1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/bitset.h> 67 #include <sys/kernel.h> 68 #include <sys/types.h> 69 #include <sys/queue.h> 70 #include <sys/malloc.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/sysctl.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/sched.h> 79 #include <sys/smp.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_pageout.h> 86 #include <vm/vm_param.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/uma.h> 91 #include <vm/uma_int.h> 92 #include <vm/uma_dbg.h> 93 94 #include <ddb/ddb.h> 95 96 #ifdef DEBUG_MEMGUARD 97 #include <vm/memguard.h> 98 #endif 99 100 /* 101 * This is the zone and keg from which all zones are spawned. The idea is that 102 * even the zone & keg heads are allocated from the allocator, so we use the 103 * bss section to bootstrap us. 104 */ 105 static struct uma_keg masterkeg; 106 static struct uma_zone masterzone_k; 107 static struct uma_zone masterzone_z; 108 static uma_zone_t kegs = &masterzone_k; 109 static uma_zone_t zones = &masterzone_z; 110 111 /* This is the zone from which all of uma_slab_t's are allocated. */ 112 static uma_zone_t slabzone; 113 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 114 115 /* 116 * The initial hash tables come out of this zone so they can be allocated 117 * prior to malloc coming up. 118 */ 119 static uma_zone_t hashzone; 120 121 /* The boot-time adjusted value for cache line alignment. */ 122 int uma_align_cache = 64 - 1; 123 124 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 125 126 /* 127 * Are we allowed to allocate buckets? 128 */ 129 static int bucketdisable = 1; 130 131 /* Linked list of all kegs in the system */ 132 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 133 134 /* Linked list of all cache-only zones in the system */ 135 static LIST_HEAD(,uma_zone) uma_cachezones = 136 LIST_HEAD_INITIALIZER(uma_cachezones); 137 138 /* This mutex protects the keg list */ 139 static struct mtx_padalign uma_mtx; 140 141 /* Linked list of boot time pages */ 142 static LIST_HEAD(,uma_slab) uma_boot_pages = 143 LIST_HEAD_INITIALIZER(uma_boot_pages); 144 145 /* This mutex protects the boot time pages list */ 146 static struct mtx_padalign uma_boot_pages_mtx; 147 148 /* Is the VM done starting up? */ 149 static int booted = 0; 150 #define UMA_STARTUP 1 151 #define UMA_STARTUP2 2 152 153 /* 154 * Only mbuf clusters use ref zones. Just provide enough references 155 * to support the one user. New code should not use the ref facility. 156 */ 157 static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES; 158 159 /* 160 * This is the handle used to schedule events that need to happen 161 * outside of the allocation fast path. 162 */ 163 static struct callout uma_callout; 164 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 165 166 /* 167 * This structure is passed as the zone ctor arg so that I don't have to create 168 * a special allocation function just for zones. 169 */ 170 struct uma_zctor_args { 171 const char *name; 172 size_t size; 173 uma_ctor ctor; 174 uma_dtor dtor; 175 uma_init uminit; 176 uma_fini fini; 177 uma_import import; 178 uma_release release; 179 void *arg; 180 uma_keg_t keg; 181 int align; 182 uint32_t flags; 183 }; 184 185 struct uma_kctor_args { 186 uma_zone_t zone; 187 size_t size; 188 uma_init uminit; 189 uma_fini fini; 190 int align; 191 uint32_t flags; 192 }; 193 194 struct uma_bucket_zone { 195 uma_zone_t ubz_zone; 196 char *ubz_name; 197 int ubz_entries; /* Number of items it can hold. */ 198 int ubz_maxsize; /* Maximum allocation size per-item. */ 199 }; 200 201 /* 202 * Compute the actual number of bucket entries to pack them in power 203 * of two sizes for more efficient space utilization. 204 */ 205 #define BUCKET_SIZE(n) \ 206 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 207 208 #define BUCKET_MAX BUCKET_SIZE(128) 209 210 struct uma_bucket_zone bucket_zones[] = { 211 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 212 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 213 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 214 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 215 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 216 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 217 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 218 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 219 { NULL, NULL, 0} 220 }; 221 222 /* 223 * Flags and enumerations to be passed to internal functions. 224 */ 225 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 226 227 /* Prototypes.. */ 228 229 static void *noobj_alloc(uma_zone_t, int, uint8_t *, int); 230 static void *page_alloc(uma_zone_t, int, uint8_t *, int); 231 static void *startup_alloc(uma_zone_t, int, uint8_t *, int); 232 static void page_free(void *, int, uint8_t); 233 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 234 static void cache_drain(uma_zone_t); 235 static void bucket_drain(uma_zone_t, uma_bucket_t); 236 static void bucket_cache_drain(uma_zone_t zone); 237 static int keg_ctor(void *, int, void *, int); 238 static void keg_dtor(void *, int, void *); 239 static int zone_ctor(void *, int, void *, int); 240 static void zone_dtor(void *, int, void *); 241 static int zero_init(void *, int, int); 242 static void keg_small_init(uma_keg_t keg); 243 static void keg_large_init(uma_keg_t keg); 244 static void zone_foreach(void (*zfunc)(uma_zone_t)); 245 static void zone_timeout(uma_zone_t zone); 246 static int hash_alloc(struct uma_hash *); 247 static int hash_expand(struct uma_hash *, struct uma_hash *); 248 static void hash_free(struct uma_hash *hash); 249 static void uma_timeout(void *); 250 static void uma_startup3(void); 251 static void *zone_alloc_item(uma_zone_t, void *, int); 252 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 253 static void bucket_enable(void); 254 static void bucket_init(void); 255 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 256 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 257 static void bucket_zone_drain(void); 258 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 259 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 260 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 261 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 262 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 263 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 264 uma_fini fini, int align, uint32_t flags); 265 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 266 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 267 static void uma_zero_item(void *item, uma_zone_t zone); 268 269 void uma_print_zone(uma_zone_t); 270 void uma_print_stats(void); 271 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 272 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 273 274 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 275 276 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 277 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 278 279 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 280 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 281 282 static int zone_warnings = 1; 283 TUNABLE_INT("vm.zone_warnings", &zone_warnings); 284 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0, 285 "Warn when UMA zones becomes full"); 286 287 /* 288 * This routine checks to see whether or not it's safe to enable buckets. 289 */ 290 static void 291 bucket_enable(void) 292 { 293 bucketdisable = vm_page_count_min(); 294 } 295 296 /* 297 * Initialize bucket_zones, the array of zones of buckets of various sizes. 298 * 299 * For each zone, calculate the memory required for each bucket, consisting 300 * of the header and an array of pointers. 301 */ 302 static void 303 bucket_init(void) 304 { 305 struct uma_bucket_zone *ubz; 306 int size; 307 int i; 308 309 for (i = 0, ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 310 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 311 size += sizeof(void *) * ubz->ubz_entries; 312 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 313 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 314 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 315 } 316 } 317 318 /* 319 * Given a desired number of entries for a bucket, return the zone from which 320 * to allocate the bucket. 321 */ 322 static struct uma_bucket_zone * 323 bucket_zone_lookup(int entries) 324 { 325 struct uma_bucket_zone *ubz; 326 327 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 328 if (ubz->ubz_entries >= entries) 329 return (ubz); 330 ubz--; 331 return (ubz); 332 } 333 334 static int 335 bucket_select(int size) 336 { 337 struct uma_bucket_zone *ubz; 338 339 ubz = &bucket_zones[0]; 340 if (size > ubz->ubz_maxsize) 341 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 342 343 for (; ubz->ubz_entries != 0; ubz++) 344 if (ubz->ubz_maxsize < size) 345 break; 346 ubz--; 347 return (ubz->ubz_entries); 348 } 349 350 static uma_bucket_t 351 bucket_alloc(uma_zone_t zone, void *udata, int flags) 352 { 353 struct uma_bucket_zone *ubz; 354 uma_bucket_t bucket; 355 356 /* 357 * This is to stop us from allocating per cpu buckets while we're 358 * running out of vm.boot_pages. Otherwise, we would exhaust the 359 * boot pages. This also prevents us from allocating buckets in 360 * low memory situations. 361 */ 362 if (bucketdisable) 363 return (NULL); 364 /* 365 * To limit bucket recursion we store the original zone flags 366 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 367 * NOVM flag to persist even through deep recursions. We also 368 * store ZFLAG_BUCKET once we have recursed attempting to allocate 369 * a bucket for a bucket zone so we do not allow infinite bucket 370 * recursion. This cookie will even persist to frees of unused 371 * buckets via the allocation path or bucket allocations in the 372 * free path. 373 */ 374 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 375 udata = (void *)(uintptr_t)zone->uz_flags; 376 else { 377 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 378 return (NULL); 379 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 380 } 381 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 382 flags |= M_NOVM; 383 ubz = bucket_zone_lookup(zone->uz_count); 384 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 385 if (bucket) { 386 #ifdef INVARIANTS 387 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 388 #endif 389 bucket->ub_cnt = 0; 390 bucket->ub_entries = ubz->ubz_entries; 391 } 392 393 return (bucket); 394 } 395 396 static void 397 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 398 { 399 struct uma_bucket_zone *ubz; 400 401 KASSERT(bucket->ub_cnt == 0, 402 ("bucket_free: Freeing a non free bucket.")); 403 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 404 udata = (void *)(uintptr_t)zone->uz_flags; 405 ubz = bucket_zone_lookup(bucket->ub_entries); 406 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 407 } 408 409 static void 410 bucket_zone_drain(void) 411 { 412 struct uma_bucket_zone *ubz; 413 414 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 415 zone_drain(ubz->ubz_zone); 416 } 417 418 static void 419 zone_log_warning(uma_zone_t zone) 420 { 421 static const struct timeval warninterval = { 300, 0 }; 422 423 if (!zone_warnings || zone->uz_warning == NULL) 424 return; 425 426 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 427 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 428 } 429 430 static void 431 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 432 { 433 uma_klink_t klink; 434 435 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 436 kegfn(klink->kl_keg); 437 } 438 439 /* 440 * Routine called by timeout which is used to fire off some time interval 441 * based calculations. (stats, hash size, etc.) 442 * 443 * Arguments: 444 * arg Unused 445 * 446 * Returns: 447 * Nothing 448 */ 449 static void 450 uma_timeout(void *unused) 451 { 452 bucket_enable(); 453 zone_foreach(zone_timeout); 454 455 /* Reschedule this event */ 456 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 457 } 458 459 /* 460 * Routine to perform timeout driven calculations. This expands the 461 * hashes and does per cpu statistics aggregation. 