1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/asan.h> 62 #include <sys/bitset.h> 63 #include <sys/domainset.h> 64 #include <sys/eventhandler.h> 65 #include <sys/kernel.h> 66 #include <sys/types.h> 67 #include <sys/limits.h> 68 #include <sys/queue.h> 69 #include <sys/malloc.h> 70 #include <sys/ktr.h> 71 #include <sys/lock.h> 72 #include <sys/sysctl.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/random.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/sched.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/smp.h> 81 #include <sys/smr.h> 82 #include <sys/taskqueue.h> 83 #include <sys/vmmeter.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/vm_domainset.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_pageout.h> 91 #include <vm/vm_phys.h> 92 #include <vm/vm_pagequeue.h> 93 #include <vm/vm_map.h> 94 #include <vm/vm_kern.h> 95 #include <vm/vm_extern.h> 96 #include <vm/vm_dumpset.h> 97 #include <vm/uma.h> 98 #include <vm/uma_int.h> 99 #include <vm/uma_dbg.h> 100 101 #include <ddb/ddb.h> 102 103 #ifdef DEBUG_MEMGUARD 104 #include <vm/memguard.h> 105 #endif 106 107 #include <machine/md_var.h> 108 109 #ifdef INVARIANTS 110 #define UMA_ALWAYS_CTORDTOR 1 111 #else 112 #define UMA_ALWAYS_CTORDTOR 0 113 #endif 114 115 /* 116 * This is the zone and keg from which all zones are spawned. 117 */ 118 static uma_zone_t kegs; 119 static uma_zone_t zones; 120 121 /* 122 * On INVARIANTS builds, the slab contains a second bitset of the same size, 123 * "dbg_bits", which is laid out immediately after us_free. 124 */ 125 #ifdef INVARIANTS 126 #define SLAB_BITSETS 2 127 #else 128 #define SLAB_BITSETS 1 129 #endif 130 131 /* 132 * These are the two zones from which all offpage uma_slab_ts are allocated. 133 * 134 * One zone is for slab headers that can represent a larger number of items, 135 * making the slabs themselves more efficient, and the other zone is for 136 * headers that are smaller and represent fewer items, making the headers more 137 * efficient. 138 */ 139 #define SLABZONE_SIZE(setsize) \ 140 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 141 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 142 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 143 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 144 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 145 static uma_zone_t slabzones[2]; 146 147 /* 148 * The initial hash tables come out of this zone so they can be allocated 149 * prior to malloc coming up. 150 */ 151 static uma_zone_t hashzone; 152 153 /* The boot-time adjusted value for cache line alignment. */ 154 int uma_align_cache = 64 - 1; 155 156 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 157 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 158 159 /* 160 * Are we allowed to allocate buckets? 161 */ 162 static int bucketdisable = 1; 163 164 /* Linked list of all kegs in the system */ 165 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 166 167 /* Linked list of all cache-only zones in the system */ 168 static LIST_HEAD(,uma_zone) uma_cachezones = 169 LIST_HEAD_INITIALIZER(uma_cachezones); 170 171 /* 172 * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of 173 * zones. 174 */ 175 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 176 177 static struct sx uma_reclaim_lock; 178 179 /* 180 * First available virual address for boot time allocations. 181 */ 182 static vm_offset_t bootstart; 183 static vm_offset_t bootmem; 184 185 /* 186 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 187 * allocations don't trigger a wakeup of the reclaim thread. 188 */ 189 unsigned long uma_kmem_limit = LONG_MAX; 190 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 191 "UMA kernel memory soft limit"); 192 unsigned long uma_kmem_total; 193 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 194 "UMA kernel memory usage"); 195 196 /* Is the VM done starting up? */ 197 static enum { 198 BOOT_COLD, 199 BOOT_KVA, 200 BOOT_PCPU, 201 BOOT_RUNNING, 202 BOOT_SHUTDOWN, 203 } booted = BOOT_COLD; 204 205 /* 206 * This is the handle used to schedule events that need to happen 207 * outside of the allocation fast path. 208 */ 209 static struct callout uma_callout; 210 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 211 212 /* 213 * This structure is passed as the zone ctor arg so that I don't have to create 214 * a special allocation function just for zones. 215 */ 216 struct uma_zctor_args { 217 const char *name; 218 size_t size; 219 uma_ctor ctor; 220 uma_dtor dtor; 221 uma_init uminit; 222 uma_fini fini; 223 uma_import import; 224 uma_release release; 225 void *arg; 226 uma_keg_t keg; 227 int align; 228 uint32_t flags; 229 }; 230 231 struct uma_kctor_args { 232 uma_zone_t zone; 233 size_t size; 234 uma_init uminit; 235 uma_fini fini; 236 int align; 237 uint32_t flags; 238 }; 239 240 struct uma_bucket_zone { 241 uma_zone_t ubz_zone; 242 const char *ubz_name; 243 int ubz_entries; /* Number of items it can hold. */ 244 int ubz_maxsize; /* Maximum allocation size per-item. */ 245 }; 246 247 /* 248 * Compute the actual number of bucket entries to pack them in power 249 * of two sizes for more efficient space utilization. 250 */ 251 #define BUCKET_SIZE(n) \ 252 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 253 254 #define BUCKET_MAX BUCKET_SIZE(256) 255 256 struct uma_bucket_zone bucket_zones[] = { 257 /* Literal bucket sizes. */ 258 { NULL, "2 Bucket", 2, 4096 }, 259 { NULL, "4 Bucket", 4, 3072 }, 260 { NULL, "8 Bucket", 8, 2048 }, 261 { NULL, "16 Bucket", 16, 1024 }, 262 /* Rounded down power of 2 sizes for efficiency. */ 263 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 264 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 265 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 266 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 267 { NULL, NULL, 0} 268 }; 269 270 /* 271 * Flags and enumerations to be passed to internal functions. 272 */ 273 enum zfreeskip { 274 SKIP_NONE = 0, 275 SKIP_CNT = 0x00000001, 276 SKIP_DTOR = 0x00010000, 277 SKIP_FINI = 0x00020000, 278 }; 279 280 /* Prototypes.. */ 281 282 void uma_startup1(vm_offset_t); 283 void uma_startup2(void); 284 285 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 286 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 287 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 288 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 289 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 290 static void page_free(void *, vm_size_t, uint8_t); 291 static void pcpu_page_free(void *, vm_size_t, uint8_t); 292 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 293 static void cache_drain(uma_zone_t); 294 static void bucket_drain(uma_zone_t, uma_bucket_t); 295 static void bucket_cache_reclaim(uma_zone_t zone, bool, int); 296 static int keg_ctor(void *, int, void *, int); 297 static void keg_dtor(void *, int, void *); 298 static int zone_ctor(void *, int, void *, int); 299 static void zone_dtor(void *, int, void *); 300 static inline void item_dtor(uma_zone_t zone, void *item, int size, 301 void *udata, enum zfreeskip skip); 302 static int zero_init(void *, int, int); 303 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 304 int itemdomain, bool ws); 305 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 306 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 307 static void zone_timeout(uma_zone_t zone, void *); 308 static int hash_alloc(struct uma_hash *, u_int); 309 static int hash_expand(struct uma_hash *, struct uma_hash *); 310 static void hash_free(struct uma_hash *hash); 311 static void uma_timeout(void *); 312 static void uma_shutdown(void); 313 static void *zone_alloc_item(uma_zone_t, void *, int, int); 314 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 315 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 316 static void zone_free_limit(uma_zone_t zone, int count); 317 static void bucket_enable(void); 318 static void bucket_init(void); 319 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 320 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 321 static void bucket_zone_drain(int domain); 322 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 323 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 324 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 325 static size_t slab_sizeof(int nitems); 326 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 327 uma_fini fini, int align, uint32_t flags); 328 static int zone_import(void *, void **, int, int, int); 329 static void zone_release(void *, void **, int); 330 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 331 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 332 333 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 334 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 335 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 336 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 337 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 338 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 339 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 340 341 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 342 343 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 344 "Memory allocation debugging"); 345 346 #ifdef INVARIANTS 347 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 348 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 349 350 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 351 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 352 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 353 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 354 355 static u_int dbg_divisor = 1; 356 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 357 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 358 "Debug & thrash every this item in memory allocator"); 359 360 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 361 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 362 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 363 &uma_dbg_cnt, "memory items debugged"); 364 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 365 &uma_skip_cnt, "memory items skipped, not debugged"); 366 #endif 367 368 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 369 "Universal Memory Allocator"); 370 371 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 372 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 373 374 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 375 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 376 377 static int zone_warnings = 1; 378 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 379 "Warn when UMA zones becomes full"); 380 381 static int multipage_slabs = 1; 382 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 383 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 384 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 385 "UMA may choose larger slab sizes for better efficiency"); 386 387 /* 388 * Select the slab zone for an offpage slab with the given maximum item count. 389 */ 390 static inline uma_zone_t 391 slabzone(int ipers) 392 { 393 394 return (slabzones[ipers > SLABZONE0_SETSIZE]); 395 } 396 397 /* 398 * This routine checks to see whether or not it's safe to enable buckets. 399 */ 400 static void 401 bucket_enable(void) 402 { 403 404 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 405 bucketdisable = vm_page_count_min(); 406 } 407 408 /* 409 * Initialize bucket_zones, the array of zones of buckets of various sizes. 410 * 411 * For each zone, calculate the memory required for each bucket, consisting 412 * of the header and an array of pointers. 413 */ 414 static void 415 bucket_init(void) 416 { 417 struct uma_bucket_zone *ubz; 418 int size; 419 420 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 421 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 422 size += sizeof(void *) * ubz->ubz_entries; 423 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 424 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 425 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 426 UMA_ZONE_FIRSTTOUCH); 427 } 428 } 429 430 /* 431 * Given a desired number of entries for a bucket, return the zone from which 432 * to allocate the bucket. 433 */ 434 static struct uma_bucket_zone * 435 bucket_zone_lookup(int entries) 436 { 437 struct uma_bucket_zone *ubz; 438 439 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 440 if (ubz->ubz_entries >= entries) 441 return (ubz); 442 ubz--; 443 return (ubz); 444 } 445 446 static int 447 bucket_select(int size) 448 { 449 struct uma_bucket_zone *ubz; 450 451 ubz = &bucket_zones[0]; 452 if (size > ubz->ubz_maxsize) 453 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 454 455 for (; ubz->ubz_entries != 0; ubz++) 456 if (ubz->ubz_maxsize < size) 457 break; 458 ubz--; 459 return (ubz->ubz_entries); 460 } 461 462 static uma_bucket_t 463 bucket_alloc(uma_zone_t zone, void *udata, int flags) 464 { 465 struct uma_bucket_zone *ubz; 466 uma_bucket_t bucket; 467 468 /* 469 * Don't allocate buckets early in boot. 470 */ 471 if (__predict_false(booted < BOOT_KVA)) 472 return (NULL); 473 474 /* 475 * To limit bucket recursion we store the original zone flags 476 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 477 * NOVM flag to persist even through deep recursions. We also 478 * store ZFLAG_BUCKET once we have recursed attempting to allocate 479 * a bucket for a bucket zone so we do not allow infinite bucket 480 * recursion. This cookie will even persist to frees of unused 481 * buckets via the allocation path or bucket allocations in the 482 * free path. 483 */ 484 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 485 udata = (void *)(uintptr_t)zone->uz_flags; 486 else { 487 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 488 return (NULL); 489 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 490 } 491 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 492 flags |= M_NOVM; 493 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size)); 494 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 495 ubz++; 496 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 497 if (bucket) { 498 #ifdef INVARIANTS 499 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 500 #endif 501 bucket->ub_cnt = 0; 502 bucket->ub_entries = min(ubz->ubz_entries, 503 zone->uz_bucket_size_max); 504 bucket->ub_seq = SMR_SEQ_INVALID; 505 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 506 zone->uz_name, zone, bucket); 507 } 508 509 return (bucket); 510 } 511 512 static void 513 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 514 { 515 struct uma_bucket_zone *ubz; 516 517 if (bucket->ub_cnt != 0) 518 bucket_drain(zone, bucket); 519 520 KASSERT(bucket->ub_cnt == 0, 521 ("bucket_free: Freeing a non free bucket.")); 522 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 523 ("bucket_free: Freeing an SMR bucket.")); 524 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 525 udata = (void *)(uintptr_t)zone->uz_flags; 526 ubz = bucket_zone_lookup(bucket->ub_entries); 527 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 528 } 529 530 static void 531 bucket_zone_drain(int domain) 532 { 533 struct uma_bucket_zone *ubz; 534 535 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 536 uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN, 537 domain); 538 } 539 540 #ifdef KASAN 541 static void 542 kasan_mark_item_valid(uma_zone_t zone, void *item) 543 { 544 void *pcpu_item; 545 size_t sz, rsz; 546 int i; 547 548 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 549 return; 550 551 sz = zone->uz_size; 552 rsz = roundup2(sz, KASAN_SHADOW_SCALE); 553 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 554 kasan_mark(item, sz, rsz, 0); 555 } else { 556 pcpu_item = zpcpu_base_to_offset(item); 557 for (i = 0; i <= mp_maxid; i++) 558 kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz, 0); 559 } 560 } 561 562 static void 563 kasan_mark_item_invalid(uma_zone_t zone, void *item) 564 { 565 void *pcpu_item; 566 size_t sz; 567 int i; 568 569 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 570 return; 571 572 sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE); 573 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 574 kasan_mark(item, 0, sz, KASAN_UMA_FREED); 575 } else { 576 pcpu_item = zpcpu_base_to_offset(item); 577 for (i = 0; i <= mp_maxid; i++) 578 kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz, 0); 579 } 580 } 581 582 static void 583 kasan_mark_slab_valid(uma_keg_t keg, void *mem) 584 { 585 size_t sz; 586 587 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 588 sz = keg->uk_ppera * PAGE_SIZE; 589 kasan_mark(mem, sz, sz, 0); 590 } 591 } 592 593 static void 594 kasan_mark_slab_invalid(uma_keg_t keg, void *mem) 595 { 596 size_t sz; 597 598 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 599 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 600 sz = keg->uk_ppera * PAGE_SIZE; 601 else 602 sz = keg->uk_pgoff; 603 kasan_mark(mem, 0, sz, KASAN_UMA_FREED); 604 } 605 } 606 #else /* !KASAN */ 607 static void 608 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused) 609 { 610 } 611 612 static void 613 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused) 614 { 615 } 616 617 static void 618 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused) 619 { 620 } 621 622 static void 623 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused) 624 { 625 } 626 #endif /* KASAN */ 627 628 /* 629 * Acquire the domain lock and record contention. 630 */ 631 static uma_zone_domain_t 632 zone_domain_lock(uma_zone_t zone, int domain) 633 { 634 uma_zone_domain_t zdom; 635 bool lockfail; 636 637 zdom = ZDOM_GET(zone, domain); 638 lockfail = false; 639 if (ZDOM_OWNED(zdom)) 640 lockfail = true; 641 ZDOM_LOCK(zdom); 642 /* This is unsynchronized. The counter does not need to be precise. */ 643 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 644 zone->uz_bucket_size++; 645 return (zdom); 646 } 647 648 /* 649 * Search for the domain with the least cached items and return it if it 650 * is out of balance with the preferred domain. 651 */ 652 static __noinline int 653 zone_domain_lowest(uma_zone_t zone, int pref) 654 { 655 long least, nitems, prefitems; 656 int domain; 657 int i; 658 659 prefitems = least = LONG_MAX; 660 domain = 0; 661 for (i = 0; i < vm_ndomains; i++) { 662 nitems = ZDOM_GET(zone, i)->uzd_nitems; 663 if (nitems < least) { 664 domain = i; 665 least = nitems; 666 } 667 if (domain == pref) 668 prefitems = nitems; 669 } 670 if (prefitems < least * 2) 671 return (pref); 672 673 return (domain); 674 } 675 676 /* 677 * Search for the domain with the most cached items and return it or the 678 * preferred domain if it has enough to proceed. 679 */ 680 static __noinline int 681 zone_domain_highest(uma_zone_t zone, int pref) 682 { 683 long most, nitems; 684 int domain; 685 int i; 686 687 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 688 return (pref); 689 690 most = 0; 691 domain = 0; 692 for (i = 0; i < vm_ndomains; i++) { 693 nitems = ZDOM_GET(zone, i)->uzd_nitems; 694 if (nitems > most) { 695 domain = i; 696 most = nitems; 697 } 698 } 699 700 return (domain); 701 } 702 703 /* 704 * Safely subtract cnt from imax. 705 */ 706 static void 707 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt) 708 { 709 long new; 710 long old; 711 712 old = zdom->uzd_imax; 713 do { 714 if (old <= cnt) 715 new = 0; 716 else 717 new = old - cnt; 718 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0); 719 } 720 721 /* 722 * Set the maximum imax value. 723 */ 724 static void 725 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 726 { 727 long old; 728 729 old = zdom->uzd_imax; 730 do { 731 if (old >= nitems) 732 break; 733 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 734 } 735 736 /* 737 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 738 * zone's caches. If a bucket is found the zone is not locked on return. 739 */ 740 static uma_bucket_t 741 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 742 { 743 uma_bucket_t bucket; 744 int i; 745 bool dtor = false; 746 747 ZDOM_LOCK_ASSERT(zdom); 748 749 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 750 return (NULL); 751 752 /* SMR Buckets can not be re-used until readers expire. */ 753 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 754 bucket->ub_seq != SMR_SEQ_INVALID) { 755 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 756 return (NULL); 757 bucket->ub_seq = SMR_SEQ_INVALID; 758 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 759 if (STAILQ_NEXT(bucket, ub_link) != NULL) 760 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 761 } 762 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 763 764 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt, 765 ("%s: item count underflow (%ld, %d)", 766 __func__, zdom->uzd_nitems, bucket->ub_cnt)); 767 KASSERT(bucket->ub_cnt > 0, 768 ("%s: empty bucket in bucket cache", __func__)); 769 zdom->uzd_nitems -= bucket->ub_cnt; 770 771 /* 772 * Shift the bounds of the current WSS interval to avoid 773 * perturbing the estimate. 