1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/smr.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_domainset.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_param.h> 90 #include <vm/vm_phys.h> 91 #include <vm/vm_pagequeue.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/uma.h> 96 #include <vm/uma_int.h> 97 #include <vm/uma_dbg.h> 98 99 #include <ddb/ddb.h> 100 101 #ifdef DEBUG_MEMGUARD 102 #include <vm/memguard.h> 103 #endif 104 105 #include <machine/md_var.h> 106 107 #ifdef INVARIANTS 108 #define UMA_ALWAYS_CTORDTOR 1 109 #else 110 #define UMA_ALWAYS_CTORDTOR 0 111 #endif 112 113 /* 114 * This is the zone and keg from which all zones are spawned. 115 */ 116 static uma_zone_t kegs; 117 static uma_zone_t zones; 118 119 /* 120 * These are the two zones from which all offpage uma_slab_ts are allocated. 121 * 122 * One zone is for slab headers that can represent a larger number of items, 123 * making the slabs themselves more efficient, and the other zone is for 124 * headers that are smaller and represent fewer items, making the headers more 125 * efficient. 126 */ 127 #define SLABZONE_SIZE(setsize) \ 128 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 129 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 130 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 131 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 132 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 133 static uma_zone_t slabzones[2]; 134 135 /* 136 * The initial hash tables come out of this zone so they can be allocated 137 * prior to malloc coming up. 138 */ 139 static uma_zone_t hashzone; 140 141 /* The boot-time adjusted value for cache line alignment. */ 142 int uma_align_cache = 64 - 1; 143 144 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 145 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 146 147 /* 148 * Are we allowed to allocate buckets? 149 */ 150 static int bucketdisable = 1; 151 152 /* Linked list of all kegs in the system */ 153 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 154 155 /* Linked list of all cache-only zones in the system */ 156 static LIST_HEAD(,uma_zone) uma_cachezones = 157 LIST_HEAD_INITIALIZER(uma_cachezones); 158 159 /* This RW lock protects the keg list */ 160 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 161 162 /* 163 * First available virual address for boot time allocations. 164 */ 165 static vm_offset_t bootstart; 166 static vm_offset_t bootmem; 167 168 static struct sx uma_reclaim_lock; 169 170 /* 171 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 172 * allocations don't trigger a wakeup of the reclaim thread. 173 */ 174 unsigned long uma_kmem_limit = LONG_MAX; 175 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 176 "UMA kernel memory soft limit"); 177 unsigned long uma_kmem_total; 178 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 179 "UMA kernel memory usage"); 180 181 /* Is the VM done starting up? */ 182 static enum { 183 BOOT_COLD, 184 BOOT_KVA, 185 BOOT_RUNNING, 186 BOOT_SHUTDOWN, 187 } booted = BOOT_COLD; 188 189 /* 190 * This is the handle used to schedule events that need to happen 191 * outside of the allocation fast path. 192 */ 193 static struct callout uma_callout; 194 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 195 196 /* 197 * This structure is passed as the zone ctor arg so that I don't have to create 198 * a special allocation function just for zones. 199 */ 200 struct uma_zctor_args { 201 const char *name; 202 size_t size; 203 uma_ctor ctor; 204 uma_dtor dtor; 205 uma_init uminit; 206 uma_fini fini; 207 uma_import import; 208 uma_release release; 209 void *arg; 210 uma_keg_t keg; 211 int align; 212 uint32_t flags; 213 }; 214 215 struct uma_kctor_args { 216 uma_zone_t zone; 217 size_t size; 218 uma_init uminit; 219 uma_fini fini; 220 int align; 221 uint32_t flags; 222 }; 223 224 struct uma_bucket_zone { 225 uma_zone_t ubz_zone; 226 const char *ubz_name; 227 int ubz_entries; /* Number of items it can hold. */ 228 int ubz_maxsize; /* Maximum allocation size per-item. */ 229 }; 230 231 /* 232 * Compute the actual number of bucket entries to pack them in power 233 * of two sizes for more efficient space utilization. 234 */ 235 #define BUCKET_SIZE(n) \ 236 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 237 238 #define BUCKET_MAX BUCKET_SIZE(256) 239 #define BUCKET_MIN 2 240 241 struct uma_bucket_zone bucket_zones[] = { 242 /* Literal bucket sizes. */ 243 { NULL, "2 Bucket", 2, 4096 }, 244 { NULL, "4 Bucket", 4, 3072 }, 245 { NULL, "8 Bucket", 8, 2048 }, 246 { NULL, "16 Bucket", 16, 1024 }, 247 /* Rounded down power of 2 sizes for efficiency. */ 248 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 249 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 250 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 251 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 252 { NULL, NULL, 0} 253 }; 254 255 /* 256 * Flags and enumerations to be passed to internal functions. 257 */ 258 enum zfreeskip { 259 SKIP_NONE = 0, 260 SKIP_CNT = 0x00000001, 261 SKIP_DTOR = 0x00010000, 262 SKIP_FINI = 0x00020000, 263 }; 264 265 /* Prototypes.. */ 266 267 void uma_startup1(vm_offset_t); 268 void uma_startup2(void); 269 270 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 271 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 272 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 273 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 274 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 275 static void page_free(void *, vm_size_t, uint8_t); 276 static void pcpu_page_free(void *, vm_size_t, uint8_t); 277 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 278 static void cache_drain(uma_zone_t); 279 static void bucket_drain(uma_zone_t, uma_bucket_t); 280 static void bucket_cache_reclaim(uma_zone_t zone, bool); 281 static int keg_ctor(void *, int, void *, int); 282 static void keg_dtor(void *, int, void *); 283 static int zone_ctor(void *, int, void *, int); 284 static void zone_dtor(void *, int, void *); 285 static inline void item_dtor(uma_zone_t zone, void *item, int size, 286 void *udata, enum zfreeskip skip); 287 static int zero_init(void *, int, int); 288 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 289 int itemdomain, bool ws); 290 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 291 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 292 static void zone_timeout(uma_zone_t zone, void *); 293 static int hash_alloc(struct uma_hash *, u_int); 294 static int hash_expand(struct uma_hash *, struct uma_hash *); 295 static void hash_free(struct uma_hash *hash); 296 static void uma_timeout(void *); 297 static void uma_startup3(void); 298 static void uma_shutdown(void); 299 static void *zone_alloc_item(uma_zone_t, void *, int, int); 300 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 301 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 302 static void zone_free_limit(uma_zone_t zone, int count); 303 static void bucket_enable(void); 304 static void bucket_init(void); 305 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 306 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 307 static void bucket_zone_drain(void); 308 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 309 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 310 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 311 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 312 uma_fini fini, int align, uint32_t flags); 313 static int zone_import(void *, void **, int, int, int); 314 static void zone_release(void *, void **, int); 315 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 316 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 317 318 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 319 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 320 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 321 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 322 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 323 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 324 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 325 326 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 327 328 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 329 "Memory allocation debugging"); 330 331 #ifdef INVARIANTS 332 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 333 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 334 335 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 336 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 337 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 338 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 339 340 static u_int dbg_divisor = 1; 341 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 342 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 343 "Debug & thrash every this item in memory allocator"); 344 345 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 346 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 347 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 348 &uma_dbg_cnt, "memory items debugged"); 349 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 350 &uma_skip_cnt, "memory items skipped, not debugged"); 351 #endif 352 353 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 354 355 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW, 0, "Universal Memory Allocator"); 356 357 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 358 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 359 360 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 361 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 362 363 static int zone_warnings = 1; 364 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 365 "Warn when UMA zones becomes full"); 366 367 static int multipage_slabs = 1; 368 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 369 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 370 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 371 "UMA may choose larger slab sizes for better efficiency"); 372 373 /* 374 * Select the slab zone for an offpage slab with the given maximum item count. 375 */ 376 static inline uma_zone_t 377 slabzone(int ipers) 378 { 379 380 return (slabzones[ipers > SLABZONE0_SETSIZE]); 381 } 382 383 /* 384 * This routine checks to see whether or not it's safe to enable buckets. 385 */ 386 static void 387 bucket_enable(void) 388 { 389 390 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 391 bucketdisable = vm_page_count_min(); 392 } 393 394 /* 395 * Initialize bucket_zones, the array of zones of buckets of various sizes. 396 * 397 * For each zone, calculate the memory required for each bucket, consisting 398 * of the header and an array of pointers. 399 */ 400 static void 401 bucket_init(void) 402 { 403 struct uma_bucket_zone *ubz; 404 int size; 405 406 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 407 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 408 size += sizeof(void *) * ubz->ubz_entries; 409 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 410 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 411 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 412 UMA_ZONE_FIRSTTOUCH); 413 } 414 } 415 416 /* 417 * Given a desired number of entries for a bucket, return the zone from which 418 * to allocate the bucket. 419 */ 420 static struct uma_bucket_zone * 421 bucket_zone_lookup(int entries) 422 { 423 struct uma_bucket_zone *ubz; 424 425 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 426 if (ubz->ubz_entries >= entries) 427 return (ubz); 428 ubz--; 429 return (ubz); 430 } 431 432 static struct uma_bucket_zone * 433 bucket_zone_max(uma_zone_t zone, int nitems) 434 { 435 struct uma_bucket_zone *ubz; 436 int bpcpu; 437 438 bpcpu = 2; 439 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 440 /* Count the cross-domain bucket. */ 441 bpcpu++; 442 443 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 444 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 445 break; 446 if (ubz == &bucket_zones[0]) 447 ubz = NULL; 448 else 449 ubz--; 450 return (ubz); 451 } 452 453 static int 454 bucket_select(int size) 455 { 456 struct uma_bucket_zone *ubz; 457 458 ubz = &bucket_zones[0]; 459 if (size > ubz->ubz_maxsize) 460 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 461 462 for (; ubz->ubz_entries != 0; ubz++) 463 if (ubz->ubz_maxsize < size) 464 break; 465 ubz--; 466 return (ubz->ubz_entries); 467 } 468 469 static uma_bucket_t 470 bucket_alloc(uma_zone_t zone, void *udata, int flags) 471 { 472 struct uma_bucket_zone *ubz; 473 uma_bucket_t bucket; 474 475 /* 476 * Don't allocate buckets early in boot. 477 */ 478 if (__predict_false(booted < BOOT_KVA)) 479 return (NULL); 480 481 /* 482 * To limit bucket recursion we store the original zone flags 483 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 484 * NOVM flag to persist even through deep recursions. We also 485 * store ZFLAG_BUCKET once we have recursed attempting to allocate 486 * a bucket for a bucket zone so we do not allow infinite bucket 487 * recursion. This cookie will even persist to frees of unused 488 * buckets via the allocation path or bucket allocations in the 489 * free path. 490 */ 491 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 492 udata = (void *)(uintptr_t)zone->uz_flags; 493 else { 494 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 495 return (NULL); 496 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 497 } 498 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 499 flags |= M_NOVM; 500 ubz = bucket_zone_lookup(zone->uz_bucket_size); 501 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 502 ubz++; 503 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 504 if (bucket) { 505 #ifdef INVARIANTS 506 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 507 #endif 508 bucket->ub_cnt = 0; 509 bucket->ub_entries = ubz->ubz_entries; 510 bucket->ub_seq = SMR_SEQ_INVALID; 511 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 512 zone->uz_name, zone, bucket); 513 } 514 515 return (bucket); 516 } 517 518 static void 519 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 520 { 521 struct uma_bucket_zone *ubz; 522 523 if (bucket->ub_cnt != 0) 524 bucket_drain(zone, bucket); 525 526 KASSERT(bucket->ub_cnt == 0, 527 ("bucket_free: Freeing a non free bucket.")); 528 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 529 ("bucket_free: Freeing an SMR bucket.")); 530 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 531 udata = (void *)(uintptr_t)zone->uz_flags; 532 ubz = bucket_zone_lookup(bucket->ub_entries); 533 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 534 } 535 536 static void 537 bucket_zone_drain(void) 538 { 539 struct uma_bucket_zone *ubz; 540 541 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 542 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 543 } 544 545 /* 546 * Acquire the domain lock and record contention. 547 */ 548 static uma_zone_domain_t 549 zone_domain_lock(uma_zone_t zone, int domain) 550 { 551 uma_zone_domain_t zdom; 552 bool lockfail; 553 554 zdom = ZDOM_GET(zone, domain); 555 lockfail = false; 556 if (ZDOM_OWNED(zdom)) 557 lockfail = true; 558 ZDOM_LOCK(zdom); 559 /* This is unsynchronized. The counter does not need to be precise. */ 560 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 561 zone->uz_bucket_size++; 562 return (zdom); 563 } 564 565 /* 566 * Search for the domain with the least cached items and return it, breaking 567 * ties with a preferred domain by returning it. 568 */ 569 static __noinline int 570 zone_domain_lowest(uma_zone_t zone, int pref) 571 { 572 long least, nitems; 573 int domain; 574 int i; 575 576 least = LONG_MAX; 577 domain = 0; 578 for (i = 0; i < vm_ndomains; i++) { 579 nitems = ZDOM_GET(zone, i)->uzd_nitems; 580 if (nitems < least) { 581 domain = i; 582 least = nitems; 583 } else if (nitems == least && (i == pref || domain == pref)) 584 domain = pref; 585 } 586 587 return (domain); 588 } 589 590 /* 591 * Search for the domain with the most cached items and return it or the 592 * preferred domain if it has enough to proceed. 593 */ 594 static __noinline int 595 zone_domain_highest(uma_zone_t zone, int pref) 596 { 597 long most, nitems; 598 int domain; 599 int i; 600 601 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 602 return (pref); 603 604 most = 0; 605 domain = 0; 606 for (i = 0; i < vm_ndomains; i++) { 607 nitems = ZDOM_GET(zone, i)->uzd_nitems; 608 if (nitems > most) { 609 domain = i; 610 most = nitems; 611 } 612 } 613 614 return (domain); 615 } 616 617 /* 618 * Safely subtract cnt from imax. 619 */ 620 static void 621 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt) 622 { 623 long new; 624 long old; 625 626 old = zdom->uzd_imax; 627 do { 628 if (old <= cnt) 629 new = 0; 630 else 631 new = old - cnt; 632 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0); 633 } 634 635 /* 636 * Set the maximum imax value. 637 */ 638 static void 639 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 640 { 641 long old; 642 643 old = zdom->uzd_imax; 644 do { 645 if (old >= nitems) 646 break; 647 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 648 } 649 650 /* 651 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 652 * zone's caches. If a bucket is found the zone is not locked on return. 653 */ 654 static uma_bucket_t 655 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 656 { 657 uma_bucket_t bucket; 658 int i; 659 bool dtor = false; 660 661 ZDOM_LOCK_ASSERT(zdom); 662 663 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 664 return (NULL); 665 666 /* SMR Buckets can not be re-used until readers expire. */ 667 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 668 bucket->ub_seq != SMR_SEQ_INVALID) { 669 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 670 return (NULL); 671 bucket->ub_seq = SMR_SEQ_INVALID; 672 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 673 if (STAILQ_NEXT(bucket, ub_link) != NULL) 674 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 675 } 676 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 677 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 678 zdom->uzd_nitems -= bucket->ub_cnt; 679 680 /* 681 * Shift the bounds of the current WSS interval to avoid 682 * perturbing the estimate. 683 */ 684 if (reclaim) { 685 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 686 zone_domain_imax_sub(zdom, bucket->ub_cnt); 687 } else if (zdom->uzd_imin > zdom->uzd_nitems) 688 zdom->uzd_imin = zdom->uzd_nitems; 689 690 ZDOM_UNLOCK(zdom); 691 if (dtor) 692 for (i = 0; i < bucket->ub_cnt; i++) 693 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 694 NULL, SKIP_NONE); 695 696 return (bucket); 697 } 698 699 /* 700 * Insert a full bucket into the specified cache. The "ws" parameter indicates 701 * whether the bucket's contents should be counted as part of the zone's working 702 * set. The bucket may be freed if it exceeds the bucket limit. 703 */ 704 static void 705 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 706 const bool ws) 707 { 708 uma_zone_domain_t zdom; 709 710 /* We don't cache empty buckets. This can happen after a reclaim. */ 711 if (bucket->ub_cnt == 0) 712 goto out; 713 zdom = zone_domain_lock(zone, domain); 714 715 KASSERT(!ws || zdom->uzd_nitems < zone->uz_bucket_max, 716 ("%s: zone %p overflow", __func__, zone)); 717 718 /* 719 * Conditionally set the maximum number of items. 