1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/smp.h> 79 #include <sys/taskqueue.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_domainset.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_phys.h> 89 #include <vm/vm_pagequeue.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 #include <vm/uma_int.h> 95 #include <vm/uma_dbg.h> 96 97 #include <ddb/ddb.h> 98 99 #ifdef DEBUG_MEMGUARD 100 #include <vm/memguard.h> 101 #endif 102 103 /* 104 * This is the zone and keg from which all zones are spawned. 105 */ 106 static uma_zone_t kegs; 107 static uma_zone_t zones; 108 109 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 110 static uma_zone_t slabzone; 111 112 /* 113 * The initial hash tables come out of this zone so they can be allocated 114 * prior to malloc coming up. 115 */ 116 static uma_zone_t hashzone; 117 118 /* The boot-time adjusted value for cache line alignment. */ 119 int uma_align_cache = 64 - 1; 120 121 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 122 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 123 124 /* 125 * Are we allowed to allocate buckets? 126 */ 127 static int bucketdisable = 1; 128 129 /* Linked list of all kegs in the system */ 130 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 131 132 /* Linked list of all cache-only zones in the system */ 133 static LIST_HEAD(,uma_zone) uma_cachezones = 134 LIST_HEAD_INITIALIZER(uma_cachezones); 135 136 /* This RW lock protects the keg list */ 137 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 138 139 /* 140 * Pointer and counter to pool of pages, that is preallocated at 141 * startup to bootstrap UMA. 142 */ 143 static char *bootmem; 144 static int boot_pages; 145 146 static struct sx uma_reclaim_lock; 147 148 /* 149 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 150 * allocations don't trigger a wakeup of the reclaim thread. 151 */ 152 unsigned long uma_kmem_limit = LONG_MAX; 153 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 154 "UMA kernel memory soft limit"); 155 unsigned long uma_kmem_total; 156 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 157 "UMA kernel memory usage"); 158 159 /* Is the VM done starting up? */ 160 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 161 BOOT_RUNNING } booted = BOOT_COLD; 162 163 /* 164 * This is the handle used to schedule events that need to happen 165 * outside of the allocation fast path. 166 */ 167 static struct callout uma_callout; 168 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 169 170 /* 171 * This structure is passed as the zone ctor arg so that I don't have to create 172 * a special allocation function just for zones. 173 */ 174 struct uma_zctor_args { 175 const char *name; 176 size_t size; 177 uma_ctor ctor; 178 uma_dtor dtor; 179 uma_init uminit; 180 uma_fini fini; 181 uma_import import; 182 uma_release release; 183 void *arg; 184 uma_keg_t keg; 185 int align; 186 uint32_t flags; 187 }; 188 189 struct uma_kctor_args { 190 uma_zone_t zone; 191 size_t size; 192 uma_init uminit; 193 uma_fini fini; 194 int align; 195 uint32_t flags; 196 }; 197 198 struct uma_bucket_zone { 199 uma_zone_t ubz_zone; 200 char *ubz_name; 201 int ubz_entries; /* Number of items it can hold. */ 202 int ubz_maxsize; /* Maximum allocation size per-item. */ 203 }; 204 205 /* 206 * Compute the actual number of bucket entries to pack them in power 207 * of two sizes for more efficient space utilization. 208 */ 209 #define BUCKET_SIZE(n) \ 210 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 211 212 #define BUCKET_MAX BUCKET_SIZE(256) 213 #define BUCKET_MIN BUCKET_SIZE(4) 214 215 struct uma_bucket_zone bucket_zones[] = { 216 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 217 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 218 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 219 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 220 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 221 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 222 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 223 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 224 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 225 { NULL, NULL, 0} 226 }; 227 228 /* 229 * Flags and enumerations to be passed to internal functions. 230 */ 231 enum zfreeskip { 232 SKIP_NONE = 0, 233 SKIP_CNT = 0x00000001, 234 SKIP_DTOR = 0x00010000, 235 SKIP_FINI = 0x00020000, 236 }; 237 238 /* Prototypes.. */ 239 240 int uma_startup_count(int); 241 void uma_startup(void *, int); 242 void uma_startup1(void); 243 void uma_startup2(void); 244 245 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 246 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 247 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 248 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 249 static void page_free(void *, vm_size_t, uint8_t); 250 static void pcpu_page_free(void *, vm_size_t, uint8_t); 251 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 252 static void cache_drain(uma_zone_t); 253 static void bucket_drain(uma_zone_t, uma_bucket_t); 254 static void bucket_cache_reclaim(uma_zone_t zone, bool); 255 static int keg_ctor(void *, int, void *, int); 256 static void keg_dtor(void *, int, void *); 257 static int zone_ctor(void *, int, void *, int); 258 static void zone_dtor(void *, int, void *); 259 static int zero_init(void *, int, int); 260 static void keg_small_init(uma_keg_t keg); 261 static void keg_large_init(uma_keg_t keg); 262 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 263 static void zone_timeout(uma_zone_t zone, void *); 264 static int hash_alloc(struct uma_hash *, u_int); 265 static int hash_expand(struct uma_hash *, struct uma_hash *); 266 static void hash_free(struct uma_hash *hash); 267 static void uma_timeout(void *); 268 static void uma_startup3(void); 269 static void *zone_alloc_item(uma_zone_t, void *, int, int); 270 static void *zone_alloc_item_locked(uma_zone_t, void *, int, int); 271 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 272 static void bucket_enable(void); 273 static void bucket_init(void); 274 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 275 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 276 static void bucket_zone_drain(void); 277 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 278 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 279 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 280 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 281 uma_fini fini, int align, uint32_t flags); 282 static int zone_import(void *, void **, int, int, int); 283 static void zone_release(void *, void **, int); 284 static void uma_zero_item(void *, uma_zone_t); 285 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 286 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 287 288 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 289 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 290 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 291 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 292 293 #ifdef INVARIANTS 294 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 295 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 296 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 297 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 298 299 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 300 "Memory allocation debugging"); 301 302 static u_int dbg_divisor = 1; 303 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 304 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 305 "Debug & thrash every this item in memory allocator"); 306 307 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 308 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 309 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 310 &uma_dbg_cnt, "memory items debugged"); 311 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 312 &uma_skip_cnt, "memory items skipped, not debugged"); 313 #endif 314 315 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 316 317 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW, 0, "Universal Memory Allocator"); 318 319 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 320 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 321 322 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 323 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 324 325 static int zone_warnings = 1; 326 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 327 "Warn when UMA zones becomes full"); 328 329 /* 330 * This routine checks to see whether or not it's safe to enable buckets. 