1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/smr.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_domainset.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_pageout.h> 90 #include <vm/vm_phys.h> 91 #include <vm/vm_pagequeue.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vm_dumpset.h> 96 #include <vm/uma.h> 97 #include <vm/uma_int.h> 98 #include <vm/uma_dbg.h> 99 100 #include <ddb/ddb.h> 101 102 #ifdef DEBUG_MEMGUARD 103 #include <vm/memguard.h> 104 #endif 105 106 #include <machine/md_var.h> 107 108 #ifdef INVARIANTS 109 #define UMA_ALWAYS_CTORDTOR 1 110 #else 111 #define UMA_ALWAYS_CTORDTOR 0 112 #endif 113 114 /* 115 * This is the zone and keg from which all zones are spawned. 116 */ 117 static uma_zone_t kegs; 118 static uma_zone_t zones; 119 120 /* 121 * On INVARIANTS builds, the slab contains a second bitset of the same size, 122 * "dbg_bits", which is laid out immediately after us_free. 123 */ 124 #ifdef INVARIANTS 125 #define SLAB_BITSETS 2 126 #else 127 #define SLAB_BITSETS 1 128 #endif 129 130 /* 131 * These are the two zones from which all offpage uma_slab_ts are allocated. 132 * 133 * One zone is for slab headers that can represent a larger number of items, 134 * making the slabs themselves more efficient, and the other zone is for 135 * headers that are smaller and represent fewer items, making the headers more 136 * efficient. 137 */ 138 #define SLABZONE_SIZE(setsize) \ 139 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 140 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 141 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 142 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 143 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 144 static uma_zone_t slabzones[2]; 145 146 /* 147 * The initial hash tables come out of this zone so they can be allocated 148 * prior to malloc coming up. 149 */ 150 static uma_zone_t hashzone; 151 152 /* The boot-time adjusted value for cache line alignment. */ 153 int uma_align_cache = 64 - 1; 154 155 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 156 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 157 158 /* 159 * Are we allowed to allocate buckets? 160 */ 161 static int bucketdisable = 1; 162 163 /* Linked list of all kegs in the system */ 164 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 165 166 /* Linked list of all cache-only zones in the system */ 167 static LIST_HEAD(,uma_zone) uma_cachezones = 168 LIST_HEAD_INITIALIZER(uma_cachezones); 169 170 /* This RW lock protects the keg list */ 171 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 172 173 /* 174 * First available virual address for boot time allocations. 175 */ 176 static vm_offset_t bootstart; 177 static vm_offset_t bootmem; 178 179 static struct sx uma_reclaim_lock; 180 181 /* 182 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 183 * allocations don't trigger a wakeup of the reclaim thread. 184 */ 185 unsigned long uma_kmem_limit = LONG_MAX; 186 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 187 "UMA kernel memory soft limit"); 188 unsigned long uma_kmem_total; 189 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 190 "UMA kernel memory usage"); 191 192 /* Is the VM done starting up? */ 193 static enum { 194 BOOT_COLD, 195 BOOT_KVA, 196 BOOT_PCPU, 197 BOOT_RUNNING, 198 BOOT_SHUTDOWN, 199 } booted = BOOT_COLD; 200 201 /* 202 * This is the handle used to schedule events that need to happen 203 * outside of the allocation fast path. 204 */ 205 static struct callout uma_callout; 206 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 207 208 /* 209 * This structure is passed as the zone ctor arg so that I don't have to create 210 * a special allocation function just for zones. 211 */ 212 struct uma_zctor_args { 213 const char *name; 214 size_t size; 215 uma_ctor ctor; 216 uma_dtor dtor; 217 uma_init uminit; 218 uma_fini fini; 219 uma_import import; 220 uma_release release; 221 void *arg; 222 uma_keg_t keg; 223 int align; 224 uint32_t flags; 225 }; 226 227 struct uma_kctor_args { 228 uma_zone_t zone; 229 size_t size; 230 uma_init uminit; 231 uma_fini fini; 232 int align; 233 uint32_t flags; 234 }; 235 236 struct uma_bucket_zone { 237 uma_zone_t ubz_zone; 238 const char *ubz_name; 239 int ubz_entries; /* Number of items it can hold. */ 240 int ubz_maxsize; /* Maximum allocation size per-item. */ 241 }; 242 243 /* 244 * Compute the actual number of bucket entries to pack them in power 245 * of two sizes for more efficient space utilization. 246 */ 247 #define BUCKET_SIZE(n) \ 248 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 249 250 #define BUCKET_MAX BUCKET_SIZE(256) 251 #define BUCKET_MIN 2 252 253 struct uma_bucket_zone bucket_zones[] = { 254 /* Literal bucket sizes. */ 255 { NULL, "2 Bucket", 2, 4096 }, 256 { NULL, "4 Bucket", 4, 3072 }, 257 { NULL, "8 Bucket", 8, 2048 }, 258 { NULL, "16 Bucket", 16, 1024 }, 259 /* Rounded down power of 2 sizes for efficiency. */ 260 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 261 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 262 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 263 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 264 { NULL, NULL, 0} 265 }; 266 267 /* 268 * Flags and enumerations to be passed to internal functions. 269 */ 270 enum zfreeskip { 271 SKIP_NONE = 0, 272 SKIP_CNT = 0x00000001, 273 SKIP_DTOR = 0x00010000, 274 SKIP_FINI = 0x00020000, 275 }; 276 277 /* Prototypes.. */ 278 279 void uma_startup1(vm_offset_t); 280 void uma_startup2(void); 281 282 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 283 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 284 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 285 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 286 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 287 static void page_free(void *, vm_size_t, uint8_t); 288 static void pcpu_page_free(void *, vm_size_t, uint8_t); 289 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 290 static void cache_drain(uma_zone_t); 291 static void bucket_drain(uma_zone_t, uma_bucket_t); 292 static void bucket_cache_reclaim(uma_zone_t zone, bool); 293 static int keg_ctor(void *, int, void *, int); 294 static void keg_dtor(void *, int, void *); 295 static int zone_ctor(void *, int, void *, int); 296 static void zone_dtor(void *, int, void *); 297 static inline void item_dtor(uma_zone_t zone, void *item, int size, 298 void *udata, enum zfreeskip skip); 299 static int zero_init(void *, int, int); 300 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 301 int itemdomain, bool ws); 302 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 303 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 304 static void zone_timeout(uma_zone_t zone, void *); 305 static int hash_alloc(struct uma_hash *, u_int); 306 static int hash_expand(struct uma_hash *, struct uma_hash *); 307 static void hash_free(struct uma_hash *hash); 308 static void uma_timeout(void *); 309 static void uma_shutdown(void); 310 static void *zone_alloc_item(uma_zone_t, void *, int, int); 311 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 312 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 313 static void zone_free_limit(uma_zone_t zone, int count); 314 static void bucket_enable(void); 315 static void bucket_init(void); 316 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 317 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 318 static void bucket_zone_drain(void); 319 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 320 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 321 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 322 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 323 uma_fini fini, int align, uint32_t flags); 324 static int zone_import(void *, void **, int, int, int); 325 static void zone_release(void *, void **, int); 326 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 327 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 328 329 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 330 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 331 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 332 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 333 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 334 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 335 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 336 337 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 338 339 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 340 "Memory allocation debugging"); 341 342 #ifdef INVARIANTS 343 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 344 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 345 346 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 347 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 348 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 349 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 350 351 static u_int dbg_divisor = 1; 352 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 353 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 354 "Debug & thrash every this item in memory allocator"); 355 356 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 357 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 358 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 359 &uma_dbg_cnt, "memory items debugged"); 360 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 361 &uma_skip_cnt, "memory items skipped, not debugged"); 362 #endif 363 364 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 365 "Universal Memory Allocator"); 366 367 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 368 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 369 370 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 371 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 372 373 static int zone_warnings = 1; 374 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 375 "Warn when UMA zones becomes full"); 376 377 static int multipage_slabs = 1; 378 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 379 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 380 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 381 "UMA may choose larger slab sizes for better efficiency"); 382 383 /* 384 * Select the slab zone for an offpage slab with the given maximum item count. 385 */ 386 static inline uma_zone_t 387 slabzone(int ipers) 388 { 389 390 return (slabzones[ipers > SLABZONE0_SETSIZE]); 391 } 392 393 /* 394 * This routine checks to see whether or not it's safe to enable buckets. 395 */ 396 static void 397 bucket_enable(void) 398 { 399 400 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 401 bucketdisable = vm_page_count_min(); 402 } 403 404 /* 405 * Initialize bucket_zones, the array of zones of buckets of various sizes. 406 * 407 * For each zone, calculate the memory required for each bucket, consisting 408 * of the header and an array of pointers. 409 */ 410 static void 411 bucket_init(void) 412 { 413 struct uma_bucket_zone *ubz; 414 int size; 415 416 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 417 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 418 size += sizeof(void *) * ubz->ubz_entries; 419 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 420 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 421 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 422 UMA_ZONE_FIRSTTOUCH); 423 } 424 } 425 426 /* 427 * Given a desired number of entries for a bucket, return the zone from which 428 * to allocate the bucket. 429 */ 430 static struct uma_bucket_zone * 431 bucket_zone_lookup(int entries) 432 { 433 struct uma_bucket_zone *ubz; 434 435 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 436 if (ubz->ubz_entries >= entries) 437 return (ubz); 438 ubz--; 439 return (ubz); 440 } 441 442 static struct uma_bucket_zone * 443 bucket_zone_max(uma_zone_t zone, int nitems) 444 { 445 struct uma_bucket_zone *ubz; 446 int bpcpu; 447 448 bpcpu = 2; 449 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 450 /* Count the cross-domain bucket. */ 451 bpcpu++; 452 453 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 454 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 455 break; 456 if (ubz == &bucket_zones[0]) 457 ubz = NULL; 458 else 459 ubz--; 460 return (ubz); 461 } 462 463 static int 464 bucket_select(int size) 465 { 466 struct uma_bucket_zone *ubz; 467 468 ubz = &bucket_zones[0]; 469 if (size > ubz->ubz_maxsize) 470 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 471 472 for (; ubz->ubz_entries != 0; ubz++) 473 if (ubz->ubz_maxsize < size) 474 break; 475 ubz--; 476 return (ubz->ubz_entries); 477 } 478 479 static uma_bucket_t 480 bucket_alloc(uma_zone_t zone, void *udata, int flags) 481 { 482 struct uma_bucket_zone *ubz; 483 uma_bucket_t bucket; 484 485 /* 486 * Don't allocate buckets early in boot. 487 */ 488 if (__predict_false(booted < BOOT_KVA)) 489 return (NULL); 490 491 /* 492 * To limit bucket recursion we store the original zone flags 493 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 494 * NOVM flag to persist even through deep recursions. We also 495 * store ZFLAG_BUCKET once we have recursed attempting to allocate 496 * a bucket for a bucket zone so we do not allow infinite bucket 497 * recursion. This cookie will even persist to frees of unused 498 * buckets via the allocation path or bucket allocations in the 499 * free path. 500 */ 501 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 502 udata = (void *)(uintptr_t)zone->uz_flags; 503 else { 504 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 505 return (NULL); 506 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 507 } 508 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 509 flags |= M_NOVM; 510 ubz = bucket_zone_lookup(zone->uz_bucket_size); 511 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 512 ubz++; 513 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 514 if (bucket) { 515 #ifdef INVARIANTS 516 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 517 #endif 518 bucket->ub_cnt = 0; 519 bucket->ub_entries = ubz->ubz_entries; 520 bucket->ub_seq = SMR_SEQ_INVALID; 521 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 522 zone->uz_name, zone, bucket); 523 } 524 525 return (bucket); 526 } 527 528 static void 529 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 530 { 531 struct uma_bucket_zone *ubz; 532 533 if (bucket->ub_cnt != 0) 534 bucket_drain(zone, bucket); 535 536 KASSERT(bucket->ub_cnt == 0, 537 ("bucket_free: Freeing a non free bucket.")); 538 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 539 ("bucket_free: Freeing an SMR bucket.")); 540 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 541 udata = (void *)(uintptr_t)zone->uz_flags; 542 ubz = bucket_zone_lookup(bucket->ub_entries); 543 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 544 } 545 546 static void 547 bucket_zone_drain(void) 548 { 549 struct uma_bucket_zone *ubz; 550 551 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 552 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 553 } 554 555 /* 556 * Acquire the domain lock and record contention. 557 */ 558 static uma_zone_domain_t 559 zone_domain_lock(uma_zone_t zone, int domain) 560 { 561 uma_zone_domain_t zdom; 562 bool lockfail; 563 564 zdom = ZDOM_GET(zone, domain); 565 lockfail = false; 566 if (ZDOM_OWNED(zdom)) 567 lockfail = true; 568 ZDOM_LOCK(zdom); 569 /* This is unsynchronized. The counter does not need to be precise. */ 570 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 571 zone->uz_bucket_size++; 572 return (zdom); 573 } 574 575 /* 576 * Search for the domain with the least cached items and return it if it 577 * is out of balance with the preferred domain. 578 */ 579 static __noinline int 580 zone_domain_lowest(uma_zone_t zone, int pref) 581 { 582 long least, nitems, prefitems; 583 int domain; 584 int i; 585 586 prefitems = least = LONG_MAX; 587 domain = 0; 588 for (i = 0; i < vm_ndomains; i++) { 589 nitems = ZDOM_GET(zone, i)->uzd_nitems; 590 if (nitems < least) { 591 domain = i; 592 least = nitems; 593 } 594 if (domain == pref) 595 prefitems = nitems; 596 } 597 if (prefitems < least * 2) 598 return (pref); 599 600 return (domain); 601 } 602 603 /* 604 * Search for the domain with the most cached items and return it or the 605 * preferred domain if it has enough to proceed. 606 */ 607 static __noinline int 608 zone_domain_highest(uma_zone_t zone, int pref) 609 { 610 long most, nitems; 611 int domain; 612 int i; 613 614 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 615 return (pref); 616 617 most = 0; 618 domain = 0; 619 for (i = 0; i < vm_ndomains; i++) { 620 nitems = ZDOM_GET(zone, i)->uzd_nitems; 621 if (nitems > most) { 622 domain = i; 623 most = nitems; 624 } 625 } 626 627 return (domain); 628 } 629 630 /* 631 * Safely subtract cnt from imax. 632 */ 633 static void 634 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt) 635 { 636 long new; 637 long old; 638 639 old = zdom->uzd_imax; 640 do { 641 if (old <= cnt) 642 new = 0; 643 else 644 new = old - cnt; 645 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0); 646 } 647 648 /* 649 * Set the maximum imax value. 650 */ 651 static void 652 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 653 { 654 long old; 655 656 old = zdom->uzd_imax; 657 do { 658 if (old >= nitems) 659 break; 660 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 661 } 662 663 /* 664 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 665 * zone's caches. If a bucket is found the zone is not locked on return. 666 */ 667 static uma_bucket_t 668 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 669 { 670 uma_bucket_t bucket; 671 int i; 672 bool dtor = false; 673 674 ZDOM_LOCK_ASSERT(zdom); 675 676 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 677 return (NULL); 678 679 /* SMR Buckets can not be re-used until readers expire. */ 680 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 681 bucket->ub_seq != SMR_SEQ_INVALID) { 682 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 683 return (NULL); 684 bucket->ub_seq = SMR_SEQ_INVALID; 685 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 686 if (STAILQ_NEXT(bucket, ub_link) != NULL) 687 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 688 } 689 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 690 691 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt, 692 ("%s: item count underflow (%ld, %d)", 693 __func__, zdom->uzd_nitems, bucket->ub_cnt)); 694 KASSERT(bucket->ub_cnt > 0, 695 ("%s: empty bucket in bucket cache", __func__)); 696 zdom->uzd_nitems -= bucket->ub_cnt; 697 698 /* 699 * Shift the bounds of the current WSS interval to avoid 700 * perturbing the estimate. 701 */ 702 if (reclaim) { 703 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 704 zone_domain_imax_sub(zdom, bucket->ub_cnt); 705 } else if (zdom->uzd_imin > zdom->uzd_nitems) 706 zdom->uzd_imin = zdom->uzd_nitems; 707 708 ZDOM_UNLOCK(zdom); 709 if (dtor) 710 for (i = 0; i < bucket->ub_cnt; i++) 711 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 712 NULL, SKIP_NONE); 713 714 return (bucket); 715 } 716 717 /* 718 * Insert a full bucket into the specified cache. The "ws" parameter indicates 719 * whether the bucket's contents should be counted as part of the zone's working 720 * set. The bucket may be freed if it exceeds the bucket limit. 721 */ 722 static void 723 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 724 const bool ws) 725 { 726 uma_zone_domain_t zdom; 727 728 /* We don't cache empty buckets. This can happen after a reclaim. */ 729 if (bucket->ub_cnt == 0) 730 goto out; 731 zdom = zone_domain_lock(zone, domain); 732 733 /* 734 * Conditionally set the maximum number of items. 