720 */ 721 zdom->uzd_nitems += bucket->ub_cnt; 722 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 723 if (ws) 724 zone_domain_imax_set(zdom, zdom->uzd_nitems); 725 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 726 zdom->uzd_seq = bucket->ub_seq; 727 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 728 ZDOM_UNLOCK(zdom); 729 return; 730 } 731 zdom->uzd_nitems -= bucket->ub_cnt; 732 ZDOM_UNLOCK(zdom); 733 out: 734 bucket_free(zone, bucket, udata); 735 } 736 737 /* Pops an item out of a per-cpu cache bucket. */ 738 static inline void * 739 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 740 { 741 void *item; 742 743 CRITICAL_ASSERT(curthread); 744 745 bucket->ucb_cnt--; 746 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 747 #ifdef INVARIANTS 748 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 749 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 750 #endif 751 cache->uc_allocs++; 752 753 return (item); 754 } 755 756 /* Pushes an item into a per-cpu cache bucket. */ 757 static inline void 758 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 759 { 760 761 CRITICAL_ASSERT(curthread); 762 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 763 ("uma_zfree: Freeing to non free bucket index.")); 764 765 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 766 bucket->ucb_cnt++; 767 cache->uc_frees++; 768 } 769 770 /* 771 * Unload a UMA bucket from a per-cpu cache. 772 */ 773 static inline uma_bucket_t 774 cache_bucket_unload(uma_cache_bucket_t bucket) 775 { 776 uma_bucket_t b; 777 778 b = bucket->ucb_bucket; 779 if (b != NULL) { 780 MPASS(b->ub_entries == bucket->ucb_entries); 781 b->ub_cnt = bucket->ucb_cnt; 782 bucket->ucb_bucket = NULL; 783 bucket->ucb_entries = bucket->ucb_cnt = 0; 784 } 785 786 return (b); 787 } 788 789 static inline uma_bucket_t 790 cache_bucket_unload_alloc(uma_cache_t cache) 791 { 792 793 return (cache_bucket_unload(&cache->uc_allocbucket)); 794 } 795 796 static inline uma_bucket_t 797 cache_bucket_unload_free(uma_cache_t cache) 798 { 799 800 return (cache_bucket_unload(&cache->uc_freebucket)); 801 } 802 803 static inline uma_bucket_t 804 cache_bucket_unload_cross(uma_cache_t cache) 805 { 806 807 return (cache_bucket_unload(&cache->uc_crossbucket)); 808 } 809 810 /* 811 * Load a bucket into a per-cpu cache bucket. 812 */ 813 static inline void 814 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 815 { 816 817 CRITICAL_ASSERT(curthread); 818 MPASS(bucket->ucb_bucket == NULL); 819 MPASS(b->ub_seq == SMR_SEQ_INVALID); 820 821 bucket->ucb_bucket = b; 822 bucket->ucb_cnt = b->ub_cnt; 823 bucket->ucb_entries = b->ub_entries; 824 } 825 826 static inline void 827 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 828 { 829 830 cache_bucket_load(&cache->uc_allocbucket, b); 831 } 832 833 static inline void 834 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 835 { 836 837 cache_bucket_load(&cache->uc_freebucket, b); 838 } 839 840 #ifdef NUMA 841 static inline void 842 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 843 { 844 845 cache_bucket_load(&cache->uc_crossbucket, b); 846 } 847 #endif 848 849 /* 850 * Copy and preserve ucb_spare. 851 */ 852 static inline void 853 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 854 { 855 856 b1->ucb_bucket = b2->ucb_bucket; 857 b1->ucb_entries = b2->ucb_entries; 858 b1->ucb_cnt = b2->ucb_cnt; 859 } 860 861 /* 862 * Swap two cache buckets. 863 */ 864 static inline void 865 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 866 { 867 struct uma_cache_bucket b3; 868 869 CRITICAL_ASSERT(curthread); 870 871 cache_bucket_copy(&b3, b1); 872 cache_bucket_copy(b1, b2); 873 cache_bucket_copy(b2, &b3); 874 } 875 876 /* 877 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 878 */ 879 static uma_bucket_t 880 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 881 { 882 uma_zone_domain_t zdom; 883 uma_bucket_t bucket; 884 885 /* 886 * Avoid the lock if possible. 887 */ 888 zdom = ZDOM_GET(zone, domain); 889 if (zdom->uzd_nitems == 0) 890 return (NULL); 891 892 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 893 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 894 return (NULL); 895 896 /* 897 * Check the zone's cache of buckets. 898 */ 899 zdom = zone_domain_lock(zone, domain); 900 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 901 KASSERT(bucket->ub_cnt != 0, 902 ("cache_fetch_bucket: Returning an empty bucket.")); 903 return (bucket); 904 } 905 ZDOM_UNLOCK(zdom); 906 907 return (NULL); 908 } 909 910 static void 911 zone_log_warning(uma_zone_t zone) 912 { 913 static const struct timeval warninterval = { 300, 0 }; 914 915 if (!zone_warnings || zone->uz_warning == NULL) 916 return; 917 918 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 919 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 920 } 921 922 static inline void 923 zone_maxaction(uma_zone_t zone) 924 { 925 926 if (zone->uz_maxaction.ta_func != NULL) 927 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 928 } 929 930 /* 931 * Routine called by timeout which is used to fire off some time interval 932 * based calculations. (stats, hash size, etc.) 933 * 934 * Arguments: 935 * arg Unused 936 * 937 * Returns: 938 * Nothing 939 */ 940 static void 941 uma_timeout(void *unused) 942 { 943 bucket_enable(); 944 zone_foreach(zone_timeout, NULL); 945 946 /* Reschedule this event */ 947 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 948 } 949 950 /* 951 * Update the working set size estimate for the zone's bucket cache. 952 * The constants chosen here are somewhat arbitrary. With an update period of 953 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 954 * last 100s. 955 */ 956 static void 957 zone_domain_update_wss(uma_zone_domain_t zdom) 958 { 959 long wss; 960 961 ZDOM_LOCK(zdom); 962 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 963 wss = zdom->uzd_imax - zdom->uzd_imin; 964 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 965 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 966 ZDOM_UNLOCK(zdom); 967 } 968 969 /* 970 * Routine to perform timeout driven calculations. This expands the 971 * hashes and does per cpu statistics aggregation. 972 * 973 * Returns nothing. 974 */ 975 static void 976 zone_timeout(uma_zone_t zone, void *unused) 977 { 978 uma_keg_t keg; 979 u_int slabs, pages; 980 981 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 982 goto update_wss; 983 984 keg = zone->uz_keg; 985 986 /* 987 * Hash zones are non-numa by definition so the first domain 988 * is the only one present. 989 */ 990 KEG_LOCK(keg, 0); 991 pages = keg->uk_domain[0].ud_pages; 992 993 /* 994 * Expand the keg hash table. 995 * 996 * This is done if the number of slabs is larger than the hash size. 997 * What I'm trying to do here is completely reduce collisions. This 998 * may be a little aggressive. Should I allow for two collisions max? 999 */ 1000 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1001 struct uma_hash newhash; 1002 struct uma_hash oldhash; 1003 int ret; 1004 1005 /* 1006 * This is so involved because allocating and freeing 1007 * while the keg lock is held will lead to deadlock. 1008 * I have to do everything in stages and check for 1009 * races. 1010 */ 1011 KEG_UNLOCK(keg, 0); 1012 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1013 KEG_LOCK(keg, 0); 1014 if (ret) { 1015 if (hash_expand(&keg->uk_hash, &newhash)) { 1016 oldhash = keg->uk_hash; 1017 keg->uk_hash = newhash; 1018 } else 1019 oldhash = newhash; 1020 1021 KEG_UNLOCK(keg, 0); 1022 hash_free(&oldhash); 1023 goto update_wss; 1024 } 1025 } 1026 KEG_UNLOCK(keg, 0); 1027 1028 update_wss: 1029 for (int i = 0; i < vm_ndomains; i++) 1030 zone_domain_update_wss(ZDOM_GET(zone, i)); 1031 } 1032 1033 /* 1034 * Allocate and zero fill the next sized hash table from the appropriate 1035 * backing store. 1036 * 1037 * Arguments: 1038 * hash A new hash structure with the old hash size in uh_hashsize 1039 * 1040 * Returns: 1041 * 1 on success and 0 on failure. 1042 */ 1043 static int 1044 hash_alloc(struct uma_hash *hash, u_int size) 1045 { 1046 size_t alloc; 1047 1048 KASSERT(powerof2(size), ("hash size must be power of 2")); 1049 if (size > UMA_HASH_SIZE_INIT) { 1050 hash->uh_hashsize = size; 1051 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1052 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1053 } else { 1054 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1055 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1056 UMA_ANYDOMAIN, M_WAITOK); 1057 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1058 } 1059 if (hash->uh_slab_hash) { 1060 bzero(hash->uh_slab_hash, alloc); 1061 hash->uh_hashmask = hash->uh_hashsize - 1; 1062 return (1); 1063 } 1064 1065 return (0); 1066 } 1067 1068 /* 1069 * Expands the hash table for HASH zones. This is done from zone_timeout 1070 * to reduce collisions. This must not be done in the regular allocation 1071 * path, otherwise, we can recurse on the vm while allocating pages. 1072 * 1073 * Arguments: 1074 * oldhash The hash you want to expand 1075 * newhash The hash structure for the new table 1076 * 1077 * Returns: 1078 * Nothing 1079 * 1080 * Discussion: 1081 */ 1082 static int 1083 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1084 { 1085 uma_hash_slab_t slab; 1086 u_int hval; 1087 u_int idx; 1088 1089 if (!newhash->uh_slab_hash) 1090 return (0); 1091 1092 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1093 return (0); 1094 1095 /* 1096 * I need to investigate hash algorithms for resizing without a 1097 * full rehash. 1098 */ 1099 1100 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1101 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1102 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1103 LIST_REMOVE(slab, uhs_hlink); 1104 hval = UMA_HASH(newhash, slab->uhs_data); 1105 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1106 slab, uhs_hlink); 1107 } 1108 1109 return (1); 1110 } 1111 1112 /* 1113 * Free the hash bucket to the appropriate backing store. 1114 * 1115 * Arguments: 1116 * slab_hash The hash bucket we're freeing 1117 * hashsize The number of entries in that hash bucket 1118 * 1119 * Returns: 1120 * Nothing 1121 */ 1122 static void 1123 hash_free(struct uma_hash *hash) 1124 { 1125 if (hash->uh_slab_hash == NULL) 1126 return; 1127 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1128 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1129 else 1130 free(hash->uh_slab_hash, M_UMAHASH); 1131 } 1132 1133 /* 1134 * Frees all outstanding items in a bucket 1135 * 1136 * Arguments: 1137 * zone The zone to free to, must be unlocked. 1138 * bucket The free/alloc bucket with items. 1139 * 1140 * Returns: 1141 * Nothing 1142 */ 1143 static void 1144 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1145 { 1146 int i; 1147 1148 if (bucket->ub_cnt == 0) 1149 return; 1150 1151 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1152 bucket->ub_seq != SMR_SEQ_INVALID) { 1153 smr_wait(zone->uz_smr, bucket->ub_seq); 1154 bucket->ub_seq = SMR_SEQ_INVALID; 1155 for (i = 0; i < bucket->ub_cnt; i++) 1156 item_dtor(zone, bucket->ub_bucket[i], 1157 zone->uz_size, NULL, SKIP_NONE); 1158 } 1159 if (zone->uz_fini) 1160 for (i = 0; i < bucket->ub_cnt; i++) 1161 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1162 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1163 if (zone->uz_max_items > 0) 1164 zone_free_limit(zone, bucket->ub_cnt); 1165 #ifdef INVARIANTS 1166 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1167 #endif 1168 bucket->ub_cnt = 0; 1169 } 1170 1171 /* 1172 * Drains the per cpu caches for a zone. 1173 * 1174 * NOTE: This may only be called while the zone is being torn down, and not 1175 * during normal operation. This is necessary in order that we do not have 1176 * to migrate CPUs to drain the per-CPU caches. 1177 * 1178 * Arguments: 1179 * zone The zone to drain, must be unlocked. 1180 * 1181 * Returns: 1182 * Nothing 1183 */ 1184 static void 1185 cache_drain(uma_zone_t zone) 1186 { 1187 uma_cache_t cache; 1188 uma_bucket_t bucket; 1189 smr_seq_t seq; 1190 int cpu; 1191 1192 /* 1193 * XXX: It is safe to not lock the per-CPU caches, because we're 1194 * tearing down the zone anyway. I.e., there will be no further use 1195 * of the caches at this point. 1196 * 1197 * XXX: It would good to be able to assert that the zone is being 1198 * torn down to prevent improper use of cache_drain(). 1199 */ 1200 seq = SMR_SEQ_INVALID; 1201 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1202 seq = smr_advance(zone->uz_smr); 1203 CPU_FOREACH(cpu) { 1204 cache = &zone->uz_cpu[cpu]; 1205 bucket = cache_bucket_unload_alloc(cache); 1206 if (bucket != NULL) 1207 bucket_free(zone, bucket, NULL); 1208 bucket = cache_bucket_unload_free(cache); 1209 if (bucket != NULL) { 1210 bucket->ub_seq = seq; 1211 bucket_free(zone, bucket, NULL); 1212 } 1213 bucket = cache_bucket_unload_cross(cache); 1214 if (bucket != NULL) { 1215 bucket->ub_seq = seq; 1216 bucket_free(zone, bucket, NULL); 1217 } 1218 } 1219 bucket_cache_reclaim(zone, true); 1220 } 1221 1222 static void 1223 cache_shrink(uma_zone_t zone, void *unused) 1224 { 1225 1226 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1227 return; 1228 1229 zone->uz_bucket_size = 1230 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1231 } 1232 1233 static void 1234 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1235 { 1236 uma_cache_t cache; 1237 uma_bucket_t b1, b2, b3; 1238 int domain; 1239 1240 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1241 return; 1242 1243 b1 = b2 = b3 = NULL; 1244 critical_enter(); 1245 cache = &zone->uz_cpu[curcpu]; 1246 domain = PCPU_GET(domain); 1247 b1 = cache_bucket_unload_alloc(cache); 1248 1249 /* 1250 * Don't flush SMR zone buckets. This leaves the zone without a 1251 * bucket and forces every free to synchronize(). 1252 */ 1253 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1254 b2 = cache_bucket_unload_free(cache); 1255 b3 = cache_bucket_unload_cross(cache); 1256 } 1257 critical_exit(); 1258 1259 if (b1 != NULL) 1260 zone_free_bucket(zone, b1, NULL, domain, false); 1261 if (b2 != NULL) 1262 zone_free_bucket(zone, b2, NULL, domain, false); 1263 if (b3 != NULL) { 1264 /* Adjust the domain so it goes to zone_free_cross. */ 1265 domain = (domain + 1) % vm_ndomains; 1266 zone_free_bucket(zone, b3, NULL, domain, false); 1267 } 1268 } 1269 1270 /* 1271 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1272 * This is an expensive call because it needs to bind to all CPUs 1273 * one by one and enter a critical section on each of them in order 1274 * to safely access their cache buckets. 1275 * Zone lock must not be held on call this function. 1276 */ 1277 static void 1278 pcpu_cache_drain_safe(uma_zone_t zone) 1279 { 1280 int cpu; 1281 1282 /* 1283 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1284 */ 1285 if (zone) 1286 cache_shrink(zone, NULL); 1287 else 1288 zone_foreach(cache_shrink, NULL); 1289 1290 CPU_FOREACH(cpu) { 1291 thread_lock(curthread); 1292 sched_bind(curthread, cpu); 1293 thread_unlock(curthread); 1294 1295 if (zone) 1296 cache_drain_safe_cpu(zone, NULL); 1297 else 1298 zone_foreach(cache_drain_safe_cpu, NULL); 1299 } 1300 thread_lock(curthread); 1301 sched_unbind(curthread); 1302 thread_unlock(curthread); 1303 } 1304 1305 /* 1306 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1307 * requested a drain, otherwise the per-domain caches are trimmed to either 1308 * estimated working set size. 1309 */ 1310 static void 1311 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1312 { 1313 uma_zone_domain_t zdom; 1314 uma_bucket_t bucket; 1315 long target; 1316 int i; 1317 1318 /* 1319 * Shrink the zone bucket size to ensure that the per-CPU caches 1320 * don't grow too large. 1321 */ 1322 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1323 zone->uz_bucket_size--; 1324 1325 for (i = 0; i < vm_ndomains; i++) { 1326 /* 1327 * The cross bucket is partially filled and not part of 1328 * the item count. Reclaim it individually here. 1329 */ 1330 zdom = ZDOM_GET(zone, i); 1331 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1332 ZONE_CROSS_LOCK(zone); 1333 bucket = zdom->uzd_cross; 1334 zdom->uzd_cross = NULL; 1335 ZONE_CROSS_UNLOCK(zone); 1336 if (bucket != NULL) 1337 bucket_free(zone, bucket, NULL); 1338 } 1339 1340 /* 1341 * If we were asked to drain the zone, we are done only once 1342 * this bucket cache is empty. Otherwise, we reclaim items in 1343 * excess of the zone's estimated working set size. If the 1344 * difference nitems - imin is larger than the WSS estimate, 1345 * then the estimate will grow at the end of this interval and 1346 * we ignore the historical average. 1347 */ 1348 ZDOM_LOCK(zdom); 1349 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1350 zdom->uzd_imin); 1351 while (zdom->uzd_nitems > target) { 1352 bucket = zone_fetch_bucket(zone, zdom, true); 1353 if (bucket == NULL) 1354 break; 1355 bucket_free(zone, bucket, NULL); 1356 ZDOM_LOCK(zdom); 1357 } 1358 ZDOM_UNLOCK(zdom); 1359 } 1360 } 1361 1362 static void 1363 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1364 { 1365 uint8_t *mem; 1366 int i; 1367 uint8_t flags; 1368 1369 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1370 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1371 1372 mem = slab_data(slab, keg); 1373 flags = slab->us_flags; 1374 i = start; 1375 if (keg->uk_fini != NULL) { 1376 for (i--; i > -1; i--) 1377 #ifdef INVARIANTS 1378 /* 1379 * trash_fini implies that dtor was trash_dtor. trash_fini 1380 * would check that memory hasn't been modified since free, 1381 * which executed trash_dtor. 1382 * That's why we need to run uma_dbg_kskip() check here, 1383 * albeit we don't make skip check for other init/fini 1384 * invocations. 1385 */ 1386 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1387 keg->uk_fini != trash_fini) 1388 #endif 1389 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1390 } 1391 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1392 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1393 NULL, SKIP_NONE); 1394 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1395 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1396 } 1397 1398 /* 1399 * Frees pages from a keg back to the system. This is done on demand from 1400 * the pageout daemon. 1401 * 1402 * Returns nothing. 