331 */ 332 static void 333 bucket_enable(void) 334 { 335 bucketdisable = vm_page_count_min(); 336 } 337 338 /* 339 * Initialize bucket_zones, the array of zones of buckets of various sizes. 340 * 341 * For each zone, calculate the memory required for each bucket, consisting 342 * of the header and an array of pointers. 343 */ 344 static void 345 bucket_init(void) 346 { 347 struct uma_bucket_zone *ubz; 348 int size; 349 350 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 351 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 352 size += sizeof(void *) * ubz->ubz_entries; 353 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 354 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 355 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 356 } 357 } 358 359 /* 360 * Given a desired number of entries for a bucket, return the zone from which 361 * to allocate the bucket. 362 */ 363 static struct uma_bucket_zone * 364 bucket_zone_lookup(int entries) 365 { 366 struct uma_bucket_zone *ubz; 367 368 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 369 if (ubz->ubz_entries >= entries) 370 return (ubz); 371 ubz--; 372 return (ubz); 373 } 374 375 static struct uma_bucket_zone * 376 bucket_zone_max(uma_zone_t zone, int nitems) 377 { 378 struct uma_bucket_zone *ubz; 379 int bpcpu; 380 381 bpcpu = 2; 382 #ifdef UMA_XDOMAIN 383 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 384 /* Count the cross-domain bucket. */ 385 bpcpu++; 386 #endif 387 388 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 389 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 390 break; 391 if (ubz == &bucket_zones[0]) 392 ubz = NULL; 393 else 394 ubz--; 395 return (ubz); 396 } 397 398 static int 399 bucket_select(int size) 400 { 401 struct uma_bucket_zone *ubz; 402 403 ubz = &bucket_zones[0]; 404 if (size > ubz->ubz_maxsize) 405 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 406 407 for (; ubz->ubz_entries != 0; ubz++) 408 if (ubz->ubz_maxsize < size) 409 break; 410 ubz--; 411 return (ubz->ubz_entries); 412 } 413 414 static uma_bucket_t 415 bucket_alloc(uma_zone_t zone, void *udata, int flags) 416 { 417 struct uma_bucket_zone *ubz; 418 uma_bucket_t bucket; 419 420 /* 421 * This is to stop us from allocating per cpu buckets while we're 422 * running out of vm.boot_pages. Otherwise, we would exhaust the 423 * boot pages. This also prevents us from allocating buckets in 424 * low memory situations. 425 */ 426 if (bucketdisable) 427 return (NULL); 428 /* 429 * To limit bucket recursion we store the original zone flags 430 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 431 * NOVM flag to persist even through deep recursions. We also 432 * store ZFLAG_BUCKET once we have recursed attempting to allocate 433 * a bucket for a bucket zone so we do not allow infinite bucket 434 * recursion. This cookie will even persist to frees of unused 435 * buckets via the allocation path or bucket allocations in the 436 * free path. 437 */ 438 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 439 udata = (void *)(uintptr_t)zone->uz_flags; 440 else { 441 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 442 return (NULL); 443 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 444 } 445 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 446 flags |= M_NOVM; 447 ubz = bucket_zone_lookup(zone->uz_bucket_size); 448 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 449 ubz++; 450 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 451 if (bucket) { 452 #ifdef INVARIANTS 453 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 454 #endif 455 bucket->ub_cnt = 0; 456 bucket->ub_entries = ubz->ubz_entries; 457 } 458 459 return (bucket); 460 } 461 462 static void 463 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 464 { 465 struct uma_bucket_zone *ubz; 466 467 KASSERT(bucket->ub_cnt == 0, 468 ("bucket_free: Freeing a non free bucket.")); 469 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 470 udata = (void *)(uintptr_t)zone->uz_flags; 471 ubz = bucket_zone_lookup(bucket->ub_entries); 472 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 473 } 474 475 static void 476 bucket_zone_drain(void) 477 { 478 struct uma_bucket_zone *ubz; 479 480 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 481 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 482 } 483 484 /* 485 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 486 * zone's caches. 487 */ 488 static uma_bucket_t 489 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom) 490 { 491 uma_bucket_t bucket; 492 493 ZONE_LOCK_ASSERT(zone); 494 495 if ((bucket = TAILQ_FIRST(&zdom->uzd_buckets)) != NULL) { 496 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 497 TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); 498 zdom->uzd_nitems -= bucket->ub_cnt; 499 if (zdom->uzd_imin > zdom->uzd_nitems) 500 zdom->uzd_imin = zdom->uzd_nitems; 501 zone->uz_bkt_count -= bucket->ub_cnt; 502 } 503 return (bucket); 504 } 505 506 /* 507 * Insert a full bucket into the specified cache. The "ws" parameter indicates 508 * whether the bucket's contents should be counted as part of the zone's working 509 * set. 510 */ 511 static void 512 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 513 const bool ws) 514 { 515 516 ZONE_LOCK_ASSERT(zone); 517 KASSERT(!ws || zone->uz_bkt_count < zone->uz_bkt_max, 518 ("%s: zone %p overflow", __func__, zone)); 519 520 if (ws) 521 TAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 522 else 523 TAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 524 zdom->uzd_nitems += bucket->ub_cnt; 525 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 526 zdom->uzd_imax = zdom->uzd_nitems; 527 zone->uz_bkt_count += bucket->ub_cnt; 528 } 529 530 static void 531 zone_log_warning(uma_zone_t zone) 532 { 533 static const struct timeval warninterval = { 300, 0 }; 534 535 if (!zone_warnings || zone->uz_warning == NULL) 536 return; 537 538 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 539 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 540 } 541 542 static inline void 543 zone_maxaction(uma_zone_t zone) 544 { 545 546 if (zone->uz_maxaction.ta_func != NULL) 547 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 548 } 549 550 /* 551 * Routine called by timeout which is used to fire off some time interval 552 * based calculations. (stats, hash size, etc.) 553 * 554 * Arguments: 555 * arg Unused 556 * 557 * Returns: 558 * Nothing 559 */ 560 static void 561 uma_timeout(void *unused) 562 { 563 bucket_enable(); 564 zone_foreach(zone_timeout, NULL); 565 566 /* Reschedule this event */ 567 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 568 } 569 570 /* 571 * Update the working set size estimate for the zone's bucket cache. 572 * The constants chosen here are somewhat arbitrary. With an update period of 573 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 574 * last 100s. 575 */ 576 static void 577 zone_domain_update_wss(uma_zone_domain_t zdom) 578 { 579 long wss; 580 581 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 582 wss = zdom->uzd_imax - zdom->uzd_imin; 583 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 584 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 585 } 586 587 /* 588 * Routine to perform timeout driven calculations. This expands the 589 * hashes and does per cpu statistics aggregation. 590 * 591 * Returns nothing. 592 */ 593 static void 594 zone_timeout(uma_zone_t zone, void *unused) 595 { 596 uma_keg_t keg; 597 u_int slabs; 598 599 if ((zone->uz_flags & UMA_ZONE_HASH) == 0) 600 goto update_wss; 601 602 keg = zone->uz_keg; 603 KEG_LOCK(keg); 604 /* 605 * Expand the keg hash table. 606 * 607 * This is done if the number of slabs is larger than the hash size. 608 * What I'm trying to do here is completely reduce collisions. This 609 * may be a little aggressive. Should I allow for two collisions max? 610 */ 611 if (keg->uk_flags & UMA_ZONE_HASH && 612 (slabs = keg->uk_pages / keg->uk_ppera) > 613 keg->uk_hash.uh_hashsize) { 614 struct uma_hash newhash; 615 struct uma_hash oldhash; 616 int ret; 617 618 /* 619 * This is so involved because allocating and freeing 620 * while the keg lock is held will lead to deadlock. 621 * I have to do everything in stages and check for 622 * races. 623 */ 624 KEG_UNLOCK(keg); 625 ret = hash_alloc(&newhash, 1 << fls(slabs)); 626 KEG_LOCK(keg); 627 if (ret) { 628 if (hash_expand(&keg->uk_hash, &newhash)) { 629 oldhash = keg->uk_hash; 630 keg->uk_hash = newhash; 631 } else 632 oldhash = newhash; 633 634 KEG_UNLOCK(keg); 635 hash_free(&oldhash); 636 return; 637 } 638 } 639 KEG_UNLOCK(keg); 640 641 update_wss: 642 ZONE_LOCK(zone); 643 for (int i = 0; i < vm_ndomains; i++) 644 zone_domain_update_wss(&zone->uz_domain[i]); 645 ZONE_UNLOCK(zone); 646 } 647 648 /* 649 * Allocate and zero fill the next sized hash table from the appropriate 650 * backing store. 