774 */ 775 if (reclaim) { 776 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 777 zone_domain_imax_sub(zdom, bucket->ub_cnt); 778 } else if (zdom->uzd_imin > zdom->uzd_nitems) 779 zdom->uzd_imin = zdom->uzd_nitems; 780 781 ZDOM_UNLOCK(zdom); 782 if (dtor) 783 for (i = 0; i < bucket->ub_cnt; i++) 784 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 785 NULL, SKIP_NONE); 786 787 return (bucket); 788 } 789 790 /* 791 * Insert a full bucket into the specified cache. The "ws" parameter indicates 792 * whether the bucket's contents should be counted as part of the zone's working 793 * set. The bucket may be freed if it exceeds the bucket limit. 794 */ 795 static void 796 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 797 const bool ws) 798 { 799 uma_zone_domain_t zdom; 800 801 /* We don't cache empty buckets. This can happen after a reclaim. */ 802 if (bucket->ub_cnt == 0) 803 goto out; 804 zdom = zone_domain_lock(zone, domain); 805 806 /* 807 * Conditionally set the maximum number of items. 808 */ 809 zdom->uzd_nitems += bucket->ub_cnt; 810 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 811 if (ws) 812 zone_domain_imax_set(zdom, zdom->uzd_nitems); 813 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 814 zdom->uzd_seq = bucket->ub_seq; 815 816 /* 817 * Try to promote reuse of recently used items. For items 818 * protected by SMR, try to defer reuse to minimize polling. 819 */ 820 if (bucket->ub_seq == SMR_SEQ_INVALID) 821 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 822 else 823 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 824 ZDOM_UNLOCK(zdom); 825 return; 826 } 827 zdom->uzd_nitems -= bucket->ub_cnt; 828 ZDOM_UNLOCK(zdom); 829 out: 830 bucket_free(zone, bucket, udata); 831 } 832 833 /* Pops an item out of a per-cpu cache bucket. */ 834 static inline void * 835 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 836 { 837 void *item; 838 839 CRITICAL_ASSERT(curthread); 840 841 bucket->ucb_cnt--; 842 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 843 #ifdef INVARIANTS 844 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 845 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 846 #endif 847 cache->uc_allocs++; 848 849 return (item); 850 } 851 852 /* Pushes an item into a per-cpu cache bucket. */ 853 static inline void 854 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 855 { 856 857 CRITICAL_ASSERT(curthread); 858 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 859 ("uma_zfree: Freeing to non free bucket index.")); 860 861 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 862 bucket->ucb_cnt++; 863 cache->uc_frees++; 864 } 865 866 /* 867 * Unload a UMA bucket from a per-cpu cache. 868 */ 869 static inline uma_bucket_t 870 cache_bucket_unload(uma_cache_bucket_t bucket) 871 { 872 uma_bucket_t b; 873 874 b = bucket->ucb_bucket; 875 if (b != NULL) { 876 MPASS(b->ub_entries == bucket->ucb_entries); 877 b->ub_cnt = bucket->ucb_cnt; 878 bucket->ucb_bucket = NULL; 879 bucket->ucb_entries = bucket->ucb_cnt = 0; 880 } 881 882 return (b); 883 } 884 885 static inline uma_bucket_t 886 cache_bucket_unload_alloc(uma_cache_t cache) 887 { 888 889 return (cache_bucket_unload(&cache->uc_allocbucket)); 890 } 891 892 static inline uma_bucket_t 893 cache_bucket_unload_free(uma_cache_t cache) 894 { 895 896 return (cache_bucket_unload(&cache->uc_freebucket)); 897 } 898 899 static inline uma_bucket_t 900 cache_bucket_unload_cross(uma_cache_t cache) 901 { 902 903 return (cache_bucket_unload(&cache->uc_crossbucket)); 904 } 905 906 /* 907 * Load a bucket into a per-cpu cache bucket. 908 */ 909 static inline void 910 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 911 { 912 913 CRITICAL_ASSERT(curthread); 914 MPASS(bucket->ucb_bucket == NULL); 915 MPASS(b->ub_seq == SMR_SEQ_INVALID); 916 917 bucket->ucb_bucket = b; 918 bucket->ucb_cnt = b->ub_cnt; 919 bucket->ucb_entries = b->ub_entries; 920 } 921 922 static inline void 923 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 924 { 925 926 cache_bucket_load(&cache->uc_allocbucket, b); 927 } 928 929 static inline void 930 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 931 { 932 933 cache_bucket_load(&cache->uc_freebucket, b); 934 } 935 936 #ifdef NUMA 937 static inline void 938 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 939 { 940 941 cache_bucket_load(&cache->uc_crossbucket, b); 942 } 943 #endif 944 945 /* 946 * Copy and preserve ucb_spare. 947 */ 948 static inline void 949 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 950 { 951 952 b1->ucb_bucket = b2->ucb_bucket; 953 b1->ucb_entries = b2->ucb_entries; 954 b1->ucb_cnt = b2->ucb_cnt; 955 } 956 957 /* 958 * Swap two cache buckets. 959 */ 960 static inline void 961 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 962 { 963 struct uma_cache_bucket b3; 964 965 CRITICAL_ASSERT(curthread); 966 967 cache_bucket_copy(&b3, b1); 968 cache_bucket_copy(b1, b2); 969 cache_bucket_copy(b2, &b3); 970 } 971 972 /* 973 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 974 */ 975 static uma_bucket_t 976 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 977 { 978 uma_zone_domain_t zdom; 979 uma_bucket_t bucket; 980 981 /* 982 * Avoid the lock if possible. 983 */ 984 zdom = ZDOM_GET(zone, domain); 985 if (zdom->uzd_nitems == 0) 986 return (NULL); 987 988 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 989 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 990 return (NULL); 991 992 /* 993 * Check the zone's cache of buckets. 994 */ 995 zdom = zone_domain_lock(zone, domain); 996 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) 997 return (bucket); 998 ZDOM_UNLOCK(zdom); 999 1000 return (NULL); 1001 } 1002 1003 static void 1004 zone_log_warning(uma_zone_t zone) 1005 { 1006 static const struct timeval warninterval = { 300, 0 }; 1007 1008 if (!zone_warnings || zone->uz_warning == NULL) 1009 return; 1010 1011 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 1012 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 1013 } 1014 1015 static inline void 1016 zone_maxaction(uma_zone_t zone) 1017 { 1018 1019 if (zone->uz_maxaction.ta_func != NULL) 1020 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 1021 } 1022 1023 /* 1024 * Routine called by timeout which is used to fire off some time interval 1025 * based calculations. (stats, hash size, etc.) 1026 * 1027 * Arguments: 1028 * arg Unused 1029 * 1030 * Returns: 1031 * Nothing 1032 */ 1033 static void 1034 uma_timeout(void *unused) 1035 { 1036 bucket_enable(); 1037 zone_foreach(zone_timeout, NULL); 1038 1039 /* Reschedule this event */ 1040 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1041 } 1042 1043 /* 1044 * Update the working set size estimate for the zone's bucket cache. 1045 * The constants chosen here are somewhat arbitrary. With an update period of 1046 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 1047 * last 100s. 1048 */ 1049 static void 1050 zone_domain_update_wss(uma_zone_domain_t zdom) 1051 { 1052 long wss; 1053 1054 ZDOM_LOCK(zdom); 1055 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 1056 wss = zdom->uzd_imax - zdom->uzd_imin; 1057 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 1058 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 1059 ZDOM_UNLOCK(zdom); 1060 } 1061 1062 /* 1063 * Routine to perform timeout driven calculations. This expands the 1064 * hashes and does per cpu statistics aggregation. 1065 * 1066 * Returns nothing. 1067 */ 1068 static void 1069 zone_timeout(uma_zone_t zone, void *unused) 1070 { 1071 uma_keg_t keg; 1072 u_int slabs, pages; 1073 1074 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 1075 goto update_wss; 1076 1077 keg = zone->uz_keg; 1078 1079 /* 1080 * Hash zones are non-numa by definition so the first domain 1081 * is the only one present. 1082 */ 1083 KEG_LOCK(keg, 0); 1084 pages = keg->uk_domain[0].ud_pages; 1085 1086 /* 1087 * Expand the keg hash table. 1088 * 1089 * This is done if the number of slabs is larger than the hash size. 1090 * What I'm trying to do here is completely reduce collisions. This 1091 * may be a little aggressive. Should I allow for two collisions max? 1092 */ 1093 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1094 struct uma_hash newhash; 1095 struct uma_hash oldhash; 1096 int ret; 1097 1098 /* 1099 * This is so involved because allocating and freeing 1100 * while the keg lock is held will lead to deadlock. 1101 * I have to do everything in stages and check for 1102 * races. 1103 */ 1104 KEG_UNLOCK(keg, 0); 1105 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1106 KEG_LOCK(keg, 0); 1107 if (ret) { 1108 if (hash_expand(&keg->uk_hash, &newhash)) { 1109 oldhash = keg->uk_hash; 1110 keg->uk_hash = newhash; 1111 } else 1112 oldhash = newhash; 1113 1114 KEG_UNLOCK(keg, 0); 1115 hash_free(&oldhash); 1116 goto update_wss; 1117 } 1118 } 1119 KEG_UNLOCK(keg, 0); 1120 1121 update_wss: 1122 for (int i = 0; i < vm_ndomains; i++) 1123 zone_domain_update_wss(ZDOM_GET(zone, i)); 1124 } 1125 1126 /* 1127 * Allocate and zero fill the next sized hash table from the appropriate 1128 * backing store. 1129 * 1130 * Arguments: 1131 * hash A new hash structure with the old hash size in uh_hashsize 1132 * 1133 * Returns: 1134 * 1 on success and 0 on failure. 1135 */ 1136 static int 1137 hash_alloc(struct uma_hash *hash, u_int size) 1138 { 1139 size_t alloc; 1140 1141 KASSERT(powerof2(size), ("hash size must be power of 2")); 1142 if (size > UMA_HASH_SIZE_INIT) { 1143 hash->uh_hashsize = size; 1144 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1145 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1146 } else { 1147 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1148 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1149 UMA_ANYDOMAIN, M_WAITOK); 1150 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1151 } 1152 if (hash->uh_slab_hash) { 1153 bzero(hash->uh_slab_hash, alloc); 1154 hash->uh_hashmask = hash->uh_hashsize - 1; 1155 return (1); 1156 } 1157 1158 return (0); 1159 } 1160 1161 /* 1162 * Expands the hash table for HASH zones. This is done from zone_timeout 1163 * to reduce collisions. This must not be done in the regular allocation 1164 * path, otherwise, we can recurse on the vm while allocating pages. 1165 * 1166 * Arguments: 1167 * oldhash The hash you want to expand 1168 * newhash The hash structure for the new table 1169 * 1170 * Returns: 1171 * Nothing 1172 * 1173 * Discussion: 1174 */ 1175 static int 1176 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1177 { 1178 uma_hash_slab_t slab; 1179 u_int hval; 1180 u_int idx; 1181 1182 if (!newhash->uh_slab_hash) 1183 return (0); 1184 1185 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1186 return (0); 1187 1188 /* 1189 * I need to investigate hash algorithms for resizing without a 1190 * full rehash. 1191 */ 1192 1193 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1194 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1195 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1196 LIST_REMOVE(slab, uhs_hlink); 1197 hval = UMA_HASH(newhash, slab->uhs_data); 1198 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1199 slab, uhs_hlink); 1200 } 1201 1202 return (1); 1203 } 1204 1205 /* 1206 * Free the hash bucket to the appropriate backing store. 1207 * 1208 * Arguments: 1209 * slab_hash The hash bucket we're freeing 1210 * hashsize The number of entries in that hash bucket 1211 * 1212 * Returns: 1213 * Nothing 1214 */ 1215 static void 1216 hash_free(struct uma_hash *hash) 1217 { 1218 if (hash->uh_slab_hash == NULL) 1219 return; 1220 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1221 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1222 else 1223 free(hash->uh_slab_hash, M_UMAHASH); 1224 } 1225 1226 /* 1227 * Frees all outstanding items in a bucket 1228 * 1229 * Arguments: 1230 * zone The zone to free to, must be unlocked. 1231 * bucket The free/alloc bucket with items. 1232 * 1233 * Returns: 1234 * Nothing 1235 */ 1236 static void 1237 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1238 { 1239 int i; 1240 1241 if (bucket->ub_cnt == 0) 1242 return; 1243 1244 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1245 bucket->ub_seq != SMR_SEQ_INVALID) { 1246 smr_wait(zone->uz_smr, bucket->ub_seq); 1247 bucket->ub_seq = SMR_SEQ_INVALID; 1248 for (i = 0; i < bucket->ub_cnt; i++) 1249 item_dtor(zone, bucket->ub_bucket[i], 1250 zone->uz_size, NULL, SKIP_NONE); 1251 } 1252 if (zone->uz_fini) 1253 for (i = 0; i < bucket->ub_cnt; i++) { 1254 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 1255 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1256 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 1257 } 1258 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1259 if (zone->uz_max_items > 0) 1260 zone_free_limit(zone, bucket->ub_cnt); 1261 #ifdef INVARIANTS 1262 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1263 #endif 1264 bucket->ub_cnt = 0; 1265 } 1266 1267 /* 1268 * Drains the per cpu caches for a zone. 1269 * 1270 * NOTE: This may only be called while the zone is being torn down, and not 1271 * during normal operation. This is necessary in order that we do not have 1272 * to migrate CPUs to drain the per-CPU caches. 1273 * 1274 * Arguments: 1275 * zone The zone to drain, must be unlocked. 1276 * 1277 * Returns: 1278 * Nothing 1279 */ 1280 static void 1281 cache_drain(uma_zone_t zone) 1282 { 1283 uma_cache_t cache; 1284 uma_bucket_t bucket; 1285 smr_seq_t seq; 1286 int cpu; 1287 1288 /* 1289 * XXX: It is safe to not lock the per-CPU caches, because we're 1290 * tearing down the zone anyway. I.e., there will be no further use 1291 * of the caches at this point. 1292 * 1293 * XXX: It would good to be able to assert that the zone is being 1294 * torn down to prevent improper use of cache_drain(). 1295 */ 1296 seq = SMR_SEQ_INVALID; 1297 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1298 seq = smr_advance(zone->uz_smr); 1299 CPU_FOREACH(cpu) { 1300 cache = &zone->uz_cpu[cpu]; 1301 bucket = cache_bucket_unload_alloc(cache); 1302 if (bucket != NULL) 1303 bucket_free(zone, bucket, NULL); 1304 bucket = cache_bucket_unload_free(cache); 1305 if (bucket != NULL) { 1306 bucket->ub_seq = seq; 1307 bucket_free(zone, bucket, NULL); 1308 } 1309 bucket = cache_bucket_unload_cross(cache); 1310 if (bucket != NULL) { 1311 bucket->ub_seq = seq; 1312 bucket_free(zone, bucket, NULL); 1313 } 1314 } 1315 bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN); 1316 } 1317 1318 static void 1319 cache_shrink(uma_zone_t zone, void *unused) 1320 { 1321 1322 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1323 return; 1324 1325 ZONE_LOCK(zone); 1326 zone->uz_bucket_size = 1327 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1328 ZONE_UNLOCK(zone); 1329 } 1330 1331 static void 1332 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1333 { 1334 uma_cache_t cache; 1335 uma_bucket_t b1, b2, b3; 1336 int domain; 1337 1338 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1339 return; 1340 1341 b1 = b2 = b3 = NULL; 1342 critical_enter(); 1343 cache = &zone->uz_cpu[curcpu]; 1344 domain = PCPU_GET(domain); 1345 b1 = cache_bucket_unload_alloc(cache); 1346 1347 /* 1348 * Don't flush SMR zone buckets. This leaves the zone without a 1349 * bucket and forces every free to synchronize(). 1350 */ 1351 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1352 b2 = cache_bucket_unload_free(cache); 1353 b3 = cache_bucket_unload_cross(cache); 1354 } 1355 critical_exit(); 1356 1357 if (b1 != NULL) 1358 zone_free_bucket(zone, b1, NULL, domain, false); 1359 if (b2 != NULL) 1360 zone_free_bucket(zone, b2, NULL, domain, false); 1361 if (b3 != NULL) { 1362 /* Adjust the domain so it goes to zone_free_cross. */ 1363 domain = (domain + 1) % vm_ndomains; 1364 zone_free_bucket(zone, b3, NULL, domain, false); 1365 } 1366 } 1367 1368 /* 1369 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1370 * This is an expensive call because it needs to bind to all CPUs 1371 * one by one and enter a critical section on each of them in order 1372 * to safely access their cache buckets. 1373 * Zone lock must not be held on call this function. 1374 */ 1375 static void 1376 pcpu_cache_drain_safe(uma_zone_t zone) 1377 { 1378 int cpu; 1379 1380 /* 1381 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1382 */ 1383 if (zone) 1384 cache_shrink(zone, NULL); 1385 else 1386 zone_foreach(cache_shrink, NULL); 1387 1388 CPU_FOREACH(cpu) { 1389 thread_lock(curthread); 1390 sched_bind(curthread, cpu); 1391 thread_unlock(curthread); 1392 1393 if (zone) 1394 cache_drain_safe_cpu(zone, NULL); 1395 else 1396 zone_foreach(cache_drain_safe_cpu, NULL); 1397 } 1398 thread_lock(curthread); 1399 sched_unbind(curthread); 1400 thread_unlock(curthread); 1401 } 1402 1403 /* 1404 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1405 * requested a drain, otherwise the per-domain caches are trimmed to either 1406 * estimated working set size. 1407 */ 1408 static void 1409 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, int domain) 1410 { 1411 uma_zone_domain_t zdom; 1412 uma_bucket_t bucket; 1413 long target; 1414 1415 /* 1416 * The cross bucket is partially filled and not part of 1417 * the item count. Reclaim it individually here. 1418 */ 1419 zdom = ZDOM_GET(zone, domain); 1420 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1421 ZONE_CROSS_LOCK(zone); 1422 bucket = zdom->uzd_cross; 1423 zdom->uzd_cross = NULL; 1424 ZONE_CROSS_UNLOCK(zone); 1425 if (bucket != NULL) 1426 bucket_free(zone, bucket, NULL); 1427 } 1428 1429 /* 1430 * If we were asked to drain the zone, we are done only once 1431 * this bucket cache is empty. Otherwise, we reclaim items in 1432 * excess of the zone's estimated working set size. If the 1433 * difference nitems - imin is larger than the WSS estimate, 1434 * then the estimate will grow at the end of this interval and 1435 * we ignore the historical average. 1436 */ 1437 ZDOM_LOCK(zdom); 1438 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1439 zdom->uzd_imin); 1440 while (zdom->uzd_nitems > target) { 1441 bucket = zone_fetch_bucket(zone, zdom, true); 1442 if (bucket == NULL) 1443 break; 1444 bucket_free(zone, bucket, NULL); 1445 ZDOM_LOCK(zdom); 1446 } 1447 ZDOM_UNLOCK(zdom); 1448 } 1449 1450 static void 1451 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain) 1452 { 1453 int i; 1454 1455 /* 1456 * Shrink the zone bucket size to ensure that the per-CPU caches 1457 * don't grow too large. 1458 */ 1459 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1460 zone->uz_bucket_size--; 1461 1462 if (domain != UMA_ANYDOMAIN && 1463 (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) { 1464 bucket_cache_reclaim_domain(zone, drain, domain); 1465 } else { 1466 for (i = 0; i < vm_ndomains; i++) 1467 bucket_cache_reclaim_domain(zone, drain, i); 1468 } 1469 } 1470 1471 static void 1472 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1473 { 1474 uint8_t *mem; 1475 size_t size; 1476 int i; 1477 uint8_t flags; 1478 1479 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1480 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1481 1482 mem = slab_data(slab, keg); 1483 size = PAGE_SIZE * keg->uk_ppera; 1484 1485 kasan_mark_slab_valid(keg, mem); 1486 if (keg->uk_fini != NULL) { 1487 for (i = start - 1; i > -1; i--) 1488 #ifdef INVARIANTS 1489 /* 1490 * trash_fini implies that dtor was trash_dtor. trash_fini 1491 * would check that memory hasn't been modified since free, 1492 * which executed trash_dtor. 1493 * That's why we need to run uma_dbg_kskip() check here, 1494 * albeit we don't make skip check for other init/fini 1495 * invocations. 