1403 */ 1404 static void 1405 keg_drain(uma_keg_t keg) 1406 { 1407 struct slabhead freeslabs; 1408 uma_domain_t dom; 1409 uma_slab_t slab, tmp; 1410 int i, n; 1411 1412 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1413 return; 1414 1415 for (i = 0; i < vm_ndomains; i++) { 1416 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1417 keg->uk_name, keg, i, dom->ud_free_items); 1418 dom = &keg->uk_domain[i]; 1419 LIST_INIT(&freeslabs); 1420 1421 KEG_LOCK(keg, i); 1422 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1423 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 1424 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1425 } 1426 n = dom->ud_free_slabs; 1427 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1428 dom->ud_free_slabs = 0; 1429 dom->ud_free_items -= n * keg->uk_ipers; 1430 dom->ud_pages -= n * keg->uk_ppera; 1431 KEG_UNLOCK(keg, i); 1432 1433 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1434 keg_free_slab(keg, slab, keg->uk_ipers); 1435 } 1436 } 1437 1438 static void 1439 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1440 { 1441 1442 /* 1443 * Set draining to interlock with zone_dtor() so we can release our 1444 * locks as we go. Only dtor() should do a WAITOK call since it 1445 * is the only call that knows the structure will still be available 1446 * when it wakes up. 1447 */ 1448 ZONE_LOCK(zone); 1449 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1450 if (waitok == M_NOWAIT) 1451 goto out; 1452 msleep(zone, &ZDOM_GET(zone, 0)->uzd_lock, PVM, "zonedrain", 1453 1); 1454 } 1455 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1456 ZONE_UNLOCK(zone); 1457 bucket_cache_reclaim(zone, drain); 1458 1459 /* 1460 * The DRAINING flag protects us from being freed while 1461 * we're running. Normally the uma_rwlock would protect us but we 1462 * must be able to release and acquire the right lock for each keg. 1463 */ 1464 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1465 keg_drain(zone->uz_keg); 1466 ZONE_LOCK(zone); 1467 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1468 wakeup(zone); 1469 out: 1470 ZONE_UNLOCK(zone); 1471 } 1472 1473 static void 1474 zone_drain(uma_zone_t zone, void *unused) 1475 { 1476 1477 zone_reclaim(zone, M_NOWAIT, true); 1478 } 1479 1480 static void 1481 zone_trim(uma_zone_t zone, void *unused) 1482 { 1483 1484 zone_reclaim(zone, M_NOWAIT, false); 1485 } 1486 1487 /* 1488 * Allocate a new slab for a keg and inserts it into the partial slab list. 1489 * The keg should be unlocked on entry. If the allocation succeeds it will 1490 * be locked on return. 1491 * 1492 * Arguments: 1493 * flags Wait flags for the item initialization routine 1494 * aflags Wait flags for the slab allocation 1495 * 1496 * Returns: 1497 * The slab that was allocated or NULL if there is no memory and the 1498 * caller specified M_NOWAIT. 1499 */ 1500 static uma_slab_t 1501 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1502 int aflags) 1503 { 1504 uma_domain_t dom; 1505 uma_alloc allocf; 1506 uma_slab_t slab; 1507 unsigned long size; 1508 uint8_t *mem; 1509 uint8_t sflags; 1510 int i; 1511 1512 KASSERT(domain >= 0 && domain < vm_ndomains, 1513 ("keg_alloc_slab: domain %d out of range", domain)); 1514 1515 allocf = keg->uk_allocf; 1516 slab = NULL; 1517 mem = NULL; 1518 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1519 uma_hash_slab_t hslab; 1520 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1521 domain, aflags); 1522 if (hslab == NULL) 1523 goto fail; 1524 slab = &hslab->uhs_slab; 1525 } 1526 1527 /* 1528 * This reproduces the old vm_zone behavior of zero filling pages the 1529 * first time they are added to a zone. 1530 * 1531 * Malloced items are zeroed in uma_zalloc. 1532 */ 1533 1534 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1535 aflags |= M_ZERO; 1536 else 1537 aflags &= ~M_ZERO; 1538 1539 if (keg->uk_flags & UMA_ZONE_NODUMP) 1540 aflags |= M_NODUMP; 1541 1542 /* zone is passed for legacy reasons. */ 1543 size = keg->uk_ppera * PAGE_SIZE; 1544 mem = allocf(zone, size, domain, &sflags, aflags); 1545 if (mem == NULL) { 1546 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1547 zone_free_item(slabzone(keg->uk_ipers), 1548 slab_tohashslab(slab), NULL, SKIP_NONE); 1549 goto fail; 1550 } 1551 uma_total_inc(size); 1552 1553 /* For HASH zones all pages go to the same uma_domain. */ 1554 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1555 domain = 0; 1556 1557 /* Point the slab into the allocated memory */ 1558 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1559 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1560 else 1561 slab_tohashslab(slab)->uhs_data = mem; 1562 1563 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1564 for (i = 0; i < keg->uk_ppera; i++) 1565 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1566 zone, slab); 1567 1568 slab->us_freecount = keg->uk_ipers; 1569 slab->us_flags = sflags; 1570 slab->us_domain = domain; 1571 1572 BIT_FILL(keg->uk_ipers, &slab->us_free); 1573 #ifdef INVARIANTS 1574 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1575 #endif 1576 1577 if (keg->uk_init != NULL) { 1578 for (i = 0; i < keg->uk_ipers; i++) 1579 if (keg->uk_init(slab_item(slab, keg, i), 1580 keg->uk_size, flags) != 0) 1581 break; 1582 if (i != keg->uk_ipers) { 1583 keg_free_slab(keg, slab, i); 1584 goto fail; 1585 } 1586 } 1587 KEG_LOCK(keg, domain); 1588 1589 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1590 slab, keg->uk_name, keg); 1591 1592 if (keg->uk_flags & UMA_ZFLAG_HASH) 1593 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1594 1595 /* 1596 * If we got a slab here it's safe to mark it partially used 1597 * and return. We assume that the caller is going to remove 1598 * at least one item. 1599 */ 1600 dom = &keg->uk_domain[domain]; 1601 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1602 dom->ud_pages += keg->uk_ppera; 1603 dom->ud_free_items += keg->uk_ipers; 1604 1605 return (slab); 1606 1607 fail: 1608 return (NULL); 1609 } 1610 1611 /* 1612 * This function is intended to be used early on in place of page_alloc() so 1613 * that we may use the boot time page cache to satisfy allocations before 1614 * the VM is ready. 1615 */ 1616 static void * 1617 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1618 int wait) 1619 { 1620 vm_paddr_t pa; 1621 vm_page_t m; 1622 void *mem; 1623 int pages; 1624 int i; 1625 1626 pages = howmany(bytes, PAGE_SIZE); 1627 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1628 1629 *pflag = UMA_SLAB_BOOT; 1630 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1631 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1632 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1633 if (m == NULL) 1634 return (NULL); 1635 1636 pa = VM_PAGE_TO_PHYS(m); 1637 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1638 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1639 defined(__riscv) || defined(__powerpc64__) 1640 if ((wait & M_NODUMP) == 0) 1641 dump_add_page(pa); 1642 #endif 1643 } 1644 /* Allocate KVA and indirectly advance bootmem. */ 1645 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1646 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1647 if ((wait & M_ZERO) != 0) 1648 bzero(mem, pages * PAGE_SIZE); 1649 1650 return (mem); 1651 } 1652 1653 static void 1654 startup_free(void *mem, vm_size_t bytes) 1655 { 1656 vm_offset_t va; 1657 vm_page_t m; 1658 1659 va = (vm_offset_t)mem; 1660 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1661 pmap_remove(kernel_pmap, va, va + bytes); 1662 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1663 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1664 defined(__riscv) || defined(__powerpc64__) 1665 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1666 #endif 1667 vm_page_unwire_noq(m); 1668 vm_page_free(m); 1669 } 1670 } 1671 1672 /* 1673 * Allocates a number of pages from the system 1674 * 1675 * Arguments: 1676 * bytes The number of bytes requested 1677 * wait Shall we wait? 1678 * 1679 * Returns: 1680 * A pointer to the alloced memory or possibly 1681 * NULL if M_NOWAIT is set. 1682 */ 1683 static void * 1684 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1685 int wait) 1686 { 1687 void *p; /* Returned page */ 1688 1689 *pflag = UMA_SLAB_KERNEL; 1690 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1691 1692 return (p); 1693 } 1694 1695 static void * 1696 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1697 int wait) 1698 { 1699 struct pglist alloctail; 1700 vm_offset_t addr, zkva; 1701 int cpu, flags; 1702 vm_page_t p, p_next; 1703 #ifdef NUMA 1704 struct pcpu *pc; 1705 #endif 1706 1707 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1708 1709 TAILQ_INIT(&alloctail); 1710 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1711 malloc2vm_flags(wait); 1712 *pflag = UMA_SLAB_KERNEL; 1713 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1714 if (CPU_ABSENT(cpu)) { 1715 p = vm_page_alloc(NULL, 0, flags); 1716 } else { 1717 #ifndef NUMA 1718 p = vm_page_alloc(NULL, 0, flags); 1719 #else 1720 pc = pcpu_find(cpu); 1721 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1722 p = NULL; 1723 else 1724 p = vm_page_alloc_domain(NULL, 0, 1725 pc->pc_domain, flags); 1726 if (__predict_false(p == NULL)) 1727 p = vm_page_alloc(NULL, 0, flags); 1728 #endif 1729 } 1730 if (__predict_false(p == NULL)) 1731 goto fail; 1732 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1733 } 1734 if ((addr = kva_alloc(bytes)) == 0) 1735 goto fail; 1736 zkva = addr; 1737 TAILQ_FOREACH(p, &alloctail, listq) { 1738 pmap_qenter(zkva, &p, 1); 1739 zkva += PAGE_SIZE; 1740 } 1741 return ((void*)addr); 1742 fail: 1743 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1744 vm_page_unwire_noq(p); 1745 vm_page_free(p); 1746 } 1747 return (NULL); 1748 } 1749 1750 /* 1751 * Allocates a number of pages from within an object 1752 * 1753 * Arguments: 1754 * bytes The number of bytes requested 1755 * wait Shall we wait? 1756 * 1757 * Returns: 1758 * A pointer to the alloced memory or possibly 1759 * NULL if M_NOWAIT is set. 1760 */ 1761 static void * 1762 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1763 int wait) 1764 { 1765 TAILQ_HEAD(, vm_page) alloctail; 1766 u_long npages; 1767 vm_offset_t retkva, zkva; 1768 vm_page_t p, p_next; 1769 uma_keg_t keg; 1770 1771 TAILQ_INIT(&alloctail); 1772 keg = zone->uz_keg; 1773 1774 npages = howmany(bytes, PAGE_SIZE); 1775 while (npages > 0) { 1776 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1777 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1778 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1779 VM_ALLOC_NOWAIT)); 1780 if (p != NULL) { 1781 /* 1782 * Since the page does not belong to an object, its 1783 * listq is unused. 1784 */ 1785 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1786 npages--; 1787 continue; 1788 } 1789 /* 1790 * Page allocation failed, free intermediate pages and 1791 * exit. 1792 */ 1793 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1794 vm_page_unwire_noq(p); 1795 vm_page_free(p); 1796 } 1797 return (NULL); 1798 } 1799 *flags = UMA_SLAB_PRIV; 1800 zkva = keg->uk_kva + 1801 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1802 retkva = zkva; 1803 TAILQ_FOREACH(p, &alloctail, listq) { 1804 pmap_qenter(zkva, &p, 1); 1805 zkva += PAGE_SIZE; 1806 } 1807 1808 return ((void *)retkva); 1809 } 1810 1811 /* 1812 * Allocate physically contiguous pages. 1813 */ 1814 static void * 1815 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1816 int wait) 1817 { 1818 1819 *pflag = UMA_SLAB_KERNEL; 1820 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 1821 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 1822 } 1823 1824 /* 1825 * Frees a number of pages to the system 1826 * 1827 * Arguments: 1828 * mem A pointer to the memory to be freed 1829 * size The size of the memory being freed 1830 * flags The original p->us_flags field 1831 * 1832 * Returns: 1833 * Nothing 1834 */ 1835 static void 1836 page_free(void *mem, vm_size_t size, uint8_t flags) 1837 { 1838 1839 if ((flags & UMA_SLAB_BOOT) != 0) { 1840 startup_free(mem, size); 1841 return; 1842 } 1843 1844 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 1845 ("UMA: page_free used with invalid flags %x", flags)); 1846 1847 kmem_free((vm_offset_t)mem, size); 1848 } 1849 1850 /* 1851 * Frees pcpu zone allocations 1852 * 1853 * Arguments: 1854 * mem A pointer to the memory to be freed 1855 * size The size of the memory being freed 1856 * flags The original p->us_flags field 1857 * 1858 * Returns: 1859 * Nothing 1860 */ 1861 static void 1862 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1863 { 1864 vm_offset_t sva, curva; 1865 vm_paddr_t paddr; 1866 vm_page_t m; 1867 1868 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1869 1870 if ((flags & UMA_SLAB_BOOT) != 0) { 1871 startup_free(mem, size); 1872 return; 1873 } 1874 1875 sva = (vm_offset_t)mem; 1876 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1877 paddr = pmap_kextract(curva); 1878 m = PHYS_TO_VM_PAGE(paddr); 1879 vm_page_unwire_noq(m); 1880 vm_page_free(m); 1881 } 1882 pmap_qremove(sva, size >> PAGE_SHIFT); 1883 kva_free(sva, size); 1884 } 1885 1886 1887 /* 1888 * Zero fill initializer 1889 * 1890 * Arguments/Returns follow uma_init specifications 1891 */ 1892 static int 1893 zero_init(void *mem, int size, int flags) 1894 { 1895 bzero(mem, size); 1896 return (0); 1897 } 1898 1899 #ifdef INVARIANTS 1900 struct noslabbits * 1901 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1902 { 1903 1904 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1905 } 1906 #endif 1907 1908 /* 1909 * Actual size of embedded struct slab (!OFFPAGE). 1910 */ 1911 size_t 1912 slab_sizeof(int nitems) 1913 { 1914 size_t s; 1915 1916 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1917 return (roundup(s, UMA_ALIGN_PTR + 1)); 1918 } 1919 1920 /* 1921 * Size of memory for embedded slabs (!OFFPAGE). 1922 */ 1923 size_t 1924 slab_space(int nitems) 1925 { 1926 return (UMA_SLAB_SIZE - slab_sizeof(nitems)); 1927 } 1928 1929 #define UMA_FIXPT_SHIFT 31 1930 #define UMA_FRAC_FIXPT(n, d) \ 1931 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1932 #define UMA_FIXPT_PCT(f) \ 1933 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1934 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1935 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1936 1937 /* 1938 * Compute the number of items that will fit in a slab. If hdr is true, the 1939 * item count may be limited to provide space in the slab for an inline slab 1940 * header. Otherwise, all slab space will be provided for item storage. 1941 */ 1942 static u_int 1943 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1944 { 1945 u_int ipers; 1946 u_int padpi; 1947 1948 /* The padding between items is not needed after the last item. */ 1949 padpi = rsize - size; 1950 1951 if (hdr) { 1952 /* 1953 * Start with the maximum item count and remove items until 1954 * the slab header first alongside the allocatable memory. 1955 */ 1956 for (ipers = MIN(SLAB_MAX_SETSIZE, 1957 (slabsize + padpi - slab_sizeof(1)) / rsize); 1958 ipers > 0 && 1959 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 1960 ipers--) 1961 continue; 1962 } else { 1963 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 1964 } 1965 1966 return (ipers); 1967 } 1968 1969 /* 1970 * Compute the number of items that will fit in a slab for a startup zone. 1971 */ 1972 int 1973 slab_ipers(size_t size, int align) 1974 { 1975 int rsize; 1976 1977 rsize = roundup(size, align + 1); /* Assume no CACHESPREAD */ 1978 return (slab_ipers_hdr(size, rsize, UMA_SLAB_SIZE, true)); 1979 } 1980 1981 struct keg_layout_result { 1982 u_int format; 1983 u_int slabsize; 1984 u_int ipers; 1985 u_int eff; 1986 }; 1987 1988 static void 1989 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 1990 struct keg_layout_result *kl) 1991 { 1992 u_int total; 1993 1994 kl->format = fmt; 1995 kl->slabsize = slabsize; 1996 1997 /* Handle INTERNAL as inline with an extra page. */ 1998 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 1999 kl->format &= ~UMA_ZFLAG_INTERNAL; 2000 kl->slabsize += PAGE_SIZE; 2001 } 2002 2003 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2004 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2005 2006 /* Account for memory used by an offpage slab header. */ 2007 total = kl->slabsize; 2008 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2009 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2010 2011 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2012 } 2013 2014 /* 2015 * Determine the format of a uma keg. This determines where the slab header 2016 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2017 * 2018 * Arguments 2019 * keg The zone we should initialize 2020 * 2021 * Returns 2022 * Nothing 2023 */ 2024 static void 2025 keg_layout(uma_keg_t keg) 2026 { 2027 struct keg_layout_result kl = {}, kl_tmp; 2028 u_int fmts[2]; 2029 u_int alignsize; 2030 u_int nfmt; 2031 u_int pages; 2032 u_int rsize; 2033 u_int slabsize; 2034 u_int i, j; 2035 2036 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2037 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2038 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2039 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2040 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2041 PRINT_UMA_ZFLAGS)); 2042 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2043 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2044 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2045 PRINT_UMA_ZFLAGS)); 2046 2047 alignsize = keg->uk_align + 1; 2048 2049 /* 2050 * Calculate the size of each allocation (rsize) according to 2051 * alignment. If the requested size is smaller than we have 2052 * allocation bits for we round it up. 2053 */ 2054 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2055 rsize = roundup2(rsize, alignsize); 2056 2057 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2058 /* 2059 * We want one item to start on every align boundary in a page. 2060 * To do this we will span pages. We will also extend the item 2061 * by the size of align if it is an even multiple of align. 2062 * Otherwise, it would fall on the same boundary every time. 2063 */ 2064 if ((rsize & alignsize) == 0) 2065 rsize += alignsize; 2066 slabsize = rsize * (PAGE_SIZE / alignsize); 2067 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2068 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2069 slabsize = round_page(slabsize); 2070 } else { 2071 /* 2072 * Start with a slab size of as many pages as it takes to 2073 * represent a single item. We will try to fit as many 2074 * additional items into the slab as possible. 2075 */ 2076 slabsize = round_page(keg->uk_size); 2077 } 2078 2079 /* Build a list of all of the available formats for this keg. */ 2080 nfmt = 0; 2081 2082 /* Evaluate an inline slab layout. */ 2083 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2084 fmts[nfmt++] = 0; 2085 2086 /* TODO: vm_page-embedded slab. */ 2087 2088 /* 2089 * We can't do OFFPAGE if we're internal or if we've been 2090 * asked to not go to the VM for buckets. If we do this we 2091 * may end up going to the VM for slabs which we do not want 2092 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2093 * In those cases, evaluate a pseudo-format called INTERNAL 2094 * which has an inline slab header and one extra page to 2095 * guarantee that it fits. 2096 * 2097 * Otherwise, see if using an OFFPAGE slab will improve our 2098 * efficiency. 2099 */ 2100 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2101 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2102 else 2103 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2104 2105 /* 2106 * Choose a slab size and format which satisfy the minimum efficiency. 2107 * Prefer the smallest slab size that meets the constraints. 