651 * 652 * Arguments: 653 * hash A new hash structure with the old hash size in uh_hashsize 654 * 655 * Returns: 656 * 1 on success and 0 on failure. 657 */ 658 static int 659 hash_alloc(struct uma_hash *hash, u_int size) 660 { 661 size_t alloc; 662 663 KASSERT(powerof2(size), ("hash size must be power of 2")); 664 if (size > UMA_HASH_SIZE_INIT) { 665 hash->uh_hashsize = size; 666 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 667 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 668 M_UMAHASH, M_NOWAIT); 669 } else { 670 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 671 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 672 UMA_ANYDOMAIN, M_WAITOK); 673 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 674 } 675 if (hash->uh_slab_hash) { 676 bzero(hash->uh_slab_hash, alloc); 677 hash->uh_hashmask = hash->uh_hashsize - 1; 678 return (1); 679 } 680 681 return (0); 682 } 683 684 /* 685 * Expands the hash table for HASH zones. This is done from zone_timeout 686 * to reduce collisions. This must not be done in the regular allocation 687 * path, otherwise, we can recurse on the vm while allocating pages. 688 * 689 * Arguments: 690 * oldhash The hash you want to expand 691 * newhash The hash structure for the new table 692 * 693 * Returns: 694 * Nothing 695 * 696 * Discussion: 697 */ 698 static int 699 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 700 { 701 uma_slab_t slab; 702 u_int hval; 703 u_int idx; 704 705 if (!newhash->uh_slab_hash) 706 return (0); 707 708 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 709 return (0); 710 711 /* 712 * I need to investigate hash algorithms for resizing without a 713 * full rehash. 714 */ 715 716 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 717 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 718 slab = SLIST_FIRST(&oldhash->uh_slab_hash[idx]); 719 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[idx], us_hlink); 720 hval = UMA_HASH(newhash, slab->us_data); 721 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 722 slab, us_hlink); 723 } 724 725 return (1); 726 } 727 728 /* 729 * Free the hash bucket to the appropriate backing store. 730 * 731 * Arguments: 732 * slab_hash The hash bucket we're freeing 733 * hashsize The number of entries in that hash bucket 734 * 735 * Returns: 736 * Nothing 737 */ 738 static void 739 hash_free(struct uma_hash *hash) 740 { 741 if (hash->uh_slab_hash == NULL) 742 return; 743 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 744 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 745 else 746 free(hash->uh_slab_hash, M_UMAHASH); 747 } 748 749 /* 750 * Frees all outstanding items in a bucket 751 * 752 * Arguments: 753 * zone The zone to free to, must be unlocked. 754 * bucket The free/alloc bucket with items, cpu queue must be locked. 755 * 756 * Returns: 757 * Nothing 758 */ 759 760 static void 761 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 762 { 763 int i; 764 765 if (bucket == NULL) 766 return; 767 768 if (zone->uz_fini) 769 for (i = 0; i < bucket->ub_cnt; i++) 770 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 771 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 772 if (zone->uz_max_items > 0) { 773 ZONE_LOCK(zone); 774 zone->uz_items -= bucket->ub_cnt; 775 if (zone->uz_sleepers && zone->uz_items < zone->uz_max_items) 776 wakeup_one(zone); 777 ZONE_UNLOCK(zone); 778 } 779 bucket->ub_cnt = 0; 780 } 781 782 /* 783 * Drains the per cpu caches for a zone. 784 * 785 * NOTE: This may only be called while the zone is being turn down, and not 786 * during normal operation. This is necessary in order that we do not have 787 * to migrate CPUs to drain the per-CPU caches. 788 * 789 * Arguments: 790 * zone The zone to drain, must be unlocked. 791 * 792 * Returns: 793 * Nothing 794 */ 795 static void 796 cache_drain(uma_zone_t zone) 797 { 798 uma_cache_t cache; 799 int cpu; 800 801 /* 802 * XXX: It is safe to not lock the per-CPU caches, because we're 803 * tearing down the zone anyway. I.e., there will be no further use 804 * of the caches at this point. 805 * 806 * XXX: It would good to be able to assert that the zone is being 807 * torn down to prevent improper use of cache_drain(). 808 * 809 * XXX: We lock the zone before passing into bucket_cache_reclaim() as 810 * it is used elsewhere. Should the tear-down path be made special 811 * there in some form? 812 */ 813 CPU_FOREACH(cpu) { 814 cache = &zone->uz_cpu[cpu]; 815 bucket_drain(zone, cache->uc_allocbucket); 816 if (cache->uc_allocbucket != NULL) 817 bucket_free(zone, cache->uc_allocbucket, NULL); 818 cache->uc_allocbucket = NULL; 819 bucket_drain(zone, cache->uc_freebucket); 820 if (cache->uc_freebucket != NULL) 821 bucket_free(zone, cache->uc_freebucket, NULL); 822 cache->uc_freebucket = NULL; 823 bucket_drain(zone, cache->uc_crossbucket); 824 if (cache->uc_crossbucket != NULL) 825 bucket_free(zone, cache->uc_crossbucket, NULL); 826 cache->uc_crossbucket = NULL; 827 } 828 ZONE_LOCK(zone); 829 bucket_cache_reclaim(zone, true); 830 ZONE_UNLOCK(zone); 831 } 832 833 static void 834 cache_shrink(uma_zone_t zone, void *unused) 835 { 836 837 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 838 return; 839 840 ZONE_LOCK(zone); 841 zone->uz_bucket_size = 842 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 843 ZONE_UNLOCK(zone); 844 } 845 846 static void 847 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 848 { 849 uma_cache_t cache; 850 uma_bucket_t b1, b2, b3; 851 int domain; 852 853 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 854 return; 855 856 b1 = b2 = b3 = NULL; 857 ZONE_LOCK(zone); 858 critical_enter(); 859 if (zone->uz_flags & UMA_ZONE_NUMA) 860 domain = PCPU_GET(domain); 861 else 862 domain = 0; 863 cache = &zone->uz_cpu[curcpu]; 864 if (cache->uc_allocbucket) { 865 if (cache->uc_allocbucket->ub_cnt != 0) 866 zone_put_bucket(zone, &zone->uz_domain[domain], 867 cache->uc_allocbucket, false); 868 else 869 b1 = cache->uc_allocbucket; 870 cache->uc_allocbucket = NULL; 871 } 872 if (cache->uc_freebucket) { 873 if (cache->uc_freebucket->ub_cnt != 0) 874 zone_put_bucket(zone, &zone->uz_domain[domain], 875 cache->uc_freebucket, false); 876 else 877 b2 = cache->uc_freebucket; 878 cache->uc_freebucket = NULL; 879 } 880 b3 = cache->uc_crossbucket; 881 cache->uc_crossbucket = NULL; 882 critical_exit(); 883 ZONE_UNLOCK(zone); 884 if (b1) 885 bucket_free(zone, b1, NULL); 886 if (b2) 887 bucket_free(zone, b2, NULL); 888 if (b3) { 889 bucket_drain(zone, b3); 890 bucket_free(zone, b3, NULL); 891 } 892 } 893 894 /* 895 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 896 * This is an expensive call because it needs to bind to all CPUs 897 * one by one and enter a critical section on each of them in order 898 * to safely access their cache buckets. 899 * Zone lock must not be held on call this function. 900 */ 901 static void 902 pcpu_cache_drain_safe(uma_zone_t zone) 903 { 904 int cpu; 905 906 /* 907 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 908 */ 909 if (zone) 910 cache_shrink(zone, NULL); 911 else 912 zone_foreach(cache_shrink, NULL); 913 914 CPU_FOREACH(cpu) { 915 thread_lock(curthread); 916 sched_bind(curthread, cpu); 917 thread_unlock(curthread); 918 919 if (zone) 920 cache_drain_safe_cpu(zone, NULL); 921 else 922 zone_foreach(cache_drain_safe_cpu, NULL); 923 } 924 thread_lock(curthread); 925 sched_unbind(curthread); 926 thread_unlock(curthread); 927 } 928 929 /* 930 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 931 * requested a drain, otherwise the per-domain caches are trimmed to either 932 * estimated working set size. 933 */ 934 static void 935 bucket_cache_reclaim(uma_zone_t zone, bool drain) 936 { 937 uma_zone_domain_t zdom; 938 uma_bucket_t bucket; 939 long target, tofree; 940 int i; 941 942 for (i = 0; i < vm_ndomains; i++) { 943 zdom = &zone->uz_domain[i]; 944 945 /* 946 * If we were asked to drain the zone, we are done only once 947 * this bucket cache is empty. Otherwise, we reclaim items in 948 * excess of the zone's estimated working set size. If the 949 * difference nitems - imin is larger than the WSS estimate, 950 * then the estimate will grow at the end of this interval and 951 * we ignore the historical average. 