735 */ 736 zdom->uzd_nitems += bucket->ub_cnt; 737 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 738 if (ws) 739 zone_domain_imax_set(zdom, zdom->uzd_nitems); 740 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 741 zdom->uzd_seq = bucket->ub_seq; 742 743 /* 744 * Try to promote reuse of recently used items. For items 745 * protected by SMR, try to defer reuse to minimize polling. 746 */ 747 if (bucket->ub_seq == SMR_SEQ_INVALID) 748 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 749 else 750 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 751 ZDOM_UNLOCK(zdom); 752 return; 753 } 754 zdom->uzd_nitems -= bucket->ub_cnt; 755 ZDOM_UNLOCK(zdom); 756 out: 757 bucket_free(zone, bucket, udata); 758 } 759 760 /* Pops an item out of a per-cpu cache bucket. */ 761 static inline void * 762 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 763 { 764 void *item; 765 766 CRITICAL_ASSERT(curthread); 767 768 bucket->ucb_cnt--; 769 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 770 #ifdef INVARIANTS 771 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 772 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 773 #endif 774 cache->uc_allocs++; 775 776 return (item); 777 } 778 779 /* Pushes an item into a per-cpu cache bucket. */ 780 static inline void 781 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 782 { 783 784 CRITICAL_ASSERT(curthread); 785 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 786 ("uma_zfree: Freeing to non free bucket index.")); 787 788 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 789 bucket->ucb_cnt++; 790 cache->uc_frees++; 791 } 792 793 /* 794 * Unload a UMA bucket from a per-cpu cache. 795 */ 796 static inline uma_bucket_t 797 cache_bucket_unload(uma_cache_bucket_t bucket) 798 { 799 uma_bucket_t b; 800 801 b = bucket->ucb_bucket; 802 if (b != NULL) { 803 MPASS(b->ub_entries == bucket->ucb_entries); 804 b->ub_cnt = bucket->ucb_cnt; 805 bucket->ucb_bucket = NULL; 806 bucket->ucb_entries = bucket->ucb_cnt = 0; 807 } 808 809 return (b); 810 } 811 812 static inline uma_bucket_t 813 cache_bucket_unload_alloc(uma_cache_t cache) 814 { 815 816 return (cache_bucket_unload(&cache->uc_allocbucket)); 817 } 818 819 static inline uma_bucket_t 820 cache_bucket_unload_free(uma_cache_t cache) 821 { 822 823 return (cache_bucket_unload(&cache->uc_freebucket)); 824 } 825 826 static inline uma_bucket_t 827 cache_bucket_unload_cross(uma_cache_t cache) 828 { 829 830 return (cache_bucket_unload(&cache->uc_crossbucket)); 831 } 832 833 /* 834 * Load a bucket into a per-cpu cache bucket. 835 */ 836 static inline void 837 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 838 { 839 840 CRITICAL_ASSERT(curthread); 841 MPASS(bucket->ucb_bucket == NULL); 842 MPASS(b->ub_seq == SMR_SEQ_INVALID); 843 844 bucket->ucb_bucket = b; 845 bucket->ucb_cnt = b->ub_cnt; 846 bucket->ucb_entries = b->ub_entries; 847 } 848 849 static inline void 850 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 851 { 852 853 cache_bucket_load(&cache->uc_allocbucket, b); 854 } 855 856 static inline void 857 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 858 { 859 860 cache_bucket_load(&cache->uc_freebucket, b); 861 } 862 863 #ifdef NUMA 864 static inline void 865 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 866 { 867 868 cache_bucket_load(&cache->uc_crossbucket, b); 869 } 870 #endif 871 872 /* 873 * Copy and preserve ucb_spare. 874 */ 875 static inline void 876 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 877 { 878 879 b1->ucb_bucket = b2->ucb_bucket; 880 b1->ucb_entries = b2->ucb_entries; 881 b1->ucb_cnt = b2->ucb_cnt; 882 } 883 884 /* 885 * Swap two cache buckets. 886 */ 887 static inline void 888 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 889 { 890 struct uma_cache_bucket b3; 891 892 CRITICAL_ASSERT(curthread); 893 894 cache_bucket_copy(&b3, b1); 895 cache_bucket_copy(b1, b2); 896 cache_bucket_copy(b2, &b3); 897 } 898 899 /* 900 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 901 */ 902 static uma_bucket_t 903 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 904 { 905 uma_zone_domain_t zdom; 906 uma_bucket_t bucket; 907 908 /* 909 * Avoid the lock if possible. 910 */ 911 zdom = ZDOM_GET(zone, domain); 912 if (zdom->uzd_nitems == 0) 913 return (NULL); 914 915 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 916 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 917 return (NULL); 918 919 /* 920 * Check the zone's cache of buckets. 921 */ 922 zdom = zone_domain_lock(zone, domain); 923 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) 924 return (bucket); 925 ZDOM_UNLOCK(zdom); 926 927 return (NULL); 928 } 929 930 static void 931 zone_log_warning(uma_zone_t zone) 932 { 933 static const struct timeval warninterval = { 300, 0 }; 934 935 if (!zone_warnings || zone->uz_warning == NULL) 936 return; 937 938 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 939 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 940 } 941 942 static inline void 943 zone_maxaction(uma_zone_t zone) 944 { 945 946 if (zone->uz_maxaction.ta_func != NULL) 947 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 948 } 949 950 /* 951 * Routine called by timeout which is used to fire off some time interval 952 * based calculations. (stats, hash size, etc.) 953 * 954 * Arguments: 955 * arg Unused 956 * 957 * Returns: 958 * Nothing 959 */ 960 static void 961 uma_timeout(void *unused) 962 { 963 bucket_enable(); 964 zone_foreach(zone_timeout, NULL); 965 966 /* Reschedule this event */ 967 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 968 } 969 970 /* 971 * Update the working set size estimate for the zone's bucket cache. 972 * The constants chosen here are somewhat arbitrary. With an update period of 973 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 974 * last 100s. 975 */ 976 static void 977 zone_domain_update_wss(uma_zone_domain_t zdom) 978 { 979 long wss; 980 981 ZDOM_LOCK(zdom); 982 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 983 wss = zdom->uzd_imax - zdom->uzd_imin; 984 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 985 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 986 ZDOM_UNLOCK(zdom); 987 } 988 989 /* 990 * Routine to perform timeout driven calculations. This expands the 991 * hashes and does per cpu statistics aggregation. 992 * 993 * Returns nothing. 994 */ 995 static void 996 zone_timeout(uma_zone_t zone, void *unused) 997 { 998 uma_keg_t keg; 999 u_int slabs, pages; 1000 1001 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 1002 goto update_wss; 1003 1004 keg = zone->uz_keg; 1005 1006 /* 1007 * Hash zones are non-numa by definition so the first domain 1008 * is the only one present. 1009 */ 1010 KEG_LOCK(keg, 0); 1011 pages = keg->uk_domain[0].ud_pages; 1012 1013 /* 1014 * Expand the keg hash table. 1015 * 1016 * This is done if the number of slabs is larger than the hash size. 1017 * What I'm trying to do here is completely reduce collisions. This 1018 * may be a little aggressive. Should I allow for two collisions max? 1019 */ 1020 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1021 struct uma_hash newhash; 1022 struct uma_hash oldhash; 1023 int ret; 1024 1025 /* 1026 * This is so involved because allocating and freeing 1027 * while the keg lock is held will lead to deadlock. 1028 * I have to do everything in stages and check for 1029 * races. 1030 */ 1031 KEG_UNLOCK(keg, 0); 1032 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1033 KEG_LOCK(keg, 0); 1034 if (ret) { 1035 if (hash_expand(&keg->uk_hash, &newhash)) { 1036 oldhash = keg->uk_hash; 1037 keg->uk_hash = newhash; 1038 } else 1039 oldhash = newhash; 1040 1041 KEG_UNLOCK(keg, 0); 1042 hash_free(&oldhash); 1043 goto update_wss; 1044 } 1045 } 1046 KEG_UNLOCK(keg, 0); 1047 1048 update_wss: 1049 for (int i = 0; i < vm_ndomains; i++) 1050 zone_domain_update_wss(ZDOM_GET(zone, i)); 1051 } 1052 1053 /* 1054 * Allocate and zero fill the next sized hash table from the appropriate 1055 * backing store. 1056 * 1057 * Arguments: 1058 * hash A new hash structure with the old hash size in uh_hashsize 1059 * 1060 * Returns: 1061 * 1 on success and 0 on failure. 1062 */ 1063 static int 1064 hash_alloc(struct uma_hash *hash, u_int size) 1065 { 1066 size_t alloc; 1067 1068 KASSERT(powerof2(size), ("hash size must be power of 2")); 1069 if (size > UMA_HASH_SIZE_INIT) { 1070 hash->uh_hashsize = size; 1071 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1072 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1073 } else { 1074 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1075 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1076 UMA_ANYDOMAIN, M_WAITOK); 1077 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1078 } 1079 if (hash->uh_slab_hash) { 1080 bzero(hash->uh_slab_hash, alloc); 1081 hash->uh_hashmask = hash->uh_hashsize - 1; 1082 return (1); 1083 } 1084 1085 return (0); 1086 } 1087 1088 /* 1089 * Expands the hash table for HASH zones. This is done from zone_timeout 1090 * to reduce collisions. This must not be done in the regular allocation 1091 * path, otherwise, we can recurse on the vm while allocating pages. 1092 * 1093 * Arguments: 1094 * oldhash The hash you want to expand 1095 * newhash The hash structure for the new table 1096 * 1097 * Returns: 1098 * Nothing 1099 * 1100 * Discussion: 1101 */ 1102 static int 1103 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1104 { 1105 uma_hash_slab_t slab; 1106 u_int hval; 1107 u_int idx; 1108 1109 if (!newhash->uh_slab_hash) 1110 return (0); 1111 1112 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1113 return (0); 1114 1115 /* 1116 * I need to investigate hash algorithms for resizing without a 1117 * full rehash. 1118 */ 1119 1120 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1121 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1122 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1123 LIST_REMOVE(slab, uhs_hlink); 1124 hval = UMA_HASH(newhash, slab->uhs_data); 1125 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1126 slab, uhs_hlink); 1127 } 1128 1129 return (1); 1130 } 1131 1132 /* 1133 * Free the hash bucket to the appropriate backing store. 1134 * 1135 * Arguments: 1136 * slab_hash The hash bucket we're freeing 1137 * hashsize The number of entries in that hash bucket 1138 * 1139 * Returns: 1140 * Nothing 1141 */ 1142 static void 1143 hash_free(struct uma_hash *hash) 1144 { 1145 if (hash->uh_slab_hash == NULL) 1146 return; 1147 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1148 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1149 else 1150 free(hash->uh_slab_hash, M_UMAHASH); 1151 } 1152 1153 /* 1154 * Frees all outstanding items in a bucket 1155 * 1156 * Arguments: 1157 * zone The zone to free to, must be unlocked. 1158 * bucket The free/alloc bucket with items. 1159 * 1160 * Returns: 1161 * Nothing 1162 */ 1163 static void 1164 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1165 { 1166 int i; 1167 1168 if (bucket->ub_cnt == 0) 1169 return; 1170 1171 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1172 bucket->ub_seq != SMR_SEQ_INVALID) { 1173 smr_wait(zone->uz_smr, bucket->ub_seq); 1174 bucket->ub_seq = SMR_SEQ_INVALID; 1175 for (i = 0; i < bucket->ub_cnt; i++) 1176 item_dtor(zone, bucket->ub_bucket[i], 1177 zone->uz_size, NULL, SKIP_NONE); 1178 } 1179 if (zone->uz_fini) 1180 for (i = 0; i < bucket->ub_cnt; i++) 1181 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1182 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1183 if (zone->uz_max_items > 0) 1184 zone_free_limit(zone, bucket->ub_cnt); 1185 #ifdef INVARIANTS 1186 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1187 #endif 1188 bucket->ub_cnt = 0; 1189 } 1190 1191 /* 1192 * Drains the per cpu caches for a zone. 1193 * 1194 * NOTE: This may only be called while the zone is being torn down, and not 1195 * during normal operation. This is necessary in order that we do not have 1196 * to migrate CPUs to drain the per-CPU caches. 1197 * 1198 * Arguments: 1199 * zone The zone to drain, must be unlocked. 1200 * 1201 * Returns: 1202 * Nothing 1203 */ 1204 static void 1205 cache_drain(uma_zone_t zone) 1206 { 1207 uma_cache_t cache; 1208 uma_bucket_t bucket; 1209 smr_seq_t seq; 1210 int cpu; 1211 1212 /* 1213 * XXX: It is safe to not lock the per-CPU caches, because we're 1214 * tearing down the zone anyway. I.e., there will be no further use 1215 * of the caches at this point. 1216 * 1217 * XXX: It would good to be able to assert that the zone is being 1218 * torn down to prevent improper use of cache_drain(). 1219 */ 1220 seq = SMR_SEQ_INVALID; 1221 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1222 seq = smr_advance(zone->uz_smr); 1223 CPU_FOREACH(cpu) { 1224 cache = &zone->uz_cpu[cpu]; 1225 bucket = cache_bucket_unload_alloc(cache); 1226 if (bucket != NULL) 1227 bucket_free(zone, bucket, NULL); 1228 bucket = cache_bucket_unload_free(cache); 1229 if (bucket != NULL) { 1230 bucket->ub_seq = seq; 1231 bucket_free(zone, bucket, NULL); 1232 } 1233 bucket = cache_bucket_unload_cross(cache); 1234 if (bucket != NULL) { 1235 bucket->ub_seq = seq; 1236 bucket_free(zone, bucket, NULL); 1237 } 1238 } 1239 bucket_cache_reclaim(zone, true); 1240 } 1241 1242 static void 1243 cache_shrink(uma_zone_t zone, void *unused) 1244 { 1245 1246 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1247 return; 1248 1249 zone->uz_bucket_size = 1250 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1251 } 1252 1253 static void 1254 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1255 { 1256 uma_cache_t cache; 1257 uma_bucket_t b1, b2, b3; 1258 int domain; 1259 1260 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1261 return; 1262 1263 b1 = b2 = b3 = NULL; 1264 critical_enter(); 1265 cache = &zone->uz_cpu[curcpu]; 1266 domain = PCPU_GET(domain); 1267 b1 = cache_bucket_unload_alloc(cache); 1268 1269 /* 1270 * Don't flush SMR zone buckets. This leaves the zone without a 1271 * bucket and forces every free to synchronize(). 1272 */ 1273 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1274 b2 = cache_bucket_unload_free(cache); 1275 b3 = cache_bucket_unload_cross(cache); 1276 } 1277 critical_exit(); 1278 1279 if (b1 != NULL) 1280 zone_free_bucket(zone, b1, NULL, domain, false); 1281 if (b2 != NULL) 1282 zone_free_bucket(zone, b2, NULL, domain, false); 1283 if (b3 != NULL) { 1284 /* Adjust the domain so it goes to zone_free_cross. */ 1285 domain = (domain + 1) % vm_ndomains; 1286 zone_free_bucket(zone, b3, NULL, domain, false); 1287 } 1288 } 1289 1290 /* 1291 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1292 * This is an expensive call because it needs to bind to all CPUs 1293 * one by one and enter a critical section on each of them in order 1294 * to safely access their cache buckets. 1295 * Zone lock must not be held on call this function. 1296 */ 1297 static void 1298 pcpu_cache_drain_safe(uma_zone_t zone) 1299 { 1300 int cpu; 1301 1302 /* 1303 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1304 */ 1305 if (zone) 1306 cache_shrink(zone, NULL); 1307 else 1308 zone_foreach(cache_shrink, NULL); 1309 1310 CPU_FOREACH(cpu) { 1311 thread_lock(curthread); 1312 sched_bind(curthread, cpu); 1313 thread_unlock(curthread); 1314 1315 if (zone) 1316 cache_drain_safe_cpu(zone, NULL); 1317 else 1318 zone_foreach(cache_drain_safe_cpu, NULL); 1319 } 1320 thread_lock(curthread); 1321 sched_unbind(curthread); 1322 thread_unlock(curthread); 1323 } 1324 1325 /* 1326 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1327 * requested a drain, otherwise the per-domain caches are trimmed to either 1328 * estimated working set size. 1329 */ 1330 static void 1331 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1332 { 1333 uma_zone_domain_t zdom; 1334 uma_bucket_t bucket; 1335 long target; 1336 int i; 1337 1338 /* 1339 * Shrink the zone bucket size to ensure that the per-CPU caches 1340 * don't grow too large. 1341 */ 1342 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1343 zone->uz_bucket_size--; 1344 1345 for (i = 0; i < vm_ndomains; i++) { 1346 /* 1347 * The cross bucket is partially filled and not part of 1348 * the item count. Reclaim it individually here. 1349 */ 1350 zdom = ZDOM_GET(zone, i); 1351 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1352 ZONE_CROSS_LOCK(zone); 1353 bucket = zdom->uzd_cross; 1354 zdom->uzd_cross = NULL; 1355 ZONE_CROSS_UNLOCK(zone); 1356 if (bucket != NULL) 1357 bucket_free(zone, bucket, NULL); 1358 } 1359 1360 /* 1361 * If we were asked to drain the zone, we are done only once 1362 * this bucket cache is empty. Otherwise, we reclaim items in 1363 * excess of the zone's estimated working set size. If the 1364 * difference nitems - imin is larger than the WSS estimate, 1365 * then the estimate will grow at the end of this interval and 1366 * we ignore the historical average. 1367 */ 1368 ZDOM_LOCK(zdom); 1369 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1370 zdom->uzd_imin); 1371 while (zdom->uzd_nitems > target) { 1372 bucket = zone_fetch_bucket(zone, zdom, true); 1373 if (bucket == NULL) 1374 break; 1375 bucket_free(zone, bucket, NULL); 1376 ZDOM_LOCK(zdom); 1377 } 1378 ZDOM_UNLOCK(zdom); 1379 } 1380 } 1381 1382 static void 1383 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1384 { 1385 uint8_t *mem; 1386 int i; 1387 uint8_t flags; 1388 1389 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1390 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1391 1392 mem = slab_data(slab, keg); 1393 flags = slab->us_flags; 1394 i = start; 1395 if (keg->uk_fini != NULL) { 1396 for (i--; i > -1; i--) 1397 #ifdef INVARIANTS 1398 /* 1399 * trash_fini implies that dtor was trash_dtor. trash_fini 1400 * would check that memory hasn't been modified since free, 1401 * which executed trash_dtor. 1402 * That's why we need to run uma_dbg_kskip() check here, 1403 * albeit we don't make skip check for other init/fini 1404 * invocations. 1405 */ 1406 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1407 keg->uk_fini != trash_fini) 1408 #endif 1409 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1410 } 1411 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1412 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1413 NULL, SKIP_NONE); 1414 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1415 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1416 } 1417 1418 static void 1419 keg_drain_domain(uma_keg_t keg, int domain) 1420 { 1421 struct slabhead freeslabs; 1422 uma_domain_t dom; 1423 uma_slab_t slab, tmp; 1424 uint32_t i, stofree, stokeep, partial; 1425 1426 dom = &keg->uk_domain[domain]; 1427 LIST_INIT(&freeslabs); 1428 1429 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1430 keg->uk_name, keg, domain, dom->ud_free_items); 1431 1432 KEG_LOCK(keg, domain); 1433 1434 /* 1435 * Are the free items in partially allocated slabs sufficient to meet 1436 * the reserve? If not, compute the number of fully free slabs that must 1437 * be kept. 1438 */ 1439 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers; 1440 if (partial < keg->uk_reserve) { 1441 stokeep = min(dom->ud_free_slabs, 1442 howmany(keg->uk_reserve - partial, keg->uk_ipers)); 1443 } else { 1444 stokeep = 0; 1445 } 1446 stofree = dom->ud_free_slabs - stokeep; 1447 1448 /* 1449 * Partition the free slabs into two sets: those that must be kept in 1450 * order to maintain the reserve, and those that may be released back to 1451 * the system. Since one set may be much larger than the other, 1452 * populate the smaller of the two sets and swap them if necessary. 