2108 * 2109 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2110 * for small items (up to PAGE_SIZE), the iteration increment is one 2111 * page; and for large items, the increment is one item. 2112 */ 2113 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2114 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2115 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2116 rsize, i)); 2117 for ( ; ; i++) { 2118 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2119 round_page(rsize * (i - 1) + keg->uk_size); 2120 2121 for (j = 0; j < nfmt; j++) { 2122 /* Only if we have no viable format yet. */ 2123 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2124 kl.ipers > 0) 2125 continue; 2126 2127 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2128 if (kl_tmp.eff <= kl.eff) 2129 continue; 2130 2131 kl = kl_tmp; 2132 2133 CTR6(KTR_UMA, "keg %s layout: format %#x " 2134 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2135 keg->uk_name, kl.format, kl.ipers, rsize, 2136 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2137 2138 /* Stop when we reach the minimum efficiency. */ 2139 if (kl.eff >= UMA_MIN_EFF) 2140 break; 2141 } 2142 2143 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2144 slabsize >= SLAB_MAX_SETSIZE * rsize || 2145 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2146 break; 2147 } 2148 2149 pages = atop(kl.slabsize); 2150 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2151 pages *= mp_maxid + 1; 2152 2153 keg->uk_rsize = rsize; 2154 keg->uk_ipers = kl.ipers; 2155 keg->uk_ppera = pages; 2156 keg->uk_flags |= kl.format; 2157 2158 /* 2159 * How do we find the slab header if it is offpage or if not all item 2160 * start addresses are in the same page? We could solve the latter 2161 * case with vaddr alignment, but we don't. 2162 */ 2163 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2164 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2165 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2166 keg->uk_flags |= UMA_ZFLAG_HASH; 2167 else 2168 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2169 } 2170 2171 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2172 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2173 pages); 2174 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2175 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2176 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2177 keg->uk_ipers, pages)); 2178 } 2179 2180 /* 2181 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2182 * the keg onto the global keg list. 2183 * 2184 * Arguments/Returns follow uma_ctor specifications 2185 * udata Actually uma_kctor_args 2186 */ 2187 static int 2188 keg_ctor(void *mem, int size, void *udata, int flags) 2189 { 2190 struct uma_kctor_args *arg = udata; 2191 uma_keg_t keg = mem; 2192 uma_zone_t zone; 2193 int i; 2194 2195 bzero(keg, size); 2196 keg->uk_size = arg->size; 2197 keg->uk_init = arg->uminit; 2198 keg->uk_fini = arg->fini; 2199 keg->uk_align = arg->align; 2200 keg->uk_reserve = 0; 2201 keg->uk_flags = arg->flags; 2202 2203 /* 2204 * We use a global round-robin policy by default. Zones with 2205 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2206 * case the iterator is never run. 2207 */ 2208 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2209 keg->uk_dr.dr_iter = 0; 2210 2211 /* 2212 * The master zone is passed to us at keg-creation time. 2213 */ 2214 zone = arg->zone; 2215 keg->uk_name = zone->uz_name; 2216 2217 if (arg->flags & UMA_ZONE_ZINIT) 2218 keg->uk_init = zero_init; 2219 2220 if (arg->flags & UMA_ZONE_MALLOC) 2221 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2222 2223 #ifndef SMP 2224 keg->uk_flags &= ~UMA_ZONE_PCPU; 2225 #endif 2226 2227 keg_layout(keg); 2228 2229 /* 2230 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2231 * work on. Use round-robin for everything else. 2232 * 2233 * Zones may override the default by specifying either. 2234 */ 2235 #ifdef NUMA 2236 if ((keg->uk_flags & 2237 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2238 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2239 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2240 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2241 #endif 2242 2243 /* 2244 * If we haven't booted yet we need allocations to go through the 2245 * startup cache until the vm is ready. 2246 */ 2247 #ifdef UMA_MD_SMALL_ALLOC 2248 if (keg->uk_ppera == 1) 2249 keg->uk_allocf = uma_small_alloc; 2250 else 2251 #endif 2252 if (booted < BOOT_KVA) 2253 keg->uk_allocf = startup_alloc; 2254 else if (keg->uk_flags & UMA_ZONE_PCPU) 2255 keg->uk_allocf = pcpu_page_alloc; 2256 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2257 keg->uk_allocf = contig_alloc; 2258 else 2259 keg->uk_allocf = page_alloc; 2260 #ifdef UMA_MD_SMALL_ALLOC 2261 if (keg->uk_ppera == 1) 2262 keg->uk_freef = uma_small_free; 2263 else 2264 #endif 2265 if (keg->uk_flags & UMA_ZONE_PCPU) 2266 keg->uk_freef = pcpu_page_free; 2267 else 2268 keg->uk_freef = page_free; 2269 2270 /* 2271 * Initialize keg's locks. 2272 */ 2273 for (i = 0; i < vm_ndomains; i++) 2274 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2275 2276 /* 2277 * If we're putting the slab header in the actual page we need to 2278 * figure out where in each page it goes. See slab_sizeof 2279 * definition. 2280 */ 2281 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2282 size_t shsize; 2283 2284 shsize = slab_sizeof(keg->uk_ipers); 2285 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2286 /* 2287 * The only way the following is possible is if with our 2288 * UMA_ALIGN_PTR adjustments we are now bigger than 2289 * UMA_SLAB_SIZE. I haven't checked whether this is 2290 * mathematically possible for all cases, so we make 2291 * sure here anyway. 2292 */ 2293 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2294 ("zone %s ipers %d rsize %d size %d slab won't fit", 2295 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2296 } 2297 2298 if (keg->uk_flags & UMA_ZFLAG_HASH) 2299 hash_alloc(&keg->uk_hash, 0); 2300 2301 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2302 2303 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2304 2305 rw_wlock(&uma_rwlock); 2306 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2307 rw_wunlock(&uma_rwlock); 2308 return (0); 2309 } 2310 2311 static void 2312 zone_kva_available(uma_zone_t zone, void *unused) 2313 { 2314 uma_keg_t keg; 2315 2316 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2317 return; 2318 KEG_GET(zone, keg); 2319 2320 if (keg->uk_allocf == startup_alloc) { 2321 /* Switch to the real allocator. */ 2322 if (keg->uk_flags & UMA_ZONE_PCPU) 2323 keg->uk_allocf = pcpu_page_alloc; 2324 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2325 keg->uk_ppera > 1) 2326 keg->uk_allocf = contig_alloc; 2327 else 2328 keg->uk_allocf = page_alloc; 2329 } 2330 } 2331 2332 static void 2333 zone_alloc_counters(uma_zone_t zone, void *unused) 2334 { 2335 2336 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2337 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2338 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2339 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2340 } 2341 2342 static void 2343 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2344 { 2345 uma_zone_domain_t zdom; 2346 uma_domain_t dom; 2347 uma_keg_t keg; 2348 struct sysctl_oid *oid, *domainoid; 2349 int domains, i, cnt; 2350 static const char *nokeg = "cache zone"; 2351 char *c; 2352 2353 /* 2354 * Make a sysctl safe copy of the zone name by removing 2355 * any special characters and handling dups by appending 2356 * an index. 2357 */ 2358 if (zone->uz_namecnt != 0) { 2359 /* Count the number of decimal digits and '_' separator. */ 2360 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2361 cnt /= 10; 2362 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2363 M_UMA, M_WAITOK); 2364 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2365 zone->uz_namecnt); 2366 } else 2367 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2368 for (c = zone->uz_ctlname; *c != '\0'; c++) 2369 if (strchr("./\\ -", *c) != NULL) 2370 *c = '_'; 2371 2372 /* 2373 * Basic parameters at the root. 2374 */ 2375 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2376 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD, NULL, ""); 2377 oid = zone->uz_oid; 2378 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2379 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2380 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2381 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2382 zone, 0, sysctl_handle_uma_zone_flags, "A", 2383 "Allocator configuration flags"); 2384 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2385 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2386 "Desired per-cpu cache size"); 2387 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2388 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2389 "Maximum allowed per-cpu cache size"); 2390 2391 /* 2392 * keg if present. 2393 */ 2394 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2395 domains = vm_ndomains; 2396 else 2397 domains = 1; 2398 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2399 "keg", CTLFLAG_RD, NULL, ""); 2400 keg = zone->uz_keg; 2401 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2402 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2403 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2404 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2405 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2406 "Real object size with alignment"); 2407 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2408 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2409 "pages per-slab allocation"); 2410 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2411 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2412 "items available per-slab"); 2413 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2414 "align", CTLFLAG_RD, &keg->uk_align, 0, 2415 "item alignment mask"); 2416 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2417 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2418 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2419 "Slab utilization (100 - internal fragmentation %)"); 2420 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2421 OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); 2422 for (i = 0; i < domains; i++) { 2423 dom = &keg->uk_domain[i]; 2424 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2425 OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, 2426 NULL, ""); 2427 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2428 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2429 "Total pages currently allocated from VM"); 2430 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2431 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2432 "items free in the slab layer"); 2433 } 2434 } else 2435 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2436 "name", CTLFLAG_RD, nokeg, "Keg name"); 2437 2438 /* 2439 * Information about zone limits. 2440 */ 2441 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2442 "limit", CTLFLAG_RD, NULL, ""); 2443 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2444 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2445 zone, 0, sysctl_handle_uma_zone_items, "QU", 2446 "current number of allocated items if limit is set"); 2447 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2448 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2449 "Maximum number of cached items"); 2450 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2451 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2452 "Number of threads sleeping at limit"); 2453 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2454 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2455 "Total zone limit sleeps"); 2456 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2457 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2458 "Maximum number of items in each domain's bucket cache"); 2459 2460 /* 2461 * Per-domain zone information. 2462 */ 2463 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2464 OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); 2465 for (i = 0; i < domains; i++) { 2466 zdom = ZDOM_GET(zone, i); 2467 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2468 OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, NULL, ""); 2469 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2470 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2471 "number of items in this domain"); 2472 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2473 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2474 "maximum item count in this period"); 2475 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2476 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2477 "minimum item count in this period"); 2478 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2479 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2480 "Working set size"); 2481 } 2482 2483 /* 2484 * General statistics. 2485 */ 2486 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2487 "stats", CTLFLAG_RD, NULL, ""); 2488 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2489 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2490 zone, 1, sysctl_handle_uma_zone_cur, "I", 2491 "Current number of allocated items"); 2492 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2493 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2494 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2495 "Total allocation calls"); 2496 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2497 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2498 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2499 "Total free calls"); 2500 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2501 "fails", CTLFLAG_RD, &zone->uz_fails, 2502 "Number of allocation failures"); 2503 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2504 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2505 "Free calls from the wrong domain"); 2506 } 2507 2508 struct uma_zone_count { 2509 const char *name; 2510 int count; 2511 }; 2512 2513 static void 2514 zone_count(uma_zone_t zone, void *arg) 2515 { 2516 struct uma_zone_count *cnt; 2517 2518 cnt = arg; 2519 /* 2520 * Some zones are rapidly created with identical names and 2521 * destroyed out of order. This can lead to gaps in the count. 2522 * Use one greater than the maximum observed for this name. 2523 */ 2524 if (strcmp(zone->uz_name, cnt->name) == 0) 2525 cnt->count = MAX(cnt->count, 2526 zone->uz_namecnt + 1); 2527 } 2528 2529 static void 2530 zone_update_caches(uma_zone_t zone) 2531 { 2532 int i; 2533 2534 for (i = 0; i <= mp_maxid; i++) { 2535 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2536 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2537 } 2538 } 2539 2540 /* 2541 * Zone header ctor. This initializes all fields, locks, etc. 2542 * 2543 * Arguments/Returns follow uma_ctor specifications 2544 * udata Actually uma_zctor_args 2545 */ 2546 static int 2547 zone_ctor(void *mem, int size, void *udata, int flags) 2548 { 2549 struct uma_zone_count cnt; 2550 struct uma_zctor_args *arg = udata; 2551 uma_zone_domain_t zdom; 2552 uma_zone_t zone = mem; 2553 uma_zone_t z; 2554 uma_keg_t keg; 2555 int i; 2556 2557 bzero(zone, size); 2558 zone->uz_name = arg->name; 2559 zone->uz_ctor = arg->ctor; 2560 zone->uz_dtor = arg->dtor; 2561 zone->uz_init = NULL; 2562 zone->uz_fini = NULL; 2563 zone->uz_sleeps = 0; 2564 zone->uz_bucket_size = 0; 2565 zone->uz_bucket_size_min = 0; 2566 zone->uz_bucket_size_max = BUCKET_MAX; 2567 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2568 zone->uz_warning = NULL; 2569 /* The domain structures follow the cpu structures. */ 2570 zone->uz_bucket_max = ULONG_MAX; 2571 timevalclear(&zone->uz_ratecheck); 2572 2573 /* Count the number of duplicate names. */ 2574 cnt.name = arg->name; 2575 cnt.count = 0; 2576 zone_foreach(zone_count, &cnt); 2577 zone->uz_namecnt = cnt.count; 2578 ZONE_CROSS_LOCK_INIT(zone); 2579 2580 for (i = 0; i < vm_ndomains; i++) { 2581 zdom = ZDOM_GET(zone, i); 2582 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2583 STAILQ_INIT(&zdom->uzd_buckets); 2584 } 2585 2586 #ifdef INVARIANTS 2587 if (arg->uminit == trash_init && arg->fini == trash_fini) 2588 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2589 #endif 2590 2591 /* 2592 * This is a pure cache zone, no kegs. 2593 */ 2594 if (arg->import) { 2595 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2596 ("zone_ctor: Import specified for non-cache zone.")); 2597 zone->uz_flags = arg->flags; 2598 zone->uz_size = arg->size; 2599 zone->uz_import = arg->import; 2600 zone->uz_release = arg->release; 2601 zone->uz_arg = arg->arg; 2602 #ifdef NUMA 2603 /* 2604 * Cache zones are round-robin unless a policy is 2605 * specified because they may have incompatible 2606 * constraints. 2607 */ 2608 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2609 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2610 #endif 2611 rw_wlock(&uma_rwlock); 2612 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2613 rw_wunlock(&uma_rwlock); 2614 goto out; 2615 } 2616 2617 /* 2618 * Use the regular zone/keg/slab allocator. 2619 */ 2620 zone->uz_import = zone_import; 2621 zone->uz_release = zone_release; 2622 zone->uz_arg = zone; 2623 keg = arg->keg; 2624 2625 if (arg->flags & UMA_ZONE_SECONDARY) { 2626 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2627 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2628 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2629 zone->uz_init = arg->uminit; 2630 zone->uz_fini = arg->fini; 2631 zone->uz_flags |= UMA_ZONE_SECONDARY; 2632 rw_wlock(&uma_rwlock); 2633 ZONE_LOCK(zone); 2634 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2635 if (LIST_NEXT(z, uz_link) == NULL) { 2636 LIST_INSERT_AFTER(z, zone, uz_link); 2637 break; 2638 } 2639 } 2640 ZONE_UNLOCK(zone); 2641 rw_wunlock(&uma_rwlock); 2642 } else if (keg == NULL) { 2643 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2644 arg->align, arg->flags)) == NULL) 2645 return (ENOMEM); 2646 } else { 2647 struct uma_kctor_args karg; 2648 int error; 2649 2650 /* We should only be here from uma_startup() */ 2651 karg.size = arg->size; 2652 karg.uminit = arg->uminit; 2653 karg.fini = arg->fini; 2654 karg.align = arg->align; 2655 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2656 karg.zone = zone; 2657 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2658 flags); 2659 if (error) 2660 return (error); 2661 } 2662 2663 /* Inherit properties from the keg. */ 2664 zone->uz_keg = keg; 2665 zone->uz_size = keg->uk_size; 2666 zone->uz_flags |= (keg->uk_flags & 2667 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2668 2669 out: 2670 if (__predict_true(booted >= BOOT_RUNNING)) { 2671 zone_alloc_counters(zone, NULL); 2672 zone_alloc_sysctl(zone, NULL); 2673 } else { 2674 zone->uz_allocs = EARLY_COUNTER; 2675 zone->uz_frees = EARLY_COUNTER; 2676 zone->uz_fails = EARLY_COUNTER; 2677 } 2678 2679 /* Caller requests a private SMR context. */ 2680 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2681 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2682 2683 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2684 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2685 ("Invalid zone flag combination")); 2686 if (arg->flags & UMA_ZFLAG_INTERNAL) 2687 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2688 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2689 zone->uz_bucket_size = BUCKET_MAX; 2690 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2691 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2692 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2693 zone->uz_bucket_size = 0; 2694 else 2695 zone->uz_bucket_size = bucket_select(zone->uz_size); 2696 zone->uz_bucket_size_min = zone->uz_bucket_size; 2697 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2698 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2699 zone_update_caches(zone); 2700 2701 return (0); 2702 } 2703 2704 /* 2705 * Keg header dtor. This frees all data, destroys locks, frees the hash 2706 * table and removes the keg from the global list. 2707 * 2708 * Arguments/Returns follow uma_dtor specifications 2709 * udata unused 2710 */ 2711 static void 2712 keg_dtor(void *arg, int size, void *udata) 2713 { 2714 uma_keg_t keg; 2715 uint32_t free, pages; 2716 int i; 2717 2718 keg = (uma_keg_t)arg; 2719 free = pages = 0; 2720 for (i = 0; i < vm_ndomains; i++) { 2721 free += keg->uk_domain[i].ud_free_items; 2722 pages += keg->uk_domain[i].ud_pages; 2723 KEG_LOCK_FINI(keg, i); 2724 } 2725 if (pages != 0) 2726 printf("Freed UMA keg (%s) was not empty (%u items). " 2727 " Lost %u pages of memory.