1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * efficient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/bitset.h> 67 #include <sys/kernel.h> 68 #include <sys/types.h> 69 #include <sys/queue.h> 70 #include <sys/malloc.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/sysctl.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/random.h> 77 #include <sys/rwlock.h> 78 #include <sys/sbuf.h> 79 #include <sys/sched.h> 80 #include <sys/smp.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_param.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_kern.h> 91 #include <vm/vm_extern.h> 92 #include <vm/uma.h> 93 #include <vm/uma_int.h> 94 #include <vm/uma_dbg.h> 95 96 #include <ddb/ddb.h> 97 98 #ifdef DEBUG_MEMGUARD 99 #include <vm/memguard.h> 100 #endif 101 102 /* 103 * This is the zone and keg from which all zones are spawned. The idea is that 104 * even the zone & keg heads are allocated from the allocator, so we use the 105 * bss section to bootstrap us. 106 */ 107 static struct uma_keg masterkeg; 108 static struct uma_zone masterzone_k; 109 static struct uma_zone masterzone_z; 110 static uma_zone_t kegs = &masterzone_k; 111 static uma_zone_t zones = &masterzone_z; 112 113 /* This is the zone from which all of uma_slab_t's are allocated. */ 114 static uma_zone_t slabzone; 115 116 /* 117 * The initial hash tables come out of this zone so they can be allocated 118 * prior to malloc coming up. 119 */ 120 static uma_zone_t hashzone; 121 122 /* The boot-time adjusted value for cache line alignment. */ 123 int uma_align_cache = 64 - 1; 124 125 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 126 127 /* 128 * Are we allowed to allocate buckets? 129 */ 130 static int bucketdisable = 1; 131 132 /* Linked list of all kegs in the system */ 133 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 134 135 /* Linked list of all cache-only zones in the system */ 136 static LIST_HEAD(,uma_zone) uma_cachezones = 137 LIST_HEAD_INITIALIZER(uma_cachezones); 138 139 /* This RW lock protects the keg list */ 140 static struct rwlock_padalign uma_rwlock; 141 142 /* Linked list of boot time pages */ 143 static LIST_HEAD(,uma_slab) uma_boot_pages = 144 LIST_HEAD_INITIALIZER(uma_boot_pages); 145 146 /* This mutex protects the boot time pages list */ 147 static struct mtx_padalign uma_boot_pages_mtx; 148 149 static struct sx uma_drain_lock; 150 151 /* Is the VM done starting up? */ 152 static int booted = 0; 153 #define UMA_STARTUP 1 154 #define UMA_STARTUP2 2 155 156 /* 157 * This is the handle used to schedule events that need to happen 158 * outside of the allocation fast path. 159 */ 160 static struct callout uma_callout; 161 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 162 163 /* 164 * This structure is passed as the zone ctor arg so that I don't have to create 165 * a special allocation function just for zones. 166 */ 167 struct uma_zctor_args { 168 const char *name; 169 size_t size; 170 uma_ctor ctor; 171 uma_dtor dtor; 172 uma_init uminit; 173 uma_fini fini; 174 uma_import import; 175 uma_release release; 176 void *arg; 177 uma_keg_t keg; 178 int align; 179 uint32_t flags; 180 }; 181 182 struct uma_kctor_args { 183 uma_zone_t zone; 184 size_t size; 185 uma_init uminit; 186 uma_fini fini; 187 int align; 188 uint32_t flags; 189 }; 190 191 struct uma_bucket_zone { 192 uma_zone_t ubz_zone; 193 char *ubz_name; 194 int ubz_entries; /* Number of items it can hold. */ 195 int ubz_maxsize; /* Maximum allocation size per-item. */ 196 }; 197 198 /* 199 * Compute the actual number of bucket entries to pack them in power 200 * of two sizes for more efficient space utilization. 201 */ 202 #define BUCKET_SIZE(n) \ 203 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 204 205 #define BUCKET_MAX BUCKET_SIZE(256) 206 207 struct uma_bucket_zone bucket_zones[] = { 208 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 209 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 210 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 211 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 212 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 213 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 214 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 215 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 216 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 217 { NULL, NULL, 0} 218 }; 219 220 /* 221 * Flags and enumerations to be passed to internal functions. 222 */ 223 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 224 225 /* Prototypes.. */ 226 227 static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 228 static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 229 static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 230 static void page_free(void *, vm_size_t, uint8_t); 231 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 232 static void cache_drain(uma_zone_t); 233 static void bucket_drain(uma_zone_t, uma_bucket_t); 234 static void bucket_cache_drain(uma_zone_t zone); 235 static int keg_ctor(void *, int, void *, int); 236 static void keg_dtor(void *, int, void *); 237 static int zone_ctor(void *, int, void *, int); 238 static void zone_dtor(void *, int, void *); 239 static int zero_init(void *, int, int); 240 static void keg_small_init(uma_keg_t keg); 241 static void keg_large_init(uma_keg_t keg); 242 static void zone_foreach(void (*zfunc)(uma_zone_t)); 243 static void zone_timeout(uma_zone_t zone); 244 static int hash_alloc(struct uma_hash *); 245 static int hash_expand(struct uma_hash *, struct uma_hash *); 246 static void hash_free(struct uma_hash *hash); 247 static void uma_timeout(void *); 248 static void uma_startup3(void); 249 static void *zone_alloc_item(uma_zone_t, void *, int); 250 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 251 static void bucket_enable(void); 252 static void bucket_init(void); 253 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 254 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 255 static void bucket_zone_drain(void); 256 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 257 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 258 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 259 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 260 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 261 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 262 uma_fini fini, int align, uint32_t flags); 263 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 264 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 265 static void uma_zero_item(void *item, uma_zone_t zone); 266 267 void uma_print_zone(uma_zone_t); 268 void uma_print_stats(void); 269 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 270 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 271 272 #ifdef INVARIANTS 273 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 274 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 275 #endif 276 277 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 278 279 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 280 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 281 282 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 283 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 284 285 static int zone_warnings = 1; 286 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 287 "Warn when UMA zones becomes full"); 288 289 /* 290 * This routine checks to see whether or not it's safe to enable buckets. 291 */ 292 static void 293 bucket_enable(void) 294 { 295 bucketdisable = vm_page_count_min(); 296 } 297 298 /* 299 * Initialize bucket_zones, the array of zones of buckets of various sizes. 300 * 301 * For each zone, calculate the memory required for each bucket, consisting 302 * of the header and an array of pointers. 303 */ 304 static void 305 bucket_init(void) 306 { 307 struct uma_bucket_zone *ubz; 308 int size; 309 310 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 311 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 312 size += sizeof(void *) * ubz->ubz_entries; 313 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 314 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 315 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 316 } 317 } 318 319 /* 320 * Given a desired number of entries for a bucket, return the zone from which 321 * to allocate the bucket. 322 */ 323 static struct uma_bucket_zone * 324 bucket_zone_lookup(int entries) 325 { 326 struct uma_bucket_zone *ubz; 327 328 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 329 if (ubz->ubz_entries >= entries) 330 return (ubz); 331 ubz--; 332 return (ubz); 333 } 334 335 static int 336 bucket_select(int size) 337 { 338 struct uma_bucket_zone *ubz; 339 340 ubz = &bucket_zones[0]; 341 if (size > ubz->ubz_maxsize) 342 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 343 344 for (; ubz->ubz_entries != 0; ubz++) 345 if (ubz->ubz_maxsize < size) 346 break; 347 ubz--; 348 return (ubz->ubz_entries); 349 } 350 351 static uma_bucket_t 352 bucket_alloc(uma_zone_t zone, void *udata, int flags) 353 { 354 struct uma_bucket_zone *ubz; 355 uma_bucket_t bucket; 356 357 /* 358 * This is to stop us from allocating per cpu buckets while we're 359 * running out of vm.boot_pages. Otherwise, we would exhaust the 360 * boot pages. This also prevents us from allocating buckets in 361 * low memory situations. 362 */ 363 if (bucketdisable) 364 return (NULL); 365 /* 366 * To limit bucket recursion we store the original zone flags 367 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 368 * NOVM flag to persist even through deep recursions. We also 369 * store ZFLAG_BUCKET once we have recursed attempting to allocate 370 * a bucket for a bucket zone so we do not allow infinite bucket 371 * recursion. This cookie will even persist to frees of unused 372 * buckets via the allocation path or bucket allocations in the 373 * free path. 374 */ 375 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 376 udata = (void *)(uintptr_t)zone->uz_flags; 377 else { 378 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 379 return (NULL); 380 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 381 } 382 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 383 flags |= M_NOVM; 384 ubz = bucket_zone_lookup(zone->uz_count); 385 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 386 ubz++; 387 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 388 if (bucket) { 389 #ifdef INVARIANTS 390 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 391 #endif 392 bucket->ub_cnt = 0; 393 bucket->ub_entries = ubz->ubz_entries; 394 } 395 396 return (bucket); 397 } 398 399 static void 400 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 401 { 402 struct uma_bucket_zone *ubz; 403 404 KASSERT(bucket->ub_cnt == 0, 405 ("bucket_free: Freeing a non free bucket.")); 406 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 407 udata = (void *)(uintptr_t)zone->uz_flags; 408 ubz = bucket_zone_lookup(bucket->ub_entries); 409 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 410 } 411 412 static void 413 bucket_zone_drain(void) 414 { 415 struct uma_bucket_zone *ubz; 416 417 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 418 zone_drain(ubz->ubz_zone); 419 } 420 421 static void 422 zone_log_warning(uma_zone_t zone) 423 { 424 static const struct timeval warninterval = { 300, 0 }; 425 426 if (!zone_warnings || zone->uz_warning == NULL) 427 return; 428 429 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 430 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 431 } 432 433 static inline void 434 zone_maxaction(uma_zone_t zone) 435 { 436 437 if (zone->uz_maxaction.ta_func != NULL) 438 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 439 } 440 441 static void 442 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 443 { 444 uma_klink_t klink; 445 446 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 447 kegfn(klink->kl_keg); 448 } 449 450 /* 451 * Routine called by timeout which is used to fire off some time interval 452 * based calculations. (stats, hash size, etc.) 453 * 454 * Arguments: 455 * arg Unused 456 * 457 * Returns: 458 * Nothing 459 */ 460 static void 461 uma_timeout(void *unused) 462 { 463 bucket_enable(); 464 zone_foreach(zone_timeout); 465 466 /* Reschedule this event */ 467 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 468 } 469 470 /* 471 * Routine to perform timeout driven calculations. This expands the 472 * hashes and does per cpu statistics aggregation. 