1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/taskqueue.h> 81 #include <sys/vmmeter.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_domainset.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_param.h> 89 #include <vm/vm_phys.h> 90 #include <vm/vm_pagequeue.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/uma.h> 95 #include <vm/uma_int.h> 96 #include <vm/uma_dbg.h> 97 98 #include <ddb/ddb.h> 99 100 #ifdef DEBUG_MEMGUARD 101 #include <vm/memguard.h> 102 #endif 103 104 #include <machine/md_var.h> 105 106 /* 107 * This is the zone and keg from which all zones are spawned. 108 */ 109 static uma_zone_t kegs; 110 static uma_zone_t zones; 111 112 /* 113 * These are the two zones from which all offpage uma_slab_ts are allocated. 114 * 115 * One zone is for slab headers that can represent a larger number of items, 116 * making the slabs themselves more efficient, and the other zone is for 117 * headers that are smaller and represent fewer items, making the headers more 118 * efficient. 119 */ 120 #define SLABZONE_SIZE(setsize) \ 121 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 122 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 123 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 124 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 125 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 126 static uma_zone_t slabzones[2]; 127 128 /* 129 * The initial hash tables come out of this zone so they can be allocated 130 * prior to malloc coming up. 131 */ 132 static uma_zone_t hashzone; 133 134 /* The boot-time adjusted value for cache line alignment. */ 135 int uma_align_cache = 64 - 1; 136 137 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 138 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 139 140 /* 141 * Are we allowed to allocate buckets? 142 */ 143 static int bucketdisable = 1; 144 145 /* Linked list of all kegs in the system */ 146 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 147 148 /* Linked list of all cache-only zones in the system */ 149 static LIST_HEAD(,uma_zone) uma_cachezones = 150 LIST_HEAD_INITIALIZER(uma_cachezones); 151 152 /* This RW lock protects the keg list */ 153 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 154 155 /* 156 * First available virual address for boot time allocations. 157 */ 158 static vm_offset_t bootstart; 159 static vm_offset_t bootmem; 160 161 static struct sx uma_reclaim_lock; 162 163 /* 164 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 165 * allocations don't trigger a wakeup of the reclaim thread. 166 */ 167 unsigned long uma_kmem_limit = LONG_MAX; 168 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 169 "UMA kernel memory soft limit"); 170 unsigned long uma_kmem_total; 171 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 172 "UMA kernel memory usage"); 173 174 /* Is the VM done starting up? */ 175 static enum { 176 BOOT_COLD, 177 BOOT_KVA, 178 BOOT_RUNNING, 179 BOOT_SHUTDOWN, 180 } booted = BOOT_COLD; 181 182 /* 183 * This is the handle used to schedule events that need to happen 184 * outside of the allocation fast path. 185 */ 186 static struct callout uma_callout; 187 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 188 189 /* 190 * This structure is passed as the zone ctor arg so that I don't have to create 191 * a special allocation function just for zones. 192 */ 193 struct uma_zctor_args { 194 const char *name; 195 size_t size; 196 uma_ctor ctor; 197 uma_dtor dtor; 198 uma_init uminit; 199 uma_fini fini; 200 uma_import import; 201 uma_release release; 202 void *arg; 203 uma_keg_t keg; 204 int align; 205 uint32_t flags; 206 }; 207 208 struct uma_kctor_args { 209 uma_zone_t zone; 210 size_t size; 211 uma_init uminit; 212 uma_fini fini; 213 int align; 214 uint32_t flags; 215 }; 216 217 struct uma_bucket_zone { 218 uma_zone_t ubz_zone; 219 char *ubz_name; 220 int ubz_entries; /* Number of items it can hold. */ 221 int ubz_maxsize; /* Maximum allocation size per-item. */ 222 }; 223 224 /* 225 * Compute the actual number of bucket entries to pack them in power 226 * of two sizes for more efficient space utilization. 227 */ 228 #define BUCKET_SIZE(n) \ 229 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 230 231 #define BUCKET_MAX BUCKET_SIZE(256) 232 #define BUCKET_MIN BUCKET_SIZE(4) 233 234 struct uma_bucket_zone bucket_zones[] = { 235 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 236 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 237 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 238 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 239 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 240 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 241 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 242 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 243 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 244 { NULL, NULL, 0} 245 }; 246 247 /* 248 * Flags and enumerations to be passed to internal functions. 249 */ 250 enum zfreeskip { 251 SKIP_NONE = 0, 252 SKIP_CNT = 0x00000001, 253 SKIP_DTOR = 0x00010000, 254 SKIP_FINI = 0x00020000, 255 }; 256 257 /* Prototypes.. */ 258 259 void uma_startup1(vm_offset_t); 260 void uma_startup2(void); 261 262 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 263 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 264 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 265 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 266 static void page_free(void *, vm_size_t, uint8_t); 267 static void pcpu_page_free(void *, vm_size_t, uint8_t); 268 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 269 static void cache_drain(uma_zone_t); 270 static void bucket_drain(uma_zone_t, uma_bucket_t); 271 static void bucket_cache_reclaim(uma_zone_t zone, bool); 272 static int keg_ctor(void *, int, void *, int); 273 static void keg_dtor(void *, int, void *); 274 static int zone_ctor(void *, int, void *, int); 275 static void zone_dtor(void *, int, void *); 276 static int zero_init(void *, int, int); 277 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 278 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 279 static void zone_timeout(uma_zone_t zone, void *); 280 static int hash_alloc(struct uma_hash *, u_int); 281 static int hash_expand(struct uma_hash *, struct uma_hash *); 282 static void hash_free(struct uma_hash *hash); 283 static void uma_timeout(void *); 284 static void uma_startup3(void); 285 static void uma_shutdown(void); 286 static void *zone_alloc_item(uma_zone_t, void *, int, int); 287 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 288 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 289 static void zone_free_limit(uma_zone_t zone, int count); 290 static void bucket_enable(void); 291 static void bucket_init(void); 292 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 293 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 294 static void bucket_zone_drain(void); 295 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 296 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 297 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 298 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 299 uma_fini fini, int align, uint32_t flags); 300 static int zone_import(void *, void **, int, int, int); 301 static void zone_release(void *, void **, int); 302 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 303 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 304 305 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 306 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 307 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 308 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 309 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 310 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 311 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 312 313 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 314 315 #ifdef INVARIANTS 316 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 317 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 318 319 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 320 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 321 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 322 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 323 324 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 325 "Memory allocation debugging"); 326 327 static u_int dbg_divisor = 1; 328 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 329 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 330 "Debug & thrash every this item in memory allocator"); 331 332 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 333 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 334 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 335 &uma_dbg_cnt, "memory items debugged"); 336 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 337 &uma_skip_cnt, "memory items skipped, not debugged"); 338 #endif 339 340 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 341 342 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW, 0, "Universal Memory Allocator"); 343 344 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 345 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 346 347 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 348 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 349 350 static int zone_warnings = 1; 351 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 352 "Warn when UMA zones becomes full"); 353 354 /* 355 * Select the slab zone for an offpage slab with the given maximum item count. 356 */ 357 static inline uma_zone_t 358 slabzone(int ipers) 359 { 360 361 return (slabzones[ipers > SLABZONE0_SETSIZE]); 362 } 363 364 /* 365 * This routine checks to see whether or not it's safe to enable buckets. 366 */ 367 static void 368 bucket_enable(void) 369 { 370 371 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 372 bucketdisable = vm_page_count_min(); 373 } 374 375 /* 376 * Initialize bucket_zones, the array of zones of buckets of various sizes. 377 * 378 * For each zone, calculate the memory required for each bucket, consisting 379 * of the header and an array of pointers. 380 */ 381 static void 382 bucket_init(void) 383 { 384 struct uma_bucket_zone *ubz; 385 int size; 386 387 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 388 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 389 size += sizeof(void *) * ubz->ubz_entries; 390 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 391 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 392 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 393 UMA_ZONE_FIRSTTOUCH); 394 } 395 } 396 397 /* 398 * Given a desired number of entries for a bucket, return the zone from which 399 * to allocate the bucket. 400 */ 401 static struct uma_bucket_zone * 402 bucket_zone_lookup(int entries) 403 { 404 struct uma_bucket_zone *ubz; 405 406 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 407 if (ubz->ubz_entries >= entries) 408 return (ubz); 409 ubz--; 410 return (ubz); 411 } 412 413 static struct uma_bucket_zone * 414 bucket_zone_max(uma_zone_t zone, int nitems) 415 { 416 struct uma_bucket_zone *ubz; 417 int bpcpu; 418 419 bpcpu = 2; 420 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 421 /* Count the cross-domain bucket. */ 422 bpcpu++; 423 424 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 425 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 426 break; 427 if (ubz == &bucket_zones[0]) 428 ubz = NULL; 429 else 430 ubz--; 431 return (ubz); 432 } 433 434 static int 435 bucket_select(int size) 436 { 437 struct uma_bucket_zone *ubz; 438 439 ubz = &bucket_zones[0]; 440 if (size > ubz->ubz_maxsize) 441 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 442 443 for (; ubz->ubz_entries != 0; ubz++) 444 if (ubz->ubz_maxsize < size) 445 break; 446 ubz--; 447 return (ubz->ubz_entries); 448 } 449 450 static uma_bucket_t 451 bucket_alloc(uma_zone_t zone, void *udata, int flags) 452 { 453 struct uma_bucket_zone *ubz; 454 uma_bucket_t bucket; 455 456 /* 457 * Don't allocate buckets in low memory situations. 458 */ 459 if (bucketdisable) 460 return (NULL); 461 462 /* 463 * To limit bucket recursion we store the original zone flags 464 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 465 * NOVM flag to persist even through deep recursions. We also 466 * store ZFLAG_BUCKET once we have recursed attempting to allocate 467 * a bucket for a bucket zone so we do not allow infinite bucket 468 * recursion. This cookie will even persist to frees of unused 469 * buckets via the allocation path or bucket allocations in the 470 * free path. 471 */ 472 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 473 udata = (void *)(uintptr_t)zone->uz_flags; 474 else { 475 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 476 return (NULL); 477 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 478 } 479 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 480 flags |= M_NOVM; 481 ubz = bucket_zone_lookup(zone->uz_bucket_size); 482 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 483 ubz++; 484 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 485 if (bucket) { 486 #ifdef INVARIANTS 487 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 488 #endif 489 bucket->ub_cnt = 0; 490 bucket->ub_entries = ubz->ubz_entries; 491 } 492 493 return (bucket); 494 } 495 496 static void 497 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 498 { 499 struct uma_bucket_zone *ubz; 500 501 KASSERT(bucket->ub_cnt == 0, 502 ("bucket_free: Freeing a non free bucket.")); 503 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 504 udata = (void *)(uintptr_t)zone->uz_flags; 505 ubz = bucket_zone_lookup(bucket->ub_entries); 506 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 507 } 508 509 static void 510 bucket_zone_drain(void) 511 { 512 struct uma_bucket_zone *ubz; 513 514 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 515 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 516 } 517 518 /* 519 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 520 * zone's caches. 521 */ 522 static uma_bucket_t 523 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom) 524 { 525 uma_bucket_t bucket; 526 527 ZONE_LOCK_ASSERT(zone); 528 529 if ((bucket = TAILQ_FIRST(&zdom->uzd_buckets)) != NULL) { 530 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 531 TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); 532 zdom->uzd_nitems -= bucket->ub_cnt; 533 if (zdom->uzd_imin > zdom->uzd_nitems) 534 zdom->uzd_imin = zdom->uzd_nitems; 535 zone->uz_bkt_count -= bucket->ub_cnt; 536 } 537 return (bucket); 538 } 539 540 /* 541 * Insert a full bucket into the specified cache. The "ws" parameter indicates 542 * whether the bucket's contents should be counted as part of the zone's working 543 * set. 544 */ 545 static void 546 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 547 const bool ws) 548 { 549 550 ZONE_LOCK_ASSERT(zone); 551 KASSERT(!ws || zone->uz_bkt_count < zone->uz_bkt_max, 552 ("%s: zone %p overflow", __func__, zone)); 553 554 if (ws) 555 TAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 556 else 557 TAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 558 zdom->uzd_nitems += bucket->ub_cnt; 559 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 560 zdom->uzd_imax = zdom->uzd_nitems; 561 zone->uz_bkt_count += bucket->ub_cnt; 562 } 563 564 /* Pops an item out of a per-cpu cache bucket. */ 565 static inline void * 566 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 567 { 568 void *item; 569 570 CRITICAL_ASSERT(curthread); 571 572 bucket->ucb_cnt--; 573 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 574 #ifdef INVARIANTS 575 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 576 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 577 #endif 578 cache->uc_allocs++; 579 580 return (item); 581 } 582 583 /* Pushes an item into a per-cpu cache bucket. */ 584 static inline void 585 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 586 { 587 588 CRITICAL_ASSERT(curthread); 589 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 590 ("uma_zfree: Freeing to non free bucket index.")); 591 592 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 593 bucket->ucb_cnt++; 594 cache->uc_frees++; 595 } 596 597 /* 598 * Unload a UMA bucket from a per-cpu cache. 599 */ 600 static inline uma_bucket_t 601 cache_bucket_unload(uma_cache_bucket_t bucket) 602 { 603 uma_bucket_t b; 604 605 b = bucket->ucb_bucket; 606 if (b != NULL) { 607 MPASS(b->ub_entries == bucket->ucb_entries); 608 b->ub_cnt = bucket->ucb_cnt; 609 bucket->ucb_bucket = NULL; 610 bucket->ucb_entries = bucket->ucb_cnt = 0; 611 } 612 613 return (b); 614 } 615 616 static inline uma_bucket_t 617 cache_bucket_unload_alloc(uma_cache_t cache) 618 { 619 620 return (cache_bucket_unload(&cache->uc_allocbucket)); 621 } 622 623 static inline uma_bucket_t 624 cache_bucket_unload_free(uma_cache_t cache) 625 { 626 627 return (cache_bucket_unload(&cache->uc_freebucket)); 628 } 629 630 static inline uma_bucket_t 631 cache_bucket_unload_cross(uma_cache_t cache) 632 { 633 634 return (cache_bucket_unload(&cache->uc_crossbucket)); 635 } 636 637 /* 638 * Load a bucket into a per-cpu cache bucket. 639 */ 640 static inline void 641 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 642 { 643 644 CRITICAL_ASSERT(curthread); 645 MPASS(bucket->ucb_bucket == NULL); 646 647 bucket->ucb_bucket = b; 648 bucket->ucb_cnt = b->ub_cnt; 649 bucket->ucb_entries = b->ub_entries; 650 } 651 652 static inline void 653 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 654 { 655 656 cache_bucket_load(&cache->uc_allocbucket, b); 657 } 658 659 static inline void 660 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 661 { 662 663 cache_bucket_load(&cache->uc_freebucket, b); 664 } 665 666 #ifdef NUMA 667 static inline void 668 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 669 { 670 671 cache_bucket_load(&cache->uc_crossbucket, b); 672 } 673 #endif 674 675 /* 676 * Copy and preserve ucb_spare. 