\n", 2728 keg->uk_name ? keg->uk_name : "", 2729 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2730 2731 hash_free(&keg->uk_hash); 2732 } 2733 2734 /* 2735 * Zone header dtor. 2736 * 2737 * Arguments/Returns follow uma_dtor specifications 2738 * udata unused 2739 */ 2740 static void 2741 zone_dtor(void *arg, int size, void *udata) 2742 { 2743 uma_zone_t zone; 2744 uma_keg_t keg; 2745 int i; 2746 2747 zone = (uma_zone_t)arg; 2748 2749 sysctl_remove_oid(zone->uz_oid, 1, 1); 2750 2751 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2752 cache_drain(zone); 2753 2754 rw_wlock(&uma_rwlock); 2755 LIST_REMOVE(zone, uz_link); 2756 rw_wunlock(&uma_rwlock); 2757 zone_reclaim(zone, M_WAITOK, true); 2758 2759 /* 2760 * We only destroy kegs from non secondary/non cache zones. 2761 */ 2762 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2763 keg = zone->uz_keg; 2764 rw_wlock(&uma_rwlock); 2765 LIST_REMOVE(keg, uk_link); 2766 rw_wunlock(&uma_rwlock); 2767 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2768 } 2769 counter_u64_free(zone->uz_allocs); 2770 counter_u64_free(zone->uz_frees); 2771 counter_u64_free(zone->uz_fails); 2772 counter_u64_free(zone->uz_xdomain); 2773 free(zone->uz_ctlname, M_UMA); 2774 for (i = 0; i < vm_ndomains; i++) 2775 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 2776 ZONE_CROSS_LOCK_FINI(zone); 2777 } 2778 2779 static void 2780 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2781 { 2782 uma_keg_t keg; 2783 uma_zone_t zone; 2784 2785 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2786 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2787 zfunc(zone, arg); 2788 } 2789 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2790 zfunc(zone, arg); 2791 } 2792 2793 /* 2794 * Traverses every zone in the system and calls a callback 2795 * 2796 * Arguments: 2797 * zfunc A pointer to a function which accepts a zone 2798 * as an argument. 2799 * 2800 * Returns: 2801 * Nothing 2802 */ 2803 static void 2804 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2805 { 2806 2807 rw_rlock(&uma_rwlock); 2808 zone_foreach_unlocked(zfunc, arg); 2809 rw_runlock(&uma_rwlock); 2810 } 2811 2812 /* 2813 * Initialize the kernel memory allocator. This is done after pages can be 2814 * allocated but before general KVA is available. 2815 */ 2816 void 2817 uma_startup1(vm_offset_t virtual_avail) 2818 { 2819 struct uma_zctor_args args; 2820 size_t ksize, zsize, size; 2821 uma_keg_t masterkeg; 2822 uintptr_t m; 2823 uint8_t pflag; 2824 2825 bootstart = bootmem = virtual_avail; 2826 2827 rw_init(&uma_rwlock, "UMA lock"); 2828 sx_init(&uma_reclaim_lock, "umareclaim"); 2829 2830 ksize = sizeof(struct uma_keg) + 2831 (sizeof(struct uma_domain) * vm_ndomains); 2832 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2833 zsize = sizeof(struct uma_zone) + 2834 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2835 (sizeof(struct uma_zone_domain) * vm_ndomains); 2836 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2837 2838 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2839 size = (zsize * 2) + ksize; 2840 m = (uintptr_t)startup_alloc(NULL, size, 0, &pflag, M_NOWAIT | M_ZERO); 2841 zones = (uma_zone_t)m; 2842 m += zsize; 2843 kegs = (uma_zone_t)m; 2844 m += zsize; 2845 masterkeg = (uma_keg_t)m; 2846 2847 /* "manually" create the initial zone */ 2848 memset(&args, 0, sizeof(args)); 2849 args.name = "UMA Kegs"; 2850 args.size = ksize; 2851 args.ctor = keg_ctor; 2852 args.dtor = keg_dtor; 2853 args.uminit = zero_init; 2854 args.fini = NULL; 2855 args.keg = masterkeg; 2856 args.align = UMA_SUPER_ALIGN - 1; 2857 args.flags = UMA_ZFLAG_INTERNAL; 2858 zone_ctor(kegs, zsize, &args, M_WAITOK); 2859 2860 args.name = "UMA Zones"; 2861 args.size = zsize; 2862 args.ctor = zone_ctor; 2863 args.dtor = zone_dtor; 2864 args.uminit = zero_init; 2865 args.fini = NULL; 2866 args.keg = NULL; 2867 args.align = UMA_SUPER_ALIGN - 1; 2868 args.flags = UMA_ZFLAG_INTERNAL; 2869 zone_ctor(zones, zsize, &args, M_WAITOK); 2870 2871 /* Now make zones for slab headers */ 2872 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2873 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2874 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2875 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2876 2877 hashzone = uma_zcreate("UMA Hash", 2878 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2879 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2880 2881 bucket_init(); 2882 smr_init(); 2883 } 2884 2885 #ifndef UMA_MD_SMALL_ALLOC 2886 extern void vm_radix_reserve_kva(void); 2887 #endif 2888 2889 /* 2890 * Advertise the availability of normal kva allocations and switch to 2891 * the default back-end allocator. Marks the KVA we consumed on startup 2892 * as used in the map. 2893 */ 2894 void 2895 uma_startup2(void) 2896 { 2897 2898 if (bootstart != bootmem) { 2899 vm_map_lock(kernel_map); 2900 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2901 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2902 vm_map_unlock(kernel_map); 2903 } 2904 2905 #ifndef UMA_MD_SMALL_ALLOC 2906 /* Set up radix zone to use noobj_alloc. */ 2907 vm_radix_reserve_kva(); 2908 #endif 2909 2910 booted = BOOT_KVA; 2911 zone_foreach_unlocked(zone_kva_available, NULL); 2912 bucket_enable(); 2913 } 2914 2915 /* 2916 * Finish our initialization steps. 2917 */ 2918 static void 2919 uma_startup3(void) 2920 { 2921 2922 #ifdef INVARIANTS 2923 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2924 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2925 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2926 #endif 2927 zone_foreach_unlocked(zone_alloc_counters, NULL); 2928 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2929 callout_init(&uma_callout, 1); 2930 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2931 booted = BOOT_RUNNING; 2932 2933 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2934 EVENTHANDLER_PRI_FIRST); 2935 } 2936 2937 static void 2938 uma_shutdown(void) 2939 { 2940 2941 booted = BOOT_SHUTDOWN; 2942 } 2943 2944 static uma_keg_t 2945 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2946 int align, uint32_t flags) 2947 { 2948 struct uma_kctor_args args; 2949 2950 args.size = size; 2951 args.uminit = uminit; 2952 args.fini = fini; 2953 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2954 args.flags = flags; 2955 args.zone = zone; 2956 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2957 } 2958 2959 /* Public functions */ 2960 /* See uma.h */ 2961 void 2962 uma_set_align(int align) 2963 { 2964 2965 if (align != UMA_ALIGN_CACHE) 2966 uma_align_cache = align; 2967 } 2968 2969 /* See uma.h */ 2970 uma_zone_t 2971 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2972 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2973 2974 { 2975 struct uma_zctor_args args; 2976 uma_zone_t res; 2977 2978 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2979 align, name)); 2980 2981 /* This stuff is essential for the zone ctor */ 2982 memset(&args, 0, sizeof(args)); 2983 args.name = name; 2984 args.size = size; 2985 args.ctor = ctor; 2986 args.dtor = dtor; 2987 args.uminit = uminit; 2988 args.fini = fini; 2989 #ifdef INVARIANTS 2990 /* 2991 * Inject procedures which check for memory use after free if we are 2992 * allowed to scramble the memory while it is not allocated. This 2993 * requires that: UMA is actually able to access the memory, no init 2994 * or fini procedures, no dependency on the initial value of the 2995 * memory, and no (legitimate) use of the memory after free. Note, 2996 * the ctor and dtor do not need to be empty. 2997 */ 2998 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 2999 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3000 args.uminit = trash_init; 3001 args.fini = trash_fini; 3002 } 3003 #endif 3004 args.align = align; 3005 args.flags = flags; 3006 args.keg = NULL; 3007 3008 sx_slock(&uma_reclaim_lock); 3009 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3010 sx_sunlock(&uma_reclaim_lock); 3011 3012 return (res); 3013 } 3014 3015 /* See uma.h */ 3016 uma_zone_t 3017 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3018 uma_init zinit, uma_fini zfini, uma_zone_t master) 3019 { 3020 struct uma_zctor_args args; 3021 uma_keg_t keg; 3022 uma_zone_t res; 3023 3024 keg = master->uz_keg; 3025 memset(&args, 0, sizeof(args)); 3026 args.name = name; 3027 args.size = keg->uk_size; 3028 args.ctor = ctor; 3029 args.dtor = dtor; 3030 args.uminit = zinit; 3031 args.fini = zfini; 3032 args.align = keg->uk_align; 3033 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3034 args.keg = keg; 3035 3036 sx_slock(&uma_reclaim_lock); 3037 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3038 sx_sunlock(&uma_reclaim_lock); 3039 3040 return (res); 3041 } 3042 3043 /* See uma.h */ 3044 uma_zone_t 3045 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3046 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3047 void *arg, int flags) 3048 { 3049 struct uma_zctor_args args; 3050 3051 memset(&args, 0, sizeof(args)); 3052 args.name = name; 3053 args.size = size; 3054 args.ctor = ctor; 3055 args.dtor = dtor; 3056 args.uminit = zinit; 3057 args.fini = zfini; 3058 args.import = zimport; 3059 args.release = zrelease; 3060 args.arg = arg; 3061 args.align = 0; 3062 args.flags = flags | UMA_ZFLAG_CACHE; 3063 3064 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3065 } 3066 3067 /* See uma.h */ 3068 void 3069 uma_zdestroy(uma_zone_t zone) 3070 { 3071 3072 /* 3073 * Large slabs are expensive to reclaim, so don't bother doing 3074 * unnecessary work if we're shutting down. 3075 */ 3076 if (booted == BOOT_SHUTDOWN && 3077 zone->uz_fini == NULL && zone->uz_release == zone_release) 3078 return; 3079 sx_slock(&uma_reclaim_lock); 3080 zone_free_item(zones, zone, NULL, SKIP_NONE); 3081 sx_sunlock(&uma_reclaim_lock); 3082 } 3083 3084 void 3085 uma_zwait(uma_zone_t zone) 3086 { 3087 3088 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3089 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3090 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3091 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3092 else 3093 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3094 } 3095 3096 void * 3097 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3098 { 3099 void *item, *pcpu_item; 3100 #ifdef SMP 3101 int i; 3102 3103 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3104 #endif 3105 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3106 if (item == NULL) 3107 return (NULL); 3108 pcpu_item = zpcpu_base_to_offset(item); 3109 if (flags & M_ZERO) { 3110 #ifdef SMP 3111 for (i = 0; i <= mp_maxid; i++) 3112 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3113 #else 3114 bzero(item, zone->uz_size); 3115 #endif 3116 } 3117 return (pcpu_item); 3118 } 3119 3120 /* 3121 * A stub while both regular and pcpu cases are identical. 3122 */ 3123 void 3124 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3125 { 3126 void *item; 3127 3128 #ifdef SMP 3129 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3130 #endif 3131 item = zpcpu_offset_to_base(pcpu_item); 3132 uma_zfree_arg(zone, item, udata); 3133 } 3134 3135 static inline void * 3136 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3137 void *item) 3138 { 3139 #ifdef INVARIANTS 3140 bool skipdbg; 3141 3142 skipdbg = uma_dbg_zskip(zone, item); 3143 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3144 zone->uz_ctor != trash_ctor) 3145 trash_ctor(item, size, udata, flags); 3146 #endif 3147 /* Check flags before loading ctor pointer. */ 3148 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3149 __predict_false(zone->uz_ctor != NULL) && 3150 zone->uz_ctor(item, size, udata, flags) != 0) { 3151 counter_u64_add(zone->uz_fails, 1); 3152 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3153 return (NULL); 3154 } 3155 #ifdef INVARIANTS 3156 if (!skipdbg) 3157 uma_dbg_alloc(zone, NULL, item); 3158 #endif 3159 if (__predict_false(flags & M_ZERO)) 3160 return (memset(item, 0, size)); 3161 3162 return (item); 3163 } 3164 3165 static inline void 3166 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3167 enum zfreeskip skip) 3168 { 3169 #ifdef INVARIANTS 3170 bool skipdbg; 3171 3172 skipdbg = uma_dbg_zskip(zone, item); 3173 if (skip == SKIP_NONE && !skipdbg) { 3174 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3175 uma_dbg_free(zone, udata, item); 3176 else 3177 uma_dbg_free(zone, NULL, item); 3178 } 3179 #endif 3180 if (__predict_true(skip < SKIP_DTOR)) { 3181 if (zone->uz_dtor != NULL) 3182 zone->uz_dtor(item, size, udata); 3183 #ifdef INVARIANTS 3184 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3185 zone->uz_dtor != trash_dtor) 3186 trash_dtor(item, size, udata); 3187 #endif 3188 } 3189 } 3190 3191 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3192 #define UMA_ZALLOC_DEBUG 3193 static int 3194 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3195 { 3196 int error; 3197 3198 error = 0; 3199 #ifdef WITNESS 3200 if (flags & M_WAITOK) { 3201 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3202 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3203 } 3204 #endif 3205 3206 #ifdef INVARIANTS 3207 KASSERT((flags & M_EXEC) == 0, 3208 ("uma_zalloc_debug: called with M_EXEC")); 3209 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3210 ("uma_zalloc_debug: called within spinlock or critical section")); 3211 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3212 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3213 #endif 3214 3215 #ifdef DEBUG_MEMGUARD 3216 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3217 void *item; 3218 item = memguard_alloc(zone->uz_size, flags); 3219 if (item != NULL) { 3220 error = EJUSTRETURN; 3221 if (zone->uz_init != NULL && 3222 zone->uz_init(item, zone->uz_size, flags) != 0) { 3223 *itemp = NULL; 3224 return (error); 3225 } 3226 if (zone->uz_ctor != NULL && 3227 zone->uz_ctor(item, zone->uz_size, udata, 3228 flags) != 0) { 3229 counter_u64_add(zone->uz_fails, 1); 3230 zone->uz_fini(item, zone->uz_size); 3231 *itemp = NULL; 3232 return (error); 3233 } 3234 *itemp = item; 3235 return (error); 3236 } 3237 /* This is unfortunate but should not be fatal. */ 3238 } 3239 #endif 3240 return (error); 3241 } 3242 3243 static int 3244 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3245 { 3246 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3247 ("uma_zfree_debug: called with spinlock or critical section held")); 3248 3249 #ifdef DEBUG_MEMGUARD 3250 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3251 if (zone->uz_dtor != NULL) 3252 zone->uz_dtor(item, zone->uz_size, udata); 3253 if (zone->uz_fini != NULL) 3254 zone->uz_fini(item, zone->uz_size); 3255 memguard_free(item); 3256 return (EJUSTRETURN); 3257 } 3258 #endif 3259 return (0); 3260 } 3261 #endif 3262 3263 static inline void * 3264 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3265 void *udata, int flags) 3266 { 3267 void *item; 3268 int size, uz_flags; 3269 3270 item = cache_bucket_pop(cache, bucket); 3271 size = cache_uz_size(cache); 3272 uz_flags = cache_uz_flags(cache); 3273 critical_exit(); 3274 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3275 } 3276 3277 static __noinline void * 3278 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3279 { 3280 uma_cache_bucket_t bucket; 3281 int domain; 3282 3283 while (cache_alloc(zone, cache, udata, flags)) { 3284 cache = &zone->uz_cpu[curcpu]; 3285 bucket = &cache->uc_allocbucket; 3286 if (__predict_false(bucket->ucb_cnt == 0)) 3287 continue; 3288 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3289 } 3290 critical_exit(); 3291 3292 /* 3293 * We can not get a bucket so try to return a single item. 3294 */ 3295 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3296 domain = PCPU_GET(domain); 3297 else 3298 domain = UMA_ANYDOMAIN; 3299 return (zone_alloc_item(zone, udata, domain, flags)); 3300 } 3301 3302 /* See uma.h */ 3303 void * 3304 uma_zalloc_smr(uma_zone_t zone, int flags) 3305 { 3306 uma_cache_bucket_t bucket; 3307 uma_cache_t cache; 3308 3309 #ifdef UMA_ZALLOC_DEBUG 3310 void *item; 3311 3312 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3313 ("uma_zalloc_arg: called with non-SMR zone.\n")); 3314 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3315 return (item); 3316 #endif 3317 3318 critical_enter(); 3319 cache = &zone->uz_cpu[curcpu]; 3320 bucket = &cache->uc_allocbucket; 3321 if (__predict_false(bucket->ucb_cnt == 0)) 3322 return (cache_alloc_retry(zone, cache, NULL, flags)); 3323 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3324 } 3325 3326 /* See uma.h */ 3327 void * 3328 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3329 { 3330 uma_cache_bucket_t bucket; 3331 uma_cache_t cache; 3332 3333 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3334 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3335 3336 /* This is the fast path allocation */ 3337 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3338 zone, flags); 3339 3340 #ifdef UMA_ZALLOC_DEBUG 3341 void *item; 3342 3343 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3344 ("uma_zalloc_arg: called with SMR zone.\n")); 3345 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3346 return (item); 3347 #endif 3348 3349 /* 3350 * If possible, allocate from the per-CPU cache. There are two 3351 * requirements for safe access to the per-CPU cache: (1) the thread 3352 * accessing the cache must not be preempted or yield during access, 3353 * and (2) the thread must not migrate CPUs without switching which 3354 * cache it accesses. We rely on a critical section to prevent 3355 * preemption and migration. We release the critical section in 3356 * order to acquire the zone mutex if we are unable to allocate from 3357 * the current cache; when we re-acquire the critical section, we 3358 * must detect and handle migration if it has occurred. 3359 */ 3360 critical_enter(); 3361 cache = &zone->uz_cpu[curcpu]; 3362 bucket = &cache->uc_allocbucket; 3363 if (__predict_false(bucket->ucb_cnt == 0)) 3364 return (cache_alloc_retry(zone, cache, udata, flags)); 3365 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3366 } 3367 3368 /* 3369 * Replenish an alloc bucket and possibly restore an old one. Called in 3370 * a critical section. Returns in a critical section. 3371 * 3372 * A false return value indicates an allocation failure. 3373 * A true return value indicates success and the caller should retry. 