1496 */ 1497 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1498 keg->uk_fini != trash_fini) 1499 #endif 1500 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1501 } 1502 flags = slab->us_flags; 1503 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1504 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1505 NULL, SKIP_NONE); 1506 } 1507 keg->uk_freef(mem, size, flags); 1508 uma_total_dec(size); 1509 } 1510 1511 static void 1512 keg_drain_domain(uma_keg_t keg, int domain) 1513 { 1514 struct slabhead freeslabs; 1515 uma_domain_t dom; 1516 uma_slab_t slab, tmp; 1517 uint32_t i, stofree, stokeep, partial; 1518 1519 dom = &keg->uk_domain[domain]; 1520 LIST_INIT(&freeslabs); 1521 1522 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1523 keg->uk_name, keg, domain, dom->ud_free_items); 1524 1525 KEG_LOCK(keg, domain); 1526 1527 /* 1528 * Are the free items in partially allocated slabs sufficient to meet 1529 * the reserve? If not, compute the number of fully free slabs that must 1530 * be kept. 1531 */ 1532 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers; 1533 if (partial < keg->uk_reserve) { 1534 stokeep = min(dom->ud_free_slabs, 1535 howmany(keg->uk_reserve - partial, keg->uk_ipers)); 1536 } else { 1537 stokeep = 0; 1538 } 1539 stofree = dom->ud_free_slabs - stokeep; 1540 1541 /* 1542 * Partition the free slabs into two sets: those that must be kept in 1543 * order to maintain the reserve, and those that may be released back to 1544 * the system. Since one set may be much larger than the other, 1545 * populate the smaller of the two sets and swap them if necessary. 1546 */ 1547 for (i = min(stofree, stokeep); i > 0; i--) { 1548 slab = LIST_FIRST(&dom->ud_free_slab); 1549 LIST_REMOVE(slab, us_link); 1550 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1551 } 1552 if (stofree > stokeep) 1553 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1554 1555 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1556 LIST_FOREACH(slab, &freeslabs, us_link) 1557 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1558 } 1559 dom->ud_free_items -= stofree * keg->uk_ipers; 1560 dom->ud_free_slabs -= stofree; 1561 dom->ud_pages -= stofree * keg->uk_ppera; 1562 KEG_UNLOCK(keg, domain); 1563 1564 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1565 keg_free_slab(keg, slab, keg->uk_ipers); 1566 } 1567 1568 /* 1569 * Frees pages from a keg back to the system. This is done on demand from 1570 * the pageout daemon. 1571 * 1572 * Returns nothing. 1573 */ 1574 static void 1575 keg_drain(uma_keg_t keg, int domain) 1576 { 1577 int i; 1578 1579 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0) 1580 return; 1581 if (domain != UMA_ANYDOMAIN) { 1582 keg_drain_domain(keg, domain); 1583 } else { 1584 for (i = 0; i < vm_ndomains; i++) 1585 keg_drain_domain(keg, i); 1586 } 1587 } 1588 1589 static void 1590 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain) 1591 { 1592 /* 1593 * Count active reclaim operations in order to interlock with 1594 * zone_dtor(), which removes the zone from global lists before 1595 * attempting to reclaim items itself. 1596 * 1597 * The zone may be destroyed while sleeping, so only zone_dtor() should 1598 * specify M_WAITOK. 1599 */ 1600 ZONE_LOCK(zone); 1601 if (waitok == M_WAITOK) { 1602 while (zone->uz_reclaimers > 0) 1603 msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1); 1604 } 1605 zone->uz_reclaimers++; 1606 ZONE_UNLOCK(zone); 1607 bucket_cache_reclaim(zone, drain, domain); 1608 1609 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1610 keg_drain(zone->uz_keg, domain); 1611 ZONE_LOCK(zone); 1612 zone->uz_reclaimers--; 1613 if (zone->uz_reclaimers == 0) 1614 wakeup(zone); 1615 ZONE_UNLOCK(zone); 1616 } 1617 1618 static void 1619 zone_drain(uma_zone_t zone, void *arg) 1620 { 1621 int domain; 1622 1623 domain = (int)(uintptr_t)arg; 1624 zone_reclaim(zone, domain, M_NOWAIT, true); 1625 } 1626 1627 static void 1628 zone_trim(uma_zone_t zone, void *arg) 1629 { 1630 int domain; 1631 1632 domain = (int)(uintptr_t)arg; 1633 zone_reclaim(zone, domain, M_NOWAIT, false); 1634 } 1635 1636 /* 1637 * Allocate a new slab for a keg and inserts it into the partial slab list. 1638 * The keg should be unlocked on entry. If the allocation succeeds it will 1639 * be locked on return. 1640 * 1641 * Arguments: 1642 * flags Wait flags for the item initialization routine 1643 * aflags Wait flags for the slab allocation 1644 * 1645 * Returns: 1646 * The slab that was allocated or NULL if there is no memory and the 1647 * caller specified M_NOWAIT. 1648 */ 1649 static uma_slab_t 1650 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1651 int aflags) 1652 { 1653 uma_domain_t dom; 1654 uma_slab_t slab; 1655 unsigned long size; 1656 uint8_t *mem; 1657 uint8_t sflags; 1658 int i; 1659 1660 KASSERT(domain >= 0 && domain < vm_ndomains, 1661 ("keg_alloc_slab: domain %d out of range", domain)); 1662 1663 slab = NULL; 1664 mem = NULL; 1665 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1666 uma_hash_slab_t hslab; 1667 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1668 domain, aflags); 1669 if (hslab == NULL) 1670 goto fail; 1671 slab = &hslab->uhs_slab; 1672 } 1673 1674 /* 1675 * This reproduces the old vm_zone behavior of zero filling pages the 1676 * first time they are added to a zone. 1677 * 1678 * Malloced items are zeroed in uma_zalloc. 1679 */ 1680 1681 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1682 aflags |= M_ZERO; 1683 else 1684 aflags &= ~M_ZERO; 1685 1686 if (keg->uk_flags & UMA_ZONE_NODUMP) 1687 aflags |= M_NODUMP; 1688 1689 /* zone is passed for legacy reasons. */ 1690 size = keg->uk_ppera * PAGE_SIZE; 1691 mem = keg->uk_allocf(zone, size, domain, &sflags, aflags); 1692 if (mem == NULL) { 1693 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1694 zone_free_item(slabzone(keg->uk_ipers), 1695 slab_tohashslab(slab), NULL, SKIP_NONE); 1696 goto fail; 1697 } 1698 uma_total_inc(size); 1699 1700 /* For HASH zones all pages go to the same uma_domain. */ 1701 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1702 domain = 0; 1703 1704 /* Point the slab into the allocated memory */ 1705 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1706 slab = (uma_slab_t)(mem + keg->uk_pgoff); 1707 else 1708 slab_tohashslab(slab)->uhs_data = mem; 1709 1710 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1711 for (i = 0; i < keg->uk_ppera; i++) 1712 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1713 zone, slab); 1714 1715 slab->us_freecount = keg->uk_ipers; 1716 slab->us_flags = sflags; 1717 slab->us_domain = domain; 1718 1719 BIT_FILL(keg->uk_ipers, &slab->us_free); 1720 #ifdef INVARIANTS 1721 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1722 #endif 1723 1724 if (keg->uk_init != NULL) { 1725 for (i = 0; i < keg->uk_ipers; i++) 1726 if (keg->uk_init(slab_item(slab, keg, i), 1727 keg->uk_size, flags) != 0) 1728 break; 1729 if (i != keg->uk_ipers) { 1730 keg_free_slab(keg, slab, i); 1731 goto fail; 1732 } 1733 } 1734 kasan_mark_slab_invalid(keg, mem); 1735 KEG_LOCK(keg, domain); 1736 1737 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1738 slab, keg->uk_name, keg); 1739 1740 if (keg->uk_flags & UMA_ZFLAG_HASH) 1741 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1742 1743 /* 1744 * If we got a slab here it's safe to mark it partially used 1745 * and return. We assume that the caller is going to remove 1746 * at least one item. 1747 */ 1748 dom = &keg->uk_domain[domain]; 1749 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1750 dom->ud_pages += keg->uk_ppera; 1751 dom->ud_free_items += keg->uk_ipers; 1752 1753 return (slab); 1754 1755 fail: 1756 return (NULL); 1757 } 1758 1759 /* 1760 * This function is intended to be used early on in place of page_alloc(). It 1761 * performs contiguous physical memory allocations and uses a bump allocator for 1762 * KVA, so is usable before the kernel map is initialized. 1763 */ 1764 static void * 1765 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1766 int wait) 1767 { 1768 vm_paddr_t pa; 1769 vm_page_t m; 1770 void *mem; 1771 int pages; 1772 int i; 1773 1774 pages = howmany(bytes, PAGE_SIZE); 1775 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1776 1777 *pflag = UMA_SLAB_BOOT; 1778 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1779 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1780 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1781 if (m == NULL) 1782 return (NULL); 1783 1784 pa = VM_PAGE_TO_PHYS(m); 1785 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1786 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1787 defined(__riscv) || defined(__powerpc64__) 1788 if ((wait & M_NODUMP) == 0) 1789 dump_add_page(pa); 1790 #endif 1791 } 1792 /* Allocate KVA and indirectly advance bootmem. */ 1793 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1794 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1795 if ((wait & M_ZERO) != 0) 1796 bzero(mem, pages * PAGE_SIZE); 1797 1798 return (mem); 1799 } 1800 1801 static void 1802 startup_free(void *mem, vm_size_t bytes) 1803 { 1804 vm_offset_t va; 1805 vm_page_t m; 1806 1807 va = (vm_offset_t)mem; 1808 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1809 1810 /* 1811 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid 1812 * unmapping ranges of the direct map. 1813 */ 1814 if (va >= bootstart && va + bytes <= bootmem) 1815 pmap_remove(kernel_pmap, va, va + bytes); 1816 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1817 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1818 defined(__riscv) || defined(__powerpc64__) 1819 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1820 #endif 1821 vm_page_unwire_noq(m); 1822 vm_page_free(m); 1823 } 1824 } 1825 1826 /* 1827 * Allocates a number of pages from the system 1828 * 1829 * Arguments: 1830 * bytes The number of bytes requested 1831 * wait Shall we wait? 1832 * 1833 * Returns: 1834 * A pointer to the alloced memory or possibly 1835 * NULL if M_NOWAIT is set. 1836 */ 1837 static void * 1838 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1839 int wait) 1840 { 1841 void *p; /* Returned page */ 1842 1843 *pflag = UMA_SLAB_KERNEL; 1844 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1845 1846 return (p); 1847 } 1848 1849 static void * 1850 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1851 int wait) 1852 { 1853 struct pglist alloctail; 1854 vm_offset_t addr, zkva; 1855 int cpu, flags; 1856 vm_page_t p, p_next; 1857 #ifdef NUMA 1858 struct pcpu *pc; 1859 #endif 1860 1861 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1862 1863 TAILQ_INIT(&alloctail); 1864 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1865 malloc2vm_flags(wait); 1866 *pflag = UMA_SLAB_KERNEL; 1867 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1868 if (CPU_ABSENT(cpu)) { 1869 p = vm_page_alloc(NULL, 0, flags); 1870 } else { 1871 #ifndef NUMA 1872 p = vm_page_alloc(NULL, 0, flags); 1873 #else 1874 pc = pcpu_find(cpu); 1875 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1876 p = NULL; 1877 else 1878 p = vm_page_alloc_domain(NULL, 0, 1879 pc->pc_domain, flags); 1880 if (__predict_false(p == NULL)) 1881 p = vm_page_alloc(NULL, 0, flags); 1882 #endif 1883 } 1884 if (__predict_false(p == NULL)) 1885 goto fail; 1886 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1887 } 1888 if ((addr = kva_alloc(bytes)) == 0) 1889 goto fail; 1890 zkva = addr; 1891 TAILQ_FOREACH(p, &alloctail, listq) { 1892 pmap_qenter(zkva, &p, 1); 1893 zkva += PAGE_SIZE; 1894 } 1895 return ((void*)addr); 1896 fail: 1897 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1898 vm_page_unwire_noq(p); 1899 vm_page_free(p); 1900 } 1901 return (NULL); 1902 } 1903 1904 /* 1905 * Allocates a number of pages from within an object 1906 * 1907 * Arguments: 1908 * bytes The number of bytes requested 1909 * wait Shall we wait? 1910 * 1911 * Returns: 1912 * A pointer to the alloced memory or possibly 1913 * NULL if M_NOWAIT is set. 1914 */ 1915 static void * 1916 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1917 int wait) 1918 { 1919 TAILQ_HEAD(, vm_page) alloctail; 1920 u_long npages; 1921 vm_offset_t retkva, zkva; 1922 vm_page_t p, p_next; 1923 uma_keg_t keg; 1924 1925 TAILQ_INIT(&alloctail); 1926 keg = zone->uz_keg; 1927 1928 npages = howmany(bytes, PAGE_SIZE); 1929 while (npages > 0) { 1930 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1931 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1932 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1933 VM_ALLOC_NOWAIT)); 1934 if (p != NULL) { 1935 /* 1936 * Since the page does not belong to an object, its 1937 * listq is unused. 1938 */ 1939 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1940 npages--; 1941 continue; 1942 } 1943 /* 1944 * Page allocation failed, free intermediate pages and 1945 * exit. 1946 */ 1947 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1948 vm_page_unwire_noq(p); 1949 vm_page_free(p); 1950 } 1951 return (NULL); 1952 } 1953 *flags = UMA_SLAB_PRIV; 1954 zkva = keg->uk_kva + 1955 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1956 retkva = zkva; 1957 TAILQ_FOREACH(p, &alloctail, listq) { 1958 pmap_qenter(zkva, &p, 1); 1959 zkva += PAGE_SIZE; 1960 } 1961 1962 return ((void *)retkva); 1963 } 1964 1965 /* 1966 * Allocate physically contiguous pages. 1967 */ 1968 static void * 1969 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1970 int wait) 1971 { 1972 1973 *pflag = UMA_SLAB_KERNEL; 1974 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 1975 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 1976 } 1977 1978 /* 1979 * Frees a number of pages to the system 1980 * 1981 * Arguments: 1982 * mem A pointer to the memory to be freed 1983 * size The size of the memory being freed 1984 * flags The original p->us_flags field 1985 * 1986 * Returns: 1987 * Nothing 1988 */ 1989 static void 1990 page_free(void *mem, vm_size_t size, uint8_t flags) 1991 { 1992 1993 if ((flags & UMA_SLAB_BOOT) != 0) { 1994 startup_free(mem, size); 1995 return; 1996 } 1997 1998 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 1999 ("UMA: page_free used with invalid flags %x", flags)); 2000 2001 kmem_free((vm_offset_t)mem, size); 2002 } 2003 2004 /* 2005 * Frees pcpu zone allocations 2006 * 2007 * Arguments: 2008 * mem A pointer to the memory to be freed 2009 * size The size of the memory being freed 2010 * flags The original p->us_flags field 2011 * 2012 * Returns: 2013 * Nothing 2014 */ 2015 static void 2016 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 2017 { 2018 vm_offset_t sva, curva; 2019 vm_paddr_t paddr; 2020 vm_page_t m; 2021 2022 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 2023 2024 if ((flags & UMA_SLAB_BOOT) != 0) { 2025 startup_free(mem, size); 2026 return; 2027 } 2028 2029 sva = (vm_offset_t)mem; 2030 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 2031 paddr = pmap_kextract(curva); 2032 m = PHYS_TO_VM_PAGE(paddr); 2033 vm_page_unwire_noq(m); 2034 vm_page_free(m); 2035 } 2036 pmap_qremove(sva, size >> PAGE_SHIFT); 2037 kva_free(sva, size); 2038 } 2039 2040 /* 2041 * Zero fill initializer 2042 * 2043 * Arguments/Returns follow uma_init specifications 2044 */ 2045 static int 2046 zero_init(void *mem, int size, int flags) 2047 { 2048 bzero(mem, size); 2049 return (0); 2050 } 2051 2052 #ifdef INVARIANTS 2053 static struct noslabbits * 2054 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 2055 { 2056 2057 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 2058 } 2059 #endif 2060 2061 /* 2062 * Actual size of embedded struct slab (!OFFPAGE). 2063 */ 2064 static size_t 2065 slab_sizeof(int nitems) 2066 { 2067 size_t s; 2068 2069 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 2070 return (roundup(s, UMA_ALIGN_PTR + 1)); 2071 } 2072 2073 #define UMA_FIXPT_SHIFT 31 2074 #define UMA_FRAC_FIXPT(n, d) \ 2075 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 2076 #define UMA_FIXPT_PCT(f) \ 2077 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 2078 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 2079 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 2080 2081 /* 2082 * Compute the number of items that will fit in a slab. If hdr is true, the 2083 * item count may be limited to provide space in the slab for an inline slab 2084 * header. Otherwise, all slab space will be provided for item storage. 2085 */ 2086 static u_int 2087 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 2088 { 2089 u_int ipers; 2090 u_int padpi; 2091 2092 /* The padding between items is not needed after the last item. */ 2093 padpi = rsize - size; 2094 2095 if (hdr) { 2096 /* 2097 * Start with the maximum item count and remove items until 2098 * the slab header first alongside the allocatable memory. 2099 */ 2100 for (ipers = MIN(SLAB_MAX_SETSIZE, 2101 (slabsize + padpi - slab_sizeof(1)) / rsize); 2102 ipers > 0 && 2103 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 2104 ipers--) 2105 continue; 2106 } else { 2107 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 2108 } 2109 2110 return (ipers); 2111 } 2112 2113 struct keg_layout_result { 2114 u_int format; 2115 u_int slabsize; 2116 u_int ipers; 2117 u_int eff; 2118 }; 2119 2120 static void 2121 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 2122 struct keg_layout_result *kl) 2123 { 2124 u_int total; 2125 2126 kl->format = fmt; 2127 kl->slabsize = slabsize; 2128 2129 /* Handle INTERNAL as inline with an extra page. */ 2130 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 2131 kl->format &= ~UMA_ZFLAG_INTERNAL; 2132 kl->slabsize += PAGE_SIZE; 2133 } 2134 2135 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2136 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2137 2138 /* Account for memory used by an offpage slab header. */ 2139 total = kl->slabsize; 2140 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2141 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2142 2143 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2144 } 2145 2146 /* 2147 * Determine the format of a uma keg. This determines where the slab header 2148 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2149 * 2150 * Arguments 2151 * keg The zone we should initialize 2152 * 2153 * Returns 2154 * Nothing 2155 */ 2156 static void 2157 keg_layout(uma_keg_t keg) 2158 { 2159 struct keg_layout_result kl = {}, kl_tmp; 2160 u_int fmts[2]; 2161 u_int alignsize; 2162 u_int nfmt; 2163 u_int pages; 2164 u_int rsize; 2165 u_int slabsize; 2166 u_int i, j; 2167 2168 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2169 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2170 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2171 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2172 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2173 PRINT_UMA_ZFLAGS)); 2174 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2175 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2176 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2177 PRINT_UMA_ZFLAGS)); 2178 2179 alignsize = keg->uk_align + 1; 2180 2181 /* 2182 * Calculate the size of each allocation (rsize) according to 2183 * alignment. If the requested size is smaller than we have 2184 * allocation bits for we round it up. 2185 */ 2186 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2187 rsize = roundup2(rsize, alignsize); 2188 2189 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2190 /* 2191 * We want one item to start on every align boundary in a page. 2192 * To do this we will span pages. We will also extend the item 2193 * by the size of align if it is an even multiple of align. 2194 * Otherwise, it would fall on the same boundary every time. 2195 */ 2196 if ((rsize & alignsize) == 0) 2197 rsize += alignsize; 2198 slabsize = rsize * (PAGE_SIZE / alignsize); 2199 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2200 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2201 slabsize = round_page(slabsize); 2202 } else { 2203 /* 2204 * Start with a slab size of as many pages as it takes to 2205 * represent a single item. We will try to fit as many 2206 * additional items into the slab as possible. 2207 */ 2208 slabsize = round_page(keg->uk_size); 2209 } 2210 2211 /* Build a list of all of the available formats for this keg. */ 2212 nfmt = 0; 2213 2214 /* Evaluate an inline slab layout. */ 2215 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2216 fmts[nfmt++] = 0; 2217 2218 /* TODO: vm_page-embedded slab. */ 2219 2220 /* 2221 * We can't do OFFPAGE if we're internal or if we've been 2222 * asked to not go to the VM for buckets. If we do this we 2223 * may end up going to the VM for slabs which we do not want 2224 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2225 * In those cases, evaluate a pseudo-format called INTERNAL 2226 * which has an inline slab header and one extra page to 2227 * guarantee that it fits. 2228 * 2229 * Otherwise, see if using an OFFPAGE slab will improve our 2230 * efficiency. 