLAIM_DRAIN: 3745 case UMA_RECLAIM_DRAIN_CPU: 3746 zone_foreach(zone_drain); 3747 if (req == UMA_RECLAIM_DRAIN_CPU) { 3748 pcpu_cache_drain_safe(NULL); 3749 zone_foreach(zone_drain); 3750 } 3751 break; 3752 default: 3753 panic("unhandled reclamation request %d", req); 3754 } 3755 3756 /* 3757 * Some slabs may have been freed but this zone will be visited early 3758 * we visit again so that we can free pages that are empty once other 3759 * zones are drained. We have to do the same for buckets. 3760 */ 3761 zone_drain(slabzone); 3762 bucket_zone_drain(); 3763 sx_xunlock(&uma_reclaim_lock); 3764 } 3765 3766 static volatile int uma_reclaim_needed; 3767 3768 void 3769 uma_reclaim_wakeup(void) 3770 { 3771 3772 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3773 wakeup(uma_reclaim); 3774 } 3775 3776 void 3777 uma_reclaim_worker(void *arg __unused) 3778 { 3779 3780 for (;;) { 3781 sx_xlock(&uma_reclaim_lock); 3782 while (atomic_load_int(&uma_reclaim_needed) == 0) 3783 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 3784 hz); 3785 sx_xunlock(&uma_reclaim_lock); 3786 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3787 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 3788 atomic_store_int(&uma_reclaim_needed, 0); 3789 /* Don't fire more than once per-second. */ 3790 pause("umarclslp", hz); 3791 } 3792 } 3793 3794 /* See uma.h */ 3795 void 3796 uma_zone_reclaim(uma_zone_t zone, int req) 3797 { 3798 3799 switch (req) { 3800 case UMA_RECLAIM_TRIM: 3801 zone_trim(zone); 3802 break; 3803 case UMA_RECLAIM_DRAIN: 3804 zone_drain(zone); 3805 break; 3806 case UMA_RECLAIM_DRAIN_CPU: 3807 pcpu_cache_drain_safe(zone); 3808 zone_drain(zone); 3809 break; 3810 default: 3811 panic("unhandled reclamation request %d", req); 3812 } 3813 } 3814 3815 /* See uma.h */ 3816 int 3817 uma_zone_exhausted(uma_zone_t zone) 3818 { 3819 int full; 3820 3821 ZONE_LOCK(zone); 3822 full = zone->uz_sleepers > 0; 3823 ZONE_UNLOCK(zone); 3824 return (full); 3825 } 3826 3827 int 3828 uma_zone_exhausted_nolock(uma_zone_t zone) 3829 { 3830 return (zone->uz_sleepers > 0); 3831 } 3832 3833 void * 3834 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3835 { 3836 struct domainset *policy; 3837 vm_offset_t addr; 3838 uma_slab_t slab; 3839 3840 if (domain != UMA_ANYDOMAIN) { 3841 /* avoid allocs targeting empty domains */ 3842 if (VM_DOMAIN_EMPTY(domain)) 3843 domain = UMA_ANYDOMAIN; 3844 } 3845 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3846 if (slab == NULL) 3847 return (NULL); 3848 policy = (domain == UMA_ANYDOMAIN) ? DOMAINSET_RR() : 3849 DOMAINSET_FIXED(domain); 3850 addr = kmem_malloc_domainset(policy, size, wait); 3851 if (addr != 0) { 3852 vsetslab(addr, slab); 3853 slab->us_data = (void *)addr; 3854 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3855 slab->us_size = size; 3856 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3857 pmap_kextract(addr))); 3858 uma_total_inc(size); 3859 } else { 3860 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3861 } 3862 3863 return ((void *)addr); 3864 } 3865 3866 void * 3867 uma_large_malloc(vm_size_t size, int wait) 3868 { 3869 3870 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3871 } 3872 3873 void 3874 uma_large_free(uma_slab_t slab) 3875 { 3876 3877 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3878 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3879 kmem_free((vm_offset_t)slab->us_data, slab->us_size); 3880 uma_total_dec(slab->us_size); 3881 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3882 } 3883 3884 static void 3885 uma_zero_item(void *item, uma_zone_t zone) 3886 { 3887 3888 bzero(item, zone->uz_size); 3889 } 3890 3891 unsigned long 3892 uma_limit(void) 3893 { 3894 3895 return (uma_kmem_limit); 3896 } 3897 3898 void 3899 uma_set_limit(unsigned long limit) 3900 { 3901 3902 uma_kmem_limit = limit; 3903 } 3904 3905 unsigned long 3906 uma_size(void) 3907 { 3908 3909 return (atomic_load_long(&uma_kmem_total)); 3910 } 3911 3912 long 3913 uma_avail(void) 3914 { 3915 3916 return (uma_kmem_limit - uma_size()); 3917 } 3918 3919 