462 * 463 * Returns nothing. 464 */ 465 static void 466 keg_timeout(uma_keg_t keg) 467 { 468 469 KEG_LOCK(keg); 470 /* 471 * Expand the keg hash table. 472 * 473 * This is done if the number of slabs is larger than the hash size. 474 * What I'm trying to do here is completely reduce collisions. This 475 * may be a little aggressive. Should I allow for two collisions max? 476 */ 477 if (keg->uk_flags & UMA_ZONE_HASH && 478 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 479 struct uma_hash newhash; 480 struct uma_hash oldhash; 481 int ret; 482 483 /* 484 * This is so involved because allocating and freeing 485 * while the keg lock is held will lead to deadlock. 486 * I have to do everything in stages and check for 487 * races. 488 */ 489 newhash = keg->uk_hash; 490 KEG_UNLOCK(keg); 491 ret = hash_alloc(&newhash); 492 KEG_LOCK(keg); 493 if (ret) { 494 if (hash_expand(&keg->uk_hash, &newhash)) { 495 oldhash = keg->uk_hash; 496 keg->uk_hash = newhash; 497 } else 498 oldhash = newhash; 499 500 KEG_UNLOCK(keg); 501 hash_free(&oldhash); 502 return; 503 } 504 } 505 KEG_UNLOCK(keg); 506 } 507 508 static void 509 zone_timeout(uma_zone_t zone) 510 { 511 512 zone_foreach_keg(zone, &keg_timeout); 513 } 514 515 /* 516 * Allocate and zero fill the next sized hash table from the appropriate 517 * backing store. 518 * 519 * Arguments: 520 * hash A new hash structure with the old hash size in uh_hashsize 521 * 522 * Returns: 523 * 1 on sucess and 0 on failure. 524 */ 525 static int 526 hash_alloc(struct uma_hash *hash) 527 { 528 int oldsize; 529 int alloc; 530 531 oldsize = hash->uh_hashsize; 532 533 /* We're just going to go to a power of two greater */ 534 if (oldsize) { 535 hash->uh_hashsize = oldsize * 2; 536 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 537 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 538 M_UMAHASH, M_NOWAIT); 539 } else { 540 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 541 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 542 M_WAITOK); 543 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 544 } 545 if (hash->uh_slab_hash) { 546 bzero(hash->uh_slab_hash, alloc); 547 hash->uh_hashmask = hash->uh_hashsize - 1; 548 return (1); 549 } 550 551 return (0); 552 } 553 554 /* 555 * Expands the hash table for HASH zones. This is done from zone_timeout 556 * to reduce collisions. This must not be done in the regular allocation 557 * path, otherwise, we can recurse on the vm while allocating pages. 558 * 559 * Arguments: 560 * oldhash The hash you want to expand 561 * newhash The hash structure for the new table 562 * 563 * Returns: 564 * Nothing 565 * 566 * Discussion: 567 */ 568 static int 569 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 570 { 571 uma_slab_t slab; 572 int hval; 573 int i; 574 575 if (!newhash->uh_slab_hash) 576 return (0); 577 578 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 579 return (0); 580 581 /* 582 * I need to investigate hash algorithms for resizing without a 583 * full rehash. 584 */ 585 586 for (i = 0; i < oldhash->uh_hashsize; i++) 587 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 588 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 589 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 590 hval = UMA_HASH(newhash, slab->us_data); 591 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 592 slab, us_hlink); 593 } 594 595 return (1); 596 } 597 598 /* 599 * Free the hash bucket to the appropriate backing store. 600 * 601 * Arguments: 602 * slab_hash The hash bucket we're freeing 603 * hashsize The number of entries in that hash bucket 604 * 605 * Returns: 606 * Nothing 607 */ 608 static void 609 hash_free(struct uma_hash *hash) 610 { 611 if (hash->uh_slab_hash == NULL) 612 return; 613 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 614 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 615 else 616 free(hash->uh_slab_hash, M_UMAHASH); 617 } 618 619 /* 620 * Frees all outstanding items in a bucket 621 * 622 * Arguments: 623 * zone The zone to free to, must be unlocked. 624 * bucket The free/alloc bucket with items, cpu queue must be locked. 625 * 626 * Returns: 627 * Nothing 628 */ 629 630 static void 631 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 632 { 633 int i; 634 635 if (bucket == NULL) 636 return; 637 638 if (zone->uz_fini) 639 for (i = 0; i < bucket->ub_cnt; i++) 640 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 641 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 642 bucket->ub_cnt = 0; 643 } 644 645 /* 646 * Drains the per cpu caches for a zone. 647 * 648 * NOTE: This may only be called while the zone is being turn down, and not 649 * during normal operation. This is necessary in order that we do not have 650 * to migrate CPUs to drain the per-CPU caches. 651 * 652 * Arguments: 653 * zone The zone to drain, must be unlocked. 654 * 655 * Returns: 656 * Nothing 657 */ 658 static void 659 cache_drain(uma_zone_t zone) 660 { 661 uma_cache_t cache; 662 int cpu; 663 664 /* 665 * XXX: It is safe to not lock the per-CPU caches, because we're 666 * tearing down the zone anyway. I.e., there will be no further use 667 * of the caches at this point. 668 * 669 * XXX: It would good to be able to assert that the zone is being 670 * torn down to prevent improper use of cache_drain(). 671 * 672 * XXX: We lock the zone before passing into bucket_cache_drain() as 673 * it is used elsewhere. Should the tear-down path be made special 674 * there in some form? 675 */ 676 CPU_FOREACH(cpu) { 677 cache = &zone->uz_cpu[cpu]; 678 bucket_drain(zone, cache->uc_allocbucket); 679 bucket_drain(zone, cache->uc_freebucket); 680 if (cache->uc_allocbucket != NULL) 681 bucket_free(zone, cache->uc_allocbucket, NULL); 682 if (cache->uc_freebucket != NULL) 683 bucket_free(zone, cache->uc_freebucket, NULL); 684 cache->uc_allocbucket = cache->uc_freebucket = NULL; 685 } 686 ZONE_LOCK(zone); 687 bucket_cache_drain(zone); 688 ZONE_UNLOCK(zone); 689 } 690 691 static void 692 cache_shrink(uma_zone_t zone) 693 { 694 695 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 696 return; 697 698 ZONE_LOCK(zone); 699 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 700 ZONE_UNLOCK(zone); 701 } 702 703 static void 704 cache_drain_safe_cpu(uma_zone_t zone) 705 { 706 uma_cache_t cache; 707 uma_bucket_t b1, b2; 708 709 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 710 return; 711 712 b1 = b2 = NULL; 713 ZONE_LOCK(zone); 714 critical_enter(); 715 cache = &zone->uz_cpu[curcpu]; 716 if (cache->uc_allocbucket) { 717 if (cache->uc_allocbucket->ub_cnt != 0) 718 LIST_INSERT_HEAD(&zone->uz_buckets, 719 cache->uc_allocbucket, ub_link); 720 else 721 b1 = cache->uc_allocbucket; 722 cache->uc_allocbucket = NULL; 723 } 724 if (cache->uc_freebucket) { 725 if (cache->uc_freebucket->ub_cnt != 0) 726 LIST_INSERT_HEAD(&zone->uz_buckets, 727 cache->uc_freebucket, ub_link); 728 else 729 b2 = cache->uc_freebucket; 730 cache->uc_freebucket = NULL; 731 } 732 critical_exit(); 733 ZONE_UNLOCK(zone); 734 if (b1) 735 bucket_free(zone, b1, NULL); 736 if (b2) 737 bucket_free(zone, b2, NULL); 738 } 739 740 /* 741 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 742 * This is an expensive call because it needs to bind to all CPUs 743 * one by one and enter a critical section on each of them in order 744 * to safely access their cache buckets. 745 * Zone lock must not be held on call this function. 746 */ 747 static void 748 cache_drain_safe(uma_zone_t zone) 749 { 750 int cpu; 751 752 /* 753 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 754 */ 755 if (zone) 756 cache_shrink(zone); 757 else 758 zone_foreach(cache_shrink); 759 760 CPU_FOREACH(cpu) { 761 thread_lock(curthread); 762 sched_bind(curthread, cpu); 763 thread_unlock(curthread); 764 765 if (zone) 766 cache_drain_safe_cpu(zone); 767 else 768 zone_foreach(cache_drain_safe_cpu); 769 } 770 thread_lock(curthread); 771 sched_unbind(curthread); 772 thread_unlock(curthread); 773 } 774 775 /* 776 * Drain the cached buckets from a zone. Expects a locked zone on entry. 777 */ 778 static void 779 bucket_cache_drain(uma_zone_t zone) 780 { 781 uma_bucket_t bucket; 782 783 /* 784 * Drain the bucket queues and free the buckets, we just keep two per 785 * cpu (alloc/free). 786 */ 787 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 788 LIST_REMOVE(bucket, ub_link); 789 ZONE_UNLOCK(zone); 790 bucket_drain(zone, bucket); 791 bucket_free(zone, bucket, NULL); 792 ZONE_LOCK(zone); 793 } 794 795 /* 796 * Shrink further bucket sizes. Price of single zone lock collision 797 * is probably lower then price of global cache drain. 798 */ 799 if (zone->uz_count > zone->uz_count_min) 800 zone->uz_count--; 801 } 802 803 static void 804 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 805 { 806 uint8_t *mem; 807 int i; 808 uint8_t flags; 809 810 mem = slab->us_data; 811 flags = slab->us_flags; 812 i = start; 813 if (keg->uk_fini != NULL) { 814 for (i--; i > -1; i--) 815 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 816 keg->uk_size); 817 } 818 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 819 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 820 #ifdef UMA_DEBUG 821 printf("%s: Returning %d bytes.\n", keg->uk_name, 822 PAGE_SIZE * keg->uk_ppera); 823 #endif 824 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 825 } 826 827 /* 828 * Frees pages from a keg back to the system. This is done on demand from 829 * the pageout daemon. 830 * 831 * Returns nothing. 832 */ 833 static void 834 keg_drain(uma_keg_t keg) 835 { 836 struct slabhead freeslabs = { 0 }; 837 uma_slab_t slab; 838 uma_slab_t n; 839 840 /* 841 * We don't want to take pages from statically allocated kegs at this 842 * time 843 */ 844 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 845 return; 846 847 #ifdef UMA_DEBUG 848 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 849 #endif 850 KEG_LOCK(keg); 851 if (keg->uk_free == 0) 852 goto finished; 853 854 slab = LIST_FIRST(&keg->uk_free_slab); 855 while (slab) { 856 n = LIST_NEXT(slab, us_link); 857 858 /* We have no where to free these to */ 859 if (slab->us_flags & UMA_SLAB_BOOT) { 860 slab = n; 861 continue; 862 } 863 864 LIST_REMOVE(slab, us_link); 865 keg->uk_pages -= keg->uk_ppera; 866 keg->uk_free -= keg->uk_ipers; 867 868 if (keg->uk_flags & UMA_ZONE_HASH) 869 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 870 871 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 872 873 slab = n; 874 } 875 finished: 876 KEG_UNLOCK(keg); 877 878 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 879 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 880 keg_free_slab(keg, slab, keg->uk_ipers); 881 } 882 } 883 884 static void 885 zone_drain_wait(uma_zone_t zone, int waitok) 886 { 887 888 /* 889 * Set draining to interlock with zone_dtor() so we can release our 890 * locks as we go. Only dtor() should do a WAITOK call since it 891 * is the only call that knows the structure will still be available 892 * when it wakes up. 893 */ 894 ZONE_LOCK(zone); 895 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 896 if (waitok == M_NOWAIT) 897 goto out; 898 mtx_unlock(&uma_mtx); 899 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 900 mtx_lock(&uma_mtx); 901 } 902 zone->uz_flags |= UMA_ZFLAG_DRAINING; 903 bucket_cache_drain(zone); 904 ZONE_UNLOCK(zone); 905 /* 906 * The DRAINING flag protects us from being freed while 907 * we're running. Normally the uma_mtx would protect us but we 908 * must be able to release and acquire the right lock for each keg. 909 */ 910 zone_foreach_keg(zone, &keg_drain); 911 ZONE_LOCK(zone); 912 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 913 wakeup(zone); 914 out: 915 ZONE_UNLOCK(zone); 916 } 917 918 void 919 zone_drain(uma_zone_t zone) 920 { 921 922 zone_drain_wait(zone, M_NOWAIT); 923 } 924 925 /* 926 * Allocate a new slab for a keg. This does not insert the slab onto a list. 927 * 928 * Arguments: 929 * wait Shall we wait? 930 * 931 * Returns: 932 * The slab that was allocated or NULL if there is no memory and the 933 * caller specified M_NOWAIT. 