677 */ 678 static inline void 679 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 680 { 681 682 b1->ucb_bucket = b2->ucb_bucket; 683 b1->ucb_entries = b2->ucb_entries; 684 b1->ucb_cnt = b2->ucb_cnt; 685 } 686 687 /* 688 * Swap two cache buckets. 689 */ 690 static inline void 691 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 692 { 693 struct uma_cache_bucket b3; 694 695 CRITICAL_ASSERT(curthread); 696 697 cache_bucket_copy(&b3, b1); 698 cache_bucket_copy(b1, b2); 699 cache_bucket_copy(b2, &b3); 700 } 701 702 static void 703 zone_log_warning(uma_zone_t zone) 704 { 705 static const struct timeval warninterval = { 300, 0 }; 706 707 if (!zone_warnings || zone->uz_warning == NULL) 708 return; 709 710 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 711 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 712 } 713 714 static inline void 715 zone_maxaction(uma_zone_t zone) 716 { 717 718 if (zone->uz_maxaction.ta_func != NULL) 719 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 720 } 721 722 /* 723 * Routine called by timeout which is used to fire off some time interval 724 * based calculations. (stats, hash size, etc.) 725 * 726 * Arguments: 727 * arg Unused 728 * 729 * Returns: 730 * Nothing 731 */ 732 static void 733 uma_timeout(void *unused) 734 { 735 bucket_enable(); 736 zone_foreach(zone_timeout, NULL); 737 738 /* Reschedule this event */ 739 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 740 } 741 742 /* 743 * Update the working set size estimate for the zone's bucket cache. 744 * The constants chosen here are somewhat arbitrary. With an update period of 745 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 746 * last 100s. 747 */ 748 static void 749 zone_domain_update_wss(uma_zone_domain_t zdom) 750 { 751 long wss; 752 753 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 754 wss = zdom->uzd_imax - zdom->uzd_imin; 755 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 756 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 757 } 758 759 /* 760 * Routine to perform timeout driven calculations. This expands the 761 * hashes and does per cpu statistics aggregation. 762 * 763 * Returns nothing. 764 */ 765 static void 766 zone_timeout(uma_zone_t zone, void *unused) 767 { 768 uma_keg_t keg; 769 u_int slabs, pages; 770 771 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 772 goto update_wss; 773 774 keg = zone->uz_keg; 775 776 /* 777 * Hash zones are non-numa by definition so the first domain 778 * is the only one present. 779 */ 780 KEG_LOCK(keg, 0); 781 pages = keg->uk_domain[0].ud_pages; 782 783 /* 784 * Expand the keg hash table. 785 * 786 * This is done if the number of slabs is larger than the hash size. 787 * What I'm trying to do here is completely reduce collisions. This 788 * may be a little aggressive. Should I allow for two collisions max? 789 */ 790 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 791 struct uma_hash newhash; 792 struct uma_hash oldhash; 793 int ret; 794 795 /* 796 * This is so involved because allocating and freeing 797 * while the keg lock is held will lead to deadlock. 798 * I have to do everything in stages and check for 799 * races. 800 */ 801 KEG_UNLOCK(keg, 0); 802 ret = hash_alloc(&newhash, 1 << fls(slabs)); 803 KEG_LOCK(keg, 0); 804 if (ret) { 805 if (hash_expand(&keg->uk_hash, &newhash)) { 806 oldhash = keg->uk_hash; 807 keg->uk_hash = newhash; 808 } else 809 oldhash = newhash; 810 811 KEG_UNLOCK(keg, 0); 812 hash_free(&oldhash); 813 goto update_wss; 814 } 815 } 816 KEG_UNLOCK(keg, 0); 817 818 update_wss: 819 ZONE_LOCK(zone); 820 for (int i = 0; i < vm_ndomains; i++) 821 zone_domain_update_wss(&zone->uz_domain[i]); 822 ZONE_UNLOCK(zone); 823 } 824 825 /* 826 * Allocate and zero fill the next sized hash table from the appropriate 827 * backing store. 828 * 829 * Arguments: 830 * hash A new hash structure with the old hash size in uh_hashsize 831 * 832 * Returns: 833 * 1 on success and 0 on failure. 834 */ 835 static int 836 hash_alloc(struct uma_hash *hash, u_int size) 837 { 838 size_t alloc; 839 840 KASSERT(powerof2(size), ("hash size must be power of 2")); 841 if (size > UMA_HASH_SIZE_INIT) { 842 hash->uh_hashsize = size; 843 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 844 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 845 } else { 846 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 847 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 848 UMA_ANYDOMAIN, M_WAITOK); 849 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 850 } 851 if (hash->uh_slab_hash) { 852 bzero(hash->uh_slab_hash, alloc); 853 hash->uh_hashmask = hash->uh_hashsize - 1; 854 return (1); 855 } 856 857 return (0); 858 } 859 860 /* 861 * Expands the hash table for HASH zones. This is done from zone_timeout 862 * to reduce collisions. This must not be done in the regular allocation 863 * path, otherwise, we can recurse on the vm while allocating pages. 864 * 865 * Arguments: 866 * oldhash The hash you want to expand 867 * newhash The hash structure for the new table 868 * 869 * Returns: 870 * Nothing 871 * 872 * Discussion: 873 */ 874 static int 875 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 876 { 877 uma_hash_slab_t slab; 878 u_int hval; 879 u_int idx; 880 881 if (!newhash->uh_slab_hash) 882 return (0); 883 884 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 885 return (0); 886 887 /* 888 * I need to investigate hash algorithms for resizing without a 889 * full rehash. 890 */ 891 892 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 893 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 894 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 895 LIST_REMOVE(slab, uhs_hlink); 896 hval = UMA_HASH(newhash, slab->uhs_data); 897 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 898 slab, uhs_hlink); 899 } 900 901 return (1); 902 } 903 904 /* 905 * Free the hash bucket to the appropriate backing store. 906 * 907 * Arguments: 908 * slab_hash The hash bucket we're freeing 909 * hashsize The number of entries in that hash bucket 910 * 911 * Returns: 912 * Nothing 913 */ 914 static void 915 hash_free(struct uma_hash *hash) 916 { 917 if (hash->uh_slab_hash == NULL) 918 return; 919 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 920 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 921 else 922 free(hash->uh_slab_hash, M_UMAHASH); 923 } 924 925 /* 926 * Frees all outstanding items in a bucket 927 * 928 * Arguments: 929 * zone The zone to free to, must be unlocked. 930 * bucket The free/alloc bucket with items. 931 * 932 * Returns: 933 * Nothing 934 */ 935 936 static void 937 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 938 { 939 int i; 940 941 if (bucket == NULL || bucket->ub_cnt == 0) 942 return; 943 944 if (zone->uz_fini) 945 for (i = 0; i < bucket->ub_cnt; i++) 946 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 947 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 948 if (zone->uz_max_items > 0) 949 zone_free_limit(zone, bucket->ub_cnt); 950 bucket->ub_cnt = 0; 951 } 952 953 /* 954 * Drains the per cpu caches for a zone. 955 * 956 * NOTE: This may only be called while the zone is being torn down, and not 957 * during normal operation. This is necessary in order that we do not have 958 * to migrate CPUs to drain the per-CPU caches. 959 * 960 * Arguments: 961 * zone The zone to drain, must be unlocked. 962 * 963 * Returns: 964 * Nothing 965 */ 966 static void 967 cache_drain(uma_zone_t zone) 968 { 969 uma_cache_t cache; 970 uma_bucket_t bucket; 971 int cpu; 972 973 /* 974 * XXX: It is safe to not lock the per-CPU caches, because we're 975 * tearing down the zone anyway. I.e., there will be no further use 976 * of the caches at this point. 977 * 978 * XXX: It would good to be able to assert that the zone is being 979 * torn down to prevent improper use of cache_drain(). 980 */ 981 CPU_FOREACH(cpu) { 982 cache = &zone->uz_cpu[cpu]; 983 bucket = cache_bucket_unload_alloc(cache); 984 if (bucket != NULL) { 985 bucket_drain(zone, bucket); 986 bucket_free(zone, bucket, NULL); 987 } 988 bucket = cache_bucket_unload_free(cache); 989 if (bucket != NULL) { 990 bucket_drain(zone, bucket); 991 bucket_free(zone, bucket, NULL); 992 } 993 bucket = cache_bucket_unload_cross(cache); 994 if (bucket != NULL) { 995 bucket_drain(zone, bucket); 996 bucket_free(zone, bucket, NULL); 997 } 998 } 999 bucket_cache_reclaim(zone, true); 1000 } 1001 1002 static void 1003 cache_shrink(uma_zone_t zone, void *unused) 1004 { 1005 1006 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1007 return; 1008 1009 ZONE_LOCK(zone); 1010 zone->uz_bucket_size = 1011 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1012 ZONE_UNLOCK(zone); 1013 } 1014 1015 static void 1016 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1017 { 1018 uma_cache_t cache; 1019 uma_bucket_t b1, b2, b3; 1020 int domain; 1021 1022 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1023 return; 1024 1025 b1 = b2 = b3 = NULL; 1026 ZONE_LOCK(zone); 1027 critical_enter(); 1028 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 1029 domain = PCPU_GET(domain); 1030 else 1031 domain = 0; 1032 cache = &zone->uz_cpu[curcpu]; 1033 b1 = cache_bucket_unload_alloc(cache); 1034 if (b1 != NULL && b1->ub_cnt != 0) { 1035 zone_put_bucket(zone, &zone->uz_domain[domain], b1, false); 1036 b1 = NULL; 1037 } 1038 b2 = cache_bucket_unload_free(cache); 1039 if (b2 != NULL && b2->ub_cnt != 0) { 1040 zone_put_bucket(zone, &zone->uz_domain[domain], b2, false); 1041 b2 = NULL; 1042 } 1043 b3 = cache_bucket_unload_cross(cache); 1044 critical_exit(); 1045 ZONE_UNLOCK(zone); 1046 if (b1) 1047 bucket_free(zone, b1, NULL); 1048 if (b2) 1049 bucket_free(zone, b2, NULL); 1050 if (b3) { 1051 bucket_drain(zone, b3); 1052 bucket_free(zone, b3, NULL); 1053 } 1054 } 1055 1056 /* 1057 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1058 * This is an expensive call because it needs to bind to all CPUs 1059 * one by one and enter a critical section on each of them in order 1060 * to safely access their cache buckets. 1061 * Zone lock must not be held on call this function. 1062 */ 1063 static void 1064 pcpu_cache_drain_safe(uma_zone_t zone) 1065 { 1066 int cpu; 1067 1068 /* 1069 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1070 */ 1071 if (zone) 1072 cache_shrink(zone, NULL); 1073 else 1074 zone_foreach(cache_shrink, NULL); 1075 1076 CPU_FOREACH(cpu) { 1077 thread_lock(curthread); 1078 sched_bind(curthread, cpu); 1079 thread_unlock(curthread); 1080 1081 if (zone) 1082 cache_drain_safe_cpu(zone, NULL); 1083 else 1084 zone_foreach(cache_drain_safe_cpu, NULL); 1085 } 1086 thread_lock(curthread); 1087 sched_unbind(curthread); 1088 thread_unlock(curthread); 1089 } 1090 1091 /* 1092 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1093 * requested a drain, otherwise the per-domain caches are trimmed to either 1094 * estimated working set size. 1095 */ 1096 static void 1097 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1098 { 1099 uma_zone_domain_t zdom; 1100 uma_bucket_t bucket; 1101 long target, tofree; 1102 int i; 1103 1104 for (i = 0; i < vm_ndomains; i++) { 1105 /* 1106 * The cross bucket is partially filled and not part of 1107 * the item count. Reclaim it individually here. 1108 */ 1109 zdom = &zone->uz_domain[i]; 1110 ZONE_CROSS_LOCK(zone); 1111 bucket = zdom->uzd_cross; 1112 zdom->uzd_cross = NULL; 1113 ZONE_CROSS_UNLOCK(zone); 1114 if (bucket != NULL) { 1115 bucket_drain(zone, bucket); 1116 bucket_free(zone, bucket, NULL); 1117 } 1118 1119 /* 1120 * Shrink the zone bucket size to ensure that the per-CPU caches 1121 * don't grow too large. 1122 */ 1123 ZONE_LOCK(zone); 1124 if (i == 0 && zone->uz_bucket_size > zone->uz_bucket_size_min) 1125 zone->uz_bucket_size--; 1126 1127 /* 1128 * If we were asked to drain the zone, we are done only once 1129 * this bucket cache is empty. Otherwise, we reclaim items in 1130 * excess of the zone's estimated working set size. If the 1131 * difference nitems - imin is larger than the WSS estimate, 1132 * then the estimate will grow at the end of this interval and 1133 * we ignore the historical average. 1134 */ 1135 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1136 zdom->uzd_imin); 1137 while (zdom->uzd_nitems > target) { 1138 bucket = TAILQ_LAST(&zdom->uzd_buckets, uma_bucketlist); 1139 if (bucket == NULL) 1140 break; 1141 tofree = bucket->ub_cnt; 1142 TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); 1143 zdom->uzd_nitems -= tofree; 1144 1145 /* 1146 * Shift the bounds of the current WSS interval to avoid 1147 * perturbing the estimate. 1148 */ 1149 zdom->uzd_imax -= lmin(zdom->uzd_imax, tofree); 1150 zdom->uzd_imin -= lmin(zdom->uzd_imin, tofree); 1151 1152 ZONE_UNLOCK(zone); 1153 bucket_drain(zone, bucket); 1154 bucket_free(zone, bucket, NULL); 1155 ZONE_LOCK(zone); 1156 } 1157 ZONE_UNLOCK(zone); 1158 } 1159 } 1160 1161 static void 1162 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1163 { 1164 uint8_t *mem; 1165 int i; 1166 uint8_t flags; 1167 1168 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1169 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1170 1171 mem = slab_data(slab, keg); 1172 flags = slab->us_flags; 1173 i = start; 1174 if (keg->uk_fini != NULL) { 1175 for (i--; i > -1; i--) 1176 #ifdef INVARIANTS 1177 /* 1178 * trash_fini implies that dtor was trash_dtor. trash_fini 1179 * would check that memory hasn't been modified since free, 1180 * which executed trash_dtor. 1181 * That's why we need to run uma_dbg_kskip() check here, 1182 * albeit we don't make skip check for other init/fini 1183 * invocations. 1184 */ 1185 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1186 keg->uk_fini != trash_fini) 1187 #endif 1188 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1189 } 1190 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1191 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1192 NULL, SKIP_NONE); 1193 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1194 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1195 } 1196 1197 /* 1198 * Frees pages from a keg back to the system. This is done on demand from 1199 * the pageout daemon. 1200 * 1201 * Returns nothing. 1202 */ 1203 static void 1204 keg_drain(uma_keg_t keg) 1205 { 1206 struct slabhead freeslabs = { 0 }; 1207 uma_domain_t dom; 1208 uma_slab_t slab, tmp; 1209 int i, n; 1210 1211 /* 1212 * We don't want to take pages from statically allocated kegs at this 1213 * time 1214 */ 1215 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1216 return; 1217 1218 for (i = 0; i < vm_ndomains; i++) { 1219 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1220 keg->uk_name, keg, i, dom->ud_free); 1221 n = 0; 1222 dom = &keg->uk_domain[i]; 1223 KEG_LOCK(keg, i); 1224 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 1225 if (keg->uk_flags & UMA_ZFLAG_HASH) 1226 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1227 n++; 1228 LIST_REMOVE(slab, us_link); 1229 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1230 } 1231 dom->ud_pages -= n * keg->uk_ppera; 1232 dom->ud_free -= n * keg->uk_ipers; 1233 KEG_UNLOCK(keg, i); 1234 } 1235 1236 while ((slab = LIST_FIRST(&freeslabs)) != NULL) { 1237 LIST_REMOVE(slab, us_link); 1238 keg_free_slab(keg, slab, keg->uk_ipers); 1239 } 1240 } 1241 1242 static void 1243 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1244 { 1245 1246 /* 1247 * Set draining to interlock with zone_dtor() so we can release our 1248 * locks as we go. Only dtor() should do a WAITOK call since it 1249 * is the only call that knows the structure will still be available 1250 * when it wakes up. 1251 */ 1252 ZONE_LOCK(zone); 1253 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1254 if (waitok == M_NOWAIT) 1255 goto out; 1256 msleep(zone, &zone->uz_lock, PVM, "zonedrain", 1); 1257 } 1258 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1259 ZONE_UNLOCK(zone); 1260 bucket_cache_reclaim(zone, drain); 1261 1262 /* 1263 * The DRAINING flag protects us from being freed while 1264 * we're running. Normally the uma_rwlock would protect us but we 1265 * must be able to release and acquire the right lock for each keg. 1266 */ 1267 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1268 keg_drain(zone->uz_keg); 1269 ZONE_LOCK(zone); 1270 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1271 wakeup(zone); 1272 out: 1273 ZONE_UNLOCK(zone); 1274 } 1275 1276 static void 1277 zone_drain(uma_zone_t zone, void *unused) 1278 { 1279 1280 zone_reclaim(zone, M_NOWAIT, true); 1281 } 1282 1283 static void 1284 zone_trim(uma_zone_t zone, void *unused) 1285 { 1286 1287 zone_reclaim(zone, M_NOWAIT, false); 1288 } 1289 1290 /* 1291 * Allocate a new slab for a keg and inserts it into the partial slab list. 1292 * The keg should be unlocked on entry. If the allocation succeeds it will 1293 * be locked on return. 1294 * 1295 * Arguments: 1296 * flags Wait flags for the item initialization routine 1297 * aflags Wait flags for the slab allocation 1298 * 1299 * Returns: 1300 * The slab that was allocated or NULL if there is no memory and the 1301 * caller specified M_NOWAIT. 1302 */ 1303 static uma_slab_t 1304 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1305 int aflags) 1306 { 1307 uma_domain_t dom; 1308 uma_alloc allocf; 1309 uma_slab_t slab; 1310 unsigned long size; 1311 uint8_t *mem; 1312 uint8_t sflags; 1313 int i; 1314 1315 KASSERT(domain >= 0 && domain < vm_ndomains, 1316 ("keg_alloc_slab: domain %d out of range", domain)); 1317 1318 allocf = keg->uk_allocf; 1319 slab = NULL; 1320 mem = NULL; 1321 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1322 uma_hash_slab_t hslab; 1323 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1324 domain, aflags); 1325 if (hslab == NULL) 1326 goto fail; 1327 slab = &hslab->uhs_slab; 1328 } 1329 1330 /* 1331 * This reproduces the old vm_zone behavior of zero filling pages the 1332 * first time they are added to a zone. 1333 * 1334 * Malloced items are zeroed in uma_zalloc. 