1453 */ 1454 for (i = min(stofree, stokeep); i > 0; i--) { 1455 slab = LIST_FIRST(&dom->ud_free_slab); 1456 LIST_REMOVE(slab, us_link); 1457 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1458 } 1459 if (stofree > stokeep) 1460 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1461 1462 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1463 LIST_FOREACH(slab, &freeslabs, us_link) 1464 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1465 } 1466 dom->ud_free_items -= stofree * keg->uk_ipers; 1467 dom->ud_free_slabs -= stofree; 1468 dom->ud_pages -= stofree * keg->uk_ppera; 1469 KEG_UNLOCK(keg, domain); 1470 1471 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1472 keg_free_slab(keg, slab, keg->uk_ipers); 1473 } 1474 1475 /* 1476 * Frees pages from a keg back to the system. This is done on demand from 1477 * the pageout daemon. 1478 * 1479 * Returns nothing. 1480 */ 1481 static void 1482 keg_drain(uma_keg_t keg) 1483 { 1484 int i; 1485 1486 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0) 1487 return; 1488 for (i = 0; i < vm_ndomains; i++) 1489 keg_drain_domain(keg, i); 1490 } 1491 1492 static void 1493 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1494 { 1495 1496 /* 1497 * Set draining to interlock with zone_dtor() so we can release our 1498 * locks as we go. Only dtor() should do a WAITOK call since it 1499 * is the only call that knows the structure will still be available 1500 * when it wakes up. 1501 */ 1502 ZONE_LOCK(zone); 1503 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1504 if (waitok == M_NOWAIT) 1505 goto out; 1506 msleep(zone, &ZDOM_GET(zone, 0)->uzd_lock, PVM, "zonedrain", 1507 1); 1508 } 1509 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1510 ZONE_UNLOCK(zone); 1511 bucket_cache_reclaim(zone, drain); 1512 1513 /* 1514 * The DRAINING flag protects us from being freed while 1515 * we're running. Normally the uma_rwlock would protect us but we 1516 * must be able to release and acquire the right lock for each keg. 1517 */ 1518 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1519 keg_drain(zone->uz_keg); 1520 ZONE_LOCK(zone); 1521 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1522 wakeup(zone); 1523 out: 1524 ZONE_UNLOCK(zone); 1525 } 1526 1527 static void 1528 zone_drain(uma_zone_t zone, void *unused) 1529 { 1530 1531 zone_reclaim(zone, M_NOWAIT, true); 1532 } 1533 1534 static void 1535 zone_trim(uma_zone_t zone, void *unused) 1536 { 1537 1538 zone_reclaim(zone, M_NOWAIT, false); 1539 } 1540 1541 /* 1542 * Allocate a new slab for a keg and inserts it into the partial slab list. 1543 * The keg should be unlocked on entry. If the allocation succeeds it will 1544 * be locked on return. 1545 * 1546 * Arguments: 1547 * flags Wait flags for the item initialization routine 1548 * aflags Wait flags for the slab allocation 1549 * 1550 * Returns: 1551 * The slab that was allocated or NULL if there is no memory and the 1552 * caller specified M_NOWAIT. 1553 */ 1554 static uma_slab_t 1555 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1556 int aflags) 1557 { 1558 uma_domain_t dom; 1559 uma_alloc allocf; 1560 uma_slab_t slab; 1561 unsigned long size; 1562 uint8_t *mem; 1563 uint8_t sflags; 1564 int i; 1565 1566 KASSERT(domain >= 0 && domain < vm_ndomains, 1567 ("keg_alloc_slab: domain %d out of range", domain)); 1568 1569 allocf = keg->uk_allocf; 1570 slab = NULL; 1571 mem = NULL; 1572 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1573 uma_hash_slab_t hslab; 1574 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1575 domain, aflags); 1576 if (hslab == NULL) 1577 goto fail; 1578 slab = &hslab->uhs_slab; 1579 } 1580 1581 /* 1582 * This reproduces the old vm_zone behavior of zero filling pages the 1583 * first time they are added to a zone. 1584 * 1585 * Malloced items are zeroed in uma_zalloc. 1586 */ 1587 1588 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1589 aflags |= M_ZERO; 1590 else 1591 aflags &= ~M_ZERO; 1592 1593 if (keg->uk_flags & UMA_ZONE_NODUMP) 1594 aflags |= M_NODUMP; 1595 1596 /* zone is passed for legacy reasons. */ 1597 size = keg->uk_ppera * PAGE_SIZE; 1598 mem = allocf(zone, size, domain, &sflags, aflags); 1599 if (mem == NULL) { 1600 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1601 zone_free_item(slabzone(keg->uk_ipers), 1602 slab_tohashslab(slab), NULL, SKIP_NONE); 1603 goto fail; 1604 } 1605 uma_total_inc(size); 1606 1607 /* For HASH zones all pages go to the same uma_domain. */ 1608 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1609 domain = 0; 1610 1611 /* Point the slab into the allocated memory */ 1612 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1613 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1614 else 1615 slab_tohashslab(slab)->uhs_data = mem; 1616 1617 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1618 for (i = 0; i < keg->uk_ppera; i++) 1619 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1620 zone, slab); 1621 1622 slab->us_freecount = keg->uk_ipers; 1623 slab->us_flags = sflags; 1624 slab->us_domain = domain; 1625 1626 BIT_FILL(keg->uk_ipers, &slab->us_free); 1627 #ifdef INVARIANTS 1628 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1629 #endif 1630 1631 if (keg->uk_init != NULL) { 1632 for (i = 0; i < keg->uk_ipers; i++) 1633 if (keg->uk_init(slab_item(slab, keg, i), 1634 keg->uk_size, flags) != 0) 1635 break; 1636 if (i != keg->uk_ipers) { 1637 keg_free_slab(keg, slab, i); 1638 goto fail; 1639 } 1640 } 1641 KEG_LOCK(keg, domain); 1642 1643 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1644 slab, keg->uk_name, keg); 1645 1646 if (keg->uk_flags & UMA_ZFLAG_HASH) 1647 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1648 1649 /* 1650 * If we got a slab here it's safe to mark it partially used 1651 * and return. We assume that the caller is going to remove 1652 * at least one item. 1653 */ 1654 dom = &keg->uk_domain[domain]; 1655 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1656 dom->ud_pages += keg->uk_ppera; 1657 dom->ud_free_items += keg->uk_ipers; 1658 1659 return (slab); 1660 1661 fail: 1662 return (NULL); 1663 } 1664 1665 /* 1666 * This function is intended to be used early on in place of page_alloc() so 1667 * that we may use the boot time page cache to satisfy allocations before 1668 * the VM is ready. 1669 */ 1670 static void * 1671 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1672 int wait) 1673 { 1674 vm_paddr_t pa; 1675 vm_page_t m; 1676 void *mem; 1677 int pages; 1678 int i; 1679 1680 pages = howmany(bytes, PAGE_SIZE); 1681 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1682 1683 *pflag = UMA_SLAB_BOOT; 1684 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1685 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1686 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1687 if (m == NULL) 1688 return (NULL); 1689 1690 pa = VM_PAGE_TO_PHYS(m); 1691 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1692 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1693 defined(__riscv) || defined(__powerpc64__) 1694 if ((wait & M_NODUMP) == 0) 1695 dump_add_page(pa); 1696 #endif 1697 } 1698 /* Allocate KVA and indirectly advance bootmem. */ 1699 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1700 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1701 if ((wait & M_ZERO) != 0) 1702 bzero(mem, pages * PAGE_SIZE); 1703 1704 return (mem); 1705 } 1706 1707 static void 1708 startup_free(void *mem, vm_size_t bytes) 1709 { 1710 vm_offset_t va; 1711 vm_page_t m; 1712 1713 va = (vm_offset_t)mem; 1714 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1715 pmap_remove(kernel_pmap, va, va + bytes); 1716 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1717 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1718 defined(__riscv) || defined(__powerpc64__) 1719 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1720 #endif 1721 vm_page_unwire_noq(m); 1722 vm_page_free(m); 1723 } 1724 } 1725 1726 /* 1727 * Allocates a number of pages from the system 1728 * 1729 * Arguments: 1730 * bytes The number of bytes requested 1731 * wait Shall we wait? 1732 * 1733 * Returns: 1734 * A pointer to the alloced memory or possibly 1735 * NULL if M_NOWAIT is set. 1736 */ 1737 static void * 1738 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1739 int wait) 1740 { 1741 void *p; /* Returned page */ 1742 1743 *pflag = UMA_SLAB_KERNEL; 1744 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1745 1746 return (p); 1747 } 1748 1749 static void * 1750 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1751 int wait) 1752 { 1753 struct pglist alloctail; 1754 vm_offset_t addr, zkva; 1755 int cpu, flags; 1756 vm_page_t p, p_next; 1757 #ifdef NUMA 1758 struct pcpu *pc; 1759 #endif 1760 1761 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1762 1763 TAILQ_INIT(&alloctail); 1764 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1765 malloc2vm_flags(wait); 1766 *pflag = UMA_SLAB_KERNEL; 1767 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1768 if (CPU_ABSENT(cpu)) { 1769 p = vm_page_alloc(NULL, 0, flags); 1770 } else { 1771 #ifndef NUMA 1772 p = vm_page_alloc(NULL, 0, flags); 1773 #else 1774 pc = pcpu_find(cpu); 1775 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1776 p = NULL; 1777 else 1778 p = vm_page_alloc_domain(NULL, 0, 1779 pc->pc_domain, flags); 1780 if (__predict_false(p == NULL)) 1781 p = vm_page_alloc(NULL, 0, flags); 1782 #endif 1783 } 1784 if (__predict_false(p == NULL)) 1785 goto fail; 1786 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1787 } 1788 if ((addr = kva_alloc(bytes)) == 0) 1789 goto fail; 1790 zkva = addr; 1791 TAILQ_FOREACH(p, &alloctail, listq) { 1792 pmap_qenter(zkva, &p, 1); 1793 zkva += PAGE_SIZE; 1794 } 1795 return ((void*)addr); 1796 fail: 1797 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1798 vm_page_unwire_noq(p); 1799 vm_page_free(p); 1800 } 1801 return (NULL); 1802 } 1803 1804 /* 1805 * Allocates a number of pages from within an object 1806 * 1807 * Arguments: 1808 * bytes The number of bytes requested 1809 * wait Shall we wait? 1810 * 1811 * Returns: 1812 * A pointer to the alloced memory or possibly 1813 * NULL if M_NOWAIT is set. 1814 */ 1815 static void * 1816 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1817 int wait) 1818 { 1819 TAILQ_HEAD(, vm_page) alloctail; 1820 u_long npages; 1821 vm_offset_t retkva, zkva; 1822 vm_page_t p, p_next; 1823 uma_keg_t keg; 1824 1825 TAILQ_INIT(&alloctail); 1826 keg = zone->uz_keg; 1827 1828 npages = howmany(bytes, PAGE_SIZE); 1829 while (npages > 0) { 1830 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1831 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1832 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1833 VM_ALLOC_NOWAIT)); 1834 if (p != NULL) { 1835 /* 1836 * Since the page does not belong to an object, its 1837 * listq is unused. 1838 */ 1839 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1840 npages--; 1841 continue; 1842 } 1843 /* 1844 * Page allocation failed, free intermediate pages and 1845 * exit. 1846 */ 1847 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1848 vm_page_unwire_noq(p); 1849 vm_page_free(p); 1850 } 1851 return (NULL); 1852 } 1853 *flags = UMA_SLAB_PRIV; 1854 zkva = keg->uk_kva + 1855 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1856 retkva = zkva; 1857 TAILQ_FOREACH(p, &alloctail, listq) { 1858 pmap_qenter(zkva, &p, 1); 1859 zkva += PAGE_SIZE; 1860 } 1861 1862 return ((void *)retkva); 1863 } 1864 1865 /* 1866 * Allocate physically contiguous pages. 1867 */ 1868 static void * 1869 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1870 int wait) 1871 { 1872 1873 *pflag = UMA_SLAB_KERNEL; 1874 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 1875 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 1876 } 1877 1878 /* 1879 * Frees a number of pages to the system 1880 * 1881 * Arguments: 1882 * mem A pointer to the memory to be freed 1883 * size The size of the memory being freed 1884 * flags The original p->us_flags field 1885 * 1886 * Returns: 1887 * Nothing 1888 */ 1889 static void 1890 page_free(void *mem, vm_size_t size, uint8_t flags) 1891 { 1892 1893 if ((flags & UMA_SLAB_BOOT) != 0) { 1894 startup_free(mem, size); 1895 return; 1896 } 1897 1898 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 1899 ("UMA: page_free used with invalid flags %x", flags)); 1900 1901 kmem_free((vm_offset_t)mem, size); 1902 } 1903 1904 /* 1905 * Frees pcpu zone allocations 1906 * 1907 * Arguments: 1908 * mem A pointer to the memory to be freed 1909 * size The size of the memory being freed 1910 * flags The original p->us_flags field 1911 * 1912 * Returns: 1913 * Nothing 1914 */ 1915 static void 1916 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1917 { 1918 vm_offset_t sva, curva; 1919 vm_paddr_t paddr; 1920 vm_page_t m; 1921 1922 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1923 1924 if ((flags & UMA_SLAB_BOOT) != 0) { 1925 startup_free(mem, size); 1926 return; 1927 } 1928 1929 sva = (vm_offset_t)mem; 1930 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1931 paddr = pmap_kextract(curva); 1932 m = PHYS_TO_VM_PAGE(paddr); 1933 vm_page_unwire_noq(m); 1934 vm_page_free(m); 1935 } 1936 pmap_qremove(sva, size >> PAGE_SHIFT); 1937 kva_free(sva, size); 1938 } 1939 1940 /* 1941 * Zero fill initializer 1942 * 1943 * Arguments/Returns follow uma_init specifications 1944 */ 1945 static int 1946 zero_init(void *mem, int size, int flags) 1947 { 1948 bzero(mem, size); 1949 return (0); 1950 } 1951 1952 #ifdef INVARIANTS 1953 static struct noslabbits * 1954 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1955 { 1956 1957 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1958 } 1959 #endif 1960 1961 /* 1962 * Actual size of embedded struct slab (!OFFPAGE). 1963 */ 1964 static size_t 1965 slab_sizeof(int nitems) 1966 { 1967 size_t s; 1968 1969 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1970 return (roundup(s, UMA_ALIGN_PTR + 1)); 1971 } 1972 1973 #define UMA_FIXPT_SHIFT 31 1974 #define UMA_FRAC_FIXPT(n, d) \ 1975 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1976 #define UMA_FIXPT_PCT(f) \ 1977 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1978 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1979 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1980 1981 /* 1982 * Compute the number of items that will fit in a slab. If hdr is true, the 1983 * item count may be limited to provide space in the slab for an inline slab 1984 * header. Otherwise, all slab space will be provided for item storage. 1985 */ 1986 static u_int 1987 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1988 { 1989 u_int ipers; 1990 u_int padpi; 1991 1992 /* The padding between items is not needed after the last item. */ 1993 padpi = rsize - size; 1994 1995 if (hdr) { 1996 /* 1997 * Start with the maximum item count and remove items until 1998 * the slab header first alongside the allocatable memory. 1999 */ 2000 for (ipers = MIN(SLAB_MAX_SETSIZE, 2001 (slabsize + padpi - slab_sizeof(1)) / rsize); 2002 ipers > 0 && 2003 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 2004 ipers--) 2005 continue; 2006 } else { 2007 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 2008 } 2009 2010 return (ipers); 2011 } 2012 2013 struct keg_layout_result { 2014 u_int format; 2015 u_int slabsize; 2016 u_int ipers; 2017 u_int eff; 2018 }; 2019 2020 static void 2021 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 2022 struct keg_layout_result *kl) 2023 { 2024 u_int total; 2025 2026 kl->format = fmt; 2027 kl->slabsize = slabsize; 2028 2029 /* Handle INTERNAL as inline with an extra page. */ 2030 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 2031 kl->format &= ~UMA_ZFLAG_INTERNAL; 2032 kl->slabsize += PAGE_SIZE; 2033 } 2034 2035 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2036 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2037 2038 /* Account for memory used by an offpage slab header. */ 2039 total = kl->slabsize; 2040 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2041 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2042 2043 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2044 } 2045 2046 /* 2047 * Determine the format of a uma keg. This determines where the slab header 2048 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2049 * 2050 * Arguments 2051 * keg The zone we should initialize 2052 * 2053 * Returns 2054 * Nothing 2055 */ 2056 static void 2057 keg_layout(uma_keg_t keg) 2058 { 2059 struct keg_layout_result kl = {}, kl_tmp; 2060 u_int fmts[2]; 2061 u_int alignsize; 2062 u_int nfmt; 2063 u_int pages; 2064 u_int rsize; 2065 u_int slabsize; 2066 u_int i, j; 2067 2068 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2069 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2070 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2071 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2072 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2073 PRINT_UMA_ZFLAGS)); 2074 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2075 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2076 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2077 PRINT_UMA_ZFLAGS)); 2078 2079 alignsize = keg->uk_align + 1; 2080 2081 /* 2082 * Calculate the size of each allocation (rsize) according to 2083 * alignment. If the requested size is smaller than we have 2084 * allocation bits for we round it up. 2085 */ 2086 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2087 rsize = roundup2(rsize, alignsize); 2088 2089 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2090 /* 2091 * We want one item to start on every align boundary in a page. 2092 * To do this we will span pages. We will also extend the item 2093 * by the size of align if it is an even multiple of align. 2094 * Otherwise, it would fall on the same boundary every time. 2095 */ 2096 if ((rsize & alignsize) == 0) 2097 rsize += alignsize; 2098 slabsize = rsize * (PAGE_SIZE / alignsize); 2099 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2100 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2101 slabsize = round_page(slabsize); 2102 } else { 2103 /* 2104 * Start with a slab size of as many pages as it takes to 2105 * represent a single item. We will try to fit as many 2106 * additional items into the slab as possible. 2107 */ 2108 slabsize = round_page(keg->uk_size); 2109 } 2110 2111 /* Build a list of all of the available formats for this keg. */ 2112 nfmt = 0; 2113 2114 /* Evaluate an inline slab layout. */ 2115 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2116 fmts[nfmt++] = 0; 2117 2118 /* TODO: vm_page-embedded slab. */ 2119 2120 /* 2121 * We can't do OFFPAGE if we're internal or if we've been 2122 * asked to not go to the VM for buckets. If we do this we 2123 * may end up going to the VM for slabs which we do not want 2124 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2125 * In those cases, evaluate a pseudo-format called INTERNAL 2126 * which has an inline slab header and one extra page to 2127 * guarantee that it fits. 2128 * 2129 * Otherwise, see if using an OFFPAGE slab will improve our 2130 * efficiency. 2131 */ 2132 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2133 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2134 else 2135 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2136 2137 /* 2138 * Choose a slab size and format which satisfy the minimum efficiency. 2139 * Prefer the smallest slab size that meets the constraints. 