3374 */ 3375 static __noinline bool 3376 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3377 { 3378 uma_bucket_t bucket; 3379 int domain; 3380 bool new; 3381 3382 CRITICAL_ASSERT(curthread); 3383 3384 /* 3385 * If we have run out of items in our alloc bucket see 3386 * if we can switch with the free bucket. 3387 * 3388 * SMR Zones can't re-use the free bucket until the sequence has 3389 * expired. 3390 */ 3391 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3392 cache->uc_freebucket.ucb_cnt != 0) { 3393 cache_bucket_swap(&cache->uc_freebucket, 3394 &cache->uc_allocbucket); 3395 return (true); 3396 } 3397 3398 /* 3399 * Discard any empty allocation bucket while we hold no locks. 3400 */ 3401 bucket = cache_bucket_unload_alloc(cache); 3402 critical_exit(); 3403 3404 if (bucket != NULL) { 3405 KASSERT(bucket->ub_cnt == 0, 3406 ("cache_alloc: Entered with non-empty alloc bucket.")); 3407 bucket_free(zone, bucket, udata); 3408 } 3409 3410 /* Short-circuit for zones without buckets and low memory. */ 3411 if (zone->uz_bucket_size == 0 || bucketdisable) { 3412 critical_enter(); 3413 return (false); 3414 } 3415 3416 /* 3417 * Attempt to retrieve the item from the per-CPU cache has failed, so 3418 * we must go back to the zone. This requires the zdom lock, so we 3419 * must drop the critical section, then re-acquire it when we go back 3420 * to the cache. Since the critical section is released, we may be 3421 * preempted or migrate. As such, make sure not to maintain any 3422 * thread-local state specific to the cache from prior to releasing 3423 * the critical section. 3424 */ 3425 domain = PCPU_GET(domain); 3426 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0) 3427 domain = zone_domain_highest(zone, domain); 3428 bucket = cache_fetch_bucket(zone, cache, domain); 3429 if (bucket == NULL) { 3430 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3431 new = true; 3432 } else 3433 new = false; 3434 3435 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3436 zone->uz_name, zone, bucket); 3437 if (bucket == NULL) { 3438 critical_enter(); 3439 return (false); 3440 } 3441 3442 /* 3443 * See if we lost the race or were migrated. Cache the 3444 * initialized bucket to make this less likely or claim 3445 * the memory directly. 3446 */ 3447 critical_enter(); 3448 cache = &zone->uz_cpu[curcpu]; 3449 if (cache->uc_allocbucket.ucb_bucket == NULL && 3450 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3451 domain == PCPU_GET(domain))) { 3452 if (new) 3453 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3454 bucket->ub_cnt); 3455 cache_bucket_load_alloc(cache, bucket); 3456 return (true); 3457 } 3458 3459 /* 3460 * We lost the race, release this bucket and start over. 3461 */ 3462 critical_exit(); 3463 zone_put_bucket(zone, domain, bucket, udata, false); 3464 critical_enter(); 3465 3466 return (true); 3467 } 3468 3469 void * 3470 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3471 { 3472 3473 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3474 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3475 3476 /* This is the fast path allocation */ 3477 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3478 zone->uz_name, zone, domain, flags); 3479 3480 if (flags & M_WAITOK) { 3481 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3482 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3483 } 3484 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3485 ("uma_zalloc_domain: called with spinlock or critical section held")); 3486 3487 return (zone_alloc_item(zone, udata, domain, flags)); 3488 } 3489 3490 /* 3491 * Find a slab with some space. Prefer slabs that are partially used over those 3492 * that are totally full. This helps to reduce fragmentation. 3493 * 3494 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3495 * only 'domain'. 3496 */ 3497 static uma_slab_t 3498 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3499 { 3500 uma_domain_t dom; 3501 uma_slab_t slab; 3502 int start; 3503 3504 KASSERT(domain >= 0 && domain < vm_ndomains, 3505 ("keg_first_slab: domain %d out of range", domain)); 3506 KEG_LOCK_ASSERT(keg, domain); 3507 3508 slab = NULL; 3509 start = domain; 3510 do { 3511 dom = &keg->uk_domain[domain]; 3512 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3513 return (slab); 3514 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3515 LIST_REMOVE(slab, us_link); 3516 dom->ud_free_slabs--; 3517 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3518 return (slab); 3519 } 3520 if (rr) 3521 domain = (domain + 1) % vm_ndomains; 3522 } while (domain != start); 3523 3524 return (NULL); 3525 } 3526 3527 /* 3528 * Fetch an existing slab from a free or partial list. Returns with the 3529 * keg domain lock held if a slab was found or unlocked if not. 3530 */ 3531 static uma_slab_t 3532 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3533 { 3534 uma_slab_t slab; 3535 uint32_t reserve; 3536 3537 /* HASH has a single free list. */ 3538 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3539 domain = 0; 3540 3541 KEG_LOCK(keg, domain); 3542 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3543 if (keg->uk_domain[domain].ud_free_items <= reserve || 3544 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3545 KEG_UNLOCK(keg, domain); 3546 return (NULL); 3547 } 3548 return (slab); 3549 } 3550 3551 static uma_slab_t 3552 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3553 { 3554 struct vm_domainset_iter di; 3555 uma_slab_t slab; 3556 int aflags, domain; 3557 bool rr; 3558 3559 restart: 3560 /* 3561 * Use the keg's policy if upper layers haven't already specified a 3562 * domain (as happens with first-touch zones). 3563 * 3564 * To avoid races we run the iterator with the keg lock held, but that 3565 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3566 * clear M_WAITOK and handle low memory conditions locally. 3567 */ 3568 rr = rdomain == UMA_ANYDOMAIN; 3569 if (rr) { 3570 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3571 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3572 &aflags); 3573 } else { 3574 aflags = flags; 3575 domain = rdomain; 3576 } 3577 3578 for (;;) { 3579 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3580 if (slab != NULL) 3581 return (slab); 3582 3583 /* 3584 * M_NOVM means don't ask at all! 3585 */ 3586 if (flags & M_NOVM) 3587 break; 3588 3589 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3590 if (slab != NULL) 3591 return (slab); 3592 if (!rr && (flags & M_WAITOK) == 0) 3593 break; 3594 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3595 if ((flags & M_WAITOK) != 0) { 3596 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3597 goto restart; 3598 } 3599 break; 3600 } 3601 } 3602 3603 /* 3604 * We might not have been able to get a slab but another cpu 3605 * could have while we were unlocked. Check again before we 3606 * fail. 3607 */ 3608 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3609 return (slab); 3610 3611 return (NULL); 3612 } 3613 3614 static void * 3615 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3616 { 3617 uma_domain_t dom; 3618 void *item; 3619 int freei; 3620 3621 KEG_LOCK_ASSERT(keg, slab->us_domain); 3622 3623 dom = &keg->uk_domain[slab->us_domain]; 3624 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3625 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3626 item = slab_item(slab, keg, freei); 3627 slab->us_freecount--; 3628 dom->ud_free_items--; 3629 3630 /* 3631 * Move this slab to the full list. It must be on the partial list, so 3632 * we do not need to update the free slab count. In particular, 3633 * keg_fetch_slab() always returns slabs on the partial list. 3634 */ 3635 if (slab->us_freecount == 0) { 3636 LIST_REMOVE(slab, us_link); 3637 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3638 } 3639 3640 return (item); 3641 } 3642 3643 static int 3644 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3645 { 3646 uma_domain_t dom; 3647 uma_zone_t zone; 3648 uma_slab_t slab; 3649 uma_keg_t keg; 3650 #ifdef NUMA 3651 int stripe; 3652 #endif 3653 int i; 3654 3655 zone = arg; 3656 slab = NULL; 3657 keg = zone->uz_keg; 3658 /* Try to keep the buckets totally full */ 3659 for (i = 0; i < max; ) { 3660 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3661 break; 3662 #ifdef NUMA 3663 stripe = howmany(max, vm_ndomains); 3664 #endif 3665 dom = &keg->uk_domain[slab->us_domain]; 3666 while (slab->us_freecount && i < max) { 3667 bucket[i++] = slab_alloc_item(keg, slab); 3668 if (dom->ud_free_items <= keg->uk_reserve) 3669 break; 3670 #ifdef NUMA 3671 /* 3672 * If the zone is striped we pick a new slab for every 3673 * N allocations. Eliminating this conditional will 3674 * instead pick a new domain for each bucket rather 3675 * than stripe within each bucket. The current option 3676 * produces more fragmentation and requires more cpu 3677 * time but yields better distribution. 3678 */ 3679 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3680 vm_ndomains > 1 && --stripe == 0) 3681 break; 3682 #endif 3683 } 3684 KEG_UNLOCK(keg, slab->us_domain); 3685 /* Don't block if we allocated any successfully. */ 3686 flags &= ~M_WAITOK; 3687 flags |= M_NOWAIT; 3688 } 3689 3690 return i; 3691 } 3692 3693 static int 3694 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3695 { 3696 uint64_t old, new, total, max; 3697 3698 /* 3699 * The hard case. We're going to sleep because there were existing 3700 * sleepers or because we ran out of items. This routine enforces 3701 * fairness by keeping fifo order. 3702 * 3703 * First release our ill gotten gains and make some noise. 3704 */ 3705 for (;;) { 3706 zone_free_limit(zone, count); 3707 zone_log_warning(zone); 3708 zone_maxaction(zone); 3709 if (flags & M_NOWAIT) 3710 return (0); 3711 3712 /* 3713 * We need to allocate an item or set ourself as a sleeper 3714 * while the sleepq lock is held to avoid wakeup races. This 3715 * is essentially a home rolled semaphore. 3716 */ 3717 sleepq_lock(&zone->uz_max_items); 3718 old = zone->uz_items; 3719 do { 3720 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3721 /* Cache the max since we will evaluate twice. */ 3722 max = zone->uz_max_items; 3723 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3724 UZ_ITEMS_COUNT(old) >= max) 3725 new = old + UZ_ITEMS_SLEEPER; 3726 else 3727 new = old + MIN(count, max - old); 3728 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3729 3730 /* We may have successfully allocated under the sleepq lock. */ 3731 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3732 sleepq_release(&zone->uz_max_items); 3733 return (new - old); 3734 } 3735 3736 /* 3737 * This is in a different cacheline from uz_items so that we 3738 * don't constantly invalidate the fastpath cacheline when we 3739 * adjust item counts. This could be limited to toggling on 3740 * transitions. 3741 */ 3742 atomic_add_32(&zone->uz_sleepers, 1); 3743 atomic_add_64(&zone->uz_sleeps, 1); 3744 3745 /* 3746 * We have added ourselves as a sleeper. The sleepq lock 3747 * protects us from wakeup races. Sleep now and then retry. 3748 */ 3749 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3750 sleepq_wait(&zone->uz_max_items, PVM); 3751 3752 /* 3753 * After wakeup, remove ourselves as a sleeper and try 3754 * again. We no longer have the sleepq lock for protection. 3755 * 3756 * Subract ourselves as a sleeper while attempting to add 3757 * our count. 3758 */ 3759 atomic_subtract_32(&zone->uz_sleepers, 1); 3760 old = atomic_fetchadd_64(&zone->uz_items, 3761 -(UZ_ITEMS_SLEEPER - count)); 3762 /* We're no longer a sleeper. */ 3763 old -= UZ_ITEMS_SLEEPER; 3764 3765 /* 3766 * If we're still at the limit, restart. Notably do not 3767 * block on other sleepers. Cache the max value to protect 3768 * against changes via sysctl. 3769 */ 3770 total = UZ_ITEMS_COUNT(old); 3771 max = zone->uz_max_items; 3772 if (total >= max) 3773 continue; 3774 /* Truncate if necessary, otherwise wake other sleepers. */ 3775 if (total + count > max) { 3776 zone_free_limit(zone, total + count - max); 3777 count = max - total; 3778 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3779 wakeup_one(&zone->uz_max_items); 3780 3781 return (count); 3782 } 3783 } 3784 3785 /* 3786 * Allocate 'count' items from our max_items limit. Returns the number 3787 * available. If M_NOWAIT is not specified it will sleep until at least 3788 * one item can be allocated. 3789 */ 3790 static int 3791 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3792 { 3793 uint64_t old; 3794 uint64_t max; 3795 3796 max = zone->uz_max_items; 3797 MPASS(max > 0); 3798 3799 /* 3800 * We expect normal allocations to succeed with a simple 3801 * fetchadd. 3802 */ 3803 old = atomic_fetchadd_64(&zone->uz_items, count); 3804 if (__predict_true(old + count <= max)) 3805 return (count); 3806 3807 /* 3808 * If we had some items and no sleepers just return the 3809 * truncated value. We have to release the excess space 3810 * though because that may wake sleepers who weren't woken 3811 * because we were temporarily over the limit. 3812 */ 3813 if (old < max) { 3814 zone_free_limit(zone, (old + count) - max); 3815 return (max - old); 3816 } 3817 return (zone_alloc_limit_hard(zone, count, flags)); 3818 } 3819 3820 /* 3821 * Free a number of items back to the limit. 3822 */ 3823 static void 3824 zone_free_limit(uma_zone_t zone, int count) 3825 { 3826 uint64_t old; 3827 3828 MPASS(count > 0); 3829 3830 /* 3831 * In the common case we either have no sleepers or 3832 * are still over the limit and can just return. 3833 */ 3834 old = atomic_fetchadd_64(&zone->uz_items, -count); 3835 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3836 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3837 return; 3838 3839 /* 3840 * Moderate the rate of wakeups. Sleepers will continue 3841 * to generate wakeups if necessary. 3842 */ 3843 wakeup_one(&zone->uz_max_items); 3844 } 3845 3846 static uma_bucket_t 3847 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3848 { 3849 uma_bucket_t bucket; 3850 int maxbucket, cnt; 3851 3852 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3853 zone, domain); 3854 3855 /* Avoid allocs targeting empty domains. */ 3856 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3857 domain = UMA_ANYDOMAIN; 3858 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 3859 domain = UMA_ANYDOMAIN; 3860 3861 if (zone->uz_max_items > 0) 3862 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3863 M_NOWAIT); 3864 else 3865 maxbucket = zone->uz_bucket_size; 3866 if (maxbucket == 0) 3867 return (false); 3868 3869 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3870 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3871 if (bucket == NULL) { 3872 cnt = 0; 3873 goto out; 3874 } 3875 3876 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3877 MIN(maxbucket, bucket->ub_entries), domain, flags); 3878 3879 /* 3880 * Initialize the memory if necessary. 3881 */ 3882 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3883 int i; 3884 3885 for (i = 0; i < bucket->ub_cnt; i++) 3886 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3887 flags) != 0) 3888 break; 3889 /* 3890 * If we couldn't initialize the whole bucket, put the 3891 * rest back onto the freelist. 3892 */ 3893 if (i != bucket->ub_cnt) { 3894 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3895 bucket->ub_cnt - i); 3896 #ifdef INVARIANTS 3897 bzero(&bucket->ub_bucket[i], 3898 sizeof(void *) * (bucket->ub_cnt - i)); 3899 #endif 3900 bucket->ub_cnt = i; 3901 } 3902 } 3903 3904 cnt = bucket->ub_cnt; 3905 if (bucket->ub_cnt == 0) { 3906 bucket_free(zone, bucket, udata); 3907 counter_u64_add(zone->uz_fails, 1); 3908 bucket = NULL; 3909 } 3910 out: 3911 if (zone->uz_max_items > 0 && cnt < maxbucket) 3912 zone_free_limit(zone, maxbucket - cnt); 3913 3914 return (bucket); 3915 } 3916 3917 /* 3918 * Allocates a single item from a zone. 3919 * 3920 * Arguments 3921 * zone The zone to alloc for. 3922 * udata The data to be passed to the constructor. 3923 * domain The domain to allocate from or UMA_ANYDOMAIN. 3924 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3925 * 3926 * Returns 3927 * NULL if there is no memory and M_NOWAIT is set 3928 * An item if successful 3929 */ 3930 3931 static void * 3932 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3933 { 3934 void *item; 3935 3936 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) 3937 return (NULL); 3938 3939 /* Avoid allocs targeting empty domains. */ 3940 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3941 domain = UMA_ANYDOMAIN; 3942 3943 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3944 goto fail_cnt; 3945 3946 /* 3947 * We have to call both the zone's init (not the keg's init) 3948 * and the zone's ctor. This is because the item is going from 3949 * a keg slab directly to the user, and the user is expecting it 3950 * to be both zone-init'd as well as zone-ctor'd. 3951 */ 3952 if (zone->uz_init != NULL) { 3953 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3954 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3955 goto fail_cnt; 3956 } 3957 } 3958 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 3959 item); 3960 if (item == NULL) 3961 goto fail; 3962 3963 counter_u64_add(zone->uz_allocs, 1); 3964 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3965 zone->uz_name, zone); 3966 3967 return (item); 3968 3969 fail_cnt: 3970 counter_u64_add(zone->uz_fails, 1); 3971 fail: 3972 if (zone->uz_max_items > 0) 3973 zone_free_limit(zone, 1); 3974 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3975 zone->uz_name, zone); 3976 3977 return (NULL); 3978 } 3979 3980 /* See uma.h */ 3981 void 3982 uma_zfree_smr(uma_zone_t zone, void *item) 3983 { 3984 uma_cache_t cache; 3985 uma_cache_bucket_t bucket; 3986 int itemdomain, uz_flags; 3987 3988 #ifdef UMA_ZALLOC_DEBUG 3989 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3990 ("uma_zfree_smr: called with non-SMR zone.\n")); 3991 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 3992 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 3993 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 3994 return; 3995 #endif 3996 cache = &zone->uz_cpu[curcpu]; 3997 uz_flags = cache_uz_flags(cache); 3998 itemdomain = 0; 3999 #ifdef NUMA 4000 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4001 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4002 #endif 4003 critical_enter(); 4004 do { 4005 cache = &zone->uz_cpu[curcpu]; 4006 /* SMR Zones must free to the free bucket. */ 4007 bucket = &cache->uc_freebucket; 4008 #ifdef NUMA 4009 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4010 PCPU_GET(domain) != itemdomain) { 4011 bucket = &cache->uc_crossbucket; 4012 } 4013 #endif 4014 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4015 cache_bucket_push(cache, bucket, item); 4016 critical_exit(); 4017 return; 4018 } 4019 } while (cache_free(zone, cache, NULL, item, itemdomain)); 4020 critical_exit(); 4021 4022 /* 4023 * If nothing else caught this, we'll just do an internal free. 4024 */ 4025 zone_free_item(zone, item, NULL, SKIP_NONE); 4026 } 4027 4028 /* See uma.h */ 4029 void 4030 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4031 { 4032 uma_cache_t cache; 4033 uma_cache_bucket_t bucket; 4034 int itemdomain, uz_flags; 4035 4036 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4037 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4038 4039 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4040 4041 #ifdef UMA_ZALLOC_DEBUG 4042 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4043 ("uma_zfree_arg: called with SMR zone.