1335 */ 1336 1337 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1338 aflags |= M_ZERO; 1339 else 1340 aflags &= ~M_ZERO; 1341 1342 if (keg->uk_flags & UMA_ZONE_NODUMP) 1343 aflags |= M_NODUMP; 1344 1345 /* zone is passed for legacy reasons. */ 1346 size = keg->uk_ppera * PAGE_SIZE; 1347 mem = allocf(zone, size, domain, &sflags, aflags); 1348 if (mem == NULL) { 1349 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1350 zone_free_item(slabzone(keg->uk_ipers), 1351 slab_tohashslab(slab), NULL, SKIP_NONE); 1352 goto fail; 1353 } 1354 uma_total_inc(size); 1355 1356 /* For HASH zones all pages go to the same uma_domain. */ 1357 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1358 domain = 0; 1359 1360 /* Point the slab into the allocated memory */ 1361 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1362 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1363 else 1364 slab_tohashslab(slab)->uhs_data = mem; 1365 1366 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1367 for (i = 0; i < keg->uk_ppera; i++) 1368 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1369 zone, slab); 1370 1371 slab->us_freecount = keg->uk_ipers; 1372 slab->us_flags = sflags; 1373 slab->us_domain = domain; 1374 1375 BIT_FILL(keg->uk_ipers, &slab->us_free); 1376 #ifdef INVARIANTS 1377 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1378 #endif 1379 1380 if (keg->uk_init != NULL) { 1381 for (i = 0; i < keg->uk_ipers; i++) 1382 if (keg->uk_init(slab_item(slab, keg, i), 1383 keg->uk_size, flags) != 0) 1384 break; 1385 if (i != keg->uk_ipers) { 1386 keg_free_slab(keg, slab, i); 1387 goto fail; 1388 } 1389 } 1390 KEG_LOCK(keg, domain); 1391 1392 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1393 slab, keg->uk_name, keg); 1394 1395 if (keg->uk_flags & UMA_ZFLAG_HASH) 1396 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1397 1398 /* 1399 * If we got a slab here it's safe to mark it partially used 1400 * and return. We assume that the caller is going to remove 1401 * at least one item. 1402 */ 1403 dom = &keg->uk_domain[domain]; 1404 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1405 dom->ud_pages += keg->uk_ppera; 1406 dom->ud_free += keg->uk_ipers; 1407 1408 return (slab); 1409 1410 fail: 1411 return (NULL); 1412 } 1413 1414 /* 1415 * This function is intended to be used early on in place of page_alloc() so 1416 * that we may use the boot time page cache to satisfy allocations before 1417 * the VM is ready. 1418 */ 1419 static void * 1420 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1421 int wait) 1422 { 1423 vm_paddr_t pa; 1424 vm_page_t m; 1425 void *mem; 1426 int pages; 1427 int i; 1428 1429 pages = howmany(bytes, PAGE_SIZE); 1430 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1431 1432 *pflag = UMA_SLAB_BOOT; 1433 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1434 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1435 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1436 if (m == NULL) 1437 return (NULL); 1438 1439 pa = VM_PAGE_TO_PHYS(m); 1440 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1441 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1442 defined(__riscv) || defined(__powerpc64__) 1443 if ((wait & M_NODUMP) == 0) 1444 dump_add_page(pa); 1445 #endif 1446 } 1447 /* Allocate KVA and indirectly advance bootmem. */ 1448 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1449 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1450 if ((wait & M_ZERO) != 0) 1451 bzero(mem, pages * PAGE_SIZE); 1452 1453 return (mem); 1454 } 1455 1456 static void 1457 startup_free(void *mem, vm_size_t bytes) 1458 { 1459 vm_offset_t va; 1460 vm_page_t m; 1461 1462 va = (vm_offset_t)mem; 1463 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1464 pmap_remove(kernel_pmap, va, va + bytes); 1465 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1466 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1467 defined(__riscv) || defined(__powerpc64__) 1468 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1469 #endif 1470 vm_page_unwire_noq(m); 1471 vm_page_free(m); 1472 } 1473 } 1474 1475 /* 1476 * Allocates a number of pages from the system 1477 * 1478 * Arguments: 1479 * bytes The number of bytes requested 1480 * wait Shall we wait? 1481 * 1482 * Returns: 1483 * A pointer to the alloced memory or possibly 1484 * NULL if M_NOWAIT is set. 1485 */ 1486 static void * 1487 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1488 int wait) 1489 { 1490 void *p; /* Returned page */ 1491 1492 *pflag = UMA_SLAB_KERNEL; 1493 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1494 1495 return (p); 1496 } 1497 1498 static void * 1499 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1500 int wait) 1501 { 1502 struct pglist alloctail; 1503 vm_offset_t addr, zkva; 1504 int cpu, flags; 1505 vm_page_t p, p_next; 1506 #ifdef NUMA 1507 struct pcpu *pc; 1508 #endif 1509 1510 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1511 1512 TAILQ_INIT(&alloctail); 1513 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1514 malloc2vm_flags(wait); 1515 *pflag = UMA_SLAB_KERNEL; 1516 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1517 if (CPU_ABSENT(cpu)) { 1518 p = vm_page_alloc(NULL, 0, flags); 1519 } else { 1520 #ifndef NUMA 1521 p = vm_page_alloc(NULL, 0, flags); 1522 #else 1523 pc = pcpu_find(cpu); 1524 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1525 p = NULL; 1526 else 1527 p = vm_page_alloc_domain(NULL, 0, 1528 pc->pc_domain, flags); 1529 if (__predict_false(p == NULL)) 1530 p = vm_page_alloc(NULL, 0, flags); 1531 #endif 1532 } 1533 if (__predict_false(p == NULL)) 1534 goto fail; 1535 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1536 } 1537 if ((addr = kva_alloc(bytes)) == 0) 1538 goto fail; 1539 zkva = addr; 1540 TAILQ_FOREACH(p, &alloctail, listq) { 1541 pmap_qenter(zkva, &p, 1); 1542 zkva += PAGE_SIZE; 1543 } 1544 return ((void*)addr); 1545 fail: 1546 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1547 vm_page_unwire_noq(p); 1548 vm_page_free(p); 1549 } 1550 return (NULL); 1551 } 1552 1553 /* 1554 * Allocates a number of pages from within an object 1555 * 1556 * Arguments: 1557 * bytes The number of bytes requested 1558 * wait Shall we wait? 1559 * 1560 * Returns: 1561 * A pointer to the alloced memory or possibly 1562 * NULL if M_NOWAIT is set. 1563 */ 1564 static void * 1565 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1566 int wait) 1567 { 1568 TAILQ_HEAD(, vm_page) alloctail; 1569 u_long npages; 1570 vm_offset_t retkva, zkva; 1571 vm_page_t p, p_next; 1572 uma_keg_t keg; 1573 1574 TAILQ_INIT(&alloctail); 1575 keg = zone->uz_keg; 1576 1577 npages = howmany(bytes, PAGE_SIZE); 1578 while (npages > 0) { 1579 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1580 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1581 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1582 VM_ALLOC_NOWAIT)); 1583 if (p != NULL) { 1584 /* 1585 * Since the page does not belong to an object, its 1586 * listq is unused. 1587 */ 1588 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1589 npages--; 1590 continue; 1591 } 1592 /* 1593 * Page allocation failed, free intermediate pages and 1594 * exit. 1595 */ 1596 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1597 vm_page_unwire_noq(p); 1598 vm_page_free(p); 1599 } 1600 return (NULL); 1601 } 1602 *flags = UMA_SLAB_PRIV; 1603 zkva = keg->uk_kva + 1604 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1605 retkva = zkva; 1606 TAILQ_FOREACH(p, &alloctail, listq) { 1607 pmap_qenter(zkva, &p, 1); 1608 zkva += PAGE_SIZE; 1609 } 1610 1611 return ((void *)retkva); 1612 } 1613 1614 /* 1615 * Frees a number of pages to the system 1616 * 1617 * Arguments: 1618 * mem A pointer to the memory to be freed 1619 * size The size of the memory being freed 1620 * flags The original p->us_flags field 1621 * 1622 * Returns: 1623 * Nothing 1624 */ 1625 static void 1626 page_free(void *mem, vm_size_t size, uint8_t flags) 1627 { 1628 1629 if ((flags & UMA_SLAB_BOOT) != 0) { 1630 startup_free(mem, size); 1631 return; 1632 } 1633 1634 if ((flags & UMA_SLAB_KERNEL) == 0) 1635 panic("UMA: page_free used with invalid flags %x", flags); 1636 1637 kmem_free((vm_offset_t)mem, size); 1638 } 1639 1640 /* 1641 * Frees pcpu zone allocations 1642 * 1643 * Arguments: 1644 * mem A pointer to the memory to be freed 1645 * size The size of the memory being freed 1646 * flags The original p->us_flags field 1647 * 1648 * Returns: 1649 * Nothing 1650 */ 1651 static void 1652 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1653 { 1654 vm_offset_t sva, curva; 1655 vm_paddr_t paddr; 1656 vm_page_t m; 1657 1658 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1659 sva = (vm_offset_t)mem; 1660 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1661 paddr = pmap_kextract(curva); 1662 m = PHYS_TO_VM_PAGE(paddr); 1663 vm_page_unwire_noq(m); 1664 vm_page_free(m); 1665 } 1666 pmap_qremove(sva, size >> PAGE_SHIFT); 1667 kva_free(sva, size); 1668 } 1669 1670 1671 /* 1672 * Zero fill initializer 1673 * 1674 * Arguments/Returns follow uma_init specifications 1675 */ 1676 static int 1677 zero_init(void *mem, int size, int flags) 1678 { 1679 bzero(mem, size); 1680 return (0); 1681 } 1682 1683 #ifdef INVARIANTS 1684 struct noslabbits * 1685 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1686 { 1687 1688 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1689 } 1690 #endif 1691 1692 /* 1693 * Actual size of embedded struct slab (!OFFPAGE). 1694 */ 1695 size_t 1696 slab_sizeof(int nitems) 1697 { 1698 size_t s; 1699 1700 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1701 return (roundup(s, UMA_ALIGN_PTR + 1)); 1702 } 1703 1704 /* 1705 * Size of memory for embedded slabs (!OFFPAGE). 1706 */ 1707 size_t 1708 slab_space(int nitems) 1709 { 1710 return (UMA_SLAB_SIZE - slab_sizeof(nitems)); 1711 } 1712 1713 #define UMA_FIXPT_SHIFT 31 1714 #define UMA_FRAC_FIXPT(n, d) \ 1715 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1716 #define UMA_FIXPT_PCT(f) \ 1717 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1718 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1719 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1720 1721 /* 1722 * Compute the number of items that will fit in a slab. If hdr is true, the 1723 * item count may be limited to provide space in the slab for an inline slab 1724 * header. Otherwise, all slab space will be provided for item storage. 1725 */ 1726 static u_int 1727 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1728 { 1729 u_int ipers; 1730 u_int padpi; 1731 1732 /* The padding between items is not needed after the last item. */ 1733 padpi = rsize - size; 1734 1735 if (hdr) { 1736 /* 1737 * Start with the maximum item count and remove items until 1738 * the slab header first alongside the allocatable memory. 1739 */ 1740 for (ipers = MIN(SLAB_MAX_SETSIZE, 1741 (slabsize + padpi - slab_sizeof(1)) / rsize); 1742 ipers > 0 && 1743 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 1744 ipers--) 1745 continue; 1746 } else { 1747 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 1748 } 1749 1750 return (ipers); 1751 } 1752 1753 /* 1754 * Compute the number of items that will fit in a slab for a startup zone. 1755 */ 1756 int 1757 slab_ipers(size_t size, int align) 1758 { 1759 int rsize; 1760 1761 rsize = roundup(size, align + 1); /* Assume no CACHESPREAD */ 1762 return (slab_ipers_hdr(size, rsize, UMA_SLAB_SIZE, true)); 1763 } 1764 1765 /* 1766 * Determine the format of a uma keg. This determines where the slab header 1767 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 1768 * 1769 * Arguments 1770 * keg The zone we should initialize 1771 * 1772 * Returns 1773 * Nothing 1774 */ 1775 static void 1776 keg_layout(uma_keg_t keg) 1777 { 1778 u_int alignsize; 1779 u_int eff; 1780 u_int eff_offpage; 1781 u_int format; 1782 u_int ipers; 1783 u_int ipers_offpage; 1784 u_int pages; 1785 u_int rsize; 1786 u_int slabsize; 1787 1788 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1789 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 1790 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 1791 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 1792 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 1793 PRINT_UMA_ZFLAGS)); 1794 KASSERT((keg->uk_flags & 1795 (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY)) == 0 || 1796 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 1797 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 1798 PRINT_UMA_ZFLAGS)); 1799 1800 alignsize = keg->uk_align + 1; 1801 format = 0; 1802 ipers = 0; 1803 1804 /* 1805 * Calculate the size of each allocation (rsize) according to 1806 * alignment. If the requested size is smaller than we have 1807 * allocation bits for we round it up. 1808 */ 1809 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 1810 rsize = roundup2(rsize, alignsize); 1811 1812 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) { 1813 slabsize = UMA_PCPU_ALLOC_SIZE; 1814 pages = mp_maxid + 1; 1815 } else if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 1816 /* 1817 * We want one item to start on every align boundary in a page. 1818 * To do this we will span pages. We will also extend the item 1819 * by the size of align if it is an even multiple of align. 1820 * Otherwise, it would fall on the same boundary every time. 1821 */ 1822 if ((rsize & alignsize) == 0) 1823 rsize += alignsize; 1824 slabsize = rsize * (PAGE_SIZE / alignsize); 1825 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 1826 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 1827 pages = howmany(slabsize, PAGE_SIZE); 1828 slabsize = ptoa(pages); 1829 } else { 1830 /* 1831 * Choose a slab size of as many pages as it takes to represent 1832 * a single item. We will then try to fit as many additional 1833 * items into the slab as possible. At some point, we may want 1834 * to increase the slab size for awkward item sizes in order to 1835 * increase efficiency. 1836 */ 1837 pages = howmany(keg->uk_size, PAGE_SIZE); 1838 slabsize = ptoa(pages); 1839 } 1840 1841 /* Evaluate an inline slab layout. */ 1842 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 1843 ipers = slab_ipers_hdr(keg->uk_size, rsize, slabsize, true); 1844 1845 /* TODO: vm_page-embedded slab. */ 1846 1847 /* 1848 * We can't do OFFPAGE if we're internal or if we've been 1849 * asked to not go to the VM for buckets. If we do this we 1850 * may end up going to the VM for slabs which we do not 1851 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1852 * of UMA_ZONE_VM, which clearly forbids it. 1853 */ 1854 if ((keg->uk_flags & 1855 (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY)) != 0) { 1856 if (ipers == 0) { 1857 /* We need an extra page for the slab header. */ 1858 pages++; 1859 slabsize = ptoa(pages); 1860 ipers = slab_ipers_hdr(keg->uk_size, rsize, slabsize, 1861 true); 1862 } 1863 goto out; 1864 } 1865 1866 /* 1867 * See if using an OFFPAGE slab will improve our efficiency. 1868 * Only do this if we are below our efficiency threshold. 1869 * 1870 * XXX We could try growing slabsize to limit max waste as well. 1871 * Historically this was not done because the VM could not 1872 * efficiently handle contiguous allocations. 1873 */ 1874 eff = UMA_FRAC_FIXPT(ipers * rsize, slabsize); 1875 ipers_offpage = slab_ipers_hdr(keg->uk_size, rsize, slabsize, false); 1876 eff_offpage = UMA_FRAC_FIXPT(ipers_offpage * rsize, 1877 slabsize + slabzone(ipers_offpage)->uz_keg->uk_rsize); 1878 if (ipers == 0 || (eff < UMA_MIN_EFF && eff < eff_offpage)) { 1879 CTR5(KTR_UMA, "UMA decided we need offpage slab headers for " 1880 "keg: %s(%p), minimum efficiency allowed = %u%%, " 1881 "old efficiency = %u%%, offpage efficiency = %u%%", 1882 keg->uk_name, keg, UMA_FIXPT_PCT(UMA_MIN_EFF), 1883 UMA_FIXPT_PCT(eff), UMA_FIXPT_PCT(eff_offpage)); 1884 format = UMA_ZFLAG_OFFPAGE; 1885 ipers = ipers_offpage; 1886 } 1887 1888 out: 1889 /* 1890 * How do we find the slab header if it is offpage or if not all item 1891 * start addresses are in the same page? We could solve the latter 1892 * case with vaddr alignment, but we don't. 1893 */ 1894 if ((format & UMA_ZFLAG_OFFPAGE) != 0 || 1895 (ipers - 1) * rsize >= PAGE_SIZE) { 1896 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 1897 format |= UMA_ZFLAG_HASH; 1898 else 1899 format |= UMA_ZFLAG_VTOSLAB; 1900 } 1901 keg->uk_ipers = ipers; 1902 keg->uk_rsize = rsize; 1903 keg->uk_flags |= format; 1904 keg->uk_ppera = pages; 1905 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 1906 __func__, keg->uk_name, keg->uk_flags, rsize, ipers, pages); 1907 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 1908 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 1909 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, ipers, 1910 pages)); 1911 } 1912 1913 /* 1914 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1915 * the keg onto the global keg list. 1916 * 1917 * Arguments/Returns follow uma_ctor specifications 1918 * udata Actually uma_kctor_args 1919 */ 1920 static int 1921 keg_ctor(void *mem, int size, void *udata, int flags) 1922 { 1923 struct uma_kctor_args *arg = udata; 1924 uma_keg_t keg = mem; 1925 uma_zone_t zone; 1926 int i; 1927 1928 bzero(keg, size); 1929 keg->uk_size = arg->size; 1930 keg->uk_init = arg->uminit; 1931 keg->uk_fini = arg->fini; 1932 keg->uk_align = arg->align; 1933 keg->uk_reserve = 0; 1934 keg->uk_flags = arg->flags; 1935 1936 /* 1937 * We use a global round-robin policy by default. Zones with 1938 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 1939 * case the iterator is never run. 1940 */ 1941 keg->uk_dr.dr_policy = DOMAINSET_RR(); 1942 keg->uk_dr.dr_iter = 0; 1943 1944 /* 1945 * The master zone is passed to us at keg-creation time. 1946 */ 1947 zone = arg->zone; 1948 keg->uk_name = zone->uz_name; 1949 1950 if (arg->flags & UMA_ZONE_VM) 1951 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1952 1953 if (arg->flags & UMA_ZONE_ZINIT) 1954 keg->uk_init = zero_init; 1955 1956 if (arg->flags & UMA_ZONE_MALLOC) 1957 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 1958 1959 #ifndef SMP 1960 keg->uk_flags &= ~UMA_ZONE_PCPU; 1961 #endif 1962 1963 keg_layout(keg); 1964 1965 /* 1966 * Use a first-touch NUMA policy for all kegs that pmap_extract() 1967 * will work on with the exception of critical VM structures 1968 * necessary for paging. 