952 */ 953 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 954 zdom->uzd_imin); 955 while (zdom->uzd_nitems > target) { 956 bucket = TAILQ_LAST(&zdom->uzd_buckets, uma_bucketlist); 957 if (bucket == NULL) 958 break; 959 tofree = bucket->ub_cnt; 960 TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); 961 zdom->uzd_nitems -= tofree; 962 963 /* 964 * Shift the bounds of the current WSS interval to avoid 965 * perturbing the estimate. 966 */ 967 zdom->uzd_imax -= lmin(zdom->uzd_imax, tofree); 968 zdom->uzd_imin -= lmin(zdom->uzd_imin, tofree); 969 970 ZONE_UNLOCK(zone); 971 bucket_drain(zone, bucket); 972 bucket_free(zone, bucket, NULL); 973 ZONE_LOCK(zone); 974 } 975 } 976 977 /* 978 * Shrink the zone bucket size to ensure that the per-CPU caches 979 * don't grow too large. 980 */ 981 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 982 zone->uz_bucket_size--; 983 } 984 985 static void 986 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 987 { 988 uint8_t *mem; 989 int i; 990 uint8_t flags; 991 992 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 993 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 994 995 mem = slab->us_data; 996 flags = slab->us_flags; 997 i = start; 998 if (keg->uk_fini != NULL) { 999 for (i--; i > -1; i--) 1000 #ifdef INVARIANTS 1001 /* 1002 * trash_fini implies that dtor was trash_dtor. trash_fini 1003 * would check that memory hasn't been modified since free, 1004 * which executed trash_dtor. 1005 * That's why we need to run uma_dbg_kskip() check here, 1006 * albeit we don't make skip check for other init/fini 1007 * invocations. 1008 */ 1009 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) || 1010 keg->uk_fini != trash_fini) 1011 #endif 1012 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 1013 keg->uk_size); 1014 } 1015 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1016 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1017 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1018 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1019 } 1020 1021 /* 1022 * Frees pages from a keg back to the system. This is done on demand from 1023 * the pageout daemon. 1024 * 1025 * Returns nothing. 1026 */ 1027 static void 1028 keg_drain(uma_keg_t keg) 1029 { 1030 struct slabhead freeslabs = { 0 }; 1031 uma_domain_t dom; 1032 uma_slab_t slab, tmp; 1033 int i; 1034 1035 /* 1036 * We don't want to take pages from statically allocated kegs at this 1037 * time 1038 */ 1039 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1040 return; 1041 1042 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 1043 keg->uk_name, keg, keg->uk_free); 1044 KEG_LOCK(keg); 1045 if (keg->uk_free == 0) 1046 goto finished; 1047 1048 for (i = 0; i < vm_ndomains; i++) { 1049 dom = &keg->uk_domain[i]; 1050 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 1051 /* We have nowhere to free these to. */ 1052 if (slab->us_flags & UMA_SLAB_BOOT) 1053 continue; 1054 1055 LIST_REMOVE(slab, us_link); 1056 keg->uk_pages -= keg->uk_ppera; 1057 keg->uk_free -= keg->uk_ipers; 1058 1059 if (keg->uk_flags & UMA_ZONE_HASH) 1060 UMA_HASH_REMOVE(&keg->uk_hash, slab, 1061 slab->us_data); 1062 1063 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 1064 } 1065 } 1066 1067 finished: 1068 KEG_UNLOCK(keg); 1069 1070 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 1071 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 1072 keg_free_slab(keg, slab, keg->uk_ipers); 1073 } 1074 } 1075 1076 static void 1077 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1078 { 1079 1080 /* 1081 * Set draining to interlock with zone_dtor() so we can release our 1082 * locks as we go. Only dtor() should do a WAITOK call since it 1083 * is the only call that knows the structure will still be available 1084 * when it wakes up. 1085 */ 1086 ZONE_LOCK(zone); 1087 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1088 if (waitok == M_NOWAIT) 1089 goto out; 1090 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 1091 } 1092 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1093 bucket_cache_reclaim(zone, drain); 1094 ZONE_UNLOCK(zone); 1095 1096 /* 1097 * The DRAINING flag protects us from being freed while 1098 * we're running. Normally the uma_rwlock would protect us but we 1099 * must be able to release and acquire the right lock for each keg. 1100 */ 1101 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1102 keg_drain(zone->uz_keg); 1103 ZONE_LOCK(zone); 1104 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1105 wakeup(zone); 1106 out: 1107 ZONE_UNLOCK(zone); 1108 } 1109 1110 static void 1111 zone_drain(uma_zone_t zone, void *unused) 1112 { 1113 1114 zone_reclaim(zone, M_NOWAIT, true); 1115 } 1116 1117 static void 1118 zone_trim(uma_zone_t zone, void *unused) 1119 { 1120 1121 zone_reclaim(zone, M_NOWAIT, false); 1122 } 1123 1124 /* 1125 * Allocate a new slab for a keg. This does not insert the slab onto a list. 1126 * If the allocation was successful, the keg lock will be held upon return, 1127 * otherwise the keg will be left unlocked. 1128 * 1129 * Arguments: 1130 * flags Wait flags for the item initialization routine 1131 * aflags Wait flags for the slab allocation 1132 * 1133 * Returns: 1134 * The slab that was allocated or NULL if there is no memory and the 1135 * caller specified M_NOWAIT. 1136 */ 1137 static uma_slab_t 1138 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1139 int aflags) 1140 { 1141 uma_alloc allocf; 1142 uma_slab_t slab; 1143 unsigned long size; 1144 uint8_t *mem; 1145 uint8_t sflags; 1146 int i; 1147 1148 KASSERT(domain >= 0 && domain < vm_ndomains, 1149 ("keg_alloc_slab: domain %d out of range", domain)); 1150 KEG_LOCK_ASSERT(keg); 1151 MPASS(zone->uz_lockptr == &keg->uk_lock); 1152 1153 allocf = keg->uk_allocf; 1154 KEG_UNLOCK(keg); 1155 1156 slab = NULL; 1157 mem = NULL; 1158 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1159 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, aflags); 1160 if (slab == NULL) 1161 goto out; 1162 } 1163 1164 /* 1165 * This reproduces the old vm_zone behavior of zero filling pages the 1166 * first time they are added to a zone. 1167 * 1168 * Malloced items are zeroed in uma_zalloc. 1169 */ 1170 1171 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1172 aflags |= M_ZERO; 1173 else 1174 aflags &= ~M_ZERO; 1175 1176 if (keg->uk_flags & UMA_ZONE_NODUMP) 1177 aflags |= M_NODUMP; 1178 1179 /* zone is passed for legacy reasons. */ 1180 size = keg->uk_ppera * PAGE_SIZE; 1181 mem = allocf(zone, size, domain, &sflags, aflags); 1182 if (mem == NULL) { 1183 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1184 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1185 slab = NULL; 1186 goto out; 1187 } 1188 uma_total_inc(size); 1189 1190 /* Point the slab into the allocated memory */ 1191 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1192 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1193 1194 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1195 for (i = 0; i < keg->uk_ppera; i++) 1196 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1197 zone, slab); 1198 1199 slab->us_data = mem; 1200 slab->us_freecount = keg->uk_ipers; 1201 slab->us_flags = sflags; 1202 slab->us_domain = domain; 1203 BIT_FILL(keg->uk_ipers, &slab->us_free); 1204 #ifdef INVARIANTS 1205 BIT_ZERO(SLAB_MAX_SETSIZE, &slab->us_debugfree); 1206 #endif 1207 1208 if (keg->uk_init != NULL) { 1209 for (i = 0; i < keg->uk_ipers; i++) 1210 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1211 keg->uk_size, flags) != 0) 1212 break; 1213 if (i != keg->uk_ipers) { 1214 keg_free_slab(keg, slab, i); 1215 slab = NULL; 1216 goto out; 1217 } 1218 } 1219 KEG_LOCK(keg); 1220 1221 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1222 slab, keg->uk_name, keg); 1223 1224 if (keg->uk_flags & UMA_ZONE_HASH) 1225 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1226 1227 keg->uk_pages += keg->uk_ppera; 1228 keg->uk_free += keg->uk_ipers; 1229 1230 out: 1231 return (slab); 1232 } 1233 1234 /* 1235 * This function is intended to be used early on in place of page_alloc() so 1236 * that we may use the boot time page cache to satisfy allocations before 1237 * the VM is ready. 1238 */ 1239 static void * 1240 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1241 int wait) 1242 { 1243 uma_keg_t keg; 1244 void *mem; 1245 int pages; 1246 1247 keg = zone->uz_keg; 1248 /* 1249 * If we are in BOOT_BUCKETS or higher, than switch to real 1250 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1251 */ 1252 switch (booted) { 1253 case BOOT_COLD: 1254 case BOOT_STRAPPED: 1255 break; 1256 case BOOT_PAGEALLOC: 1257 if (keg->uk_ppera > 1) 1258 break; 1259 case BOOT_BUCKETS: 1260 case BOOT_RUNNING: 1261 #ifdef UMA_MD_SMALL_ALLOC 1262 keg->uk_allocf = (keg->uk_ppera > 1) ? 