\n")); 4044 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4045 return; 4046 #endif 4047 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4048 if (item == NULL) 4049 return; 4050 4051 /* 4052 * We are accessing the per-cpu cache without a critical section to 4053 * fetch size and flags. This is acceptable, if we are preempted we 4054 * will simply read another cpu's line. 4055 */ 4056 cache = &zone->uz_cpu[curcpu]; 4057 uz_flags = cache_uz_flags(cache); 4058 if (UMA_ALWAYS_CTORDTOR || 4059 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4060 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4061 4062 /* 4063 * The race here is acceptable. If we miss it we'll just have to wait 4064 * a little longer for the limits to be reset. 4065 */ 4066 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4067 if (zone->uz_sleepers > 0) 4068 goto zfree_item; 4069 } 4070 4071 /* 4072 * If possible, free to the per-CPU cache. There are two 4073 * requirements for safe access to the per-CPU cache: (1) the thread 4074 * accessing the cache must not be preempted or yield during access, 4075 * and (2) the thread must not migrate CPUs without switching which 4076 * cache it accesses. We rely on a critical section to prevent 4077 * preemption and migration. We release the critical section in 4078 * order to acquire the zone mutex if we are unable to free to the 4079 * current cache; when we re-acquire the critical section, we must 4080 * detect and handle migration if it has occurred. 4081 */ 4082 itemdomain = 0; 4083 #ifdef NUMA 4084 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4085 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4086 #endif 4087 critical_enter(); 4088 do { 4089 cache = &zone->uz_cpu[curcpu]; 4090 /* 4091 * Try to free into the allocbucket first to give LIFO 4092 * ordering for cache-hot datastructures. Spill over 4093 * into the freebucket if necessary. Alloc will swap 4094 * them if one runs dry. 4095 */ 4096 bucket = &cache->uc_allocbucket; 4097 #ifdef NUMA 4098 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4099 PCPU_GET(domain) != itemdomain) { 4100 bucket = &cache->uc_crossbucket; 4101 } else 4102 #endif 4103 if (bucket->ucb_cnt >= bucket->ucb_entries) 4104 bucket = &cache->uc_freebucket; 4105 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4106 cache_bucket_push(cache, bucket, item); 4107 critical_exit(); 4108 return; 4109 } 4110 } while (cache_free(zone, cache, udata, item, itemdomain)); 4111 critical_exit(); 4112 4113 /* 4114 * If nothing else caught this, we'll just do an internal free. 4115 */ 4116 zfree_item: 4117 zone_free_item(zone, item, udata, SKIP_DTOR); 4118 } 4119 4120 #ifdef NUMA 4121 /* 4122 * sort crossdomain free buckets to domain correct buckets and cache 4123 * them. 4124 */ 4125 static void 4126 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4127 { 4128 struct uma_bucketlist fullbuckets; 4129 uma_zone_domain_t zdom; 4130 uma_bucket_t b; 4131 smr_seq_t seq; 4132 void *item; 4133 int domain; 4134 4135 CTR3(KTR_UMA, 4136 "uma_zfree: zone %s(%p) draining cross bucket %p", 4137 zone->uz_name, zone, bucket); 4138 4139 /* 4140 * It is possible for buckets to arrive here out of order so we fetch 4141 * the current smr seq rather than accepting the bucket's. 4142 */ 4143 seq = SMR_SEQ_INVALID; 4144 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4145 seq = smr_advance(zone->uz_smr); 4146 4147 /* 4148 * To avoid having ndomain * ndomain buckets for sorting we have a 4149 * lock on the current crossfree bucket. A full matrix with 4150 * per-domain locking could be used if necessary. 4151 */ 4152 STAILQ_INIT(&fullbuckets); 4153 ZONE_CROSS_LOCK(zone); 4154 while (bucket->ub_cnt > 0) { 4155 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4156 domain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4157 zdom = ZDOM_GET(zone, domain); 4158 if (zdom->uzd_cross == NULL) { 4159 zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT); 4160 if (zdom->uzd_cross == NULL) 4161 break; 4162 } 4163 b = zdom->uzd_cross; 4164 b->ub_bucket[b->ub_cnt++] = item; 4165 b->ub_seq = seq; 4166 if (b->ub_cnt == b->ub_entries) { 4167 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4168 zdom->uzd_cross = NULL; 4169 } 4170 bucket->ub_cnt--; 4171 } 4172 ZONE_CROSS_UNLOCK(zone); 4173 if (bucket->ub_cnt == 0) 4174 bucket->ub_seq = SMR_SEQ_INVALID; 4175 bucket_free(zone, bucket, udata); 4176 4177 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4178 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4179 domain = _vm_phys_domain(pmap_kextract( 4180 (vm_offset_t)b->ub_bucket[0])); 4181 zone_put_bucket(zone, domain, b, udata, true); 4182 } 4183 } 4184 #endif 4185 4186 static void 4187 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4188 int itemdomain, bool ws) 4189 { 4190 4191 #ifdef NUMA 4192 /* 4193 * Buckets coming from the wrong domain will be entirely for the 4194 * only other domain on two domain systems. In this case we can 4195 * simply cache them. Otherwise we need to sort them back to 4196 * correct domains. 4197 */ 4198 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4199 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4200 zone_free_cross(zone, bucket, udata); 4201 return; 4202 } 4203 #endif 4204 4205 /* 4206 * Attempt to save the bucket in the zone's domain bucket cache. 4207 */ 4208 CTR3(KTR_UMA, 4209 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4210 zone->uz_name, zone, bucket); 4211 /* ub_cnt is pointing to the last free item */ 4212 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4213 itemdomain = zone_domain_lowest(zone, itemdomain); 4214 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4215 } 4216 4217 /* 4218 * Populate a free or cross bucket for the current cpu cache. Free any 4219 * existing full bucket either to the zone cache or back to the slab layer. 4220 * 4221 * Enters and returns in a critical section. false return indicates that 4222 * we can not satisfy this free in the cache layer. true indicates that 4223 * the caller should retry. 4224 */ 4225 static __noinline bool 4226 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4227 int itemdomain) 4228 { 4229 uma_cache_bucket_t cbucket; 4230 uma_bucket_t newbucket, bucket; 4231 4232 CRITICAL_ASSERT(curthread); 4233 4234 if (zone->uz_bucket_size == 0) 4235 return false; 4236 4237 cache = &zone->uz_cpu[curcpu]; 4238 newbucket = NULL; 4239 4240 /* 4241 * FIRSTTOUCH domains need to free to the correct zdom. When 4242 * enabled this is the zdom of the item. The bucket is the 4243 * cross bucket if the current domain and itemdomain do not match. 4244 */ 4245 cbucket = &cache->uc_freebucket; 4246 #ifdef NUMA 4247 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4248 if (PCPU_GET(domain) != itemdomain) { 4249 cbucket = &cache->uc_crossbucket; 4250 if (cbucket->ucb_cnt != 0) 4251 counter_u64_add(zone->uz_xdomain, 4252 cbucket->ucb_cnt); 4253 } 4254 } 4255 #endif 4256 bucket = cache_bucket_unload(cbucket); 4257 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4258 ("cache_free: Entered with non-full free bucket.")); 4259 4260 /* We are no longer associated with this CPU. */ 4261 critical_exit(); 4262 4263 /* 4264 * Don't let SMR zones operate without a free bucket. Force 4265 * a synchronize and re-use this one. We will only degrade 4266 * to a synchronize every bucket_size items rather than every 4267 * item if we fail to allocate a bucket. 4268 */ 4269 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4270 if (bucket != NULL) 4271 bucket->ub_seq = smr_advance(zone->uz_smr); 4272 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4273 if (newbucket == NULL && bucket != NULL) { 4274 bucket_drain(zone, bucket); 4275 newbucket = bucket; 4276 bucket = NULL; 4277 } 4278 } else if (!bucketdisable) 4279 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4280 4281 if (bucket != NULL) 4282 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4283 4284 critical_enter(); 4285 if ((bucket = newbucket) == NULL) 4286 return (false); 4287 cache = &zone->uz_cpu[curcpu]; 4288 #ifdef NUMA 4289 /* 4290 * Check to see if we should be populating the cross bucket. If it 4291 * is already populated we will fall through and attempt to populate 4292 * the free bucket. 4293 */ 4294 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4295 if (PCPU_GET(domain) != itemdomain && 4296 cache->uc_crossbucket.ucb_bucket == NULL) { 4297 cache_bucket_load_cross(cache, bucket); 4298 return (true); 4299 } 4300 } 4301 #endif 4302 /* 4303 * We may have lost the race to fill the bucket or switched CPUs. 4304 */ 4305 if (cache->uc_freebucket.ucb_bucket != NULL) { 4306 critical_exit(); 4307 bucket_free(zone, bucket, udata); 4308 critical_enter(); 4309 } else 4310 cache_bucket_load_free(cache, bucket); 4311 4312 return (true); 4313 } 4314 4315 void 4316 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 4317 { 4318 4319 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4320 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4321 4322 CTR2(KTR_UMA, "uma_zfree_domain zone %s(%p)", zone->uz_name, zone); 4323 4324 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 4325 ("uma_zfree_domain: called with spinlock or critical section held")); 4326 4327 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4328 if (item == NULL) 4329 return; 4330 zone_free_item(zone, item, udata, SKIP_NONE); 4331 } 4332 4333 static void 4334 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4335 { 4336 uma_keg_t keg; 4337 uma_domain_t dom; 4338 int freei; 4339 4340 keg = zone->uz_keg; 4341 KEG_LOCK_ASSERT(keg, slab->us_domain); 4342 4343 /* Do we need to remove from any lists? */ 4344 dom = &keg->uk_domain[slab->us_domain]; 4345 if (slab->us_freecount + 1 == keg->uk_ipers) { 4346 LIST_REMOVE(slab, us_link); 4347 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4348 dom->ud_free_slabs++; 4349 } else if (slab->us_freecount == 0) { 4350 LIST_REMOVE(slab, us_link); 4351 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4352 } 4353 4354 /* Slab management. */ 4355 freei = slab_item_index(slab, keg, item); 4356 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4357 slab->us_freecount++; 4358 4359 /* Keg statistics. */ 4360 dom->ud_free_items++; 4361 } 4362 4363 static void 4364 zone_release(void *arg, void **bucket, int cnt) 4365 { 4366 struct mtx *lock; 4367 uma_zone_t zone; 4368 uma_slab_t slab; 4369 uma_keg_t keg; 4370 uint8_t *mem; 4371 void *item; 4372 int i; 4373 4374 zone = arg; 4375 keg = zone->uz_keg; 4376 lock = NULL; 4377 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4378 lock = KEG_LOCK(keg, 0); 4379 for (i = 0; i < cnt; i++) { 4380 item = bucket[i]; 4381 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4382 slab = vtoslab((vm_offset_t)item); 4383 } else { 4384 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4385 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4386 slab = hash_sfind(&keg->uk_hash, mem); 4387 else 4388 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4389 } 4390 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4391 if (lock != NULL) 4392 mtx_unlock(lock); 4393 lock = KEG_LOCK(keg, slab->us_domain); 4394 } 4395 slab_free_item(zone, slab, item); 4396 } 4397 if (lock != NULL) 4398 mtx_unlock(lock); 4399 } 4400 4401 /* 4402 * Frees a single item to any zone. 4403 * 4404 * Arguments: 4405 * zone The zone to free to 4406 * item The item we're freeing 4407 * udata User supplied data for the dtor 4408 * skip Skip dtors and finis 4409 */ 4410 static __noinline void 4411 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4412 { 4413 4414 /* 4415 * If a free is sent directly to an SMR zone we have to 4416 * synchronize immediately because the item can instantly 4417 * be reallocated. This should only happen in degenerate 4418 * cases when no memory is available for per-cpu caches. 4419 */ 4420 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4421 smr_synchronize(zone->uz_smr); 4422 4423 item_dtor(zone, item, zone->uz_size, udata, skip); 4424 4425 if (skip < SKIP_FINI && zone->uz_fini) 4426 zone->uz_fini(item, zone->uz_size); 4427 4428 zone->uz_release(zone->uz_arg, &item, 1); 4429 4430 if (skip & SKIP_CNT) 4431 return; 4432 4433 counter_u64_add(zone->uz_frees, 1); 4434 4435 if (zone->uz_max_items > 0) 4436 zone_free_limit(zone, 1); 4437 } 4438 4439 /* See uma.h */ 4440 int 4441 uma_zone_set_max(uma_zone_t zone, int nitems) 4442 { 4443 struct uma_bucket_zone *ubz; 4444 int count; 4445 4446 /* 4447 * XXX This can misbehave if the zone has any allocations with 4448 * no limit and a limit is imposed. There is currently no 4449 * way to clear a limit. 4450 */ 4451 ZONE_LOCK(zone); 4452 ubz = bucket_zone_max(zone, nitems); 4453 count = ubz != NULL ? ubz->ubz_entries : 0; 4454 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 4455 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4456 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4457 zone->uz_max_items = nitems; 4458 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4459 zone_update_caches(zone); 4460 /* We may need to wake waiters. */ 4461 wakeup(&zone->uz_max_items); 4462 ZONE_UNLOCK(zone); 4463 4464 return (nitems); 4465 } 4466 4467 /* See uma.h */ 4468 void 4469 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4470 { 4471 struct uma_bucket_zone *ubz; 4472 int bpcpu; 4473 4474 ZONE_LOCK(zone); 4475 ubz = bucket_zone_max(zone, nitems); 4476 if (ubz != NULL) { 4477 bpcpu = 2; 4478 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4479 /* Count the cross-domain bucket. */ 4480 bpcpu++; 4481 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 4482 zone->uz_bucket_size_max = ubz->ubz_entries; 4483 } else { 4484 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 4485 } 4486 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4487 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4488 zone->uz_bucket_max = nitems / vm_ndomains; 4489 ZONE_UNLOCK(zone); 4490 } 4491 4492 /* See uma.h */ 4493 int 4494 uma_zone_get_max(uma_zone_t zone) 4495 { 4496 int nitems; 4497 4498 nitems = atomic_load_64(&zone->uz_max_items); 4499 4500 return (nitems); 4501 } 4502 4503 /* See uma.h */ 4504 void 4505 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4506 { 4507 4508 ZONE_ASSERT_COLD(zone); 4509 zone->uz_warning = warning; 4510 } 4511 4512 /* See uma.h */ 4513 void 4514 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4515 { 4516 4517 ZONE_ASSERT_COLD(zone); 4518 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4519 } 4520 4521 /* See uma.h */ 4522 int 4523 uma_zone_get_cur(uma_zone_t zone) 4524 { 4525 int64_t nitems; 4526 u_int i; 4527 4528 nitems = 0; 4529 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4530 nitems = counter_u64_fetch(zone->uz_allocs) - 4531 counter_u64_fetch(zone->uz_frees); 4532 CPU_FOREACH(i) 4533 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4534 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4535 4536 return (nitems < 0 ? 0 : nitems); 4537 } 4538 4539 static uint64_t 4540 uma_zone_get_allocs(uma_zone_t zone) 4541 { 4542 uint64_t nitems; 4543 u_int i; 4544 4545 nitems = 0; 4546 if (zone->uz_allocs != EARLY_COUNTER) 4547 nitems = counter_u64_fetch(zone->uz_allocs); 4548 CPU_FOREACH(i) 4549 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4550 4551 return (nitems); 4552 } 4553 4554 static uint64_t 4555 uma_zone_get_frees(uma_zone_t zone) 4556 { 4557 uint64_t nitems; 4558 u_int i; 4559 4560 nitems = 0; 4561 if (zone->uz_frees != EARLY_COUNTER) 4562 nitems = counter_u64_fetch(zone->uz_frees); 4563 CPU_FOREACH(i) 4564 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4565 4566 return (nitems); 4567 } 4568 4569 #ifdef INVARIANTS 4570 /* Used only for KEG_ASSERT_COLD(). */ 4571 static uint64_t 4572 uma_keg_get_allocs(uma_keg_t keg) 4573 { 4574 uma_zone_t z; 4575 uint64_t nitems; 4576 4577 nitems = 0; 4578 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4579 nitems += uma_zone_get_allocs(z); 4580 4581 return (nitems); 4582 } 4583 #endif 4584 4585 /* See uma.h */ 4586 void 4587 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4588 { 4589 uma_keg_t keg; 4590 4591 KEG_GET(zone, keg); 4592 KEG_ASSERT_COLD(keg); 4593 keg->uk_init = uminit; 4594 } 4595 4596 /* See uma.h */ 4597 void 4598 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4599 { 4600 uma_keg_t keg; 4601 4602 KEG_GET(zone, keg); 4603 KEG_ASSERT_COLD(keg); 4604 keg->uk_fini = fini; 4605 } 4606 4607 /* See uma.h */ 4608 void 4609 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4610 { 4611 4612 ZONE_ASSERT_COLD(zone); 4613 zone->uz_init = zinit; 4614 } 4615 4616 /* See uma.h */ 4617 void 4618 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4619 { 4620 4621 ZONE_ASSERT_COLD(zone); 4622 zone->uz_fini = zfini; 4623 } 4624 4625 /* See uma.h */ 4626 void 4627 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4628 { 4629 uma_keg_t keg; 4630 4631 KEG_GET(zone, keg); 4632 KEG_ASSERT_COLD(keg); 4633 keg->uk_freef = freef; 4634 } 4635 4636 /* See uma.h */ 4637 void 4638 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4639 { 4640 uma_keg_t keg; 4641 4642 KEG_GET(zone, keg); 4643 KEG_ASSERT_COLD(keg); 4644 keg->uk_allocf = allocf; 4645 } 4646 4647 /* See uma.h */ 4648 void 4649 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4650 { 4651 4652 ZONE_ASSERT_COLD(zone); 4653 4654 zone->uz_flags |= UMA_ZONE_SMR; 4655 zone->uz_smr = smr; 4656 zone_update_caches(zone); 4657 } 4658 4659 smr_t 4660 uma_zone_get_smr(uma_zone_t zone) 4661 { 4662 4663 return (zone->uz_smr); 4664 } 4665 4666 /* See uma.h */ 4667 void 4668 uma_zone_reserve(uma_zone_t zone, int items) 4669 { 4670 uma_keg_t keg; 4671 4672 KEG_GET(zone, keg); 4673 KEG_ASSERT_COLD(keg); 4674 keg->uk_reserve = items; 4675 } 4676 4677 /* See uma.h */ 4678 int 4679 uma_zone_reserve_kva(uma_zone_t zone, int count) 4680 { 4681 uma_keg_t keg; 4682 vm_offset_t kva; 4683 u_int pages; 4684 4685 KEG_GET(zone, keg); 4686 KEG_ASSERT_COLD(keg); 4687 ZONE_ASSERT_COLD(zone); 4688 4689 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4690 4691 #ifdef UMA_MD_SMALL_ALLOC 4692 if (keg->uk_ppera > 1) { 4693 #else 4694 if (1) { 4695 #endif 4696 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4697 if (kva == 0) 4698 return (0); 4699 } else 4700 kva = 0; 4701 4702 MPASS(keg->uk_kva == 0); 4703 keg->uk_kva = kva; 4704 keg->uk_offset = 0; 4705 zone->uz_max_items = pages * keg->uk_ipers; 4706 #ifdef UMA_MD_SMALL_ALLOC 4707 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4708 #else 4709 keg->uk_allocf = noobj_alloc; 4710 #endif 4711 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4712 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4713 zone_update_caches(zone); 4714 4715 return (1); 4716 } 4717 4718 /* See uma.h */ 4719 void 4720 uma_prealloc(uma_zone_t zone, int items) 4721 { 4722 struct vm_domainset_iter di; 4723 uma_domain_t dom; 4724 uma_slab_t slab; 4725 uma_keg_t keg; 4726 int aflags, domain, slabs; 4727 4728 KEG_GET(zone, keg); 4729 slabs = howmany(items, keg->uk_ipers); 4730 while (slabs-- > 0) { 4731 aflags = M_NOWAIT; 4732 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4733 &aflags); 4734 for (;;) { 4735 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4736 aflags); 4737 if (slab != NULL) { 4738 dom = &keg->uk_domain[slab->us_domain]; 4739 /* 4740 * keg_alloc_slab() always returns a slab on the 4741 * partial list. 4742 */ 4743 LIST_REMOVE(slab, us_link); 4744 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4745 us_link); 4746 dom->ud_free_slabs++; 4747 KEG_UNLOCK(keg, slab->us_domain); 4748 break; 4749 } 4750 if (vm_domainset_iter_policy(&di, &domain) != 0) 4751 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 4752 } 4753 } 4754 } 4755 4756 /* 4757 * Returns a snapshot of memory consumption in bytes. 