1969 * 1970 * Zones may override the default by specifying either. 1971 */ 1972 #ifdef NUMA 1973 if ((keg->uk_flags & 1974 (UMA_ZFLAG_HASH | UMA_ZONE_VM | UMA_ZONE_ROUNDROBIN)) == 0) 1975 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 1976 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 1977 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 1978 #endif 1979 1980 /* 1981 * If we haven't booted yet we need allocations to go through the 1982 * startup cache until the vm is ready. 1983 */ 1984 #ifdef UMA_MD_SMALL_ALLOC 1985 if (keg->uk_ppera == 1) 1986 keg->uk_allocf = uma_small_alloc; 1987 else 1988 #endif 1989 if (booted < BOOT_KVA) 1990 keg->uk_allocf = startup_alloc; 1991 else if (keg->uk_flags & UMA_ZONE_PCPU) 1992 keg->uk_allocf = pcpu_page_alloc; 1993 else 1994 keg->uk_allocf = page_alloc; 1995 #ifdef UMA_MD_SMALL_ALLOC 1996 if (keg->uk_ppera == 1) 1997 keg->uk_freef = uma_small_free; 1998 else 1999 #endif 2000 if (keg->uk_flags & UMA_ZONE_PCPU) 2001 keg->uk_freef = pcpu_page_free; 2002 else 2003 keg->uk_freef = page_free; 2004 2005 /* 2006 * Initialize keg's locks. 2007 */ 2008 for (i = 0; i < vm_ndomains; i++) 2009 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2010 2011 /* 2012 * If we're putting the slab header in the actual page we need to 2013 * figure out where in each page it goes. See slab_sizeof 2014 * definition. 2015 */ 2016 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2017 size_t shsize; 2018 2019 shsize = slab_sizeof(keg->uk_ipers); 2020 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2021 /* 2022 * The only way the following is possible is if with our 2023 * UMA_ALIGN_PTR adjustments we are now bigger than 2024 * UMA_SLAB_SIZE. I haven't checked whether this is 2025 * mathematically possible for all cases, so we make 2026 * sure here anyway. 2027 */ 2028 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2029 ("zone %s ipers %d rsize %d size %d slab won't fit", 2030 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2031 } 2032 2033 if (keg->uk_flags & UMA_ZFLAG_HASH) 2034 hash_alloc(&keg->uk_hash, 0); 2035 2036 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2037 2038 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2039 2040 rw_wlock(&uma_rwlock); 2041 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2042 rw_wunlock(&uma_rwlock); 2043 return (0); 2044 } 2045 2046 static void 2047 zone_kva_available(uma_zone_t zone, void *unused) 2048 { 2049 uma_keg_t keg; 2050 2051 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2052 return; 2053 KEG_GET(zone, keg); 2054 if (keg->uk_allocf == startup_alloc) 2055 keg->uk_allocf = page_alloc; 2056 } 2057 2058 static void 2059 zone_alloc_counters(uma_zone_t zone, void *unused) 2060 { 2061 2062 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2063 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2064 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2065 } 2066 2067 static void 2068 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2069 { 2070 uma_zone_domain_t zdom; 2071 uma_domain_t dom; 2072 uma_keg_t keg; 2073 struct sysctl_oid *oid, *domainoid; 2074 int domains, i, cnt; 2075 static const char *nokeg = "cache zone"; 2076 char *c; 2077 2078 /* 2079 * Make a sysctl safe copy of the zone name by removing 2080 * any special characters and handling dups by appending 2081 * an index. 2082 */ 2083 if (zone->uz_namecnt != 0) { 2084 /* Count the number of decimal digits and '_' separator. */ 2085 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2086 cnt /= 10; 2087 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2088 M_UMA, M_WAITOK); 2089 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2090 zone->uz_namecnt); 2091 } else 2092 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2093 for (c = zone->uz_ctlname; *c != '\0'; c++) 2094 if (strchr("./\\ -", *c) != NULL) 2095 *c = '_'; 2096 2097 /* 2098 * Basic parameters at the root. 2099 */ 2100 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2101 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD, NULL, ""); 2102 oid = zone->uz_oid; 2103 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2104 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2105 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2106 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2107 zone, 0, sysctl_handle_uma_zone_flags, "A", 2108 "Allocator configuration flags"); 2109 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2110 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2111 "Desired per-cpu cache size"); 2112 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2113 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2114 "Maximum allowed per-cpu cache size"); 2115 2116 /* 2117 * keg if present. 2118 */ 2119 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2120 domains = vm_ndomains; 2121 else 2122 domains = 1; 2123 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2124 "keg", CTLFLAG_RD, NULL, ""); 2125 keg = zone->uz_keg; 2126 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2127 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2128 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2129 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2130 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2131 "Real object size with alignment"); 2132 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2133 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2134 "pages per-slab allocation"); 2135 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2136 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2137 "items available per-slab"); 2138 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2139 "align", CTLFLAG_RD, &keg->uk_align, 0, 2140 "item alignment mask"); 2141 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2142 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2143 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2144 "Slab utilization (100 - internal fragmentation %)"); 2145 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2146 OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); 2147 for (i = 0; i < domains; i++) { 2148 dom = &keg->uk_domain[i]; 2149 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2150 OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, 2151 NULL, ""); 2152 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2153 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2154 "Total pages currently allocated from VM"); 2155 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2156 "free", CTLFLAG_RD, &dom->ud_free, 0, 2157 "items free in the slab layer"); 2158 } 2159 } else 2160 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2161 "name", CTLFLAG_RD, nokeg, "Keg name"); 2162 2163 /* 2164 * Information about zone limits. 2165 */ 2166 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2167 "limit", CTLFLAG_RD, NULL, ""); 2168 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2169 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2170 zone, 0, sysctl_handle_uma_zone_items, "QU", 2171 "current number of allocated items if limit is set"); 2172 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2173 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2174 "Maximum number of cached items"); 2175 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2176 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2177 "Number of threads sleeping at limit"); 2178 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2179 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2180 "Total zone limit sleeps"); 2181 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2182 "bucket_max", CTLFLAG_RD, &zone->uz_bkt_max, 0, 2183 "Maximum number of items in the bucket cache"); 2184 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2185 "bucket_cnt", CTLFLAG_RD, &zone->uz_bkt_count, 0, 2186 "Number of items in the bucket cache"); 2187 2188 /* 2189 * Per-domain zone information. 2190 */ 2191 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2192 OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); 2193 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2194 domains = 1; 2195 for (i = 0; i < domains; i++) { 2196 zdom = &zone->uz_domain[i]; 2197 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2198 OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, NULL, ""); 2199 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2200 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2201 "number of items in this domain"); 2202 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2203 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2204 "maximum item count in this period"); 2205 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2206 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2207 "minimum item count in this period"); 2208 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2209 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2210 "Working set size"); 2211 } 2212 2213 /* 2214 * General statistics. 2215 */ 2216 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2217 "stats", CTLFLAG_RD, NULL, ""); 2218 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2219 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2220 zone, 1, sysctl_handle_uma_zone_cur, "I", 2221 "Current number of allocated items"); 2222 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2223 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2224 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2225 "Total allocation calls"); 2226 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2227 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2228 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2229 "Total free calls"); 2230 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2231 "fails", CTLFLAG_RD, &zone->uz_fails, 2232 "Number of allocation failures"); 2233 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2234 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 0, 2235 "Free calls from the wrong domain"); 2236 } 2237 2238 struct uma_zone_count { 2239 const char *name; 2240 int count; 2241 }; 2242 2243 static void 2244 zone_count(uma_zone_t zone, void *arg) 2245 { 2246 struct uma_zone_count *cnt; 2247 2248 cnt = arg; 2249 /* 2250 * Some zones are rapidly created with identical names and 2251 * destroyed out of order. This can lead to gaps in the count. 2252 * Use one greater than the maximum observed for this name. 2253 */ 2254 if (strcmp(zone->uz_name, cnt->name) == 0) 2255 cnt->count = MAX(cnt->count, 2256 zone->uz_namecnt + 1); 2257 } 2258 2259 static void 2260 zone_update_caches(uma_zone_t zone) 2261 { 2262 int i; 2263 2264 for (i = 0; i <= mp_maxid; i++) { 2265 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2266 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2267 } 2268 } 2269 2270 /* 2271 * Zone header ctor. This initializes all fields, locks, etc. 2272 * 2273 * Arguments/Returns follow uma_ctor specifications 2274 * udata Actually uma_zctor_args 2275 */ 2276 static int 2277 zone_ctor(void *mem, int size, void *udata, int flags) 2278 { 2279 struct uma_zone_count cnt; 2280 struct uma_zctor_args *arg = udata; 2281 uma_zone_t zone = mem; 2282 uma_zone_t z; 2283 uma_keg_t keg; 2284 int i; 2285 2286 bzero(zone, size); 2287 zone->uz_name = arg->name; 2288 zone->uz_ctor = arg->ctor; 2289 zone->uz_dtor = arg->dtor; 2290 zone->uz_init = NULL; 2291 zone->uz_fini = NULL; 2292 zone->uz_sleeps = 0; 2293 zone->uz_xdomain = 0; 2294 zone->uz_bucket_size = 0; 2295 zone->uz_bucket_size_min = 0; 2296 zone->uz_bucket_size_max = BUCKET_MAX; 2297 zone->uz_flags = 0; 2298 zone->uz_warning = NULL; 2299 /* The domain structures follow the cpu structures. */ 2300 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 2301 zone->uz_bkt_max = ULONG_MAX; 2302 timevalclear(&zone->uz_ratecheck); 2303 2304 /* Count the number of duplicate names. */ 2305 cnt.name = arg->name; 2306 cnt.count = 0; 2307 zone_foreach(zone_count, &cnt); 2308 zone->uz_namecnt = cnt.count; 2309 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 2310 ZONE_CROSS_LOCK_INIT(zone); 2311 2312 for (i = 0; i < vm_ndomains; i++) 2313 TAILQ_INIT(&zone->uz_domain[i].uzd_buckets); 2314 2315 #ifdef INVARIANTS 2316 if (arg->uminit == trash_init && arg->fini == trash_fini) 2317 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2318 #endif 2319 2320 /* 2321 * This is a pure cache zone, no kegs. 2322 */ 2323 if (arg->import) { 2324 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2325 ("zone_ctor: Import specified for non-cache zone.")); 2326 if (arg->flags & UMA_ZONE_VM) 2327 arg->flags |= UMA_ZFLAG_CACHEONLY; 2328 zone->uz_flags = arg->flags; 2329 zone->uz_size = arg->size; 2330 zone->uz_import = arg->import; 2331 zone->uz_release = arg->release; 2332 zone->uz_arg = arg->arg; 2333 rw_wlock(&uma_rwlock); 2334 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2335 rw_wunlock(&uma_rwlock); 2336 goto out; 2337 } 2338 2339 /* 2340 * Use the regular zone/keg/slab allocator. 2341 */ 2342 zone->uz_import = zone_import; 2343 zone->uz_release = zone_release; 2344 zone->uz_arg = zone; 2345 keg = arg->keg; 2346 2347 if (arg->flags & UMA_ZONE_SECONDARY) { 2348 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2349 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2350 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2351 zone->uz_init = arg->uminit; 2352 zone->uz_fini = arg->fini; 2353 zone->uz_flags |= UMA_ZONE_SECONDARY; 2354 rw_wlock(&uma_rwlock); 2355 ZONE_LOCK(zone); 2356 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2357 if (LIST_NEXT(z, uz_link) == NULL) { 2358 LIST_INSERT_AFTER(z, zone, uz_link); 2359 break; 2360 } 2361 } 2362 ZONE_UNLOCK(zone); 2363 rw_wunlock(&uma_rwlock); 2364 } else if (keg == NULL) { 2365 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2366 arg->align, arg->flags)) == NULL) 2367 return (ENOMEM); 2368 } else { 2369 struct uma_kctor_args karg; 2370 int error; 2371 2372 /* We should only be here from uma_startup() */ 2373 karg.size = arg->size; 2374 karg.uminit = arg->uminit; 2375 karg.fini = arg->fini; 2376 karg.align = arg->align; 2377 karg.flags = arg->flags; 2378 karg.zone = zone; 2379 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2380 flags); 2381 if (error) 2382 return (error); 2383 } 2384 2385 /* Inherit properties from the keg. */ 2386 zone->uz_keg = keg; 2387 zone->uz_size = keg->uk_size; 2388 zone->uz_flags |= (keg->uk_flags & 2389 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2390 2391 out: 2392 if (__predict_true(booted >= BOOT_RUNNING)) { 2393 zone_alloc_counters(zone, NULL); 2394 zone_alloc_sysctl(zone, NULL); 2395 } else { 2396 zone->uz_allocs = EARLY_COUNTER; 2397 zone->uz_frees = EARLY_COUNTER; 2398 zone->uz_fails = EARLY_COUNTER; 2399 } 2400 2401 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2402 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2403 ("Invalid zone flag combination")); 2404 if (arg->flags & UMA_ZFLAG_INTERNAL) 2405 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2406 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2407 zone->uz_bucket_size = BUCKET_MAX; 2408 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2409 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2410 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2411 zone->uz_bucket_size = 0; 2412 else 2413 zone->uz_bucket_size = bucket_select(zone->uz_size); 2414 zone->uz_bucket_size_min = zone->uz_bucket_size; 2415 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2416 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2417 zone_update_caches(zone); 2418 2419 return (0); 2420 } 2421 2422 /* 2423 * Keg header dtor. This frees all data, destroys locks, frees the hash 2424 * table and removes the keg from the global list. 2425 * 2426 * Arguments/Returns follow uma_dtor specifications 2427 * udata unused 2428 */ 2429 static void 2430 keg_dtor(void *arg, int size, void *udata) 2431 { 2432 uma_keg_t keg; 2433 uint32_t free, pages; 2434 int i; 2435 2436 keg = (uma_keg_t)arg; 2437 free = pages = 0; 2438 for (i = 0; i < vm_ndomains; i++) { 2439 free += keg->uk_domain[i].ud_free; 2440 pages += keg->uk_domain[i].ud_pages; 2441 KEG_LOCK_FINI(keg, i); 2442 } 2443 if (free != 0) 2444 printf("Freed UMA keg (%s) was not empty (%u items). " 2445 " Lost %u pages of memory.\n", 2446 keg->uk_name ? keg->uk_name : "", 2447 free, pages); 2448 2449 hash_free(&keg->uk_hash); 2450 } 2451 2452 /* 2453 * Zone header dtor. 2454 * 2455 * Arguments/Returns follow uma_dtor specifications 2456 * udata unused 2457 */ 2458 static void 2459 zone_dtor(void *arg, int size, void *udata) 2460 { 2461 uma_zone_t zone; 2462 uma_keg_t keg; 2463 2464 zone = (uma_zone_t)arg; 2465 2466 sysctl_remove_oid(zone->uz_oid, 1, 1); 2467 2468 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2469 cache_drain(zone); 2470 2471 rw_wlock(&uma_rwlock); 2472 LIST_REMOVE(zone, uz_link); 2473 rw_wunlock(&uma_rwlock); 2474 /* 2475 * XXX there are some races here where 2476 * the zone can be drained but zone lock 2477 * released and then refilled before we 2478 * remove it... we dont care for now 2479 */ 2480 zone_reclaim(zone, M_WAITOK, true); 2481 /* 2482 * We only destroy kegs from non secondary/non cache zones. 