void 3920 uma_print_stats(void) 3921 { 3922 zone_foreach(uma_print_zone); 3923 } 3924 3925 static void 3926 slab_print(uma_slab_t slab) 3927 { 3928 printf("slab: keg %p, data %p, freecount %d\n", 3929 slab->us_keg, slab->us_data, slab->us_freecount); 3930 } 3931 3932 static void 3933 cache_print(uma_cache_t cache) 3934 { 3935 printf("alloc: %p(%d), free: %p(%d), cross: %p(%d)j\n", 3936 cache->uc_allocbucket, 3937 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3938 cache->uc_freebucket, 3939 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0, 3940 cache->uc_crossbucket, 3941 cache->uc_crossbucket?cache->uc_crossbucket->ub_cnt:0); 3942 } 3943 3944 static void 3945 uma_print_keg(uma_keg_t keg) 3946 { 3947 uma_domain_t dom; 3948 uma_slab_t slab; 3949 int i; 3950 3951 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3952 "out %d free %d\n", 3953 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3954 keg->uk_ipers, keg->uk_ppera, 3955 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3956 keg->uk_free); 3957 for (i = 0; i < vm_ndomains; i++) { 3958 dom = &keg->uk_domain[i]; 3959 printf("Part slabs:\n"); 3960 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3961 slab_print(slab); 3962 printf("Free slabs:\n"); 3963 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3964 slab_print(slab); 3965 printf("Full slabs:\n"); 3966 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3967 slab_print(slab); 3968 } 3969 } 3970 3971 void 3972 uma_print_zone(uma_zone_t zone) 3973 { 3974 uma_cache_t cache; 3975 int i; 3976 3977 printf("zone: %s(%p) size %d maxitems %ju flags %#x\n", 3978 zone->uz_name, zone, zone->uz_size, (uintmax_t)zone->uz_max_items, 3979 zone->uz_flags); 3980 if (zone->uz_lockptr != &zone->uz_lock) 3981 uma_print_keg(zone->uz_keg); 3982 CPU_FOREACH(i) { 3983 cache = &zone->uz_cpu[i]; 3984 printf("CPU %d Cache:\n", i); 3985 cache_print(cache); 3986 } 3987 } 3988 3989 #ifdef DDB 3990 /* 3991 * Generate statistics across both the zone and its per-cpu cache's. Return 3992 * desired statistics if the pointer is non-NULL for that statistic. 3993 * 3994 * Note: does not update the zone statistics, as it can't safely clear the 3995 * per-CPU cache statistic. 3996 * 3997 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3998 * safe from off-CPU; we should modify the caches to track this information 3999 * directly so that we don't have to. 4000 */ 4001 static void 4002 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4003 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4004 { 4005 uma_cache_t cache; 4006 uint64_t allocs, frees, sleeps, xdomain; 4007 int cachefree, cpu; 4008 4009 allocs = frees = sleeps = xdomain = 0; 4010 cachefree = 0; 4011 CPU_FOREACH(cpu) { 4012 cache = &z->uz_cpu[cpu]; 4013 if (cache->uc_allocbucket != NULL) 4014 cachefree += cache->uc_allocbucket->ub_cnt; 4015 if (cache->uc_freebucket != NULL) 4016 cachefree += cache->uc_freebucket->ub_cnt; 4017 if (cache->uc_crossbucket != NULL) { 4018 xdomain += cache->uc_crossbucket->ub_cnt; 4019 cachefree += cache->uc_crossbucket->ub_cnt; 4020 } 4021 allocs += cache->uc_allocs; 4022 frees += cache->uc_frees; 4023 } 4024 allocs += counter_u64_fetch(z->uz_allocs); 4025 frees += counter_u64_fetch(z->uz_frees); 4026 sleeps += z->uz_sleeps; 4027 xdomain += z->uz_xdomain; 4028 if (cachefreep != NULL) 4029 *cachefreep = cachefree; 4030 if (allocsp != NULL) 4031 *allocsp = allocs; 4032 if (freesp != NULL) 4033 *freesp = frees; 4034 if (sleepsp != NULL) 4035 *sleepsp = sleeps; 4036 if (xdomainp != NULL) 4037 *xdomainp = xdomain; 4038 } 4039 #endif /* DDB */ 4040 4041 static int 4042 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4043 { 4044 uma_keg_t kz; 4045 uma_zone_t z; 4046 int count; 4047 4048 count = 0; 4049 rw_rlock(&uma_rwlock); 4050 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4051 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4052 count++; 4053 } 4054 LIST_FOREACH(z, &uma_cachezones, uz_link) 4055 count++; 4056 4057 rw_runlock(&uma_rwlock); 4058 return (sysctl_handle_int(oidp, &count, 