2140 * 2141 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2142 * for small items (up to PAGE_SIZE), the iteration increment is one 2143 * page; and for large items, the increment is one item. 2144 */ 2145 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2146 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2147 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2148 rsize, i)); 2149 for ( ; ; i++) { 2150 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2151 round_page(rsize * (i - 1) + keg->uk_size); 2152 2153 for (j = 0; j < nfmt; j++) { 2154 /* Only if we have no viable format yet. */ 2155 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2156 kl.ipers > 0) 2157 continue; 2158 2159 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2160 if (kl_tmp.eff <= kl.eff) 2161 continue; 2162 2163 kl = kl_tmp; 2164 2165 CTR6(KTR_UMA, "keg %s layout: format %#x " 2166 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2167 keg->uk_name, kl.format, kl.ipers, rsize, 2168 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2169 2170 /* Stop when we reach the minimum efficiency. */ 2171 if (kl.eff >= UMA_MIN_EFF) 2172 break; 2173 } 2174 2175 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2176 slabsize >= SLAB_MAX_SETSIZE * rsize || 2177 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2178 break; 2179 } 2180 2181 pages = atop(kl.slabsize); 2182 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2183 pages *= mp_maxid + 1; 2184 2185 keg->uk_rsize = rsize; 2186 keg->uk_ipers = kl.ipers; 2187 keg->uk_ppera = pages; 2188 keg->uk_flags |= kl.format; 2189 2190 /* 2191 * How do we find the slab header if it is offpage or if not all item 2192 * start addresses are in the same page? We could solve the latter 2193 * case with vaddr alignment, but we don't. 2194 */ 2195 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2196 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2197 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2198 keg->uk_flags |= UMA_ZFLAG_HASH; 2199 else 2200 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2201 } 2202 2203 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2204 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2205 pages); 2206 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2207 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2208 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2209 keg->uk_ipers, pages)); 2210 } 2211 2212 /* 2213 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2214 * the keg onto the global keg list. 2215 * 2216 * Arguments/Returns follow uma_ctor specifications 2217 * udata Actually uma_kctor_args 2218 */ 2219 static int 2220 keg_ctor(void *mem, int size, void *udata, int flags) 2221 { 2222 struct uma_kctor_args *arg = udata; 2223 uma_keg_t keg = mem; 2224 uma_zone_t zone; 2225 int i; 2226 2227 bzero(keg, size); 2228 keg->uk_size = arg->size; 2229 keg->uk_init = arg->uminit; 2230 keg->uk_fini = arg->fini; 2231 keg->uk_align = arg->align; 2232 keg->uk_reserve = 0; 2233 keg->uk_flags = arg->flags; 2234 2235 /* 2236 * We use a global round-robin policy by default. Zones with 2237 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2238 * case the iterator is never run. 2239 */ 2240 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2241 keg->uk_dr.dr_iter = 0; 2242 2243 /* 2244 * The primary zone is passed to us at keg-creation time. 2245 */ 2246 zone = arg->zone; 2247 keg->uk_name = zone->uz_name; 2248 2249 if (arg->flags & UMA_ZONE_ZINIT) 2250 keg->uk_init = zero_init; 2251 2252 if (arg->flags & UMA_ZONE_MALLOC) 2253 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2254 2255 #ifndef SMP 2256 keg->uk_flags &= ~UMA_ZONE_PCPU; 2257 #endif 2258 2259 keg_layout(keg); 2260 2261 /* 2262 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2263 * work on. Use round-robin for everything else. 2264 * 2265 * Zones may override the default by specifying either. 2266 */ 2267 #ifdef NUMA 2268 if ((keg->uk_flags & 2269 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2270 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2271 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2272 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2273 #endif 2274 2275 /* 2276 * If we haven't booted yet we need allocations to go through the 2277 * startup cache until the vm is ready. 2278 */ 2279 #ifdef UMA_MD_SMALL_ALLOC 2280 if (keg->uk_ppera == 1) 2281 keg->uk_allocf = uma_small_alloc; 2282 else 2283 #endif 2284 if (booted < BOOT_KVA) 2285 keg->uk_allocf = startup_alloc; 2286 else if (keg->uk_flags & UMA_ZONE_PCPU) 2287 keg->uk_allocf = pcpu_page_alloc; 2288 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2289 keg->uk_allocf = contig_alloc; 2290 else 2291 keg->uk_allocf = page_alloc; 2292 #ifdef UMA_MD_SMALL_ALLOC 2293 if (keg->uk_ppera == 1) 2294 keg->uk_freef = uma_small_free; 2295 else 2296 #endif 2297 if (keg->uk_flags & UMA_ZONE_PCPU) 2298 keg->uk_freef = pcpu_page_free; 2299 else 2300 keg->uk_freef = page_free; 2301 2302 /* 2303 * Initialize keg's locks. 2304 */ 2305 for (i = 0; i < vm_ndomains; i++) 2306 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2307 2308 /* 2309 * If we're putting the slab header in the actual page we need to 2310 * figure out where in each page it goes. See slab_sizeof 2311 * definition. 2312 */ 2313 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2314 size_t shsize; 2315 2316 shsize = slab_sizeof(keg->uk_ipers); 2317 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2318 /* 2319 * The only way the following is possible is if with our 2320 * UMA_ALIGN_PTR adjustments we are now bigger than 2321 * UMA_SLAB_SIZE. I haven't checked whether this is 2322 * mathematically possible for all cases, so we make 2323 * sure here anyway. 2324 */ 2325 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2326 ("zone %s ipers %d rsize %d size %d slab won't fit", 2327 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2328 } 2329 2330 if (keg->uk_flags & UMA_ZFLAG_HASH) 2331 hash_alloc(&keg->uk_hash, 0); 2332 2333 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2334 2335 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2336 2337 rw_wlock(&uma_rwlock); 2338 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2339 rw_wunlock(&uma_rwlock); 2340 return (0); 2341 } 2342 2343 static void 2344 zone_kva_available(uma_zone_t zone, void *unused) 2345 { 2346 uma_keg_t keg; 2347 2348 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2349 return; 2350 KEG_GET(zone, keg); 2351 2352 if (keg->uk_allocf == startup_alloc) { 2353 /* Switch to the real allocator. */ 2354 if (keg->uk_flags & UMA_ZONE_PCPU) 2355 keg->uk_allocf = pcpu_page_alloc; 2356 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2357 keg->uk_ppera > 1) 2358 keg->uk_allocf = contig_alloc; 2359 else 2360 keg->uk_allocf = page_alloc; 2361 } 2362 } 2363 2364 static void 2365 zone_alloc_counters(uma_zone_t zone, void *unused) 2366 { 2367 2368 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2369 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2370 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2371 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2372 } 2373 2374 static void 2375 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2376 { 2377 uma_zone_domain_t zdom; 2378 uma_domain_t dom; 2379 uma_keg_t keg; 2380 struct sysctl_oid *oid, *domainoid; 2381 int domains, i, cnt; 2382 static const char *nokeg = "cache zone"; 2383 char *c; 2384 2385 /* 2386 * Make a sysctl safe copy of the zone name by removing 2387 * any special characters and handling dups by appending 2388 * an index. 2389 */ 2390 if (zone->uz_namecnt != 0) { 2391 /* Count the number of decimal digits and '_' separator. */ 2392 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2393 cnt /= 10; 2394 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2395 M_UMA, M_WAITOK); 2396 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2397 zone->uz_namecnt); 2398 } else 2399 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2400 for (c = zone->uz_ctlname; *c != '\0'; c++) 2401 if (strchr("./\\ -", *c) != NULL) 2402 *c = '_'; 2403 2404 /* 2405 * Basic parameters at the root. 2406 */ 2407 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2408 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2409 oid = zone->uz_oid; 2410 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2411 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2412 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2413 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2414 zone, 0, sysctl_handle_uma_zone_flags, "A", 2415 "Allocator configuration flags"); 2416 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2417 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2418 "Desired per-cpu cache size"); 2419 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2420 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2421 "Maximum allowed per-cpu cache size"); 2422 2423 /* 2424 * keg if present. 2425 */ 2426 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2427 domains = vm_ndomains; 2428 else 2429 domains = 1; 2430 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2431 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2432 keg = zone->uz_keg; 2433 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2434 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2435 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2436 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2437 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2438 "Real object size with alignment"); 2439 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2440 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2441 "pages per-slab allocation"); 2442 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2443 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2444 "items available per-slab"); 2445 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2446 "align", CTLFLAG_RD, &keg->uk_align, 0, 2447 "item alignment mask"); 2448 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2449 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0, 2450 "number of reserved items"); 2451 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2452 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2453 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2454 "Slab utilization (100 - internal fragmentation %)"); 2455 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2456 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2457 for (i = 0; i < domains; i++) { 2458 dom = &keg->uk_domain[i]; 2459 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2460 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2461 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2462 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2463 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2464 "Total pages currently allocated from VM"); 2465 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2466 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2467 "items free in the slab layer"); 2468 } 2469 } else 2470 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2471 "name", CTLFLAG_RD, nokeg, "Keg name"); 2472 2473 /* 2474 * Information about zone limits. 2475 */ 2476 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2477 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2478 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2479 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2480 zone, 0, sysctl_handle_uma_zone_items, "QU", 2481 "current number of allocated items if limit is set"); 2482 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2483 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2484 "Maximum number of cached items"); 2485 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2486 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2487 "Number of threads sleeping at limit"); 2488 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2489 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2490 "Total zone limit sleeps"); 2491 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2492 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2493 "Maximum number of items in each domain's bucket cache"); 2494 2495 /* 2496 * Per-domain zone information. 2497 */ 2498 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2499 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2500 for (i = 0; i < domains; i++) { 2501 zdom = ZDOM_GET(zone, i); 2502 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2503 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2504 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2505 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2506 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2507 "number of items in this domain"); 2508 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2509 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2510 "maximum item count in this period"); 2511 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2512 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2513 "minimum item count in this period"); 2514 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2515 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2516 "Working set size"); 2517 } 2518 2519 /* 2520 * General statistics. 2521 */ 2522 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2523 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2524 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2525 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2526 zone, 1, sysctl_handle_uma_zone_cur, "I", 2527 "Current number of allocated items"); 2528 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2529 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2530 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2531 "Total allocation calls"); 2532 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2533 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2534 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2535 "Total free calls"); 2536 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2537 "fails", CTLFLAG_RD, &zone->uz_fails, 2538 "Number of allocation failures"); 2539 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2540 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2541 "Free calls from the wrong domain"); 2542 } 2543 2544 struct uma_zone_count { 2545 const char *name; 2546 int count; 2547 }; 2548 2549 static void 2550 zone_count(uma_zone_t zone, void *arg) 2551 { 2552 struct uma_zone_count *cnt; 2553 2554 cnt = arg; 2555 /* 2556 * Some zones are rapidly created with identical names and 2557 * destroyed out of order. This can lead to gaps in the count. 2558 * Use one greater than the maximum observed for this name. 2559 */ 2560 if (strcmp(zone->uz_name, cnt->name) == 0) 2561 cnt->count = MAX(cnt->count, 2562 zone->uz_namecnt + 1); 2563 } 2564 2565 static void 2566 zone_update_caches(uma_zone_t zone) 2567 { 2568 int i; 2569 2570 for (i = 0; i <= mp_maxid; i++) { 2571 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2572 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2573 } 2574 } 2575 2576 /* 2577 * Zone header ctor. This initializes all fields, locks, etc. 2578 * 2579 * Arguments/Returns follow uma_ctor specifications 2580 * udata Actually uma_zctor_args 2581 */ 2582 static int 2583 zone_ctor(void *mem, int size, void *udata, int flags) 2584 { 2585 struct uma_zone_count cnt; 2586 struct uma_zctor_args *arg = udata; 2587 uma_zone_domain_t zdom; 2588 uma_zone_t zone = mem; 2589 uma_zone_t z; 2590 uma_keg_t keg; 2591 int i; 2592 2593 bzero(zone, size); 2594 zone->uz_name = arg->name; 2595 zone->uz_ctor = arg->ctor; 2596 zone->uz_dtor = arg->dtor; 2597 zone->uz_init = NULL; 2598 zone->uz_fini = NULL; 2599 zone->uz_sleeps = 0; 2600 zone->uz_bucket_size = 0; 2601 zone->uz_bucket_size_min = 0; 2602 zone->uz_bucket_size_max = BUCKET_MAX; 2603 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2604 zone->uz_warning = NULL; 2605 /* The domain structures follow the cpu structures. */ 2606 zone->uz_bucket_max = ULONG_MAX; 2607 timevalclear(&zone->uz_ratecheck); 2608 2609 /* Count the number of duplicate names. */ 2610 cnt.name = arg->name; 2611 cnt.count = 0; 2612 zone_foreach(zone_count, &cnt); 2613 zone->uz_namecnt = cnt.count; 2614 ZONE_CROSS_LOCK_INIT(zone); 2615 2616 for (i = 0; i < vm_ndomains; i++) { 2617 zdom = ZDOM_GET(zone, i); 2618 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2619 STAILQ_INIT(&zdom->uzd_buckets); 2620 } 2621 2622 #ifdef INVARIANTS 2623 if (arg->uminit == trash_init && arg->fini == trash_fini) 2624 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2625 #endif 2626 2627 /* 2628 * This is a pure cache zone, no kegs. 2629 */ 2630 if (arg->import) { 2631 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2632 ("zone_ctor: Import specified for non-cache zone.")); 2633 zone->uz_flags = arg->flags; 2634 zone->uz_size = arg->size; 2635 zone->uz_import = arg->import; 2636 zone->uz_release = arg->release; 2637 zone->uz_arg = arg->arg; 2638 #ifdef NUMA 2639 /* 2640 * Cache zones are round-robin unless a policy is 2641 * specified because they may have incompatible 2642 * constraints. 2643 */ 2644 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2645 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2646 #endif 2647 rw_wlock(&uma_rwlock); 2648 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2649 rw_wunlock(&uma_rwlock); 2650 goto out; 2651 } 2652 2653 /* 2654 * Use the regular zone/keg/slab allocator. 2655 */ 2656 zone->uz_import = zone_import; 2657 zone->uz_release = zone_release; 2658 zone->uz_arg = zone; 2659 keg = arg->keg; 2660 2661 if (arg->flags & UMA_ZONE_SECONDARY) { 2662 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2663 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2664 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2665 zone->uz_init = arg->uminit; 2666 zone->uz_fini = arg->fini; 2667 zone->uz_flags |= UMA_ZONE_SECONDARY; 2668 rw_wlock(&uma_rwlock); 2669 ZONE_LOCK(zone); 2670 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2671 if (LIST_NEXT(z, uz_link) == NULL) { 2672 LIST_INSERT_AFTER(z, zone, uz_link); 2673 break; 2674 } 2675 } 2676 ZONE_UNLOCK(zone); 2677 rw_wunlock(&uma_rwlock); 2678 } else if (keg == NULL) { 2679 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2680 arg->align, arg->flags)) == NULL) 2681 return (ENOMEM); 2682 } else { 2683 struct uma_kctor_args karg; 2684 int error; 2685 2686 /* We should only be here from uma_startup() */ 2687 karg.size = arg->size; 2688 karg.uminit = arg->uminit; 2689 karg.fini = arg->fini; 2690 karg.align = arg->align; 2691 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2692 karg.zone = zone; 2693 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2694 flags); 2695 if (error) 2696 return (error); 2697 } 2698 2699 /* Inherit properties from the keg. */ 2700 zone->uz_keg = keg; 2701 zone->uz_size = keg->uk_size; 2702 zone->uz_flags |= (keg->uk_flags & 2703 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2704 2705 out: 2706 if (booted >= BOOT_PCPU) { 2707 zone_alloc_counters(zone, NULL); 2708 if (booted >= BOOT_RUNNING) 2709 zone_alloc_sysctl(zone, NULL); 2710 } else { 2711 zone->uz_allocs = EARLY_COUNTER; 2712 zone->uz_frees = EARLY_COUNTER; 2713 zone->uz_fails = EARLY_COUNTER; 2714 } 2715 2716 /* Caller requests a private SMR context. */ 2717 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2718 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2719 2720 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2721 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2722 ("Invalid zone flag combination")); 2723 if (arg->flags & UMA_ZFLAG_INTERNAL) 2724 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2725 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2726 zone->uz_bucket_size = BUCKET_MAX; 2727 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2728 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2729 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2730 zone->uz_bucket_size = 0; 2731 else 2732 zone->uz_bucket_size = bucket_select(zone->uz_size); 2733 zone->uz_bucket_size_min = zone->uz_bucket_size; 2734 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2735 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2736 zone_update_caches(zone); 2737 2738 return (0); 2739 } 2740 2741 /* 2742 * Keg header dtor. This frees all data, destroys locks, frees the hash 2743 * table and removes the keg from the global list. 2744 * 2745 * Arguments/Returns follow uma_dtor specifications 2746 * udata unused 2747 */ 2748 static void 2749 keg_dtor(void *arg, int size, void *udata) 2750 { 2751 uma_keg_t keg; 2752 uint32_t free, pages; 2753 int i; 2754 2755 keg = (uma_keg_t)arg; 2756 free = pages = 0; 2757 for (i = 0; i < vm_ndomains; i++) { 2758 free += keg->uk_domain[i].ud_free_items; 2759 pages += keg->uk_domain[i].ud_pages; 2760 KEG_LOCK_FINI(keg, i); 2761 } 2762 if (pages != 0) 2763 printf("Freed UMA keg (%s) was not empty (%u items). " 2764 " Lost %u pages of memory.