934 */ 935 static uma_slab_t 936 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 937 { 938 uma_slabrefcnt_t slabref; 939 uma_alloc allocf; 940 uma_slab_t slab; 941 uint8_t *mem; 942 uint8_t flags; 943 int i; 944 945 mtx_assert(&keg->uk_lock, MA_OWNED); 946 slab = NULL; 947 mem = NULL; 948 949 #ifdef UMA_DEBUG 950 printf("alloc_slab: Allocating a new slab for %s\n", keg->uk_name); 951 #endif 952 allocf = keg->uk_allocf; 953 KEG_UNLOCK(keg); 954 955 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 956 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 957 if (slab == NULL) 958 goto out; 959 } 960 961 /* 962 * This reproduces the old vm_zone behavior of zero filling pages the 963 * first time they are added to a zone. 964 * 965 * Malloced items are zeroed in uma_zalloc. 966 */ 967 968 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 969 wait |= M_ZERO; 970 else 971 wait &= ~M_ZERO; 972 973 if (keg->uk_flags & UMA_ZONE_NODUMP) 974 wait |= M_NODUMP; 975 976 /* zone is passed for legacy reasons. */ 977 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 978 if (mem == NULL) { 979 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 980 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 981 slab = NULL; 982 goto out; 983 } 984 985 /* Point the slab into the allocated memory */ 986 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 987 slab = (uma_slab_t )(mem + keg->uk_pgoff); 988 989 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 990 for (i = 0; i < keg->uk_ppera; i++) 991 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 992 993 slab->us_keg = keg; 994 slab->us_data = mem; 995 slab->us_freecount = keg->uk_ipers; 996 slab->us_flags = flags; 997 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 998 #ifdef INVARIANTS 999 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1000 #endif 1001 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1002 slabref = (uma_slabrefcnt_t)slab; 1003 for (i = 0; i < keg->uk_ipers; i++) 1004 slabref->us_refcnt[i] = 0; 1005 } 1006 1007 if (keg->uk_init != NULL) { 1008 for (i = 0; i < keg->uk_ipers; i++) 1009 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1010 keg->uk_size, wait) != 0) 1011 break; 1012 if (i != keg->uk_ipers) { 1013 keg_free_slab(keg, slab, i); 1014 slab = NULL; 1015 goto out; 1016 } 1017 } 1018 out: 1019 KEG_LOCK(keg); 1020 1021 if (slab != NULL) { 1022 if (keg->uk_flags & UMA_ZONE_HASH) 1023 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1024 1025 keg->uk_pages += keg->uk_ppera; 1026 keg->uk_free += keg->uk_ipers; 1027 } 1028 1029 return (slab); 1030 } 1031 1032 /* 1033 * This function is intended to be used early on in place of page_alloc() so 1034 * that we may use the boot time page cache to satisfy allocations before 1035 * the VM is ready. 1036 */ 1037 static void * 1038 startup_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 1039 { 1040 uma_keg_t keg; 1041 uma_slab_t tmps; 1042 int pages, check_pages; 1043 1044 keg = zone_first_keg(zone); 1045 pages = howmany(bytes, PAGE_SIZE); 1046 check_pages = pages - 1; 1047 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1048 1049 /* 1050 * Check our small startup cache to see if it has pages remaining. 1051 */ 1052 mtx_lock(&uma_boot_pages_mtx); 1053 1054 /* First check if we have enough room. */ 1055 tmps = LIST_FIRST(&uma_boot_pages); 1056 while (tmps != NULL && check_pages-- > 0) 1057 tmps = LIST_NEXT(tmps, us_link); 1058 if (tmps != NULL) { 1059 /* 1060 * It's ok to lose tmps references. The last one will 1061 * have tmps->us_data pointing to the start address of 1062 * "pages" contiguous pages of memory. 1063 */ 1064 while (pages-- > 0) { 1065 tmps = LIST_FIRST(&uma_boot_pages); 1066 LIST_REMOVE(tmps, us_link); 1067 } 1068 mtx_unlock(&uma_boot_pages_mtx); 1069 *pflag = tmps->us_flags; 1070 return (tmps->us_data); 1071 } 1072 mtx_unlock(&uma_boot_pages_mtx); 1073 if (booted < UMA_STARTUP2) 1074 panic("UMA: Increase vm.boot_pages"); 1075 /* 1076 * Now that we've booted reset these users to their real allocator. 1077 */ 1078 #ifdef UMA_MD_SMALL_ALLOC 1079 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1080 #else 1081 keg->uk_allocf = page_alloc; 1082 #endif 1083 return keg->uk_allocf(zone, bytes, pflag, wait); 1084 } 1085 1086 /* 1087 * Allocates a number of pages from the system 1088 * 1089 * Arguments: 1090 * bytes The number of bytes requested 1091 * wait Shall we wait? 1092 * 1093 * Returns: 1094 * A pointer to the alloced memory or possibly 1095 * NULL if M_NOWAIT is set. 1096 */ 1097 static void * 1098 page_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 1099 { 1100 void *p; /* Returned page */ 1101 1102 *pflag = UMA_SLAB_KMEM; 1103 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1104 1105 return (p); 1106 } 1107 1108 /* 1109 * Allocates a number of pages from within an object 1110 * 1111 * Arguments: 1112 * bytes The number of bytes requested 1113 * wait Shall we wait? 1114 * 1115 * Returns: 1116 * A pointer to the alloced memory or possibly 1117 * NULL if M_NOWAIT is set. 1118 */ 1119 static void * 1120 noobj_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait) 1121 { 1122 TAILQ_HEAD(, vm_page) alloctail; 1123 u_long npages; 1124 vm_offset_t retkva, zkva; 1125 vm_page_t p, p_next; 1126 uma_keg_t keg; 1127 1128 TAILQ_INIT(&alloctail); 1129 keg = zone_first_keg(zone); 1130 1131 npages = howmany(bytes, PAGE_SIZE); 1132 while (npages > 0) { 1133 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1134 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); 1135 if (p != NULL) { 1136 /* 1137 * Since the page does not belong to an object, its 1138 * listq is unused. 1139 */ 1140 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1141 npages--; 1142 continue; 1143 } 1144 if (wait & M_WAITOK) { 1145 VM_WAIT; 1146 continue; 1147 } 1148 1149 /* 1150 * Page allocation failed, free intermediate pages and 1151 * exit. 1152 */ 1153 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1154 vm_page_unwire(p, 0); 1155 vm_page_free(p); 1156 } 1157 return (NULL); 1158 } 1159 *flags = UMA_SLAB_PRIV; 1160 zkva = keg->uk_kva + 1161 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1162 retkva = zkva; 1163 TAILQ_FOREACH(p, &alloctail, listq) { 1164 pmap_qenter(zkva, &p, 1); 1165 zkva += PAGE_SIZE; 1166 } 1167 1168 return ((void *)retkva); 1169 } 1170 1171 /* 1172 * Frees a number of pages to the system 1173 * 1174 * Arguments: 1175 * mem A pointer to the memory to be freed 1176 * size The size of the memory being freed 1177 * flags The original p->us_flags field 1178 * 1179 * Returns: 1180 * Nothing 1181 */ 1182 static void 1183 page_free(void *mem, int size, uint8_t flags) 1184 { 1185 struct vmem *vmem; 1186 1187 if (flags & UMA_SLAB_KMEM) 1188 vmem = kmem_arena; 1189 else if (flags & UMA_SLAB_KERNEL) 1190 vmem = kernel_arena; 1191 else 1192 panic("UMA: page_free used with invalid flags %d", flags); 1193 1194 kmem_free(vmem, (vm_offset_t)mem, size); 1195 } 1196 1197 /* 1198 * Zero fill initializer 1199 * 1200 * Arguments/Returns follow uma_init specifications 1201 */ 1202 static int 1203 zero_init(void *mem, int size, int flags) 1204 { 1205 bzero(mem, size); 1206 return (0); 1207 } 1208 1209 /* 1210 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1211 * 1212 * Arguments 1213 * keg The zone we should initialize 1214 * 1215 * Returns 1216 * Nothing 1217 */ 1218 static void 1219 keg_small_init(uma_keg_t keg) 1220 { 1221 u_int rsize; 1222 u_int memused; 1223 u_int wastedspace; 1224 u_int shsize; 1225 1226 if (keg->uk_flags & UMA_ZONE_PCPU) { 1227 u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1228 1229 keg->uk_slabsize = sizeof(struct pcpu); 1230 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1231 PAGE_SIZE); 1232 } else { 1233 keg->uk_slabsize = UMA_SLAB_SIZE; 1234 keg->uk_ppera = 1; 1235 } 1236 1237 /* 1238 * Calculate the size of each allocation (rsize) according to 1239 * alignment. If the requested size is smaller than we have 1240 * allocation bits for we round it up. 1241 */ 1242 rsize = keg->uk_size; 1243 if (rsize < keg->uk_slabsize / SLAB_SETSIZE) 1244 rsize = keg->uk_slabsize / SLAB_SETSIZE; 1245 if (rsize & keg->uk_align) 1246 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1247 keg->uk_rsize = rsize; 1248 1249 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1250 keg->uk_rsize < sizeof(struct pcpu), 1251 ("%s: size %u too large", __func__, keg->uk_rsize)); 1252 1253 if (keg->uk_flags & UMA_ZONE_REFCNT) 1254 rsize += sizeof(uint32_t); 1255 1256 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1257 shsize = 0; 1258 else 1259 shsize = sizeof(struct uma_slab); 1260 1261 keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize; 1262 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1263 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1264 1265 memused = keg->uk_ipers * rsize + shsize; 1266 wastedspace = keg->uk_slabsize - memused; 1267 1268 /* 1269 * We can't do OFFPAGE if we're internal or if we've been 1270 * asked to not go to the VM for buckets. If we do this we 1271 * may end up going to the VM for slabs which we do not 1272 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1273 * of UMA_ZONE_VM, which clearly forbids it. 1274 */ 1275 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1276 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1277 return; 1278 1279 /* 1280 * See if using an OFFPAGE slab will limit our waste. Only do 1281 * this if it permits more items per-slab. 1282 * 1283 * XXX We could try growing slabsize to limit max waste as well. 1284 * Historically this was not done because the VM could not 1285 * efficiently handle contiguous allocations. 1286 */ 1287 if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) && 1288 (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) { 1289 keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize; 1290 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1291 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1292 #ifdef UMA_DEBUG 1293 printf("UMA decided we need offpage slab headers for " 1294 "keg: %s, calculated wastedspace = %d, " 1295 "maximum wasted space allowed = %d, " 1296 "calculated ipers = %d, " 1297 "new wasted space = %d\n", keg->uk_name, wastedspace, 1298 keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1299 keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize); 1300 #endif 1301 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1302 } 1303 1304 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1305 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1306 keg->uk_flags |= UMA_ZONE_HASH; 1307 } 1308 1309 /* 1310 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1311 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1312 * more complicated. 