0, req)); 4059 } 4060 4061 static void 4062 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4063 struct uma_percpu_stat *ups, bool internal) 4064 { 4065 uma_zone_domain_t zdom; 4066 uma_bucket_t bucket; 4067 uma_cache_t cache; 4068 int i; 4069 4070 4071 for (i = 0; i < vm_ndomains; i++) { 4072 zdom = &z->uz_domain[i]; 4073 uth->uth_zone_free += zdom->uzd_nitems; 4074 } 4075 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4076 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4077 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4078 uth->uth_sleeps = z->uz_sleeps; 4079 uth->uth_xdomain = z->uz_xdomain; 4080 4081 /* 4082 * While it is not normally safe to access the cache bucket pointers 4083 * while not on the CPU that owns the cache, we only allow the pointers 4084 * to be exchanged without the zone lock held, not invalidated, so 4085 * accept the possible race associated with bucket exchange during 4086 * monitoring. Use atomic_load_ptr() to ensure that the bucket pointers 4087 * are loaded only once. 4088 */ 4089 for (i = 0; i < mp_maxid + 1; i++) { 4090 bzero(&ups[i], sizeof(*ups)); 4091 if (internal || CPU_ABSENT(i)) 4092 continue; 4093 cache = &z->uz_cpu[i]; 4094 bucket = (uma_bucket_t)atomic_load_ptr(&cache->uc_allocbucket); 4095 if (bucket != NULL) 4096 ups[i].ups_cache_free += bucket->ub_cnt; 4097 bucket = (uma_bucket_t)atomic_load_ptr(&cache->uc_freebucket); 4098 if (bucket != NULL) 4099 ups[i].ups_cache_free += bucket->ub_cnt; 4100 bucket = (uma_bucket_t)atomic_load_ptr(&cache->uc_crossbucket); 4101 if (bucket != NULL) 4102 ups[i].ups_cache_free += bucket->ub_cnt; 4103 ups[i].ups_allocs = cache->uc_allocs; 4104 ups[i].ups_frees = cache->uc_frees; 4105 } 4106 } 4107 4108 static int 4109 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 4110 { 4111 struct uma_stream_header ush; 4112 struct uma_type_header uth; 4113 struct uma_percpu_stat *ups; 4114 struct sbuf sbuf; 4115 uma_keg_t kz; 4116 uma_zone_t z; 4117 int count, error, i; 4118 4119 error = sysctl_wire_old_buffer(req, 0); 4120 if (error != 0) 4121 return (error); 4122 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 4123 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 4124 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 4125 4126 count = 0; 4127 rw_rlock(&uma_rwlock); 4128 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4129 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4130 count++; 4131 } 4132 4133 LIST_FOREACH(z, &uma_cachezones, uz_link) 4134 count++; 4135 4136 /* 4137 * Insert stream header. 4138 */ 4139 bzero(&ush, sizeof(ush)); 4140 ush.ush_version = UMA_STREAM_VERSION; 4141 ush.ush_maxcpus = (mp_maxid + 1); 4142 ush.ush_count = count; 4143 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 4144 4145 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4146 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4147 bzero(&uth, sizeof(uth)); 4148 ZONE_LOCK(z); 4149 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4150 uth.uth_align = kz->uk_align; 4151 uth.uth_size = kz->uk_size; 4152 uth.uth_rsize = kz->uk_rsize; 4153 if (z->uz_max_items > 0) 4154 uth.uth_pages = (z->uz_items / kz->uk_ipers) * 4155 kz->uk_ppera; 4156 else 4157 uth.uth_pages = kz->uk_pages; 4158 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 4159 kz->uk_ppera; 4160 uth.uth_limit = z->uz_max_items; 4161 uth.uth_keg_free = z->uz_keg->uk_free; 4162 4163 /* 4164 * A zone is secondary is it is not the first entry 4165 * on the keg's zone list. 4166 */ 4167 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 4168 (LIST_FIRST(&kz->uk_zones) != z)) 4169 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 4170 uma_vm_zone_stats(&uth, z, &sbuf, ups, 4171 kz->uk_flags & UMA_ZFLAG_INTERNAL); 4172 ZONE_UNLOCK(z); 4173 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4174 for (i = 0; i < mp_maxid + 1; i++) 4175 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4176 } 4177 } 4178 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4179 bzero(&uth, sizeof(uth)); 4180 ZONE_LOCK(z); 4181 