473 * 474 * Returns nothing. 475 */ 476 static void 477 keg_timeout(uma_keg_t keg) 478 { 479 480 KEG_LOCK(keg); 481 /* 482 * Expand the keg hash table. 483 * 484 * This is done if the number of slabs is larger than the hash size. 485 * What I'm trying to do here is completely reduce collisions. This 486 * may be a little aggressive. Should I allow for two collisions max? 487 */ 488 if (keg->uk_flags & UMA_ZONE_HASH && 489 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 490 struct uma_hash newhash; 491 struct uma_hash oldhash; 492 int ret; 493 494 /* 495 * This is so involved because allocating and freeing 496 * while the keg lock is held will lead to deadlock. 497 * I have to do everything in stages and check for 498 * races. 499 */ 500 newhash = keg->uk_hash; 501 KEG_UNLOCK(keg); 502 ret = hash_alloc(&newhash); 503 KEG_LOCK(keg); 504 if (ret) { 505 if (hash_expand(&keg->uk_hash, &newhash)) { 506 oldhash = keg->uk_hash; 507 keg->uk_hash = newhash; 508 } else 509 oldhash = newhash; 510 511 KEG_UNLOCK(keg); 512 hash_free(&oldhash); 513 return; 514 } 515 } 516 KEG_UNLOCK(keg); 517 } 518 519 static void 520 zone_timeout(uma_zone_t zone) 521 { 522 523 zone_foreach_keg(zone, &keg_timeout); 524 } 525 526 /* 527 * Allocate and zero fill the next sized hash table from the appropriate 528 * backing store. 529 * 530 * Arguments: 531 * hash A new hash structure with the old hash size in uh_hashsize 532 * 533 * Returns: 534 * 1 on success and 0 on failure. 535 */ 536 static int 537 hash_alloc(struct uma_hash *hash) 538 { 539 int oldsize; 540 int alloc; 541 542 oldsize = hash->uh_hashsize; 543 544 /* We're just going to go to a power of two greater */ 545 if (oldsize) { 546 hash->uh_hashsize = oldsize * 2; 547 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 548 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 549 M_UMAHASH, M_NOWAIT); 550 } else { 551 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 552 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 553 M_WAITOK); 554 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 555 } 556 if (hash->uh_slab_hash) { 557 bzero(hash->uh_slab_hash, alloc); 558 hash->uh_hashmask = hash->uh_hashsize - 1; 559 return (1); 560 } 561 562 return (0); 563 } 564 565 /* 566 * Expands the hash table for HASH zones. This is done from zone_timeout 567 * to reduce collisions. This must not be done in the regular allocation 568 * path, otherwise, we can recurse on the vm while allocating pages. 569 * 570 * Arguments: 571 * oldhash The hash you want to expand 572 * newhash The hash structure for the new table 573 * 574 * Returns: 575 * Nothing 576 * 577 * Discussion: 578 */ 579 static int 580 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 581 { 582 uma_slab_t slab; 583 int hval; 584 int i; 585 586 if (!newhash->uh_slab_hash) 587 return (0); 588 589 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 590 return (0); 591 592 /* 593 * I need to investigate hash algorithms for resizing without a 594 * full rehash. 595 */ 596 597 for (i = 0; i < oldhash->uh_hashsize; i++) 598 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 599 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 600 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 601 hval = UMA_HASH(newhash, slab->us_data); 602 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 603 slab, us_hlink); 604 } 605 606 return (1); 607 } 608 609 /* 610 * Free the hash bucket to the appropriate backing store. 611 * 612 * Arguments: 613 * slab_hash The hash bucket we're freeing 614 * hashsize The number of entries in that hash bucket 615 * 616 * Returns: 617 * Nothing 618 */ 619 static void 620 hash_free(struct uma_hash *hash) 621 { 622 if (hash->uh_slab_hash == NULL) 623 return; 624 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 625 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 626 else 627 free(hash->uh_slab_hash, M_UMAHASH); 628 } 629 630 /* 631 * Frees all outstanding items in a bucket 632 * 633 * Arguments: 634 * zone The zone to free to, must be unlocked. 635 * bucket The free/alloc bucket with items, cpu queue must be locked. 636 * 637 * Returns: 638 * Nothing 639 */ 640 641 static void 642 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 643 { 644 int i; 645 646 if (bucket == NULL) 647 return; 648 649 if (zone->uz_fini) 650 for (i = 0; i < bucket->ub_cnt; i++) 651 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 652 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 653 bucket->ub_cnt = 0; 654 } 655 656 /* 657 * Drains the per cpu caches for a zone. 658 * 659 * NOTE: This may only be called while the zone is being turn down, and not 660 * during normal operation. This is necessary in order that we do not have 661 * to migrate CPUs to drain the per-CPU caches. 662 * 663 * Arguments: 664 * zone The zone to drain, must be unlocked. 665 * 666 * Returns: 667 * Nothing 668 */ 669 static void 670 cache_drain(uma_zone_t zone) 671 { 672 uma_cache_t cache; 673 int cpu; 674 675 /* 676 * XXX: It is safe to not lock the per-CPU caches, because we're 677 * tearing down the zone anyway. I.e., there will be no further use 678 * of the caches at this point. 679 * 680 * XXX: It would good to be able to assert that the zone is being 681 * torn down to prevent improper use of cache_drain(). 682 * 683 * XXX: We lock the zone before passing into bucket_cache_drain() as 684 * it is used elsewhere. Should the tear-down path be made special 685 * there in some form? 686 */ 687 CPU_FOREACH(cpu) { 688 cache = &zone->uz_cpu[cpu]; 689 bucket_drain(zone, cache->uc_allocbucket); 690 bucket_drain(zone, cache->uc_freebucket); 691 if (cache->uc_allocbucket != NULL) 692 bucket_free(zone, cache->uc_allocbucket, NULL); 693 if (cache->uc_freebucket != NULL) 694 bucket_free(zone, cache->uc_freebucket, NULL); 695 cache->uc_allocbucket = cache->uc_freebucket = NULL; 696 } 697 ZONE_LOCK(zone); 698 bucket_cache_drain(zone); 699 ZONE_UNLOCK(zone); 700 } 701 702 static void 703 cache_shrink(uma_zone_t zone) 704 { 705 706 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 707 return; 708 709 ZONE_LOCK(zone); 710 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 711 ZONE_UNLOCK(zone); 712 } 713 714 static void 715 cache_drain_safe_cpu(uma_zone_t zone) 716 { 717 uma_cache_t cache; 718 uma_bucket_t b1, b2; 719 720 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 721 return; 722 723 b1 = b2 = NULL; 724 ZONE_LOCK(zone); 725 critical_enter(); 726 cache = &zone->uz_cpu[curcpu]; 727 if (cache->uc_allocbucket) { 728 if (cache->uc_allocbucket->ub_cnt != 0) 729 LIST_INSERT_HEAD(&zone->uz_buckets, 730 cache->uc_allocbucket, ub_link); 731 else 732 b1 = cache->uc_allocbucket; 733 cache->uc_allocbucket = NULL; 734 } 735 if (cache->uc_freebucket) { 736 if (cache->uc_freebucket->ub_cnt != 0) 737 LIST_INSERT_HEAD(&zone->uz_buckets, 738 cache->uc_freebucket, ub_link); 739 else 740 b2 = cache->uc_freebucket; 741 cache->uc_freebucket = NULL; 742 } 743 critical_exit(); 744 ZONE_UNLOCK(zone); 745 if (b1) 746 bucket_free(zone, b1, NULL); 747 if (b2) 748 bucket_free(zone, b2, NULL); 749 } 750 751 /* 752 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 753 * This is an expensive call because it needs to bind to all CPUs 754 * one by one and enter a critical section on each of them in order 755 * to safely access their cache buckets. 756 * Zone lock must not be held on call this function. 757 */ 758 static void 759 cache_drain_safe(uma_zone_t zone) 760 { 761 int cpu; 762 763 /* 764 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 765 */ 766 if (zone) 767 cache_shrink(zone); 768 else 769 zone_foreach(cache_shrink); 770 771 CPU_FOREACH(cpu) { 772 thread_lock(curthread); 773 sched_bind(curthread, cpu); 774 thread_unlock(curthread); 775 776 if (zone) 777 cache_drain_safe_cpu(zone); 778 else 779 zone_foreach(cache_drain_safe_cpu); 780 } 781 thread_lock(curthread); 782 sched_unbind(curthread); 783 thread_unlock(curthread); 784 } 785 786 /* 787 * Drain the cached buckets from a zone. Expects a locked zone on entry. 788 */ 789 static void 790 bucket_cache_drain(uma_zone_t zone) 791 { 792 uma_bucket_t bucket; 793 794 /* 795 * Drain the bucket queues and free the buckets, we just keep two per 796 * cpu (alloc/free). 797 */ 798 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 799 LIST_REMOVE(bucket, ub_link); 800 ZONE_UNLOCK(zone); 801 bucket_drain(zone, bucket); 802 bucket_free(zone, bucket, NULL); 803 ZONE_LOCK(zone); 804 } 805 806 /* 807 * Shrink further bucket sizes. Price of single zone lock collision 808 * is probably lower then price of global cache drain. 809 */ 810 if (zone->uz_count > zone->uz_count_min) 811 zone->uz_count--; 812 } 813 814 static void 815 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 816 { 817 uint8_t *mem; 818 int i; 819 uint8_t flags; 820 821 mem = slab->us_data; 822 flags = slab->us_flags; 823 i = start; 824 if (keg->uk_fini != NULL) { 825 for (i--; i > -1; i--) 826 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 827 keg->uk_size); 828 } 829 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 830 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 831 #ifdef UMA_DEBUG 832 printf("%s: Returning %d bytes.\n", keg->uk_name, 833 PAGE_SIZE * keg->uk_ppera); 834 #endif 835 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 836 } 837 838 /* 839 * Frees pages from a keg back to the system. This is done on demand from 840 * the pageout daemon. 841 * 842 * Returns nothing. 843 */ 844 static void 845 keg_drain(uma_keg_t keg) 846 { 847 struct slabhead freeslabs = { 0 }; 848 uma_slab_t slab; 849 uma_slab_t n; 850 851 /* 852 * We don't want to take pages from statically allocated kegs at this 853 * time 854 */ 855 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 856 return; 857 858 #ifdef UMA_DEBUG 859 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 860 #endif 861 KEG_LOCK(keg); 862 if (keg->uk_free == 0) 863 goto finished; 864 865 slab = LIST_FIRST(&keg->uk_free_slab); 866 while (slab) { 867 n = LIST_NEXT(slab, us_link); 868 869 /* We have no where to free these to */ 870 if (slab->us_flags & UMA_SLAB_BOOT) { 871 slab = n; 872 continue; 873 } 874 875 LIST_REMOVE(slab, us_link); 876 keg->uk_pages -= keg->uk_ppera; 877 keg->uk_free -= keg->uk_ipers; 878 879 if (keg->uk_flags & UMA_ZONE_HASH) 880 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 881 882 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 883 884 slab = n; 885 } 886 finished: 887 KEG_UNLOCK(keg); 888 889 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 890 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 891 keg_free_slab(keg, slab, keg->uk_ipers); 892 } 893 } 894 895 static void 896 zone_drain_wait(uma_zone_t zone, int waitok) 897 { 898 899 /* 900 * Set draining to interlock with zone_dtor() so we can release our 901 * locks as we go. Only dtor() should do a WAITOK call since it 902 * is the only call that knows the structure will still be available 903 * when it wakes up. 904 */ 905 ZONE_LOCK(zone); 906 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 907 if (waitok == M_NOWAIT) 908 goto out; 909 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 910 } 911 zone->uz_flags |= UMA_ZFLAG_DRAINING; 912 bucket_cache_drain(zone); 913 ZONE_UNLOCK(zone); 914 /* 915 * The DRAINING flag protects us from being freed while 916 * we're running. Normally the uma_rwlock would protect us but we 917 * must be able to release and acquire the right lock for each keg. 918 */ 919 zone_foreach_keg(zone, &keg_drain); 920 ZONE_LOCK(zone); 921 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 922 wakeup(zone); 923 out: 924 ZONE_UNLOCK(zone); 925 } 926 927 void 928 zone_drain(uma_zone_t zone) 929 { 930 931 zone_drain_wait(zone, M_NOWAIT); 932 } 933 934 /* 935 * Allocate a new slab for a keg. This does not insert the slab onto a list. 936 * 937 * Arguments: 938 * wait Shall we wait? 939 * 940 * Returns: 941 * The slab that was allocated or NULL if there is no memory and the 942 * caller specified M_NOWAIT. 943 */ 944 static uma_slab_t 945 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 946 { 947 uma_alloc allocf; 948 uma_slab_t slab; 949 uint8_t *mem; 950 uint8_t flags; 951 int i; 952 953 mtx_assert(&keg->uk_lock, MA_OWNED); 954 slab = NULL; 955 mem = NULL; 956 957 #ifdef UMA_DEBUG 958 printf("alloc_slab: Allocating a new slab for %s\n", keg->uk_name); 959 #endif 960 allocf = keg->uk_allocf; 961 KEG_UNLOCK(keg); 962 963 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 964 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 965 if (slab == NULL) 966 goto out; 967 } 968 969 /* 970 * This reproduces the old vm_zone behavior of zero filling pages the 971 * first time they are added to a zone. 972 * 973 * Malloced items are zeroed in uma_zalloc. 