\n", 2765 keg->uk_name ? keg->uk_name : "", 2766 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2767 2768 hash_free(&keg->uk_hash); 2769 } 2770 2771 /* 2772 * Zone header dtor. 2773 * 2774 * Arguments/Returns follow uma_dtor specifications 2775 * udata unused 2776 */ 2777 static void 2778 zone_dtor(void *arg, int size, void *udata) 2779 { 2780 uma_zone_t zone; 2781 uma_keg_t keg; 2782 int i; 2783 2784 zone = (uma_zone_t)arg; 2785 2786 sysctl_remove_oid(zone->uz_oid, 1, 1); 2787 2788 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2789 cache_drain(zone); 2790 2791 rw_wlock(&uma_rwlock); 2792 LIST_REMOVE(zone, uz_link); 2793 rw_wunlock(&uma_rwlock); 2794 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2795 keg = zone->uz_keg; 2796 keg->uk_reserve = 0; 2797 } 2798 zone_reclaim(zone, M_WAITOK, true); 2799 2800 /* 2801 * We only destroy kegs from non secondary/non cache zones. 2802 */ 2803 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2804 keg = zone->uz_keg; 2805 rw_wlock(&uma_rwlock); 2806 LIST_REMOVE(keg, uk_link); 2807 rw_wunlock(&uma_rwlock); 2808 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2809 } 2810 counter_u64_free(zone->uz_allocs); 2811 counter_u64_free(zone->uz_frees); 2812 counter_u64_free(zone->uz_fails); 2813 counter_u64_free(zone->uz_xdomain); 2814 free(zone->uz_ctlname, M_UMA); 2815 for (i = 0; i < vm_ndomains; i++) 2816 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 2817 ZONE_CROSS_LOCK_FINI(zone); 2818 } 2819 2820 static void 2821 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2822 { 2823 uma_keg_t keg; 2824 uma_zone_t zone; 2825 2826 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2827 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2828 zfunc(zone, arg); 2829 } 2830 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2831 zfunc(zone, arg); 2832 } 2833 2834 /* 2835 * Traverses every zone in the system and calls a callback 2836 * 2837 * Arguments: 2838 * zfunc A pointer to a function which accepts a zone 2839 * as an argument. 2840 * 2841 * Returns: 2842 * Nothing 2843 */ 2844 static void 2845 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2846 { 2847 2848 rw_rlock(&uma_rwlock); 2849 zone_foreach_unlocked(zfunc, arg); 2850 rw_runlock(&uma_rwlock); 2851 } 2852 2853 /* 2854 * Initialize the kernel memory allocator. This is done after pages can be 2855 * allocated but before general KVA is available. 2856 */ 2857 void 2858 uma_startup1(vm_offset_t virtual_avail) 2859 { 2860 struct uma_zctor_args args; 2861 size_t ksize, zsize, size; 2862 uma_keg_t primarykeg; 2863 uintptr_t m; 2864 int domain; 2865 uint8_t pflag; 2866 2867 bootstart = bootmem = virtual_avail; 2868 2869 rw_init(&uma_rwlock, "UMA lock"); 2870 sx_init(&uma_reclaim_lock, "umareclaim"); 2871 2872 ksize = sizeof(struct uma_keg) + 2873 (sizeof(struct uma_domain) * vm_ndomains); 2874 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2875 zsize = sizeof(struct uma_zone) + 2876 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2877 (sizeof(struct uma_zone_domain) * vm_ndomains); 2878 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2879 2880 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2881 size = (zsize * 2) + ksize; 2882 for (domain = 0; domain < vm_ndomains; domain++) { 2883 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 2884 M_NOWAIT | M_ZERO); 2885 if (m != 0) 2886 break; 2887 } 2888 zones = (uma_zone_t)m; 2889 m += zsize; 2890 kegs = (uma_zone_t)m; 2891 m += zsize; 2892 primarykeg = (uma_keg_t)m; 2893 2894 /* "manually" create the initial zone */ 2895 memset(&args, 0, sizeof(args)); 2896 args.name = "UMA Kegs"; 2897 args.size = ksize; 2898 args.ctor = keg_ctor; 2899 args.dtor = keg_dtor; 2900 args.uminit = zero_init; 2901 args.fini = NULL; 2902 args.keg = primarykeg; 2903 args.align = UMA_SUPER_ALIGN - 1; 2904 args.flags = UMA_ZFLAG_INTERNAL; 2905 zone_ctor(kegs, zsize, &args, M_WAITOK); 2906 2907 args.name = "UMA Zones"; 2908 args.size = zsize; 2909 args.ctor = zone_ctor; 2910 args.dtor = zone_dtor; 2911 args.uminit = zero_init; 2912 args.fini = NULL; 2913 args.keg = NULL; 2914 args.align = UMA_SUPER_ALIGN - 1; 2915 args.flags = UMA_ZFLAG_INTERNAL; 2916 zone_ctor(zones, zsize, &args, M_WAITOK); 2917 2918 /* Now make zones for slab headers */ 2919 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2920 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2921 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2922 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2923 2924 hashzone = uma_zcreate("UMA Hash", 2925 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2926 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2927 2928 bucket_init(); 2929 smr_init(); 2930 } 2931 2932 #ifndef UMA_MD_SMALL_ALLOC 2933 extern void vm_radix_reserve_kva(void); 2934 #endif 2935 2936 /* 2937 * Advertise the availability of normal kva allocations and switch to 2938 * the default back-end allocator. Marks the KVA we consumed on startup 2939 * as used in the map. 2940 */ 2941 void 2942 uma_startup2(void) 2943 { 2944 2945 if (bootstart != bootmem) { 2946 vm_map_lock(kernel_map); 2947 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2948 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2949 vm_map_unlock(kernel_map); 2950 } 2951 2952 #ifndef UMA_MD_SMALL_ALLOC 2953 /* Set up radix zone to use noobj_alloc. */ 2954 vm_radix_reserve_kva(); 2955 #endif 2956 2957 booted = BOOT_KVA; 2958 zone_foreach_unlocked(zone_kva_available, NULL); 2959 bucket_enable(); 2960 } 2961 2962 /* 2963 * Allocate counters as early as possible so that boot-time allocations are 2964 * accounted more precisely. 2965 */ 2966 static void 2967 uma_startup_pcpu(void *arg __unused) 2968 { 2969 2970 zone_foreach_unlocked(zone_alloc_counters, NULL); 2971 booted = BOOT_PCPU; 2972 } 2973 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 2974 2975 /* 2976 * Finish our initialization steps. 2977 */ 2978 static void 2979 uma_startup3(void *arg __unused) 2980 { 2981 2982 #ifdef INVARIANTS 2983 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2984 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2985 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2986 #endif 2987 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2988 callout_init(&uma_callout, 1); 2989 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2990 booted = BOOT_RUNNING; 2991 2992 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2993 EVENTHANDLER_PRI_FIRST); 2994 } 2995 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 2996 2997 static void 2998 uma_shutdown(void) 2999 { 3000 3001 booted = BOOT_SHUTDOWN; 3002 } 3003 3004 static uma_keg_t 3005 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 3006 int align, uint32_t flags) 3007 { 3008 struct uma_kctor_args args; 3009 3010 args.size = size; 3011 args.uminit = uminit; 3012 args.fini = fini; 3013 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 3014 args.flags = flags; 3015 args.zone = zone; 3016 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 3017 } 3018 3019 /* Public functions */ 3020 /* See uma.h */ 3021 void 3022 uma_set_align(int align) 3023 { 3024 3025 if (align != UMA_ALIGN_CACHE) 3026 uma_align_cache = align; 3027 } 3028 3029 /* See uma.h */ 3030 uma_zone_t 3031 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 3032 uma_init uminit, uma_fini fini, int align, uint32_t flags) 3033 3034 { 3035 struct uma_zctor_args args; 3036 uma_zone_t res; 3037 3038 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 3039 align, name)); 3040 3041 /* This stuff is essential for the zone ctor */ 3042 memset(&args, 0, sizeof(args)); 3043 args.name = name; 3044 args.size = size; 3045 args.ctor = ctor; 3046 args.dtor = dtor; 3047 args.uminit = uminit; 3048 args.fini = fini; 3049 #ifdef INVARIANTS 3050 /* 3051 * Inject procedures which check for memory use after free if we are 3052 * allowed to scramble the memory while it is not allocated. This 3053 * requires that: UMA is actually able to access the memory, no init 3054 * or fini procedures, no dependency on the initial value of the 3055 * memory, and no (legitimate) use of the memory after free. Note, 3056 * the ctor and dtor do not need to be empty. 3057 */ 3058 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3059 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3060 args.uminit = trash_init; 3061 args.fini = trash_fini; 3062 } 3063 #endif 3064 args.align = align; 3065 args.flags = flags; 3066 args.keg = NULL; 3067 3068 sx_slock(&uma_reclaim_lock); 3069 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3070 sx_sunlock(&uma_reclaim_lock); 3071 3072 return (res); 3073 } 3074 3075 /* See uma.h */ 3076 uma_zone_t 3077 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3078 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3079 { 3080 struct uma_zctor_args args; 3081 uma_keg_t keg; 3082 uma_zone_t res; 3083 3084 keg = primary->uz_keg; 3085 memset(&args, 0, sizeof(args)); 3086 args.name = name; 3087 args.size = keg->uk_size; 3088 args.ctor = ctor; 3089 args.dtor = dtor; 3090 args.uminit = zinit; 3091 args.fini = zfini; 3092 args.align = keg->uk_align; 3093 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3094 args.keg = keg; 3095 3096 sx_slock(&uma_reclaim_lock); 3097 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3098 sx_sunlock(&uma_reclaim_lock); 3099 3100 return (res); 3101 } 3102 3103 /* See uma.h */ 3104 uma_zone_t 3105 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3106 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3107 void *arg, int flags) 3108 { 3109 struct uma_zctor_args args; 3110 3111 memset(&args, 0, sizeof(args)); 3112 args.name = name; 3113 args.size = size; 3114 args.ctor = ctor; 3115 args.dtor = dtor; 3116 args.uminit = zinit; 3117 args.fini = zfini; 3118 args.import = zimport; 3119 args.release = zrelease; 3120 args.arg = arg; 3121 args.align = 0; 3122 args.flags = flags | UMA_ZFLAG_CACHE; 3123 3124 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3125 } 3126 3127 /* See uma.h */ 3128 void 3129 uma_zdestroy(uma_zone_t zone) 3130 { 3131 3132 /* 3133 * Large slabs are expensive to reclaim, so don't bother doing 3134 * unnecessary work if we're shutting down. 3135 */ 3136 if (booted == BOOT_SHUTDOWN && 3137 zone->uz_fini == NULL && zone->uz_release == zone_release) 3138 return; 3139 sx_slock(&uma_reclaim_lock); 3140 zone_free_item(zones, zone, NULL, SKIP_NONE); 3141 sx_sunlock(&uma_reclaim_lock); 3142 } 3143 3144 void 3145 uma_zwait(uma_zone_t zone) 3146 { 3147 3148 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3149 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3150 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3151 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3152 else 3153 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3154 } 3155 3156 void * 3157 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3158 { 3159 void *item, *pcpu_item; 3160 #ifdef SMP 3161 int i; 3162 3163 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3164 #endif 3165 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3166 if (item == NULL) 3167 return (NULL); 3168 pcpu_item = zpcpu_base_to_offset(item); 3169 if (flags & M_ZERO) { 3170 #ifdef SMP 3171 for (i = 0; i <= mp_maxid; i++) 3172 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3173 #else 3174 bzero(item, zone->uz_size); 3175 #endif 3176 } 3177 return (pcpu_item); 3178 } 3179 3180 /* 3181 * A stub while both regular and pcpu cases are identical. 3182 */ 3183 void 3184 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3185 { 3186 void *item; 3187 3188 #ifdef SMP 3189 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3190 #endif 3191 item = zpcpu_offset_to_base(pcpu_item); 3192 uma_zfree_arg(zone, item, udata); 3193 } 3194 3195 static inline void * 3196 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3197 void *item) 3198 { 3199 #ifdef INVARIANTS 3200 bool skipdbg; 3201 3202 skipdbg = uma_dbg_zskip(zone, item); 3203 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3204 zone->uz_ctor != trash_ctor) 3205 trash_ctor(item, size, udata, flags); 3206 #endif 3207 /* Check flags before loading ctor pointer. */ 3208 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3209 __predict_false(zone->uz_ctor != NULL) && 3210 zone->uz_ctor(item, size, udata, flags) != 0) { 3211 counter_u64_add(zone->uz_fails, 1); 3212 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3213 return (NULL); 3214 } 3215 #ifdef INVARIANTS 3216 if (!skipdbg) 3217 uma_dbg_alloc(zone, NULL, item); 3218 #endif 3219 if (__predict_false(flags & M_ZERO)) 3220 return (memset(item, 0, size)); 3221 3222 return (item); 3223 } 3224 3225 static inline void 3226 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3227 enum zfreeskip skip) 3228 { 3229 #ifdef INVARIANTS 3230 bool skipdbg; 3231 3232 skipdbg = uma_dbg_zskip(zone, item); 3233 if (skip == SKIP_NONE && !skipdbg) { 3234 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3235 uma_dbg_free(zone, udata, item); 3236 else 3237 uma_dbg_free(zone, NULL, item); 3238 } 3239 #endif 3240 if (__predict_true(skip < SKIP_DTOR)) { 3241 if (zone->uz_dtor != NULL) 3242 zone->uz_dtor(item, size, udata); 3243 #ifdef INVARIANTS 3244 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3245 zone->uz_dtor != trash_dtor) 3246 trash_dtor(item, size, udata); 3247 #endif 3248 } 3249 } 3250 3251 #ifdef NUMA 3252 static int 3253 item_domain(void *item) 3254 { 3255 int domain; 3256 3257 domain = _vm_phys_domain(vtophys(item)); 3258 KASSERT(domain >= 0 && domain < vm_ndomains, 3259 ("%s: unknown domain for item %p", __func__, item)); 3260 return (domain); 3261 } 3262 #endif 3263 3264 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3265 #define UMA_ZALLOC_DEBUG 3266 static int 3267 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3268 { 3269 int error; 3270 3271 error = 0; 3272 #ifdef WITNESS 3273 if (flags & M_WAITOK) { 3274 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3275 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3276 } 3277 #endif 3278 3279 #ifdef INVARIANTS 3280 KASSERT((flags & M_EXEC) == 0, 3281 ("uma_zalloc_debug: called with M_EXEC")); 3282 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3283 ("uma_zalloc_debug: called within spinlock or critical section")); 3284 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3285 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3286 #endif 3287 3288 #ifdef DEBUG_MEMGUARD 3289 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3290 void *item; 3291 item = memguard_alloc(zone->uz_size, flags); 3292 if (item != NULL) { 3293 error = EJUSTRETURN; 3294 if (zone->uz_init != NULL && 3295 zone->uz_init(item, zone->uz_size, flags) != 0) { 3296 *itemp = NULL; 3297 return (error); 3298 } 3299 if (zone->uz_ctor != NULL && 3300 zone->uz_ctor(item, zone->uz_size, udata, 3301 flags) != 0) { 3302 counter_u64_add(zone->uz_fails, 1); 3303 zone->uz_fini(item, zone->uz_size); 3304 *itemp = NULL; 3305 return (error); 3306 } 3307 *itemp = item; 3308 return (error); 3309 } 3310 /* This is unfortunate but should not be fatal. */ 3311 } 3312 #endif 3313 return (error); 3314 } 3315 3316 static int 3317 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3318 { 3319 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3320 ("uma_zfree_debug: called with spinlock or critical section held")); 3321 3322 #ifdef DEBUG_MEMGUARD 3323 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3324 if (zone->uz_dtor != NULL) 3325 zone->uz_dtor(item, zone->uz_size, udata); 3326 if (zone->uz_fini != NULL) 3327 zone->uz_fini(item, zone->uz_size); 3328 memguard_free(item); 3329 return (EJUSTRETURN); 3330 } 3331 #endif 3332 return (0); 3333 } 3334 #endif 3335 3336 static inline void * 3337 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3338 void *udata, int flags) 3339 { 3340 void *item; 3341 int size, uz_flags; 3342 3343 item = cache_bucket_pop(cache, bucket); 3344 size = cache_uz_size(cache); 3345 uz_flags = cache_uz_flags(cache); 3346 critical_exit(); 3347 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3348 } 3349 3350 static __noinline void * 3351 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3352 { 3353 uma_cache_bucket_t bucket; 3354 int domain; 3355 3356 while (cache_alloc(zone, cache, udata, flags)) { 3357 cache = &zone->uz_cpu[curcpu]; 3358 bucket = &cache->uc_allocbucket; 3359 if (__predict_false(bucket->ucb_cnt == 0)) 3360 continue; 3361 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3362 } 3363 critical_exit(); 3364 3365 /* 3366 * We can not get a bucket so try to return a single item. 3367 */ 3368 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3369 domain = PCPU_GET(domain); 3370 else 3371 domain = UMA_ANYDOMAIN; 3372 return (zone_alloc_item(zone, udata, domain, flags)); 3373 } 3374 3375 /* See uma.h */ 3376 void * 3377 uma_zalloc_smr(uma_zone_t zone, int flags) 3378 { 3379 uma_cache_bucket_t bucket; 3380 uma_cache_t cache; 3381 3382 #ifdef UMA_ZALLOC_DEBUG 3383 void *item; 3384 3385 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3386 ("uma_zalloc_arg: called with non-SMR zone.")); 3387 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3388 return (item); 3389 #endif 3390 3391 critical_enter(); 3392 cache = &zone->uz_cpu[curcpu]; 3393 bucket = &cache->uc_allocbucket; 3394 if (__predict_false(bucket->ucb_cnt == 0)) 3395 return (cache_alloc_retry(zone, cache, NULL, flags)); 3396 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3397 } 3398 3399 /* See uma.h */ 3400 void * 3401 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3402 { 3403 uma_cache_bucket_t bucket; 3404 uma_cache_t cache; 3405 3406 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3407 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3408 3409 /* This is the fast path allocation */ 3410 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3411 zone, flags); 3412 3413 #ifdef UMA_ZALLOC_DEBUG 3414 void *item; 3415 3416 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3417 ("uma_zalloc_arg: called with SMR zone.")); 3418 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3419 return (item); 3420 #endif 3421 3422 /* 3423 * If possible, allocate from the per-CPU cache. There are two 3424 * requirements for safe access to the per-CPU cache: (1) the thread 3425 * accessing the cache must not be preempted or yield during access, 3426 * and (2) the thread must not migrate CPUs without switching which 3427 * cache it accesses. We rely on a critical section to prevent 3428 * preemption and migration. We release the critical section in 3429 * order to acquire the zone mutex if we are unable to allocate from 3430 * the current cache; when we re-acquire the critical section, we 3431 * must detect and handle migration if it has occurred. 3432 */ 3433 critical_enter(); 3434 cache = &zone->uz_cpu[curcpu]; 3435 bucket = &cache->uc_allocbucket; 3436 if (__predict_false(bucket->ucb_cnt == 0)) 3437 return (cache_alloc_retry(zone, cache, udata, flags)); 3438 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3439 } 3440 3441 /* 3442 * Replenish an alloc bucket and possibly restore an old one. Called in 3443 * a critical section. Returns in a critical section. 3444 * 3445 * A false return value indicates an allocation failure. 3446 * A true return value indicates success and the caller should retry. 