1263 page_alloc : uma_small_alloc; 1264 #else 1265 keg->uk_allocf = page_alloc; 1266 #endif 1267 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1268 } 1269 1270 /* 1271 * Check our small startup cache to see if it has pages remaining. 1272 */ 1273 pages = howmany(bytes, PAGE_SIZE); 1274 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1275 if (pages > boot_pages) 1276 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1277 #ifdef DIAGNOSTIC 1278 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1279 boot_pages); 1280 #endif 1281 mem = bootmem; 1282 boot_pages -= pages; 1283 bootmem += pages * PAGE_SIZE; 1284 *pflag = UMA_SLAB_BOOT; 1285 1286 return (mem); 1287 } 1288 1289 /* 1290 * Allocates a number of pages from the system 1291 * 1292 * Arguments: 1293 * bytes The number of bytes requested 1294 * wait Shall we wait? 1295 * 1296 * Returns: 1297 * A pointer to the alloced memory or possibly 1298 * NULL if M_NOWAIT is set. 1299 */ 1300 static void * 1301 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1302 int wait) 1303 { 1304 void *p; /* Returned page */ 1305 1306 *pflag = UMA_SLAB_KERNEL; 1307 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1308 1309 return (p); 1310 } 1311 1312 static void * 1313 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1314 int wait) 1315 { 1316 struct pglist alloctail; 1317 vm_offset_t addr, zkva; 1318 int cpu, flags; 1319 vm_page_t p, p_next; 1320 #ifdef NUMA 1321 struct pcpu *pc; 1322 #endif 1323 1324 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1325 1326 TAILQ_INIT(&alloctail); 1327 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1328 malloc2vm_flags(wait); 1329 *pflag = UMA_SLAB_KERNEL; 1330 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1331 if (CPU_ABSENT(cpu)) { 1332 p = vm_page_alloc(NULL, 0, flags); 1333 } else { 1334 #ifndef NUMA 1335 p = vm_page_alloc(NULL, 0, flags); 1336 #else 1337 pc = pcpu_find(cpu); 1338 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); 1339 if (__predict_false(p == NULL)) 1340 p = vm_page_alloc(NULL, 0, flags); 1341 #endif 1342 } 1343 if (__predict_false(p == NULL)) 1344 goto fail; 1345 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1346 } 1347 if ((addr = kva_alloc(bytes)) == 0) 1348 goto fail; 1349 zkva = addr; 1350 TAILQ_FOREACH(p, &alloctail, listq) { 1351 pmap_qenter(zkva, &p, 1); 1352 zkva += PAGE_SIZE; 1353 } 1354 return ((void*)addr); 1355 fail: 1356 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1357 vm_page_unwire_noq(p); 1358 vm_page_free(p); 1359 } 1360 return (NULL); 1361 } 1362 1363 /* 1364 * Allocates a number of pages from within an object 1365 * 1366 * Arguments: 1367 * bytes The number of bytes requested 1368 * wait Shall we wait? 1369 * 1370 * Returns: 1371 * A pointer to the alloced memory or possibly 1372 * NULL if M_NOWAIT is set. 1373 */ 1374 static void * 1375 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1376 int wait) 1377 { 1378 TAILQ_HEAD(, vm_page) alloctail; 1379 u_long npages; 1380 vm_offset_t retkva, zkva; 1381 vm_page_t p, p_next; 1382 uma_keg_t keg; 1383 1384 TAILQ_INIT(&alloctail); 1385 keg = zone->uz_keg; 1386 1387 npages = howmany(bytes, PAGE_SIZE); 1388 while (npages > 0) { 1389 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1390 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1391 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1392 VM_ALLOC_NOWAIT)); 1393 if (p != NULL) { 1394 /* 1395 * Since the page does not belong to an object, its 1396 * listq is unused. 1397 */ 1398 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1399 npages--; 1400 continue; 1401 } 1402 /* 1403 * Page allocation failed, free intermediate pages and 1404 * exit. 1405 */ 1406 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1407 vm_page_unwire_noq(p); 1408 vm_page_free(p); 1409 } 1410 return (NULL); 1411 } 1412 *flags = UMA_SLAB_PRIV; 1413 zkva = keg->uk_kva + 1414 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1415 retkva = zkva; 1416 TAILQ_FOREACH(p, &alloctail, listq) { 1417 pmap_qenter(zkva, &p, 1); 1418 zkva += PAGE_SIZE; 1419 } 1420 1421 return ((void *)retkva); 1422 } 1423 1424 /* 1425 * Frees a number of pages to the system 1426 * 1427 * Arguments: 1428 * mem A pointer to the memory to be freed 1429 * size The size of the memory being freed 1430 * flags The original p->us_flags field 1431 * 1432 * Returns: 1433 * Nothing 1434 */ 1435 static void 1436 page_free(void *mem, vm_size_t size, uint8_t flags) 1437 { 1438 1439 if ((flags & UMA_SLAB_KERNEL) == 0) 1440 panic("UMA: page_free used with invalid flags %x", flags); 1441 1442 kmem_free((vm_offset_t)mem, size); 1443 } 1444 1445 /* 1446 * Frees pcpu zone allocations 1447 * 1448 * Arguments: 1449 * mem A pointer to the memory to be freed 1450 * size The size of the memory being freed 1451 * flags The original p->us_flags field 1452 * 1453 * Returns: 1454 * Nothing 1455 */ 1456 static void 1457 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1458 { 1459 vm_offset_t sva, curva; 1460 vm_paddr_t paddr; 1461 vm_page_t m; 1462 1463 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1464 sva = (vm_offset_t)mem; 1465 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1466 paddr = pmap_kextract(curva); 1467 m = PHYS_TO_VM_PAGE(paddr); 1468 vm_page_unwire_noq(m); 1469 vm_page_free(m); 1470 } 1471 pmap_qremove(sva, size >> PAGE_SHIFT); 1472 kva_free(sva, size); 1473 } 1474 1475 1476 /* 1477 * Zero fill initializer 1478 * 1479 * Arguments/Returns follow uma_init specifications 1480 */ 1481 static int 1482 zero_init(void *mem, int size, int flags) 1483 { 1484 bzero(mem, size); 1485 return (0); 1486 } 1487 1488 /* 1489 * Actual size of embedded struct slab (!OFFPAGE). 1490 */ 1491 size_t 1492 slab_sizeof(int nitems) 1493 { 1494 size_t s; 1495 1496 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems); 1497 return (roundup(s, UMA_ALIGN_PTR + 1)); 1498 } 1499 1500 /* 1501 * Size of memory for embedded slabs (!OFFPAGE). 1502 */ 1503 size_t 1504 slab_space(int nitems) 1505 { 1506 return (UMA_SLAB_SIZE - slab_sizeof(nitems)); 1507 } 1508 1509 /* 1510 * Compute the number of items that will fit in an embedded (!OFFPAGE) slab 1511 * with a given size and alignment. 1512 */ 1513 int 1514 slab_ipers(size_t size, int align) 1515 { 1516 int rsize; 1517 int nitems; 1518 1519 /* 1520 * Compute the ideal number of items that will fit in a page and 1521 * then compute the actual number based on a bitset nitems wide. 1522 */ 1523 rsize = roundup(size, align + 1); 1524 nitems = UMA_SLAB_SIZE / rsize; 1525 return (slab_space(nitems) / rsize); 1526 } 1527 1528 /* 1529 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1530 * 1531 * Arguments 1532 * keg The zone we should initialize 1533 * 1534 * Returns 1535 * Nothing 1536 */ 1537 static void 1538 keg_small_init(uma_keg_t keg) 1539 { 1540 u_int rsize; 1541 u_int memused; 1542 u_int wastedspace; 1543 u_int shsize; 1544 u_int slabsize; 1545 1546 if (keg->uk_flags & UMA_ZONE_PCPU) { 1547 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1548 1549 slabsize = UMA_PCPU_ALLOC_SIZE; 1550 keg->uk_ppera = ncpus; 1551 } else { 1552 slabsize = UMA_SLAB_SIZE; 1553 keg->uk_ppera = 1; 1554 } 1555 1556 /* 1557 * Calculate the size of each allocation (rsize) according to 1558 * alignment. If the requested size is smaller than we have 1559 * allocation bits for we round it up. 1560 */ 1561 rsize = keg->uk_size; 1562 if (rsize < slabsize / SLAB_MAX_SETSIZE) 1563 rsize = slabsize / SLAB_MAX_SETSIZE; 1564 if (rsize & keg->uk_align) 1565 rsize = roundup(rsize, keg->uk_align + 1); 1566 keg->uk_rsize = rsize; 1567 1568 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1569 keg->uk_rsize < UMA_PCPU_ALLOC_SIZE, 1570 ("%s: size %u too large", __func__, keg->uk_rsize)); 1571 1572 /* 1573 * Use a pessimistic bit count for shsize. It may be possible to 1574 * squeeze one more item in for very particular sizes if we were 1575 * to loop and reduce the bitsize if there is waste. 