974 */ 975 976 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 977 wait |= M_ZERO; 978 else 979 wait &= ~M_ZERO; 980 981 if (keg->uk_flags & UMA_ZONE_NODUMP) 982 wait |= M_NODUMP; 983 984 /* zone is passed for legacy reasons. */ 985 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 986 if (mem == NULL) { 987 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 988 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 989 slab = NULL; 990 goto out; 991 } 992 993 /* Point the slab into the allocated memory */ 994 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 995 slab = (uma_slab_t )(mem + keg->uk_pgoff); 996 997 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 998 for (i = 0; i < keg->uk_ppera; i++) 999 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1000 1001 slab->us_keg = keg; 1002 slab->us_data = mem; 1003 slab->us_freecount = keg->uk_ipers; 1004 slab->us_flags = flags; 1005 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1006 #ifdef INVARIANTS 1007 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1008 #endif 1009 1010 if (keg->uk_init != NULL) { 1011 for (i = 0; i < keg->uk_ipers; i++) 1012 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1013 keg->uk_size, wait) != 0) 1014 break; 1015 if (i != keg->uk_ipers) { 1016 keg_free_slab(keg, slab, i); 1017 slab = NULL; 1018 goto out; 1019 } 1020 } 1021 out: 1022 KEG_LOCK(keg); 1023 1024 if (slab != NULL) { 1025 if (keg->uk_flags & UMA_ZONE_HASH) 1026 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1027 1028 keg->uk_pages += keg->uk_ppera; 1029 keg->uk_free += keg->uk_ipers; 1030 } 1031 1032 return (slab); 1033 } 1034 1035 /* 1036 * This function is intended to be used early on in place of page_alloc() so 1037 * that we may use the boot time page cache to satisfy allocations before 1038 * the VM is ready. 1039 */ 1040 static void * 1041 startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1042 { 1043 uma_keg_t keg; 1044 uma_slab_t tmps; 1045 int pages, check_pages; 1046 1047 keg = zone_first_keg(zone); 1048 pages = howmany(bytes, PAGE_SIZE); 1049 check_pages = pages - 1; 1050 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1051 1052 /* 1053 * Check our small startup cache to see if it has pages remaining. 1054 */ 1055 mtx_lock(&uma_boot_pages_mtx); 1056 1057 /* First check if we have enough room. */ 1058 tmps = LIST_FIRST(&uma_boot_pages); 1059 while (tmps != NULL && check_pages-- > 0) 1060 tmps = LIST_NEXT(tmps, us_link); 1061 if (tmps != NULL) { 1062 /* 1063 * It's ok to lose tmps references. The last one will 1064 * have tmps->us_data pointing to the start address of 1065 * "pages" contiguous pages of memory. 1066 */ 1067 while (pages-- > 0) { 1068 tmps = LIST_FIRST(&uma_boot_pages); 1069 LIST_REMOVE(tmps, us_link); 1070 } 1071 mtx_unlock(&uma_boot_pages_mtx); 1072 *pflag = tmps->us_flags; 1073 return (tmps->us_data); 1074 } 1075 mtx_unlock(&uma_boot_pages_mtx); 1076 if (booted < UMA_STARTUP2) 1077 panic("UMA: Increase vm.boot_pages"); 1078 /* 1079 * Now that we've booted reset these users to their real allocator. 1080 */ 1081 #ifdef UMA_MD_SMALL_ALLOC 1082 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1083 #else 1084 keg->uk_allocf = page_alloc; 1085 #endif 1086 return keg->uk_allocf(zone, bytes, pflag, wait); 1087 } 1088 1089 /* 1090 * Allocates a number of pages from the system 1091 * 1092 * Arguments: 1093 * bytes The number of bytes requested 1094 * wait Shall we wait? 1095 * 1096 * Returns: 1097 * A pointer to the alloced memory or possibly 1098 * NULL if M_NOWAIT is set. 1099 */ 1100 static void * 1101 page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1102 { 1103 void *p; /* Returned page */ 1104 1105 *pflag = UMA_SLAB_KMEM; 1106 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1107 1108 return (p); 1109 } 1110 1111 /* 1112 * Allocates a number of pages from within an object 1113 * 1114 * Arguments: 1115 * bytes The number of bytes requested 1116 * wait Shall we wait? 1117 * 1118 * Returns: 1119 * A pointer to the alloced memory or possibly 1120 * NULL if M_NOWAIT is set. 1121 */ 1122 static void * 1123 noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait) 1124 { 1125 TAILQ_HEAD(, vm_page) alloctail; 1126 u_long npages; 1127 vm_offset_t retkva, zkva; 1128 vm_page_t p, p_next; 1129 uma_keg_t keg; 1130 1131 TAILQ_INIT(&alloctail); 1132 keg = zone_first_keg(zone); 1133 1134 npages = howmany(bytes, PAGE_SIZE); 1135 while (npages > 0) { 1136 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1137 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); 1138 if (p != NULL) { 1139 /* 1140 * Since the page does not belong to an object, its 1141 * listq is unused. 1142 */ 1143 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1144 npages--; 1145 continue; 1146 } 1147 if (wait & M_WAITOK) { 1148 VM_WAIT; 1149 continue; 1150 } 1151 1152 /* 1153 * Page allocation failed, free intermediate pages and 1154 * exit. 1155 */ 1156 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1157 vm_page_unwire(p, PQ_NONE); 1158 vm_page_free(p); 1159 } 1160 return (NULL); 1161 } 1162 *flags = UMA_SLAB_PRIV; 1163 zkva = keg->uk_kva + 1164 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1165 retkva = zkva; 1166 TAILQ_FOREACH(p, &alloctail, listq) { 1167 pmap_qenter(zkva, &p, 1); 1168 zkva += PAGE_SIZE; 1169 } 1170 1171 return ((void *)retkva); 1172 } 1173 1174 /* 1175 * Frees a number of pages to the system 1176 * 1177 * Arguments: 1178 * mem A pointer to the memory to be freed 1179 * size The size of the memory being freed 1180 * flags The original p->us_flags field 1181 * 1182 * Returns: 1183 * Nothing 1184 */ 1185 static void 1186 page_free(void *mem, vm_size_t size, uint8_t flags) 1187 { 1188 struct vmem *vmem; 1189 1190 if (flags & UMA_SLAB_KMEM) 1191 vmem = kmem_arena; 1192 else if (flags & UMA_SLAB_KERNEL) 1193 vmem = kernel_arena; 1194 else 1195 panic("UMA: page_free used with invalid flags %d", flags); 1196 1197 kmem_free(vmem, (vm_offset_t)mem, size); 1198 } 1199 1200 /* 1201 * Zero fill initializer 1202 * 1203 * Arguments/Returns follow uma_init specifications 1204 */ 1205 static int 1206 zero_init(void *mem, int size, int flags) 1207 { 1208 bzero(mem, size); 1209 return (0); 1210 } 1211 1212 /* 1213 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1214 * 1215 * Arguments 1216 * keg The zone we should initialize 1217 * 1218 * Returns 1219 * Nothing 1220 */ 1221 static void 1222 keg_small_init(uma_keg_t keg) 1223 { 1224 u_int rsize; 1225 u_int memused; 1226 u_int wastedspace; 1227 u_int shsize; 1228 1229 if (keg->uk_flags & UMA_ZONE_PCPU) { 1230 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1231 1232 keg->uk_slabsize = sizeof(struct pcpu); 1233 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1234 PAGE_SIZE); 1235 } else { 1236 keg->uk_slabsize = UMA_SLAB_SIZE; 1237 keg->uk_ppera = 1; 1238 } 1239 1240 /* 1241 * Calculate the size of each allocation (rsize) according to 1242 * alignment. If the requested size is smaller than we have 1243 * allocation bits for we round it up. 1244 */ 1245 rsize = keg->uk_size; 1246 if (rsize < keg->uk_slabsize / SLAB_SETSIZE) 1247 rsize = keg->uk_slabsize / SLAB_SETSIZE; 1248 if (rsize & keg->uk_align) 1249 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1250 keg->uk_rsize = rsize; 1251 1252 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1253 keg->uk_rsize < sizeof(struct pcpu), 1254 ("%s: size %u too large", __func__, keg->uk_rsize)); 1255 1256 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1257 shsize = 0; 1258 else 1259 shsize = sizeof(struct uma_slab); 1260 1261 keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize; 1262 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1263 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1264 1265 memused = keg->uk_ipers * rsize + shsize; 1266 wastedspace = keg->uk_slabsize - memused; 1267 1268 /* 1269 * We can't do OFFPAGE if we're internal or if we've been 1270 * asked to not go to the VM for buckets. If we do this we 1271 * may end up going to the VM for slabs which we do not 1272 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1273 * of UMA_ZONE_VM, which clearly forbids it. 1274 */ 1275 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1276 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1277 return; 1278 1279 /* 1280 * See if using an OFFPAGE slab will limit our waste. Only do 1281 * this if it permits more items per-slab. 1282 * 1283 * XXX We could try growing slabsize to limit max waste as well. 1284 * Historically this was not done because the VM could not 1285 * efficiently handle contiguous allocations. 1286 */ 1287 if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) && 1288 (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) { 1289 keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize; 1290 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1291 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1292 #ifdef UMA_DEBUG 1293 printf("UMA decided we need offpage slab headers for " 1294 "keg: %s, calculated wastedspace = %d, " 1295 "maximum wasted space allowed = %d, " 1296 "calculated ipers = %d, " 1297 "new wasted space = %d\n", keg->uk_name, wastedspace, 1298 keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1299 keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize); 1300 #endif 1301 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1302 } 1303 1304 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1305 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1306 keg->uk_flags |= UMA_ZONE_HASH; 1307 } 1308 1309 /* 1310 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1311 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1312 * more complicated. 1313 * 1314 * Arguments 1315 * keg The keg we should initialize 1316 * 1317 * Returns 1318 * Nothing 1319 */ 1320 static void 1321 keg_large_init(uma_keg_t keg) 1322 { 1323 u_int shsize; 1324 1325 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1326 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1327 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1328 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1329 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1330 1331 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1332 keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE; 1333 keg->uk_ipers = 1; 1334 keg->uk_rsize = keg->uk_size; 1335 1336 /* We can't do OFFPAGE if we're internal, bail out here. */ 1337 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1338 return; 1339 1340 /* Check whether we have enough space to not do OFFPAGE. */ 1341 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1342 shsize = sizeof(struct uma_slab); 1343 if (shsize & UMA_ALIGN_PTR) 1344 shsize = (shsize & ~UMA_ALIGN_PTR) + 1345 (UMA_ALIGN_PTR + 1); 1346 1347 if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize) 1348 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1349 } 1350 1351 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1352 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1353 keg->uk_flags |= UMA_ZONE_HASH; 1354 } 1355 1356 static void 1357 keg_cachespread_init(uma_keg_t keg) 1358 { 1359 int alignsize; 1360 int trailer; 1361 int pages; 1362 int rsize; 1363 1364 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1365 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1366 1367 alignsize = keg->uk_align + 1; 1368 rsize = keg->uk_size; 1369 /* 1370 * We want one item to start on every align boundary in a page. To 1371 * do this we will span pages. We will also extend the item by the 1372 * size of align if it is an even multiple of align. Otherwise, it 1373 * would fall on the same boundary every time. 1374 */ 1375 if (rsize & keg->uk_align) 1376 rsize = (rsize & ~keg->uk_align) + alignsize; 1377 if ((rsize & alignsize) == 0) 1378 rsize += alignsize; 1379 trailer = rsize - keg->uk_size; 1380 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1381 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1382 keg->uk_rsize = rsize; 1383 keg->uk_ppera = pages; 1384 keg->uk_slabsize = UMA_SLAB_SIZE; 1385 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1386 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1387 