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4182 uth.uth_size = z->uz_size; 4183 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 4184 ZONE_UNLOCK(z); 4185 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4186 for (i = 0; i < mp_maxid + 1; i++) 4187 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4188 } 4189 4190 rw_runlock(&uma_rwlock); 4191 error = sbuf_finish(&sbuf); 4192 sbuf_delete(&sbuf); 4193 free(ups, M_TEMP); 4194 return (error); 4195 } 4196 4197 int 4198 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4199 { 4200 uma_zone_t zone = *(uma_zone_t *)arg1; 4201 int error, max; 4202 4203 max = uma_zone_get_max(zone); 4204 error = sysctl_handle_int(oidp, &max, 0, req); 4205 if (error || !req->newptr) 4206 return (error); 4207 4208 uma_zone_set_max(zone, max); 4209 4210 return (0); 4211 } 4212 4213 int 4214 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4215 { 4216 uma_zone_t zone = *(uma_zone_t *)arg1; 4217 int cur; 4218 4219 cur = uma_zone_get_cur(zone); 4220 return (sysctl_handle_int(oidp, &cur, 0, req)); 4221 } 4222 4223 #ifdef INVARIANTS 4224 static uma_slab_t 4225 uma_dbg_getslab(uma_zone_t zone, void *item) 4226 { 4227 uma_slab_t slab; 4228 uma_keg_t keg; 4229 uint8_t *mem; 4230 4231 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4232 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 4233 slab = vtoslab((vm_offset_t)mem); 4234 } else { 4235 /* 4236 * It is safe to return the slab here even though the 4237 * zone is unlocked because the item's allocation state 4238 * essentially holds a reference. 4239 */ 4240 if (zone->uz_lockptr == &zone->uz_lock) 4241 return (NULL); 4242 ZONE_LOCK(zone); 4243 keg = zone->uz_keg; 4244 if (keg->uk_flags & UMA_ZONE_HASH) 4245 slab = hash_sfind(&keg->uk_hash, mem); 4246 else 4247 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4248 ZONE_UNLOCK(zone); 4249 } 4250 4251 return (slab); 4252 } 4253 4254 static bool 4255 uma_dbg_zskip(uma_zone_t zone, void *mem) 4256 { 4257 4258 if (zone->uz_lockptr == &zone->uz_lock) 4259 return (true); 4260 4261 return (uma_dbg_kskip(zone->uz_keg, mem)); 4262 } 4263 4264 static bool 4265 uma_dbg_kskip(uma_keg_t keg, void *mem) 4266 { 4267 uintptr_t idx; 4268 4269 if (dbg_divisor == 0) 4270 return (true); 4271 4272 if (dbg_divisor == 1) 4273 return (false); 4274 4275 idx = (uintptr_t)mem >> PAGE_SHIFT; 4276 if (keg->uk_ipers > 1) { 4277 idx *= keg->uk_ipers; 4278 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4279 } 4280 4281 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4282 counter_u64_add(uma_skip_cnt, 1); 4283 return (true); 4284 } 4285 counter_u64_add(uma_dbg_cnt, 1); 4286 4287 return (false); 4288 } 4289 4290 /* 4291 * Set up the slab's freei data such that uma_dbg_free can function. 4292 * 4293 */ 4294 static void 4295 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4296 { 4297 uma_keg_t keg; 4298 int freei; 4299 4300 if (slab == NULL) { 4301 slab = uma_dbg_getslab(zone, item); 4302 if (slab == NULL) 4303 panic("uma: item %p did not belong to zone %s\n", 4304 item, zone->uz_name); 4305 } 4306 keg = slab->us_keg; 4307 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4308 4309 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4310 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4311 item, zone, zone->uz_name, slab, freei); 4312 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4313 4314 return; 4315 } 4316 4317 /* 4318 * Verifies freed addresses. Checks for alignment, valid slab membership 4319 * and duplicate frees. 