2483 */ 2484 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2485 keg = zone->uz_keg; 2486 rw_wlock(&uma_rwlock); 2487 LIST_REMOVE(keg, uk_link); 2488 rw_wunlock(&uma_rwlock); 2489 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2490 } 2491 counter_u64_free(zone->uz_allocs); 2492 counter_u64_free(zone->uz_frees); 2493 counter_u64_free(zone->uz_fails); 2494 free(zone->uz_ctlname, M_UMA); 2495 ZONE_LOCK_FINI(zone); 2496 ZONE_CROSS_LOCK_FINI(zone); 2497 } 2498 2499 static void 2500 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2501 { 2502 uma_keg_t keg; 2503 uma_zone_t zone; 2504 2505 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2506 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2507 zfunc(zone, arg); 2508 } 2509 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2510 zfunc(zone, arg); 2511 } 2512 2513 /* 2514 * Traverses every zone in the system and calls a callback 2515 * 2516 * Arguments: 2517 * zfunc A pointer to a function which accepts a zone 2518 * as an argument. 2519 * 2520 * Returns: 2521 * Nothing 2522 */ 2523 static void 2524 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2525 { 2526 2527 rw_rlock(&uma_rwlock); 2528 zone_foreach_unlocked(zfunc, arg); 2529 rw_runlock(&uma_rwlock); 2530 } 2531 2532 /* 2533 * Initialize the kernel memory allocator. This is done after pages can be 2534 * allocated but before general KVA is available. 2535 */ 2536 void 2537 uma_startup1(vm_offset_t virtual_avail) 2538 { 2539 struct uma_zctor_args args; 2540 size_t ksize, zsize, size; 2541 uma_keg_t masterkeg; 2542 uintptr_t m; 2543 uint8_t pflag; 2544 2545 bootstart = bootmem = virtual_avail; 2546 2547 rw_init(&uma_rwlock, "UMA lock"); 2548 sx_init(&uma_reclaim_lock, "umareclaim"); 2549 2550 ksize = sizeof(struct uma_keg) + 2551 (sizeof(struct uma_domain) * vm_ndomains); 2552 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2553 zsize = sizeof(struct uma_zone) + 2554 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2555 (sizeof(struct uma_zone_domain) * vm_ndomains); 2556 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2557 2558 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2559 size = (zsize * 2) + ksize; 2560 m = (uintptr_t)startup_alloc(NULL, size, 0, &pflag, M_NOWAIT | M_ZERO); 2561 zones = (uma_zone_t)m; 2562 m += zsize; 2563 kegs = (uma_zone_t)m; 2564 m += zsize; 2565 masterkeg = (uma_keg_t)m; 2566 2567 /* "manually" create the initial zone */ 2568 memset(&args, 0, sizeof(args)); 2569 args.name = "UMA Kegs"; 2570 args.size = ksize; 2571 args.ctor = keg_ctor; 2572 args.dtor = keg_dtor; 2573 args.uminit = zero_init; 2574 args.fini = NULL; 2575 args.keg = masterkeg; 2576 args.align = UMA_SUPER_ALIGN - 1; 2577 args.flags = UMA_ZFLAG_INTERNAL; 2578 zone_ctor(kegs, zsize, &args, M_WAITOK); 2579 2580 args.name = "UMA Zones"; 2581 args.size = zsize; 2582 args.ctor = zone_ctor; 2583 args.dtor = zone_dtor; 2584 args.uminit = zero_init; 2585 args.fini = NULL; 2586 args.keg = NULL; 2587 args.align = UMA_SUPER_ALIGN - 1; 2588 args.flags = UMA_ZFLAG_INTERNAL; 2589 zone_ctor(zones, zsize, &args, M_WAITOK); 2590 2591 /* Now make zones for slab headers */ 2592 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2593 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2594 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2595 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2596 2597 hashzone = uma_zcreate("UMA Hash", 2598 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2599 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2600 2601 bucket_init(); 2602 } 2603 2604 #ifndef UMA_MD_SMALL_ALLOC 2605 extern void vm_radix_reserve_kva(void); 2606 #endif 2607 2608 /* 2609 * Advertise the availability of normal kva allocations and switch to 2610 * the default back-end allocator. Marks the KVA we consumed on startup 2611 * as used in the map. 2612 */ 2613 void 2614 uma_startup2(void) 2615 { 2616 2617 if (!PMAP_HAS_DMAP) { 2618 vm_map_lock(kernel_map); 2619 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2620 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2621 vm_map_unlock(kernel_map); 2622 } 2623 2624 #ifndef UMA_MD_SMALL_ALLOC 2625 /* Set up radix zone to use noobj_alloc. */ 2626 vm_radix_reserve_kva(); 2627 #endif 2628 2629 booted = BOOT_KVA; 2630 zone_foreach_unlocked(zone_kva_available, NULL); 2631 bucket_enable(); 2632 } 2633 2634 /* 2635 * Finish our initialization steps. 2636 */ 2637 static void 2638 uma_startup3(void) 2639 { 2640 2641 #ifdef INVARIANTS 2642 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2643 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2644 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2645 #endif 2646 zone_foreach_unlocked(zone_alloc_counters, NULL); 2647 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2648 callout_init(&uma_callout, 1); 2649 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2650 booted = BOOT_RUNNING; 2651 2652 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2653 EVENTHANDLER_PRI_FIRST); 2654 } 2655 2656 static void 2657 uma_shutdown(void) 2658 { 2659 2660 booted = BOOT_SHUTDOWN; 2661 } 2662 2663 static uma_keg_t 2664 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2665 int align, uint32_t flags) 2666 { 2667 struct uma_kctor_args args; 2668 2669 args.size = size; 2670 args.uminit = uminit; 2671 args.fini = fini; 2672 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2673 args.flags = flags; 2674 args.zone = zone; 2675 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2676 } 2677 2678 /* Public functions */ 2679 /* See uma.h */ 2680 void 2681 uma_set_align(int align) 2682 { 2683 2684 if (align != UMA_ALIGN_CACHE) 2685 uma_align_cache = align; 2686 } 2687 2688 /* See uma.h */ 2689 uma_zone_t 2690 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2691 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2692 2693 { 2694 struct uma_zctor_args args; 2695 uma_zone_t res; 2696 2697 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2698 align, name)); 2699 2700 /* This stuff is essential for the zone ctor */ 2701 memset(&args, 0, sizeof(args)); 2702 args.name = name; 2703 args.size = size; 2704 args.ctor = ctor; 2705 args.dtor = dtor; 2706 args.uminit = uminit; 2707 args.fini = fini; 2708 #ifdef INVARIANTS 2709 /* 2710 * Inject procedures which check for memory use after free if we are 2711 * allowed to scramble the memory while it is not allocated. This 2712 * requires that: UMA is actually able to access the memory, no init 2713 * or fini procedures, no dependency on the initial value of the 2714 * memory, and no (legitimate) use of the memory after free. Note, 2715 * the ctor and dtor do not need to be empty. 2716 */ 2717 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 2718 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 2719 args.uminit = trash_init; 2720 args.fini = trash_fini; 2721 } 2722 #endif 2723 args.align = align; 2724 args.flags = flags; 2725 args.keg = NULL; 2726 2727 sx_slock(&uma_reclaim_lock); 2728 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2729 sx_sunlock(&uma_reclaim_lock); 2730 2731 return (res); 2732 } 2733 2734 /* See uma.h */ 2735 uma_zone_t 2736 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2737 uma_init zinit, uma_fini zfini, uma_zone_t master) 2738 { 2739 struct uma_zctor_args args; 2740 uma_keg_t keg; 2741 uma_zone_t res; 2742 2743 keg = master->uz_keg; 2744 memset(&args, 0, sizeof(args)); 2745 args.name = name; 2746 args.size = keg->uk_size; 2747 args.ctor = ctor; 2748 args.dtor = dtor; 2749 args.uminit = zinit; 2750 args.fini = zfini; 2751 args.align = keg->uk_align; 2752 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2753 args.keg = keg; 2754 2755 sx_slock(&uma_reclaim_lock); 2756 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2757 sx_sunlock(&uma_reclaim_lock); 2758 2759 return (res); 2760 } 2761 2762 /* See uma.h */ 2763 uma_zone_t 2764 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2765 uma_init zinit, uma_fini zfini, uma_import zimport, 2766 uma_release zrelease, void *arg, int flags) 2767 { 2768 struct uma_zctor_args args; 2769 2770 memset(&args, 0, sizeof(args)); 2771 args.name = name; 2772 args.size = size; 2773 args.ctor = ctor; 2774 args.dtor = dtor; 2775 args.uminit = zinit; 2776 args.fini = zfini; 2777 args.import = zimport; 2778 args.release = zrelease; 2779 args.arg = arg; 2780 args.align = 0; 2781 args.flags = flags | UMA_ZFLAG_CACHE; 2782 2783 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2784 } 2785 2786 /* See uma.h */ 2787 void 2788 uma_zdestroy(uma_zone_t zone) 2789 { 2790 2791 /* 2792 * Large slabs are expensive to reclaim, so don't bother doing 2793 * unnecessary work if we're shutting down. 2794 */ 2795 if (booted == BOOT_SHUTDOWN && 2796 zone->uz_fini == NULL && zone->uz_release == zone_release) 2797 return; 2798 sx_slock(&uma_reclaim_lock); 2799 zone_free_item(zones, zone, NULL, SKIP_NONE); 2800 sx_sunlock(&uma_reclaim_lock); 2801 } 2802 2803 void 2804 uma_zwait(uma_zone_t zone) 2805 { 2806 void *item; 2807 2808 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2809 uma_zfree(zone, item); 2810 } 2811 2812 void * 2813 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2814 { 2815 void *item; 2816 #ifdef SMP 2817 int i; 2818 2819 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2820 #endif 2821 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2822 if (item != NULL && (flags & M_ZERO)) { 2823 #ifdef SMP 2824 for (i = 0; i <= mp_maxid; i++) 2825 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2826 #else 2827 bzero(item, zone->uz_size); 2828 #endif 2829 } 2830 return (item); 2831 } 2832 2833 /* 2834 * A stub while both regular and pcpu cases are identical. 2835 */ 2836 void 2837 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2838 { 2839 2840 #ifdef SMP 2841 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2842 #endif 2843 uma_zfree_arg(zone, item, udata); 2844 } 2845 2846 #ifdef INVARIANTS 2847 #define UMA_ALWAYS_CTORDTOR 1 2848 #else 2849 #define UMA_ALWAYS_CTORDTOR 0 2850 #endif 2851 2852 static void * 2853 item_ctor(uma_zone_t zone, int size, void *udata, int flags, void *item) 2854 { 2855 #ifdef INVARIANTS 2856 bool skipdbg; 2857 2858 skipdbg = uma_dbg_zskip(zone, item); 2859 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 2860 zone->uz_ctor != trash_ctor) 2861 trash_ctor(item, size, udata, flags); 2862 #endif 2863 if (__predict_false(zone->uz_ctor != NULL) && 2864 zone->uz_ctor(item, size, udata, flags) != 0) { 2865 counter_u64_add(zone->uz_fails, 1); 2866 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2867 return (NULL); 2868 } 2869 #ifdef INVARIANTS 2870 if (!skipdbg) 2871 uma_dbg_alloc(zone, NULL, item); 2872 #endif 2873 if (flags & M_ZERO) 2874 bzero(item, size); 2875 2876 return (item); 2877 } 2878 2879 static inline void 2880 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 2881 enum zfreeskip skip) 2882 { 2883 #ifdef INVARIANTS 2884 bool skipdbg; 2885 2886 skipdbg = uma_dbg_zskip(zone, item); 2887 if (skip == SKIP_NONE && !skipdbg) { 2888 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 2889 uma_dbg_free(zone, udata, item); 2890 else 2891 uma_dbg_free(zone, NULL, item); 2892 } 2893 #endif 2894 if (__predict_true(skip < SKIP_DTOR)) { 2895 if (zone->uz_dtor != NULL) 2896 zone->uz_dtor(item, size, udata); 2897 #ifdef INVARIANTS 2898 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 2899 zone->uz_dtor != trash_dtor) 2900 trash_dtor(item, size, udata); 2901 #endif 2902 } 2903 } 2904 2905 /* See uma.h */ 2906 void * 2907 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2908 { 2909 uma_cache_bucket_t bucket; 2910 uma_cache_t cache; 2911 void *item; 2912 int domain, size, uz_flags; 2913 2914 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2915 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2916 2917 /* This is the fast path allocation */ 2918 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 2919 zone, flags); 2920 2921 #ifdef WITNESS 2922 if (flags & M_WAITOK) { 2923 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2924 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2925 } 2926 #endif 2927 2928 #ifdef INVARIANTS 2929 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2930 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2931 ("uma_zalloc_arg: called with spinlock or critical section held")); 2932 if (zone->uz_flags & UMA_ZONE_PCPU) 2933 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2934 "with M_ZERO passed")); 2935 #endif 2936 2937 #ifdef DEBUG_MEMGUARD 2938 if (memguard_cmp_zone(zone)) { 2939 item = memguard_alloc(zone->uz_size, flags); 2940 if (item != NULL) { 2941 if (zone->uz_init != NULL && 2942 zone->uz_init(item, zone->uz_size, flags) != 0) 2943 return (NULL); 2944 if (zone->uz_ctor != NULL && 2945 zone->uz_ctor(item, zone->uz_size, udata, 2946 flags) != 0) { 2947 counter_u64_add(zone->uz_fails, 1); 2948 zone->uz_fini(item, zone->uz_size); 2949 return (NULL); 2950 } 2951 return (item); 2952 } 2953 /* This is unfortunate but should not be fatal. */ 2954 } 2955 #endif 2956 /* 2957 * If possible, allocate from the per-CPU cache. There are two 2958 * requirements for safe access to the per-CPU cache: (1) the thread 2959 * accessing the cache must not be preempted or yield during access, 2960 * and (2) the thread must not migrate CPUs without switching which 2961 * cache it accesses. We rely on a critical section to prevent 2962 * preemption and migration. We release the critical section in 2963 * order to acquire the zone mutex if we are unable to allocate from 2964 * the current cache; when we re-acquire the critical section, we 2965 * must detect and handle migration if it has occurred. 2966 */ 2967 critical_enter(); 2968 do { 2969 cache = &zone->uz_cpu[curcpu]; 2970 bucket = &cache->uc_allocbucket; 2971 size = cache_uz_size(cache); 2972 uz_flags = cache_uz_flags(cache); 2973 if (__predict_true(bucket->ucb_cnt != 0)) { 2974 item = cache_bucket_pop(cache, bucket); 2975 critical_exit(); 2976 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0 || 2977 UMA_ALWAYS_CTORDTOR)) 2978 return (item_ctor(zone, size, udata, flags, item)); 2979 if (flags & M_ZERO) 2980 bzero(item, size); 2981 return (item); 2982 } 2983 } while (cache_alloc(zone, cache, udata, flags)); 2984 critical_exit(); 2985 2986 /* 2987 * We can not get a bucket so try to return a single item. 2988 */ 2989 if (uz_flags & UMA_ZONE_FIRSTTOUCH) 2990 domain = PCPU_GET(domain); 2991 else 2992 domain = UMA_ANYDOMAIN; 2993 return (zone_alloc_item(zone, udata, domain, flags)); 2994 } 2995 2996 /* 2997 * Replenish an alloc bucket and possibly restore an old one. Called in 2998 * a critical section. Returns in a critical section. 2999 * 3000 * A false return value indicates an allocation failure. 3001 * A true return value indicates success and the caller should retry. 3002 */ 3003 static __noinline bool 3004 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3005 { 3006 uma_zone_domain_t zdom; 3007 uma_bucket_t bucket; 3008 int domain; 3009 bool lockfail; 3010 3011 CRITICAL_ASSERT(curthread); 3012 3013 /* 3014 * If we have run out of items in our alloc bucket see 3015 * if we can switch with the free bucket. 3016 */ 3017 if (cache->uc_freebucket.ucb_cnt != 0) { 3018 cache_bucket_swap(&cache->uc_freebucket, &cache->uc_allocbucket); 3019 return (true); 3020 } 3021 3022 /* 3023 * Discard any empty allocation bucket while we hold no locks. 3024 */ 3025 bucket = cache_bucket_unload_alloc(cache); 3026 critical_exit(); 3027 if (bucket != NULL) 3028 bucket_free(zone, bucket, udata); 3029 3030 /* Short-circuit for zones without buckets and low memory. */ 3031 if (zone->uz_bucket_size == 0 || bucketdisable) { 3032 critical_enter(); 3033 return (false); 3034 } 3035 3036 /* 3037 * Attempt to retrieve the item from the per-CPU cache has failed, so 3038 * we must go back to the zone. This requires the zone lock, so we 3039 * must drop the critical section, then re-acquire it when we go back 3040 * to the cache. Since the critical section is released, we may be 3041 * preempted or migrate. As such, make sure not to maintain any 3042 * thread-local state specific to the cache from prior to releasing 3043 * the critical section. 3044 */ 3045 lockfail = 0; 3046 if (ZONE_TRYLOCK(zone) == 0) { 3047 /* Record contention to size the buckets. */ 3048 ZONE_LOCK(zone); 3049 lockfail = 1; 3050 } 3051 3052 /* See if we lost the race to fill the cache. */ 3053 critical_enter(); 3054 cache = &zone->uz_cpu[curcpu]; 3055 if (cache->uc_allocbucket.ucb_bucket != NULL) { 3056 ZONE_UNLOCK(zone); 3057 return (true); 3058 } 3059 3060 /* 3061 * Check the zone's cache of buckets. 3062 */ 3063 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) { 3064 domain = PCPU_GET(domain); 3065 zdom = &zone->uz_domain[domain]; 3066 } else { 3067 domain = UMA_ANYDOMAIN; 3068 zdom = &zone->uz_domain[0]; 3069 } 3070 3071 if ((bucket = zone_fetch_bucket(zone, zdom)) != NULL) { 3072 ZONE_UNLOCK(zone); 3073 KASSERT(bucket->ub_cnt != 0, 3074 ("uma_zalloc_arg: Returning an empty bucket.")); 3075 cache_bucket_load_alloc(cache, bucket); 3076 return (true); 3077 } 3078 /* We are no longer associated with this CPU. */ 3079 critical_exit(); 3080 3081 /* 3082 * We bump the uz count when the cache size is insufficient to 3083 * handle the working set. 3084 */ 3085 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 3086 zone->uz_bucket_size++; 3087 ZONE_UNLOCK(zone); 3088 3089 /* 3090 * Fill a bucket and attempt to use it as the alloc bucket. 3091 */ 3092 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3093 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3094 zone->uz_name, zone, bucket); 3095 if (bucket == NULL) { 3096 critical_enter(); 3097 return (false); 3098 } 3099 3100 /* 3101 * See if we lost the race or were migrated. Cache the 3102 * initialized bucket to make this less likely or claim 3103 * the memory directly. 