2231 */ 2232 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2233 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2234 else 2235 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2236 2237 /* 2238 * Choose a slab size and format which satisfy the minimum efficiency. 2239 * Prefer the smallest slab size that meets the constraints. 2240 * 2241 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2242 * for small items (up to PAGE_SIZE), the iteration increment is one 2243 * page; and for large items, the increment is one item. 2244 */ 2245 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2246 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2247 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2248 rsize, i)); 2249 for ( ; ; i++) { 2250 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2251 round_page(rsize * (i - 1) + keg->uk_size); 2252 2253 for (j = 0; j < nfmt; j++) { 2254 /* Only if we have no viable format yet. */ 2255 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2256 kl.ipers > 0) 2257 continue; 2258 2259 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2260 if (kl_tmp.eff <= kl.eff) 2261 continue; 2262 2263 kl = kl_tmp; 2264 2265 CTR6(KTR_UMA, "keg %s layout: format %#x " 2266 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2267 keg->uk_name, kl.format, kl.ipers, rsize, 2268 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2269 2270 /* Stop when we reach the minimum efficiency. */ 2271 if (kl.eff >= UMA_MIN_EFF) 2272 break; 2273 } 2274 2275 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2276 slabsize >= SLAB_MAX_SETSIZE * rsize || 2277 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2278 break; 2279 } 2280 2281 pages = atop(kl.slabsize); 2282 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2283 pages *= mp_maxid + 1; 2284 2285 keg->uk_rsize = rsize; 2286 keg->uk_ipers = kl.ipers; 2287 keg->uk_ppera = pages; 2288 keg->uk_flags |= kl.format; 2289 2290 /* 2291 * How do we find the slab header if it is offpage or if not all item 2292 * start addresses are in the same page? We could solve the latter 2293 * case with vaddr alignment, but we don't. 2294 */ 2295 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2296 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2297 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2298 keg->uk_flags |= UMA_ZFLAG_HASH; 2299 else 2300 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2301 } 2302 2303 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2304 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2305 pages); 2306 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2307 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2308 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2309 keg->uk_ipers, pages)); 2310 } 2311 2312 /* 2313 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2314 * the keg onto the global keg list. 2315 * 2316 * Arguments/Returns follow uma_ctor specifications 2317 * udata Actually uma_kctor_args 2318 */ 2319 static int 2320 keg_ctor(void *mem, int size, void *udata, int flags) 2321 { 2322 struct uma_kctor_args *arg = udata; 2323 uma_keg_t keg = mem; 2324 uma_zone_t zone; 2325 int i; 2326 2327 bzero(keg, size); 2328 keg->uk_size = arg->size; 2329 keg->uk_init = arg->uminit; 2330 keg->uk_fini = arg->fini; 2331 keg->uk_align = arg->align; 2332 keg->uk_reserve = 0; 2333 keg->uk_flags = arg->flags; 2334 2335 /* 2336 * We use a global round-robin policy by default. Zones with 2337 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2338 * case the iterator is never run. 2339 */ 2340 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2341 keg->uk_dr.dr_iter = 0; 2342 2343 /* 2344 * The primary zone is passed to us at keg-creation time. 2345 */ 2346 zone = arg->zone; 2347 keg->uk_name = zone->uz_name; 2348 2349 if (arg->flags & UMA_ZONE_ZINIT) 2350 keg->uk_init = zero_init; 2351 2352 if (arg->flags & UMA_ZONE_MALLOC) 2353 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2354 2355 #ifndef SMP 2356 keg->uk_flags &= ~UMA_ZONE_PCPU; 2357 #endif 2358 2359 keg_layout(keg); 2360 2361 /* 2362 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2363 * work on. Use round-robin for everything else. 2364 * 2365 * Zones may override the default by specifying either. 2366 */ 2367 #ifdef NUMA 2368 if ((keg->uk_flags & 2369 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2370 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2371 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2372 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2373 #endif 2374 2375 /* 2376 * If we haven't booted yet we need allocations to go through the 2377 * startup cache until the vm is ready. 2378 */ 2379 #ifdef UMA_MD_SMALL_ALLOC 2380 if (keg->uk_ppera == 1) 2381 keg->uk_allocf = uma_small_alloc; 2382 else 2383 #endif 2384 if (booted < BOOT_KVA) 2385 keg->uk_allocf = startup_alloc; 2386 else if (keg->uk_flags & UMA_ZONE_PCPU) 2387 keg->uk_allocf = pcpu_page_alloc; 2388 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2389 keg->uk_allocf = contig_alloc; 2390 else 2391 keg->uk_allocf = page_alloc; 2392 #ifdef UMA_MD_SMALL_ALLOC 2393 if (keg->uk_ppera == 1) 2394 keg->uk_freef = uma_small_free; 2395 else 2396 #endif 2397 if (keg->uk_flags & UMA_ZONE_PCPU) 2398 keg->uk_freef = pcpu_page_free; 2399 else 2400 keg->uk_freef = page_free; 2401 2402 /* 2403 * Initialize keg's locks. 2404 */ 2405 for (i = 0; i < vm_ndomains; i++) 2406 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2407 2408 /* 2409 * If we're putting the slab header in the actual page we need to 2410 * figure out where in each page it goes. See slab_sizeof 2411 * definition. 2412 */ 2413 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2414 size_t shsize; 2415 2416 shsize = slab_sizeof(keg->uk_ipers); 2417 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2418 /* 2419 * The only way the following is possible is if with our 2420 * UMA_ALIGN_PTR adjustments we are now bigger than 2421 * UMA_SLAB_SIZE. I haven't checked whether this is 2422 * mathematically possible for all cases, so we make 2423 * sure here anyway. 2424 */ 2425 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2426 ("zone %s ipers %d rsize %d size %d slab won't fit", 2427 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2428 } 2429 2430 if (keg->uk_flags & UMA_ZFLAG_HASH) 2431 hash_alloc(&keg->uk_hash, 0); 2432 2433 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2434 2435 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2436 2437 rw_wlock(&uma_rwlock); 2438 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2439 rw_wunlock(&uma_rwlock); 2440 return (0); 2441 } 2442 2443 static void 2444 zone_kva_available(uma_zone_t zone, void *unused) 2445 { 2446 uma_keg_t keg; 2447 2448 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2449 return; 2450 KEG_GET(zone, keg); 2451 2452 if (keg->uk_allocf == startup_alloc) { 2453 /* Switch to the real allocator. */ 2454 if (keg->uk_flags & UMA_ZONE_PCPU) 2455 keg->uk_allocf = pcpu_page_alloc; 2456 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2457 keg->uk_ppera > 1) 2458 keg->uk_allocf = contig_alloc; 2459 else 2460 keg->uk_allocf = page_alloc; 2461 } 2462 } 2463 2464 static void 2465 zone_alloc_counters(uma_zone_t zone, void *unused) 2466 { 2467 2468 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2469 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2470 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2471 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2472 } 2473 2474 static void 2475 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2476 { 2477 uma_zone_domain_t zdom; 2478 uma_domain_t dom; 2479 uma_keg_t keg; 2480 struct sysctl_oid *oid, *domainoid; 2481 int domains, i, cnt; 2482 static const char *nokeg = "cache zone"; 2483 char *c; 2484 2485 /* 2486 * Make a sysctl safe copy of the zone name by removing 2487 * any special characters and handling dups by appending 2488 * an index. 2489 */ 2490 if (zone->uz_namecnt != 0) { 2491 /* Count the number of decimal digits and '_' separator. */ 2492 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2493 cnt /= 10; 2494 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2495 M_UMA, M_WAITOK); 2496 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2497 zone->uz_namecnt); 2498 } else 2499 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2500 for (c = zone->uz_ctlname; *c != '\0'; c++) 2501 if (strchr("./\\ -", *c) != NULL) 2502 *c = '_'; 2503 2504 /* 2505 * Basic parameters at the root. 2506 */ 2507 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2508 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2509 oid = zone->uz_oid; 2510 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2511 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2512 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2513 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2514 zone, 0, sysctl_handle_uma_zone_flags, "A", 2515 "Allocator configuration flags"); 2516 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2517 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2518 "Desired per-cpu cache size"); 2519 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2520 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2521 "Maximum allowed per-cpu cache size"); 2522 2523 /* 2524 * keg if present. 2525 */ 2526 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2527 domains = vm_ndomains; 2528 else 2529 domains = 1; 2530 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2531 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2532 keg = zone->uz_keg; 2533 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2534 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2535 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2536 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2537 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2538 "Real object size with alignment"); 2539 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2540 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2541 "pages per-slab allocation"); 2542 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2543 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2544 "items available per-slab"); 2545 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2546 "align", CTLFLAG_RD, &keg->uk_align, 0, 2547 "item alignment mask"); 2548 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2549 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0, 2550 "number of reserved items"); 2551 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2552 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2553 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2554 "Slab utilization (100 - internal fragmentation %)"); 2555 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2556 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2557 for (i = 0; i < domains; i++) { 2558 dom = &keg->uk_domain[i]; 2559 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2560 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2561 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2562 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2563 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2564 "Total pages currently allocated from VM"); 2565 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2566 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2567 "items free in the slab layer"); 2568 } 2569 } else 2570 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2571 "name", CTLFLAG_RD, nokeg, "Keg name"); 2572 2573 /* 2574 * Information about zone limits. 2575 */ 2576 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2577 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2578 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2579 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2580 zone, 0, sysctl_handle_uma_zone_items, "QU", 2581 "Current number of allocated items if limit is set"); 2582 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2583 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2584 "Maximum number of allocated and cached items"); 2585 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2586 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2587 "Number of threads sleeping at limit"); 2588 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2589 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2590 "Total zone limit sleeps"); 2591 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2592 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2593 "Maximum number of items in each domain's bucket cache"); 2594 2595 /* 2596 * Per-domain zone information. 2597 */ 2598 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2599 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2600 for (i = 0; i < domains; i++) { 2601 zdom = ZDOM_GET(zone, i); 2602 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2603 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2604 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2605 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2606 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2607 "number of items in this domain"); 2608 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2609 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2610 "maximum item count in this period"); 2611 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2612 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2613 "minimum item count in this period"); 2614 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2615 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2616 "Working set size"); 2617 } 2618 2619 /* 2620 * General statistics. 2621 */ 2622 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2623 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2624 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2625 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2626 zone, 1, sysctl_handle_uma_zone_cur, "I", 2627 "Current number of allocated items"); 2628 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2629 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2630 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2631 "Total allocation calls"); 2632 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2633 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2634 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2635 "Total free calls"); 2636 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2637 "fails", CTLFLAG_RD, &zone->uz_fails, 2638 "Number of allocation failures"); 2639 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2640 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2641 "Free calls from the wrong domain"); 2642 } 2643 2644 struct uma_zone_count { 2645 const char *name; 2646 int count; 2647 }; 2648 2649 static void 2650 zone_count(uma_zone_t zone, void *arg) 2651 { 2652 struct uma_zone_count *cnt; 2653 2654 cnt = arg; 2655 /* 2656 * Some zones are rapidly created with identical names and 2657 * destroyed out of order. This can lead to gaps in the count. 2658 * Use one greater than the maximum observed for this name. 2659 */ 2660 if (strcmp(zone->uz_name, cnt->name) == 0) 2661 cnt->count = MAX(cnt->count, 2662 zone->uz_namecnt + 1); 2663 } 2664 2665 static void 2666 zone_update_caches(uma_zone_t zone) 2667 { 2668 int i; 2669 2670 for (i = 0; i <= mp_maxid; i++) { 2671 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2672 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2673 } 2674 } 2675 2676 /* 2677 * Zone header ctor. This initializes all fields, locks, etc. 2678 * 2679 * Arguments/Returns follow uma_ctor specifications 2680 * udata Actually uma_zctor_args 2681 */ 2682 static int 2683 zone_ctor(void *mem, int size, void *udata, int flags) 2684 { 2685 struct uma_zone_count cnt; 2686 struct uma_zctor_args *arg = udata; 2687 uma_zone_domain_t zdom; 2688 uma_zone_t zone = mem; 2689 uma_zone_t z; 2690 uma_keg_t keg; 2691 int i; 2692 2693 bzero(zone, size); 2694 zone->uz_name = arg->name; 2695 zone->uz_ctor = arg->ctor; 2696 zone->uz_dtor = arg->dtor; 2697 zone->uz_init = NULL; 2698 zone->uz_fini = NULL; 2699 zone->uz_sleeps = 0; 2700 zone->uz_bucket_size = 0; 2701 zone->uz_bucket_size_min = 0; 2702 zone->uz_bucket_size_max = BUCKET_MAX; 2703 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2704 zone->uz_warning = NULL; 2705 /* The domain structures follow the cpu structures. */ 2706 zone->uz_bucket_max = ULONG_MAX; 2707 timevalclear(&zone->uz_ratecheck); 2708 2709 /* Count the number of duplicate names. */ 2710 cnt.name = arg->name; 2711 cnt.count = 0; 2712 zone_foreach(zone_count, &cnt); 2713 zone->uz_namecnt = cnt.count; 2714 ZONE_CROSS_LOCK_INIT(zone); 2715 2716 for (i = 0; i < vm_ndomains; i++) { 2717 zdom = ZDOM_GET(zone, i); 2718 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2719 STAILQ_INIT(&zdom->uzd_buckets); 2720 } 2721 2722 #if defined(INVARIANTS) && !defined(KASAN) 2723 if (arg->uminit == trash_init && arg->fini == trash_fini) 2724 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2725 #elif defined(KASAN) 2726 if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0) 2727 arg->flags |= UMA_ZONE_NOKASAN; 2728 #endif 2729 2730 /* 2731 * This is a pure cache zone, no kegs. 2732 */ 2733 if (arg->import) { 2734 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2735 ("zone_ctor: Import specified for non-cache zone.")); 2736 zone->uz_flags = arg->flags; 2737 zone->uz_size = arg->size; 2738 zone->uz_import = arg->import; 2739 zone->uz_release = arg->release; 2740 zone->uz_arg = arg->arg; 2741 #ifdef NUMA 2742 /* 2743 * Cache zones are round-robin unless a policy is 2744 * specified because they may have incompatible 2745 * constraints. 2746 */ 2747 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2748 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2749 #endif 2750 rw_wlock(&uma_rwlock); 2751 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2752 rw_wunlock(&uma_rwlock); 2753 goto out; 2754 } 2755 2756 /* 2757 * Use the regular zone/keg/slab allocator. 2758 */ 2759 zone->uz_import = zone_import; 2760 zone->uz_release = zone_release; 2761 zone->uz_arg = zone; 2762 keg = arg->keg; 2763 2764 if (arg->flags & UMA_ZONE_SECONDARY) { 2765 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2766 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2767 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2768 zone->uz_init = arg->uminit; 2769 zone->uz_fini = arg->fini; 2770 zone->uz_flags |= UMA_ZONE_SECONDARY; 2771 rw_wlock(&uma_rwlock); 2772 ZONE_LOCK(zone); 2773 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2774 if (LIST_NEXT(z, uz_link) == NULL) { 2775 LIST_INSERT_AFTER(z, zone, uz_link); 2776 break; 2777 } 2778 } 2779 ZONE_UNLOCK(zone); 2780 rw_wunlock(&uma_rwlock); 2781 } else if (keg == NULL) { 2782 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2783 arg->align, arg->flags)) == NULL) 2784 return (ENOMEM); 2785 } else { 2786 struct uma_kctor_args karg; 2787 int error; 2788 2789 /* We should only be here from uma_startup() */ 2790 karg.size = arg->size; 2791 karg.uminit = arg->uminit; 2792 karg.fini = arg->fini; 2793 karg.align = arg->align; 2794 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2795 karg.zone = zone; 2796 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2797 flags); 2798 if (error) 2799 return (error); 2800 } 2801 2802 /* Inherit properties from the keg. */ 2803 zone->uz_keg = keg; 2804 zone->uz_size = keg->uk_size; 2805 zone->uz_flags |= (keg->uk_flags & 2806 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2807 2808 out: 2809 if (booted >= BOOT_PCPU) { 2810 zone_alloc_counters(zone, NULL); 2811 if (booted >= BOOT_RUNNING) 2812 zone_alloc_sysctl(zone, NULL); 2813 } else { 2814 zone->uz_allocs = EARLY_COUNTER; 2815 zone->uz_frees = EARLY_COUNTER; 2816 zone->uz_fails = EARLY_COUNTER; 2817 } 2818 2819 /* Caller requests a private SMR context. */ 2820 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2821 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2822 2823 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2824 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2825 ("Invalid zone flag combination")); 2826 if (arg->flags & UMA_ZFLAG_INTERNAL) 2827 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2828 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2829 zone->uz_bucket_size = BUCKET_MAX; 2830 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2831 zone->uz_bucket_size = 0; 2832 else 2833 zone->uz_bucket_size = bucket_select(zone->uz_size); 2834 zone->uz_bucket_size_min = zone->uz_bucket_size; 2835 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2836 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2837 zone_update_caches(zone); 2838 2839 return (0); 2840 } 2841 2842 /* 2843 * Keg header dtor. This frees all data, destroys locks, frees the hash 2844 * table and removes the keg from the global list. 2845 * 2846 * Arguments/Returns follow uma_dtor specifications 2847 * udata unused 2848 */ 2849 static void 2850 keg_dtor(void *arg, int size, void *udata) 2851 { 2852 uma_keg_t keg; 2853 uint32_t free, pages; 2854 int i; 2855 2856 keg = (uma_keg_t)arg; 2857 free = pages = 0; 2858 for (i = 0; i < vm_ndomains; i++) { 2859 free += keg->uk_domain[i].ud_free_items; 2860 pages += keg->uk_domain[i].ud_pages; 2861 KEG_LOCK_FINI(keg, i); 2862 } 2863 if (pages != 0) 2864 printf("Freed UMA keg (%s) was not empty (%u items). " 2865 " Lost %u pages of memory.