1313 * 1314 * Arguments 1315 * keg The keg we should initialize 1316 * 1317 * Returns 1318 * Nothing 1319 */ 1320 static void 1321 keg_large_init(uma_keg_t keg) 1322 { 1323 u_int shsize; 1324 1325 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1326 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1327 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1328 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1329 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1330 1331 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1332 keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE; 1333 keg->uk_ipers = 1; 1334 keg->uk_rsize = keg->uk_size; 1335 1336 /* We can't do OFFPAGE if we're internal, bail out here. */ 1337 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1338 return; 1339 1340 /* Check whether we have enough space to not do OFFPAGE. */ 1341 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1342 shsize = sizeof(struct uma_slab); 1343 if (keg->uk_flags & UMA_ZONE_REFCNT) 1344 shsize += keg->uk_ipers * sizeof(uint32_t); 1345 if (shsize & UMA_ALIGN_PTR) 1346 shsize = (shsize & ~UMA_ALIGN_PTR) + 1347 (UMA_ALIGN_PTR + 1); 1348 1349 if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize) 1350 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1351 } 1352 1353 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1354 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1355 keg->uk_flags |= UMA_ZONE_HASH; 1356 } 1357 1358 static void 1359 keg_cachespread_init(uma_keg_t keg) 1360 { 1361 int alignsize; 1362 int trailer; 1363 int pages; 1364 int rsize; 1365 1366 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1367 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1368 1369 alignsize = keg->uk_align + 1; 1370 rsize = keg->uk_size; 1371 /* 1372 * We want one item to start on every align boundary in a page. To 1373 * do this we will span pages. We will also extend the item by the 1374 * size of align if it is an even multiple of align. Otherwise, it 1375 * would fall on the same boundary every time. 1376 */ 1377 if (rsize & keg->uk_align) 1378 rsize = (rsize & ~keg->uk_align) + alignsize; 1379 if ((rsize & alignsize) == 0) 1380 rsize += alignsize; 1381 trailer = rsize - keg->uk_size; 1382 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1383 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1384 keg->uk_rsize = rsize; 1385 keg->uk_ppera = pages; 1386 keg->uk_slabsize = UMA_SLAB_SIZE; 1387 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1388 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1389 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1390 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1391 keg->uk_ipers)); 1392 } 1393 1394 /* 1395 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1396 * the keg onto the global keg list. 1397 * 1398 * Arguments/Returns follow uma_ctor specifications 1399 * udata Actually uma_kctor_args 1400 */ 1401 static int 1402 keg_ctor(void *mem, int size, void *udata, int flags) 1403 { 1404 struct uma_kctor_args *arg = udata; 1405 uma_keg_t keg = mem; 1406 uma_zone_t zone; 1407 1408 bzero(keg, size); 1409 keg->uk_size = arg->size; 1410 keg->uk_init = arg->uminit; 1411 keg->uk_fini = arg->fini; 1412 keg->uk_align = arg->align; 1413 keg->uk_free = 0; 1414 keg->uk_reserve = 0; 1415 keg->uk_pages = 0; 1416 keg->uk_flags = arg->flags; 1417 keg->uk_allocf = page_alloc; 1418 keg->uk_freef = page_free; 1419 keg->uk_slabzone = NULL; 1420 1421 /* 1422 * The master zone is passed to us at keg-creation time. 1423 */ 1424 zone = arg->zone; 1425 keg->uk_name = zone->uz_name; 1426 1427 if (arg->flags & UMA_ZONE_VM) 1428 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1429 1430 if (arg->flags & UMA_ZONE_ZINIT) 1431 keg->uk_init = zero_init; 1432 1433 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC) 1434 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1435 1436 if (arg->flags & UMA_ZONE_PCPU) 1437 #ifdef SMP 1438 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1439 #else 1440 keg->uk_flags &= ~UMA_ZONE_PCPU; 1441 #endif 1442 1443 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1444 keg_cachespread_init(keg); 1445 } else if (keg->uk_flags & UMA_ZONE_REFCNT) { 1446 if (keg->uk_size > 1447 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - 1448 sizeof(uint32_t))) 1449 keg_large_init(keg); 1450 else 1451 keg_small_init(keg); 1452 } else { 1453 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1454 keg_large_init(keg); 1455 else 1456 keg_small_init(keg); 1457 } 1458 1459 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1460 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1461 if (keg->uk_ipers > uma_max_ipers_ref) 1462 panic("Too many ref items per zone: %d > %d\n", 1463 keg->uk_ipers, uma_max_ipers_ref); 1464 keg->uk_slabzone = slabrefzone; 1465 } else 1466 keg->uk_slabzone = slabzone; 1467 } 1468 1469 /* 1470 * If we haven't booted yet we need allocations to go through the 1471 * startup cache until the vm is ready. 1472 */ 1473 if (keg->uk_ppera == 1) { 1474 #ifdef UMA_MD_SMALL_ALLOC 1475 keg->uk_allocf = uma_small_alloc; 1476 keg->uk_freef = uma_small_free; 1477 1478 if (booted < UMA_STARTUP) 1479 keg->uk_allocf = startup_alloc; 1480 #else 1481 if (booted < UMA_STARTUP2) 1482 keg->uk_allocf = startup_alloc; 1483 #endif 1484 } else if (booted < UMA_STARTUP2 && 1485 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1486 keg->uk_allocf = startup_alloc; 1487 1488 /* 1489 * Initialize keg's lock 1490 */ 1491 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1492 1493 /* 1494 * If we're putting the slab header in the actual page we need to 1495 * figure out where in each page it goes. This calculates a right 1496 * justified offset into the memory on an ALIGN_PTR boundary. 1497 */ 1498 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1499 u_int totsize; 1500 1501 /* Size of the slab struct and free list */ 1502 totsize = sizeof(struct uma_slab); 1503 1504 /* Size of the reference counts. */ 1505 if (keg->uk_flags & UMA_ZONE_REFCNT) 1506 totsize += keg->uk_ipers * sizeof(uint32_t); 1507 1508 if (totsize & UMA_ALIGN_PTR) 1509 totsize = (totsize & ~UMA_ALIGN_PTR) + 1510 (UMA_ALIGN_PTR + 1); 1511 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1512 1513 /* 1514 * The only way the following is possible is if with our 1515 * UMA_ALIGN_PTR adjustments we are now bigger than 1516 * UMA_SLAB_SIZE. I haven't checked whether this is 1517 * mathematically possible for all cases, so we make 1518 * sure here anyway. 1519 */ 1520 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1521 if (keg->uk_flags & UMA_ZONE_REFCNT) 1522 totsize += keg->uk_ipers * sizeof(uint32_t); 1523 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1524 printf("zone %s ipers %d rsize %d size %d\n", 1525 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1526 keg->uk_size); 1527 panic("UMA slab won't fit."); 1528 } 1529 } 1530 1531 if (keg->uk_flags & UMA_ZONE_HASH) 1532 hash_alloc(&keg->uk_hash); 1533 1534 #ifdef UMA_DEBUG 1535 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n", 1536 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1537 keg->uk_ipers, keg->uk_ppera, 1538 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1539 #endif 1540 1541 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1542 1543 mtx_lock(&uma_mtx); 1544 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1545 mtx_unlock(&uma_mtx); 1546 return (0); 1547 } 1548 1549 /* 1550 * Zone header ctor. This initializes all fields, locks, etc. 1551 * 1552 * Arguments/Returns follow uma_ctor specifications 1553 * udata Actually uma_zctor_args 1554 */ 1555 static int 1556 zone_ctor(void *mem, int size, void *udata, int flags) 1557 { 1558 struct uma_zctor_args *arg = udata; 1559 uma_zone_t zone = mem; 1560 uma_zone_t z; 1561 uma_keg_t keg; 1562 1563 bzero(zone, size); 1564 zone->uz_name = arg->name; 1565 zone->uz_ctor = arg->ctor; 1566 zone->uz_dtor = arg->dtor; 1567 zone->uz_slab = zone_fetch_slab; 1568 zone->uz_init = NULL; 1569 zone->uz_fini = NULL; 1570 zone->uz_allocs = 0; 1571 zone->uz_frees = 0; 1572 zone->uz_fails = 0; 1573 zone->uz_sleeps = 0; 1574 zone->uz_count = 0; 1575 zone->uz_count_min = 0; 1576 zone->uz_flags = 0; 1577 zone->uz_warning = NULL; 1578 timevalclear(&zone->uz_ratecheck); 1579 keg = arg->keg; 1580 1581 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1582 1583 /* 1584 * This is a pure cache zone, no kegs. 1585 */ 1586 if (arg->import) { 1587 if (arg->flags & UMA_ZONE_VM) 1588 arg->flags |= UMA_ZFLAG_CACHEONLY; 1589 zone->uz_flags = arg->flags; 1590 zone->uz_size = arg->size; 1591 zone->uz_import = arg->import; 1592 zone->uz_release = arg->release; 1593 zone->uz_arg = arg->arg; 1594 zone->uz_lockptr = &zone->uz_lock; 1595 mtx_lock(&uma_mtx); 1596 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1597 mtx_unlock(&uma_mtx); 1598 goto out; 1599 } 1600 1601 /* 1602 * Use the regular zone/keg/slab allocator. 1603 */ 1604 zone->uz_import = (uma_import)zone_import; 1605 zone->uz_release = (uma_release)zone_release; 1606 zone->uz_arg = zone; 1607 1608 if (arg->flags & UMA_ZONE_SECONDARY) { 1609 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1610 zone->uz_init = arg->uminit; 1611 zone->uz_fini = arg->fini; 1612 zone->uz_lockptr = &keg->uk_lock; 1613 zone->uz_flags |= UMA_ZONE_SECONDARY; 1614 mtx_lock(&uma_mtx); 1615 ZONE_LOCK(zone); 1616 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1617 if (LIST_NEXT(z, uz_link) == NULL) { 1618 LIST_INSERT_AFTER(z, zone, uz_link); 1619 break; 1620 } 1621 } 1622 ZONE_UNLOCK(zone); 1623 mtx_unlock(&uma_mtx); 1624 } else if (keg == NULL) { 1625 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1626 arg->align, arg->flags)) == NULL) 1627 return (ENOMEM); 1628 } else { 1629 struct uma_kctor_args karg; 1630 int error; 1631 1632 /* We should only be here from uma_startup() */ 1633 karg.size = arg->size; 1634 karg.uminit = arg->uminit; 1635 karg.fini = arg->fini; 1636 karg.align = arg->align; 1637 karg.flags = arg->flags; 1638 karg.zone = zone; 1639 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1640 flags); 1641 if (error) 1642 return (error); 1643 } 1644 1645 /* 1646 * Link in the first keg. 1647 */ 1648 zone->uz_klink.kl_keg = keg; 1649 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1650 zone->uz_lockptr = &keg->uk_lock; 1651 zone->uz_size = keg->uk_size; 1652 zone->uz_flags |= (keg->uk_flags & 1653 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1654 1655 /* 1656 * Some internal zones don't have room allocated for the per cpu 1657 * caches. If we're internal, bail out here. 1658 */ 1659 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1660 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1661 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1662 return (0); 1663 } 1664 1665 out: 1666 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1667 zone->uz_count = bucket_select(zone->uz_size); 1668 else 1669 zone->uz_count = BUCKET_MAX; 1670 zone->uz_count_min = zone->uz_count; 1671 1672 return (0); 1673 } 1674 1675 /* 1676 * Keg header dtor. This frees all data, destroys locks, frees the hash 1677 * table and removes the keg from the global list. 1678 * 1679 * Arguments/Returns follow uma_dtor specifications 1680 * udata unused 1681 */ 1682 static void 1683 keg_dtor(void *arg, int size, void *udata) 1684 { 1685 uma_keg_t keg; 1686 1687 keg = (uma_keg_t)arg; 1688 KEG_LOCK(keg); 1689 if (keg->uk_free != 0) { 1690 printf("Freed UMA keg (%s) was not empty (%d items). " 1691 " Lost %d pages of memory.\n", 1692 keg->uk_name ? keg->uk_name : "", 1693 keg->uk_free, keg->uk_pages); 1694 } 1695 KEG_UNLOCK(keg); 1696 1697 hash_free(&keg->uk_hash); 1698 1699 KEG_LOCK_FINI(keg); 1700 } 1701 1702 /* 1703 * Zone header dtor. 1704 * 1705 * Arguments/Returns follow uma_dtor specifications 1706 * udata unused 1707 */ 1708 static void 1709 zone_dtor(void *arg, int size, void *udata) 1710 { 1711 uma_klink_t klink; 1712 uma_zone_t zone; 1713 uma_keg_t keg; 1714 1715 zone = (uma_zone_t)arg; 1716 keg = zone_first_keg(zone); 1717 1718 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1719 cache_drain(zone); 1720 1721 mtx_lock(&uma_mtx); 1722 LIST_REMOVE(zone, uz_link); 1723 mtx_unlock(&uma_mtx); 1724 /* 1725 * XXX there are some races here where 1726 * the zone can be drained but zone lock 1727 * released and then refilled before we 1728 * remove it... we dont care for now 1729 */ 1730 zone_drain_wait(zone, M_WAITOK); 1731 /* 1732 * Unlink all of our kegs. 1733 */ 1734 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1735 klink->kl_keg = NULL; 1736 LIST_REMOVE(klink, kl_link); 1737 if (klink == &zone->uz_klink) 1738 continue; 1739 free(klink, M_TEMP); 1740 } 1741 /* 1742 * We only destroy kegs from non secondary zones. 1743 */ 1744 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1745 mtx_lock(&uma_mtx); 1746 LIST_REMOVE(keg, uk_link); 1747 mtx_unlock(&uma_mtx); 1748 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1749 } 1750 ZONE_LOCK_FINI(zone); 1751 } 1752 1753 /* 1754 * Traverses every zone in the system and calls a callback 1755 * 1756 * Arguments: 1757 * zfunc A pointer to a function which accepts a zone 1758 * as an argument. 