4758 */ 4759 size_t 4760 uma_zone_memory(uma_zone_t zone) 4761 { 4762 size_t sz; 4763 int i; 4764 4765 sz = 0; 4766 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 4767 for (i = 0; i < vm_ndomains; i++) 4768 sz += ZDOM_GET(zone, i)->uzd_nitems; 4769 return (sz * zone->uz_size); 4770 } 4771 for (i = 0; i < vm_ndomains; i++) 4772 sz += zone->uz_keg->uk_domain[i].ud_pages; 4773 4774 return (sz * PAGE_SIZE); 4775 } 4776 4777 /* See uma.h */ 4778 void 4779 uma_reclaim(int req) 4780 { 4781 4782 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4783 sx_xlock(&uma_reclaim_lock); 4784 bucket_enable(); 4785 4786 switch (req) { 4787 case UMA_RECLAIM_TRIM: 4788 zone_foreach(zone_trim, NULL); 4789 break; 4790 case UMA_RECLAIM_DRAIN: 4791 case UMA_RECLAIM_DRAIN_CPU: 4792 zone_foreach(zone_drain, NULL); 4793 if (req == UMA_RECLAIM_DRAIN_CPU) { 4794 pcpu_cache_drain_safe(NULL); 4795 zone_foreach(zone_drain, NULL); 4796 } 4797 break; 4798 default: 4799 panic("unhandled reclamation request %d", req); 4800 } 4801 4802 /* 4803 * Some slabs may have been freed but this zone will be visited early 4804 * we visit again so that we can free pages that are empty once other 4805 * zones are drained. We have to do the same for buckets. 4806 */ 4807 zone_drain(slabzones[0], NULL); 4808 zone_drain(slabzones[1], NULL); 4809 bucket_zone_drain(); 4810 sx_xunlock(&uma_reclaim_lock); 4811 } 4812 4813 static volatile int uma_reclaim_needed; 4814 4815 void 4816 uma_reclaim_wakeup(void) 4817 { 4818 4819 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4820 wakeup(uma_reclaim); 4821 } 4822 4823 void 4824 uma_reclaim_worker(void *arg __unused) 4825 { 4826 4827 for (;;) { 4828 sx_xlock(&uma_reclaim_lock); 4829 while (atomic_load_int(&uma_reclaim_needed) == 0) 4830 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4831 hz); 4832 sx_xunlock(&uma_reclaim_lock); 4833 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4834 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4835 atomic_store_int(&uma_reclaim_needed, 0); 4836 /* Don't fire more than once per-second. */ 4837 pause("umarclslp", hz); 4838 } 4839 } 4840 4841 /* See uma.h */ 4842 void 4843 uma_zone_reclaim(uma_zone_t zone, int req) 4844 { 4845 4846 switch (req) { 4847 case UMA_RECLAIM_TRIM: 4848 zone_trim(zone, NULL); 4849 break; 4850 case UMA_RECLAIM_DRAIN: 4851 zone_drain(zone, NULL); 4852 break; 4853 case UMA_RECLAIM_DRAIN_CPU: 4854 pcpu_cache_drain_safe(zone); 4855 zone_drain(zone, NULL); 4856 break; 4857 default: 4858 panic("unhandled reclamation request %d", req); 4859 } 4860 } 4861 4862 /* See uma.h */ 4863 int 4864 uma_zone_exhausted(uma_zone_t zone) 4865 { 4866 4867 return (atomic_load_32(&zone->uz_sleepers) > 0); 4868 } 4869 4870 unsigned long 4871 uma_limit(void) 4872 { 4873 4874 return (uma_kmem_limit); 4875 } 4876 4877 void 4878 uma_set_limit(unsigned long limit) 4879 { 4880 4881 uma_kmem_limit = limit; 4882 } 4883 4884 unsigned long 4885 uma_size(void) 4886 { 4887 4888 return (atomic_load_long(&uma_kmem_total)); 4889 } 4890 4891 long 4892 uma_avail(void) 4893 { 4894 4895 return (uma_kmem_limit - uma_size()); 4896 } 4897 4898 #ifdef DDB 4899 /* 4900 * Generate statistics across both the zone and its per-cpu cache's. Return 4901 * desired statistics if the pointer is non-NULL for that statistic. 4902 * 4903 * Note: does not update the zone statistics, as it can't safely clear the 4904 * per-CPU cache statistic. 4905 * 4906 */ 4907 static void 4908 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4909 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4910 { 4911 uma_cache_t cache; 4912 uint64_t allocs, frees, sleeps, xdomain; 4913 int cachefree, cpu; 4914 4915 allocs = frees = sleeps = xdomain = 0; 4916 cachefree = 0; 4917 CPU_FOREACH(cpu) { 4918 cache = &z->uz_cpu[cpu]; 4919 cachefree += cache->uc_allocbucket.ucb_cnt; 4920 cachefree += cache->uc_freebucket.ucb_cnt; 4921 xdomain += cache->uc_crossbucket.ucb_cnt; 4922 cachefree += cache->uc_crossbucket.ucb_cnt; 4923 allocs += cache->uc_allocs; 4924 frees += cache->uc_frees; 4925 } 4926 allocs += counter_u64_fetch(z->uz_allocs); 4927 frees += counter_u64_fetch(z->uz_frees); 4928 xdomain += counter_u64_fetch(z->uz_xdomain); 4929 sleeps += z->uz_sleeps; 4930 if (cachefreep != NULL) 4931 *cachefreep = cachefree; 4932 if (allocsp != NULL) 4933 *allocsp = allocs; 4934 if (freesp != NULL) 4935 *freesp = frees; 4936 if (sleepsp != NULL) 4937 *sleepsp = sleeps; 4938 if (xdomainp != NULL) 4939 *xdomainp = xdomain; 4940 } 4941 #endif /* DDB */ 4942 4943 static int 4944 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4945 { 4946 uma_keg_t kz; 4947 uma_zone_t z; 4948 int count; 4949 4950 count = 0; 4951 rw_rlock(&uma_rwlock); 4952 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4953 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4954 count++; 4955 } 4956 LIST_FOREACH(z, &uma_cachezones, uz_link) 4957 count++; 4958 4959 rw_runlock(&uma_rwlock); 4960 return (sysctl_handle_int(oidp, &count, 0, req)); 4961 } 4962 4963 static void 4964 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4965 struct uma_percpu_stat *ups, bool internal) 4966 { 4967 uma_zone_domain_t zdom; 4968 uma_cache_t cache; 4969 int i; 4970 4971 4972 for (i = 0; i < vm_ndomains; i++) { 4973 zdom = ZDOM_GET(z, i); 4974 uth->uth_zone_free += zdom->uzd_nitems; 4975 } 4976 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4977 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4978 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4979 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 4980 uth->uth_sleeps = z->uz_sleeps; 4981 4982 for (i = 0; i < mp_maxid + 1; i++) { 4983 bzero(&ups[i], sizeof(*ups)); 4984 if (internal || CPU_ABSENT(i)) 4985 continue; 4986 cache = &z->uz_cpu[i]; 4987 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 4988 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 4989 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 4990 ups[i].ups_allocs = cache->uc_allocs; 4991 ups[i].ups_frees = cache->uc_frees; 4992 } 4993 } 4994 4995 static int 4996 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 4997 { 4998 struct uma_stream_header ush; 4999 struct uma_type_header uth; 5000 struct uma_percpu_stat *ups; 5001 struct sbuf sbuf; 5002 uma_keg_t kz; 5003 uma_zone_t z; 5004 uint64_t items; 5005 uint32_t kfree, pages; 5006 int count, error, i; 5007 5008 error = sysctl_wire_old_buffer(req, 0); 5009 if (error != 0) 5010 return (error); 5011 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5012 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5013 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5014 5015 count = 0; 5016 rw_rlock(&uma_rwlock); 5017 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5018 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5019 count++; 5020 } 5021 5022 LIST_FOREACH(z, &uma_cachezones, uz_link) 5023 count++; 5024 5025 /* 5026 * Insert stream header. 5027 */ 5028 bzero(&ush, sizeof(ush)); 5029 ush.ush_version = UMA_STREAM_VERSION; 5030 ush.ush_maxcpus = (mp_maxid + 1); 5031 ush.ush_count = count; 5032 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5033 5034 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5035 kfree = pages = 0; 5036 for (i = 0; i < vm_ndomains; i++) { 5037 kfree += kz->uk_domain[i].ud_free_items; 5038 pages += kz->uk_domain[i].ud_pages; 5039 } 5040 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5041 bzero(&uth, sizeof(uth)); 5042 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5043 uth.uth_align = kz->uk_align; 5044 uth.uth_size = kz->uk_size; 5045 uth.uth_rsize = kz->uk_rsize; 5046 if (z->uz_max_items > 0) { 5047 items = UZ_ITEMS_COUNT(z->uz_items); 5048 uth.uth_pages = (items / kz->uk_ipers) * 5049 kz->uk_ppera; 5050 } else 5051 uth.uth_pages = pages; 5052 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5053 kz->uk_ppera; 5054 uth.uth_limit = z->uz_max_items; 5055 uth.uth_keg_free = kfree; 5056 5057 /* 5058 * A zone is secondary is it is not the first entry 5059 * on the keg's zone list. 5060 */ 5061 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5062 (LIST_FIRST(&kz->uk_zones) != z)) 5063 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5064 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5065 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5066 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5067 for (i = 0; i < mp_maxid + 1; i++) 5068 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5069 } 5070 } 5071 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5072 bzero(&uth, sizeof(uth)); 5073 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5074 uth.uth_size = z->uz_size; 5075 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5076 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5077 for (i = 0; i < mp_maxid + 1; i++) 5078 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5079 } 5080 5081 rw_runlock(&uma_rwlock); 5082 error = sbuf_finish(&sbuf); 5083 sbuf_delete(&sbuf); 5084 free(ups, M_TEMP); 5085 return (error); 5086 } 5087 5088 int 5089 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5090 { 5091 uma_zone_t zone = *(uma_zone_t *)arg1; 5092 int error, max; 5093 5094 max = uma_zone_get_max(zone); 5095 error = sysctl_handle_int(oidp, &max, 0, req); 5096 if (error || !req->newptr) 5097 return (error); 5098 5099 uma_zone_set_max(zone, max); 5100 5101 return (0); 5102 } 5103 5104 int 5105 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5106 { 5107 uma_zone_t zone; 5108 int cur; 5109 5110 /* 5111 * Some callers want to add sysctls for global zones that 5112 * may not yet exist so they pass a pointer to a pointer. 5113 */ 5114 if (arg2 == 0) 5115 zone = *(uma_zone_t *)arg1; 5116 else 5117 zone = arg1; 5118 cur = uma_zone_get_cur(zone); 5119 return (sysctl_handle_int(oidp, &cur, 0, req)); 5120 } 5121 5122 static int 5123 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5124 { 5125 uma_zone_t zone = arg1; 5126 uint64_t cur; 5127 5128 cur = uma_zone_get_allocs(zone); 5129 return (sysctl_handle_64(oidp, &cur, 0, req)); 5130 } 5131 5132 static int 5133 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5134 { 5135 uma_zone_t zone = arg1; 5136 uint64_t cur; 5137 5138 cur = uma_zone_get_frees(zone); 5139 return (sysctl_handle_64(oidp, &cur, 0, req)); 5140 } 5141 5142 static int 5143 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5144 { 5145 struct sbuf sbuf; 5146 uma_zone_t zone = arg1; 5147 int error; 5148 5149 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5150 if (zone->uz_flags != 0) 5151 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5152 else 5153 sbuf_printf(&sbuf, "0"); 5154 error = sbuf_finish(&sbuf); 5155 sbuf_delete(&sbuf); 5156 5157 return (error); 5158 } 5159 5160 static int 5161 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5162 { 5163 uma_keg_t keg = arg1; 5164 int avail, effpct, total; 5165 5166 total = keg->uk_ppera * PAGE_SIZE; 5167 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5168 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5169 /* 5170 * We consider the client's requested size and alignment here, not the 5171 * real size determination uk_rsize, because we also adjust the real 5172 * size for internal implementation reasons (max bitset size). 5173 */ 5174 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5175 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5176 avail *= mp_maxid + 1; 5177 effpct = 100 * avail / total; 5178 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5179 } 5180 5181 static int 5182 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5183 { 5184 uma_zone_t zone = arg1; 5185 uint64_t cur; 5186 5187 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5188 return (sysctl_handle_64(oidp, &cur, 0, req)); 5189 } 5190 5191 #ifdef INVARIANTS 5192 static uma_slab_t 5193 uma_dbg_getslab(uma_zone_t zone, void *item) 5194 { 5195 uma_slab_t slab; 5196 uma_keg_t keg; 5197 uint8_t *mem; 5198 5199 /* 5200 * It is safe to return the slab here even though the 5201 * zone is unlocked because the item's allocation state 5202 * essentially holds a reference. 5203 */ 5204 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5205 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5206 return (NULL); 5207 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5208 return (vtoslab((vm_offset_t)mem)); 5209 keg = zone->uz_keg; 5210 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5211 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5212 KEG_LOCK(keg, 0); 5213 slab = hash_sfind(&keg->uk_hash, mem); 5214 KEG_UNLOCK(keg, 0); 5215 5216 return (slab); 5217 } 5218 5219 static bool 5220 uma_dbg_zskip(uma_zone_t zone, void *mem) 5221 { 5222 5223 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5224 return (true); 5225 5226 return (uma_dbg_kskip(zone->uz_keg, mem)); 5227 } 5228 5229 static bool 5230 uma_dbg_kskip(uma_keg_t keg, void *mem) 5231 { 5232 uintptr_t idx; 5233 5234 if (dbg_divisor == 0) 5235 return (true); 5236 5237 if (dbg_divisor == 1) 5238 return (false); 5239 5240 idx = (uintptr_t)mem >> PAGE_SHIFT; 5241 if (keg->uk_ipers > 1) { 5242 idx *= keg->uk_ipers; 5243 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5244 } 5245 5246 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5247 counter_u64_add(uma_skip_cnt, 1); 5248 return (true); 5249 } 5250 counter_u64_add(uma_dbg_cnt, 1); 5251 5252 return (false); 5253 } 5254 5255 /* 5256 * Set up the slab's freei data such that uma_dbg_free can function. 5257 * 5258 */ 5259 static void 5260 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5261 { 5262 uma_keg_t keg; 5263 int freei; 5264 5265 if (slab == NULL) { 5266 slab = uma_dbg_getslab(zone, item); 5267 if (slab == NULL) 5268 panic("uma: item %p did not belong to zone %s\n", 5269 item, zone->uz_name); 5270 } 5271 keg = zone->uz_keg; 5272 freei = slab_item_index(slab, keg, item); 5273 5274 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5275 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 5276 item, zone, zone->uz_name, slab, freei); 5277 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5278 } 5279 5280 /* 5281 * Verifies freed addresses. Checks for alignment, valid slab membership 5282 * and duplicate frees. 5283 * 5284 */ 5285 static void 5286 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5287 { 5288 uma_keg_t keg; 5289 int freei; 5290 5291 if (slab == NULL) { 5292 slab = uma_dbg_getslab(zone, item); 5293 if (slab == NULL) 5294 panic("uma: Freed item %p did not belong to zone %s\n", 5295 item, zone->uz_name); 5296 } 5297 keg = zone->uz_keg; 5298 freei = slab_item_index(slab, keg, item); 5299 5300 if (freei >= keg->uk_ipers) 5301 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 5302 item, zone, zone->uz_name, slab, freei); 5303 5304 if (slab_item(slab, keg, freei) != item) 5305 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 5306 item, zone, zone->uz_name, slab, freei); 5307 5308 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5309 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 5310 item, zone, zone->uz_name, slab, freei); 5311 5312 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5313 } 5314 #endif /* INVARIANTS */ 5315 5316 #ifdef DDB 5317 static int64_t 5318 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5319 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5320 { 5321 uint64_t frees; 5322 int i; 5323 5324 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5325 *allocs = counter_u64_fetch(z->uz_allocs); 5326 frees = counter_u64_fetch(z->uz_frees); 5327 *sleeps = z->uz_sleeps; 5328 *cachefree = 0; 5329 *xdomain = 0; 5330 } else 5331 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5332 xdomain); 5333 for (i = 0; i < vm_ndomains; i++) { 5334 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5335 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5336 (LIST_FIRST(&kz->uk_zones) != z))) 5337 *cachefree += kz->uk_domain[i].ud_free_items; 5338 } 5339 *used = *allocs - frees; 5340 return (((int64_t)*used + *cachefree) * kz->uk_size); 5341 } 5342 5343 DB_SHOW_COMMAND(uma, db_show_uma) 5344 { 5345 const char *fmt_hdr, *fmt_entry; 5346 uma_keg_t kz; 5347 uma_zone_t z; 5348 uint64_t allocs, used, sleeps, xdomain; 5349 long cachefree; 5350 /* variables for sorting */ 5351 uma_keg_t cur_keg; 5352 uma_zone_t cur_zone, last_zone; 5353 int64_t cur_size, last_size, size; 5354 int ties; 5355 5356 /* /i option produces machine-parseable CSV output */ 5357 if (modif[0] == 'i') { 5358 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5359 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5360 } else { 5361 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5362 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5363 } 5364 5365 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5366 "Sleeps", "Bucket", "Total Mem", "XFree"); 5367 5368 /* Sort the zones with largest size first. */ 5369 last_zone = NULL; 5370 last_size = INT64_MAX; 5371 for (;;) { 5372 cur_zone = NULL; 5373 cur_size = -1; 5374 ties = 0; 5375 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5376 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5377 /* 5378 * In the case of size ties, print out zones 5379 * in the order they are encountered. That is, 5380 * when we encounter the most recently output 5381 * zone, we have already printed all preceding 5382 * ties, and we must print all following ties. 5383 */ 5384 if (z == last_zone) { 5385 ties = 1; 5386 continue; 5387 } 5388 size = get_uma_stats(kz, z, &allocs, &used, 5389 &sleeps, &cachefree, &xdomain); 5390 if (size > cur_size && size < last_size + ties) 5391 { 5392 cur_size = size; 5393 cur_zone = z; 5394 cur_keg = kz; 5395 } 5396 } 5397 } 5398 if (cur_zone == NULL) 5399 break; 5400 5401 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5402 &sleeps, &cachefree, &xdomain); 5403 db_printf(fmt_entry, cur_zone->uz_name, 5404 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5405 (uintmax_t)allocs, (uintmax_t)sleeps, 5406 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5407 xdomain); 5408 5409 if (db_pager_quit) 5410 return; 5411 last_zone = cur_zone; 5412 last_size = cur_size; 5413 } 5414 } 5415 5416 DB_SHOW_COMMAND(umacache, db_show_umacache) 5417 { 5418 uma_zone_t z; 5419 uint64_t allocs, frees; 5420 long cachefree; 5421 int i; 5422 5423 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5424 "Requests", "Bucket"); 5425 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5426 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5427 for (i = 0; i < vm_ndomains; i++) 5428 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5429 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5430 z->uz_name, (uintmax_t)z->uz_size, 5431 (intmax_t)(allocs - frees), cachefree, 5432 (uintmax_t)allocs, z->uz_bucket_size); 5433 if (db_pager_quit) 5434 return; 5435 } 5436 } 5437 #endif /* DDB */ 5438