3104 */ 3105 ZONE_LOCK(zone); 3106 critical_enter(); 3107 cache = &zone->uz_cpu[curcpu]; 3108 if (cache->uc_allocbucket.ucb_bucket == NULL && 3109 ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0 || 3110 domain == PCPU_GET(domain))) { 3111 cache_bucket_load_alloc(cache, bucket); 3112 zdom->uzd_imax += bucket->ub_cnt; 3113 } else if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3114 critical_exit(); 3115 ZONE_UNLOCK(zone); 3116 bucket_drain(zone, bucket); 3117 bucket_free(zone, bucket, udata); 3118 critical_enter(); 3119 return (true); 3120 } else 3121 zone_put_bucket(zone, zdom, bucket, false); 3122 ZONE_UNLOCK(zone); 3123 return (true); 3124 } 3125 3126 void * 3127 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3128 { 3129 3130 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3131 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3132 3133 /* This is the fast path allocation */ 3134 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3135 zone->uz_name, zone, domain, flags); 3136 3137 if (flags & M_WAITOK) { 3138 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3139 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3140 } 3141 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3142 ("uma_zalloc_domain: called with spinlock or critical section held")); 3143 3144 return (zone_alloc_item(zone, udata, domain, flags)); 3145 } 3146 3147 /* 3148 * Find a slab with some space. Prefer slabs that are partially used over those 3149 * that are totally full. This helps to reduce fragmentation. 3150 * 3151 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3152 * only 'domain'. 3153 */ 3154 static uma_slab_t 3155 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3156 { 3157 uma_domain_t dom; 3158 uma_slab_t slab; 3159 int start; 3160 3161 KASSERT(domain >= 0 && domain < vm_ndomains, 3162 ("keg_first_slab: domain %d out of range", domain)); 3163 KEG_LOCK_ASSERT(keg, domain); 3164 3165 slab = NULL; 3166 start = domain; 3167 do { 3168 dom = &keg->uk_domain[domain]; 3169 if (!LIST_EMPTY(&dom->ud_part_slab)) 3170 return (LIST_FIRST(&dom->ud_part_slab)); 3171 if (!LIST_EMPTY(&dom->ud_free_slab)) { 3172 slab = LIST_FIRST(&dom->ud_free_slab); 3173 LIST_REMOVE(slab, us_link); 3174 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3175 return (slab); 3176 } 3177 if (rr) 3178 domain = (domain + 1) % vm_ndomains; 3179 } while (domain != start); 3180 3181 return (NULL); 3182 } 3183 3184 /* 3185 * Fetch an existing slab from a free or partial list. Returns with the 3186 * keg domain lock held if a slab was found or unlocked if not. 3187 */ 3188 static uma_slab_t 3189 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3190 { 3191 uma_slab_t slab; 3192 uint32_t reserve; 3193 3194 /* HASH has a single free list. */ 3195 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3196 domain = 0; 3197 3198 KEG_LOCK(keg, domain); 3199 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3200 if (keg->uk_domain[domain].ud_free <= reserve || 3201 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3202 KEG_UNLOCK(keg, domain); 3203 return (NULL); 3204 } 3205 return (slab); 3206 } 3207 3208 static uma_slab_t 3209 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3210 { 3211 struct vm_domainset_iter di; 3212 uma_slab_t slab; 3213 int aflags, domain; 3214 bool rr; 3215 3216 restart: 3217 /* 3218 * Use the keg's policy if upper layers haven't already specified a 3219 * domain (as happens with first-touch zones). 3220 * 3221 * To avoid races we run the iterator with the keg lock held, but that 3222 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3223 * clear M_WAITOK and handle low memory conditions locally. 3224 */ 3225 rr = rdomain == UMA_ANYDOMAIN; 3226 if (rr) { 3227 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3228 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3229 &aflags); 3230 } else { 3231 aflags = flags; 3232 domain = rdomain; 3233 } 3234 3235 for (;;) { 3236 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3237 if (slab != NULL) 3238 return (slab); 3239 3240 /* 3241 * M_NOVM means don't ask at all! 3242 */ 3243 if (flags & M_NOVM) 3244 break; 3245 3246 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3247 if (slab != NULL) 3248 return (slab); 3249 if (!rr && (flags & M_WAITOK) == 0) 3250 break; 3251 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3252 if ((flags & M_WAITOK) != 0) { 3253 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3254 goto restart; 3255 } 3256 break; 3257 } 3258 } 3259 3260 /* 3261 * We might not have been able to get a slab but another cpu 3262 * could have while we were unlocked. Check again before we 3263 * fail. 3264 */ 3265 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3266 return (slab); 3267 3268 return (NULL); 3269 } 3270 3271 static void * 3272 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3273 { 3274 uma_domain_t dom; 3275 void *item; 3276 int freei; 3277 3278 KEG_LOCK_ASSERT(keg, slab->us_domain); 3279 3280 dom = &keg->uk_domain[slab->us_domain]; 3281 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3282 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3283 item = slab_item(slab, keg, freei); 3284 slab->us_freecount--; 3285 dom->ud_free--; 3286 3287 /* Move this slab to the full list */ 3288 if (slab->us_freecount == 0) { 3289 LIST_REMOVE(slab, us_link); 3290 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3291 } 3292 3293 return (item); 3294 } 3295 3296 static int 3297 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3298 { 3299 uma_domain_t dom; 3300 uma_zone_t zone; 3301 uma_slab_t slab; 3302 uma_keg_t keg; 3303 #ifdef NUMA 3304 int stripe; 3305 #endif 3306 int i; 3307 3308 zone = arg; 3309 slab = NULL; 3310 keg = zone->uz_keg; 3311 /* Try to keep the buckets totally full */ 3312 for (i = 0; i < max; ) { 3313 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3314 break; 3315 #ifdef NUMA 3316 stripe = howmany(max, vm_ndomains); 3317 #endif 3318 dom = &keg->uk_domain[slab->us_domain]; 3319 while (slab->us_freecount && i < max) { 3320 bucket[i++] = slab_alloc_item(keg, slab); 3321 if (dom->ud_free <= keg->uk_reserve) 3322 break; 3323 #ifdef NUMA 3324 /* 3325 * If the zone is striped we pick a new slab for every 3326 * N allocations. Eliminating this conditional will 3327 * instead pick a new domain for each bucket rather 3328 * than stripe within each bucket. The current option 3329 * produces more fragmentation and requires more cpu 3330 * time but yields better distribution. 3331 */ 3332 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3333 vm_ndomains > 1 && --stripe == 0) 3334 break; 3335 #endif 3336 } 3337 KEG_UNLOCK(keg, slab->us_domain); 3338 /* Don't block if we allocated any successfully. */ 3339 flags &= ~M_WAITOK; 3340 flags |= M_NOWAIT; 3341 } 3342 3343 return i; 3344 } 3345 3346 static int 3347 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3348 { 3349 uint64_t old, new, total, max; 3350 3351 /* 3352 * The hard case. We're going to sleep because there were existing 3353 * sleepers or because we ran out of items. This routine enforces 3354 * fairness by keeping fifo order. 3355 * 3356 * First release our ill gotten gains and make some noise. 3357 */ 3358 for (;;) { 3359 zone_free_limit(zone, count); 3360 zone_log_warning(zone); 3361 zone_maxaction(zone); 3362 if (flags & M_NOWAIT) 3363 return (0); 3364 3365 /* 3366 * We need to allocate an item or set ourself as a sleeper 3367 * while the sleepq lock is held to avoid wakeup races. This 3368 * is essentially a home rolled semaphore. 3369 */ 3370 sleepq_lock(&zone->uz_max_items); 3371 old = zone->uz_items; 3372 do { 3373 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3374 /* Cache the max since we will evaluate twice. */ 3375 max = zone->uz_max_items; 3376 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3377 UZ_ITEMS_COUNT(old) >= max) 3378 new = old + UZ_ITEMS_SLEEPER; 3379 else 3380 new = old + MIN(count, max - old); 3381 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3382 3383 /* We may have successfully allocated under the sleepq lock. */ 3384 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3385 sleepq_release(&zone->uz_max_items); 3386 return (new - old); 3387 } 3388 3389 /* 3390 * This is in a different cacheline from uz_items so that we 3391 * don't constantly invalidate the fastpath cacheline when we 3392 * adjust item counts. This could be limited to toggling on 3393 * transitions. 3394 */ 3395 atomic_add_32(&zone->uz_sleepers, 1); 3396 atomic_add_64(&zone->uz_sleeps, 1); 3397 3398 /* 3399 * We have added ourselves as a sleeper. The sleepq lock 3400 * protects us from wakeup races. Sleep now and then retry. 3401 */ 3402 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3403 sleepq_wait(&zone->uz_max_items, PVM); 3404 3405 /* 3406 * After wakeup, remove ourselves as a sleeper and try 3407 * again. We no longer have the sleepq lock for protection. 3408 * 3409 * Subract ourselves as a sleeper while attempting to add 3410 * our count. 3411 */ 3412 atomic_subtract_32(&zone->uz_sleepers, 1); 3413 old = atomic_fetchadd_64(&zone->uz_items, 3414 -(UZ_ITEMS_SLEEPER - count)); 3415 /* We're no longer a sleeper. */ 3416 old -= UZ_ITEMS_SLEEPER; 3417 3418 /* 3419 * If we're still at the limit, restart. Notably do not 3420 * block on other sleepers. Cache the max value to protect 3421 * against changes via sysctl. 3422 */ 3423 total = UZ_ITEMS_COUNT(old); 3424 max = zone->uz_max_items; 3425 if (total >= max) 3426 continue; 3427 /* Truncate if necessary, otherwise wake other sleepers. */ 3428 if (total + count > max) { 3429 zone_free_limit(zone, total + count - max); 3430 count = max - total; 3431 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3432 wakeup_one(&zone->uz_max_items); 3433 3434 return (count); 3435 } 3436 } 3437 3438 /* 3439 * Allocate 'count' items from our max_items limit. Returns the number 3440 * available. If M_NOWAIT is not specified it will sleep until at least 3441 * one item can be allocated. 3442 */ 3443 static int 3444 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3445 { 3446 uint64_t old; 3447 uint64_t max; 3448 3449 max = zone->uz_max_items; 3450 MPASS(max > 0); 3451 3452 /* 3453 * We expect normal allocations to succeed with a simple 3454 * fetchadd. 3455 */ 3456 old = atomic_fetchadd_64(&zone->uz_items, count); 3457 if (__predict_true(old + count <= max)) 3458 return (count); 3459 3460 /* 3461 * If we had some items and no sleepers just return the 3462 * truncated value. We have to release the excess space 3463 * though because that may wake sleepers who weren't woken 3464 * because we were temporarily over the limit. 3465 */ 3466 if (old < max) { 3467 zone_free_limit(zone, (old + count) - max); 3468 return (max - old); 3469 } 3470 return (zone_alloc_limit_hard(zone, count, flags)); 3471 } 3472 3473 /* 3474 * Free a number of items back to the limit. 3475 */ 3476 static void 3477 zone_free_limit(uma_zone_t zone, int count) 3478 { 3479 uint64_t old; 3480 3481 MPASS(count > 0); 3482 3483 /* 3484 * In the common case we either have no sleepers or 3485 * are still over the limit and can just return. 3486 */ 3487 old = atomic_fetchadd_64(&zone->uz_items, -count); 3488 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3489 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3490 return; 3491 3492 /* 3493 * Moderate the rate of wakeups. Sleepers will continue 3494 * to generate wakeups if necessary. 3495 */ 3496 wakeup_one(&zone->uz_max_items); 3497 } 3498 3499 static uma_bucket_t 3500 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3501 { 3502 uma_bucket_t bucket; 3503 int maxbucket, cnt; 3504 3505 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3506 zone, domain); 3507 3508 /* Avoid allocs targeting empty domains. */ 3509 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3510 domain = UMA_ANYDOMAIN; 3511 3512 if (zone->uz_max_items > 0) 3513 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3514 M_NOWAIT); 3515 else 3516 maxbucket = zone->uz_bucket_size; 3517 if (maxbucket == 0) 3518 return (false); 3519 3520 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3521 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3522 if (bucket == NULL) { 3523 cnt = 0; 3524 goto out; 3525 } 3526 3527 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3528 MIN(maxbucket, bucket->ub_entries), domain, flags); 3529 3530 /* 3531 * Initialize the memory if necessary. 3532 */ 3533 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3534 int i; 3535 3536 for (i = 0; i < bucket->ub_cnt; i++) 3537 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3538 flags) != 0) 3539 break; 3540 /* 3541 * If we couldn't initialize the whole bucket, put the 3542 * rest back onto the freelist. 3543 */ 3544 if (i != bucket->ub_cnt) { 3545 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3546 bucket->ub_cnt - i); 3547 #ifdef INVARIANTS 3548 bzero(&bucket->ub_bucket[i], 3549 sizeof(void *) * (bucket->ub_cnt - i)); 3550 #endif 3551 bucket->ub_cnt = i; 3552 } 3553 } 3554 3555 cnt = bucket->ub_cnt; 3556 if (bucket->ub_cnt == 0) { 3557 bucket_free(zone, bucket, udata); 3558 counter_u64_add(zone->uz_fails, 1); 3559 bucket = NULL; 3560 } 3561 out: 3562 if (zone->uz_max_items > 0 && cnt < maxbucket) 3563 zone_free_limit(zone, maxbucket - cnt); 3564 3565 return (bucket); 3566 } 3567 3568 /* 3569 * Allocates a single item from a zone. 3570 * 3571 * Arguments 3572 * zone The zone to alloc for. 3573 * udata The data to be passed to the constructor. 3574 * domain The domain to allocate from or UMA_ANYDOMAIN. 3575 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3576 * 3577 * Returns 3578 * NULL if there is no memory and M_NOWAIT is set 3579 * An item if successful 3580 */ 3581 3582 static void * 3583 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3584 { 3585 void *item; 3586 3587 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) 3588 return (NULL); 3589 3590 /* Avoid allocs targeting empty domains. */ 3591 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3592 domain = UMA_ANYDOMAIN; 3593 3594 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3595 goto fail_cnt; 3596 3597 /* 3598 * We have to call both the zone's init (not the keg's init) 3599 * and the zone's ctor. This is because the item is going from 3600 * a keg slab directly to the user, and the user is expecting it 3601 * to be both zone-init'd as well as zone-ctor'd. 3602 */ 3603 if (zone->uz_init != NULL) { 3604 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3605 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3606 goto fail_cnt; 3607 } 3608 } 3609 item = item_ctor(zone, zone->uz_size, udata, flags, item); 3610 if (item == NULL) 3611 goto fail; 3612 3613 counter_u64_add(zone->uz_allocs, 1); 3614 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3615 zone->uz_name, zone); 3616 3617 return (item); 3618 3619 fail_cnt: 3620 counter_u64_add(zone->uz_fails, 1); 3621 fail: 3622 if (zone->uz_max_items > 0) 3623 zone_free_limit(zone, 1); 3624 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3625 zone->uz_name, zone); 3626 3627 return (NULL); 3628 } 3629 3630 /* See uma.h */ 3631 void 3632 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3633 { 3634 uma_cache_t cache; 3635 uma_cache_bucket_t bucket; 3636 int domain, itemdomain, uz_flags; 3637 3638 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3639 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3640 3641 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 3642 3643 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3644 ("uma_zfree_arg: called with spinlock or critical section held")); 3645 3646 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3647 if (item == NULL) 3648 return; 3649 #ifdef DEBUG_MEMGUARD 3650 if (is_memguard_addr(item)) { 3651 if (zone->uz_dtor != NULL) 3652 zone->uz_dtor(item, zone->uz_size, udata); 3653 if (zone->uz_fini != NULL) 3654 zone->uz_fini(item, zone->uz_size); 3655 memguard_free(item); 3656 return; 3657 } 3658 #endif 3659 3660 /* 3661 * We are accessing the per-cpu cache without a critical section to 3662 * fetch size and flags. This is acceptable, if we are preempted we 3663 * will simply read another cpu's line. 3664 */ 3665 cache = &zone->uz_cpu[curcpu]; 3666 uz_flags = cache_uz_flags(cache); 3667 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0 || 3668 UMA_ALWAYS_CTORDTOR)) 3669 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 3670 3671 /* 3672 * The race here is acceptable. If we miss it we'll just have to wait 3673 * a little longer for the limits to be reset. 3674 */ 3675 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 3676 if (zone->uz_sleepers > 0) 3677 goto zfree_item; 3678 } 3679 3680 /* 3681 * If possible, free to the per-CPU cache. There are two 3682 * requirements for safe access to the per-CPU cache: (1) the thread 3683 * accessing the cache must not be preempted or yield during access, 3684 * and (2) the thread must not migrate CPUs without switching which 3685 * cache it accesses. We rely on a critical section to prevent 3686 * preemption and migration. We release the critical section in 3687 * order to acquire the zone mutex if we are unable to free to the 3688 * current cache; when we re-acquire the critical section, we must 3689 * detect and handle migration if it has occurred. 