1759 * 1760 * Returns: 1761 * Nothing 1762 */ 1763 static void 1764 zone_foreach(void (*zfunc)(uma_zone_t)) 1765 { 1766 uma_keg_t keg; 1767 uma_zone_t zone; 1768 1769 mtx_lock(&uma_mtx); 1770 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1771 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1772 zfunc(zone); 1773 } 1774 mtx_unlock(&uma_mtx); 1775 } 1776 1777 /* Public functions */ 1778 /* See uma.h */ 1779 void 1780 uma_startup(void *bootmem, int boot_pages) 1781 { 1782 struct uma_zctor_args args; 1783 uma_slab_t slab; 1784 u_int slabsize; 1785 int i; 1786 1787 #ifdef UMA_DEBUG 1788 printf("Creating uma keg headers zone and keg.\n"); 1789 #endif 1790 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1791 1792 /* "manually" create the initial zone */ 1793 memset(&args, 0, sizeof(args)); 1794 args.name = "UMA Kegs"; 1795 args.size = sizeof(struct uma_keg); 1796 args.ctor = keg_ctor; 1797 args.dtor = keg_dtor; 1798 args.uminit = zero_init; 1799 args.fini = NULL; 1800 args.keg = &masterkeg; 1801 args.align = 32 - 1; 1802 args.flags = UMA_ZFLAG_INTERNAL; 1803 /* The initial zone has no Per cpu queues so it's smaller */ 1804 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1805 1806 #ifdef UMA_DEBUG 1807 printf("Filling boot free list.\n"); 1808 #endif 1809 for (i = 0; i < boot_pages; i++) { 1810 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1811 slab->us_data = (uint8_t *)slab; 1812 slab->us_flags = UMA_SLAB_BOOT; 1813 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1814 } 1815 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1816 1817 #ifdef UMA_DEBUG 1818 printf("Creating uma zone headers zone and keg.\n"); 1819 #endif 1820 args.name = "UMA Zones"; 1821 args.size = sizeof(struct uma_zone) + 1822 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1823 args.ctor = zone_ctor; 1824 args.dtor = zone_dtor; 1825 args.uminit = zero_init; 1826 args.fini = NULL; 1827 args.keg = NULL; 1828 args.align = 32 - 1; 1829 args.flags = UMA_ZFLAG_INTERNAL; 1830 /* The initial zone has no Per cpu queues so it's smaller */ 1831 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1832 1833 #ifdef UMA_DEBUG 1834 printf("Initializing pcpu cache locks.\n"); 1835 #endif 1836 #ifdef UMA_DEBUG 1837 printf("Creating slab and hash zones.\n"); 1838 #endif 1839 1840 /* Now make a zone for slab headers */ 1841 slabzone = uma_zcreate("UMA Slabs", 1842 sizeof(struct uma_slab), 1843 NULL, NULL, NULL, NULL, 1844 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1845 1846 /* 1847 * We also create a zone for the bigger slabs with reference 1848 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1849 */ 1850 slabsize = sizeof(struct uma_slab_refcnt); 1851 slabsize += uma_max_ipers_ref * sizeof(uint32_t); 1852 slabrefzone = uma_zcreate("UMA RCntSlabs", 1853 slabsize, 1854 NULL, NULL, NULL, NULL, 1855 UMA_ALIGN_PTR, 1856 UMA_ZFLAG_INTERNAL); 1857 1858 hashzone = uma_zcreate("UMA Hash", 1859 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1860 NULL, NULL, NULL, NULL, 1861 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1862 1863 bucket_init(); 1864 1865 booted = UMA_STARTUP; 1866 1867 #ifdef UMA_DEBUG 1868 printf("UMA startup complete.\n"); 1869 #endif 1870 } 1871 1872 /* see uma.h */ 1873 void 1874 uma_startup2(void) 1875 { 1876 booted = UMA_STARTUP2; 1877 bucket_enable(); 1878 #ifdef UMA_DEBUG 1879 printf("UMA startup2 complete.\n"); 1880 #endif 1881 } 1882 1883 /* 1884 * Initialize our callout handle 1885 * 1886 */ 1887 1888 static void 1889 uma_startup3(void) 1890 { 1891 #ifdef UMA_DEBUG 1892 printf("Starting callout.\n"); 1893 #endif 1894 callout_init(&uma_callout, CALLOUT_MPSAFE); 1895 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1896 #ifdef UMA_DEBUG 1897 printf("UMA startup3 complete.\n"); 1898 #endif 1899 } 1900 1901 static uma_keg_t 1902 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1903 int align, uint32_t flags) 1904 { 1905 struct uma_kctor_args args; 1906 1907 args.size = size; 1908 args.uminit = uminit; 1909 args.fini = fini; 1910 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1911 args.flags = flags; 1912 args.zone = zone; 1913 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1914 } 1915 1916 /* See uma.h */ 1917 void 1918 uma_set_align(int align) 1919 { 1920 1921 if (align != UMA_ALIGN_CACHE) 1922 uma_align_cache = align; 1923 } 1924 1925 /* See uma.h */ 1926 uma_zone_t 1927 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1928 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1929 1930 { 1931 struct uma_zctor_args args; 1932 1933 /* This stuff is essential for the zone ctor */ 1934 memset(&args, 0, sizeof(args)); 1935 args.name = name; 1936 args.size = size; 1937 args.ctor = ctor; 1938 args.dtor = dtor; 1939 args.uminit = uminit; 1940 args.fini = fini; 1941 args.align = align; 1942 args.flags = flags; 1943 args.keg = NULL; 1944 1945 return (zone_alloc_item(zones, &args, M_WAITOK)); 1946 } 1947 1948 /* See uma.h */ 1949 uma_zone_t 1950 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1951 uma_init zinit, uma_fini zfini, uma_zone_t master) 1952 { 1953 struct uma_zctor_args args; 1954 uma_keg_t keg; 1955 1956 keg = zone_first_keg(master); 1957 memset(&args, 0, sizeof(args)); 1958 args.name = name; 1959 args.size = keg->uk_size; 1960 args.ctor = ctor; 1961 args.dtor = dtor; 1962 args.uminit = zinit; 1963 args.fini = zfini; 1964 args.align = keg->uk_align; 1965 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1966 args.keg = keg; 1967 1968 /* XXX Attaches only one keg of potentially many. */ 1969 return (zone_alloc_item(zones, &args, M_WAITOK)); 1970 } 1971 1972 /* See uma.h */ 1973 uma_zone_t 1974 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 1975 uma_init zinit, uma_fini zfini, uma_import zimport, 1976 uma_release zrelease, void *arg, int flags) 1977 { 1978 struct uma_zctor_args args; 1979 1980 memset(&args, 0, sizeof(args)); 1981 args.name = name; 1982 args.size = size; 1983 args.ctor = ctor; 1984 args.dtor = dtor; 1985 args.uminit = zinit; 1986 args.fini = zfini; 1987 args.import = zimport; 1988 args.release = zrelease; 1989 args.arg = arg; 1990 args.align = 0; 1991 args.flags = flags; 1992 1993 return (zone_alloc_item(zones, &args, M_WAITOK)); 1994 } 1995 1996 static void 1997 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1998 { 1999 if (a < b) { 2000 ZONE_LOCK(a); 2001 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2002 } else { 2003 ZONE_LOCK(b); 2004 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2005 } 2006 } 2007 2008 static void 2009 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2010 { 2011 2012 ZONE_UNLOCK(a); 2013 ZONE_UNLOCK(b); 2014 } 2015 2016 int 2017 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2018 { 2019 uma_klink_t klink; 2020 uma_klink_t kl; 2021 int error; 2022 2023 error = 0; 2024 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2025 2026 zone_lock_pair(zone, master); 2027 /* 2028 * zone must use vtoslab() to resolve objects and must already be 2029 * a secondary. 2030 */ 2031 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2032 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2033 error = EINVAL; 2034 goto out; 2035 } 2036 /* 2037 * The new master must also use vtoslab(). 2038 */ 2039 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2040 error = EINVAL; 2041 goto out; 2042 } 2043 /* 2044 * Both must either be refcnt, or not be refcnt. 2045 */ 2046 if ((zone->uz_flags & UMA_ZONE_REFCNT) != 2047 (master->uz_flags & UMA_ZONE_REFCNT)) { 2048 error = EINVAL; 2049 goto out; 2050 } 2051 /* 2052 * The underlying object must be the same size. rsize 2053 * may be different. 2054 */ 2055 if (master->uz_size != zone->uz_size) { 2056 error = E2BIG; 2057 goto out; 2058 } 2059 /* 2060 * Put it at the end of the list. 2061 */ 2062 klink->kl_keg = zone_first_keg(master); 2063 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2064 if (LIST_NEXT(kl, kl_link) == NULL) { 2065 LIST_INSERT_AFTER(kl, klink, kl_link); 2066 break; 2067 } 2068 } 2069 klink = NULL; 2070 zone->uz_flags |= UMA_ZFLAG_MULTI; 2071 zone->uz_slab = zone_fetch_slab_multi; 2072 2073 out: 2074 zone_unlock_pair(zone, master); 2075 if (klink != NULL) 2076 free(klink, M_TEMP); 2077 2078 return (error); 2079 } 2080 2081 2082 /* See uma.h */ 2083 void 2084 uma_zdestroy(uma_zone_t zone) 2085 { 2086 2087 zone_free_item(zones, zone, NULL, SKIP_NONE); 2088 } 2089 2090 /* See uma.h */ 2091 void * 2092 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2093 { 2094 void *item; 2095 uma_cache_t cache; 2096 uma_bucket_t bucket; 2097 int lockfail; 2098 int cpu; 2099 2100 /* This is the fast path allocation */ 2101 #ifdef UMA_DEBUG_ALLOC_1 2102 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 2103 #endif 2104 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 2105 zone->uz_name, flags); 2106 2107 if (flags & M_WAITOK) { 2108 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2109 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2110 } 2111 #ifdef DEBUG_MEMGUARD 2112 if (memguard_cmp_zone(zone)) { 2113 item = memguard_alloc(zone->uz_size, flags); 2114 if (item != NULL) { 2115 /* 2116 * Avoid conflict with the use-after-free 2117 * protecting infrastructure from INVARIANTS. 2118 */ 2119 if (zone->uz_init != NULL && 2120 zone->uz_init != mtrash_init && 2121 zone->uz_init(item, zone->uz_size, flags) != 0) 2122 return (NULL); 2123 if (zone->uz_ctor != NULL && 2124 zone->uz_ctor != mtrash_ctor && 2125 zone->uz_ctor(item, zone->uz_size, udata, 2126 flags) != 0) { 2127 zone->uz_fini(item, zone->uz_size); 2128 return (NULL); 2129 } 2130 return (item); 2131 } 2132 /* This is unfortunate but should not be fatal. */ 2133 } 2134 #endif 2135 /* 2136 * If possible, allocate from the per-CPU cache. There are two 2137 * requirements for safe access to the per-CPU cache: (1) the thread 2138 * accessing the cache must not be preempted or yield during access, 2139 * and (2) the thread must not migrate CPUs without switching which 2140 * cache it accesses. We rely on a critical section to prevent 2141 * preemption and migration. We release the critical section in 2142 * order to acquire the zone mutex if we are unable to allocate from 2143 * the current cache; when we re-acquire the critical section, we 2144 * must detect and handle migration if it has occurred. 2145 */ 2146 critical_enter(); 2147 cpu = curcpu; 2148 cache = &zone->uz_cpu[cpu]; 2149 2150 zalloc_start: 2151 bucket = cache->uc_allocbucket; 2152 if (bucket != NULL && bucket->ub_cnt > 0) { 2153 bucket->ub_cnt--; 2154 item = bucket->ub_bucket[bucket->ub_cnt]; 2155 #ifdef INVARIANTS 2156 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2157 #endif 2158 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2159 cache->uc_allocs++; 2160 critical_exit(); 2161 if (zone->uz_ctor != NULL && 2162 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2163 atomic_add_long(&zone->uz_fails, 1); 2164 zone_free_item(zone, item, udata, SKIP_DTOR); 2165 return (NULL); 2166 } 2167 #ifdef INVARIANTS 2168 uma_dbg_alloc(zone, NULL, item); 2169 #endif 2170 if (flags & M_ZERO) 2171 uma_zero_item(item, zone); 2172 return (item); 2173 } 2174 2175 /* 2176 * We have run out of items in our alloc bucket. 2177 * See if we can switch with our free bucket. 2178 */ 2179 bucket = cache->uc_freebucket; 2180 if (bucket != NULL && bucket->ub_cnt > 0) { 2181 #ifdef UMA_DEBUG_ALLOC 2182 printf("uma_zalloc: Swapping empty with alloc.\n"); 2183 #endif 2184 cache->uc_freebucket = cache->uc_allocbucket; 2185 cache->uc_allocbucket = bucket; 2186 goto zalloc_start; 2187 } 2188 2189 /* 2190 * Discard any empty allocation bucket while we hold no locks. 2191 */ 2192 bucket = cache->uc_allocbucket; 2193 cache->uc_allocbucket = NULL; 2194 critical_exit(); 2195 if (bucket != NULL) 2196 bucket_free(zone, bucket, udata); 2197 2198 /* Short-circuit for zones without buckets and low memory. */ 2199 if (zone->uz_count == 0 || bucketdisable) 2200 goto zalloc_item; 2201 2202 /* 2203 * Attempt to retrieve the item from the per-CPU cache has failed, so 2204 * we must go back to the zone. This requires the zone lock, so we 2205 * must drop the critical section, then re-acquire it when we go back 2206 * to the cache. Since the critical section is released, we may be 2207 * preempted or migrate. As such, make sure not to maintain any 2208 * thread-local state specific to the cache from prior to releasing 2209 * the critical section. 