\n", 2866 keg->uk_name ? keg->uk_name : "", 2867 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2868 2869 hash_free(&keg->uk_hash); 2870 } 2871 2872 /* 2873 * Zone header dtor. 2874 * 2875 * Arguments/Returns follow uma_dtor specifications 2876 * udata unused 2877 */ 2878 static void 2879 zone_dtor(void *arg, int size, void *udata) 2880 { 2881 uma_zone_t zone; 2882 uma_keg_t keg; 2883 int i; 2884 2885 zone = (uma_zone_t)arg; 2886 2887 sysctl_remove_oid(zone->uz_oid, 1, 1); 2888 2889 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2890 cache_drain(zone); 2891 2892 rw_wlock(&uma_rwlock); 2893 LIST_REMOVE(zone, uz_link); 2894 rw_wunlock(&uma_rwlock); 2895 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2896 keg = zone->uz_keg; 2897 keg->uk_reserve = 0; 2898 } 2899 zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true); 2900 2901 /* 2902 * We only destroy kegs from non secondary/non cache zones. 2903 */ 2904 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2905 keg = zone->uz_keg; 2906 rw_wlock(&uma_rwlock); 2907 LIST_REMOVE(keg, uk_link); 2908 rw_wunlock(&uma_rwlock); 2909 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2910 } 2911 counter_u64_free(zone->uz_allocs); 2912 counter_u64_free(zone->uz_frees); 2913 counter_u64_free(zone->uz_fails); 2914 counter_u64_free(zone->uz_xdomain); 2915 free(zone->uz_ctlname, M_UMA); 2916 for (i = 0; i < vm_ndomains; i++) 2917 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 2918 ZONE_CROSS_LOCK_FINI(zone); 2919 } 2920 2921 static void 2922 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2923 { 2924 uma_keg_t keg; 2925 uma_zone_t zone; 2926 2927 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2928 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2929 zfunc(zone, arg); 2930 } 2931 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2932 zfunc(zone, arg); 2933 } 2934 2935 /* 2936 * Traverses every zone in the system and calls a callback 2937 * 2938 * Arguments: 2939 * zfunc A pointer to a function which accepts a zone 2940 * as an argument. 2941 * 2942 * Returns: 2943 * Nothing 2944 */ 2945 static void 2946 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2947 { 2948 2949 rw_rlock(&uma_rwlock); 2950 zone_foreach_unlocked(zfunc, arg); 2951 rw_runlock(&uma_rwlock); 2952 } 2953 2954 /* 2955 * Initialize the kernel memory allocator. This is done after pages can be 2956 * allocated but before general KVA is available. 2957 */ 2958 void 2959 uma_startup1(vm_offset_t virtual_avail) 2960 { 2961 struct uma_zctor_args args; 2962 size_t ksize, zsize, size; 2963 uma_keg_t primarykeg; 2964 uintptr_t m; 2965 int domain; 2966 uint8_t pflag; 2967 2968 bootstart = bootmem = virtual_avail; 2969 2970 rw_init(&uma_rwlock, "UMA lock"); 2971 sx_init(&uma_reclaim_lock, "umareclaim"); 2972 2973 ksize = sizeof(struct uma_keg) + 2974 (sizeof(struct uma_domain) * vm_ndomains); 2975 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2976 zsize = sizeof(struct uma_zone) + 2977 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2978 (sizeof(struct uma_zone_domain) * vm_ndomains); 2979 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2980 2981 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2982 size = (zsize * 2) + ksize; 2983 for (domain = 0; domain < vm_ndomains; domain++) { 2984 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 2985 M_NOWAIT | M_ZERO); 2986 if (m != 0) 2987 break; 2988 } 2989 zones = (uma_zone_t)m; 2990 m += zsize; 2991 kegs = (uma_zone_t)m; 2992 m += zsize; 2993 primarykeg = (uma_keg_t)m; 2994 2995 /* "manually" create the initial zone */ 2996 memset(&args, 0, sizeof(args)); 2997 args.name = "UMA Kegs"; 2998 args.size = ksize; 2999 args.ctor = keg_ctor; 3000 args.dtor = keg_dtor; 3001 args.uminit = zero_init; 3002 args.fini = NULL; 3003 args.keg = primarykeg; 3004 args.align = UMA_SUPER_ALIGN - 1; 3005 args.flags = UMA_ZFLAG_INTERNAL; 3006 zone_ctor(kegs, zsize, &args, M_WAITOK); 3007 3008 args.name = "UMA Zones"; 3009 args.size = zsize; 3010 args.ctor = zone_ctor; 3011 args.dtor = zone_dtor; 3012 args.uminit = zero_init; 3013 args.fini = NULL; 3014 args.keg = NULL; 3015 args.align = UMA_SUPER_ALIGN - 1; 3016 args.flags = UMA_ZFLAG_INTERNAL; 3017 zone_ctor(zones, zsize, &args, M_WAITOK); 3018 3019 /* Now make zones for slab headers */ 3020 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 3021 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3022 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 3023 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3024 3025 hashzone = uma_zcreate("UMA Hash", 3026 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 3027 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3028 3029 bucket_init(); 3030 smr_init(); 3031 } 3032 3033 #ifndef UMA_MD_SMALL_ALLOC 3034 extern void vm_radix_reserve_kva(void); 3035 #endif 3036 3037 /* 3038 * Advertise the availability of normal kva allocations and switch to 3039 * the default back-end allocator. Marks the KVA we consumed on startup 3040 * as used in the map. 3041 */ 3042 void 3043 uma_startup2(void) 3044 { 3045 3046 if (bootstart != bootmem) { 3047 vm_map_lock(kernel_map); 3048 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 3049 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 3050 vm_map_unlock(kernel_map); 3051 } 3052 3053 #ifndef UMA_MD_SMALL_ALLOC 3054 /* Set up radix zone to use noobj_alloc. */ 3055 vm_radix_reserve_kva(); 3056 #endif 3057 3058 booted = BOOT_KVA; 3059 zone_foreach_unlocked(zone_kva_available, NULL); 3060 bucket_enable(); 3061 } 3062 3063 /* 3064 * Allocate counters as early as possible so that boot-time allocations are 3065 * accounted more precisely. 3066 */ 3067 static void 3068 uma_startup_pcpu(void *arg __unused) 3069 { 3070 3071 zone_foreach_unlocked(zone_alloc_counters, NULL); 3072 booted = BOOT_PCPU; 3073 } 3074 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 3075 3076 /* 3077 * Finish our initialization steps. 3078 */ 3079 static void 3080 uma_startup3(void *arg __unused) 3081 { 3082 3083 #ifdef INVARIANTS 3084 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 3085 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 3086 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 3087 #endif 3088 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 3089 callout_init(&uma_callout, 1); 3090 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 3091 booted = BOOT_RUNNING; 3092 3093 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 3094 EVENTHANDLER_PRI_FIRST); 3095 } 3096 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 3097 3098 static void 3099 uma_shutdown(void) 3100 { 3101 3102 booted = BOOT_SHUTDOWN; 3103 } 3104 3105 static uma_keg_t 3106 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 3107 int align, uint32_t flags) 3108 { 3109 struct uma_kctor_args args; 3110 3111 args.size = size; 3112 args.uminit = uminit; 3113 args.fini = fini; 3114 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 3115 args.flags = flags; 3116 args.zone = zone; 3117 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 3118 } 3119 3120 /* Public functions */ 3121 /* See uma.h */ 3122 void 3123 uma_set_align(int align) 3124 { 3125 3126 if (align != UMA_ALIGN_CACHE) 3127 uma_align_cache = align; 3128 } 3129 3130 /* See uma.h */ 3131 uma_zone_t 3132 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 3133 uma_init uminit, uma_fini fini, int align, uint32_t flags) 3134 3135 { 3136 struct uma_zctor_args args; 3137 uma_zone_t res; 3138 3139 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 3140 align, name)); 3141 3142 /* This stuff is essential for the zone ctor */ 3143 memset(&args, 0, sizeof(args)); 3144 args.name = name; 3145 args.size = size; 3146 args.ctor = ctor; 3147 args.dtor = dtor; 3148 args.uminit = uminit; 3149 args.fini = fini; 3150 #if defined(INVARIANTS) && !defined(KASAN) 3151 /* 3152 * Inject procedures which check for memory use after free if we are 3153 * allowed to scramble the memory while it is not allocated. This 3154 * requires that: UMA is actually able to access the memory, no init 3155 * or fini procedures, no dependency on the initial value of the 3156 * memory, and no (legitimate) use of the memory after free. Note, 3157 * the ctor and dtor do not need to be empty. 3158 */ 3159 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3160 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3161 args.uminit = trash_init; 3162 args.fini = trash_fini; 3163 } 3164 #endif 3165 args.align = align; 3166 args.flags = flags; 3167 args.keg = NULL; 3168 3169 sx_xlock(&uma_reclaim_lock); 3170 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3171 sx_xunlock(&uma_reclaim_lock); 3172 3173 return (res); 3174 } 3175 3176 /* See uma.h */ 3177 uma_zone_t 3178 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3179 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3180 { 3181 struct uma_zctor_args args; 3182 uma_keg_t keg; 3183 uma_zone_t res; 3184 3185 keg = primary->uz_keg; 3186 memset(&args, 0, sizeof(args)); 3187 args.name = name; 3188 args.size = keg->uk_size; 3189 args.ctor = ctor; 3190 args.dtor = dtor; 3191 args.uminit = zinit; 3192 args.fini = zfini; 3193 args.align = keg->uk_align; 3194 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3195 args.keg = keg; 3196 3197 sx_xlock(&uma_reclaim_lock); 3198 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3199 sx_xunlock(&uma_reclaim_lock); 3200 3201 return (res); 3202 } 3203 3204 /* See uma.h */ 3205 uma_zone_t 3206 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3207 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3208 void *arg, int flags) 3209 { 3210 struct uma_zctor_args args; 3211 3212 memset(&args, 0, sizeof(args)); 3213 args.name = name; 3214 args.size = size; 3215 args.ctor = ctor; 3216 args.dtor = dtor; 3217 args.uminit = zinit; 3218 args.fini = zfini; 3219 args.import = zimport; 3220 args.release = zrelease; 3221 args.arg = arg; 3222 args.align = 0; 3223 args.flags = flags | UMA_ZFLAG_CACHE; 3224 3225 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3226 } 3227 3228 /* See uma.h */ 3229 void 3230 uma_zdestroy(uma_zone_t zone) 3231 { 3232 3233 /* 3234 * Large slabs are expensive to reclaim, so don't bother doing 3235 * unnecessary work if we're shutting down. 3236 */ 3237 if (booted == BOOT_SHUTDOWN && 3238 zone->uz_fini == NULL && zone->uz_release == zone_release) 3239 return; 3240 sx_xlock(&uma_reclaim_lock); 3241 zone_free_item(zones, zone, NULL, SKIP_NONE); 3242 sx_xunlock(&uma_reclaim_lock); 3243 } 3244 3245 void 3246 uma_zwait(uma_zone_t zone) 3247 { 3248 3249 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3250 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3251 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3252 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3253 else 3254 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3255 } 3256 3257 void * 3258 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3259 { 3260 void *item, *pcpu_item; 3261 #ifdef SMP 3262 int i; 3263 3264 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3265 #endif 3266 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3267 if (item == NULL) 3268 return (NULL); 3269 pcpu_item = zpcpu_base_to_offset(item); 3270 if (flags & M_ZERO) { 3271 #ifdef SMP 3272 for (i = 0; i <= mp_maxid; i++) 3273 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3274 #else 3275 bzero(item, zone->uz_size); 3276 #endif 3277 } 3278 return (pcpu_item); 3279 } 3280 3281 /* 3282 * A stub while both regular and pcpu cases are identical. 3283 */ 3284 void 3285 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3286 { 3287 void *item; 3288 3289 #ifdef SMP 3290 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3291 #endif 3292 3293 /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */ 3294 if (pcpu_item == NULL) 3295 return; 3296 3297 item = zpcpu_offset_to_base(pcpu_item); 3298 uma_zfree_arg(zone, item, udata); 3299 } 3300 3301 static inline void * 3302 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3303 void *item) 3304 { 3305 #ifdef INVARIANTS 3306 bool skipdbg; 3307 #endif 3308 3309 kasan_mark_item_valid(zone, item); 3310 3311 #ifdef INVARIANTS 3312 skipdbg = uma_dbg_zskip(zone, item); 3313 if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 && 3314 zone->uz_ctor != trash_ctor) 3315 trash_ctor(item, size, udata, flags); 3316 #endif 3317 3318 /* Check flags before loading ctor pointer. */ 3319 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3320 __predict_false(zone->uz_ctor != NULL) && 3321 zone->uz_ctor(item, size, udata, flags) != 0) { 3322 counter_u64_add(zone->uz_fails, 1); 3323 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3324 return (NULL); 3325 } 3326 #ifdef INVARIANTS 3327 if (!skipdbg) 3328 uma_dbg_alloc(zone, NULL, item); 3329 #endif 3330 if (__predict_false(flags & M_ZERO)) 3331 return (memset(item, 0, size)); 3332 3333 return (item); 3334 } 3335 3336 static inline void 3337 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3338 enum zfreeskip skip) 3339 { 3340 #ifdef INVARIANTS 3341 bool skipdbg; 3342 3343 skipdbg = uma_dbg_zskip(zone, item); 3344 if (skip == SKIP_NONE && !skipdbg) { 3345 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3346 uma_dbg_free(zone, udata, item); 3347 else 3348 uma_dbg_free(zone, NULL, item); 3349 } 3350 #endif 3351 if (__predict_true(skip < SKIP_DTOR)) { 3352 if (zone->uz_dtor != NULL) 3353 zone->uz_dtor(item, size, udata); 3354 #ifdef INVARIANTS 3355 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3356 zone->uz_dtor != trash_dtor) 3357 trash_dtor(item, size, udata); 3358 #endif 3359 } 3360 kasan_mark_item_invalid(zone, item); 3361 } 3362 3363 #ifdef NUMA 3364 static int 3365 item_domain(void *item) 3366 { 3367 int domain; 3368 3369 domain = vm_phys_domain(vtophys(item)); 3370 KASSERT(domain >= 0 && domain < vm_ndomains, 3371 ("%s: unknown domain for item %p", __func__, item)); 3372 return (domain); 3373 } 3374 #endif 3375 3376 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3377 #define UMA_ZALLOC_DEBUG 3378 static int 3379 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3380 { 3381 int error; 3382 3383 error = 0; 3384 #ifdef WITNESS 3385 if (flags & M_WAITOK) { 3386 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3387 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3388 } 3389 #endif 3390 3391 #ifdef INVARIANTS 3392 KASSERT((flags & M_EXEC) == 0, 3393 ("uma_zalloc_debug: called with M_EXEC")); 3394 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3395 ("uma_zalloc_debug: called within spinlock or critical section")); 3396 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3397 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3398 #endif 3399 3400 #ifdef DEBUG_MEMGUARD 3401 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3402 void *item; 3403 item = memguard_alloc(zone->uz_size, flags); 3404 if (item != NULL) { 3405 error = EJUSTRETURN; 3406 if (zone->uz_init != NULL && 3407 zone->uz_init(item, zone->uz_size, flags) != 0) { 3408 *itemp = NULL; 3409 return (error); 3410 } 3411 if (zone->uz_ctor != NULL && 3412 zone->uz_ctor(item, zone->uz_size, udata, 3413 flags) != 0) { 3414 counter_u64_add(zone->uz_fails, 1); 3415 zone->uz_fini(item, zone->uz_size); 3416 *itemp = NULL; 3417 return (error); 3418 } 3419 *itemp = item; 3420 return (error); 3421 } 3422 /* This is unfortunate but should not be fatal. */ 3423 } 3424 #endif 3425 return (error); 3426 } 3427 3428 static int 3429 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3430 { 3431 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3432 ("uma_zfree_debug: called with spinlock or critical section held")); 3433 3434 #ifdef DEBUG_MEMGUARD 3435 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3436 if (zone->uz_dtor != NULL) 3437 zone->uz_dtor(item, zone->uz_size, udata); 3438 if (zone->uz_fini != NULL) 3439 zone->uz_fini(item, zone->uz_size); 3440 memguard_free(item); 3441 return (EJUSTRETURN); 3442 } 3443 #endif 3444 return (0); 3445 } 3446 #endif 3447 3448 static inline void * 3449 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3450 void *udata, int flags) 3451 { 3452 void *item; 3453 int size, uz_flags; 3454 3455 item = cache_bucket_pop(cache, bucket); 3456 size = cache_uz_size(cache); 3457 uz_flags = cache_uz_flags(cache); 3458 critical_exit(); 3459 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3460 } 3461 3462 static __noinline void * 3463 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3464 { 3465 uma_cache_bucket_t bucket; 3466 int domain; 3467 3468 while (cache_alloc(zone, cache, udata, flags)) { 3469 cache = &zone->uz_cpu[curcpu]; 3470 bucket = &cache->uc_allocbucket; 3471 if (__predict_false(bucket->ucb_cnt == 0)) 3472 continue; 3473 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3474 } 3475 critical_exit(); 3476 3477 /* 3478 * We can not get a bucket so try to return a single item. 3479 */ 3480 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3481 domain = PCPU_GET(domain); 3482 else 3483 domain = UMA_ANYDOMAIN; 3484 return (zone_alloc_item(zone, udata, domain, flags)); 3485 } 3486 3487 /* See uma.h */ 3488 void * 3489 uma_zalloc_smr(uma_zone_t zone, int flags) 3490 { 3491 uma_cache_bucket_t bucket; 3492 uma_cache_t cache; 3493 3494 #ifdef UMA_ZALLOC_DEBUG 3495 void *item; 3496 3497 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3498 ("uma_zalloc_arg: called with non-SMR zone.")); 3499 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3500 return (item); 3501 #endif 3502 3503 critical_enter(); 3504 cache = &zone->uz_cpu[curcpu]; 3505 bucket = &cache->uc_allocbucket; 3506 if (__predict_false(bucket->ucb_cnt == 0)) 3507 return (cache_alloc_retry(zone, cache, NULL, flags)); 3508 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3509 } 3510 3511 /* See uma.h */ 3512 void * 3513 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3514 { 3515 uma_cache_bucket_t bucket; 3516 uma_cache_t cache; 3517 3518 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3519 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3520 3521 /* This is the fast path allocation */ 3522 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3523 zone, flags); 3524 3525 #ifdef UMA_ZALLOC_DEBUG 3526 void *item; 3527 3528 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3529 ("uma_zalloc_arg: called with SMR zone.")); 3530 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3531 return (item); 3532 #endif 3533 3534 /* 3535 * If possible, allocate from the per-CPU cache. There are two 3536 * requirements for safe access to the per-CPU cache: (1) the thread 3537 * accessing the cache must not be preempted or yield during access, 3538 * and (2) the thread must not migrate CPUs without switching which 3539 * cache it accesses. We rely on a critical section to prevent 3540 * preemption and migration. We release the critical section in 3541 * order to acquire the zone mutex if we are unable to allocate from 3542 * the current cache; when we re-acquire the critical section, we 3543 * must detect and handle migration if it has occurred. 3544 */ 3545 critical_enter(); 3546 cache = &zone->uz_cpu[curcpu]; 3547 bucket = &cache->uc_allocbucket; 3548 if (__predict_false(bucket->ucb_cnt == 0)) 3549 return (cache_alloc_retry(zone, cache, udata, flags)); 3550 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3551 } 3552 3553 /* 3554 * Replenish an alloc bucket and possibly restore an old one. Called in 3555 * a critical section. Returns in a critical section. 