1576 */ 1577 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1578 shsize = 0; 1579 else 1580 shsize = slab_sizeof(slabsize / rsize); 1581 1582 if (rsize <= slabsize - shsize) 1583 keg->uk_ipers = (slabsize - shsize) / rsize; 1584 else { 1585 /* Handle special case when we have 1 item per slab, so 1586 * alignment requirement can be relaxed. */ 1587 KASSERT(keg->uk_size <= slabsize - shsize, 1588 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1589 keg->uk_ipers = 1; 1590 } 1591 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 1592 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1593 1594 memused = keg->uk_ipers * rsize + shsize; 1595 wastedspace = slabsize - memused; 1596 1597 /* 1598 * We can't do OFFPAGE if we're internal or if we've been 1599 * asked to not go to the VM for buckets. If we do this we 1600 * may end up going to the VM for slabs which we do not 1601 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1602 * of UMA_ZONE_VM, which clearly forbids it. 1603 */ 1604 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1605 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1606 return; 1607 1608 /* 1609 * See if using an OFFPAGE slab will limit our waste. Only do 1610 * this if it permits more items per-slab. 1611 * 1612 * XXX We could try growing slabsize to limit max waste as well. 1613 * Historically this was not done because the VM could not 1614 * efficiently handle contiguous allocations. 1615 */ 1616 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1617 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1618 keg->uk_ipers = slabsize / keg->uk_rsize; 1619 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 1620 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1621 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1622 "keg: %s(%p), calculated wastedspace = %d, " 1623 "maximum wasted space allowed = %d, " 1624 "calculated ipers = %d, " 1625 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1626 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1627 slabsize - keg->uk_ipers * keg->uk_rsize); 1628 /* 1629 * If we had access to memory to embed a slab header we 1630 * also have a page structure to use vtoslab() instead of 1631 * hash to find slabs. If the zone was explicitly created 1632 * OFFPAGE we can't necessarily touch the memory. 1633 */ 1634 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) 1635 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1636 } 1637 1638 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1639 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1640 keg->uk_flags |= UMA_ZONE_HASH; 1641 } 1642 1643 /* 1644 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1645 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1646 * more complicated. 1647 * 1648 * Arguments 1649 * keg The keg we should initialize 1650 * 1651 * Returns 1652 * Nothing 1653 */ 1654 static void 1655 keg_large_init(uma_keg_t keg) 1656 { 1657 1658 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1659 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1660 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1661 1662 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1663 keg->uk_ipers = 1; 1664 keg->uk_rsize = keg->uk_size; 1665 1666 /* Check whether we have enough space to not do OFFPAGE. */ 1667 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0 && 1668 PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < 1669 slab_sizeof(SLAB_MIN_SETSIZE)) { 1670 /* 1671 * We can't do OFFPAGE if we're internal, in which case 1672 * we need an extra page per allocation to contain the 1673 * slab header. 1674 */ 1675 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1676 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1677 else 1678 keg->uk_ppera++; 1679 } 1680 1681 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1682 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1683 keg->uk_flags |= UMA_ZONE_HASH; 1684 } 1685 1686 static void 1687 keg_cachespread_init(uma_keg_t keg) 1688 { 1689 int alignsize; 1690 int trailer; 1691 int pages; 1692 int rsize; 1693 1694 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1695 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1696 1697 alignsize = keg->uk_align + 1; 1698 rsize = keg->uk_size; 1699 /* 1700 * We want one item to start on every align boundary in a page. To 1701 * do this we will span pages. We will also extend the item by the 1702 * size of align if it is an even multiple of align. Otherwise, it 1703 * would fall on the same boundary every time. 1704 */ 1705 if (rsize & keg->uk_align) 1706 rsize = (rsize & ~keg->uk_align) + alignsize; 1707 if ((rsize & alignsize) == 0) 1708 rsize += alignsize; 1709 trailer = rsize - keg->uk_size; 1710 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1711 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1712 keg->uk_rsize = rsize; 1713 keg->uk_ppera = pages; 1714 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1715 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1716 KASSERT(keg->uk_ipers <= SLAB_MAX_SETSIZE, 1717 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1718 keg->uk_ipers)); 1719 } 1720 1721 /* 1722 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1723 * the keg onto the global keg list. 1724 * 1725 * Arguments/Returns follow uma_ctor specifications 1726 * udata Actually uma_kctor_args 1727 */ 1728 static int 1729 keg_ctor(void *mem, int size, void *udata, int flags) 1730 { 1731 struct uma_kctor_args *arg = udata; 1732 uma_keg_t keg = mem; 1733 uma_zone_t zone; 1734 1735 bzero(keg, size); 1736 keg->uk_size = arg->size; 1737 keg->uk_init = arg->uminit; 1738 keg->uk_fini = arg->fini; 1739 keg->uk_align = arg->align; 1740 keg->uk_free = 0; 1741 keg->uk_reserve = 0; 1742 keg->uk_pages = 0; 1743 keg->uk_flags = arg->flags; 1744 keg->uk_slabzone = NULL; 1745 1746 /* 1747 * We use a global round-robin policy by default. Zones with 1748 * UMA_ZONE_NUMA set will use first-touch instead, in which case the 1749 * iterator is never run. 1750 */ 1751 keg->uk_dr.dr_policy = DOMAINSET_RR(); 1752 keg->uk_dr.dr_iter = 0; 1753 1754 /* 1755 * The master zone is passed to us at keg-creation time. 1756 */ 1757 zone = arg->zone; 1758 keg->uk_name = zone->uz_name; 1759 1760 if (arg->flags & UMA_ZONE_VM) 1761 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1762 1763 if (arg->flags & UMA_ZONE_ZINIT) 1764 keg->uk_init = zero_init; 1765 1766 if (arg->flags & UMA_ZONE_MALLOC) 1767 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1768 1769 if (arg->flags & UMA_ZONE_PCPU) 1770 #ifdef SMP 1771 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1772 #else 1773 keg->uk_flags &= ~UMA_ZONE_PCPU; 1774 #endif 1775 1776 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1777 keg_cachespread_init(keg); 1778 } else { 1779 if (keg->uk_size > slab_space(SLAB_MIN_SETSIZE)) 1780 keg_large_init(keg); 1781 else 1782 keg_small_init(keg); 1783 } 1784 1785 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1786 keg->uk_slabzone = slabzone; 1787 1788 /* 1789 * If we haven't booted yet we need allocations to go through the 1790 * startup cache until the vm is ready. 1791 */ 1792 if (booted < BOOT_PAGEALLOC) 1793 keg->uk_allocf = startup_alloc; 1794 #ifdef UMA_MD_SMALL_ALLOC 1795 else if (keg->uk_ppera == 1) 1796 keg->uk_allocf = uma_small_alloc; 1797 #endif 1798 else if (keg->uk_flags & UMA_ZONE_PCPU) 1799 keg->uk_allocf = pcpu_page_alloc; 1800 else 1801 keg->uk_allocf = page_alloc; 1802 #ifdef UMA_MD_SMALL_ALLOC 1803 if (keg->uk_ppera == 1) 1804 keg->uk_freef = uma_small_free; 1805 else 1806 #endif 1807 if (keg->uk_flags & UMA_ZONE_PCPU) 1808 keg->uk_freef = pcpu_page_free; 1809 else 1810 keg->uk_freef = page_free; 1811 1812 /* 1813 * Initialize keg's lock 1814 */ 1815 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1816 1817 /* 1818 * If we're putting the slab header in the actual page we need to 1819 * figure out where in each page it goes. See slab_sizeof 1820 * definition. 1821 */ 1822 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1823 size_t shsize; 1824 1825 shsize = slab_sizeof(keg->uk_ipers); 1826 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 1827 /* 1828 * The only way the following is possible is if with our 1829 * UMA_ALIGN_PTR adjustments we are now bigger than 1830 * UMA_SLAB_SIZE. I haven't checked whether this is 1831 * mathematically possible for all cases, so we make 1832 * sure here anyway. 1833 */ 1834 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 1835 ("zone %s ipers %d rsize %d size %d slab won't fit", 1836 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 1837 } 1838 1839 if (keg->uk_flags & UMA_ZONE_HASH) 1840 hash_alloc(&keg->uk_hash, 0); 1841 1842 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1843 keg, zone->uz_name, zone, 1844 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1845 keg->uk_free); 1846 1847 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1848 1849 rw_wlock(&uma_rwlock); 1850 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1851 rw_wunlock(&uma_rwlock); 1852 return (0); 1853 } 1854 1855 static void 1856 zone_alloc_counters(uma_zone_t zone, void *unused) 1857 { 1858 1859 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 1860 zone->uz_frees = counter_u64_alloc(M_WAITOK); 1861 zone->uz_fails = counter_u64_alloc(M_WAITOK); 1862 } 1863 1864 #define UMA_MAX_DUP 999 1865 static void 1866 zone_alloc_sysctl(uma_zone_t zone, void *unused) 1867 { 1868 uma_zone_domain_t zdom; 1869 uma_keg_t keg; 1870 struct sysctl_oid *oid, *domainoid; 1871 int domains, i; 1872 static const char *nokeg = "cache zone"; 1873 char *c; 1874 1875 /* 1876 * Make a sysctl safe copy of the zone name by removing 1877 * any special characters and handling dups by appending 1878 * an index. 