3447 */ 3448 static __noinline bool 3449 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3450 { 3451 uma_bucket_t bucket; 3452 int curdomain, domain; 3453 bool new; 3454 3455 CRITICAL_ASSERT(curthread); 3456 3457 /* 3458 * If we have run out of items in our alloc bucket see 3459 * if we can switch with the free bucket. 3460 * 3461 * SMR Zones can't re-use the free bucket until the sequence has 3462 * expired. 3463 */ 3464 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3465 cache->uc_freebucket.ucb_cnt != 0) { 3466 cache_bucket_swap(&cache->uc_freebucket, 3467 &cache->uc_allocbucket); 3468 return (true); 3469 } 3470 3471 /* 3472 * Discard any empty allocation bucket while we hold no locks. 3473 */ 3474 bucket = cache_bucket_unload_alloc(cache); 3475 critical_exit(); 3476 3477 if (bucket != NULL) { 3478 KASSERT(bucket->ub_cnt == 0, 3479 ("cache_alloc: Entered with non-empty alloc bucket.")); 3480 bucket_free(zone, bucket, udata); 3481 } 3482 3483 /* 3484 * Attempt to retrieve the item from the per-CPU cache has failed, so 3485 * we must go back to the zone. This requires the zdom lock, so we 3486 * must drop the critical section, then re-acquire it when we go back 3487 * to the cache. Since the critical section is released, we may be 3488 * preempted or migrate. As such, make sure not to maintain any 3489 * thread-local state specific to the cache from prior to releasing 3490 * the critical section. 3491 */ 3492 domain = PCPU_GET(domain); 3493 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3494 VM_DOMAIN_EMPTY(domain)) 3495 domain = zone_domain_highest(zone, domain); 3496 bucket = cache_fetch_bucket(zone, cache, domain); 3497 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { 3498 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3499 new = true; 3500 } else { 3501 new = false; 3502 } 3503 3504 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3505 zone->uz_name, zone, bucket); 3506 if (bucket == NULL) { 3507 critical_enter(); 3508 return (false); 3509 } 3510 3511 /* 3512 * See if we lost the race or were migrated. Cache the 3513 * initialized bucket to make this less likely or claim 3514 * the memory directly. 3515 */ 3516 critical_enter(); 3517 cache = &zone->uz_cpu[curcpu]; 3518 if (cache->uc_allocbucket.ucb_bucket == NULL && 3519 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3520 (curdomain = PCPU_GET(domain)) == domain || 3521 VM_DOMAIN_EMPTY(curdomain))) { 3522 if (new) 3523 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3524 bucket->ub_cnt); 3525 cache_bucket_load_alloc(cache, bucket); 3526 return (true); 3527 } 3528 3529 /* 3530 * We lost the race, release this bucket and start over. 3531 */ 3532 critical_exit(); 3533 zone_put_bucket(zone, domain, bucket, udata, false); 3534 critical_enter(); 3535 3536 return (true); 3537 } 3538 3539 void * 3540 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3541 { 3542 #ifdef NUMA 3543 uma_bucket_t bucket; 3544 uma_zone_domain_t zdom; 3545 void *item; 3546 #endif 3547 3548 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3549 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3550 3551 /* This is the fast path allocation */ 3552 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3553 zone->uz_name, zone, domain, flags); 3554 3555 if (flags & M_WAITOK) { 3556 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3557 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3558 } 3559 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3560 ("uma_zalloc_domain: called with spinlock or critical section held")); 3561 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3562 ("uma_zalloc_domain: called with SMR zone.")); 3563 #ifdef NUMA 3564 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0, 3565 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone.")); 3566 3567 if (vm_ndomains == 1) 3568 return (uma_zalloc_arg(zone, udata, flags)); 3569 3570 /* 3571 * Try to allocate from the bucket cache before falling back to the keg. 3572 * We could try harder and attempt to allocate from per-CPU caches or 3573 * the per-domain cross-domain buckets, but the complexity is probably 3574 * not worth it. It is more important that frees of previous 3575 * cross-domain allocations do not blow up the cache. 3576 */ 3577 zdom = zone_domain_lock(zone, domain); 3578 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 3579 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3580 #ifdef INVARIANTS 3581 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL; 3582 #endif 3583 bucket->ub_cnt--; 3584 zone_put_bucket(zone, domain, bucket, udata, true); 3585 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, 3586 flags, item); 3587 if (item != NULL) { 3588 KASSERT(item_domain(item) == domain, 3589 ("%s: bucket cache item %p from wrong domain", 3590 __func__, item)); 3591 counter_u64_add(zone->uz_allocs, 1); 3592 } 3593 return (item); 3594 } 3595 ZDOM_UNLOCK(zdom); 3596 return (zone_alloc_item(zone, udata, domain, flags)); 3597 #else 3598 return (uma_zalloc_arg(zone, udata, flags)); 3599 #endif 3600 } 3601 3602 /* 3603 * Find a slab with some space. Prefer slabs that are partially used over those 3604 * that are totally full. This helps to reduce fragmentation. 3605 * 3606 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3607 * only 'domain'. 3608 */ 3609 static uma_slab_t 3610 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3611 { 3612 uma_domain_t dom; 3613 uma_slab_t slab; 3614 int start; 3615 3616 KASSERT(domain >= 0 && domain < vm_ndomains, 3617 ("keg_first_slab: domain %d out of range", domain)); 3618 KEG_LOCK_ASSERT(keg, domain); 3619 3620 slab = NULL; 3621 start = domain; 3622 do { 3623 dom = &keg->uk_domain[domain]; 3624 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3625 return (slab); 3626 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3627 LIST_REMOVE(slab, us_link); 3628 dom->ud_free_slabs--; 3629 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3630 return (slab); 3631 } 3632 if (rr) 3633 domain = (domain + 1) % vm_ndomains; 3634 } while (domain != start); 3635 3636 return (NULL); 3637 } 3638 3639 /* 3640 * Fetch an existing slab from a free or partial list. Returns with the 3641 * keg domain lock held if a slab was found or unlocked if not. 3642 */ 3643 static uma_slab_t 3644 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3645 { 3646 uma_slab_t slab; 3647 uint32_t reserve; 3648 3649 /* HASH has a single free list. */ 3650 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3651 domain = 0; 3652 3653 KEG_LOCK(keg, domain); 3654 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3655 if (keg->uk_domain[domain].ud_free_items <= reserve || 3656 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3657 KEG_UNLOCK(keg, domain); 3658 return (NULL); 3659 } 3660 return (slab); 3661 } 3662 3663 static uma_slab_t 3664 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3665 { 3666 struct vm_domainset_iter di; 3667 uma_slab_t slab; 3668 int aflags, domain; 3669 bool rr; 3670 3671 restart: 3672 /* 3673 * Use the keg's policy if upper layers haven't already specified a 3674 * domain (as happens with first-touch zones). 3675 * 3676 * To avoid races we run the iterator with the keg lock held, but that 3677 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3678 * clear M_WAITOK and handle low memory conditions locally. 3679 */ 3680 rr = rdomain == UMA_ANYDOMAIN; 3681 if (rr) { 3682 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3683 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3684 &aflags); 3685 } else { 3686 aflags = flags; 3687 domain = rdomain; 3688 } 3689 3690 for (;;) { 3691 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3692 if (slab != NULL) 3693 return (slab); 3694 3695 /* 3696 * M_NOVM means don't ask at all! 3697 */ 3698 if (flags & M_NOVM) 3699 break; 3700 3701 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3702 if (slab != NULL) 3703 return (slab); 3704 if (!rr && (flags & M_WAITOK) == 0) 3705 break; 3706 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3707 if ((flags & M_WAITOK) != 0) { 3708 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 3709 goto restart; 3710 } 3711 break; 3712 } 3713 } 3714 3715 /* 3716 * We might not have been able to get a slab but another cpu 3717 * could have while we were unlocked. Check again before we 3718 * fail. 3719 */ 3720 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3721 return (slab); 3722 3723 return (NULL); 3724 } 3725 3726 static void * 3727 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3728 { 3729 uma_domain_t dom; 3730 void *item; 3731 int freei; 3732 3733 KEG_LOCK_ASSERT(keg, slab->us_domain); 3734 3735 dom = &keg->uk_domain[slab->us_domain]; 3736 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3737 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3738 item = slab_item(slab, keg, freei); 3739 slab->us_freecount--; 3740 dom->ud_free_items--; 3741 3742 /* 3743 * Move this slab to the full list. It must be on the partial list, so 3744 * we do not need to update the free slab count. In particular, 3745 * keg_fetch_slab() always returns slabs on the partial list. 3746 */ 3747 if (slab->us_freecount == 0) { 3748 LIST_REMOVE(slab, us_link); 3749 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3750 } 3751 3752 return (item); 3753 } 3754 3755 static int 3756 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3757 { 3758 uma_domain_t dom; 3759 uma_zone_t zone; 3760 uma_slab_t slab; 3761 uma_keg_t keg; 3762 #ifdef NUMA 3763 int stripe; 3764 #endif 3765 int i; 3766 3767 zone = arg; 3768 slab = NULL; 3769 keg = zone->uz_keg; 3770 /* Try to keep the buckets totally full */ 3771 for (i = 0; i < max; ) { 3772 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3773 break; 3774 #ifdef NUMA 3775 stripe = howmany(max, vm_ndomains); 3776 #endif 3777 dom = &keg->uk_domain[slab->us_domain]; 3778 do { 3779 bucket[i++] = slab_alloc_item(keg, slab); 3780 if (dom->ud_free_items <= keg->uk_reserve) { 3781 /* 3782 * Avoid depleting the reserve after a 3783 * successful item allocation, even if 3784 * M_USE_RESERVE is specified. 3785 */ 3786 KEG_UNLOCK(keg, slab->us_domain); 3787 goto out; 3788 } 3789 #ifdef NUMA 3790 /* 3791 * If the zone is striped we pick a new slab for every 3792 * N allocations. Eliminating this conditional will 3793 * instead pick a new domain for each bucket rather 3794 * than stripe within each bucket. The current option 3795 * produces more fragmentation and requires more cpu 3796 * time but yields better distribution. 3797 */ 3798 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3799 vm_ndomains > 1 && --stripe == 0) 3800 break; 3801 #endif 3802 } while (slab->us_freecount != 0 && i < max); 3803 KEG_UNLOCK(keg, slab->us_domain); 3804 3805 /* Don't block if we allocated any successfully. */ 3806 flags &= ~M_WAITOK; 3807 flags |= M_NOWAIT; 3808 } 3809 out: 3810 return i; 3811 } 3812 3813 static int 3814 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3815 { 3816 uint64_t old, new, total, max; 3817 3818 /* 3819 * The hard case. We're going to sleep because there were existing 3820 * sleepers or because we ran out of items. This routine enforces 3821 * fairness by keeping fifo order. 3822 * 3823 * First release our ill gotten gains and make some noise. 3824 */ 3825 for (;;) { 3826 zone_free_limit(zone, count); 3827 zone_log_warning(zone); 3828 zone_maxaction(zone); 3829 if (flags & M_NOWAIT) 3830 return (0); 3831 3832 /* 3833 * We need to allocate an item or set ourself as a sleeper 3834 * while the sleepq lock is held to avoid wakeup races. This 3835 * is essentially a home rolled semaphore. 3836 */ 3837 sleepq_lock(&zone->uz_max_items); 3838 old = zone->uz_items; 3839 do { 3840 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3841 /* Cache the max since we will evaluate twice. */ 3842 max = zone->uz_max_items; 3843 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3844 UZ_ITEMS_COUNT(old) >= max) 3845 new = old + UZ_ITEMS_SLEEPER; 3846 else 3847 new = old + MIN(count, max - old); 3848 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3849 3850 /* We may have successfully allocated under the sleepq lock. */ 3851 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3852 sleepq_release(&zone->uz_max_items); 3853 return (new - old); 3854 } 3855 3856 /* 3857 * This is in a different cacheline from uz_items so that we 3858 * don't constantly invalidate the fastpath cacheline when we 3859 * adjust item counts. This could be limited to toggling on 3860 * transitions. 3861 */ 3862 atomic_add_32(&zone->uz_sleepers, 1); 3863 atomic_add_64(&zone->uz_sleeps, 1); 3864 3865 /* 3866 * We have added ourselves as a sleeper. The sleepq lock 3867 * protects us from wakeup races. Sleep now and then retry. 3868 */ 3869 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3870 sleepq_wait(&zone->uz_max_items, PVM); 3871 3872 /* 3873 * After wakeup, remove ourselves as a sleeper and try 3874 * again. We no longer have the sleepq lock for protection. 3875 * 3876 * Subract ourselves as a sleeper while attempting to add 3877 * our count. 3878 */ 3879 atomic_subtract_32(&zone->uz_sleepers, 1); 3880 old = atomic_fetchadd_64(&zone->uz_items, 3881 -(UZ_ITEMS_SLEEPER - count)); 3882 /* We're no longer a sleeper. */ 3883 old -= UZ_ITEMS_SLEEPER; 3884 3885 /* 3886 * If we're still at the limit, restart. Notably do not 3887 * block on other sleepers. Cache the max value to protect 3888 * against changes via sysctl. 3889 */ 3890 total = UZ_ITEMS_COUNT(old); 3891 max = zone->uz_max_items; 3892 if (total >= max) 3893 continue; 3894 /* Truncate if necessary, otherwise wake other sleepers. */ 3895 if (total + count > max) { 3896 zone_free_limit(zone, total + count - max); 3897 count = max - total; 3898 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3899 wakeup_one(&zone->uz_max_items); 3900 3901 return (count); 3902 } 3903 } 3904 3905 /* 3906 * Allocate 'count' items from our max_items limit. Returns the number 3907 * available. If M_NOWAIT is not specified it will sleep until at least 3908 * one item can be allocated. 3909 */ 3910 static int 3911 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3912 { 3913 uint64_t old; 3914 uint64_t max; 3915 3916 max = zone->uz_max_items; 3917 MPASS(max > 0); 3918 3919 /* 3920 * We expect normal allocations to succeed with a simple 3921 * fetchadd. 3922 */ 3923 old = atomic_fetchadd_64(&zone->uz_items, count); 3924 if (__predict_true(old + count <= max)) 3925 return (count); 3926 3927 /* 3928 * If we had some items and no sleepers just return the 3929 * truncated value. We have to release the excess space 3930 * though because that may wake sleepers who weren't woken 3931 * because we were temporarily over the limit. 3932 */ 3933 if (old < max) { 3934 zone_free_limit(zone, (old + count) - max); 3935 return (max - old); 3936 } 3937 return (zone_alloc_limit_hard(zone, count, flags)); 3938 } 3939 3940 /* 3941 * Free a number of items back to the limit. 3942 */ 3943 static void 3944 zone_free_limit(uma_zone_t zone, int count) 3945 { 3946 uint64_t old; 3947 3948 MPASS(count > 0); 3949 3950 /* 3951 * In the common case we either have no sleepers or 3952 * are still over the limit and can just return. 3953 */ 3954 old = atomic_fetchadd_64(&zone->uz_items, -count); 3955 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3956 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3957 return; 3958 3959 /* 3960 * Moderate the rate of wakeups. Sleepers will continue 3961 * to generate wakeups if necessary. 3962 */ 3963 wakeup_one(&zone->uz_max_items); 3964 } 3965 3966 static uma_bucket_t 3967 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3968 { 3969 uma_bucket_t bucket; 3970 int maxbucket, cnt; 3971 3972 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3973 zone, domain); 3974 3975 /* Avoid allocs targeting empty domains. */ 3976 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3977 domain = UMA_ANYDOMAIN; 3978 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 3979 domain = UMA_ANYDOMAIN; 3980 3981 if (zone->uz_max_items > 0) 3982 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3983 M_NOWAIT); 3984 else 3985 maxbucket = zone->uz_bucket_size; 3986 if (maxbucket == 0) 3987 return (false); 3988 3989 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3990 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3991 if (bucket == NULL) { 3992 cnt = 0; 3993 goto out; 3994 } 3995 3996 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3997 MIN(maxbucket, bucket->ub_entries), domain, flags); 3998 3999 /* 4000 * Initialize the memory if necessary. 4001 */ 4002 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 4003 int i; 4004 4005 for (i = 0; i < bucket->ub_cnt; i++) 4006 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 4007 flags) != 0) 4008 break; 4009 /* 4010 * If we couldn't initialize the whole bucket, put the 4011 * rest back onto the freelist. 4012 */ 4013 if (i != bucket->ub_cnt) { 4014 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 4015 bucket->ub_cnt - i); 4016 #ifdef INVARIANTS 4017 bzero(&bucket->ub_bucket[i], 4018 sizeof(void *) * (bucket->ub_cnt - i)); 4019 #endif 4020 bucket->ub_cnt = i; 4021 } 4022 } 4023 4024 cnt = bucket->ub_cnt; 4025 if (bucket->ub_cnt == 0) { 4026 bucket_free(zone, bucket, udata); 4027 counter_u64_add(zone->uz_fails, 1); 4028 bucket = NULL; 4029 } 4030 out: 4031 if (zone->uz_max_items > 0 && cnt < maxbucket) 4032 zone_free_limit(zone, maxbucket - cnt); 4033 4034 return (bucket); 4035 } 4036 4037 /* 4038 * Allocates a single item from a zone. 4039 * 4040 * Arguments 4041 * zone The zone to alloc for. 4042 * udata The data to be passed to the constructor. 4043 * domain The domain to allocate from or UMA_ANYDOMAIN. 