3556 * 3557 * A false return value indicates an allocation failure. 3558 * A true return value indicates success and the caller should retry. 3559 */ 3560 static __noinline bool 3561 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3562 { 3563 uma_bucket_t bucket; 3564 int curdomain, domain; 3565 bool new; 3566 3567 CRITICAL_ASSERT(curthread); 3568 3569 /* 3570 * If we have run out of items in our alloc bucket see 3571 * if we can switch with the free bucket. 3572 * 3573 * SMR Zones can't re-use the free bucket until the sequence has 3574 * expired. 3575 */ 3576 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3577 cache->uc_freebucket.ucb_cnt != 0) { 3578 cache_bucket_swap(&cache->uc_freebucket, 3579 &cache->uc_allocbucket); 3580 return (true); 3581 } 3582 3583 /* 3584 * Discard any empty allocation bucket while we hold no locks. 3585 */ 3586 bucket = cache_bucket_unload_alloc(cache); 3587 critical_exit(); 3588 3589 if (bucket != NULL) { 3590 KASSERT(bucket->ub_cnt == 0, 3591 ("cache_alloc: Entered with non-empty alloc bucket.")); 3592 bucket_free(zone, bucket, udata); 3593 } 3594 3595 /* 3596 * Attempt to retrieve the item from the per-CPU cache has failed, so 3597 * we must go back to the zone. This requires the zdom lock, so we 3598 * must drop the critical section, then re-acquire it when we go back 3599 * to the cache. Since the critical section is released, we may be 3600 * preempted or migrate. As such, make sure not to maintain any 3601 * thread-local state specific to the cache from prior to releasing 3602 * the critical section. 3603 */ 3604 domain = PCPU_GET(domain); 3605 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3606 VM_DOMAIN_EMPTY(domain)) 3607 domain = zone_domain_highest(zone, domain); 3608 bucket = cache_fetch_bucket(zone, cache, domain); 3609 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { 3610 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3611 new = true; 3612 } else { 3613 new = false; 3614 } 3615 3616 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3617 zone->uz_name, zone, bucket); 3618 if (bucket == NULL) { 3619 critical_enter(); 3620 return (false); 3621 } 3622 3623 /* 3624 * See if we lost the race or were migrated. Cache the 3625 * initialized bucket to make this less likely or claim 3626 * the memory directly. 3627 */ 3628 critical_enter(); 3629 cache = &zone->uz_cpu[curcpu]; 3630 if (cache->uc_allocbucket.ucb_bucket == NULL && 3631 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3632 (curdomain = PCPU_GET(domain)) == domain || 3633 VM_DOMAIN_EMPTY(curdomain))) { 3634 if (new) 3635 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3636 bucket->ub_cnt); 3637 cache_bucket_load_alloc(cache, bucket); 3638 return (true); 3639 } 3640 3641 /* 3642 * We lost the race, release this bucket and start over. 3643 */ 3644 critical_exit(); 3645 zone_put_bucket(zone, domain, bucket, udata, false); 3646 critical_enter(); 3647 3648 return (true); 3649 } 3650 3651 void * 3652 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3653 { 3654 #ifdef NUMA 3655 uma_bucket_t bucket; 3656 uma_zone_domain_t zdom; 3657 void *item; 3658 #endif 3659 3660 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3661 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3662 3663 /* This is the fast path allocation */ 3664 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3665 zone->uz_name, zone, domain, flags); 3666 3667 if (flags & M_WAITOK) { 3668 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3669 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3670 } 3671 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3672 ("uma_zalloc_domain: called with spinlock or critical section held")); 3673 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3674 ("uma_zalloc_domain: called with SMR zone.")); 3675 #ifdef NUMA 3676 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0, 3677 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone.")); 3678 3679 if (vm_ndomains == 1) 3680 return (uma_zalloc_arg(zone, udata, flags)); 3681 3682 /* 3683 * Try to allocate from the bucket cache before falling back to the keg. 3684 * We could try harder and attempt to allocate from per-CPU caches or 3685 * the per-domain cross-domain buckets, but the complexity is probably 3686 * not worth it. It is more important that frees of previous 3687 * cross-domain allocations do not blow up the cache. 3688 */ 3689 zdom = zone_domain_lock(zone, domain); 3690 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 3691 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3692 #ifdef INVARIANTS 3693 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL; 3694 #endif 3695 bucket->ub_cnt--; 3696 zone_put_bucket(zone, domain, bucket, udata, true); 3697 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, 3698 flags, item); 3699 if (item != NULL) { 3700 KASSERT(item_domain(item) == domain, 3701 ("%s: bucket cache item %p from wrong domain", 3702 __func__, item)); 3703 counter_u64_add(zone->uz_allocs, 1); 3704 } 3705 return (item); 3706 } 3707 ZDOM_UNLOCK(zdom); 3708 return (zone_alloc_item(zone, udata, domain, flags)); 3709 #else 3710 return (uma_zalloc_arg(zone, udata, flags)); 3711 #endif 3712 } 3713 3714 /* 3715 * Find a slab with some space. Prefer slabs that are partially used over those 3716 * that are totally full. This helps to reduce fragmentation. 3717 * 3718 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3719 * only 'domain'. 3720 */ 3721 static uma_slab_t 3722 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3723 { 3724 uma_domain_t dom; 3725 uma_slab_t slab; 3726 int start; 3727 3728 KASSERT(domain >= 0 && domain < vm_ndomains, 3729 ("keg_first_slab: domain %d out of range", domain)); 3730 KEG_LOCK_ASSERT(keg, domain); 3731 3732 slab = NULL; 3733 start = domain; 3734 do { 3735 dom = &keg->uk_domain[domain]; 3736 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3737 return (slab); 3738 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3739 LIST_REMOVE(slab, us_link); 3740 dom->ud_free_slabs--; 3741 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3742 return (slab); 3743 } 3744 if (rr) 3745 domain = (domain + 1) % vm_ndomains; 3746 } while (domain != start); 3747 3748 return (NULL); 3749 } 3750 3751 /* 3752 * Fetch an existing slab from a free or partial list. Returns with the 3753 * keg domain lock held if a slab was found or unlocked if not. 3754 */ 3755 static uma_slab_t 3756 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3757 { 3758 uma_slab_t slab; 3759 uint32_t reserve; 3760 3761 /* HASH has a single free list. */ 3762 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3763 domain = 0; 3764 3765 KEG_LOCK(keg, domain); 3766 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3767 if (keg->uk_domain[domain].ud_free_items <= reserve || 3768 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3769 KEG_UNLOCK(keg, domain); 3770 return (NULL); 3771 } 3772 return (slab); 3773 } 3774 3775 static uma_slab_t 3776 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3777 { 3778 struct vm_domainset_iter di; 3779 uma_slab_t slab; 3780 int aflags, domain; 3781 bool rr; 3782 3783 restart: 3784 /* 3785 * Use the keg's policy if upper layers haven't already specified a 3786 * domain (as happens with first-touch zones). 3787 * 3788 * To avoid races we run the iterator with the keg lock held, but that 3789 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3790 * clear M_WAITOK and handle low memory conditions locally. 3791 */ 3792 rr = rdomain == UMA_ANYDOMAIN; 3793 if (rr) { 3794 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3795 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3796 &aflags); 3797 } else { 3798 aflags = flags; 3799 domain = rdomain; 3800 } 3801 3802 for (;;) { 3803 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3804 if (slab != NULL) 3805 return (slab); 3806 3807 /* 3808 * M_NOVM means don't ask at all! 3809 */ 3810 if (flags & M_NOVM) 3811 break; 3812 3813 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3814 if (slab != NULL) 3815 return (slab); 3816 if (!rr && (flags & M_WAITOK) == 0) 3817 break; 3818 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3819 if ((flags & M_WAITOK) != 0) { 3820 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 3821 goto restart; 3822 } 3823 break; 3824 } 3825 } 3826 3827 /* 3828 * We might not have been able to get a slab but another cpu 3829 * could have while we were unlocked. Check again before we 3830 * fail. 3831 */ 3832 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3833 return (slab); 3834 3835 return (NULL); 3836 } 3837 3838 static void * 3839 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3840 { 3841 uma_domain_t dom; 3842 void *item; 3843 int freei; 3844 3845 KEG_LOCK_ASSERT(keg, slab->us_domain); 3846 3847 dom = &keg->uk_domain[slab->us_domain]; 3848 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3849 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3850 item = slab_item(slab, keg, freei); 3851 slab->us_freecount--; 3852 dom->ud_free_items--; 3853 3854 /* 3855 * Move this slab to the full list. It must be on the partial list, so 3856 * we do not need to update the free slab count. In particular, 3857 * keg_fetch_slab() always returns slabs on the partial list. 3858 */ 3859 if (slab->us_freecount == 0) { 3860 LIST_REMOVE(slab, us_link); 3861 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3862 } 3863 3864 return (item); 3865 } 3866 3867 static int 3868 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3869 { 3870 uma_domain_t dom; 3871 uma_zone_t zone; 3872 uma_slab_t slab; 3873 uma_keg_t keg; 3874 #ifdef NUMA 3875 int stripe; 3876 #endif 3877 int i; 3878 3879 zone = arg; 3880 slab = NULL; 3881 keg = zone->uz_keg; 3882 /* Try to keep the buckets totally full */ 3883 for (i = 0; i < max; ) { 3884 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3885 break; 3886 #ifdef NUMA 3887 stripe = howmany(max, vm_ndomains); 3888 #endif 3889 dom = &keg->uk_domain[slab->us_domain]; 3890 do { 3891 bucket[i++] = slab_alloc_item(keg, slab); 3892 if (dom->ud_free_items <= keg->uk_reserve) { 3893 /* 3894 * Avoid depleting the reserve after a 3895 * successful item allocation, even if 3896 * M_USE_RESERVE is specified. 3897 */ 3898 KEG_UNLOCK(keg, slab->us_domain); 3899 goto out; 3900 } 3901 #ifdef NUMA 3902 /* 3903 * If the zone is striped we pick a new slab for every 3904 * N allocations. Eliminating this conditional will 3905 * instead pick a new domain for each bucket rather 3906 * than stripe within each bucket. The current option 3907 * produces more fragmentation and requires more cpu 3908 * time but yields better distribution. 3909 */ 3910 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3911 vm_ndomains > 1 && --stripe == 0) 3912 break; 3913 #endif 3914 } while (slab->us_freecount != 0 && i < max); 3915 KEG_UNLOCK(keg, slab->us_domain); 3916 3917 /* Don't block if we allocated any successfully. */ 3918 flags &= ~M_WAITOK; 3919 flags |= M_NOWAIT; 3920 } 3921 out: 3922 return i; 3923 } 3924 3925 static int 3926 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3927 { 3928 uint64_t old, new, total, max; 3929 3930 /* 3931 * The hard case. We're going to sleep because there were existing 3932 * sleepers or because we ran out of items. This routine enforces 3933 * fairness by keeping fifo order. 3934 * 3935 * First release our ill gotten gains and make some noise. 3936 */ 3937 for (;;) { 3938 zone_free_limit(zone, count); 3939 zone_log_warning(zone); 3940 zone_maxaction(zone); 3941 if (flags & M_NOWAIT) 3942 return (0); 3943 3944 /* 3945 * We need to allocate an item or set ourself as a sleeper 3946 * while the sleepq lock is held to avoid wakeup races. This 3947 * is essentially a home rolled semaphore. 3948 */ 3949 sleepq_lock(&zone->uz_max_items); 3950 old = zone->uz_items; 3951 do { 3952 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3953 /* Cache the max since we will evaluate twice. */ 3954 max = zone->uz_max_items; 3955 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3956 UZ_ITEMS_COUNT(old) >= max) 3957 new = old + UZ_ITEMS_SLEEPER; 3958 else 3959 new = old + MIN(count, max - old); 3960 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3961 3962 /* We may have successfully allocated under the sleepq lock. */ 3963 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3964 sleepq_release(&zone->uz_max_items); 3965 return (new - old); 3966 } 3967 3968 /* 3969 * This is in a different cacheline from uz_items so that we 3970 * don't constantly invalidate the fastpath cacheline when we 3971 * adjust item counts. This could be limited to toggling on 3972 * transitions. 3973 */ 3974 atomic_add_32(&zone->uz_sleepers, 1); 3975 atomic_add_64(&zone->uz_sleeps, 1); 3976 3977 /* 3978 * We have added ourselves as a sleeper. The sleepq lock 3979 * protects us from wakeup races. Sleep now and then retry. 3980 */ 3981 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3982 sleepq_wait(&zone->uz_max_items, PVM); 3983 3984 /* 3985 * After wakeup, remove ourselves as a sleeper and try 3986 * again. We no longer have the sleepq lock for protection. 3987 * 3988 * Subract ourselves as a sleeper while attempting to add 3989 * our count. 3990 */ 3991 atomic_subtract_32(&zone->uz_sleepers, 1); 3992 old = atomic_fetchadd_64(&zone->uz_items, 3993 -(UZ_ITEMS_SLEEPER - count)); 3994 /* We're no longer a sleeper. */ 3995 old -= UZ_ITEMS_SLEEPER; 3996 3997 /* 3998 * If we're still at the limit, restart. Notably do not 3999 * block on other sleepers. Cache the max value to protect 4000 * against changes via sysctl. 4001 */ 4002 total = UZ_ITEMS_COUNT(old); 4003 max = zone->uz_max_items; 4004 if (total >= max) 4005 continue; 4006 /* Truncate if necessary, otherwise wake other sleepers. */ 4007 if (total + count > max) { 4008 zone_free_limit(zone, total + count - max); 4009 count = max - total; 4010 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 4011 wakeup_one(&zone->uz_max_items); 4012 4013 return (count); 4014 } 4015 } 4016 4017 /* 4018 * Allocate 'count' items from our max_items limit. Returns the number 4019 * available. If M_NOWAIT is not specified it will sleep until at least 4020 * one item can be allocated. 4021 */ 4022 static int 4023 zone_alloc_limit(uma_zone_t zone, int count, int flags) 4024 { 4025 uint64_t old; 4026 uint64_t max; 4027 4028 max = zone->uz_max_items; 4029 MPASS(max > 0); 4030 4031 /* 4032 * We expect normal allocations to succeed with a simple 4033 * fetchadd. 4034 */ 4035 old = atomic_fetchadd_64(&zone->uz_items, count); 4036 if (__predict_true(old + count <= max)) 4037 return (count); 4038 4039 /* 4040 * If we had some items and no sleepers just return the 4041 * truncated value. We have to release the excess space 4042 * though because that may wake sleepers who weren't woken 4043 * because we were temporarily over the limit. 4044 */ 4045 if (old < max) { 4046 zone_free_limit(zone, (old + count) - max); 4047 return (max - old); 4048 } 4049 return (zone_alloc_limit_hard(zone, count, flags)); 4050 } 4051 4052 /* 4053 * Free a number of items back to the limit. 4054 */ 4055 static void 4056 zone_free_limit(uma_zone_t zone, int count) 4057 { 4058 uint64_t old; 4059 4060 MPASS(count > 0); 4061 4062 /* 4063 * In the common case we either have no sleepers or 4064 * are still over the limit and can just return. 4065 */ 4066 old = atomic_fetchadd_64(&zone->uz_items, -count); 4067 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 4068 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 4069 return; 4070 4071 /* 4072 * Moderate the rate of wakeups. Sleepers will continue 4073 * to generate wakeups if necessary. 4074 */ 4075 wakeup_one(&zone->uz_max_items); 4076 } 4077 4078 static uma_bucket_t 4079 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 4080 { 4081 uma_bucket_t bucket; 4082 int error, maxbucket, cnt; 4083 4084 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 4085 zone, domain); 4086 4087 /* Avoid allocs targeting empty domains. */ 4088 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4089 domain = UMA_ANYDOMAIN; 4090 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4091 domain = UMA_ANYDOMAIN; 4092 4093 if (zone->uz_max_items > 0) 4094 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 4095 M_NOWAIT); 4096 else 4097 maxbucket = zone->uz_bucket_size; 4098 if (maxbucket == 0) 4099 return (false); 4100 4101 /* Don't wait for buckets, preserve caller's NOVM setting. */ 4102 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 4103 if (bucket == NULL) { 4104 cnt = 0; 4105 goto out; 4106 } 4107 4108 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 4109 MIN(maxbucket, bucket->ub_entries), domain, flags); 4110 4111 /* 4112 * Initialize the memory if necessary. 4113 */ 4114 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 4115 int i; 4116 4117 for (i = 0; i < bucket->ub_cnt; i++) { 4118 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 4119 error = zone->uz_init(bucket->ub_bucket[i], 4120 zone->uz_size, flags); 4121 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 4122 if (error != 0) 4123 break; 4124 } 4125 4126 /* 4127 * If we couldn't initialize the whole bucket, put the 4128 * rest back onto the freelist. 4129 */ 4130 if (i != bucket->ub_cnt) { 4131 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 4132 bucket->ub_cnt - i); 4133 #ifdef INVARIANTS 4134 bzero(&bucket->ub_bucket[i], 4135 sizeof(void *) * (bucket->ub_cnt - i)); 4136 #endif 4137 bucket->ub_cnt = i; 4138 } 4139 } 4140 4141 cnt = bucket->ub_cnt; 4142 if (bucket->ub_cnt == 0) { 4143 bucket_free(zone, bucket, udata); 4144 counter_u64_add(zone->uz_fails, 1); 4145 bucket = NULL; 4146 } 4147 out: 4148 if (zone->uz_max_items > 0 && cnt < maxbucket) 4149 zone_free_limit(zone, maxbucket - cnt); 4150 4151 return (bucket); 4152 } 4153 4154 /* 4155 * Allocates a single item from a zone. 4156 * 4157 * Arguments 4158 * zone The zone to alloc for. 4159 * udata The data to be passed to the constructor. 4160 * domain The domain to allocate from or UMA_ANYDOMAIN. 4161 * flags M_WAITOK, M_NOWAIT, M_ZERO. 4162 * 4163 * Returns 4164 * NULL if there is no memory and M_NOWAIT is set 4165 * An item if successful 4166 */ 4167 4168 static void * 4169 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 4170 { 4171 void *item; 4172 4173 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { 4174 counter_u64_add(zone->uz_fails, 1); 4175 return (NULL); 4176 } 4177 4178 /* Avoid allocs targeting empty domains. */ 4179 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4180 domain = UMA_ANYDOMAIN; 4181 4182 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 4183 goto fail_cnt; 4184 4185 /* 4186 * We have to call both the zone's init (not the keg's init) 4187 * and the zone's ctor. This is because the item is going from 4188 * a keg slab directly to the user, and the user is expecting it 4189 * to be both zone-init'd as well as zone-ctor'd. 4190 */ 4191 if (zone->uz_init != NULL) { 4192 int error; 4193 4194 kasan_mark_item_valid(zone, item); 4195 error = zone->uz_init(item, zone->uz_size, flags); 4196 kasan_mark_item_invalid(zone, item); 4197 if (error != 0) { 4198 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 4199 goto fail_cnt; 4200 } 4201 } 4202 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 4203 item); 4204 if (item == NULL) 4205 goto fail; 4206 4207 counter_u64_add(zone->uz_allocs, 1); 4208 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 4209 zone->uz_name, zone); 4210 4211 return (item); 4212 4213 fail_cnt: 4214 counter_u64_add(zone->uz_fails, 1); 4215 fail: 4216 if (zone->uz_max_items > 0) 4217 zone_free_limit(zone, 1); 4218 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 4219 zone->uz_name, zone); 4220 4221 return (NULL); 4222 } 4223 4224 /* See uma.h */ 4225 void 4226 uma_zfree_smr(uma_zone_t zone, void *item) 4227 { 4228 uma_cache_t cache; 4229 uma_cache_bucket_t bucket; 4230 int itemdomain, uz_flags; 4231 4232 #ifdef UMA_ZALLOC_DEBUG 4233 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4234 ("uma_zfree_smr: called with non-SMR zone.")); 4235 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4236 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4237 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4238 return; 4239 #endif 4240 cache = &zone->uz_cpu[curcpu]; 4241 uz_flags = cache_uz_flags(cache); 4242 itemdomain = 0; 4243 #ifdef NUMA 4244 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4245 itemdomain = item_domain(item); 4246 #endif 4247 critical_enter(); 4248 do { 4249 cache = &zone->uz_cpu[curcpu]; 4250 /* SMR Zones must free to the free bucket. */ 4251 bucket = &cache->uc_freebucket; 4252 #ifdef NUMA 4253 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4254 PCPU_GET(domain) != itemdomain) { 4255 bucket = &cache->uc_crossbucket; 4256 } 4257 #endif 4258 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4259 cache_bucket_push(cache, bucket, item); 4260 critical_exit(); 4261 return; 4262 } 4263 } while (cache_free(zone, cache, NULL, item, itemdomain)); 4264 critical_exit(); 4265 4266 /* 4267 * If nothing else caught this, we'll just do an internal free. 4268 */ 4269 zone_free_item(zone, item, NULL, SKIP_NONE); 4270 } 4271 4272 /* See uma.h */ 4273 void 4274 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4275 { 4276 uma_cache_t cache; 4277 uma_cache_bucket_t bucket; 4278 int itemdomain, uz_flags; 4279 4280 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4281 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4282 4283 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4284 4285 #ifdef UMA_ZALLOC_DEBUG 4286 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4287 ("uma_zfree_arg: called with SMR zone.")); 4288 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4289 return; 4290 #endif 4291 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4292 if (item == NULL) 4293 return; 4294 4295 /* 4296 * We are accessing the per-cpu cache without a critical section to 4297 * fetch size and flags. This is acceptable, if we are preempted we 4298 * will simply read another cpu's line. 4299 */ 4300 cache = &zone->uz_cpu[curcpu]; 4301 uz_flags = cache_uz_flags(cache); 4302 if (UMA_ALWAYS_CTORDTOR || 4303 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4304 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4305 4306 /* 4307 * The race here is acceptable. If we miss it we'll just have to wait 4308 * a little longer for the limits to be reset. 