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1388 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1389 keg->uk_ipers)); 1390 } 1391 1392 /* 1393 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1394 * the keg onto the global keg list. 1395 * 1396 * Arguments/Returns follow uma_ctor specifications 1397 * udata Actually uma_kctor_args 1398 */ 1399 static int 1400 keg_ctor(void *mem, int size, void *udata, int flags) 1401 { 1402 struct uma_kctor_args *arg = udata; 1403 uma_keg_t keg = mem; 1404 uma_zone_t zone; 1405 1406 bzero(keg, size); 1407 keg->uk_size = arg->size; 1408 keg->uk_init = arg->uminit; 1409 keg->uk_fini = arg->fini; 1410 keg->uk_align = arg->align; 1411 keg->uk_free = 0; 1412 keg->uk_reserve = 0; 1413 keg->uk_pages = 0; 1414 keg->uk_flags = arg->flags; 1415 keg->uk_allocf = page_alloc; 1416 keg->uk_freef = page_free; 1417 keg->uk_slabzone = NULL; 1418 1419 /* 1420 * The master zone is passed to us at keg-creation time. 1421 */ 1422 zone = arg->zone; 1423 keg->uk_name = zone->uz_name; 1424 1425 if (arg->flags & UMA_ZONE_VM) 1426 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1427 1428 if (arg->flags & UMA_ZONE_ZINIT) 1429 keg->uk_init = zero_init; 1430 1431 if (arg->flags & UMA_ZONE_MALLOC) 1432 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1433 1434 if (arg->flags & UMA_ZONE_PCPU) 1435 #ifdef SMP 1436 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1437 #else 1438 keg->uk_flags &= ~UMA_ZONE_PCPU; 1439 #endif 1440 1441 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1442 keg_cachespread_init(keg); 1443 } else { 1444 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1445 keg_large_init(keg); 1446 else 1447 keg_small_init(keg); 1448 } 1449 1450 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1451 keg->uk_slabzone = slabzone; 1452 1453 /* 1454 * If we haven't booted yet we need allocations to go through the 1455 * startup cache until the vm is ready. 1456 */ 1457 if (keg->uk_ppera == 1) { 1458 #ifdef UMA_MD_SMALL_ALLOC 1459 keg->uk_allocf = uma_small_alloc; 1460 keg->uk_freef = uma_small_free; 1461 1462 if (booted < UMA_STARTUP) 1463 keg->uk_allocf = startup_alloc; 1464 #else 1465 if (booted < UMA_STARTUP2) 1466 keg->uk_allocf = startup_alloc; 1467 #endif 1468 } else if (booted < UMA_STARTUP2 && 1469 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1470 keg->uk_allocf = startup_alloc; 1471 1472 /* 1473 * Initialize keg's lock 1474 */ 1475 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1476 1477 /* 1478 * If we're putting the slab header in the actual page we need to 1479 * figure out where in each page it goes. This calculates a right 1480 * justified offset into the memory on an ALIGN_PTR boundary. 1481 */ 1482 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1483 u_int totsize; 1484 1485 /* Size of the slab struct and free list */ 1486 totsize = sizeof(struct uma_slab); 1487 1488 if (totsize & UMA_ALIGN_PTR) 1489 totsize = (totsize & ~UMA_ALIGN_PTR) + 1490 (UMA_ALIGN_PTR + 1); 1491 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1492 1493 /* 1494 * The only way the following is possible is if with our 1495 * UMA_ALIGN_PTR adjustments we are now bigger than 1496 * UMA_SLAB_SIZE. I haven't checked whether this is 1497 * mathematically possible for all cases, so we make 1498 * sure here anyway. 1499 */ 1500 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1501 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1502 printf("zone %s ipers %d rsize %d size %d\n", 1503 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1504 keg->uk_size); 1505 panic("UMA slab won't fit."); 1506 } 1507 } 1508 1509 if (keg->uk_flags & UMA_ZONE_HASH) 1510 hash_alloc(&keg->uk_hash); 1511 1512 #ifdef UMA_DEBUG 1513 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n", 1514 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1515 keg->uk_ipers, keg->uk_ppera, 1516 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1517 #endif 1518 1519 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1520 1521 rw_wlock(&uma_rwlock); 1522 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1523 rw_wunlock(&uma_rwlock); 1524 return (0); 1525 } 1526 1527 /* 1528 * Zone header ctor. This initializes all fields, locks, etc. 1529 * 1530 * Arguments/Returns follow uma_ctor specifications 1531 * udata Actually uma_zctor_args 1532 */ 1533 static int 1534 zone_ctor(void *mem, int size, void *udata, int flags) 1535 { 1536 struct uma_zctor_args *arg = udata; 1537 uma_zone_t zone = mem; 1538 uma_zone_t z; 1539 uma_keg_t keg; 1540 1541 bzero(zone, size); 1542 zone->uz_name = arg->name; 1543 zone->uz_ctor = arg->ctor; 1544 zone->uz_dtor = arg->dtor; 1545 zone->uz_slab = zone_fetch_slab; 1546 zone->uz_init = NULL; 1547 zone->uz_fini = NULL; 1548 zone->uz_allocs = 0; 1549 zone->uz_frees = 0; 1550 zone->uz_fails = 0; 1551 zone->uz_sleeps = 0; 1552 zone->uz_count = 0; 1553 zone->uz_count_min = 0; 1554 zone->uz_flags = 0; 1555 zone->uz_warning = NULL; 1556 timevalclear(&zone->uz_ratecheck); 1557 keg = arg->keg; 1558 1559 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1560 1561 /* 1562 * This is a pure cache zone, no kegs. 1563 */ 1564 if (arg->import) { 1565 if (arg->flags & UMA_ZONE_VM) 1566 arg->flags |= UMA_ZFLAG_CACHEONLY; 1567 zone->uz_flags = arg->flags; 1568 zone->uz_size = arg->size; 1569 zone->uz_import = arg->import; 1570 zone->uz_release = arg->release; 1571 zone->uz_arg = arg->arg; 1572 zone->uz_lockptr = &zone->uz_lock; 1573 rw_wlock(&uma_rwlock); 1574 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1575 rw_wunlock(&uma_rwlock); 1576 goto out; 1577 } 1578 1579 /* 1580 * Use the regular zone/keg/slab allocator. 1581 */ 1582 zone->uz_import = (uma_import)zone_import; 1583 zone->uz_release = (uma_release)zone_release; 1584 zone->uz_arg = zone; 1585 1586 if (arg->flags & UMA_ZONE_SECONDARY) { 1587 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1588 zone->uz_init = arg->uminit; 1589 zone->uz_fini = arg->fini; 1590 zone->uz_lockptr = &keg->uk_lock; 1591 zone->uz_flags |= UMA_ZONE_SECONDARY; 1592 rw_wlock(&uma_rwlock); 1593 ZONE_LOCK(zone); 1594 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1595 if (LIST_NEXT(z, uz_link) == NULL) { 1596 LIST_INSERT_AFTER(z, zone, uz_link); 1597 break; 1598 } 1599 } 1600 ZONE_UNLOCK(zone); 1601 rw_wunlock(&uma_rwlock); 1602 } else if (keg == NULL) { 1603 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1604 arg->align, arg->flags)) == NULL) 1605 return (ENOMEM); 1606 } else { 1607 struct uma_kctor_args karg; 1608 int error; 1609 1610 /* We should only be here from uma_startup() */ 1611 karg.size = arg->size; 1612 karg.uminit = arg->uminit; 1613 karg.fini = arg->fini; 1614 karg.align = arg->align; 1615 karg.flags = arg->flags; 1616 karg.zone = zone; 1617 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1618 flags); 1619 if (error) 1620 return (error); 1621 } 1622 1623 /* 1624 * Link in the first keg. 1625 */ 1626 zone->uz_klink.kl_keg = keg; 1627 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1628 zone->uz_lockptr = &keg->uk_lock; 1629 zone->uz_size = keg->uk_size; 1630 zone->uz_flags |= (keg->uk_flags & 1631 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1632 1633 /* 1634 * Some internal zones don't have room allocated for the per cpu 1635 * caches. If we're internal, bail out here. 1636 */ 1637 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1638 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1639 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1640 return (0); 1641 } 1642 1643 out: 1644 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1645 zone->uz_count = bucket_select(zone->uz_size); 1646 else 1647 zone->uz_count = BUCKET_MAX; 1648 zone->uz_count_min = zone->uz_count; 1649 1650 return (0); 1651 } 1652 1653 /* 1654 * Keg header dtor. This frees all data, destroys locks, frees the hash 1655 * table and removes the keg from the global list. 1656 * 1657 * Arguments/Returns follow uma_dtor specifications 1658 * udata unused 1659 */ 1660 static void 1661 keg_dtor(void *arg, int size, void *udata) 1662 { 1663 uma_keg_t keg; 1664 1665 keg = (uma_keg_t)arg; 1666 KEG_LOCK(keg); 1667 if (keg->uk_free != 0) { 1668 printf("Freed UMA keg (%s) was not empty (%d items). " 1669 " Lost %d pages of memory.\n", 1670 keg->uk_name ? keg->uk_name : "", 1671 keg->uk_free, keg->uk_pages); 1672 } 1673 KEG_UNLOCK(keg); 1674 1675 hash_free(&keg->uk_hash); 1676 1677 KEG_LOCK_FINI(keg); 1678 } 1679 1680 /* 1681 * Zone header dtor. 1682 * 1683 * Arguments/Returns follow uma_dtor specifications 1684 * udata unused 1685 */ 1686 static void 1687 zone_dtor(void *arg, int size, void *udata) 1688 { 1689 uma_klink_t klink; 1690 uma_zone_t zone; 1691 uma_keg_t keg; 1692 1693 zone = (uma_zone_t)arg; 1694 keg = zone_first_keg(zone); 1695 1696 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1697 cache_drain(zone); 1698 1699 rw_wlock(&uma_rwlock); 1700 LIST_REMOVE(zone, uz_link); 1701 rw_wunlock(&uma_rwlock); 1702 /* 1703 * XXX there are some races here where 1704 * the zone can be drained but zone lock 1705 * released and then refilled before we 1706 * remove it... we dont care for now 1707 */ 1708 zone_drain_wait(zone, M_WAITOK); 1709 /* 1710 * Unlink all of our kegs. 1711 */ 1712 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1713 klink->kl_keg = NULL; 1714 LIST_REMOVE(klink, kl_link); 1715 if (klink == &zone->uz_klink) 1716 continue; 1717 free(klink, M_TEMP); 1718 } 1719 /* 1720 * We only destroy kegs from non secondary zones. 1721 */ 1722 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1723 rw_wlock(&uma_rwlock); 1724 LIST_REMOVE(keg, uk_link); 1725 rw_wunlock(&uma_rwlock); 1726 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1727 } 1728 ZONE_LOCK_FINI(zone); 1729 } 1730 1731 /* 1732 * Traverses every zone in the system and calls a callback 1733 * 1734 * Arguments: 1735 * zfunc A pointer to a function which accepts a zone 1736 * as an argument. 1737 * 1738 * Returns: 1739 * Nothing 1740 */ 1741 static void 1742 zone_foreach(void (*zfunc)(uma_zone_t)) 1743 { 1744 uma_keg_t keg; 1745 uma_zone_t zone; 1746 1747 rw_rlock(&uma_rwlock); 1748 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1749 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1750 zfunc(zone); 1751 } 1752 rw_runlock(&uma_rwlock); 1753 } 1754 1755 /* Public functions */ 1756 /* See uma.h */ 1757 void 1758 uma_startup(void *bootmem, int boot_pages) 1759 { 1760 struct uma_zctor_args args; 1761 uma_slab_t slab; 1762 int i; 1763 1764 #ifdef UMA_DEBUG 1765 printf("Creating uma keg headers zone and keg.\n"); 1766 #endif 1767 rw_init(&uma_rwlock, "UMA lock"); 1768 1769 /* "manually" create the initial zone */ 1770 memset(&args, 0, sizeof(args)); 1771 args.name = "UMA Kegs"; 1772 args.size = sizeof(struct uma_keg); 1773 args.ctor = keg_ctor; 1774 args.dtor = keg_dtor; 1775 args.uminit = zero_init; 1776 args.fini = NULL; 1777 args.keg = &masterkeg; 1778 args.align = 32 - 1; 1779 args.flags = UMA_ZFLAG_INTERNAL; 1780 /* The initial zone has no Per cpu queues so it's smaller */ 1781 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1782 1783 #ifdef UMA_DEBUG 1784 printf("Filling boot free list.\n"); 1785 #endif 1786 for (i = 0; i < boot_pages; i++) { 1787 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1788 slab->us_data = (uint8_t *)slab; 1789 slab->us_flags = UMA_SLAB_BOOT; 1790 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1791 } 1792 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1793 1794 #ifdef UMA_DEBUG 1795 printf("Creating uma zone headers zone and keg.\n"); 1796 #endif 1797 args.name = "UMA Zones"; 1798 args.size = sizeof(struct uma_zone) + 1799 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1800 args.ctor = zone_ctor; 1801 args.dtor = zone_dtor; 1802 args.uminit = zero_init; 1803 args.fini = NULL; 1804 args.keg = NULL; 1805 args.align = 32 - 1; 1806 args.flags = UMA_ZFLAG_INTERNAL; 1807 /* The initial zone has no Per cpu queues so it's smaller */ 1808 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1809 1810 #ifdef UMA_DEBUG 1811 printf("Creating slab and hash zones.\n"); 1812 #endif 1813 1814 /* Now make a zone for slab headers */ 1815 slabzone = uma_zcreate("UMA Slabs", 1816 sizeof(struct uma_slab), 1817 NULL, NULL, NULL, NULL, 1818 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1819 1820 hashzone = uma_zcreate("UMA Hash", 1821 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1822 NULL, NULL, NULL, NULL, 1823 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1824 1825 bucket_init(); 1826 1827 booted = UMA_STARTUP; 1828 1829 #ifdef UMA_DEBUG 1830 printf("UMA startup complete.