3690 */ 3691 domain = itemdomain = 0; 3692 #ifdef NUMA 3693 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 3694 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3695 #endif 3696 critical_enter(); 3697 do { 3698 cache = &zone->uz_cpu[curcpu]; 3699 #ifdef NUMA 3700 domain = PCPU_GET(domain); 3701 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 3702 domain != itemdomain) { 3703 bucket = &cache->uc_crossbucket; 3704 } else 3705 #endif 3706 { 3707 /* 3708 * Try to free into the allocbucket first to give LIFO 3709 * ordering for cache-hot datastructures. Spill over 3710 * into the freebucket if necessary. Alloc will swap 3711 * them if one runs dry. 3712 */ 3713 bucket = &cache->uc_allocbucket; 3714 if (__predict_false(bucket->ucb_cnt >= 3715 bucket->ucb_entries)) 3716 bucket = &cache->uc_freebucket; 3717 } 3718 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 3719 cache_bucket_push(cache, bucket, item); 3720 critical_exit(); 3721 return; 3722 } 3723 } while (cache_free(zone, cache, udata, item, itemdomain)); 3724 critical_exit(); 3725 3726 /* 3727 * If nothing else caught this, we'll just do an internal free. 3728 */ 3729 zfree_item: 3730 zone_free_item(zone, item, udata, SKIP_DTOR); 3731 } 3732 3733 #ifdef NUMA 3734 /* 3735 * sort crossdomain free buckets to domain correct buckets and cache 3736 * them. 3737 */ 3738 static void 3739 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 3740 { 3741 struct uma_bucketlist fullbuckets; 3742 uma_zone_domain_t zdom; 3743 uma_bucket_t b; 3744 void *item; 3745 int domain; 3746 3747 CTR3(KTR_UMA, 3748 "uma_zfree: zone %s(%p) draining cross bucket %p", 3749 zone->uz_name, zone, bucket); 3750 3751 TAILQ_INIT(&fullbuckets); 3752 3753 /* 3754 * To avoid having ndomain * ndomain buckets for sorting we have a 3755 * lock on the current crossfree bucket. A full matrix with 3756 * per-domain locking could be used if necessary. 3757 */ 3758 ZONE_CROSS_LOCK(zone); 3759 while (bucket->ub_cnt > 0) { 3760 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3761 domain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3762 zdom = &zone->uz_domain[domain]; 3763 if (zdom->uzd_cross == NULL) { 3764 zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT); 3765 if (zdom->uzd_cross == NULL) 3766 break; 3767 } 3768 zdom->uzd_cross->ub_bucket[zdom->uzd_cross->ub_cnt++] = item; 3769 if (zdom->uzd_cross->ub_cnt == zdom->uzd_cross->ub_entries) { 3770 TAILQ_INSERT_HEAD(&fullbuckets, zdom->uzd_cross, 3771 ub_link); 3772 zdom->uzd_cross = NULL; 3773 } 3774 bucket->ub_cnt--; 3775 } 3776 ZONE_CROSS_UNLOCK(zone); 3777 if (!TAILQ_EMPTY(&fullbuckets)) { 3778 ZONE_LOCK(zone); 3779 while ((b = TAILQ_FIRST(&fullbuckets)) != NULL) { 3780 TAILQ_REMOVE(&fullbuckets, b, ub_link); 3781 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3782 ZONE_UNLOCK(zone); 3783 bucket_drain(zone, b); 3784 bucket_free(zone, b, udata); 3785 ZONE_LOCK(zone); 3786 } else { 3787 domain = _vm_phys_domain( 3788 pmap_kextract( 3789 (vm_offset_t)b->ub_bucket[0])); 3790 zdom = &zone->uz_domain[domain]; 3791 zone_put_bucket(zone, zdom, b, true); 3792 } 3793 } 3794 ZONE_UNLOCK(zone); 3795 } 3796 if (bucket->ub_cnt != 0) 3797 bucket_drain(zone, bucket); 3798 bucket_free(zone, bucket, udata); 3799 } 3800 #endif 3801 3802 static void 3803 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 3804 int domain, int itemdomain) 3805 { 3806 uma_zone_domain_t zdom; 3807 3808 #ifdef NUMA 3809 /* 3810 * Buckets coming from the wrong domain will be entirely for the 3811 * only other domain on two domain systems. In this case we can 3812 * simply cache them. Otherwise we need to sort them back to 3813 * correct domains. 3814 */ 3815 if (domain != itemdomain && vm_ndomains > 2) { 3816 zone_free_cross(zone, bucket, udata); 3817 return; 3818 } 3819 #endif 3820 3821 /* 3822 * Attempt to save the bucket in the zone's domain bucket cache. 3823 * 3824 * We bump the uz count when the cache size is insufficient to 3825 * handle the working set. 3826 */ 3827 if (ZONE_TRYLOCK(zone) == 0) { 3828 /* Record contention to size the buckets. */ 3829 ZONE_LOCK(zone); 3830 if (zone->uz_bucket_size < zone->uz_bucket_size_max) 3831 zone->uz_bucket_size++; 3832 } 3833 3834 CTR3(KTR_UMA, 3835 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3836 zone->uz_name, zone, bucket); 3837 /* ub_cnt is pointing to the last free item */ 3838 KASSERT(bucket->ub_cnt == bucket->ub_entries, 3839 ("uma_zfree: Attempting to insert partial bucket onto the full list.\n")); 3840 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3841 ZONE_UNLOCK(zone); 3842 bucket_drain(zone, bucket); 3843 bucket_free(zone, bucket, udata); 3844 } else { 3845 zdom = &zone->uz_domain[itemdomain]; 3846 zone_put_bucket(zone, zdom, bucket, true); 3847 ZONE_UNLOCK(zone); 3848 } 3849 } 3850 3851 /* 3852 * Populate a free or cross bucket for the current cpu cache. Free any 3853 * existing full bucket either to the zone cache or back to the slab layer. 3854 * 3855 * Enters and returns in a critical section. false return indicates that 3856 * we can not satisfy this free in the cache layer. true indicates that 3857 * the caller should retry. 3858 */ 3859 static __noinline bool 3860 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 3861 int itemdomain) 3862 { 3863 uma_cache_bucket_t cbucket; 3864 uma_bucket_t bucket; 3865 int domain; 3866 3867 CRITICAL_ASSERT(curthread); 3868 3869 if (zone->uz_bucket_size == 0 || bucketdisable) 3870 return false; 3871 3872 cache = &zone->uz_cpu[curcpu]; 3873 3874 /* 3875 * FIRSTTOUCH domains need to free to the correct zdom. When 3876 * enabled this is the zdom of the item. The bucket is the 3877 * cross bucket if the current domain and itemdomain do not match. 3878 */ 3879 cbucket = &cache->uc_freebucket; 3880 #ifdef NUMA 3881 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) { 3882 domain = PCPU_GET(domain); 3883 if (domain != itemdomain) { 3884 cbucket = &cache->uc_crossbucket; 3885 if (cbucket->ucb_cnt != 0) 3886 atomic_add_64(&zone->uz_xdomain, 3887 cbucket->ucb_cnt); 3888 } 3889 } else 3890 #endif 3891 itemdomain = domain = 0; 3892 bucket = cache_bucket_unload(cbucket); 3893 3894 /* We are no longer associated with this CPU. */ 3895 critical_exit(); 3896 3897 if (bucket != NULL) 3898 zone_free_bucket(zone, bucket, udata, domain, itemdomain); 3899 3900 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3901 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3902 zone->uz_name, zone, bucket); 3903 critical_enter(); 3904 if (bucket == NULL) 3905 return (false); 3906 cache = &zone->uz_cpu[curcpu]; 3907 #ifdef NUMA 3908 /* 3909 * Check to see if we should be populating the cross bucket. If it 3910 * is already populated we will fall through and attempt to populate 3911 * the free bucket. 3912 */ 3913 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) { 3914 domain = PCPU_GET(domain); 3915 if (domain != itemdomain && 3916 cache->uc_crossbucket.ucb_bucket == NULL) { 3917 cache_bucket_load_cross(cache, bucket); 3918 return (true); 3919 } 3920 } 3921 #endif 3922 /* 3923 * We may have lost the race to fill the bucket or switched CPUs. 3924 */ 3925 if (cache->uc_freebucket.ucb_bucket != NULL) { 3926 critical_exit(); 3927 bucket_free(zone, bucket, udata); 3928 critical_enter(); 3929 } else 3930 cache_bucket_load_free(cache, bucket); 3931 3932 return (true); 3933 } 3934 3935 void 3936 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3937 { 3938 3939 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3940 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3941 3942 CTR2(KTR_UMA, "uma_zfree_domain zone %s(%p)", zone->uz_name, zone); 3943 3944 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3945 ("uma_zfree_domain: called with spinlock or critical section held")); 3946 3947 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3948 if (item == NULL) 3949 return; 3950 zone_free_item(zone, item, udata, SKIP_NONE); 3951 } 3952 3953 static void 3954 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 3955 { 3956 uma_keg_t keg; 3957 uma_domain_t dom; 3958 int freei; 3959 3960 keg = zone->uz_keg; 3961 KEG_LOCK_ASSERT(keg, slab->us_domain); 3962 3963 /* Do we need to remove from any lists? */ 3964 dom = &keg->uk_domain[slab->us_domain]; 3965 if (slab->us_freecount+1 == keg->uk_ipers) { 3966 LIST_REMOVE(slab, us_link); 3967 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3968 } else if (slab->us_freecount == 0) { 3969 LIST_REMOVE(slab, us_link); 3970 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3971 } 3972 3973 /* Slab management. */ 3974 freei = slab_item_index(slab, keg, item); 3975 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 3976 slab->us_freecount++; 3977 3978 /* Keg statistics. */ 3979 dom->ud_free++; 3980 } 3981 3982 static void 3983 zone_release(void *arg, void **bucket, int cnt) 3984 { 3985 struct mtx *lock; 3986 uma_zone_t zone; 3987 uma_slab_t slab; 3988 uma_keg_t keg; 3989 uint8_t *mem; 3990 void *item; 3991 int i; 3992 3993 zone = arg; 3994 keg = zone->uz_keg; 3995 lock = NULL; 3996 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 3997 lock = KEG_LOCK(keg, 0); 3998 for (i = 0; i < cnt; i++) { 3999 item = bucket[i]; 4000 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4001 slab = vtoslab((vm_offset_t)item); 4002 } else { 4003 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4004 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4005 slab = hash_sfind(&keg->uk_hash, mem); 4006 else 4007 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4008 } 4009 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4010 if (lock != NULL) 4011 mtx_unlock(lock); 4012 lock = KEG_LOCK(keg, slab->us_domain); 4013 } 4014 slab_free_item(zone, slab, item); 4015 } 4016 if (lock != NULL) 4017 mtx_unlock(lock); 4018 } 4019 4020 /* 4021 * Frees a single item to any zone. 4022 * 4023 * Arguments: 4024 * zone The zone to free to 4025 * item The item we're freeing 4026 * udata User supplied data for the dtor 4027 * skip Skip dtors and finis 4028 */ 4029 static void 4030 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4031 { 4032 4033 item_dtor(zone, item, zone->uz_size, udata, skip); 4034 4035 if (skip < SKIP_FINI && zone->uz_fini) 4036 zone->uz_fini(item, zone->uz_size); 4037 4038 zone->uz_release(zone->uz_arg, &item, 1); 4039 4040 if (skip & SKIP_CNT) 4041 return; 4042 4043 counter_u64_add(zone->uz_frees, 1); 4044 4045 if (zone->uz_max_items > 0) 4046 zone_free_limit(zone, 1); 4047 } 4048 4049 /* See uma.h */ 4050 int 4051 uma_zone_set_max(uma_zone_t zone, int nitems) 4052 { 4053 struct uma_bucket_zone *ubz; 4054 int count; 4055 4056 /* 4057 * XXX This can misbehave if the zone has any allocations with 4058 * no limit and a limit is imposed. There is currently no 4059 * way to clear a limit. 4060 */ 4061 ZONE_LOCK(zone); 4062 ubz = bucket_zone_max(zone, nitems); 4063 count = ubz != NULL ? ubz->ubz_entries : 0; 4064 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 4065 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4066 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4067 zone->uz_max_items = nitems; 4068 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4069 zone_update_caches(zone); 4070 /* We may need to wake waiters. */ 4071 wakeup(&zone->uz_max_items); 4072 ZONE_UNLOCK(zone); 4073 4074 return (nitems); 4075 } 4076 4077 /* See uma.h */ 4078 void 4079 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4080 { 4081 struct uma_bucket_zone *ubz; 4082 int bpcpu; 4083 4084 ZONE_LOCK(zone); 4085 ubz = bucket_zone_max(zone, nitems); 4086 if (ubz != NULL) { 4087 bpcpu = 2; 4088 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4089 /* Count the cross-domain bucket. */ 4090 bpcpu++; 4091 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 4092 zone->uz_bucket_size_max = ubz->ubz_entries; 4093 } else { 4094 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 4095 } 4096 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4097 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4098 zone->uz_bkt_max = nitems; 4099 ZONE_UNLOCK(zone); 4100 } 4101 4102 /* See uma.h */ 4103 int 4104 uma_zone_get_max(uma_zone_t zone) 4105 { 4106 int nitems; 4107 4108 nitems = atomic_load_64(&zone->uz_max_items); 4109 4110 return (nitems); 4111 } 4112 4113 /* See uma.h */ 4114 void 4115 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4116 { 4117 4118 ZONE_ASSERT_COLD(zone); 4119 zone->uz_warning = warning; 4120 } 4121 4122 /* See uma.h */ 4123 void 4124 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4125 { 4126 4127 ZONE_ASSERT_COLD(zone); 4128 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4129 } 4130 4131 /* See uma.h */ 4132 int 4133 uma_zone_get_cur(uma_zone_t zone) 4134 { 4135 int64_t nitems; 4136 u_int i; 4137 4138 nitems = 0; 4139 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4140 nitems = counter_u64_fetch(zone->uz_allocs) - 4141 counter_u64_fetch(zone->uz_frees); 4142 CPU_FOREACH(i) 4143 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4144 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4145 4146 return (nitems < 0 ? 0 : nitems); 4147 } 4148 4149 static uint64_t 4150 uma_zone_get_allocs(uma_zone_t zone) 4151 { 4152 uint64_t nitems; 4153 u_int i; 4154 4155 nitems = 0; 4156 if (zone->uz_allocs != EARLY_COUNTER) 4157 nitems = counter_u64_fetch(zone->uz_allocs); 4158 CPU_FOREACH(i) 4159 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4160 4161 return (nitems); 4162 } 4163 4164 static uint64_t 4165 uma_zone_get_frees(uma_zone_t zone) 4166 { 4167 uint64_t nitems; 4168 u_int i; 4169 4170 nitems = 0; 4171 if (zone->uz_frees != EARLY_COUNTER) 4172 nitems = counter_u64_fetch(zone->uz_frees); 4173 CPU_FOREACH(i) 4174 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4175 4176 return (nitems); 4177 } 4178 4179 #ifdef INVARIANTS 4180 /* Used only for KEG_ASSERT_COLD(). */ 4181 static uint64_t 4182 uma_keg_get_allocs(uma_keg_t keg) 4183 { 4184 uma_zone_t z; 4185 uint64_t nitems; 4186 4187 nitems = 0; 4188 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4189 nitems += uma_zone_get_allocs(z); 4190 4191 return (nitems); 4192 } 4193 #endif 4194 4195 /* See uma.h */ 4196 void 4197 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4198 { 4199 uma_keg_t keg; 4200 4201 KEG_GET(zone, keg); 4202 KEG_ASSERT_COLD(keg); 4203 keg->uk_init = uminit; 4204 } 4205 4206 /* See uma.h */ 4207 void 4208 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4209 { 4210 uma_keg_t keg; 4211 4212 KEG_GET(zone, keg); 4213 KEG_ASSERT_COLD(keg); 4214 keg->uk_fini = fini; 4215 } 4216 4217 /* See uma.h */ 4218 void 4219 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4220 { 4221 4222 ZONE_ASSERT_COLD(zone); 4223 zone->uz_init = zinit; 4224 } 4225 4226 /* See uma.h */ 4227 void 4228 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4229 { 4230 4231 ZONE_ASSERT_COLD(zone); 4232 zone->uz_fini = zfini; 4233 } 4234 4235 /* See uma.h */ 4236 void 4237 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4238 { 4239 uma_keg_t keg; 4240 4241 KEG_GET(zone, keg); 4242 KEG_ASSERT_COLD(keg); 4243 keg->uk_freef = freef; 4244 } 4245 4246 /* See uma.h */ 4247 void 4248 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4249 { 4250 uma_keg_t keg; 4251 4252 KEG_GET(zone, keg); 4253 KEG_ASSERT_COLD(keg); 4254 keg->uk_allocf = allocf; 4255 } 4256 4257 /* See uma.h */ 4258 void 4259 uma_zone_reserve(uma_zone_t zone, int items) 4260 { 4261 uma_keg_t keg; 4262 4263 KEG_GET(zone, keg); 4264 KEG_ASSERT_COLD(keg); 4265 keg->uk_reserve = items; 4266 } 4267 4268 /* See uma.h */ 4269 int 4270 uma_zone_reserve_kva(uma_zone_t zone, int count) 4271 { 4272 uma_keg_t keg; 4273 vm_offset_t kva; 4274 u_int pages; 4275 4276 KEG_GET(zone, keg); 4277 KEG_ASSERT_COLD(keg); 4278 ZONE_ASSERT_COLD(zone); 4279 4280 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4281 4282 #ifdef UMA_MD_SMALL_ALLOC 4283 if (keg->uk_ppera > 1) { 4284 #else 4285 if (1) { 4286 #endif 4287 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4288 if (kva == 0) 4289 return (0); 4290 } else 4291 kva = 0; 4292 4293 ZONE_LOCK(zone); 4294 MPASS(keg->uk_kva == 0); 4295 keg->uk_kva = kva; 4296 keg->uk_offset = 0; 4297 zone->uz_max_items = pages * keg->uk_ipers; 4298 #ifdef UMA_MD_SMALL_ALLOC 4299 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4300 #else 4301 keg->uk_allocf = noobj_alloc; 4302 #endif 4303 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4304 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4305 zone_update_caches(zone); 4306 ZONE_UNLOCK(zone); 4307 4308 return (1); 4309 } 4310 4311 /* See uma.h */ 4312 void 4313 uma_prealloc(uma_zone_t zone, int items) 4314 { 4315 struct vm_domainset_iter di; 4316 uma_domain_t dom; 4317 uma_slab_t slab; 4318 uma_keg_t keg; 4319 int aflags, domain, slabs; 4320 4321 KEG_GET(zone, keg); 4322 slabs = howmany(items, keg->uk_ipers); 4323 while (slabs-- > 0) { 4324 aflags = M_NOWAIT; 4325 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4326 &aflags); 4327 for (;;) { 4328 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4329 aflags); 4330 if (slab != NULL) { 4331 dom = &keg->uk_domain[slab->us_domain]; 4332 LIST_REMOVE(slab, us_link); 4333 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4334 us_link); 4335 KEG_UNLOCK(keg, slab->us_domain); 4336 break; 4337 } 4338 if (vm_domainset_iter_policy(&di, &domain) != 0) 4339 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 4340 } 4341 } 4342 } 4343 4344 /* See uma.h */ 4345 void 4346 uma_reclaim(int req) 4347 { 4348 4349 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4350 sx_xlock(&uma_reclaim_lock); 4351 bucket_enable(); 4352 4353 switch (req) { 4354 case UMA_RECLAIM_TRIM: 4355 zone_foreach(zone_trim, NULL); 4356 break; 4357 case UMA_RECLAIM_DRAIN: 4358 case UMA_RECLAIM_DRAIN_CPU: 4359 zone_foreach(zone_drain, NULL); 4360 if (req == UMA_RECLAIM_DRAIN_CPU) { 4361 pcpu_cache_drain_safe(NULL); 4362 zone_foreach(zone_drain, NULL); 4363 } 4364 break; 4365 default: 4366 panic("unhandled reclamation request %d", req); 4367 } 4368 4369 /* 4370 * Some slabs may have been freed but this zone will be visited early 4371 * we visit again so that we can free pages that are empty once other 4372 * zones are drained. We have to do the same for buckets. 