4309 */ 4310 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4311 if (atomic_load_32(&zone->uz_sleepers) > 0) 4312 goto zfree_item; 4313 } 4314 4315 /* 4316 * If possible, free to the per-CPU cache. There are two 4317 * requirements for safe access to the per-CPU cache: (1) the thread 4318 * accessing the cache must not be preempted or yield during access, 4319 * and (2) the thread must not migrate CPUs without switching which 4320 * cache it accesses. We rely on a critical section to prevent 4321 * preemption and migration. We release the critical section in 4322 * order to acquire the zone mutex if we are unable to free to the 4323 * current cache; when we re-acquire the critical section, we must 4324 * detect and handle migration if it has occurred. 4325 */ 4326 itemdomain = 0; 4327 #ifdef NUMA 4328 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4329 itemdomain = item_domain(item); 4330 #endif 4331 critical_enter(); 4332 do { 4333 cache = &zone->uz_cpu[curcpu]; 4334 /* 4335 * Try to free into the allocbucket first to give LIFO 4336 * ordering for cache-hot datastructures. Spill over 4337 * into the freebucket if necessary. Alloc will swap 4338 * them if one runs dry. 4339 */ 4340 bucket = &cache->uc_allocbucket; 4341 #ifdef NUMA 4342 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4343 PCPU_GET(domain) != itemdomain) { 4344 bucket = &cache->uc_crossbucket; 4345 } else 4346 #endif 4347 if (bucket->ucb_cnt == bucket->ucb_entries && 4348 cache->uc_freebucket.ucb_cnt < 4349 cache->uc_freebucket.ucb_entries) 4350 cache_bucket_swap(&cache->uc_freebucket, 4351 &cache->uc_allocbucket); 4352 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4353 cache_bucket_push(cache, bucket, item); 4354 critical_exit(); 4355 return; 4356 } 4357 } while (cache_free(zone, cache, udata, item, itemdomain)); 4358 critical_exit(); 4359 4360 /* 4361 * If nothing else caught this, we'll just do an internal free. 4362 */ 4363 zfree_item: 4364 zone_free_item(zone, item, udata, SKIP_DTOR); 4365 } 4366 4367 #ifdef NUMA 4368 /* 4369 * sort crossdomain free buckets to domain correct buckets and cache 4370 * them. 4371 */ 4372 static void 4373 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4374 { 4375 struct uma_bucketlist emptybuckets, fullbuckets; 4376 uma_zone_domain_t zdom; 4377 uma_bucket_t b; 4378 smr_seq_t seq; 4379 void *item; 4380 int domain; 4381 4382 CTR3(KTR_UMA, 4383 "uma_zfree: zone %s(%p) draining cross bucket %p", 4384 zone->uz_name, zone, bucket); 4385 4386 /* 4387 * It is possible for buckets to arrive here out of order so we fetch 4388 * the current smr seq rather than accepting the bucket's. 4389 */ 4390 seq = SMR_SEQ_INVALID; 4391 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4392 seq = smr_advance(zone->uz_smr); 4393 4394 /* 4395 * To avoid having ndomain * ndomain buckets for sorting we have a 4396 * lock on the current crossfree bucket. A full matrix with 4397 * per-domain locking could be used if necessary. 4398 */ 4399 STAILQ_INIT(&emptybuckets); 4400 STAILQ_INIT(&fullbuckets); 4401 ZONE_CROSS_LOCK(zone); 4402 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) { 4403 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4404 domain = item_domain(item); 4405 zdom = ZDOM_GET(zone, domain); 4406 if (zdom->uzd_cross == NULL) { 4407 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4408 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4409 zdom->uzd_cross = b; 4410 } else { 4411 /* 4412 * Avoid allocating a bucket with the cross lock 4413 * held, since allocation can trigger a 4414 * cross-domain free and bucket zones may 4415 * allocate from each other. 4416 */ 4417 ZONE_CROSS_UNLOCK(zone); 4418 b = bucket_alloc(zone, udata, M_NOWAIT); 4419 if (b == NULL) 4420 goto out; 4421 ZONE_CROSS_LOCK(zone); 4422 if (zdom->uzd_cross != NULL) { 4423 STAILQ_INSERT_HEAD(&emptybuckets, b, 4424 ub_link); 4425 } else { 4426 zdom->uzd_cross = b; 4427 } 4428 } 4429 } 4430 b = zdom->uzd_cross; 4431 b->ub_bucket[b->ub_cnt++] = item; 4432 b->ub_seq = seq; 4433 if (b->ub_cnt == b->ub_entries) { 4434 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4435 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) 4436 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4437 zdom->uzd_cross = b; 4438 } 4439 } 4440 ZONE_CROSS_UNLOCK(zone); 4441 out: 4442 if (bucket->ub_cnt == 0) 4443 bucket->ub_seq = SMR_SEQ_INVALID; 4444 bucket_free(zone, bucket, udata); 4445 4446 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4447 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4448 bucket_free(zone, b, udata); 4449 } 4450 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4451 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4452 domain = item_domain(b->ub_bucket[0]); 4453 zone_put_bucket(zone, domain, b, udata, true); 4454 } 4455 } 4456 #endif 4457 4458 static void 4459 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4460 int itemdomain, bool ws) 4461 { 4462 4463 #ifdef NUMA 4464 /* 4465 * Buckets coming from the wrong domain will be entirely for the 4466 * only other domain on two domain systems. In this case we can 4467 * simply cache them. Otherwise we need to sort them back to 4468 * correct domains. 4469 */ 4470 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4471 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4472 zone_free_cross(zone, bucket, udata); 4473 return; 4474 } 4475 #endif 4476 4477 /* 4478 * Attempt to save the bucket in the zone's domain bucket cache. 4479 */ 4480 CTR3(KTR_UMA, 4481 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4482 zone->uz_name, zone, bucket); 4483 /* ub_cnt is pointing to the last free item */ 4484 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4485 itemdomain = zone_domain_lowest(zone, itemdomain); 4486 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4487 } 4488 4489 /* 4490 * Populate a free or cross bucket for the current cpu cache. Free any 4491 * existing full bucket either to the zone cache or back to the slab layer. 4492 * 4493 * Enters and returns in a critical section. false return indicates that 4494 * we can not satisfy this free in the cache layer. true indicates that 4495 * the caller should retry. 4496 */ 4497 static __noinline bool 4498 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4499 int itemdomain) 4500 { 4501 uma_cache_bucket_t cbucket; 4502 uma_bucket_t newbucket, bucket; 4503 4504 CRITICAL_ASSERT(curthread); 4505 4506 if (zone->uz_bucket_size == 0) 4507 return false; 4508 4509 cache = &zone->uz_cpu[curcpu]; 4510 newbucket = NULL; 4511 4512 /* 4513 * FIRSTTOUCH domains need to free to the correct zdom. When 4514 * enabled this is the zdom of the item. The bucket is the 4515 * cross bucket if the current domain and itemdomain do not match. 4516 */ 4517 cbucket = &cache->uc_freebucket; 4518 #ifdef NUMA 4519 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4520 if (PCPU_GET(domain) != itemdomain) { 4521 cbucket = &cache->uc_crossbucket; 4522 if (cbucket->ucb_cnt != 0) 4523 counter_u64_add(zone->uz_xdomain, 4524 cbucket->ucb_cnt); 4525 } 4526 } 4527 #endif 4528 bucket = cache_bucket_unload(cbucket); 4529 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4530 ("cache_free: Entered with non-full free bucket.")); 4531 4532 /* We are no longer associated with this CPU. */ 4533 critical_exit(); 4534 4535 /* 4536 * Don't let SMR zones operate without a free bucket. Force 4537 * a synchronize and re-use this one. We will only degrade 4538 * to a synchronize every bucket_size items rather than every 4539 * item if we fail to allocate a bucket. 4540 */ 4541 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4542 if (bucket != NULL) 4543 bucket->ub_seq = smr_advance(zone->uz_smr); 4544 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4545 if (newbucket == NULL && bucket != NULL) { 4546 bucket_drain(zone, bucket); 4547 newbucket = bucket; 4548 bucket = NULL; 4549 } 4550 } else if (!bucketdisable) 4551 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4552 4553 if (bucket != NULL) 4554 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4555 4556 critical_enter(); 4557 if ((bucket = newbucket) == NULL) 4558 return (false); 4559 cache = &zone->uz_cpu[curcpu]; 4560 #ifdef NUMA 4561 /* 4562 * Check to see if we should be populating the cross bucket. If it 4563 * is already populated we will fall through and attempt to populate 4564 * the free bucket. 4565 */ 4566 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4567 if (PCPU_GET(domain) != itemdomain && 4568 cache->uc_crossbucket.ucb_bucket == NULL) { 4569 cache_bucket_load_cross(cache, bucket); 4570 return (true); 4571 } 4572 } 4573 #endif 4574 /* 4575 * We may have lost the race to fill the bucket or switched CPUs. 4576 */ 4577 if (cache->uc_freebucket.ucb_bucket != NULL) { 4578 critical_exit(); 4579 bucket_free(zone, bucket, udata); 4580 critical_enter(); 4581 } else 4582 cache_bucket_load_free(cache, bucket); 4583 4584 return (true); 4585 } 4586 4587 static void 4588 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4589 { 4590 uma_keg_t keg; 4591 uma_domain_t dom; 4592 int freei; 4593 4594 keg = zone->uz_keg; 4595 KEG_LOCK_ASSERT(keg, slab->us_domain); 4596 4597 /* Do we need to remove from any lists? */ 4598 dom = &keg->uk_domain[slab->us_domain]; 4599 if (slab->us_freecount + 1 == keg->uk_ipers) { 4600 LIST_REMOVE(slab, us_link); 4601 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4602 dom->ud_free_slabs++; 4603 } else if (slab->us_freecount == 0) { 4604 LIST_REMOVE(slab, us_link); 4605 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4606 } 4607 4608 /* Slab management. */ 4609 freei = slab_item_index(slab, keg, item); 4610 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4611 slab->us_freecount++; 4612 4613 /* Keg statistics. */ 4614 dom->ud_free_items++; 4615 } 4616 4617 static void 4618 zone_release(void *arg, void **bucket, int cnt) 4619 { 4620 struct mtx *lock; 4621 uma_zone_t zone; 4622 uma_slab_t slab; 4623 uma_keg_t keg; 4624 uint8_t *mem; 4625 void *item; 4626 int i; 4627 4628 zone = arg; 4629 keg = zone->uz_keg; 4630 lock = NULL; 4631 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4632 lock = KEG_LOCK(keg, 0); 4633 for (i = 0; i < cnt; i++) { 4634 item = bucket[i]; 4635 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4636 slab = vtoslab((vm_offset_t)item); 4637 } else { 4638 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4639 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4640 slab = hash_sfind(&keg->uk_hash, mem); 4641 else 4642 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4643 } 4644 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4645 if (lock != NULL) 4646 mtx_unlock(lock); 4647 lock = KEG_LOCK(keg, slab->us_domain); 4648 } 4649 slab_free_item(zone, slab, item); 4650 } 4651 if (lock != NULL) 4652 mtx_unlock(lock); 4653 } 4654 4655 /* 4656 * Frees a single item to any zone. 4657 * 4658 * Arguments: 4659 * zone The zone to free to 4660 * item The item we're freeing 4661 * udata User supplied data for the dtor 4662 * skip Skip dtors and finis 4663 */ 4664 static __noinline void 4665 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4666 { 4667 4668 /* 4669 * If a free is sent directly to an SMR zone we have to 4670 * synchronize immediately because the item can instantly 4671 * be reallocated. This should only happen in degenerate 4672 * cases when no memory is available for per-cpu caches. 4673 */ 4674 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4675 smr_synchronize(zone->uz_smr); 4676 4677 item_dtor(zone, item, zone->uz_size, udata, skip); 4678 4679 if (skip < SKIP_FINI && zone->uz_fini) { 4680 kasan_mark_item_valid(zone, item); 4681 zone->uz_fini(item, zone->uz_size); 4682 kasan_mark_item_invalid(zone, item); 4683 } 4684 4685 zone->uz_release(zone->uz_arg, &item, 1); 4686 4687 if (skip & SKIP_CNT) 4688 return; 4689 4690 counter_u64_add(zone->uz_frees, 1); 4691 4692 if (zone->uz_max_items > 0) 4693 zone_free_limit(zone, 1); 4694 } 4695 4696 /* See uma.h */ 4697 int 4698 uma_zone_set_max(uma_zone_t zone, int nitems) 4699 { 4700 4701 /* 4702 * If the limit is small, we may need to constrain the maximum per-CPU 4703 * cache size, or disable caching entirely. 4704 */ 4705 uma_zone_set_maxcache(zone, nitems); 4706 4707 /* 4708 * XXX This can misbehave if the zone has any allocations with 4709 * no limit and a limit is imposed. There is currently no 4710 * way to clear a limit. 4711 */ 4712 ZONE_LOCK(zone); 4713 zone->uz_max_items = nitems; 4714 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4715 zone_update_caches(zone); 4716 /* We may need to wake waiters. */ 4717 wakeup(&zone->uz_max_items); 4718 ZONE_UNLOCK(zone); 4719 4720 return (nitems); 4721 } 4722 4723 /* See uma.h */ 4724 void 4725 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4726 { 4727 int bpcpu, bpdom, bsize, nb; 4728 4729 ZONE_LOCK(zone); 4730 4731 /* 4732 * Compute a lower bound on the number of items that may be cached in 4733 * the zone. Each CPU gets at least two buckets, and for cross-domain 4734 * frees we use an additional bucket per CPU and per domain. Select the 4735 * largest bucket size that does not exceed half of the requested limit, 4736 * with the left over space given to the full bucket cache. 4737 */ 4738 bpdom = 0; 4739 bpcpu = 2; 4740 #ifdef NUMA 4741 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) { 4742 bpcpu++; 4743 bpdom++; 4744 } 4745 #endif 4746 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains; 4747 bsize = nitems / nb / 2; 4748 if (bsize > BUCKET_MAX) 4749 bsize = BUCKET_MAX; 4750 else if (bsize == 0 && nitems / nb > 0) 4751 bsize = 1; 4752 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize; 4753 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4754 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4755 zone->uz_bucket_max = nitems - nb * bsize; 4756 ZONE_UNLOCK(zone); 4757 } 4758 4759 /* See uma.h */ 4760 int 4761 uma_zone_get_max(uma_zone_t zone) 4762 { 4763 int nitems; 4764 4765 nitems = atomic_load_64(&zone->uz_max_items); 4766 4767 return (nitems); 4768 } 4769 4770 /* See uma.h */ 4771 void 4772 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4773 { 4774 4775 ZONE_ASSERT_COLD(zone); 4776 zone->uz_warning = warning; 4777 } 4778 4779 /* See uma.h */ 4780 void 4781 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4782 { 4783 4784 ZONE_ASSERT_COLD(zone); 4785 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4786 } 4787 4788 /* See uma.h */ 4789 int 4790 uma_zone_get_cur(uma_zone_t zone) 4791 { 4792 int64_t nitems; 4793 u_int i; 4794 4795 nitems = 0; 4796 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4797 nitems = counter_u64_fetch(zone->uz_allocs) - 4798 counter_u64_fetch(zone->uz_frees); 4799 CPU_FOREACH(i) 4800 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4801 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4802 4803 return (nitems < 0 ? 0 : nitems); 4804 } 4805 4806 static uint64_t 4807 uma_zone_get_allocs(uma_zone_t zone) 4808 { 4809 uint64_t nitems; 4810 u_int i; 4811 4812 nitems = 0; 4813 if (zone->uz_allocs != EARLY_COUNTER) 4814 nitems = counter_u64_fetch(zone->uz_allocs); 4815 CPU_FOREACH(i) 4816 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4817 4818 return (nitems); 4819 } 4820 4821 static uint64_t 4822 uma_zone_get_frees(uma_zone_t zone) 4823 { 4824 uint64_t nitems; 4825 u_int i; 4826 4827 nitems = 0; 4828 if (zone->uz_frees != EARLY_COUNTER) 4829 nitems = counter_u64_fetch(zone->uz_frees); 4830 CPU_FOREACH(i) 4831 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4832 4833 return (nitems); 4834 } 4835 4836 #ifdef INVARIANTS 4837 /* Used only for KEG_ASSERT_COLD(). */ 4838 static uint64_t 4839 uma_keg_get_allocs(uma_keg_t keg) 4840 { 4841 uma_zone_t z; 4842 uint64_t nitems; 4843 4844 nitems = 0; 4845 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4846 nitems += uma_zone_get_allocs(z); 4847 4848 return (nitems); 4849 } 4850 #endif 4851 4852 /* See uma.h */ 4853 void 4854 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4855 { 4856 uma_keg_t keg; 4857 4858 KEG_GET(zone, keg); 4859 KEG_ASSERT_COLD(keg); 4860 keg->uk_init = uminit; 4861 } 4862 4863 /* See uma.h */ 4864 void 4865 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4866 { 4867 uma_keg_t keg; 4868 4869 KEG_GET(zone, keg); 4870 KEG_ASSERT_COLD(keg); 4871 keg->uk_fini = fini; 4872 } 4873 4874 /* See uma.h */ 4875 void 4876 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4877 { 4878 4879 ZONE_ASSERT_COLD(zone); 4880 zone->uz_init = zinit; 4881 } 4882 4883 /* See uma.h */ 4884 void 4885 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4886 { 4887 4888 ZONE_ASSERT_COLD(zone); 4889 zone->uz_fini = zfini; 4890 } 4891 4892 /* See uma.h */ 4893 void 4894 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4895 { 4896 uma_keg_t keg; 4897 4898 KEG_GET(zone, keg); 4899 KEG_ASSERT_COLD(keg); 4900 keg->uk_freef = freef; 4901 } 4902 4903 /* See uma.h */ 4904 void 4905 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4906 { 4907 uma_keg_t keg; 4908 4909 KEG_GET(zone, keg); 4910 KEG_ASSERT_COLD(keg); 4911 keg->uk_allocf = allocf; 4912 } 4913 4914 /* See uma.h */ 4915 void 4916 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4917 { 4918 4919 ZONE_ASSERT_COLD(zone); 4920 4921 KASSERT(smr != NULL, ("Got NULL smr")); 4922 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4923 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 4924 zone->uz_flags |= UMA_ZONE_SMR; 4925 zone->uz_smr = smr; 4926 zone_update_caches(zone); 4927 } 4928 4929 smr_t 4930 uma_zone_get_smr(uma_zone_t zone) 4931 { 4932 4933 return (zone->uz_smr); 4934 } 4935 4936 /* See uma.h */ 4937 void 4938 uma_zone_reserve(uma_zone_t zone, int items) 4939 { 4940 uma_keg_t keg; 4941 4942 KEG_GET(zone, keg); 4943 KEG_ASSERT_COLD(keg); 4944 keg->uk_reserve = items; 4945 } 4946 4947 /* See uma.h */ 4948 int 4949 uma_zone_reserve_kva(uma_zone_t zone, int count) 4950 { 4951 uma_keg_t keg; 4952 vm_offset_t kva; 4953 u_int pages; 4954 4955 KEG_GET(zone, keg); 4956 KEG_ASSERT_COLD(keg); 4957 ZONE_ASSERT_COLD(zone); 4958 4959 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4960 4961 #ifdef UMA_MD_SMALL_ALLOC 4962 if (keg->uk_ppera > 1) { 4963 #else 4964 if (1) { 4965 #endif 4966 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4967 if (kva == 0) 4968 return (0); 4969 } else 4970 kva = 0; 4971 4972 MPASS(keg->uk_kva == 0); 4973 keg->uk_kva = kva; 4974 keg->uk_offset = 0; 4975 zone->uz_max_items = pages * keg->uk_ipers; 4976 #ifdef UMA_MD_SMALL_ALLOC 4977 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4978 #else 4979 keg->uk_allocf = noobj_alloc; 4980 #endif 4981 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4982 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4983 zone_update_caches(zone); 4984 4985 return (1); 4986 } 4987 4988 /* See uma.h */ 4989 void 4990 uma_prealloc(uma_zone_t zone, int items) 4991 { 4992 struct vm_domainset_iter di; 4993 uma_domain_t dom; 4994 uma_slab_t slab; 4995 uma_keg_t keg; 4996 int aflags, domain, slabs; 4997 4998 KEG_GET(zone, keg); 4999 slabs = howmany(items, keg->uk_ipers); 5000 while (slabs-- > 0) { 5001 aflags = M_NOWAIT; 5002 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 5003 &aflags); 5004 for (;;) { 5005 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 5006 aflags); 5007 if (slab != NULL) { 5008 dom = &keg->uk_domain[slab->us_domain]; 5009 /* 5010 * keg_alloc_slab() always returns a slab on the 5011 * partial list. 5012 */ 5013 LIST_REMOVE(slab, us_link); 5014 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 5015 us_link); 5016 dom->ud_free_slabs++; 5017 KEG_UNLOCK(keg, slab->us_domain); 5018 break; 5019 } 5020 if (vm_domainset_iter_policy(&di, &domain) != 0) 5021 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 5022 } 5023 } 5024 } 5025 5026 /* 5027 * Returns a snapshot of memory consumption in bytes. 