\n"); 1831 #endif 1832 } 1833 1834 /* see uma.h */ 1835 void 1836 uma_startup2(void) 1837 { 1838 booted = UMA_STARTUP2; 1839 bucket_enable(); 1840 sx_init(&uma_drain_lock, "umadrain"); 1841 #ifdef UMA_DEBUG 1842 printf("UMA startup2 complete.\n"); 1843 #endif 1844 } 1845 1846 /* 1847 * Initialize our callout handle 1848 * 1849 */ 1850 1851 static void 1852 uma_startup3(void) 1853 { 1854 #ifdef UMA_DEBUG 1855 printf("Starting callout.\n"); 1856 #endif 1857 callout_init(&uma_callout, 1); 1858 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1859 #ifdef UMA_DEBUG 1860 printf("UMA startup3 complete.\n"); 1861 #endif 1862 } 1863 1864 static uma_keg_t 1865 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1866 int align, uint32_t flags) 1867 { 1868 struct uma_kctor_args args; 1869 1870 args.size = size; 1871 args.uminit = uminit; 1872 args.fini = fini; 1873 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1874 args.flags = flags; 1875 args.zone = zone; 1876 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1877 } 1878 1879 /* See uma.h */ 1880 void 1881 uma_set_align(int align) 1882 { 1883 1884 if (align != UMA_ALIGN_CACHE) 1885 uma_align_cache = align; 1886 } 1887 1888 /* See uma.h */ 1889 uma_zone_t 1890 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1891 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1892 1893 { 1894 struct uma_zctor_args args; 1895 uma_zone_t res; 1896 bool locked; 1897 1898 /* This stuff is essential for the zone ctor */ 1899 memset(&args, 0, sizeof(args)); 1900 args.name = name; 1901 args.size = size; 1902 args.ctor = ctor; 1903 args.dtor = dtor; 1904 args.uminit = uminit; 1905 args.fini = fini; 1906 #ifdef INVARIANTS 1907 /* 1908 * If a zone is being created with an empty constructor and 1909 * destructor, pass UMA constructor/destructor which checks for 1910 * memory use after free. 1911 */ 1912 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 1913 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 1914 args.ctor = trash_ctor; 1915 args.dtor = trash_dtor; 1916 args.uminit = trash_init; 1917 args.fini = trash_fini; 1918 } 1919 #endif 1920 args.align = align; 1921 args.flags = flags; 1922 args.keg = NULL; 1923 1924 if (booted < UMA_STARTUP2) { 1925 locked = false; 1926 } else { 1927 sx_slock(&uma_drain_lock); 1928 locked = true; 1929 } 1930 res = zone_alloc_item(zones, &args, M_WAITOK); 1931 if (locked) 1932 sx_sunlock(&uma_drain_lock); 1933 return (res); 1934 } 1935 1936 /* See uma.h */ 1937 uma_zone_t 1938 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1939 uma_init zinit, uma_fini zfini, uma_zone_t master) 1940 { 1941 struct uma_zctor_args args; 1942 uma_keg_t keg; 1943 uma_zone_t res; 1944 bool locked; 1945 1946 keg = zone_first_keg(master); 1947 memset(&args, 0, sizeof(args)); 1948 args.name = name; 1949 args.size = keg->uk_size; 1950 args.ctor = ctor; 1951 args.dtor = dtor; 1952 args.uminit = zinit; 1953 args.fini = zfini; 1954 args.align = keg->uk_align; 1955 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1956 args.keg = keg; 1957 1958 if (booted < UMA_STARTUP2) { 1959 locked = false; 1960 } else { 1961 sx_slock(&uma_drain_lock); 1962 locked = true; 1963 } 1964 /* XXX Attaches only one keg of potentially many. */ 1965 res = zone_alloc_item(zones, &args, M_WAITOK); 1966 if (locked) 1967 sx_sunlock(&uma_drain_lock); 1968 return (res); 1969 } 1970 1971 /* See uma.h */ 1972 uma_zone_t 1973 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 1974 uma_init zinit, uma_fini zfini, uma_import zimport, 1975 uma_release zrelease, void *arg, int flags) 1976 { 1977 struct uma_zctor_args args; 1978 1979 memset(&args, 0, sizeof(args)); 1980 args.name = name; 1981 args.size = size; 1982 args.ctor = ctor; 1983 args.dtor = dtor; 1984 args.uminit = zinit; 1985 args.fini = zfini; 1986 args.import = zimport; 1987 args.release = zrelease; 1988 args.arg = arg; 1989 args.align = 0; 1990 args.flags = flags; 1991 1992 return (zone_alloc_item(zones, &args, M_WAITOK)); 1993 } 1994 1995 static void 1996 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1997 { 1998 if (a < b) { 1999 ZONE_LOCK(a); 2000 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2001 } else { 2002 ZONE_LOCK(b); 2003 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2004 } 2005 } 2006 2007 static void 2008 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2009 { 2010 2011 ZONE_UNLOCK(a); 2012 ZONE_UNLOCK(b); 2013 } 2014 2015 int 2016 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2017 { 2018 uma_klink_t klink; 2019 uma_klink_t kl; 2020 int error; 2021 2022 error = 0; 2023 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2024 2025 zone_lock_pair(zone, master); 2026 /* 2027 * zone must use vtoslab() to resolve objects and must already be 2028 * a secondary. 2029 */ 2030 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2031 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2032 error = EINVAL; 2033 goto out; 2034 } 2035 /* 2036 * The new master must also use vtoslab(). 2037 */ 2038 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2039 error = EINVAL; 2040 goto out; 2041 } 2042 2043 /* 2044 * The underlying object must be the same size. rsize 2045 * may be different. 2046 */ 2047 if (master->uz_size != zone->uz_size) { 2048 error = E2BIG; 2049 goto out; 2050 } 2051 /* 2052 * Put it at the end of the list. 2053 */ 2054 klink->kl_keg = zone_first_keg(master); 2055 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2056 if (LIST_NEXT(kl, kl_link) == NULL) { 2057 LIST_INSERT_AFTER(kl, klink, kl_link); 2058 break; 2059 } 2060 } 2061 klink = NULL; 2062 zone->uz_flags |= UMA_ZFLAG_MULTI; 2063 zone->uz_slab = zone_fetch_slab_multi; 2064 2065 out: 2066 zone_unlock_pair(zone, master); 2067 if (klink != NULL) 2068 free(klink, M_TEMP); 2069 2070 return (error); 2071 } 2072 2073 2074 /* See uma.h */ 2075 void 2076 uma_zdestroy(uma_zone_t zone) 2077 { 2078 2079 sx_slock(&uma_drain_lock); 2080 zone_free_item(zones, zone, NULL, SKIP_NONE); 2081 sx_sunlock(&uma_drain_lock); 2082 } 2083 2084 /* See uma.h */ 2085 void * 2086 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2087 { 2088 void *item; 2089 uma_cache_t cache; 2090 uma_bucket_t bucket; 2091 int lockfail; 2092 int cpu; 2093 2094 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2095 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2096 2097 /* This is the fast path allocation */ 2098 #ifdef UMA_DEBUG_ALLOC_1 2099 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 2100 #endif 2101 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 2102 zone->uz_name, flags); 2103 2104 if (flags & M_WAITOK) { 2105 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2106 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2107 } 2108 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2109 ("uma_zalloc_arg: called with spinlock or critical section held")); 2110 2111 #ifdef DEBUG_MEMGUARD 2112 if (memguard_cmp_zone(zone)) { 2113 item = memguard_alloc(zone->uz_size, flags); 2114 if (item != NULL) { 2115 if (zone->uz_init != NULL && 2116 zone->uz_init(item, zone->uz_size, flags) != 0) 2117 return (NULL); 2118 if (zone->uz_ctor != NULL && 2119 zone->uz_ctor(item, zone->uz_size, udata, 2120 flags) != 0) { 2121 zone->uz_fini(item, zone->uz_size); 2122 return (NULL); 2123 } 2124 return (item); 2125 } 2126 /* This is unfortunate but should not be fatal. */ 2127 } 2128 #endif 2129 /* 2130 * If possible, allocate from the per-CPU cache. There are two 2131 * requirements for safe access to the per-CPU cache: (1) the thread 2132 * accessing the cache must not be preempted or yield during access, 2133 * and (2) the thread must not migrate CPUs without switching which 2134 * cache it accesses. We rely on a critical section to prevent 2135 * preemption and migration. We release the critical section in 2136 * order to acquire the zone mutex if we are unable to allocate from 2137 * the current cache; when we re-acquire the critical section, we 2138 * must detect and handle migration if it has occurred. 2139 */ 2140 critical_enter(); 2141 cpu = curcpu; 2142 cache = &zone->uz_cpu[cpu]; 2143 2144 zalloc_start: 2145 bucket = cache->uc_allocbucket; 2146 if (bucket != NULL && bucket->ub_cnt > 0) { 2147 bucket->ub_cnt--; 2148 item = bucket->ub_bucket[bucket->ub_cnt]; 2149 #ifdef INVARIANTS 2150 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2151 #endif 2152 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2153 cache->uc_allocs++; 2154 critical_exit(); 2155 if (zone->uz_ctor != NULL && 2156 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2157 atomic_add_long(&zone->uz_fails, 1); 2158 zone_free_item(zone, item, udata, SKIP_DTOR); 2159 return (NULL); 2160 } 2161 #ifdef INVARIANTS 2162 uma_dbg_alloc(zone, NULL, item); 2163 #endif 2164 if (flags & M_ZERO) 2165 uma_zero_item(item, zone); 2166 return (item); 2167 } 2168 2169 /* 2170 * We have run out of items in our alloc bucket. 2171 * See if we can switch with our free bucket. 2172 */ 2173 bucket = cache->uc_freebucket; 2174 if (bucket != NULL && bucket->ub_cnt > 0) { 2175 #ifdef UMA_DEBUG_ALLOC 2176 printf("uma_zalloc: Swapping empty with alloc.\n"); 2177 #endif 2178 cache->uc_freebucket = cache->uc_allocbucket; 2179 cache->uc_allocbucket = bucket; 2180 goto zalloc_start; 2181 } 2182 2183 /* 2184 * Discard any empty allocation bucket while we hold no locks. 2185 */ 2186 bucket = cache->uc_allocbucket; 2187 cache->uc_allocbucket = NULL; 2188 critical_exit(); 2189 if (bucket != NULL) 2190 bucket_free(zone, bucket, udata); 2191 2192 /* Short-circuit for zones without buckets and low memory. */ 2193 if (zone->uz_count == 0 || bucketdisable) 2194 goto zalloc_item; 2195 2196 /* 2197 * Attempt to retrieve the item from the per-CPU cache has failed, so 2198 * we must go back to the zone. This requires the zone lock, so we 2199 * must drop the critical section, then re-acquire it when we go back 2200 * to the cache. Since the critical section is released, we may be 2201 * preempted or migrate. As such, make sure not to maintain any 2202 * thread-local state specific to the cache from prior to releasing 2203 * the critical section. 2204 */ 2205 lockfail = 0; 2206 if (ZONE_TRYLOCK(zone) == 0) { 2207 /* Record contention to size the buckets. */ 2208 ZONE_LOCK(zone); 2209 lockfail = 1; 2210 } 2211 critical_enter(); 2212 cpu = curcpu; 2213 cache = &zone->uz_cpu[cpu]; 2214 2215 /* 2216 * Since we have locked the zone we may as well send back our stats. 2217 */ 2218 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2219 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2220 cache->uc_allocs = 0; 2221 cache->uc_frees = 0; 2222 2223 /* See if we lost the race to fill the cache. */ 2224 if (cache->uc_allocbucket != NULL) { 2225 ZONE_UNLOCK(zone); 2226 goto zalloc_start; 2227 } 2228 2229 /* 2230 * Check the zone's cache of buckets. 2231 */ 2232 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2233 KASSERT(bucket->ub_cnt != 0, 2234 ("uma_zalloc_arg: Returning an empty bucket.")); 2235 2236 LIST_REMOVE(bucket, ub_link); 2237 cache->uc_allocbucket = bucket; 2238 ZONE_UNLOCK(zone); 2239 goto zalloc_start; 2240 } 2241 /* We are no longer associated with this CPU. */ 2242 critical_exit(); 2243 2244 /* 2245 * We bump the uz count when the cache size is insufficient to 2246 * handle the working set. 2247 */ 2248 if (lockfail && zone->uz_count < BUCKET_MAX) 2249 zone->uz_count++; 2250 ZONE_UNLOCK(zone); 2251 2252 /* 2253 * Now lets just fill a bucket and put it on the free list. If that 2254 * works we'll restart the allocation from the beginning and it 2255 * will use the just filled bucket. 2256 */ 2257 bucket = zone_alloc_bucket(zone, udata, flags); 2258 if (bucket != NULL) { 2259 ZONE_LOCK(zone); 2260 critical_enter(); 2261 cpu = curcpu; 2262 cache = &zone->uz_cpu[cpu]; 2263 /* 2264 * See if we lost the race or were migrated. Cache the 2265 * initialized bucket to make this less likely or claim 2266 * the memory directly. 