2210 */ 2211 lockfail = 0; 2212 if (ZONE_TRYLOCK(zone) == 0) { 2213 /* Record contention to size the buckets. */ 2214 ZONE_LOCK(zone); 2215 lockfail = 1; 2216 } 2217 critical_enter(); 2218 cpu = curcpu; 2219 cache = &zone->uz_cpu[cpu]; 2220 2221 /* 2222 * Since we have locked the zone we may as well send back our stats. 2223 */ 2224 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2225 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2226 cache->uc_allocs = 0; 2227 cache->uc_frees = 0; 2228 2229 /* See if we lost the race to fill the cache. */ 2230 if (cache->uc_allocbucket != NULL) { 2231 ZONE_UNLOCK(zone); 2232 goto zalloc_start; 2233 } 2234 2235 /* 2236 * Check the zone's cache of buckets. 2237 */ 2238 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2239 KASSERT(bucket->ub_cnt != 0, 2240 ("uma_zalloc_arg: Returning an empty bucket.")); 2241 2242 LIST_REMOVE(bucket, ub_link); 2243 cache->uc_allocbucket = bucket; 2244 ZONE_UNLOCK(zone); 2245 goto zalloc_start; 2246 } 2247 /* We are no longer associated with this CPU. */ 2248 critical_exit(); 2249 2250 /* 2251 * We bump the uz count when the cache size is insufficient to 2252 * handle the working set. 2253 */ 2254 if (lockfail && zone->uz_count < BUCKET_MAX) 2255 zone->uz_count++; 2256 ZONE_UNLOCK(zone); 2257 2258 /* 2259 * Now lets just fill a bucket and put it on the free list. If that 2260 * works we'll restart the allocation from the begining and it 2261 * will use the just filled bucket. 2262 */ 2263 bucket = zone_alloc_bucket(zone, udata, flags); 2264 if (bucket != NULL) { 2265 ZONE_LOCK(zone); 2266 critical_enter(); 2267 cpu = curcpu; 2268 cache = &zone->uz_cpu[cpu]; 2269 /* 2270 * See if we lost the race or were migrated. Cache the 2271 * initialized bucket to make this less likely or claim 2272 * the memory directly. 2273 */ 2274 if (cache->uc_allocbucket == NULL) 2275 cache->uc_allocbucket = bucket; 2276 else 2277 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2278 ZONE_UNLOCK(zone); 2279 goto zalloc_start; 2280 } 2281 2282 /* 2283 * We may not be able to get a bucket so return an actual item. 2284 */ 2285 #ifdef UMA_DEBUG 2286 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2287 #endif 2288 2289 zalloc_item: 2290 item = zone_alloc_item(zone, udata, flags); 2291 2292 return (item); 2293 } 2294 2295 static uma_slab_t 2296 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2297 { 2298 uma_slab_t slab; 2299 int reserve; 2300 2301 mtx_assert(&keg->uk_lock, MA_OWNED); 2302 slab = NULL; 2303 reserve = 0; 2304 if ((flags & M_USE_RESERVE) == 0) 2305 reserve = keg->uk_reserve; 2306 2307 for (;;) { 2308 /* 2309 * Find a slab with some space. Prefer slabs that are partially 2310 * used over those that are totally full. This helps to reduce 2311 * fragmentation. 2312 */ 2313 if (keg->uk_free > reserve) { 2314 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2315 slab = LIST_FIRST(&keg->uk_part_slab); 2316 } else { 2317 slab = LIST_FIRST(&keg->uk_free_slab); 2318 LIST_REMOVE(slab, us_link); 2319 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2320 us_link); 2321 } 2322 MPASS(slab->us_keg == keg); 2323 return (slab); 2324 } 2325 2326 /* 2327 * M_NOVM means don't ask at all! 2328 */ 2329 if (flags & M_NOVM) 2330 break; 2331 2332 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2333 keg->uk_flags |= UMA_ZFLAG_FULL; 2334 /* 2335 * If this is not a multi-zone, set the FULL bit. 2336 * Otherwise slab_multi() takes care of it. 2337 */ 2338 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2339 zone->uz_flags |= UMA_ZFLAG_FULL; 2340 zone_log_warning(zone); 2341 } 2342 if (flags & M_NOWAIT) 2343 break; 2344 zone->uz_sleeps++; 2345 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2346 continue; 2347 } 2348 slab = keg_alloc_slab(keg, zone, flags); 2349 /* 2350 * If we got a slab here it's safe to mark it partially used 2351 * and return. We assume that the caller is going to remove 2352 * at least one item. 2353 */ 2354 if (slab) { 2355 MPASS(slab->us_keg == keg); 2356 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2357 return (slab); 2358 } 2359 /* 2360 * We might not have been able to get a slab but another cpu 2361 * could have while we were unlocked. Check again before we 2362 * fail. 2363 */ 2364 flags |= M_NOVM; 2365 } 2366 return (slab); 2367 } 2368 2369 static uma_slab_t 2370 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2371 { 2372 uma_slab_t slab; 2373 2374 if (keg == NULL) { 2375 keg = zone_first_keg(zone); 2376 KEG_LOCK(keg); 2377 } 2378 2379 for (;;) { 2380 slab = keg_fetch_slab(keg, zone, flags); 2381 if (slab) 2382 return (slab); 2383 if (flags & (M_NOWAIT | M_NOVM)) 2384 break; 2385 } 2386 KEG_UNLOCK(keg); 2387 return (NULL); 2388 } 2389 2390 /* 2391 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2392 * with the keg locked. On NULL no lock is held. 2393 * 2394 * The last pointer is used to seed the search. It is not required. 2395 */ 2396 static uma_slab_t 2397 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2398 { 2399 uma_klink_t klink; 2400 uma_slab_t slab; 2401 uma_keg_t keg; 2402 int flags; 2403 int empty; 2404 int full; 2405 2406 /* 2407 * Don't wait on the first pass. This will skip limit tests 2408 * as well. We don't want to block if we can find a provider 2409 * without blocking. 2410 */ 2411 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2412 /* 2413 * Use the last slab allocated as a hint for where to start 2414 * the search. 2415 */ 2416 if (last != NULL) { 2417 slab = keg_fetch_slab(last, zone, flags); 2418 if (slab) 2419 return (slab); 2420 KEG_UNLOCK(last); 2421 } 2422 /* 2423 * Loop until we have a slab incase of transient failures 2424 * while M_WAITOK is specified. I'm not sure this is 100% 2425 * required but we've done it for so long now. 2426 */ 2427 for (;;) { 2428 empty = 0; 2429 full = 0; 2430 /* 2431 * Search the available kegs for slabs. Be careful to hold the 2432 * correct lock while calling into the keg layer. 2433 */ 2434 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2435 keg = klink->kl_keg; 2436 KEG_LOCK(keg); 2437 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2438 slab = keg_fetch_slab(keg, zone, flags); 2439 if (slab) 2440 return (slab); 2441 } 2442 if (keg->uk_flags & UMA_ZFLAG_FULL) 2443 full++; 2444 else 2445 empty++; 2446 KEG_UNLOCK(keg); 2447 } 2448 if (rflags & (M_NOWAIT | M_NOVM)) 2449 break; 2450 flags = rflags; 2451 /* 2452 * All kegs are full. XXX We can't atomically check all kegs 2453 * and sleep so just sleep for a short period and retry. 2454 */ 2455 if (full && !empty) { 2456 ZONE_LOCK(zone); 2457 zone->uz_flags |= UMA_ZFLAG_FULL; 2458 zone->uz_sleeps++; 2459 zone_log_warning(zone); 2460 msleep(zone, zone->uz_lockptr, PVM, 2461 "zonelimit", hz/100); 2462 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2463 ZONE_UNLOCK(zone); 2464 continue; 2465 } 2466 } 2467 return (NULL); 2468 } 2469 2470 static void * 2471 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2472 { 2473 void *item; 2474 uint8_t freei; 2475 2476 MPASS(keg == slab->us_keg); 2477 mtx_assert(&keg->uk_lock, MA_OWNED); 2478 2479 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2480 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2481 item = slab->us_data + (keg->uk_rsize * freei); 2482 slab->us_freecount--; 2483 keg->uk_free--; 2484 2485 /* Move this slab to the full list */ 2486 if (slab->us_freecount == 0) { 2487 LIST_REMOVE(slab, us_link); 2488 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2489 } 2490 2491 return (item); 2492 } 2493 2494 static int 2495 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2496 { 2497 uma_slab_t slab; 2498 uma_keg_t keg; 2499 int i; 2500 2501 slab = NULL; 2502 keg = NULL; 2503 /* Try to keep the buckets totally full */ 2504 for (i = 0; i < max; ) { 2505 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2506 break; 2507 keg = slab->us_keg; 2508 while (slab->us_freecount && i < max) { 2509 bucket[i++] = slab_alloc_item(keg, slab); 2510 if (keg->uk_free <= keg->uk_reserve) 2511 break; 2512 } 2513 /* Don't grab more than one slab at a time. */ 2514 flags &= ~M_WAITOK; 2515 flags |= M_NOWAIT; 2516 } 2517 if (slab != NULL) 2518 KEG_UNLOCK(keg); 2519 2520 return i; 2521 } 2522 2523 static uma_bucket_t 2524 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2525 { 2526 uma_bucket_t bucket; 2527 int max; 2528 2529 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2530 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2531 if (bucket == NULL) 2532 return (NULL); 2533 2534 max = MIN(bucket->ub_entries, zone->uz_count); 2535 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2536 max, flags); 2537 2538 /* 2539 * Initialize the memory if necessary. 2540 */ 2541 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2542 int i; 2543 2544 for (i = 0; i < bucket->ub_cnt; i++) 2545 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2546 flags) != 0) 2547 break; 2548 /* 2549 * If we couldn't initialize the whole bucket, put the 2550 * rest back onto the freelist. 2551 */ 2552 if (i != bucket->ub_cnt) { 2553 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2554 bucket->ub_cnt - i); 2555 #ifdef INVARIANTS 2556 bzero(&bucket->ub_bucket[i], 2557 sizeof(void *) * (bucket->ub_cnt - i)); 2558 #endif 2559 bucket->ub_cnt = i; 2560 } 2561 } 2562 2563 if (bucket->ub_cnt == 0) { 2564 bucket_free(zone, bucket, udata); 2565 atomic_add_long(&zone->uz_fails, 1); 2566 return (NULL); 2567 } 2568 2569 return (bucket); 2570 } 2571 2572 /* 2573 * Allocates a single item from a zone. 2574 * 2575 * Arguments 2576 * zone The zone to alloc for. 2577 * udata The data to be passed to the constructor. 2578 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2579 * 2580 * Returns 2581 * NULL if there is no memory and M_NOWAIT is set 2582 * An item if successful 2583 */ 2584 2585 static void * 2586 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2587 { 2588 void *item; 2589 2590 item = NULL; 2591 2592 #ifdef UMA_DEBUG_ALLOC 2593 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2594 #endif 2595 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2596 goto fail; 2597 atomic_add_long(&zone->uz_allocs, 1); 2598 2599 /* 2600 * We have to call both the zone's init (not the keg's init) 2601 * and the zone's ctor. This is because the item is going from 2602 * a keg slab directly to the user, and the user is expecting it 2603 * to be both zone-init'd as well as zone-ctor'd. 2604 */ 2605 if (zone->uz_init != NULL) { 2606 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2607 zone_free_item(zone, item, udata, SKIP_FINI); 2608 goto fail; 2609 } 2610 } 2611 if (zone->uz_ctor != NULL) { 2612 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2613 zone_free_item(zone, item, udata, SKIP_DTOR); 2614 goto fail; 2615 } 2616 } 2617 #ifdef INVARIANTS 2618 uma_dbg_alloc(zone, NULL, item); 2619 #endif 2620 if (flags & M_ZERO) 2621 uma_zero_item(item, zone); 2622 2623 return (item); 2624 2625 fail: 2626 atomic_add_long(&zone->uz_fails, 1); 2627 return (NULL); 2628 } 2629 2630 /* See uma.h */ 2631 void 2632 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2633 { 2634 uma_cache_t cache; 2635 uma_bucket_t bucket; 2636 int lockfail; 2637 int cpu; 2638 2639 #ifdef UMA_DEBUG_ALLOC_1 2640 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2641 #endif 2642 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2643 zone->uz_name); 2644 2645 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2646 if (item == NULL) 2647 return; 2648 #ifdef DEBUG_MEMGUARD 2649 if (is_memguard_addr(item)) { 2650 if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor) 2651 zone->uz_dtor(item, zone->uz_size, udata); 2652 if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini) 2653 zone->uz_fini(item, zone->uz_size); 2654 memguard_free(item); 2655 return; 2656 } 2657 #endif 2658 #ifdef INVARIANTS 2659 if (zone->uz_flags & UMA_ZONE_MALLOC) 2660 uma_dbg_free(zone, udata, item); 2661 else 2662 uma_dbg_free(zone, NULL, item); 2663 #endif 2664 if (zone->uz_dtor != NULL) 2665 zone->uz_dtor(item, zone->uz_size, udata); 2666 2667 /* 2668 * The race here is acceptable. If we miss it we'll just have to wait 2669 * a little longer for the limits to be reset. 