4044 * flags M_WAITOK, M_NOWAIT, M_ZERO. 4045 * 4046 * Returns 4047 * NULL if there is no memory and M_NOWAIT is set 4048 * An item if successful 4049 */ 4050 4051 static void * 4052 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 4053 { 4054 void *item; 4055 4056 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { 4057 counter_u64_add(zone->uz_fails, 1); 4058 return (NULL); 4059 } 4060 4061 /* Avoid allocs targeting empty domains. */ 4062 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4063 domain = UMA_ANYDOMAIN; 4064 4065 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 4066 goto fail_cnt; 4067 4068 /* 4069 * We have to call both the zone's init (not the keg's init) 4070 * and the zone's ctor. This is because the item is going from 4071 * a keg slab directly to the user, and the user is expecting it 4072 * to be both zone-init'd as well as zone-ctor'd. 4073 */ 4074 if (zone->uz_init != NULL) { 4075 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 4076 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 4077 goto fail_cnt; 4078 } 4079 } 4080 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 4081 item); 4082 if (item == NULL) 4083 goto fail; 4084 4085 counter_u64_add(zone->uz_allocs, 1); 4086 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 4087 zone->uz_name, zone); 4088 4089 return (item); 4090 4091 fail_cnt: 4092 counter_u64_add(zone->uz_fails, 1); 4093 fail: 4094 if (zone->uz_max_items > 0) 4095 zone_free_limit(zone, 1); 4096 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 4097 zone->uz_name, zone); 4098 4099 return (NULL); 4100 } 4101 4102 /* See uma.h */ 4103 void 4104 uma_zfree_smr(uma_zone_t zone, void *item) 4105 { 4106 uma_cache_t cache; 4107 uma_cache_bucket_t bucket; 4108 int itemdomain, uz_flags; 4109 4110 #ifdef UMA_ZALLOC_DEBUG 4111 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4112 ("uma_zfree_smr: called with non-SMR zone.")); 4113 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4114 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4115 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4116 return; 4117 #endif 4118 cache = &zone->uz_cpu[curcpu]; 4119 uz_flags = cache_uz_flags(cache); 4120 itemdomain = 0; 4121 #ifdef NUMA 4122 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4123 itemdomain = item_domain(item); 4124 #endif 4125 critical_enter(); 4126 do { 4127 cache = &zone->uz_cpu[curcpu]; 4128 /* SMR Zones must free to the free bucket. */ 4129 bucket = &cache->uc_freebucket; 4130 #ifdef NUMA 4131 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4132 PCPU_GET(domain) != itemdomain) { 4133 bucket = &cache->uc_crossbucket; 4134 } 4135 #endif 4136 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4137 cache_bucket_push(cache, bucket, item); 4138 critical_exit(); 4139 return; 4140 } 4141 } while (cache_free(zone, cache, NULL, item, itemdomain)); 4142 critical_exit(); 4143 4144 /* 4145 * If nothing else caught this, we'll just do an internal free. 4146 */ 4147 zone_free_item(zone, item, NULL, SKIP_NONE); 4148 } 4149 4150 /* See uma.h */ 4151 void 4152 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4153 { 4154 uma_cache_t cache; 4155 uma_cache_bucket_t bucket; 4156 int itemdomain, uz_flags; 4157 4158 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4159 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4160 4161 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4162 4163 #ifdef UMA_ZALLOC_DEBUG 4164 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4165 ("uma_zfree_arg: called with SMR zone.")); 4166 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4167 return; 4168 #endif 4169 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4170 if (item == NULL) 4171 return; 4172 4173 /* 4174 * We are accessing the per-cpu cache without a critical section to 4175 * fetch size and flags. This is acceptable, if we are preempted we 4176 * will simply read another cpu's line. 4177 */ 4178 cache = &zone->uz_cpu[curcpu]; 4179 uz_flags = cache_uz_flags(cache); 4180 if (UMA_ALWAYS_CTORDTOR || 4181 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4182 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4183 4184 /* 4185 * The race here is acceptable. If we miss it we'll just have to wait 4186 * a little longer for the limits to be reset. 4187 */ 4188 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4189 if (zone->uz_sleepers > 0) 4190 goto zfree_item; 4191 } 4192 4193 /* 4194 * If possible, free to the per-CPU cache. There are two 4195 * requirements for safe access to the per-CPU cache: (1) the thread 4196 * accessing the cache must not be preempted or yield during access, 4197 * and (2) the thread must not migrate CPUs without switching which 4198 * cache it accesses. We rely on a critical section to prevent 4199 * preemption and migration. We release the critical section in 4200 * order to acquire the zone mutex if we are unable to free to the 4201 * current cache; when we re-acquire the critical section, we must 4202 * detect and handle migration if it has occurred. 4203 */ 4204 itemdomain = 0; 4205 #ifdef NUMA 4206 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4207 itemdomain = item_domain(item); 4208 #endif 4209 critical_enter(); 4210 do { 4211 cache = &zone->uz_cpu[curcpu]; 4212 /* 4213 * Try to free into the allocbucket first to give LIFO 4214 * ordering for cache-hot datastructures. Spill over 4215 * into the freebucket if necessary. Alloc will swap 4216 * them if one runs dry. 4217 */ 4218 bucket = &cache->uc_allocbucket; 4219 #ifdef NUMA 4220 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4221 PCPU_GET(domain) != itemdomain) { 4222 bucket = &cache->uc_crossbucket; 4223 } else 4224 #endif 4225 if (bucket->ucb_cnt == bucket->ucb_entries && 4226 cache->uc_freebucket.ucb_cnt < 4227 cache->uc_freebucket.ucb_entries) 4228 cache_bucket_swap(&cache->uc_freebucket, 4229 &cache->uc_allocbucket); 4230 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4231 cache_bucket_push(cache, bucket, item); 4232 critical_exit(); 4233 return; 4234 } 4235 } while (cache_free(zone, cache, udata, item, itemdomain)); 4236 critical_exit(); 4237 4238 /* 4239 * If nothing else caught this, we'll just do an internal free. 4240 */ 4241 zfree_item: 4242 zone_free_item(zone, item, udata, SKIP_DTOR); 4243 } 4244 4245 #ifdef NUMA 4246 /* 4247 * sort crossdomain free buckets to domain correct buckets and cache 4248 * them. 4249 */ 4250 static void 4251 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4252 { 4253 struct uma_bucketlist fullbuckets; 4254 uma_zone_domain_t zdom; 4255 uma_bucket_t b; 4256 smr_seq_t seq; 4257 void *item; 4258 int domain; 4259 4260 CTR3(KTR_UMA, 4261 "uma_zfree: zone %s(%p) draining cross bucket %p", 4262 zone->uz_name, zone, bucket); 4263 4264 /* 4265 * It is possible for buckets to arrive here out of order so we fetch 4266 * the current smr seq rather than accepting the bucket's. 4267 */ 4268 seq = SMR_SEQ_INVALID; 4269 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4270 seq = smr_advance(zone->uz_smr); 4271 4272 /* 4273 * To avoid having ndomain * ndomain buckets for sorting we have a 4274 * lock on the current crossfree bucket. A full matrix with 4275 * per-domain locking could be used if necessary. 4276 */ 4277 STAILQ_INIT(&fullbuckets); 4278 ZONE_CROSS_LOCK(zone); 4279 while (bucket->ub_cnt > 0) { 4280 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4281 domain = item_domain(item); 4282 zdom = ZDOM_GET(zone, domain); 4283 if (zdom->uzd_cross == NULL) { 4284 zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT); 4285 if (zdom->uzd_cross == NULL) 4286 break; 4287 } 4288 b = zdom->uzd_cross; 4289 b->ub_bucket[b->ub_cnt++] = item; 4290 b->ub_seq = seq; 4291 if (b->ub_cnt == b->ub_entries) { 4292 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4293 zdom->uzd_cross = NULL; 4294 } 4295 bucket->ub_cnt--; 4296 } 4297 ZONE_CROSS_UNLOCK(zone); 4298 if (bucket->ub_cnt == 0) 4299 bucket->ub_seq = SMR_SEQ_INVALID; 4300 bucket_free(zone, bucket, udata); 4301 4302 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4303 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4304 domain = item_domain(b->ub_bucket[0]); 4305 zone_put_bucket(zone, domain, b, udata, true); 4306 } 4307 } 4308 #endif 4309 4310 static void 4311 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4312 int itemdomain, bool ws) 4313 { 4314 4315 #ifdef NUMA 4316 /* 4317 * Buckets coming from the wrong domain will be entirely for the 4318 * only other domain on two domain systems. In this case we can 4319 * simply cache them. Otherwise we need to sort them back to 4320 * correct domains. 4321 */ 4322 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4323 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4324 zone_free_cross(zone, bucket, udata); 4325 return; 4326 } 4327 #endif 4328 4329 /* 4330 * Attempt to save the bucket in the zone's domain bucket cache. 4331 */ 4332 CTR3(KTR_UMA, 4333 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4334 zone->uz_name, zone, bucket); 4335 /* ub_cnt is pointing to the last free item */ 4336 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4337 itemdomain = zone_domain_lowest(zone, itemdomain); 4338 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4339 } 4340 4341 /* 4342 * Populate a free or cross bucket for the current cpu cache. Free any 4343 * existing full bucket either to the zone cache or back to the slab layer. 4344 * 4345 * Enters and returns in a critical section. false return indicates that 4346 * we can not satisfy this free in the cache layer. true indicates that 4347 * the caller should retry. 4348 */ 4349 static __noinline bool 4350 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4351 int itemdomain) 4352 { 4353 uma_cache_bucket_t cbucket; 4354 uma_bucket_t newbucket, bucket; 4355 4356 CRITICAL_ASSERT(curthread); 4357 4358 if (zone->uz_bucket_size == 0) 4359 return false; 4360 4361 cache = &zone->uz_cpu[curcpu]; 4362 newbucket = NULL; 4363 4364 /* 4365 * FIRSTTOUCH domains need to free to the correct zdom. When 4366 * enabled this is the zdom of the item. The bucket is the 4367 * cross bucket if the current domain and itemdomain do not match. 4368 */ 4369 cbucket = &cache->uc_freebucket; 4370 #ifdef NUMA 4371 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4372 if (PCPU_GET(domain) != itemdomain) { 4373 cbucket = &cache->uc_crossbucket; 4374 if (cbucket->ucb_cnt != 0) 4375 counter_u64_add(zone->uz_xdomain, 4376 cbucket->ucb_cnt); 4377 } 4378 } 4379 #endif 4380 bucket = cache_bucket_unload(cbucket); 4381 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4382 ("cache_free: Entered with non-full free bucket.")); 4383 4384 /* We are no longer associated with this CPU. */ 4385 critical_exit(); 4386 4387 /* 4388 * Don't let SMR zones operate without a free bucket. Force 4389 * a synchronize and re-use this one. We will only degrade 4390 * to a synchronize every bucket_size items rather than every 4391 * item if we fail to allocate a bucket. 4392 */ 4393 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4394 if (bucket != NULL) 4395 bucket->ub_seq = smr_advance(zone->uz_smr); 4396 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4397 if (newbucket == NULL && bucket != NULL) { 4398 bucket_drain(zone, bucket); 4399 newbucket = bucket; 4400 bucket = NULL; 4401 } 4402 } else if (!bucketdisable) 4403 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4404 4405 if (bucket != NULL) 4406 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4407 4408 critical_enter(); 4409 if ((bucket = newbucket) == NULL) 4410 return (false); 4411 cache = &zone->uz_cpu[curcpu]; 4412 #ifdef NUMA 4413 /* 4414 * Check to see if we should be populating the cross bucket. If it 4415 * is already populated we will fall through and attempt to populate 4416 * the free bucket. 4417 */ 4418 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4419 if (PCPU_GET(domain) != itemdomain && 4420 cache->uc_crossbucket.ucb_bucket == NULL) { 4421 cache_bucket_load_cross(cache, bucket); 4422 return (true); 4423 } 4424 } 4425 #endif 4426 /* 4427 * We may have lost the race to fill the bucket or switched CPUs. 4428 */ 4429 if (cache->uc_freebucket.ucb_bucket != NULL) { 4430 critical_exit(); 4431 bucket_free(zone, bucket, udata); 4432 critical_enter(); 4433 } else 4434 cache_bucket_load_free(cache, bucket); 4435 4436 return (true); 4437 } 4438 4439 static void 4440 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4441 { 4442 uma_keg_t keg; 4443 uma_domain_t dom; 4444 int freei; 4445 4446 keg = zone->uz_keg; 4447 KEG_LOCK_ASSERT(keg, slab->us_domain); 4448 4449 /* Do we need to remove from any lists? */ 4450 dom = &keg->uk_domain[slab->us_domain]; 4451 if (slab->us_freecount + 1 == keg->uk_ipers) { 4452 LIST_REMOVE(slab, us_link); 4453 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4454 dom->ud_free_slabs++; 4455 } else if (slab->us_freecount == 0) { 4456 LIST_REMOVE(slab, us_link); 4457 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4458 } 4459 4460 /* Slab management. */ 4461 freei = slab_item_index(slab, keg, item); 4462 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4463 slab->us_freecount++; 4464 4465 /* Keg statistics. */ 4466 dom->ud_free_items++; 4467 } 4468 4469 static void 4470 zone_release(void *arg, void **bucket, int cnt) 4471 { 4472 struct mtx *lock; 4473 uma_zone_t zone; 4474 uma_slab_t slab; 4475 uma_keg_t keg; 4476 uint8_t *mem; 4477 void *item; 4478 int i; 4479 4480 zone = arg; 4481 keg = zone->uz_keg; 4482 lock = NULL; 4483 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4484 lock = KEG_LOCK(keg, 0); 4485 for (i = 0; i < cnt; i++) { 4486 item = bucket[i]; 4487 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4488 slab = vtoslab((vm_offset_t)item); 4489 } else { 4490 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4491 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4492 slab = hash_sfind(&keg->uk_hash, mem); 4493 else 4494 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4495 } 4496 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4497 if (lock != NULL) 4498 mtx_unlock(lock); 4499 lock = KEG_LOCK(keg, slab->us_domain); 4500 } 4501 slab_free_item(zone, slab, item); 4502 } 4503 if (lock != NULL) 4504 mtx_unlock(lock); 4505 } 4506 4507 /* 4508 * Frees a single item to any zone. 4509 * 4510 * Arguments: 4511 * zone The zone to free to 4512 * item The item we're freeing 4513 * udata User supplied data for the dtor 4514 * skip Skip dtors and finis 4515 */ 4516 static __noinline void 4517 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4518 { 4519 4520 /* 4521 * If a free is sent directly to an SMR zone we have to 4522 * synchronize immediately because the item can instantly 4523 * be reallocated. This should only happen in degenerate 4524 * cases when no memory is available for per-cpu caches. 4525 */ 4526 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4527 smr_synchronize(zone->uz_smr); 4528 4529 item_dtor(zone, item, zone->uz_size, udata, skip); 4530 4531 if (skip < SKIP_FINI && zone->uz_fini) 4532 zone->uz_fini(item, zone->uz_size); 4533 4534 zone->uz_release(zone->uz_arg, &item, 1); 4535 4536 if (skip & SKIP_CNT) 4537 return; 4538 4539 counter_u64_add(zone->uz_frees, 1); 4540 4541 if (zone->uz_max_items > 0) 4542 zone_free_limit(zone, 1); 4543 } 4544 4545 /* See uma.h */ 4546 int 4547 uma_zone_set_max(uma_zone_t zone, int nitems) 4548 { 4549 struct uma_bucket_zone *ubz; 4550 int count; 4551 4552 /* 4553 * XXX This can misbehave if the zone has any allocations with 4554 * no limit and a limit is imposed. There is currently no 4555 * way to clear a limit. 4556 */ 4557 ZONE_LOCK(zone); 4558 ubz = bucket_zone_max(zone, nitems); 4559 count = ubz != NULL ? ubz->ubz_entries : 0; 4560 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 4561 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4562 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4563 zone->uz_max_items = nitems; 4564 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4565 zone_update_caches(zone); 4566 /* We may need to wake waiters. */ 4567 wakeup(&zone->uz_max_items); 4568 ZONE_UNLOCK(zone); 4569 4570 return (nitems); 4571 } 4572 4573 /* See uma.h */ 4574 void 4575 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4576 { 4577 struct uma_bucket_zone *ubz; 4578 int bpcpu; 4579 4580 ZONE_LOCK(zone); 4581 ubz = bucket_zone_max(zone, nitems); 4582 if (ubz != NULL) { 4583 bpcpu = 2; 4584 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4585 /* Count the cross-domain bucket. */ 4586 bpcpu++; 4587 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 4588 zone->uz_bucket_size_max = ubz->ubz_entries; 4589 } else { 4590 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 4591 } 4592 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4593 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4594 zone->uz_bucket_max = nitems / vm_ndomains; 4595 ZONE_UNLOCK(zone); 4596 } 4597 4598 /* See uma.h */ 4599 int 4600 uma_zone_get_max(uma_zone_t zone) 4601 { 4602 int nitems; 4603 4604 nitems = atomic_load_64(&zone->uz_max_items); 4605 4606 return (nitems); 4607 } 4608 4609 /* See uma.h */ 4610 void 4611 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4612 { 4613 4614 ZONE_ASSERT_COLD(zone); 4615 zone->uz_warning = warning; 4616 } 4617 4618 /* See uma.h */ 4619 void 4620 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4621 { 4622 4623 ZONE_ASSERT_COLD(zone); 4624 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4625 } 4626 4627 /* See uma.h */ 4628 int 4629 uma_zone_get_cur(uma_zone_t zone) 4630 { 4631 int64_t nitems; 4632 u_int i; 4633 4634 nitems = 0; 4635 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4636 nitems = counter_u64_fetch(zone->uz_allocs) - 4637 counter_u64_fetch(zone->uz_frees); 4638 CPU_FOREACH(i) 4639 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4640 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4641 4642 return (nitems < 0 ? 0 : nitems); 4643 } 4644 4645 static uint64_t 4646 uma_zone_get_allocs(uma_zone_t zone) 4647 { 4648 uint64_t nitems; 4649 u_int i; 4650 4651 nitems = 0; 4652 if (zone->uz_allocs != EARLY_COUNTER) 4653 nitems = counter_u64_fetch(zone->uz_allocs); 4654 CPU_FOREACH(i) 4655 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4656 4657 return (nitems); 4658 } 4659 4660 static uint64_t 4661 uma_zone_get_frees(uma_zone_t zone) 4662 { 4663 uint64_t nitems; 4664 u_int i; 4665 4666 nitems = 0; 4667 if (zone->uz_frees != EARLY_COUNTER) 4668 nitems = counter_u64_fetch(zone->uz_frees); 4669 CPU_FOREACH(i) 4670 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4671 4672 return (nitems); 4673 } 4674 4675 #ifdef INVARIANTS 4676 /* Used only for KEG_ASSERT_COLD(). */ 4677 static uint64_t 4678 uma_keg_get_allocs(uma_keg_t keg) 4679 { 4680 uma_zone_t z; 4681 uint64_t nitems; 4682 4683 nitems = 0; 4684 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4685 nitems += uma_zone_get_allocs(z); 4686 4687 return (nitems); 4688 } 4689 #endif 4690 4691 /* See uma.h */ 4692 void 4693 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4694 { 4695 uma_keg_t keg; 4696 4697 KEG_GET(zone, keg); 4698 KEG_ASSERT_COLD(keg); 4699 keg->uk_init = uminit; 4700 } 4701 4702 /* See uma.h */ 4703 void 4704 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4705 { 4706 uma_keg_t keg; 4707 4708 KEG_GET(zone, keg); 4709 KEG_ASSERT_COLD(keg); 4710 keg->uk_fini = fini; 4711 } 4712 4713 /* See uma.h */ 4714 void 4715 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4716 { 4717 4718 ZONE_ASSERT_COLD(zone); 4719 zone->uz_init = zinit; 4720 } 4721 4722 /* See uma.h */ 4723 void 4724 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4725 { 4726 4727 ZONE_ASSERT_COLD(zone); 4728 zone->uz_fini = zfini; 4729 } 4730 4731 /* See uma.h */ 4732 void 4733 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4734 { 4735 uma_keg_t keg; 4736 4737 KEG_GET(zone, keg); 4738 KEG_ASSERT_COLD(keg); 4739 keg->uk_freef = freef; 4740 } 4741 4742 /* See uma.h */ 4743 void 4744 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4745 { 4746 uma_keg_t keg; 4747 4748 KEG_GET(zone, keg); 4749 KEG_ASSERT_COLD(keg); 4750 keg->uk_allocf = allocf; 4751 } 4752 4753 /* See uma.h */ 4754 void 4755 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4756 { 4757 4758 ZONE_ASSERT_COLD(zone); 4759 4760 KASSERT(smr != NULL, ("Got NULL smr")); 4761 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4762 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 4763 zone->uz_flags |= UMA_ZONE_SMR; 4764 zone->uz_smr = smr; 4765 zone_update_caches(zone); 4766 } 4767 4768 smr_t 4769 uma_zone_get_smr(uma_zone_t zone) 4770 { 4771 4772 return (zone->uz_smr); 4773 } 4774 4775 /* See uma.h */ 4776 void 4777 uma_zone_reserve(uma_zone_t zone, int items) 4778 { 4779 uma_keg_t keg; 4780 4781 KEG_GET(zone, keg); 4782 KEG_ASSERT_COLD(keg); 4783 keg->uk_reserve = items; 4784 } 4785 4786 /* See uma.h */ 4787 int 4788 uma_zone_reserve_kva(uma_zone_t zone, int count) 4789 { 4790 uma_keg_t keg; 4791 vm_offset_t kva; 4792 u_int pages; 4793 4794 KEG_GET(zone, keg); 4795 KEG_ASSERT_COLD(keg); 4796 ZONE_ASSERT_COLD(zone); 4797 4798 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4799 4800 #ifdef UMA_MD_SMALL_ALLOC 4801 if (keg->uk_ppera > 1) { 4802 #else 4803 if (1) { 4804 #endif 4805 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4806 if (kva == 0) 4807 return (0); 4808 } else 4809 kva = 0; 4810 4811 MPASS(keg->uk_kva == 0); 4812 keg->uk_kva = kva; 4813 keg->uk_offset = 0; 4814 zone->uz_max_items = pages * keg->uk_ipers; 4815 #ifdef UMA_MD_SMALL_ALLOC 4816 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4817 #else 4818 keg->uk_allocf = noobj_alloc; 4819 #endif 4820 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4821 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4822 zone_update_caches(zone); 4823 4824 return (1); 4825 } 4826 4827 /* See uma.h */ 4828 void 4829 uma_prealloc(uma_zone_t zone, int items) 4830 { 4831 struct vm_domainset_iter di; 4832 uma_domain_t dom; 4833 uma_slab_t slab; 4834 uma_keg_t keg; 4835 int aflags, domain, slabs; 4836 4837 KEG_GET(zone, keg); 4838 slabs = howmany(items, keg->uk_ipers); 4839 while (slabs-- > 0) { 4840 aflags = M_NOWAIT; 4841 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4842 &aflags); 4843 for (;;) { 4844 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4845 aflags); 4846 if (slab != NULL) { 4847 dom = &keg->uk_domain[slab->us_domain]; 4848 /* 4849 * keg_alloc_slab() always returns a slab on the 4850 * partial list. 4851 */ 4852 LIST_REMOVE(slab, us_link); 4853 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4854 us_link); 4855 dom->ud_free_slabs++; 4856 KEG_UNLOCK(keg, slab->us_domain); 4857 break; 4858 } 4859 if (vm_domainset_iter_policy(&di, &domain) != 0) 4860 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 4861 } 4862 } 4863 } 4864 4865 /* 4866 * Returns a snapshot of memory consumption in bytes. 