2267 */ 2268 if (cache->uc_allocbucket == NULL) 2269 cache->uc_allocbucket = bucket; 2270 else 2271 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2272 ZONE_UNLOCK(zone); 2273 goto zalloc_start; 2274 } 2275 2276 /* 2277 * We may not be able to get a bucket so return an actual item. 2278 */ 2279 #ifdef UMA_DEBUG 2280 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2281 #endif 2282 2283 zalloc_item: 2284 item = zone_alloc_item(zone, udata, flags); 2285 2286 return (item); 2287 } 2288 2289 static uma_slab_t 2290 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2291 { 2292 uma_slab_t slab; 2293 int reserve; 2294 2295 mtx_assert(&keg->uk_lock, MA_OWNED); 2296 slab = NULL; 2297 reserve = 0; 2298 if ((flags & M_USE_RESERVE) == 0) 2299 reserve = keg->uk_reserve; 2300 2301 for (;;) { 2302 /* 2303 * Find a slab with some space. Prefer slabs that are partially 2304 * used over those that are totally full. This helps to reduce 2305 * fragmentation. 2306 */ 2307 if (keg->uk_free > reserve) { 2308 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2309 slab = LIST_FIRST(&keg->uk_part_slab); 2310 } else { 2311 slab = LIST_FIRST(&keg->uk_free_slab); 2312 LIST_REMOVE(slab, us_link); 2313 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2314 us_link); 2315 } 2316 MPASS(slab->us_keg == keg); 2317 return (slab); 2318 } 2319 2320 /* 2321 * M_NOVM means don't ask at all! 2322 */ 2323 if (flags & M_NOVM) 2324 break; 2325 2326 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2327 keg->uk_flags |= UMA_ZFLAG_FULL; 2328 /* 2329 * If this is not a multi-zone, set the FULL bit. 2330 * Otherwise slab_multi() takes care of it. 2331 */ 2332 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2333 zone->uz_flags |= UMA_ZFLAG_FULL; 2334 zone_log_warning(zone); 2335 zone_maxaction(zone); 2336 } 2337 if (flags & M_NOWAIT) 2338 break; 2339 zone->uz_sleeps++; 2340 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2341 continue; 2342 } 2343 slab = keg_alloc_slab(keg, zone, flags); 2344 /* 2345 * If we got a slab here it's safe to mark it partially used 2346 * and return. We assume that the caller is going to remove 2347 * at least one item. 2348 */ 2349 if (slab) { 2350 MPASS(slab->us_keg == keg); 2351 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2352 return (slab); 2353 } 2354 /* 2355 * We might not have been able to get a slab but another cpu 2356 * could have while we were unlocked. Check again before we 2357 * fail. 2358 */ 2359 flags |= M_NOVM; 2360 } 2361 return (slab); 2362 } 2363 2364 static uma_slab_t 2365 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2366 { 2367 uma_slab_t slab; 2368 2369 if (keg == NULL) { 2370 keg = zone_first_keg(zone); 2371 KEG_LOCK(keg); 2372 } 2373 2374 for (;;) { 2375 slab = keg_fetch_slab(keg, zone, flags); 2376 if (slab) 2377 return (slab); 2378 if (flags & (M_NOWAIT | M_NOVM)) 2379 break; 2380 } 2381 KEG_UNLOCK(keg); 2382 return (NULL); 2383 } 2384 2385 /* 2386 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2387 * with the keg locked. On NULL no lock is held. 2388 * 2389 * The last pointer is used to seed the search. It is not required. 2390 */ 2391 static uma_slab_t 2392 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2393 { 2394 uma_klink_t klink; 2395 uma_slab_t slab; 2396 uma_keg_t keg; 2397 int flags; 2398 int empty; 2399 int full; 2400 2401 /* 2402 * Don't wait on the first pass. This will skip limit tests 2403 * as well. We don't want to block if we can find a provider 2404 * without blocking. 2405 */ 2406 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2407 /* 2408 * Use the last slab allocated as a hint for where to start 2409 * the search. 2410 */ 2411 if (last != NULL) { 2412 slab = keg_fetch_slab(last, zone, flags); 2413 if (slab) 2414 return (slab); 2415 KEG_UNLOCK(last); 2416 } 2417 /* 2418 * Loop until we have a slab incase of transient failures 2419 * while M_WAITOK is specified. I'm not sure this is 100% 2420 * required but we've done it for so long now. 2421 */ 2422 for (;;) { 2423 empty = 0; 2424 full = 0; 2425 /* 2426 * Search the available kegs for slabs. Be careful to hold the 2427 * correct lock while calling into the keg layer. 2428 */ 2429 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2430 keg = klink->kl_keg; 2431 KEG_LOCK(keg); 2432 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2433 slab = keg_fetch_slab(keg, zone, flags); 2434 if (slab) 2435 return (slab); 2436 } 2437 if (keg->uk_flags & UMA_ZFLAG_FULL) 2438 full++; 2439 else 2440 empty++; 2441 KEG_UNLOCK(keg); 2442 } 2443 if (rflags & (M_NOWAIT | M_NOVM)) 2444 break; 2445 flags = rflags; 2446 /* 2447 * All kegs are full. XXX We can't atomically check all kegs 2448 * and sleep so just sleep for a short period and retry. 2449 */ 2450 if (full && !empty) { 2451 ZONE_LOCK(zone); 2452 zone->uz_flags |= UMA_ZFLAG_FULL; 2453 zone->uz_sleeps++; 2454 zone_log_warning(zone); 2455 zone_maxaction(zone); 2456 msleep(zone, zone->uz_lockptr, PVM, 2457 "zonelimit", hz/100); 2458 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2459 ZONE_UNLOCK(zone); 2460 continue; 2461 } 2462 } 2463 return (NULL); 2464 } 2465 2466 static void * 2467 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2468 { 2469 void *item; 2470 uint8_t freei; 2471 2472 MPASS(keg == slab->us_keg); 2473 mtx_assert(&keg->uk_lock, MA_OWNED); 2474 2475 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2476 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2477 item = slab->us_data + (keg->uk_rsize * freei); 2478 slab->us_freecount--; 2479 keg->uk_free--; 2480 2481 /* Move this slab to the full list */ 2482 if (slab->us_freecount == 0) { 2483 LIST_REMOVE(slab, us_link); 2484 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2485 } 2486 2487 return (item); 2488 } 2489 2490 static int 2491 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2492 { 2493 uma_slab_t slab; 2494 uma_keg_t keg; 2495 int i; 2496 2497 slab = NULL; 2498 keg = NULL; 2499 /* Try to keep the buckets totally full */ 2500 for (i = 0; i < max; ) { 2501 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2502 break; 2503 keg = slab->us_keg; 2504 while (slab->us_freecount && i < max) { 2505 bucket[i++] = slab_alloc_item(keg, slab); 2506 if (keg->uk_free <= keg->uk_reserve) 2507 break; 2508 } 2509 /* Don't grab more than one slab at a time. */ 2510 flags &= ~M_WAITOK; 2511 flags |= M_NOWAIT; 2512 } 2513 if (slab != NULL) 2514 KEG_UNLOCK(keg); 2515 2516 return i; 2517 } 2518 2519 static uma_bucket_t 2520 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2521 { 2522 uma_bucket_t bucket; 2523 int max; 2524 2525 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2526 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2527 if (bucket == NULL) 2528 return (NULL); 2529 2530 max = MIN(bucket->ub_entries, zone->uz_count); 2531 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2532 max, flags); 2533 2534 /* 2535 * Initialize the memory if necessary. 2536 */ 2537 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2538 int i; 2539 2540 for (i = 0; i < bucket->ub_cnt; i++) 2541 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2542 flags) != 0) 2543 break; 2544 /* 2545 * If we couldn't initialize the whole bucket, put the 2546 * rest back onto the freelist. 2547 */ 2548 if (i != bucket->ub_cnt) { 2549 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2550 bucket->ub_cnt - i); 2551 #ifdef INVARIANTS 2552 bzero(&bucket->ub_bucket[i], 2553 sizeof(void *) * (bucket->ub_cnt - i)); 2554 #endif 2555 bucket->ub_cnt = i; 2556 } 2557 } 2558 2559 if (bucket->ub_cnt == 0) { 2560 bucket_free(zone, bucket, udata); 2561 atomic_add_long(&zone->uz_fails, 1); 2562 return (NULL); 2563 } 2564 2565 return (bucket); 2566 } 2567 2568 /* 2569 * Allocates a single item from a zone. 2570 * 2571 * Arguments 2572 * zone The zone to alloc for. 2573 * udata The data to be passed to the constructor. 2574 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2575 * 2576 * Returns 2577 * NULL if there is no memory and M_NOWAIT is set 2578 * An item if successful 2579 */ 2580 2581 static void * 2582 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2583 { 2584 void *item; 2585 2586 item = NULL; 2587 2588 #ifdef UMA_DEBUG_ALLOC 2589 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2590 #endif 2591 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2592 goto fail; 2593 atomic_add_long(&zone->uz_allocs, 1); 2594 2595 /* 2596 * We have to call both the zone's init (not the keg's init) 2597 * and the zone's ctor. This is because the item is going from 2598 * a keg slab directly to the user, and the user is expecting it 2599 * to be both zone-init'd as well as zone-ctor'd. 2600 */ 2601 if (zone->uz_init != NULL) { 2602 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2603 zone_free_item(zone, item, udata, SKIP_FINI); 2604 goto fail; 2605 } 2606 } 2607 if (zone->uz_ctor != NULL) { 2608 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2609 zone_free_item(zone, item, udata, SKIP_DTOR); 2610 goto fail; 2611 } 2612 } 2613 #ifdef INVARIANTS 2614 uma_dbg_alloc(zone, NULL, item); 2615 #endif 2616 if (flags & M_ZERO) 2617 uma_zero_item(item, zone); 2618 2619 return (item); 2620 2621 fail: 2622 atomic_add_long(&zone->uz_fails, 1); 2623 return (NULL); 2624 } 2625 2626 /* See uma.h */ 2627 void 2628 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2629 { 2630 uma_cache_t cache; 2631 uma_bucket_t bucket; 2632 int lockfail; 2633 int cpu; 2634 2635 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2636 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2637 2638 #ifdef UMA_DEBUG_ALLOC_1 2639 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2640 #endif 2641 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2642 zone->uz_name); 2643 2644 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2645 ("uma_zfree_arg: called with spinlock or critical section held")); 2646 2647 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2648 if (item == NULL) 2649 return; 2650 #ifdef DEBUG_MEMGUARD 2651 if (is_memguard_addr(item)) { 2652 if (zone->uz_dtor != NULL) 2653 zone->uz_dtor(item, zone->uz_size, udata); 2654 if (zone->uz_fini != NULL) 2655 zone->uz_fini(item, zone->uz_size); 2656 memguard_free(item); 2657 return; 2658 } 2659 #endif 2660 #ifdef INVARIANTS 2661 if (zone->uz_flags & UMA_ZONE_MALLOC) 2662 uma_dbg_free(zone, udata, item); 2663 else 2664 uma_dbg_free(zone, NULL, item); 2665 #endif 2666 if (zone->uz_dtor != NULL) 2667 zone->uz_dtor(item, zone->uz_size, udata); 2668 2669 /* 2670 * The race here is acceptable. If we miss it we'll just have to wait 2671 * a little longer for the limits to be reset. 2672 */ 2673 if (zone->uz_flags & UMA_ZFLAG_FULL) 2674 goto zfree_item; 2675 2676 /* 2677 * If possible, free to the per-CPU cache. There are two 2678 * requirements for safe access to the per-CPU cache: (1) the thread 2679 * accessing the cache must not be preempted or yield during access, 2680 * and (2) the thread must not migrate CPUs without switching which 2681 * cache it accesses. We rely on a critical section to prevent 2682 * preemption and migration. We release the critical section in 2683 * order to acquire the zone mutex if we are unable to free to the 2684 * current cache; when we re-acquire the critical section, we must 2685 * detect and handle migration if it has occurred. 2686 */ 2687 zfree_restart: 2688 critical_enter(); 2689 cpu = curcpu; 2690 cache = &zone->uz_cpu[cpu]; 2691 2692 zfree_start: 2693 /* 2694 * Try to free into the allocbucket first to give LIFO ordering 2695 * for cache-hot datastructures. Spill over into the freebucket 2696 * if necessary. Alloc will swap them if one runs dry. 2697 */ 2698 bucket = cache->uc_allocbucket; 2699 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2700 bucket = cache->uc_freebucket; 2701 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2702 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2703 ("uma_zfree: Freeing to non free bucket index.")); 2704 bucket->ub_bucket[bucket->ub_cnt] = item; 2705 bucket->ub_cnt++; 2706 cache->uc_frees++; 2707 critical_exit(); 2708 return; 2709 } 2710 2711 /* 2712 * We must go back the zone, which requires acquiring the zone lock, 2713 * which in turn means we must release and re-acquire the critical 2714 * section. Since the critical section is released, we may be 2715 * preempted or migrate. As such, make sure not to maintain any 2716 * thread-local state specific to the cache from prior to releasing 2717 * the critical section. 2718 */ 2719 critical_exit(); 2720 if (zone->uz_count == 0 || bucketdisable) 2721 goto zfree_item; 2722 2723 lockfail = 0; 2724 if (ZONE_TRYLOCK(zone) == 0) { 2725 /* Record contention to size the buckets. */ 2726 ZONE_LOCK(zone); 2727 lockfail = 1; 2728 } 2729 critical_enter(); 2730 cpu = curcpu; 2731 cache = &zone->uz_cpu[cpu]; 2732 2733 /* 2734 * Since we have locked the zone we may as well send back our stats. 