2670 */ 2671 if (zone->uz_flags & UMA_ZFLAG_FULL) 2672 goto zfree_item; 2673 2674 /* 2675 * If possible, free to the per-CPU cache. There are two 2676 * requirements for safe access to the per-CPU cache: (1) the thread 2677 * accessing the cache must not be preempted or yield during access, 2678 * and (2) the thread must not migrate CPUs without switching which 2679 * cache it accesses. We rely on a critical section to prevent 2680 * preemption and migration. We release the critical section in 2681 * order to acquire the zone mutex if we are unable to free to the 2682 * current cache; when we re-acquire the critical section, we must 2683 * detect and handle migration if it has occurred. 2684 */ 2685 zfree_restart: 2686 critical_enter(); 2687 cpu = curcpu; 2688 cache = &zone->uz_cpu[cpu]; 2689 2690 zfree_start: 2691 /* 2692 * Try to free into the allocbucket first to give LIFO ordering 2693 * for cache-hot datastructures. Spill over into the freebucket 2694 * if necessary. Alloc will swap them if one runs dry. 2695 */ 2696 bucket = cache->uc_allocbucket; 2697 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2698 bucket = cache->uc_freebucket; 2699 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2700 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2701 ("uma_zfree: Freeing to non free bucket index.")); 2702 bucket->ub_bucket[bucket->ub_cnt] = item; 2703 bucket->ub_cnt++; 2704 cache->uc_frees++; 2705 critical_exit(); 2706 return; 2707 } 2708 2709 /* 2710 * We must go back the zone, which requires acquiring the zone lock, 2711 * which in turn means we must release and re-acquire the critical 2712 * section. Since the critical section is released, we may be 2713 * preempted or migrate. As such, make sure not to maintain any 2714 * thread-local state specific to the cache from prior to releasing 2715 * the critical section. 2716 */ 2717 critical_exit(); 2718 if (zone->uz_count == 0 || bucketdisable) 2719 goto zfree_item; 2720 2721 lockfail = 0; 2722 if (ZONE_TRYLOCK(zone) == 0) { 2723 /* Record contention to size the buckets. */ 2724 ZONE_LOCK(zone); 2725 lockfail = 1; 2726 } 2727 critical_enter(); 2728 cpu = curcpu; 2729 cache = &zone->uz_cpu[cpu]; 2730 2731 /* 2732 * Since we have locked the zone we may as well send back our stats. 2733 */ 2734 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2735 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2736 cache->uc_allocs = 0; 2737 cache->uc_frees = 0; 2738 2739 bucket = cache->uc_freebucket; 2740 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2741 ZONE_UNLOCK(zone); 2742 goto zfree_start; 2743 } 2744 cache->uc_freebucket = NULL; 2745 2746 /* Can we throw this on the zone full list? */ 2747 if (bucket != NULL) { 2748 #ifdef UMA_DEBUG_ALLOC 2749 printf("uma_zfree: Putting old bucket on the free list.\n"); 2750 #endif 2751 /* ub_cnt is pointing to the last free item */ 2752 KASSERT(bucket->ub_cnt != 0, 2753 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2754 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2755 } 2756 2757 /* We are no longer associated with this CPU. */ 2758 critical_exit(); 2759 2760 /* 2761 * We bump the uz count when the cache size is insufficient to 2762 * handle the working set. 2763 */ 2764 if (lockfail && zone->uz_count < BUCKET_MAX) 2765 zone->uz_count++; 2766 ZONE_UNLOCK(zone); 2767 2768 #ifdef UMA_DEBUG_ALLOC 2769 printf("uma_zfree: Allocating new free bucket.\n"); 2770 #endif 2771 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2772 if (bucket) { 2773 critical_enter(); 2774 cpu = curcpu; 2775 cache = &zone->uz_cpu[cpu]; 2776 if (cache->uc_freebucket == NULL) { 2777 cache->uc_freebucket = bucket; 2778 goto zfree_start; 2779 } 2780 /* 2781 * We lost the race, start over. We have to drop our 2782 * critical section to free the bucket. 2783 */ 2784 critical_exit(); 2785 bucket_free(zone, bucket, udata); 2786 goto zfree_restart; 2787 } 2788 2789 /* 2790 * If nothing else caught this, we'll just do an internal free. 2791 */ 2792 zfree_item: 2793 zone_free_item(zone, item, udata, SKIP_DTOR); 2794 2795 return; 2796 } 2797 2798 static void 2799 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2800 { 2801 uint8_t freei; 2802 2803 mtx_assert(&keg->uk_lock, MA_OWNED); 2804 MPASS(keg == slab->us_keg); 2805 2806 /* Do we need to remove from any lists? */ 2807 if (slab->us_freecount+1 == keg->uk_ipers) { 2808 LIST_REMOVE(slab, us_link); 2809 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2810 } else if (slab->us_freecount == 0) { 2811 LIST_REMOVE(slab, us_link); 2812 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2813 } 2814 2815 /* Slab management. */ 2816 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2817 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2818 slab->us_freecount++; 2819 2820 /* Keg statistics. */ 2821 keg->uk_free++; 2822 } 2823 2824 static void 2825 zone_release(uma_zone_t zone, void **bucket, int cnt) 2826 { 2827 void *item; 2828 uma_slab_t slab; 2829 uma_keg_t keg; 2830 uint8_t *mem; 2831 int clearfull; 2832 int i; 2833 2834 clearfull = 0; 2835 keg = zone_first_keg(zone); 2836 KEG_LOCK(keg); 2837 for (i = 0; i < cnt; i++) { 2838 item = bucket[i]; 2839 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2840 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2841 if (zone->uz_flags & UMA_ZONE_HASH) { 2842 slab = hash_sfind(&keg->uk_hash, mem); 2843 } else { 2844 mem += keg->uk_pgoff; 2845 slab = (uma_slab_t)mem; 2846 } 2847 } else { 2848 slab = vtoslab((vm_offset_t)item); 2849 if (slab->us_keg != keg) { 2850 KEG_UNLOCK(keg); 2851 keg = slab->us_keg; 2852 KEG_LOCK(keg); 2853 } 2854 } 2855 slab_free_item(keg, slab, item); 2856 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2857 if (keg->uk_pages < keg->uk_maxpages) { 2858 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2859 clearfull = 1; 2860 } 2861 2862 /* 2863 * We can handle one more allocation. Since we're 2864 * clearing ZFLAG_FULL, wake up all procs blocked 2865 * on pages. This should be uncommon, so keeping this 2866 * simple for now (rather than adding count of blocked 2867 * threads etc). 2868 */ 2869 wakeup(keg); 2870 } 2871 } 2872 KEG_UNLOCK(keg); 2873 if (clearfull) { 2874 ZONE_LOCK(zone); 2875 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2876 wakeup(zone); 2877 ZONE_UNLOCK(zone); 2878 } 2879 2880 } 2881 2882 /* 2883 * Frees a single item to any zone. 2884 * 2885 * Arguments: 2886 * zone The zone to free to 2887 * item The item we're freeing 2888 * udata User supplied data for the dtor 2889 * skip Skip dtors and finis 2890 */ 2891 static void 2892 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2893 { 2894 2895 #ifdef INVARIANTS 2896 if (skip == SKIP_NONE) { 2897 if (zone->uz_flags & UMA_ZONE_MALLOC) 2898 uma_dbg_free(zone, udata, item); 2899 else 2900 uma_dbg_free(zone, NULL, item); 2901 } 2902 #endif 2903 if (skip < SKIP_DTOR && zone->uz_dtor) 2904 zone->uz_dtor(item, zone->uz_size, udata); 2905 2906 if (skip < SKIP_FINI && zone->uz_fini) 2907 zone->uz_fini(item, zone->uz_size); 2908 2909 atomic_add_long(&zone->uz_frees, 1); 2910 zone->uz_release(zone->uz_arg, &item, 1); 2911 } 2912 2913 /* See uma.h */ 2914 int 2915 uma_zone_set_max(uma_zone_t zone, int nitems) 2916 { 2917 uma_keg_t keg; 2918 2919 keg = zone_first_keg(zone); 2920 if (keg == NULL) 2921 return (0); 2922 KEG_LOCK(keg); 2923 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2924 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2925 keg->uk_maxpages += keg->uk_ppera; 2926 nitems = keg->uk_maxpages * keg->uk_ipers; 2927 KEG_UNLOCK(keg); 2928 2929 return (nitems); 2930 } 2931 2932 /* See uma.h */ 2933 int 2934 uma_zone_get_max(uma_zone_t zone) 2935 { 2936 int nitems; 2937 uma_keg_t keg; 2938 2939 keg = zone_first_keg(zone); 2940 if (keg == NULL) 2941 return (0); 2942 KEG_LOCK(keg); 2943 nitems = keg->uk_maxpages * keg->uk_ipers; 2944 KEG_UNLOCK(keg); 2945 2946 return (nitems); 2947 } 2948 2949 /* See uma.h */ 2950 void 2951 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2952 { 2953 2954 ZONE_LOCK(zone); 2955 zone->uz_warning = warning; 2956 ZONE_UNLOCK(zone); 2957 } 2958 2959 /* See uma.h */ 2960 int 2961 uma_zone_get_cur(uma_zone_t zone) 2962 { 2963 int64_t nitems; 2964 u_int i; 2965 2966 ZONE_LOCK(zone); 2967 nitems = zone->uz_allocs - zone->uz_frees; 2968 CPU_FOREACH(i) { 2969 /* 2970 * See the comment in sysctl_vm_zone_stats() regarding the 2971 * safety of accessing the per-cpu caches. With the zone lock 2972 * held, it is safe, but can potentially result in stale data. 2973 */ 2974 nitems += zone->uz_cpu[i].uc_allocs - 2975 zone->uz_cpu[i].uc_frees; 2976 } 2977 ZONE_UNLOCK(zone); 2978 2979 return (nitems < 0 ? 0 : nitems); 2980 } 2981 2982 /* See uma.h */ 2983 void 2984 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2985 { 2986 uma_keg_t keg; 2987 2988 keg = zone_first_keg(zone); 2989 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2990 KEG_LOCK(keg); 2991 KASSERT(keg->uk_pages == 0, 2992 ("uma_zone_set_init on non-empty keg")); 2993 keg->uk_init = uminit; 2994 KEG_UNLOCK(keg); 2995 } 2996 2997 /* See uma.h */ 2998 void 2999 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3000 { 3001 uma_keg_t keg; 3002 3003 keg = zone_first_keg(zone); 3004 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3005 KEG_LOCK(keg); 3006 KASSERT(keg->uk_pages == 0, 3007 ("uma_zone_set_fini on non-empty keg")); 3008 keg->uk_fini = fini; 3009 KEG_UNLOCK(keg); 3010 } 3011 3012 /* See uma.h */ 3013 void 3014 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3015 { 3016 3017 ZONE_LOCK(zone); 3018 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3019 ("uma_zone_set_zinit on non-empty keg")); 3020 zone->uz_init = zinit; 3021 ZONE_UNLOCK(zone); 3022 } 3023 3024 /* See uma.h */ 3025 void 3026 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3027 { 3028 3029 ZONE_LOCK(zone); 3030 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3031 ("uma_zone_set_zfini on non-empty keg")); 3032 zone->uz_fini = zfini; 3033 ZONE_UNLOCK(zone); 3034 } 3035 3036 /* See uma.h */ 3037 /* XXX uk_freef is not actually used with the zone locked */ 3038 void 3039 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3040 { 3041 uma_keg_t keg; 3042 3043 keg = zone_first_keg(zone); 3044 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3045 KEG_LOCK(keg); 3046 keg->uk_freef = freef; 3047 KEG_UNLOCK(keg); 3048 } 3049 3050 /* See uma.h */ 3051 /* XXX uk_allocf is not actually used with the zone locked */ 3052 void 3053 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3054 { 3055 uma_keg_t keg; 3056 3057 keg = zone_first_keg(zone); 3058 KEG_LOCK(keg); 3059 keg->uk_allocf = allocf; 3060 KEG_UNLOCK(keg); 3061 } 3062 3063 /* See uma.h */ 3064 void 3065 uma_zone_reserve(uma_zone_t zone, int items) 3066 { 3067 uma_keg_t keg; 3068 3069 keg = zone_first_keg(zone); 3070 if (keg == NULL) 3071 return; 3072 KEG_LOCK(keg); 3073 keg->uk_reserve = items; 3074 KEG_UNLOCK(keg); 3075 3076 return; 3077 } 3078 3079 /* See uma.h */ 3080 int 3081 uma_zone_reserve_kva(uma_zone_t zone, int count) 3082 { 3083 uma_keg_t keg; 3084 vm_offset_t kva; 3085 int pages; 3086 3087 keg = zone_first_keg(zone); 3088 if (keg == NULL) 3089 return (0); 3090 pages = count / keg->uk_ipers; 3091 3092 if (pages * keg->uk_ipers < count) 3093 pages++; 3094 3095 #ifdef UMA_MD_SMALL_ALLOC 3096 if (keg->uk_ppera > 1) { 3097 #else 3098 if (1) { 3099 #endif 3100 kva = kva_alloc(pages * UMA_SLAB_SIZE); 3101 if (kva == 0) 3102 return (0); 3103 } else 3104 kva = 0; 3105 KEG_LOCK(keg); 3106 keg->uk_kva = kva; 3107 keg->uk_offset = 0; 3108 keg->uk_maxpages = pages; 3109 #ifdef UMA_MD_SMALL_ALLOC 3110 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3111 #else 3112 keg->uk_allocf = noobj_alloc; 3113 #endif 3114 keg->uk_flags |= UMA_ZONE_NOFREE; 3115 KEG_UNLOCK(keg); 3116 3117 return (1); 3118 } 3119 3120 /* See uma.h */ 3121 void 3122 uma_prealloc(uma_zone_t zone, int items) 3123 { 3124 int slabs; 3125 uma_slab_t slab; 3126 uma_keg_t keg; 3127 3128 keg = zone_first_keg(zone); 3129 if (keg == NULL) 3130 return; 3131 KEG_LOCK(keg); 3132 slabs = items / keg->uk_ipers; 3133 if (slabs * keg->uk_ipers < items) 3134 slabs++; 3135 while (slabs > 0) { 3136 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3137 if (slab == NULL) 3138 break; 3139 MPASS(slab->us_keg == keg); 3140 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3141 slabs--; 3142 } 3143 KEG_UNLOCK(keg); 3144 } 3145 3146 /* See uma.h */ 3147 uint32_t * 3148 uma_find_refcnt(uma_zone_t zone, void *item) 3149 { 3150 uma_slabrefcnt_t slabref; 3151 uma_slab_t slab; 3152 uma_keg_t keg; 3153 uint32_t *refcnt; 3154 int idx; 3155 3156 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 3157 slabref = (uma_slabrefcnt_t)slab; 3158 keg = slab->us_keg; 3159 KASSERT(keg->uk_flags & UMA_ZONE_REFCNT, 3160 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 3161 idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3162 refcnt = &slabref->us_refcnt[idx]; 3163 return refcnt; 3164 } 3165 3166 /* See uma.h */ 3167 void 3168 uma_reclaim(void) 3169 { 3170 #ifdef UMA_DEBUG 3171 printf("UMA: vm asked us to release pages!