4373 */ 4374 zone_drain(slabzones[0], NULL); 4375 zone_drain(slabzones[1], NULL); 4376 bucket_zone_drain(); 4377 sx_xunlock(&uma_reclaim_lock); 4378 } 4379 4380 static volatile int uma_reclaim_needed; 4381 4382 void 4383 uma_reclaim_wakeup(void) 4384 { 4385 4386 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4387 wakeup(uma_reclaim); 4388 } 4389 4390 void 4391 uma_reclaim_worker(void *arg __unused) 4392 { 4393 4394 for (;;) { 4395 sx_xlock(&uma_reclaim_lock); 4396 while (atomic_load_int(&uma_reclaim_needed) == 0) 4397 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4398 hz); 4399 sx_xunlock(&uma_reclaim_lock); 4400 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4401 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4402 atomic_store_int(&uma_reclaim_needed, 0); 4403 /* Don't fire more than once per-second. */ 4404 pause("umarclslp", hz); 4405 } 4406 } 4407 4408 /* See uma.h */ 4409 void 4410 uma_zone_reclaim(uma_zone_t zone, int req) 4411 { 4412 4413 switch (req) { 4414 case UMA_RECLAIM_TRIM: 4415 zone_trim(zone, NULL); 4416 break; 4417 case UMA_RECLAIM_DRAIN: 4418 zone_drain(zone, NULL); 4419 break; 4420 case UMA_RECLAIM_DRAIN_CPU: 4421 pcpu_cache_drain_safe(zone); 4422 zone_drain(zone, NULL); 4423 break; 4424 default: 4425 panic("unhandled reclamation request %d", req); 4426 } 4427 } 4428 4429 /* See uma.h */ 4430 int 4431 uma_zone_exhausted(uma_zone_t zone) 4432 { 4433 4434 return (atomic_load_32(&zone->uz_sleepers) > 0); 4435 } 4436 4437 unsigned long 4438 uma_limit(void) 4439 { 4440 4441 return (uma_kmem_limit); 4442 } 4443 4444 void 4445 uma_set_limit(unsigned long limit) 4446 { 4447 4448 uma_kmem_limit = limit; 4449 } 4450 4451 unsigned long 4452 uma_size(void) 4453 { 4454 4455 return (atomic_load_long(&uma_kmem_total)); 4456 } 4457 4458 long 4459 uma_avail(void) 4460 { 4461 4462 return (uma_kmem_limit - uma_size()); 4463 } 4464 4465 #ifdef DDB 4466 /* 4467 * Generate statistics across both the zone and its per-cpu cache's. Return 4468 * desired statistics if the pointer is non-NULL for that statistic. 4469 * 4470 * Note: does not update the zone statistics, as it can't safely clear the 4471 * per-CPU cache statistic. 4472 * 4473 */ 4474 static void 4475 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4476 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4477 { 4478 uma_cache_t cache; 4479 uint64_t allocs, frees, sleeps, xdomain; 4480 int cachefree, cpu; 4481 4482 allocs = frees = sleeps = xdomain = 0; 4483 cachefree = 0; 4484 CPU_FOREACH(cpu) { 4485 cache = &z->uz_cpu[cpu]; 4486 cachefree += cache->uc_allocbucket.ucb_cnt; 4487 cachefree += cache->uc_freebucket.ucb_cnt; 4488 xdomain += cache->uc_crossbucket.ucb_cnt; 4489 cachefree += cache->uc_crossbucket.ucb_cnt; 4490 allocs += cache->uc_allocs; 4491 frees += cache->uc_frees; 4492 } 4493 allocs += counter_u64_fetch(z->uz_allocs); 4494 frees += counter_u64_fetch(z->uz_frees); 4495 sleeps += z->uz_sleeps; 4496 xdomain += z->uz_xdomain; 4497 if (cachefreep != NULL) 4498 *cachefreep = cachefree; 4499 if (allocsp != NULL) 4500 *allocsp = allocs; 4501 if (freesp != NULL) 4502 *freesp = frees; 4503 if (sleepsp != NULL) 4504 *sleepsp = sleeps; 4505 if (xdomainp != NULL) 4506 *xdomainp = xdomain; 4507 } 4508 #endif /* DDB */ 4509 4510 static int 4511 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4512 { 4513 uma_keg_t kz; 4514 uma_zone_t z; 4515 int count; 4516 4517 count = 0; 4518 rw_rlock(&uma_rwlock); 4519 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4520 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4521 count++; 4522 } 4523 LIST_FOREACH(z, &uma_cachezones, uz_link) 4524 count++; 4525 4526 rw_runlock(&uma_rwlock); 4527 return (sysctl_handle_int(oidp, &count, 0, req)); 4528 } 4529 4530 static void 4531 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4532 struct uma_percpu_stat *ups, bool internal) 4533 { 4534 uma_zone_domain_t zdom; 4535 uma_cache_t cache; 4536 int i; 4537 4538 4539 for (i = 0; i < vm_ndomains; i++) { 4540 zdom = &z->uz_domain[i]; 4541 uth->uth_zone_free += zdom->uzd_nitems; 4542 } 4543 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4544 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4545 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4546 uth->uth_sleeps = z->uz_sleeps; 4547 uth->uth_xdomain = z->uz_xdomain; 4548 4549 /* 4550 * While it is not normally safe to access the cache bucket pointers 4551 * while not on the CPU that owns the cache, we only allow the pointers 4552 * to be exchanged without the zone lock held, not invalidated, so 4553 * accept the possible race associated with bucket exchange during 4554 * monitoring. Use atomic_load_ptr() to ensure that the bucket pointers 4555 * are loaded only once. 4556 */ 4557 for (i = 0; i < mp_maxid + 1; i++) { 4558 bzero(&ups[i], sizeof(*ups)); 4559 if (internal || CPU_ABSENT(i)) 4560 continue; 4561 cache = &z->uz_cpu[i]; 4562 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 4563 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 4564 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 4565 ups[i].ups_allocs = cache->uc_allocs; 4566 ups[i].ups_frees = cache->uc_frees; 4567 } 4568 } 4569 4570 static int 4571 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 4572 { 4573 struct uma_stream_header ush; 4574 struct uma_type_header uth; 4575 struct uma_percpu_stat *ups; 4576 struct sbuf sbuf; 4577 uma_keg_t kz; 4578 uma_zone_t z; 4579 uint64_t items; 4580 uint32_t kfree, pages; 4581 int count, error, i; 4582 4583 error = sysctl_wire_old_buffer(req, 0); 4584 if (error != 0) 4585 return (error); 4586 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 4587 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 4588 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 4589 4590 count = 0; 4591 rw_rlock(&uma_rwlock); 4592 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4593 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4594 count++; 4595 } 4596 4597 LIST_FOREACH(z, &uma_cachezones, uz_link) 4598 count++; 4599 4600 /* 4601 * Insert stream header. 4602 */ 4603 bzero(&ush, sizeof(ush)); 4604 ush.ush_version = UMA_STREAM_VERSION; 4605 ush.ush_maxcpus = (mp_maxid + 1); 4606 ush.ush_count = count; 4607 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 4608 4609 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4610 kfree = pages = 0; 4611 for (i = 0; i < vm_ndomains; i++) { 4612 kfree += kz->uk_domain[i].ud_free; 4613 pages += kz->uk_domain[i].ud_pages; 4614 } 4615 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4616 bzero(&uth, sizeof(uth)); 4617 ZONE_LOCK(z); 4618 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4619 uth.uth_align = kz->uk_align; 4620 uth.uth_size = kz->uk_size; 4621 uth.uth_rsize = kz->uk_rsize; 4622 if (z->uz_max_items > 0) { 4623 items = UZ_ITEMS_COUNT(z->uz_items); 4624 uth.uth_pages = (items / kz->uk_ipers) * 4625 kz->uk_ppera; 4626 } else 4627 uth.uth_pages = pages; 4628 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 4629 kz->uk_ppera; 4630 uth.uth_limit = z->uz_max_items; 4631 uth.uth_keg_free = kfree; 4632 4633 /* 4634 * A zone is secondary is it is not the first entry 4635 * on the keg's zone list. 4636 */ 4637 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 4638 (LIST_FIRST(&kz->uk_zones) != z)) 4639 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 4640 uma_vm_zone_stats(&uth, z, &sbuf, ups, 4641 kz->uk_flags & UMA_ZFLAG_INTERNAL); 4642 ZONE_UNLOCK(z); 4643 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4644 for (i = 0; i < mp_maxid + 1; i++) 4645 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4646 } 4647 } 4648 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4649 bzero(&uth, sizeof(uth)); 4650 ZONE_LOCK(z); 4651 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4652 uth.uth_size = z->uz_size; 4653 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 4654 ZONE_UNLOCK(z); 4655 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4656 for (i = 0; i < mp_maxid + 1; i++) 4657 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4658 } 4659 4660 rw_runlock(&uma_rwlock); 4661 error = sbuf_finish(&sbuf); 4662 sbuf_delete(&sbuf); 4663 free(ups, M_TEMP); 4664 return (error); 4665 } 4666 4667 int 4668 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4669 { 4670 uma_zone_t zone = *(uma_zone_t *)arg1; 4671 int error, max; 4672 4673 max = uma_zone_get_max(zone); 4674 error = sysctl_handle_int(oidp, &max, 0, req); 4675 if (error || !req->newptr) 4676 return (error); 4677 4678 uma_zone_set_max(zone, max); 4679 4680 return (0); 4681 } 4682 4683 int 4684 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4685 { 4686 uma_zone_t zone; 4687 int cur; 4688 4689 /* 4690 * Some callers want to add sysctls for global zones that 4691 * may not yet exist so they pass a pointer to a pointer. 4692 */ 4693 if (arg2 == 0) 4694 zone = *(uma_zone_t *)arg1; 4695 else 4696 zone = arg1; 4697 cur = uma_zone_get_cur(zone); 4698 return (sysctl_handle_int(oidp, &cur, 0, req)); 4699 } 4700 4701 static int 4702 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 4703 { 4704 uma_zone_t zone = arg1; 4705 uint64_t cur; 4706 4707 cur = uma_zone_get_allocs(zone); 4708 return (sysctl_handle_64(oidp, &cur, 0, req)); 4709 } 4710 4711 static int 4712 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 4713 { 4714 uma_zone_t zone = arg1; 4715 uint64_t cur; 4716 4717 cur = uma_zone_get_frees(zone); 4718 return (sysctl_handle_64(oidp, &cur, 0, req)); 4719 } 4720 4721 static int 4722 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 4723 { 4724 struct sbuf sbuf; 4725 uma_zone_t zone = arg1; 4726 int error; 4727 4728 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 4729 if (zone->uz_flags != 0) 4730 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 4731 else 4732 sbuf_printf(&sbuf, "0"); 4733 error = sbuf_finish(&sbuf); 4734 sbuf_delete(&sbuf); 4735 4736 return (error); 4737 } 4738 4739 static int 4740 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 4741 { 4742 uma_keg_t keg = arg1; 4743 int avail, effpct, total; 4744 4745 total = keg->uk_ppera * PAGE_SIZE; 4746 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 4747 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 4748 /* 4749 * We consider the client's requested size and alignment here, not the 4750 * real size determination uk_rsize, because we also adjust the real 4751 * size for internal implementation reasons (max bitset size). 4752 */ 4753 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 4754 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 4755 avail *= mp_maxid + 1; 4756 effpct = 100 * avail / total; 4757 return (sysctl_handle_int(oidp, &effpct, 0, req)); 4758 } 4759 4760 static int 4761 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 4762 { 4763 uma_zone_t zone = arg1; 4764 uint64_t cur; 4765 4766 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 4767 return (sysctl_handle_64(oidp, &cur, 0, req)); 4768 } 4769 4770 #ifdef INVARIANTS 4771 static uma_slab_t 4772 uma_dbg_getslab(uma_zone_t zone, void *item) 4773 { 4774 uma_slab_t slab; 4775 uma_keg_t keg; 4776 uint8_t *mem; 4777 4778 /* 4779 * It is safe to return the slab here even though the 4780 * zone is unlocked because the item's allocation state 4781 * essentially holds a reference. 4782 */ 4783 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4784 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 4785 return (NULL); 4786 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 4787 return (vtoslab((vm_offset_t)mem)); 4788 keg = zone->uz_keg; 4789 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 4790 return ((uma_slab_t)(mem + keg->uk_pgoff)); 4791 KEG_LOCK(keg, 0); 4792 slab = hash_sfind(&keg->uk_hash, mem); 4793 KEG_UNLOCK(keg, 0); 4794 4795 return (slab); 4796 } 4797 4798 static bool 4799 uma_dbg_zskip(uma_zone_t zone, void *mem) 4800 { 4801 4802 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 4803 return (true); 4804 4805 return (uma_dbg_kskip(zone->uz_keg, mem)); 4806 } 4807 4808 static bool 4809 uma_dbg_kskip(uma_keg_t keg, void *mem) 4810 { 4811 uintptr_t idx; 4812 4813 if (dbg_divisor == 0) 4814 return (true); 4815 4816 if (dbg_divisor == 1) 4817 return (false); 4818 4819 idx = (uintptr_t)mem >> PAGE_SHIFT; 4820 if (keg->uk_ipers > 1) { 4821 idx *= keg->uk_ipers; 4822 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4823 } 4824 4825 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4826 counter_u64_add(uma_skip_cnt, 1); 4827 return (true); 4828 } 4829 counter_u64_add(uma_dbg_cnt, 1); 4830 4831 return (false); 4832 } 4833 4834 /* 4835 * Set up the slab's freei data such that uma_dbg_free can function. 4836 * 4837 */ 4838 static void 4839 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4840 { 4841 uma_keg_t keg; 4842 int freei; 4843 4844 if (slab == NULL) { 4845 slab = uma_dbg_getslab(zone, item); 4846 if (slab == NULL) 4847 panic("uma: item %p did not belong to zone %s\n", 4848 item, zone->uz_name); 4849 } 4850 keg = zone->uz_keg; 4851 freei = slab_item_index(slab, keg, item); 4852 4853 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 4854 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4855 item, zone, zone->uz_name, slab, freei); 4856 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 4857 } 4858 4859 /* 4860 * Verifies freed addresses. Checks for alignment, valid slab membership 4861 * and duplicate frees. 4862 * 4863 */ 4864 static void 4865 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4866 { 4867 uma_keg_t keg; 4868 int freei; 4869 4870 if (slab == NULL) { 4871 slab = uma_dbg_getslab(zone, item); 4872 if (slab == NULL) 4873 panic("uma: Freed item %p did not belong to zone %s\n", 4874 item, zone->uz_name); 4875 } 4876 keg = zone->uz_keg; 4877 freei = slab_item_index(slab, keg, item); 4878 4879 if (freei >= keg->uk_ipers) 4880 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4881 item, zone, zone->uz_name, slab, freei); 4882 4883 if (slab_item(slab, keg, freei) != item) 4884 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4885 item, zone, zone->uz_name, slab, freei); 4886 4887 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 4888 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4889 item, zone, zone->uz_name, slab, freei); 4890 4891 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 4892 } 4893 #endif /* INVARIANTS */ 4894 4895 #ifdef DDB 4896 static int64_t 4897 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 4898 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 4899 { 4900 uint64_t frees; 4901 int i; 4902 4903 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4904 *allocs = counter_u64_fetch(z->uz_allocs); 4905 frees = counter_u64_fetch(z->uz_frees); 4906 *sleeps = z->uz_sleeps; 4907 *cachefree = 0; 4908 *xdomain = 0; 4909 } else 4910 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 4911 xdomain); 4912 for (i = 0; i < vm_ndomains; i++) { 4913 *cachefree += z->uz_domain[i].uzd_nitems; 4914 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4915 (LIST_FIRST(&kz->uk_zones) != z))) 4916 *cachefree += kz->uk_domain[i].ud_free; 4917 } 4918 *used = *allocs - frees; 4919 return (((int64_t)*used + *cachefree) * kz->uk_size); 4920 } 4921 4922 DB_SHOW_COMMAND(uma, db_show_uma) 4923 { 4924 const char *fmt_hdr, *fmt_entry; 4925 uma_keg_t kz; 4926 uma_zone_t z; 4927 uint64_t allocs, used, sleeps, xdomain; 4928 long cachefree; 4929 /* variables for sorting */ 4930 uma_keg_t cur_keg; 4931 uma_zone_t cur_zone, last_zone; 4932 int64_t cur_size, last_size, size; 4933 int ties; 4934 4935 /* /i option produces machine-parseable CSV output */ 4936 if (modif[0] == 'i') { 4937 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 4938 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 4939 } else { 4940 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 4941 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 4942 } 4943 4944 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 4945 "Sleeps", "Bucket", "Total Mem", "XFree"); 4946 4947 /* Sort the zones with largest size first. */ 4948 last_zone = NULL; 4949 last_size = INT64_MAX; 4950 for (;;) { 4951 cur_zone = NULL; 4952 cur_size = -1; 4953 ties = 0; 4954 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4955 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4956 /* 4957 * In the case of size ties, print out zones 4958 * in the order they are encountered. That is, 4959 * when we encounter the most recently output 4960 * zone, we have already printed all preceding 4961 * ties, and we must print all following ties. 4962 */ 4963 if (z == last_zone) { 4964 ties = 1; 4965 continue; 4966 } 4967 size = get_uma_stats(kz, z, &allocs, &used, 4968 &sleeps, &cachefree, &xdomain); 4969 if (size > cur_size && size < last_size + ties) 4970 { 4971 cur_size = size; 4972 cur_zone = z; 4973 cur_keg = kz; 4974 } 4975 } 4976 } 4977 if (cur_zone == NULL) 4978 break; 4979 4980 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 4981 &sleeps, &cachefree, &xdomain); 4982 db_printf(fmt_entry, cur_zone->uz_name, 4983 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 4984 (uintmax_t)allocs, (uintmax_t)sleeps, 4985 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 4986 xdomain); 4987 4988 if (db_pager_quit) 4989 return; 4990 last_zone = cur_zone; 4991 last_size = cur_size; 4992 } 4993 } 4994 4995 DB_SHOW_COMMAND(umacache, db_show_umacache) 4996 { 4997 uma_zone_t z; 4998 uint64_t allocs, frees; 4999 long cachefree; 5000 int i; 5001 5002 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5003 "Requests", "Bucket"); 5004 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5005 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5006 for (i = 0; i < vm_ndomains; i++) 5007 cachefree += z->uz_domain[i].uzd_nitems; 5008 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5009 z->uz_name, (uintmax_t)z->uz_size, 5010 (intmax_t)(allocs - frees), cachefree, 5011 (uintmax_t)allocs, z->uz_bucket_size); 5012 if (db_pager_quit) 5013 return; 5014 } 5015 } 5016 #endif /* DDB */ 5017