2735 */ 2736 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2737 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2738 cache->uc_allocs = 0; 2739 cache->uc_frees = 0; 2740 2741 bucket = cache->uc_freebucket; 2742 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2743 ZONE_UNLOCK(zone); 2744 goto zfree_start; 2745 } 2746 cache->uc_freebucket = NULL; 2747 /* We are no longer associated with this CPU. */ 2748 critical_exit(); 2749 2750 /* Can we throw this on the zone full list? */ 2751 if (bucket != NULL) { 2752 #ifdef UMA_DEBUG_ALLOC 2753 printf("uma_zfree: Putting old bucket on the free list.\n"); 2754 #endif 2755 /* ub_cnt is pointing to the last free item */ 2756 KASSERT(bucket->ub_cnt != 0, 2757 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2758 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2759 } 2760 2761 /* 2762 * We bump the uz count when the cache size is insufficient to 2763 * handle the working set. 2764 */ 2765 if (lockfail && zone->uz_count < BUCKET_MAX) 2766 zone->uz_count++; 2767 ZONE_UNLOCK(zone); 2768 2769 #ifdef UMA_DEBUG_ALLOC 2770 printf("uma_zfree: Allocating new free bucket.\n"); 2771 #endif 2772 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2773 if (bucket) { 2774 critical_enter(); 2775 cpu = curcpu; 2776 cache = &zone->uz_cpu[cpu]; 2777 if (cache->uc_freebucket == NULL) { 2778 cache->uc_freebucket = bucket; 2779 goto zfree_start; 2780 } 2781 /* 2782 * We lost the race, start over. We have to drop our 2783 * critical section to free the bucket. 2784 */ 2785 critical_exit(); 2786 bucket_free(zone, bucket, udata); 2787 goto zfree_restart; 2788 } 2789 2790 /* 2791 * If nothing else caught this, we'll just do an internal free. 2792 */ 2793 zfree_item: 2794 zone_free_item(zone, item, udata, SKIP_DTOR); 2795 2796 return; 2797 } 2798 2799 static void 2800 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2801 { 2802 uint8_t freei; 2803 2804 mtx_assert(&keg->uk_lock, MA_OWNED); 2805 MPASS(keg == slab->us_keg); 2806 2807 /* Do we need to remove from any lists? */ 2808 if (slab->us_freecount+1 == keg->uk_ipers) { 2809 LIST_REMOVE(slab, us_link); 2810 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2811 } else if (slab->us_freecount == 0) { 2812 LIST_REMOVE(slab, us_link); 2813 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2814 } 2815 2816 /* Slab management. */ 2817 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2818 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2819 slab->us_freecount++; 2820 2821 /* Keg statistics. */ 2822 keg->uk_free++; 2823 } 2824 2825 static void 2826 zone_release(uma_zone_t zone, void **bucket, int cnt) 2827 { 2828 void *item; 2829 uma_slab_t slab; 2830 uma_keg_t keg; 2831 uint8_t *mem; 2832 int clearfull; 2833 int i; 2834 2835 clearfull = 0; 2836 keg = zone_first_keg(zone); 2837 KEG_LOCK(keg); 2838 for (i = 0; i < cnt; i++) { 2839 item = bucket[i]; 2840 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2841 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2842 if (zone->uz_flags & UMA_ZONE_HASH) { 2843 slab = hash_sfind(&keg->uk_hash, mem); 2844 } else { 2845 mem += keg->uk_pgoff; 2846 slab = (uma_slab_t)mem; 2847 } 2848 } else { 2849 slab = vtoslab((vm_offset_t)item); 2850 if (slab->us_keg != keg) { 2851 KEG_UNLOCK(keg); 2852 keg = slab->us_keg; 2853 KEG_LOCK(keg); 2854 } 2855 } 2856 slab_free_item(keg, slab, item); 2857 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2858 if (keg->uk_pages < keg->uk_maxpages) { 2859 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2860 clearfull = 1; 2861 } 2862 2863 /* 2864 * We can handle one more allocation. Since we're 2865 * clearing ZFLAG_FULL, wake up all procs blocked 2866 * on pages. This should be uncommon, so keeping this 2867 * simple for now (rather than adding count of blocked 2868 * threads etc). 2869 */ 2870 wakeup(keg); 2871 } 2872 } 2873 KEG_UNLOCK(keg); 2874 if (clearfull) { 2875 ZONE_LOCK(zone); 2876 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2877 wakeup(zone); 2878 ZONE_UNLOCK(zone); 2879 } 2880 2881 } 2882 2883 /* 2884 * Frees a single item to any zone. 2885 * 2886 * Arguments: 2887 * zone The zone to free to 2888 * item The item we're freeing 2889 * udata User supplied data for the dtor 2890 * skip Skip dtors and finis 2891 */ 2892 static void 2893 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2894 { 2895 2896 #ifdef INVARIANTS 2897 if (skip == SKIP_NONE) { 2898 if (zone->uz_flags & UMA_ZONE_MALLOC) 2899 uma_dbg_free(zone, udata, item); 2900 else 2901 uma_dbg_free(zone, NULL, item); 2902 } 2903 #endif 2904 if (skip < SKIP_DTOR && zone->uz_dtor) 2905 zone->uz_dtor(item, zone->uz_size, udata); 2906 2907 if (skip < SKIP_FINI && zone->uz_fini) 2908 zone->uz_fini(item, zone->uz_size); 2909 2910 atomic_add_long(&zone->uz_frees, 1); 2911 zone->uz_release(zone->uz_arg, &item, 1); 2912 } 2913 2914 /* See uma.h */ 2915 int 2916 uma_zone_set_max(uma_zone_t zone, int nitems) 2917 { 2918 uma_keg_t keg; 2919 2920 keg = zone_first_keg(zone); 2921 if (keg == NULL) 2922 return (0); 2923 KEG_LOCK(keg); 2924 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2925 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2926 keg->uk_maxpages += keg->uk_ppera; 2927 nitems = keg->uk_maxpages * keg->uk_ipers; 2928 KEG_UNLOCK(keg); 2929 2930 return (nitems); 2931 } 2932 2933 /* See uma.h */ 2934 int 2935 uma_zone_get_max(uma_zone_t zone) 2936 { 2937 int nitems; 2938 uma_keg_t keg; 2939 2940 keg = zone_first_keg(zone); 2941 if (keg == NULL) 2942 return (0); 2943 KEG_LOCK(keg); 2944 nitems = keg->uk_maxpages * keg->uk_ipers; 2945 KEG_UNLOCK(keg); 2946 2947 return (nitems); 2948 } 2949 2950 /* See uma.h */ 2951 void 2952 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2953 { 2954 2955 ZONE_LOCK(zone); 2956 zone->uz_warning = warning; 2957 ZONE_UNLOCK(zone); 2958 } 2959 2960 /* See uma.h */ 2961 void 2962 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 2963 { 2964 2965 ZONE_LOCK(zone); 2966 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 2967 ZONE_UNLOCK(zone); 2968 } 2969 2970 /* See uma.h */ 2971 int 2972 uma_zone_get_cur(uma_zone_t zone) 2973 { 2974 int64_t nitems; 2975 u_int i; 2976 2977 ZONE_LOCK(zone); 2978 nitems = zone->uz_allocs - zone->uz_frees; 2979 CPU_FOREACH(i) { 2980 /* 2981 * See the comment in sysctl_vm_zone_stats() regarding the 2982 * safety of accessing the per-cpu caches. With the zone lock 2983 * held, it is safe, but can potentially result in stale data. 2984 */ 2985 nitems += zone->uz_cpu[i].uc_allocs - 2986 zone->uz_cpu[i].uc_frees; 2987 } 2988 ZONE_UNLOCK(zone); 2989 2990 return (nitems < 0 ? 0 : nitems); 2991 } 2992 2993 /* See uma.h */ 2994 void 2995 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2996 { 2997 uma_keg_t keg; 2998 2999 keg = zone_first_keg(zone); 3000 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3001 KEG_LOCK(keg); 3002 KASSERT(keg->uk_pages == 0, 3003 ("uma_zone_set_init on non-empty keg")); 3004 keg->uk_init = uminit; 3005 KEG_UNLOCK(keg); 3006 } 3007 3008 /* See uma.h */ 3009 void 3010 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3011 { 3012 uma_keg_t keg; 3013 3014 keg = zone_first_keg(zone); 3015 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3016 KEG_LOCK(keg); 3017 KASSERT(keg->uk_pages == 0, 3018 ("uma_zone_set_fini on non-empty keg")); 3019 keg->uk_fini = fini; 3020 KEG_UNLOCK(keg); 3021 } 3022 3023 /* See uma.h */ 3024 void 3025 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3026 { 3027 3028 ZONE_LOCK(zone); 3029 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3030 ("uma_zone_set_zinit on non-empty keg")); 3031 zone->uz_init = zinit; 3032 ZONE_UNLOCK(zone); 3033 } 3034 3035 /* See uma.h */ 3036 void 3037 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3038 { 3039 3040 ZONE_LOCK(zone); 3041 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3042 ("uma_zone_set_zfini on non-empty keg")); 3043 zone->uz_fini = zfini; 3044 ZONE_UNLOCK(zone); 3045 } 3046 3047 /* See uma.h */ 3048 /* XXX uk_freef is not actually used with the zone locked */ 3049 void 3050 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3051 { 3052 uma_keg_t keg; 3053 3054 keg = zone_first_keg(zone); 3055 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3056 KEG_LOCK(keg); 3057 keg->uk_freef = freef; 3058 KEG_UNLOCK(keg); 3059 } 3060 3061 /* See uma.h */ 3062 /* XXX uk_allocf is not actually used with the zone locked */ 3063 void 3064 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3065 { 3066 uma_keg_t keg; 3067 3068 keg = zone_first_keg(zone); 3069 KEG_LOCK(keg); 3070 keg->uk_allocf = allocf; 3071 KEG_UNLOCK(keg); 3072 } 3073 3074 /* See uma.h */ 3075 void 3076 uma_zone_reserve(uma_zone_t zone, int items) 3077 { 3078 uma_keg_t keg; 3079 3080 keg = zone_first_keg(zone); 3081 if (keg == NULL) 3082 return; 3083 KEG_LOCK(keg); 3084 keg->uk_reserve = items; 3085 KEG_UNLOCK(keg); 3086 3087 return; 3088 } 3089 3090 /* See uma.h */ 3091 int 3092 uma_zone_reserve_kva(uma_zone_t zone, int count) 3093 { 3094 uma_keg_t keg; 3095 vm_offset_t kva; 3096 u_int pages; 3097 3098 keg = zone_first_keg(zone); 3099 if (keg == NULL) 3100 return (0); 3101 pages = count / keg->uk_ipers; 3102 3103 if (pages * keg->uk_ipers < count) 3104 pages++; 3105 3106 #ifdef UMA_MD_SMALL_ALLOC 3107 if (keg->uk_ppera > 1) { 3108 #else 3109 if (1) { 3110 #endif 3111 kva = kva_alloc((vm_size_t)pages * UMA_SLAB_SIZE); 3112 if (kva == 0) 3113 return (0); 3114 } else 3115 kva = 0; 3116 KEG_LOCK(keg); 3117 keg->uk_kva = kva; 3118 keg->uk_offset = 0; 3119 keg->uk_maxpages = pages; 3120 #ifdef UMA_MD_SMALL_ALLOC 3121 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3122 #else 3123 keg->uk_allocf = noobj_alloc; 3124 #endif 3125 keg->uk_flags |= UMA_ZONE_NOFREE; 3126 KEG_UNLOCK(keg); 3127 3128 return (1); 3129 } 3130 3131 /* See uma.h */ 3132 void 3133 uma_prealloc(uma_zone_t zone, int items) 3134 { 3135 int slabs; 3136 uma_slab_t slab; 3137 uma_keg_t keg; 3138 3139 keg = zone_first_keg(zone); 3140 if (keg == NULL) 3141 return; 3142 KEG_LOCK(keg); 3143 slabs = items / keg->uk_ipers; 3144 if (slabs * keg->uk_ipers < items) 3145 slabs++; 3146 while (slabs > 0) { 3147 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3148 if (slab == NULL) 3149 break; 3150 MPASS(slab->us_keg == keg); 3151 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3152 slabs--; 3153 } 3154 KEG_UNLOCK(keg); 3155 } 3156 3157 /* See uma.h */ 3158 static void 3159 uma_reclaim_locked(bool kmem_danger) 3160 { 3161 3162 #ifdef UMA_DEBUG 3163 printf("UMA: vm asked us to release pages!\n"); 3164 #endif 3165 sx_assert(&uma_drain_lock, SA_XLOCKED); 3166 bucket_enable(); 3167 zone_foreach(zone_drain); 3168 if (vm_page_count_min() || kmem_danger) { 3169 cache_drain_safe(NULL); 3170 zone_foreach(zone_drain); 3171 } 3172 /* 3173 * Some slabs may have been freed but this zone will be visited early 3174 * we visit again so that we can free pages that are empty once other 3175 * zones are drained. We have to do the same for buckets. 