1879 */ 1880 if (zone->uz_namecnt != 0) { 1881 if (zone->uz_namecnt > UMA_MAX_DUP) 1882 zone->uz_namecnt = UMA_MAX_DUP; 1883 zone->uz_ctlname = malloc(strlen(zone->uz_name) + 1884 sizeof(__XSTRING(UMA_MAX_DUP)) + 1 , M_UMA, M_WAITOK); 1885 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 1886 zone->uz_namecnt); 1887 } else 1888 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 1889 for (c = zone->uz_ctlname; *c != '\0'; c++) 1890 if (strchr("./\\ -", *c) != NULL) 1891 *c = '_'; 1892 1893 /* 1894 * Basic parameters at the root. 1895 */ 1896 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 1897 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD, NULL, ""); 1898 oid = zone->uz_oid; 1899 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1900 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 1901 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1902 "flags", CTLFLAG_RD, &zone->uz_flags, 0, 1903 "Allocator configuration flags"); 1904 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1905 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 1906 "Desired per-cpu cache size"); 1907 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1908 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 1909 "Maximum allowed per-cpu cache size"); 1910 1911 /* 1912 * keg if present. 1913 */ 1914 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 1915 "keg", CTLFLAG_RD, NULL, ""); 1916 keg = zone->uz_keg; 1917 if ((zone->uz_flags & UMA_ZFLAG_CACHEONLY) == 0) { 1918 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1919 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 1920 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1921 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 1922 "Real object size with alignment"); 1923 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1924 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 1925 "pages per-slab allocation"); 1926 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1927 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 1928 "items available per-slab"); 1929 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1930 "align", CTLFLAG_RD, &keg->uk_align, 0, 1931 "item alignment mask"); 1932 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1933 "pages", CTLFLAG_RD, &keg->uk_pages, 0, 1934 "Total pages currently allocated from VM"); 1935 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1936 "free", CTLFLAG_RD, &keg->uk_free, 0, 1937 "items free in the slab layer"); 1938 } else 1939 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1940 "name", CTLFLAG_RD, nokeg, "Keg name"); 1941 1942 /* 1943 * Information about zone limits. 1944 */ 1945 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 1946 "limit", CTLFLAG_RD, NULL, ""); 1947 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1948 "items", CTLFLAG_RD, &zone->uz_items, 0, 1949 "current number of cached items"); 1950 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1951 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 1952 "Maximum number of cached items"); 1953 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1954 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 1955 "Number of threads sleeping at limit"); 1956 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1957 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 1958 "Total zone limit sleeps"); 1959 1960 /* 1961 * Per-domain information. 1962 */ 1963 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 1964 domains = vm_ndomains; 1965 else 1966 domains = 1; 1967 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 1968 OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); 1969 for (i = 0; i < domains; i++) { 1970 zdom = &zone->uz_domain[i]; 1971 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 1972 OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, NULL, ""); 1973 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1974 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 1975 "number of items in this domain"); 1976 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1977 "imax", CTLFLAG_RD, &zdom->uzd_imax, 1978 "maximum item count in this period"); 1979 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1980 "imin", CTLFLAG_RD, &zdom->uzd_imin, 1981 "minimum item count in this period"); 1982 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1983 "wss", CTLFLAG_RD, &zdom->uzd_wss, 1984 "Working set size"); 1985 } 1986 1987 /* 1988 * General statistics. 1989 */ 1990 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 1991 "stats", CTLFLAG_RD, NULL, ""); 1992 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1993 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 1994 zone, 1, sysctl_handle_uma_zone_cur, "I", 1995 "Current number of allocated items"); 1996 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 1997 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 1998 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 1999 "Total allocation calls"); 2000 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2001 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2002 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2003 "Total free calls"); 2004 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2005 "fails", CTLFLAG_RD, &zone->uz_fails, 2006 "Number of allocation failures"); 2007 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2008 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 0, 2009 "Free calls from the wrong domain"); 2010 } 2011 2012 struct uma_zone_count { 2013 const char *name; 2014 int count; 2015 }; 2016 2017 static void 2018 zone_count(uma_zone_t zone, void *arg) 2019 { 2020 struct uma_zone_count *cnt; 2021 2022 cnt = arg; 2023 if (strcmp(zone->uz_name, cnt->name) == 0) 2024 cnt->count++; 2025 } 2026 2027 /* 2028 * Zone header ctor. This initializes all fields, locks, etc. 2029 * 2030 * Arguments/Returns follow uma_ctor specifications 2031 * udata Actually uma_zctor_args 2032 */ 2033 static int 2034 zone_ctor(void *mem, int size, void *udata, int flags) 2035 { 2036 struct uma_zone_count cnt; 2037 struct uma_zctor_args *arg = udata; 2038 uma_zone_t zone = mem; 2039 uma_zone_t z; 2040 uma_keg_t keg; 2041 int i; 2042 2043 bzero(zone, size); 2044 zone->uz_name = arg->name; 2045 zone->uz_ctor = arg->ctor; 2046 zone->uz_dtor = arg->dtor; 2047 zone->uz_init = NULL; 2048 zone->uz_fini = NULL; 2049 zone->uz_sleeps = 0; 2050 zone->uz_xdomain = 0; 2051 zone->uz_bucket_size = 0; 2052 zone->uz_bucket_size_min = 0; 2053 zone->uz_bucket_size_max = BUCKET_MAX; 2054 zone->uz_flags = 0; 2055 zone->uz_warning = NULL; 2056 /* The domain structures follow the cpu structures. */ 2057 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 2058 zone->uz_bkt_max = ULONG_MAX; 2059 timevalclear(&zone->uz_ratecheck); 2060 2061 /* Count the number of duplicate names. */ 2062 cnt.name = arg->name; 2063 cnt.count = 0; 2064 zone_foreach(zone_count, &cnt); 2065 zone->uz_namecnt = cnt.count; 2066 2067 for (i = 0; i < vm_ndomains; i++) 2068 TAILQ_INIT(&zone->uz_domain[i].uzd_buckets); 2069 2070 #ifdef INVARIANTS 2071 if (arg->uminit == trash_init && arg->fini == trash_fini) 2072 zone->uz_flags |= UMA_ZFLAG_TRASH; 2073 #endif 2074 2075 /* 2076 * This is a pure cache zone, no kegs. 2077 */ 2078 if (arg->import) { 2079 if (arg->flags & UMA_ZONE_VM) 2080 arg->flags |= UMA_ZFLAG_CACHEONLY; 2081 zone->uz_flags = arg->flags; 2082 zone->uz_size = arg->size; 2083 zone->uz_import = arg->import; 2084 zone->uz_release = arg->release; 2085 zone->uz_arg = arg->arg; 2086 zone->uz_lockptr = &zone->uz_lock; 2087 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 2088 rw_wlock(&uma_rwlock); 2089 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2090 rw_wunlock(&uma_rwlock); 2091 goto out; 2092 } 2093 2094 /* 2095 * Use the regular zone/keg/slab allocator. 