4867 */ 4868 size_t 4869 uma_zone_memory(uma_zone_t zone) 4870 { 4871 size_t sz; 4872 int i; 4873 4874 sz = 0; 4875 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 4876 for (i = 0; i < vm_ndomains; i++) 4877 sz += ZDOM_GET(zone, i)->uzd_nitems; 4878 return (sz * zone->uz_size); 4879 } 4880 for (i = 0; i < vm_ndomains; i++) 4881 sz += zone->uz_keg->uk_domain[i].ud_pages; 4882 4883 return (sz * PAGE_SIZE); 4884 } 4885 4886 /* See uma.h */ 4887 void 4888 uma_reclaim(int req) 4889 { 4890 4891 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4892 sx_xlock(&uma_reclaim_lock); 4893 bucket_enable(); 4894 4895 switch (req) { 4896 case UMA_RECLAIM_TRIM: 4897 zone_foreach(zone_trim, NULL); 4898 break; 4899 case UMA_RECLAIM_DRAIN: 4900 case UMA_RECLAIM_DRAIN_CPU: 4901 zone_foreach(zone_drain, NULL); 4902 if (req == UMA_RECLAIM_DRAIN_CPU) { 4903 pcpu_cache_drain_safe(NULL); 4904 zone_foreach(zone_drain, NULL); 4905 } 4906 break; 4907 default: 4908 panic("unhandled reclamation request %d", req); 4909 } 4910 4911 /* 4912 * Some slabs may have been freed but this zone will be visited early 4913 * we visit again so that we can free pages that are empty once other 4914 * zones are drained. We have to do the same for buckets. 4915 */ 4916 zone_drain(slabzones[0], NULL); 4917 zone_drain(slabzones[1], NULL); 4918 bucket_zone_drain(); 4919 sx_xunlock(&uma_reclaim_lock); 4920 } 4921 4922 static volatile int uma_reclaim_needed; 4923 4924 void 4925 uma_reclaim_wakeup(void) 4926 { 4927 4928 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4929 wakeup(uma_reclaim); 4930 } 4931 4932 void 4933 uma_reclaim_worker(void *arg __unused) 4934 { 4935 4936 for (;;) { 4937 sx_xlock(&uma_reclaim_lock); 4938 while (atomic_load_int(&uma_reclaim_needed) == 0) 4939 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4940 hz); 4941 sx_xunlock(&uma_reclaim_lock); 4942 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4943 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4944 atomic_store_int(&uma_reclaim_needed, 0); 4945 /* Don't fire more than once per-second. */ 4946 pause("umarclslp", hz); 4947 } 4948 } 4949 4950 /* See uma.h */ 4951 void 4952 uma_zone_reclaim(uma_zone_t zone, int req) 4953 { 4954 4955 switch (req) { 4956 case UMA_RECLAIM_TRIM: 4957 zone_trim(zone, NULL); 4958 break; 4959 case UMA_RECLAIM_DRAIN: 4960 zone_drain(zone, NULL); 4961 break; 4962 case UMA_RECLAIM_DRAIN_CPU: 4963 pcpu_cache_drain_safe(zone); 4964 zone_drain(zone, NULL); 4965 break; 4966 default: 4967 panic("unhandled reclamation request %d", req); 4968 } 4969 } 4970 4971 /* See uma.h */ 4972 int 4973 uma_zone_exhausted(uma_zone_t zone) 4974 { 4975 4976 return (atomic_load_32(&zone->uz_sleepers) > 0); 4977 } 4978 4979 unsigned long 4980 uma_limit(void) 4981 { 4982 4983 return (uma_kmem_limit); 4984 } 4985 4986 void 4987 uma_set_limit(unsigned long limit) 4988 { 4989 4990 uma_kmem_limit = limit; 4991 } 4992 4993 unsigned long 4994 uma_size(void) 4995 { 4996 4997 return (atomic_load_long(&uma_kmem_total)); 4998 } 4999 5000 long 5001 uma_avail(void) 5002 { 5003 5004 return (uma_kmem_limit - uma_size()); 5005 } 5006 5007 #ifdef DDB 5008 /* 5009 * Generate statistics across both the zone and its per-cpu cache's. Return 5010 * desired statistics if the pointer is non-NULL for that statistic. 5011 * 5012 * Note: does not update the zone statistics, as it can't safely clear the 5013 * per-CPU cache statistic. 5014 * 5015 */ 5016 static void 5017 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 5018 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 5019 { 5020 uma_cache_t cache; 5021 uint64_t allocs, frees, sleeps, xdomain; 5022 int cachefree, cpu; 5023 5024 allocs = frees = sleeps = xdomain = 0; 5025 cachefree = 0; 5026 CPU_FOREACH(cpu) { 5027 cache = &z->uz_cpu[cpu]; 5028 cachefree += cache->uc_allocbucket.ucb_cnt; 5029 cachefree += cache->uc_freebucket.ucb_cnt; 5030 xdomain += cache->uc_crossbucket.ucb_cnt; 5031 cachefree += cache->uc_crossbucket.ucb_cnt; 5032 allocs += cache->uc_allocs; 5033 frees += cache->uc_frees; 5034 } 5035 allocs += counter_u64_fetch(z->uz_allocs); 5036 frees += counter_u64_fetch(z->uz_frees); 5037 xdomain += counter_u64_fetch(z->uz_xdomain); 5038 sleeps += z->uz_sleeps; 5039 if (cachefreep != NULL) 5040 *cachefreep = cachefree; 5041 if (allocsp != NULL) 5042 *allocsp = allocs; 5043 if (freesp != NULL) 5044 *freesp = frees; 5045 if (sleepsp != NULL) 5046 *sleepsp = sleeps; 5047 if (xdomainp != NULL) 5048 *xdomainp = xdomain; 5049 } 5050 #endif /* DDB */ 5051 5052 static int 5053 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 5054 { 5055 uma_keg_t kz; 5056 uma_zone_t z; 5057 int count; 5058 5059 count = 0; 5060 rw_rlock(&uma_rwlock); 5061 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5062 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5063 count++; 5064 } 5065 LIST_FOREACH(z, &uma_cachezones, uz_link) 5066 count++; 5067 5068 rw_runlock(&uma_rwlock); 5069 return (sysctl_handle_int(oidp, &count, 0, req)); 5070 } 5071 5072 static void 5073 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 5074 struct uma_percpu_stat *ups, bool internal) 5075 { 5076 uma_zone_domain_t zdom; 5077 uma_cache_t cache; 5078 int i; 5079 5080 for (i = 0; i < vm_ndomains; i++) { 5081 zdom = ZDOM_GET(z, i); 5082 uth->uth_zone_free += zdom->uzd_nitems; 5083 } 5084 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 5085 uth->uth_frees = counter_u64_fetch(z->uz_frees); 5086 uth->uth_fails = counter_u64_fetch(z->uz_fails); 5087 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 5088 uth->uth_sleeps = z->uz_sleeps; 5089 5090 for (i = 0; i < mp_maxid + 1; i++) { 5091 bzero(&ups[i], sizeof(*ups)); 5092 if (internal || CPU_ABSENT(i)) 5093 continue; 5094 cache = &z->uz_cpu[i]; 5095 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 5096 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5097 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5098 ups[i].ups_allocs = cache->uc_allocs; 5099 ups[i].ups_frees = cache->uc_frees; 5100 } 5101 } 5102 5103 static int 5104 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5105 { 5106 struct uma_stream_header ush; 5107 struct uma_type_header uth; 5108 struct uma_percpu_stat *ups; 5109 struct sbuf sbuf; 5110 uma_keg_t kz; 5111 uma_zone_t z; 5112 uint64_t items; 5113 uint32_t kfree, pages; 5114 int count, error, i; 5115 5116 error = sysctl_wire_old_buffer(req, 0); 5117 if (error != 0) 5118 return (error); 5119 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5120 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5121 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5122 5123 count = 0; 5124 rw_rlock(&uma_rwlock); 5125 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5126 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5127 count++; 5128 } 5129 5130 LIST_FOREACH(z, &uma_cachezones, uz_link) 5131 count++; 5132 5133 /* 5134 * Insert stream header. 5135 */ 5136 bzero(&ush, sizeof(ush)); 5137 ush.ush_version = UMA_STREAM_VERSION; 5138 ush.ush_maxcpus = (mp_maxid + 1); 5139 ush.ush_count = count; 5140 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5141 5142 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5143 kfree = pages = 0; 5144 for (i = 0; i < vm_ndomains; i++) { 5145 kfree += kz->uk_domain[i].ud_free_items; 5146 pages += kz->uk_domain[i].ud_pages; 5147 } 5148 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5149 bzero(&uth, sizeof(uth)); 5150 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5151 uth.uth_align = kz->uk_align; 5152 uth.uth_size = kz->uk_size; 5153 uth.uth_rsize = kz->uk_rsize; 5154 if (z->uz_max_items > 0) { 5155 items = UZ_ITEMS_COUNT(z->uz_items); 5156 uth.uth_pages = (items / kz->uk_ipers) * 5157 kz->uk_ppera; 5158 } else 5159 uth.uth_pages = pages; 5160 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5161 kz->uk_ppera; 5162 uth.uth_limit = z->uz_max_items; 5163 uth.uth_keg_free = kfree; 5164 5165 /* 5166 * A zone is secondary is it is not the first entry 5167 * on the keg's zone list. 5168 */ 5169 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5170 (LIST_FIRST(&kz->uk_zones) != z)) 5171 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5172 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5173 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5174 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5175 for (i = 0; i < mp_maxid + 1; i++) 5176 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5177 } 5178 } 5179 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5180 bzero(&uth, sizeof(uth)); 5181 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5182 uth.uth_size = z->uz_size; 5183 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5184 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5185 for (i = 0; i < mp_maxid + 1; i++) 5186 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5187 } 5188 5189 rw_runlock(&uma_rwlock); 5190 error = sbuf_finish(&sbuf); 5191 sbuf_delete(&sbuf); 5192 free(ups, M_TEMP); 5193 return (error); 5194 } 5195 5196 int 5197 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5198 { 5199 uma_zone_t zone = *(uma_zone_t *)arg1; 5200 int error, max; 5201 5202 max = uma_zone_get_max(zone); 5203 error = sysctl_handle_int(oidp, &max, 0, req); 5204 if (error || !req->newptr) 5205 return (error); 5206 5207 uma_zone_set_max(zone, max); 5208 5209 return (0); 5210 } 5211 5212 int 5213 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5214 { 5215 uma_zone_t zone; 5216 int cur; 5217 5218 /* 5219 * Some callers want to add sysctls for global zones that 5220 * may not yet exist so they pass a pointer to a pointer. 5221 */ 5222 if (arg2 == 0) 5223 zone = *(uma_zone_t *)arg1; 5224 else 5225 zone = arg1; 5226 cur = uma_zone_get_cur(zone); 5227 return (sysctl_handle_int(oidp, &cur, 0, req)); 5228 } 5229 5230 static int 5231 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5232 { 5233 uma_zone_t zone = arg1; 5234 uint64_t cur; 5235 5236 cur = uma_zone_get_allocs(zone); 5237 return (sysctl_handle_64(oidp, &cur, 0, req)); 5238 } 5239 5240 static int 5241 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5242 { 5243 uma_zone_t zone = arg1; 5244 uint64_t cur; 5245 5246 cur = uma_zone_get_frees(zone); 5247 return (sysctl_handle_64(oidp, &cur, 0, req)); 5248 } 5249 5250 static int 5251 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5252 { 5253 struct sbuf sbuf; 5254 uma_zone_t zone = arg1; 5255 int error; 5256 5257 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5258 if (zone->uz_flags != 0) 5259 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5260 else 5261 sbuf_printf(&sbuf, "0"); 5262 error = sbuf_finish(&sbuf); 5263 sbuf_delete(&sbuf); 5264 5265 return (error); 5266 } 5267 5268 static int 5269 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5270 { 5271 uma_keg_t keg = arg1; 5272 int avail, effpct, total; 5273 5274 total = keg->uk_ppera * PAGE_SIZE; 5275 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5276 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5277 /* 5278 * We consider the client's requested size and alignment here, not the 5279 * real size determination uk_rsize, because we also adjust the real 5280 * size for internal implementation reasons (max bitset size). 5281 */ 5282 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5283 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5284 avail *= mp_maxid + 1; 5285 effpct = 100 * avail / total; 5286 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5287 } 5288 5289 static int 5290 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5291 { 5292 uma_zone_t zone = arg1; 5293 uint64_t cur; 5294 5295 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5296 return (sysctl_handle_64(oidp, &cur, 0, req)); 5297 } 5298 5299 #ifdef INVARIANTS 5300 static uma_slab_t 5301 uma_dbg_getslab(uma_zone_t zone, void *item) 5302 { 5303 uma_slab_t slab; 5304 uma_keg_t keg; 5305 uint8_t *mem; 5306 5307 /* 5308 * It is safe to return the slab here even though the 5309 * zone is unlocked because the item's allocation state 5310 * essentially holds a reference. 5311 */ 5312 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5313 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5314 return (NULL); 5315 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5316 return (vtoslab((vm_offset_t)mem)); 5317 keg = zone->uz_keg; 5318 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5319 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5320 KEG_LOCK(keg, 0); 5321 slab = hash_sfind(&keg->uk_hash, mem); 5322 KEG_UNLOCK(keg, 0); 5323 5324 return (slab); 5325 } 5326 5327 static bool 5328 uma_dbg_zskip(uma_zone_t zone, void *mem) 5329 { 5330 5331 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5332 return (true); 5333 5334 return (uma_dbg_kskip(zone->uz_keg, mem)); 5335 } 5336 5337 static bool 5338 uma_dbg_kskip(uma_keg_t keg, void *mem) 5339 { 5340 uintptr_t idx; 5341 5342 if (dbg_divisor == 0) 5343 return (true); 5344 5345 if (dbg_divisor == 1) 5346 return (false); 5347 5348 idx = (uintptr_t)mem >> PAGE_SHIFT; 5349 if (keg->uk_ipers > 1) { 5350 idx *= keg->uk_ipers; 5351 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5352 } 5353 5354 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5355 counter_u64_add(uma_skip_cnt, 1); 5356 return (true); 5357 } 5358 counter_u64_add(uma_dbg_cnt, 1); 5359 5360 return (false); 5361 } 5362 5363 /* 5364 * Set up the slab's freei data such that uma_dbg_free can function. 5365 * 5366 */ 5367 static void 5368 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5369 { 5370 uma_keg_t keg; 5371 int freei; 5372 5373 if (slab == NULL) { 5374 slab = uma_dbg_getslab(zone, item); 5375 if (slab == NULL) 5376 panic("uma: item %p did not belong to zone %s", 5377 item, zone->uz_name); 5378 } 5379 keg = zone->uz_keg; 5380 freei = slab_item_index(slab, keg, item); 5381 5382 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5383 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)", 5384 item, zone, zone->uz_name, slab, freei); 5385 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5386 } 5387 5388 /* 5389 * Verifies freed addresses. Checks for alignment, valid slab membership 5390 * and duplicate frees. 5391 * 5392 */ 5393 static void 5394 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5395 { 5396 uma_keg_t keg; 5397 int freei; 5398 5399 if (slab == NULL) { 5400 slab = uma_dbg_getslab(zone, item); 5401 if (slab == NULL) 5402 panic("uma: Freed item %p did not belong to zone %s", 5403 item, zone->uz_name); 5404 } 5405 keg = zone->uz_keg; 5406 freei = slab_item_index(slab, keg, item); 5407 5408 if (freei >= keg->uk_ipers) 5409 panic("Invalid free of %p from zone %p(%s) slab %p(%d)", 5410 item, zone, zone->uz_name, slab, freei); 5411 5412 if (slab_item(slab, keg, freei) != item) 5413 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)", 5414 item, zone, zone->uz_name, slab, freei); 5415 5416 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5417 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)", 5418 item, zone, zone->uz_name, slab, freei); 5419 5420 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5421 } 5422 #endif /* INVARIANTS */ 5423 5424 #ifdef DDB 5425 static int64_t 5426 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5427 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5428 { 5429 uint64_t frees; 5430 int i; 5431 5432 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5433 *allocs = counter_u64_fetch(z->uz_allocs); 5434 frees = counter_u64_fetch(z->uz_frees); 5435 *sleeps = z->uz_sleeps; 5436 *cachefree = 0; 5437 *xdomain = 0; 5438 } else 5439 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5440 xdomain); 5441 for (i = 0; i < vm_ndomains; i++) { 5442 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5443 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5444 (LIST_FIRST(&kz->uk_zones) != z))) 5445 *cachefree += kz->uk_domain[i].ud_free_items; 5446 } 5447 *used = *allocs - frees; 5448 return (((int64_t)*used + *cachefree) * kz->uk_size); 5449 } 5450 5451 DB_SHOW_COMMAND(uma, db_show_uma) 5452 { 5453 const char *fmt_hdr, *fmt_entry; 5454 uma_keg_t kz; 5455 uma_zone_t z; 5456 uint64_t allocs, used, sleeps, xdomain; 5457 long cachefree; 5458 /* variables for sorting */ 5459 uma_keg_t cur_keg; 5460 uma_zone_t cur_zone, last_zone; 5461 int64_t cur_size, last_size, size; 5462 int ties; 5463 5464 /* /i option produces machine-parseable CSV output */ 5465 if (modif[0] == 'i') { 5466 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5467 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5468 } else { 5469 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5470 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5471 } 5472 5473 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5474 "Sleeps", "Bucket", "Total Mem", "XFree"); 5475 5476 /* Sort the zones with largest size first. */ 5477 last_zone = NULL; 5478 last_size = INT64_MAX; 5479 for (;;) { 5480 cur_zone = NULL; 5481 cur_size = -1; 5482 ties = 0; 5483 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5484 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5485 /* 5486 * In the case of size ties, print out zones 5487 * in the order they are encountered. That is, 5488 * when we encounter the most recently output 5489 * zone, we have already printed all preceding 5490 * ties, and we must print all following ties. 5491 */ 5492 if (z == last_zone) { 5493 ties = 1; 5494 continue; 5495 } 5496 size = get_uma_stats(kz, z, &allocs, &used, 5497 &sleeps, &cachefree, &xdomain); 5498 if (size > cur_size && size < last_size + ties) 5499 { 5500 cur_size = size; 5501 cur_zone = z; 5502 cur_keg = kz; 5503 } 5504 } 5505 } 5506 if (cur_zone == NULL) 5507 break; 5508 5509 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5510 &sleeps, &cachefree, &xdomain); 5511 db_printf(fmt_entry, cur_zone->uz_name, 5512 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5513 (uintmax_t)allocs, (uintmax_t)sleeps, 5514 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5515 xdomain); 5516 5517 if (db_pager_quit) 5518 return; 5519 last_zone = cur_zone; 5520 last_size = cur_size; 5521 } 5522 } 5523 5524 DB_SHOW_COMMAND(umacache, db_show_umacache) 5525 { 5526 uma_zone_t z; 5527 uint64_t allocs, frees; 5528 long cachefree; 5529 int i; 5530 5531 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5532 "Requests", "Bucket"); 5533 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5534 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5535 for (i = 0; i < vm_ndomains; i++) 5536 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5537 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5538 z->uz_name, (uintmax_t)z->uz_size, 5539 (intmax_t)(allocs - frees), cachefree, 5540 (uintmax_t)allocs, z->uz_bucket_size); 5541 if (db_pager_quit) 5542 return; 5543 } 5544 } 5545 #endif /* DDB */ 5546