3176 */ 3177 zone_drain(slabzone); 3178 bucket_zone_drain(); 3179 } 3180 3181 void 3182 uma_reclaim(void) 3183 { 3184 3185 sx_xlock(&uma_drain_lock); 3186 uma_reclaim_locked(false); 3187 sx_xunlock(&uma_drain_lock); 3188 } 3189 3190 static int uma_reclaim_needed; 3191 3192 void 3193 uma_reclaim_wakeup(void) 3194 { 3195 3196 uma_reclaim_needed = 1; 3197 wakeup(&uma_reclaim_needed); 3198 } 3199 3200 void 3201 uma_reclaim_worker(void *arg __unused) 3202 { 3203 3204 sx_xlock(&uma_drain_lock); 3205 for (;;) { 3206 sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM, 3207 "umarcl", 0); 3208 if (uma_reclaim_needed) { 3209 uma_reclaim_needed = 0; 3210 uma_reclaim_locked(true); 3211 } 3212 } 3213 } 3214 3215 /* See uma.h */ 3216 int 3217 uma_zone_exhausted(uma_zone_t zone) 3218 { 3219 int full; 3220 3221 ZONE_LOCK(zone); 3222 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3223 ZONE_UNLOCK(zone); 3224 return (full); 3225 } 3226 3227 int 3228 uma_zone_exhausted_nolock(uma_zone_t zone) 3229 { 3230 return (zone->uz_flags & UMA_ZFLAG_FULL); 3231 } 3232 3233 void * 3234 uma_large_malloc(vm_size_t size, int wait) 3235 { 3236 void *mem; 3237 uma_slab_t slab; 3238 uint8_t flags; 3239 3240 slab = zone_alloc_item(slabzone, NULL, wait); 3241 if (slab == NULL) 3242 return (NULL); 3243 mem = page_alloc(NULL, size, &flags, wait); 3244 if (mem) { 3245 vsetslab((vm_offset_t)mem, slab); 3246 slab->us_data = mem; 3247 slab->us_flags = flags | UMA_SLAB_MALLOC; 3248 slab->us_size = size; 3249 } else { 3250 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3251 } 3252 3253 return (mem); 3254 } 3255 3256 void 3257 uma_large_free(uma_slab_t slab) 3258 { 3259 3260 page_free(slab->us_data, slab->us_size, slab->us_flags); 3261 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3262 } 3263 3264 static void 3265 uma_zero_item(void *item, uma_zone_t zone) 3266 { 3267 int i; 3268 3269 if (zone->uz_flags & UMA_ZONE_PCPU) { 3270 CPU_FOREACH(i) 3271 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3272 } else 3273 bzero(item, zone->uz_size); 3274 } 3275 3276 void 3277 uma_print_stats(void) 3278 { 3279 zone_foreach(uma_print_zone); 3280 } 3281 3282 static void 3283 slab_print(uma_slab_t slab) 3284 { 3285 printf("slab: keg %p, data %p, freecount %d\n", 3286 slab->us_keg, slab->us_data, slab->us_freecount); 3287 } 3288 3289 static void 3290 cache_print(uma_cache_t cache) 3291 { 3292 printf("alloc: %p(%d), free: %p(%d)\n", 3293 cache->uc_allocbucket, 3294 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3295 cache->uc_freebucket, 3296 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3297 } 3298 3299 static void 3300 uma_print_keg(uma_keg_t keg) 3301 { 3302 uma_slab_t slab; 3303 3304 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3305 "out %d free %d limit %d\n", 3306 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3307 keg->uk_ipers, keg->uk_ppera, 3308 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3309 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3310 printf("Part slabs:\n"); 3311 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3312 slab_print(slab); 3313 printf("Free slabs:\n"); 3314 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3315 slab_print(slab); 3316 printf("Full slabs:\n"); 3317 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3318 slab_print(slab); 3319 } 3320 3321 void 3322 uma_print_zone(uma_zone_t zone) 3323 { 3324 uma_cache_t cache; 3325 uma_klink_t kl; 3326 int i; 3327 3328 printf("zone: %s(%p) size %d flags %#x\n", 3329 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3330 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3331 uma_print_keg(kl->kl_keg); 3332 CPU_FOREACH(i) { 3333 cache = &zone->uz_cpu[i]; 3334 printf("CPU %d Cache:\n", i); 3335 cache_print(cache); 3336 } 3337 } 3338 3339 #ifdef DDB 3340 /* 3341 * Generate statistics across both the zone and its per-cpu cache's. Return 3342 * desired statistics if the pointer is non-NULL for that statistic. 3343 * 3344 * Note: does not update the zone statistics, as it can't safely clear the 3345 * per-CPU cache statistic. 3346 * 3347 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3348 * safe from off-CPU; we should modify the caches to track this information 3349 * directly so that we don't have to. 3350 */ 3351 static void 3352 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3353 uint64_t *freesp, uint64_t *sleepsp) 3354 { 3355 uma_cache_t cache; 3356 uint64_t allocs, frees, sleeps; 3357 int cachefree, cpu; 3358 3359 allocs = frees = sleeps = 0; 3360 cachefree = 0; 3361 CPU_FOREACH(cpu) { 3362 cache = &z->uz_cpu[cpu]; 3363 if (cache->uc_allocbucket != NULL) 3364 cachefree += cache->uc_allocbucket->ub_cnt; 3365 if (cache->uc_freebucket != NULL) 3366 cachefree += cache->uc_freebucket->ub_cnt; 3367 allocs += cache->uc_allocs; 3368 frees += cache->uc_frees; 3369 } 3370 allocs += z->uz_allocs; 3371 frees += z->uz_frees; 3372 sleeps += z->uz_sleeps; 3373 if (cachefreep != NULL) 3374 *cachefreep = cachefree; 3375 if (allocsp != NULL) 3376 *allocsp = allocs; 3377 if (freesp != NULL) 3378 *freesp = frees; 3379 if (sleepsp != NULL) 3380 *sleepsp = sleeps; 3381 } 3382 #endif /* DDB */ 3383 3384 static int 3385 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3386 { 3387 uma_keg_t kz; 3388 uma_zone_t z; 3389 int count; 3390 3391 count = 0; 3392 rw_rlock(&uma_rwlock); 3393 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3394 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3395 count++; 3396 } 3397 rw_runlock(&uma_rwlock); 3398 return (sysctl_handle_int(oidp, &count, 0, req)); 3399 } 3400 3401 static int 3402 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3403 { 3404 struct uma_stream_header ush; 3405 struct uma_type_header uth; 3406 struct uma_percpu_stat ups; 3407 uma_bucket_t bucket; 3408 struct sbuf sbuf; 3409 uma_cache_t cache; 3410 uma_klink_t kl; 3411 uma_keg_t kz; 3412 uma_zone_t z; 3413 uma_keg_t k; 3414 int count, error, i; 3415 3416 error = sysctl_wire_old_buffer(req, 0); 3417 if (error != 0) 3418 return (error); 3419 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3420 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3421 3422 count = 0; 3423 rw_rlock(&uma_rwlock); 3424 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3425 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3426 count++; 3427 } 3428 3429 /* 3430 * Insert stream header. 3431 */ 3432 bzero(&ush, sizeof(ush)); 3433 ush.ush_version = UMA_STREAM_VERSION; 3434 ush.ush_maxcpus = (mp_maxid + 1); 3435 ush.ush_count = count; 3436 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3437 3438 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3439 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3440 bzero(&uth, sizeof(uth)); 3441 ZONE_LOCK(z); 3442 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3443 uth.uth_align = kz->uk_align; 3444 uth.uth_size = kz->uk_size; 3445 uth.uth_rsize = kz->uk_rsize; 3446 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3447 k = kl->kl_keg; 3448 uth.uth_maxpages += k->uk_maxpages; 3449 uth.uth_pages += k->uk_pages; 3450 uth.uth_keg_free += k->uk_free; 3451 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3452 * k->uk_ipers; 3453 } 3454 3455 /* 3456 * A zone is secondary is it is not the first entry 3457 * on the keg's zone list. 3458 */ 3459 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3460 (LIST_FIRST(&kz->uk_zones) != z)) 3461 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3462 3463 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3464 uth.uth_zone_free += bucket->ub_cnt; 3465 uth.uth_allocs = z->uz_allocs; 3466 uth.uth_frees = z->uz_frees; 3467 uth.uth_fails = z->uz_fails; 3468 uth.uth_sleeps = z->uz_sleeps; 3469 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3470 /* 3471 * While it is not normally safe to access the cache 3472 * bucket pointers while not on the CPU that owns the 3473 * cache, we only allow the pointers to be exchanged 3474 * without the zone lock held, not invalidated, so 3475 * accept the possible race associated with bucket 3476 * exchange during monitoring. 3477 */ 3478 for (i = 0; i < (mp_maxid + 1); i++) { 3479 bzero(&ups, sizeof(ups)); 3480 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3481 goto skip; 3482 if (CPU_ABSENT(i)) 3483 goto skip; 3484 cache = &z->uz_cpu[i]; 3485 if (cache->uc_allocbucket != NULL) 3486 ups.ups_cache_free += 3487 cache->uc_allocbucket->ub_cnt; 3488 if (cache->uc_freebucket != NULL) 3489 ups.ups_cache_free += 3490 cache->uc_freebucket->ub_cnt; 3491 ups.ups_allocs = cache->uc_allocs; 3492 ups.ups_frees = cache->uc_frees; 3493 skip: 3494 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3495 } 3496 ZONE_UNLOCK(z); 3497 } 3498 } 3499 rw_runlock(&uma_rwlock); 3500 error = sbuf_finish(&sbuf); 3501 sbuf_delete(&sbuf); 3502 return (error); 3503 } 3504 3505 int 3506 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3507 { 3508 uma_zone_t zone = *(uma_zone_t *)arg1; 3509 int error, max; 3510 3511 max = uma_zone_get_max(zone); 3512 error = sysctl_handle_int(oidp, &max, 0, req); 3513 if (error || !req->newptr) 3514 return (error); 3515 3516 uma_zone_set_max(zone, max); 3517 3518 return (0); 3519 } 3520 3521 int 3522 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3523 { 3524 uma_zone_t zone = *(uma_zone_t *)arg1; 3525 int cur; 3526 3527 cur = uma_zone_get_cur(zone); 3528 return (sysctl_handle_int(oidp, &cur, 0, req)); 3529 } 3530 3531 #ifdef INVARIANTS 3532 static uma_slab_t 3533 uma_dbg_getslab(uma_zone_t zone, void *item) 3534 { 3535 uma_slab_t slab; 3536 uma_keg_t keg; 3537 uint8_t *mem; 3538 3539 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3540 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3541 slab = vtoslab((vm_offset_t)mem); 3542 } else { 3543 /* 3544 * It is safe to return the slab here even though the 3545 * zone is unlocked because the item's allocation state 3546 * essentially holds a reference. 3547 */ 3548 ZONE_LOCK(zone); 3549 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3550 if (keg->uk_flags & UMA_ZONE_HASH) 3551 slab = hash_sfind(&keg->uk_hash, mem); 3552 else 3553 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3554 ZONE_UNLOCK(zone); 3555 } 3556 3557 return (slab); 3558 } 3559 3560 /* 3561 * Set up the slab's freei data such that uma_dbg_free can function. 3562 * 3563 */ 3564 static void 3565 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 3566 { 3567 uma_keg_t keg; 3568 int freei; 3569 3570 if (zone_first_keg(zone) == NULL) 3571 return; 3572 if (slab == NULL) { 3573 slab = uma_dbg_getslab(zone, item); 3574 if (slab == NULL) 3575 panic("uma: item %p did not belong to zone %s\n", 3576 item, zone->uz_name); 3577 } 3578 keg = slab->us_keg; 3579 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3580 3581 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3582 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 3583 item, zone, zone->uz_name, slab, freei); 3584 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3585 3586 return; 3587 } 3588 3589 /* 3590 * Verifies freed addresses. Checks for alignment, valid slab membership 3591 * and duplicate frees. 3592 * 3593 */ 3594 static void 3595 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 3596 { 3597 uma_keg_t keg; 3598 int freei; 3599 3600 if (zone_first_keg(zone) == NULL) 3601 return; 3602 if (slab == NULL) { 3603 slab = uma_dbg_getslab(zone, item); 3604 if (slab == NULL) 3605 panic("uma: Freed item %p did not belong to zone %s\n", 3606 item, zone->uz_name); 3607 } 3608 keg = slab->us_keg; 3609 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3610 3611 if (freei >= keg->uk_ipers) 3612 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 3613 item, zone, zone->uz_name, slab, freei); 3614 3615 if (((freei * keg->uk_rsize) + slab->us_data) != item) 3616 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 3617 item, zone, zone->uz_name, slab, freei); 3618 3619 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3620 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 3621 item, zone, zone->uz_name, slab, freei); 3622 3623 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3624 } 3625 #endif /* INVARIANTS */ 3626 3627 #ifdef DDB 3628 DB_SHOW_COMMAND(uma, db_show_uma) 3629 { 3630 uint64_t allocs, frees, sleeps; 3631 uma_bucket_t bucket; 3632 uma_keg_t kz; 3633 uma_zone_t z; 3634 int cachefree; 3635 3636 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3637 "Free", "Requests", "Sleeps", "Bucket"); 3638 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3639 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3640 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3641 allocs = z->uz_allocs; 3642 frees = z->uz_frees; 3643 sleeps = z->uz_sleeps; 3644 cachefree = 0; 3645 } else 3646 uma_zone_sumstat(z, &cachefree, &allocs, 3647 &frees, &sleeps); 3648 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3649 (LIST_FIRST(&kz->uk_zones) != z))) 3650 cachefree += kz->uk_free; 3651 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3652 cachefree += bucket->ub_cnt; 3653 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3654 z->uz_name, (uintmax_t)kz->uk_size, 3655 (intmax_t)(allocs - frees), cachefree, 3656 (uintmax_t)allocs, sleeps, z->uz_count); 3657 if (db_pager_quit) 3658 return; 3659 } 3660 } 3661 } 3662 3663 DB_SHOW_COMMAND(umacache, db_show_umacache) 3664 { 3665 uint64_t allocs, frees; 3666 uma_bucket_t bucket; 3667 uma_zone_t z; 3668 int cachefree; 3669 3670 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3671 "Requests", "Bucket"); 3672 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3673 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3674 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3675 cachefree += bucket->ub_cnt; 3676 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3677 z->uz_name, (uintmax_t)z->uz_size, 3678 (intmax_t)(allocs - frees), cachefree, 3679 (uintmax_t)allocs, z->uz_count); 3680 if (db_pager_quit) 3681 return; 3682 } 3683 } 3684 #endif /* DDB */ 3685