4320 * 4321 */ 4322 static void 4323 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4324 { 4325 uma_keg_t keg; 4326 int freei; 4327 4328 if (slab == NULL) { 4329 slab = uma_dbg_getslab(zone, item); 4330 if (slab == NULL) 4331 panic("uma: Freed item %p did not belong to zone %s\n", 4332 item, zone->uz_name); 4333 } 4334 keg = slab->us_keg; 4335 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4336 4337 if (freei >= keg->uk_ipers) 4338 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4339 item, zone, zone->uz_name, slab, freei); 4340 4341 if (((freei * keg->uk_rsize) + slab->us_data) != item) 4342 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4343 item, zone, zone->uz_name, slab, freei); 4344 4345 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4346 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4347 item, zone, zone->uz_name, slab, freei); 4348 4349 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4350 } 4351 #endif /* INVARIANTS */ 4352 4353 #ifdef DDB 4354 static int64_t 4355 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 4356 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 4357 { 4358 uint64_t frees; 4359 int i; 4360 4361 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4362 *allocs = counter_u64_fetch(z->uz_allocs); 4363 frees = counter_u64_fetch(z->uz_frees); 4364 *sleeps = z->uz_sleeps; 4365 *cachefree = 0; 4366 *xdomain = 0; 4367 } else 4368 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 4369 xdomain); 4370 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4371 (LIST_FIRST(&kz->uk_zones) != z))) 4372 *cachefree += kz->uk_free; 4373 for (i = 0; i < vm_ndomains; i++) 4374 *cachefree += z->uz_domain[i].uzd_nitems; 4375 *used = *allocs - frees; 4376 return (((int64_t)*used + *cachefree) * kz->uk_size); 4377 } 4378 4379 DB_SHOW_COMMAND(uma, db_show_uma) 4380 { 4381 const char *fmt_hdr, *fmt_entry; 4382 uma_keg_t kz; 4383 uma_zone_t z; 4384 uint64_t allocs, used, sleeps, xdomain; 4385 long cachefree; 4386 /* variables for sorting */ 4387 uma_keg_t cur_keg; 4388 uma_zone_t cur_zone, last_zone; 4389 int64_t cur_size, last_size, size; 4390 int ties; 4391 4392 /* /i option produces machine-parseable CSV output */ 4393 if (modif[0] == 'i') { 4394 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 4395 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 4396 } else { 4397 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 4398 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 4399 } 4400 4401 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 4402 "Sleeps", "Bucket", "Total Mem", "XFree"); 4403 4404 /* Sort the zones with largest size first. */ 4405 last_zone = NULL; 4406 last_size = INT64_MAX; 4407 for (;;) { 4408 cur_zone = NULL; 4409 cur_size = -1; 4410 ties = 0; 4411 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4412 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4413 /* 4414 * In the case of size ties, print out zones 4415 * in the order they are encountered. That is, 4416 * when we encounter the most recently output 4417 * zone, we have already printed all preceding 4418 * ties, and we must print all following ties. 4419 */ 4420 if (z == last_zone) { 4421 ties = 1; 4422 continue; 4423 } 4424 size = get_uma_stats(kz, z, &allocs, &used, 4425 &sleeps, &cachefree, &xdomain); 4426 if (size > cur_size && size < last_size + ties) 4427 { 4428 cur_size = size; 4429 cur_zone = z; 4430 cur_keg = kz; 4431 } 4432 } 4433 } 4434 if (cur_zone == NULL) 4435 break; 4436 4437 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 4438 &sleeps, &cachefree, &xdomain); 4439 db_printf(fmt_entry, cur_zone->uz_name, 4440 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 4441 (uintmax_t)allocs, (uintmax_t)sleeps, 4442 (unsigned)cur_zone->uz_count, (intmax_t)size, xdomain); 4443 4444 if (db_pager_quit) 4445 return; 4446 last_zone = cur_zone; 4447 last_size = cur_size; 4448 } 4449 } 4450 4451 DB_SHOW_COMMAND(umacache, db_show_umacache) 4452 { 4453 uma_zone_t z; 4454 uint64_t allocs, frees; 4455 long cachefree; 4456 int i; 4457 4458 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4459 "Requests", "Bucket"); 4460 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4461 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 4462 for (i = 0; i < vm_ndomains; i++) 4463 cachefree += z->uz_domain[i].uzd_nitems; 4464 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 4465 z->uz_name, (uintmax_t)z->uz_size, 4466 (intmax_t)(allocs - frees), cachefree, 4467 (uintmax_t)allocs, z->uz_count); 4468 if (db_pager_quit) 4469 return; 4470 } 4471 } 4472 #endif /* DDB */ 4473