5028 */ 5029 size_t 5030 uma_zone_memory(uma_zone_t zone) 5031 { 5032 size_t sz; 5033 int i; 5034 5035 sz = 0; 5036 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 5037 for (i = 0; i < vm_ndomains; i++) 5038 sz += ZDOM_GET(zone, i)->uzd_nitems; 5039 return (sz * zone->uz_size); 5040 } 5041 for (i = 0; i < vm_ndomains; i++) 5042 sz += zone->uz_keg->uk_domain[i].ud_pages; 5043 5044 return (sz * PAGE_SIZE); 5045 } 5046 5047 /* See uma.h */ 5048 void 5049 uma_reclaim(int req) 5050 { 5051 uma_reclaim_domain(req, UMA_ANYDOMAIN); 5052 } 5053 5054 void 5055 uma_reclaim_domain(int req, int domain) 5056 { 5057 void *arg; 5058 5059 bucket_enable(); 5060 5061 arg = (void *)(uintptr_t)domain; 5062 sx_slock(&uma_reclaim_lock); 5063 switch (req) { 5064 case UMA_RECLAIM_TRIM: 5065 zone_foreach(zone_trim, arg); 5066 break; 5067 case UMA_RECLAIM_DRAIN: 5068 zone_foreach(zone_drain, arg); 5069 break; 5070 case UMA_RECLAIM_DRAIN_CPU: 5071 zone_foreach(zone_drain, arg); 5072 pcpu_cache_drain_safe(NULL); 5073 zone_foreach(zone_drain, arg); 5074 break; 5075 default: 5076 panic("unhandled reclamation request %d", req); 5077 } 5078 5079 /* 5080 * Some slabs may have been freed but this zone will be visited early 5081 * we visit again so that we can free pages that are empty once other 5082 * zones are drained. We have to do the same for buckets. 5083 */ 5084 zone_drain(slabzones[0], arg); 5085 zone_drain(slabzones[1], arg); 5086 bucket_zone_drain(domain); 5087 sx_sunlock(&uma_reclaim_lock); 5088 } 5089 5090 static volatile int uma_reclaim_needed; 5091 5092 void 5093 uma_reclaim_wakeup(void) 5094 { 5095 5096 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 5097 wakeup(uma_reclaim); 5098 } 5099 5100 void 5101 uma_reclaim_worker(void *arg __unused) 5102 { 5103 5104 for (;;) { 5105 sx_xlock(&uma_reclaim_lock); 5106 while (atomic_load_int(&uma_reclaim_needed) == 0) 5107 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 5108 hz); 5109 sx_xunlock(&uma_reclaim_lock); 5110 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 5111 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 5112 atomic_store_int(&uma_reclaim_needed, 0); 5113 /* Don't fire more than once per-second. */ 5114 pause("umarclslp", hz); 5115 } 5116 } 5117 5118 /* See uma.h */ 5119 void 5120 uma_zone_reclaim(uma_zone_t zone, int req) 5121 { 5122 uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN); 5123 } 5124 5125 void 5126 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain) 5127 { 5128 void *arg; 5129 5130 arg = (void *)(uintptr_t)domain; 5131 switch (req) { 5132 case UMA_RECLAIM_TRIM: 5133 zone_trim(zone, arg); 5134 break; 5135 case UMA_RECLAIM_DRAIN: 5136 zone_drain(zone, arg); 5137 break; 5138 case UMA_RECLAIM_DRAIN_CPU: 5139 pcpu_cache_drain_safe(zone); 5140 zone_drain(zone, arg); 5141 break; 5142 default: 5143 panic("unhandled reclamation request %d", req); 5144 } 5145 } 5146 5147 /* See uma.h */ 5148 int 5149 uma_zone_exhausted(uma_zone_t zone) 5150 { 5151 5152 return (atomic_load_32(&zone->uz_sleepers) > 0); 5153 } 5154 5155 unsigned long 5156 uma_limit(void) 5157 { 5158 5159 return (uma_kmem_limit); 5160 } 5161 5162 void 5163 uma_set_limit(unsigned long limit) 5164 { 5165 5166 uma_kmem_limit = limit; 5167 } 5168 5169 unsigned long 5170 uma_size(void) 5171 { 5172 5173 return (atomic_load_long(&uma_kmem_total)); 5174 } 5175 5176 long 5177 uma_avail(void) 5178 { 5179 5180 return (uma_kmem_limit - uma_size()); 5181 } 5182 5183 #ifdef DDB 5184 /* 5185 * Generate statistics across both the zone and its per-cpu cache's. Return 5186 * desired statistics if the pointer is non-NULL for that statistic. 5187 * 5188 * Note: does not update the zone statistics, as it can't safely clear the 5189 * per-CPU cache statistic. 5190 * 5191 */ 5192 static void 5193 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 5194 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 5195 { 5196 uma_cache_t cache; 5197 uint64_t allocs, frees, sleeps, xdomain; 5198 int cachefree, cpu; 5199 5200 allocs = frees = sleeps = xdomain = 0; 5201 cachefree = 0; 5202 CPU_FOREACH(cpu) { 5203 cache = &z->uz_cpu[cpu]; 5204 cachefree += cache->uc_allocbucket.ucb_cnt; 5205 cachefree += cache->uc_freebucket.ucb_cnt; 5206 xdomain += cache->uc_crossbucket.ucb_cnt; 5207 cachefree += cache->uc_crossbucket.ucb_cnt; 5208 allocs += cache->uc_allocs; 5209 frees += cache->uc_frees; 5210 } 5211 allocs += counter_u64_fetch(z->uz_allocs); 5212 frees += counter_u64_fetch(z->uz_frees); 5213 xdomain += counter_u64_fetch(z->uz_xdomain); 5214 sleeps += z->uz_sleeps; 5215 if (cachefreep != NULL) 5216 *cachefreep = cachefree; 5217 if (allocsp != NULL) 5218 *allocsp = allocs; 5219 if (freesp != NULL) 5220 *freesp = frees; 5221 if (sleepsp != NULL) 5222 *sleepsp = sleeps; 5223 if (xdomainp != NULL) 5224 *xdomainp = xdomain; 5225 } 5226 #endif /* DDB */ 5227 5228 static int 5229 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 5230 { 5231 uma_keg_t kz; 5232 uma_zone_t z; 5233 int count; 5234 5235 count = 0; 5236 rw_rlock(&uma_rwlock); 5237 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5238 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5239 count++; 5240 } 5241 LIST_FOREACH(z, &uma_cachezones, uz_link) 5242 count++; 5243 5244 rw_runlock(&uma_rwlock); 5245 return (sysctl_handle_int(oidp, &count, 0, req)); 5246 } 5247 5248 static void 5249 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 5250 struct uma_percpu_stat *ups, bool internal) 5251 { 5252 uma_zone_domain_t zdom; 5253 uma_cache_t cache; 5254 int i; 5255 5256 for (i = 0; i < vm_ndomains; i++) { 5257 zdom = ZDOM_GET(z, i); 5258 uth->uth_zone_free += zdom->uzd_nitems; 5259 } 5260 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 5261 uth->uth_frees = counter_u64_fetch(z->uz_frees); 5262 uth->uth_fails = counter_u64_fetch(z->uz_fails); 5263 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 5264 uth->uth_sleeps = z->uz_sleeps; 5265 5266 for (i = 0; i < mp_maxid + 1; i++) { 5267 bzero(&ups[i], sizeof(*ups)); 5268 if (internal || CPU_ABSENT(i)) 5269 continue; 5270 cache = &z->uz_cpu[i]; 5271 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 5272 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5273 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5274 ups[i].ups_allocs = cache->uc_allocs; 5275 ups[i].ups_frees = cache->uc_frees; 5276 } 5277 } 5278 5279 static int 5280 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5281 { 5282 struct uma_stream_header ush; 5283 struct uma_type_header uth; 5284 struct uma_percpu_stat *ups; 5285 struct sbuf sbuf; 5286 uma_keg_t kz; 5287 uma_zone_t z; 5288 uint64_t items; 5289 uint32_t kfree, pages; 5290 int count, error, i; 5291 5292 error = sysctl_wire_old_buffer(req, 0); 5293 if (error != 0) 5294 return (error); 5295 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5296 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5297 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5298 5299 count = 0; 5300 rw_rlock(&uma_rwlock); 5301 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5302 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5303 count++; 5304 } 5305 5306 LIST_FOREACH(z, &uma_cachezones, uz_link) 5307 count++; 5308 5309 /* 5310 * Insert stream header. 5311 */ 5312 bzero(&ush, sizeof(ush)); 5313 ush.ush_version = UMA_STREAM_VERSION; 5314 ush.ush_maxcpus = (mp_maxid + 1); 5315 ush.ush_count = count; 5316 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5317 5318 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5319 kfree = pages = 0; 5320 for (i = 0; i < vm_ndomains; i++) { 5321 kfree += kz->uk_domain[i].ud_free_items; 5322 pages += kz->uk_domain[i].ud_pages; 5323 } 5324 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5325 bzero(&uth, sizeof(uth)); 5326 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5327 uth.uth_align = kz->uk_align; 5328 uth.uth_size = kz->uk_size; 5329 uth.uth_rsize = kz->uk_rsize; 5330 if (z->uz_max_items > 0) { 5331 items = UZ_ITEMS_COUNT(z->uz_items); 5332 uth.uth_pages = (items / kz->uk_ipers) * 5333 kz->uk_ppera; 5334 } else 5335 uth.uth_pages = pages; 5336 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5337 kz->uk_ppera; 5338 uth.uth_limit = z->uz_max_items; 5339 uth.uth_keg_free = kfree; 5340 5341 /* 5342 * A zone is secondary is it is not the first entry 5343 * on the keg's zone list. 5344 */ 5345 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5346 (LIST_FIRST(&kz->uk_zones) != z)) 5347 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5348 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5349 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5350 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5351 for (i = 0; i < mp_maxid + 1; i++) 5352 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5353 } 5354 } 5355 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5356 bzero(&uth, sizeof(uth)); 5357 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5358 uth.uth_size = z->uz_size; 5359 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5360 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5361 for (i = 0; i < mp_maxid + 1; i++) 5362 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5363 } 5364 5365 rw_runlock(&uma_rwlock); 5366 error = sbuf_finish(&sbuf); 5367 sbuf_delete(&sbuf); 5368 free(ups, M_TEMP); 5369 return (error); 5370 } 5371 5372 int 5373 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5374 { 5375 uma_zone_t zone = *(uma_zone_t *)arg1; 5376 int error, max; 5377 5378 max = uma_zone_get_max(zone); 5379 error = sysctl_handle_int(oidp, &max, 0, req); 5380 if (error || !req->newptr) 5381 return (error); 5382 5383 uma_zone_set_max(zone, max); 5384 5385 return (0); 5386 } 5387 5388 int 5389 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5390 { 5391 uma_zone_t zone; 5392 int cur; 5393 5394 /* 5395 * Some callers want to add sysctls for global zones that 5396 * may not yet exist so they pass a pointer to a pointer. 5397 */ 5398 if (arg2 == 0) 5399 zone = *(uma_zone_t *)arg1; 5400 else 5401 zone = arg1; 5402 cur = uma_zone_get_cur(zone); 5403 return (sysctl_handle_int(oidp, &cur, 0, req)); 5404 } 5405 5406 static int 5407 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5408 { 5409 uma_zone_t zone = arg1; 5410 uint64_t cur; 5411 5412 cur = uma_zone_get_allocs(zone); 5413 return (sysctl_handle_64(oidp, &cur, 0, req)); 5414 } 5415 5416 static int 5417 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5418 { 5419 uma_zone_t zone = arg1; 5420 uint64_t cur; 5421 5422 cur = uma_zone_get_frees(zone); 5423 return (sysctl_handle_64(oidp, &cur, 0, req)); 5424 } 5425 5426 static int 5427 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5428 { 5429 struct sbuf sbuf; 5430 uma_zone_t zone = arg1; 5431 int error; 5432 5433 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5434 if (zone->uz_flags != 0) 5435 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5436 else 5437 sbuf_printf(&sbuf, "0"); 5438 error = sbuf_finish(&sbuf); 5439 sbuf_delete(&sbuf); 5440 5441 return (error); 5442 } 5443 5444 static int 5445 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5446 { 5447 uma_keg_t keg = arg1; 5448 int avail, effpct, total; 5449 5450 total = keg->uk_ppera * PAGE_SIZE; 5451 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5452 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5453 /* 5454 * We consider the client's requested size and alignment here, not the 5455 * real size determination uk_rsize, because we also adjust the real 5456 * size for internal implementation reasons (max bitset size). 5457 */ 5458 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5459 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5460 avail *= mp_maxid + 1; 5461 effpct = 100 * avail / total; 5462 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5463 } 5464 5465 static int 5466 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5467 { 5468 uma_zone_t zone = arg1; 5469 uint64_t cur; 5470 5471 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5472 return (sysctl_handle_64(oidp, &cur, 0, req)); 5473 } 5474 5475 #ifdef INVARIANTS 5476 static uma_slab_t 5477 uma_dbg_getslab(uma_zone_t zone, void *item) 5478 { 5479 uma_slab_t slab; 5480 uma_keg_t keg; 5481 uint8_t *mem; 5482 5483 /* 5484 * It is safe to return the slab here even though the 5485 * zone is unlocked because the item's allocation state 5486 * essentially holds a reference. 5487 */ 5488 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5489 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5490 return (NULL); 5491 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5492 return (vtoslab((vm_offset_t)mem)); 5493 keg = zone->uz_keg; 5494 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5495 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5496 KEG_LOCK(keg, 0); 5497 slab = hash_sfind(&keg->uk_hash, mem); 5498 KEG_UNLOCK(keg, 0); 5499 5500 return (slab); 5501 } 5502 5503 static bool 5504 uma_dbg_zskip(uma_zone_t zone, void *mem) 5505 { 5506 5507 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5508 return (true); 5509 5510 return (uma_dbg_kskip(zone->uz_keg, mem)); 5511 } 5512 5513 static bool 5514 uma_dbg_kskip(uma_keg_t keg, void *mem) 5515 { 5516 uintptr_t idx; 5517 5518 if (dbg_divisor == 0) 5519 return (true); 5520 5521 if (dbg_divisor == 1) 5522 return (false); 5523 5524 idx = (uintptr_t)mem >> PAGE_SHIFT; 5525 if (keg->uk_ipers > 1) { 5526 idx *= keg->uk_ipers; 5527 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5528 } 5529 5530 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5531 counter_u64_add(uma_skip_cnt, 1); 5532 return (true); 5533 } 5534 counter_u64_add(uma_dbg_cnt, 1); 5535 5536 return (false); 5537 } 5538 5539 /* 5540 * Set up the slab's freei data such that uma_dbg_free can function. 5541 * 5542 */ 5543 static void 5544 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5545 { 5546 uma_keg_t keg; 5547 int freei; 5548 5549 if (slab == NULL) { 5550 slab = uma_dbg_getslab(zone, item); 5551 if (slab == NULL) 5552 panic("uma: item %p did not belong to zone %s", 5553 item, zone->uz_name); 5554 } 5555 keg = zone->uz_keg; 5556 freei = slab_item_index(slab, keg, item); 5557 5558 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei, 5559 slab_dbg_bits(slab, keg))) 5560 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)", 5561 item, zone, zone->uz_name, slab, freei); 5562 } 5563 5564 /* 5565 * Verifies freed addresses. Checks for alignment, valid slab membership 5566 * and duplicate frees. 5567 * 5568 */ 5569 static void 5570 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5571 { 5572 uma_keg_t keg; 5573 int freei; 5574 5575 if (slab == NULL) { 5576 slab = uma_dbg_getslab(zone, item); 5577 if (slab == NULL) 5578 panic("uma: Freed item %p did not belong to zone %s", 5579 item, zone->uz_name); 5580 } 5581 keg = zone->uz_keg; 5582 freei = slab_item_index(slab, keg, item); 5583 5584 if (freei >= keg->uk_ipers) 5585 panic("Invalid free of %p from zone %p(%s) slab %p(%d)", 5586 item, zone, zone->uz_name, slab, freei); 5587 5588 if (slab_item(slab, keg, freei) != item) 5589 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)", 5590 item, zone, zone->uz_name, slab, freei); 5591 5592 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei, 5593 slab_dbg_bits(slab, keg))) 5594 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)", 5595 item, zone, zone->uz_name, slab, freei); 5596 } 5597 #endif /* INVARIANTS */ 5598 5599 #ifdef DDB 5600 static int64_t 5601 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5602 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5603 { 5604 uint64_t frees; 5605 int i; 5606 5607 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5608 *allocs = counter_u64_fetch(z->uz_allocs); 5609 frees = counter_u64_fetch(z->uz_frees); 5610 *sleeps = z->uz_sleeps; 5611 *cachefree = 0; 5612 *xdomain = 0; 5613 } else 5614 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5615 xdomain); 5616 for (i = 0; i < vm_ndomains; i++) { 5617 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5618 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5619 (LIST_FIRST(&kz->uk_zones) != z))) 5620 *cachefree += kz->uk_domain[i].ud_free_items; 5621 } 5622 *used = *allocs - frees; 5623 return (((int64_t)*used + *cachefree) * kz->uk_size); 5624 } 5625 5626 DB_SHOW_COMMAND(uma, db_show_uma) 5627 { 5628 const char *fmt_hdr, *fmt_entry; 5629 uma_keg_t kz; 5630 uma_zone_t z; 5631 uint64_t allocs, used, sleeps, xdomain; 5632 long cachefree; 5633 /* variables for sorting */ 5634 uma_keg_t cur_keg; 5635 uma_zone_t cur_zone, last_zone; 5636 int64_t cur_size, last_size, size; 5637 int ties; 5638 5639 /* /i option produces machine-parseable CSV output */ 5640 if (modif[0] == 'i') { 5641 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5642 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5643 } else { 5644 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5645 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5646 } 5647 5648 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5649 "Sleeps", "Bucket", "Total Mem", "XFree"); 5650 5651 /* Sort the zones with largest size first. */ 5652 last_zone = NULL; 5653 last_size = INT64_MAX; 5654 for (;;) { 5655 cur_zone = NULL; 5656 cur_size = -1; 5657 ties = 0; 5658 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5659 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5660 /* 5661 * In the case of size ties, print out zones 5662 * in the order they are encountered. That is, 5663 * when we encounter the most recently output 5664 * zone, we have already printed all preceding 5665 * ties, and we must print all following ties. 5666 */ 5667 if (z == last_zone) { 5668 ties = 1; 5669 continue; 5670 } 5671 size = get_uma_stats(kz, z, &allocs, &used, 5672 &sleeps, &cachefree, &xdomain); 5673 if (size > cur_size && size < last_size + ties) 5674 { 5675 cur_size = size; 5676 cur_zone = z; 5677 cur_keg = kz; 5678 } 5679 } 5680 } 5681 if (cur_zone == NULL) 5682 break; 5683 5684 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5685 &sleeps, &cachefree, &xdomain); 5686 db_printf(fmt_entry, cur_zone->uz_name, 5687 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5688 (uintmax_t)allocs, (uintmax_t)sleeps, 5689 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5690 xdomain); 5691 5692 if (db_pager_quit) 5693 return; 5694 last_zone = cur_zone; 5695 last_size = cur_size; 5696 } 5697 } 5698 5699 DB_SHOW_COMMAND(umacache, db_show_umacache) 5700 { 5701 uma_zone_t z; 5702 uint64_t allocs, frees; 5703 long cachefree; 5704 int i; 5705 5706 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5707 "Requests", "Bucket"); 5708 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5709 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5710 for (i = 0; i < vm_ndomains; i++) 5711 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5712 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5713 z->uz_name, (uintmax_t)z->uz_size, 5714 (intmax_t)(allocs - frees), cachefree, 5715 (uintmax_t)allocs, z->uz_bucket_size); 5716 if (db_pager_quit) 5717 return; 5718 } 5719 } 5720 #endif /* DDB */ 5721