\n"); 3172 #endif 3173 bucket_enable(); 3174 zone_foreach(zone_drain); 3175 if (vm_page_count_min()) { 3176 cache_drain_safe(NULL); 3177 zone_foreach(zone_drain); 3178 } 3179 /* 3180 * Some slabs may have been freed but this zone will be visited early 3181 * we visit again so that we can free pages that are empty once other 3182 * zones are drained. We have to do the same for buckets. 3183 */ 3184 zone_drain(slabzone); 3185 zone_drain(slabrefzone); 3186 bucket_zone_drain(); 3187 } 3188 3189 /* See uma.h */ 3190 int 3191 uma_zone_exhausted(uma_zone_t zone) 3192 { 3193 int full; 3194 3195 ZONE_LOCK(zone); 3196 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3197 ZONE_UNLOCK(zone); 3198 return (full); 3199 } 3200 3201 int 3202 uma_zone_exhausted_nolock(uma_zone_t zone) 3203 { 3204 return (zone->uz_flags & UMA_ZFLAG_FULL); 3205 } 3206 3207 void * 3208 uma_large_malloc(int size, int wait) 3209 { 3210 void *mem; 3211 uma_slab_t slab; 3212 uint8_t flags; 3213 3214 slab = zone_alloc_item(slabzone, NULL, wait); 3215 if (slab == NULL) 3216 return (NULL); 3217 mem = page_alloc(NULL, size, &flags, wait); 3218 if (mem) { 3219 vsetslab((vm_offset_t)mem, slab); 3220 slab->us_data = mem; 3221 slab->us_flags = flags | UMA_SLAB_MALLOC; 3222 slab->us_size = size; 3223 } else { 3224 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3225 } 3226 3227 return (mem); 3228 } 3229 3230 void 3231 uma_large_free(uma_slab_t slab) 3232 { 3233 3234 page_free(slab->us_data, slab->us_size, slab->us_flags); 3235 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3236 } 3237 3238 static void 3239 uma_zero_item(void *item, uma_zone_t zone) 3240 { 3241 3242 if (zone->uz_flags & UMA_ZONE_PCPU) { 3243 for (int i = 0; i < mp_ncpus; i++) 3244 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3245 } else 3246 bzero(item, zone->uz_size); 3247 } 3248 3249 void 3250 uma_print_stats(void) 3251 { 3252 zone_foreach(uma_print_zone); 3253 } 3254 3255 static void 3256 slab_print(uma_slab_t slab) 3257 { 3258 printf("slab: keg %p, data %p, freecount %d\n", 3259 slab->us_keg, slab->us_data, slab->us_freecount); 3260 } 3261 3262 static void 3263 cache_print(uma_cache_t cache) 3264 { 3265 printf("alloc: %p(%d), free: %p(%d)\n", 3266 cache->uc_allocbucket, 3267 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3268 cache->uc_freebucket, 3269 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3270 } 3271 3272 static void 3273 uma_print_keg(uma_keg_t keg) 3274 { 3275 uma_slab_t slab; 3276 3277 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3278 "out %d free %d limit %d\n", 3279 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3280 keg->uk_ipers, keg->uk_ppera, 3281 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3282 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3283 printf("Part slabs:\n"); 3284 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3285 slab_print(slab); 3286 printf("Free slabs:\n"); 3287 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3288 slab_print(slab); 3289 printf("Full slabs:\n"); 3290 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3291 slab_print(slab); 3292 } 3293 3294 void 3295 uma_print_zone(uma_zone_t zone) 3296 { 3297 uma_cache_t cache; 3298 uma_klink_t kl; 3299 int i; 3300 3301 printf("zone: %s(%p) size %d flags %#x\n", 3302 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3303 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3304 uma_print_keg(kl->kl_keg); 3305 CPU_FOREACH(i) { 3306 cache = &zone->uz_cpu[i]; 3307 printf("CPU %d Cache:\n", i); 3308 cache_print(cache); 3309 } 3310 } 3311 3312 #ifdef DDB 3313 /* 3314 * Generate statistics across both the zone and its per-cpu cache's. Return 3315 * desired statistics if the pointer is non-NULL for that statistic. 3316 * 3317 * Note: does not update the zone statistics, as it can't safely clear the 3318 * per-CPU cache statistic. 3319 * 3320 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3321 * safe from off-CPU; we should modify the caches to track this information 3322 * directly so that we don't have to. 3323 */ 3324 static void 3325 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3326 uint64_t *freesp, uint64_t *sleepsp) 3327 { 3328 uma_cache_t cache; 3329 uint64_t allocs, frees, sleeps; 3330 int cachefree, cpu; 3331 3332 allocs = frees = sleeps = 0; 3333 cachefree = 0; 3334 CPU_FOREACH(cpu) { 3335 cache = &z->uz_cpu[cpu]; 3336 if (cache->uc_allocbucket != NULL) 3337 cachefree += cache->uc_allocbucket->ub_cnt; 3338 if (cache->uc_freebucket != NULL) 3339 cachefree += cache->uc_freebucket->ub_cnt; 3340 allocs += cache->uc_allocs; 3341 frees += cache->uc_frees; 3342 } 3343 allocs += z->uz_allocs; 3344 frees += z->uz_frees; 3345 sleeps += z->uz_sleeps; 3346 if (cachefreep != NULL) 3347 *cachefreep = cachefree; 3348 if (allocsp != NULL) 3349 *allocsp = allocs; 3350 if (freesp != NULL) 3351 *freesp = frees; 3352 if (sleepsp != NULL) 3353 *sleepsp = sleeps; 3354 } 3355 #endif /* DDB */ 3356 3357 static int 3358 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3359 { 3360 uma_keg_t kz; 3361 uma_zone_t z; 3362 int count; 3363 3364 count = 0; 3365 mtx_lock(&uma_mtx); 3366 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3367 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3368 count++; 3369 } 3370 mtx_unlock(&uma_mtx); 3371 return (sysctl_handle_int(oidp, &count, 0, req)); 3372 } 3373 3374 static int 3375 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3376 { 3377 struct uma_stream_header ush; 3378 struct uma_type_header uth; 3379 struct uma_percpu_stat ups; 3380 uma_bucket_t bucket; 3381 struct sbuf sbuf; 3382 uma_cache_t cache; 3383 uma_klink_t kl; 3384 uma_keg_t kz; 3385 uma_zone_t z; 3386 uma_keg_t k; 3387 int count, error, i; 3388 3389 error = sysctl_wire_old_buffer(req, 0); 3390 if (error != 0) 3391 return (error); 3392 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3393 3394 count = 0; 3395 mtx_lock(&uma_mtx); 3396 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3397 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3398 count++; 3399 } 3400 3401 /* 3402 * Insert stream header. 3403 */ 3404 bzero(&ush, sizeof(ush)); 3405 ush.ush_version = UMA_STREAM_VERSION; 3406 ush.ush_maxcpus = (mp_maxid + 1); 3407 ush.ush_count = count; 3408 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3409 3410 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3411 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3412 bzero(&uth, sizeof(uth)); 3413 ZONE_LOCK(z); 3414 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3415 uth.uth_align = kz->uk_align; 3416 uth.uth_size = kz->uk_size; 3417 uth.uth_rsize = kz->uk_rsize; 3418 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3419 k = kl->kl_keg; 3420 uth.uth_maxpages += k->uk_maxpages; 3421 uth.uth_pages += k->uk_pages; 3422 uth.uth_keg_free += k->uk_free; 3423 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3424 * k->uk_ipers; 3425 } 3426 3427 /* 3428 * A zone is secondary is it is not the first entry 3429 * on the keg's zone list. 3430 */ 3431 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3432 (LIST_FIRST(&kz->uk_zones) != z)) 3433 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3434 3435 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3436 uth.uth_zone_free += bucket->ub_cnt; 3437 uth.uth_allocs = z->uz_allocs; 3438 uth.uth_frees = z->uz_frees; 3439 uth.uth_fails = z->uz_fails; 3440 uth.uth_sleeps = z->uz_sleeps; 3441 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3442 /* 3443 * While it is not normally safe to access the cache 3444 * bucket pointers while not on the CPU that owns the 3445 * cache, we only allow the pointers to be exchanged 3446 * without the zone lock held, not invalidated, so 3447 * accept the possible race associated with bucket 3448 * exchange during monitoring. 3449 */ 3450 for (i = 0; i < (mp_maxid + 1); i++) { 3451 bzero(&ups, sizeof(ups)); 3452 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3453 goto skip; 3454 if (CPU_ABSENT(i)) 3455 goto skip; 3456 cache = &z->uz_cpu[i]; 3457 if (cache->uc_allocbucket != NULL) 3458 ups.ups_cache_free += 3459 cache->uc_allocbucket->ub_cnt; 3460 if (cache->uc_freebucket != NULL) 3461 ups.ups_cache_free += 3462 cache->uc_freebucket->ub_cnt; 3463 ups.ups_allocs = cache->uc_allocs; 3464 ups.ups_frees = cache->uc_frees; 3465 skip: 3466 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3467 } 3468 ZONE_UNLOCK(z); 3469 } 3470 } 3471 mtx_unlock(&uma_mtx); 3472 error = sbuf_finish(&sbuf); 3473 sbuf_delete(&sbuf); 3474 return (error); 3475 } 3476 3477 int 3478 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3479 { 3480 uma_zone_t zone = *(uma_zone_t *)arg1; 3481 int error, max, old; 3482 3483 old = max = uma_zone_get_max(zone); 3484 error = sysctl_handle_int(oidp, &max, 0, req); 3485 if (error || !req->newptr) 3486 return (error); 3487 3488 if (max < old) 3489 return (EINVAL); 3490 3491 uma_zone_set_max(zone, max); 3492 3493 return (0); 3494 } 3495 3496 int 3497 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3498 { 3499 uma_zone_t zone = *(uma_zone_t *)arg1; 3500 int cur; 3501 3502 cur = uma_zone_get_cur(zone); 3503 return (sysctl_handle_int(oidp, &cur, 0, req)); 3504 } 3505 3506 #ifdef DDB 3507 DB_SHOW_COMMAND(uma, db_show_uma) 3508 { 3509 uint64_t allocs, frees, sleeps; 3510 uma_bucket_t bucket; 3511 uma_keg_t kz; 3512 uma_zone_t z; 3513 int cachefree; 3514 3515 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3516 "Free", "Requests", "Sleeps", "Bucket"); 3517 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3518 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3519 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3520 allocs = z->uz_allocs; 3521 frees = z->uz_frees; 3522 sleeps = z->uz_sleeps; 3523 cachefree = 0; 3524 } else 3525 uma_zone_sumstat(z, &cachefree, &allocs, 3526 &frees, &sleeps); 3527 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3528 (LIST_FIRST(&kz->uk_zones) != z))) 3529 cachefree += kz->uk_free; 3530 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3531 cachefree += bucket->ub_cnt; 3532 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3533 z->uz_name, (uintmax_t)kz->uk_size, 3534 (intmax_t)(allocs - frees), cachefree, 3535 (uintmax_t)allocs, sleeps, z->uz_count); 3536 if (db_pager_quit) 3537 return; 3538 } 3539 } 3540 } 3541 3542 DB_SHOW_COMMAND(umacache, db_show_umacache) 3543 { 3544 uint64_t allocs, frees; 3545 uma_bucket_t bucket; 3546 uma_zone_t z; 3547 int cachefree; 3548 3549 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3550 "Requests", "Bucket"); 3551 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3552 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3553 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3554 cachefree += bucket->ub_cnt; 3555 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3556 z->uz_name, (uintmax_t)z->uz_size, 3557 (intmax_t)(allocs - frees), cachefree, 3558 (uintmax_t)allocs, z->uz_count); 3559 if (db_pager_quit) 3560 return; 3561 } 3562 } 3563 #endif 3564