2096 */ 2097 zone->uz_import = zone_import; 2098 zone->uz_release = zone_release; 2099 zone->uz_arg = zone; 2100 keg = arg->keg; 2101 2102 if (arg->flags & UMA_ZONE_SECONDARY) { 2103 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2104 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2105 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2106 zone->uz_init = arg->uminit; 2107 zone->uz_fini = arg->fini; 2108 zone->uz_lockptr = &keg->uk_lock; 2109 zone->uz_flags |= UMA_ZONE_SECONDARY; 2110 rw_wlock(&uma_rwlock); 2111 ZONE_LOCK(zone); 2112 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2113 if (LIST_NEXT(z, uz_link) == NULL) { 2114 LIST_INSERT_AFTER(z, zone, uz_link); 2115 break; 2116 } 2117 } 2118 ZONE_UNLOCK(zone); 2119 rw_wunlock(&uma_rwlock); 2120 } else if (keg == NULL) { 2121 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2122 arg->align, arg->flags)) == NULL) 2123 return (ENOMEM); 2124 } else { 2125 struct uma_kctor_args karg; 2126 int error; 2127 2128 /* We should only be here from uma_startup() */ 2129 karg.size = arg->size; 2130 karg.uminit = arg->uminit; 2131 karg.fini = arg->fini; 2132 karg.align = arg->align; 2133 karg.flags = arg->flags; 2134 karg.zone = zone; 2135 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2136 flags); 2137 if (error) 2138 return (error); 2139 } 2140 2141 /* Inherit properties from the keg. */ 2142 zone->uz_keg = keg; 2143 zone->uz_size = keg->uk_size; 2144 zone->uz_flags |= (keg->uk_flags & 2145 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2146 2147 out: 2148 if (__predict_true(booted == BOOT_RUNNING)) { 2149 zone_alloc_counters(zone, NULL); 2150 zone_alloc_sysctl(zone, NULL); 2151 } else { 2152 zone->uz_allocs = EARLY_COUNTER; 2153 zone->uz_frees = EARLY_COUNTER; 2154 zone->uz_fails = EARLY_COUNTER; 2155 } 2156 2157 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2158 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2159 ("Invalid zone flag combination")); 2160 if (arg->flags & UMA_ZFLAG_INTERNAL) 2161 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2162 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2163 zone->uz_bucket_size = BUCKET_MAX; 2164 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2165 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2166 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2167 zone->uz_bucket_size = 0; 2168 else 2169 zone->uz_bucket_size = bucket_select(zone->uz_size); 2170 zone->uz_bucket_size_min = zone->uz_bucket_size; 2171 2172 return (0); 2173 } 2174 2175 /* 2176 * Keg header dtor. This frees all data, destroys locks, frees the hash 2177 * table and removes the keg from the global list. 2178 * 2179 * Arguments/Returns follow uma_dtor specifications 2180 * udata unused 2181 */ 2182 static void 2183 keg_dtor(void *arg, int size, void *udata) 2184 { 2185 uma_keg_t keg; 2186 2187 keg = (uma_keg_t)arg; 2188 KEG_LOCK(keg); 2189 if (keg->uk_free != 0) { 2190 printf("Freed UMA keg (%s) was not empty (%d items). " 2191 " Lost %d pages of memory.\n", 2192 keg->uk_name ? keg->uk_name : "", 2193 keg->uk_free, keg->uk_pages); 2194 } 2195 KEG_UNLOCK(keg); 2196 2197 hash_free(&keg->uk_hash); 2198 2199 KEG_LOCK_FINI(keg); 2200 } 2201 2202 /* 2203 * Zone header dtor. 2204 * 2205 * Arguments/Returns follow uma_dtor specifications 2206 * udata unused 2207 */ 2208 static void 2209 zone_dtor(void *arg, int size, void *udata) 2210 { 2211 uma_zone_t zone; 2212 uma_keg_t keg; 2213 2214 zone = (uma_zone_t)arg; 2215 2216 sysctl_remove_oid(zone->uz_oid, 1, 1); 2217 2218 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2219 cache_drain(zone); 2220 2221 rw_wlock(&uma_rwlock); 2222 LIST_REMOVE(zone, uz_link); 2223 rw_wunlock(&uma_rwlock); 2224 /* 2225 * XXX there are some races here where 2226 * the zone can be drained but zone lock 2227 * released and then refilled before we 2228 * remove it... we dont care for now 2229 */ 2230 zone_reclaim(zone, M_WAITOK, true); 2231 /* 2232 * We only destroy kegs from non secondary/non cache zones. 2233 */ 2234 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2235 keg = zone->uz_keg; 2236 rw_wlock(&uma_rwlock); 2237 LIST_REMOVE(keg, uk_link); 2238 rw_wunlock(&uma_rwlock); 2239 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2240 } 2241 counter_u64_free(zone->uz_allocs); 2242 counter_u64_free(zone->uz_frees); 2243 counter_u64_free(zone->uz_fails); 2244 free(zone->uz_ctlname, M_UMA); 2245 if (zone->uz_lockptr == &zone->uz_lock) 2246 ZONE_LOCK_FINI(zone); 2247 } 2248 2249 /* 2250 * Traverses every zone in the system and calls a callback 2251 * 2252 * Arguments: 2253 * zfunc A pointer to a function which accepts a zone 2254 * as an argument. 2255 * 2256 * Returns: 2257 * Nothing 2258 */ 2259 static void 2260 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2261 { 2262 uma_keg_t keg; 2263 uma_zone_t zone; 2264 2265 /* 2266 * Before BOOT_RUNNING we are guaranteed to be single 2267 * threaded, so locking isn't needed. Startup functions 2268 * are allowed to use M_WAITOK. 2269 */ 2270 if (__predict_true(booted == BOOT_RUNNING)) 2271 rw_rlock(&uma_rwlock); 2272 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2273 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2274 zfunc(zone, arg); 2275 } 2276 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2277 zfunc(zone, arg); 2278 if (__predict_true(booted == BOOT_RUNNING)) 2279 rw_runlock(&uma_rwlock); 2280 } 2281 2282 /* 2283 * Count how many pages do we need to bootstrap. VM supplies 2284 * its need in early zones in the argument, we add up our zones, 2285 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 2286 * zone of zones and zone of kegs are accounted separately. 2287 */ 2288 #define UMA_BOOT_ZONES 11 2289 /* Zone of zones and zone of kegs have arbitrary alignment. */ 2290 #define UMA_BOOT_ALIGN 32 2291 static int zsize, ksize; 2292 int 2293 uma_startup_count(int vm_zones) 2294 { 2295 int zones, pages; 2296 size_t space, size; 2297 2298 ksize = sizeof(struct uma_keg) + 2299 (sizeof(struct uma_domain) * vm_ndomains); 2300 zsize = sizeof(struct uma_zone) + 2301 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2302 (sizeof(struct uma_zone_domain) * vm_ndomains); 2303 2304 /* 2305 * Memory for the zone of kegs and its keg, 2306 * and for zone of zones. 2307 */ 2308 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 2309 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 2310 2311 #ifdef UMA_MD_SMALL_ALLOC 2312 zones = UMA_BOOT_ZONES; 2313 #else 2314 zones = UMA_BOOT_ZONES + vm_zones; 2315 vm_zones = 0; 2316 #endif 2317 size = slab_sizeof(SLAB_MAX_SETSIZE); 2318 space = slab_space(SLAB_MAX_SETSIZE); 2319 2320 /* Memory for the rest of startup zones, UMA and VM, ... */ 2321 if (zsize > space) { 2322 /* See keg_large_init(). */ 2323 u_int ppera; 2324 2325 ppera = howmany(roundup2(zsize, UMA_BOOT_ALIGN), PAGE_SIZE); 2326 if (PAGE_SIZE * ppera - roundup2(zsize, UMA_BOOT_ALIGN) < size) 2327 ppera++; 2328 pages += (zones + vm_zones) * ppera; 2329 } else if (roundup2(zsize, UMA_BOOT_ALIGN) > space) 2330 /* See keg_small_init() special case for uk_ppera = 1. */ 2331 pages += zones; 2332 else 2333 pages += howmany(zones, 2334 space / roundup2(zsize, UMA_BOOT_ALIGN)); 2335 2336 /* ... and their kegs. Note that zone of zones allocates a keg! */ 2337 pages += howmany(zones + 1, 2338 space / roundup2(ksize, UMA_BOOT_ALIGN)); 2339 2340 return (pages); 2341 } 2342 2343 void 2344 uma_startup(void *mem, int npages) 2345 { 2346 struct uma_zctor_args args; 2347 uma_keg_t masterkeg; 2348 uintptr_t m; 2349 2350 #ifdef DIAGNOSTIC 2351 printf("Entering %s with %d boot pages configured\n", __func__, npages); 2352 #endif 2353 2354 rw_init(&uma_rwlock, "UMA lock"); 2355 2356 /* Use bootpages memory for the zone of zones and zone of kegs. */ 2357 m = (uintptr_t)mem; 2358 zones = (uma_zone_t)m; 2359 m += roundup(zsize, CACHE_LINE_SIZE); 2360 kegs = (uma_zone_t)m; 2361 m += roundup(zsize, CACHE_LINE_SIZE); 2362 masterkeg = (uma_keg_t)m; 2363 m += roundup(ksize, CACHE_LINE_SIZE); 2364 m = roundup(m, PAGE_SIZE); 2365 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 2366 mem = (void *)m; 2367 2368 /* "manually" create the initial zone */ 2369 memset(&args, 0, sizeof(args)); 2370 args.name = "UMA Kegs"; 2371 args.size = ksize; 2372 args.ctor = keg_ctor; 2373 args.dtor = keg_dtor; 2374 args.uminit = zero_init; 2375 args.fini = NULL; 2376 args.keg = masterkeg; 2377 args.align = UMA_BOOT_ALIGN - 1; 2378 args.flags = UMA_ZFLAG_INTERNAL; 2379 zone_ctor(kegs, zsize, &args, M_WAITOK); 2380 2381 bootmem = mem; 2382 boot_pages = npages; 2383 2384 args.name = "UMA Zones"; 2385 args.size = zsize; 2386 args.ctor = zone_ctor; 2387 args.dtor = zone_dtor; 2388 args.uminit = zero_init; 2389 args.fini = NULL; 2390 args.keg = NULL; 2391 args.align = UMA_BOOT_ALIGN - 1; 2392 args.flags = UMA_ZFLAG_INTERNAL; 2393 zone_ctor(zones, zsize, &args, M_WAITOK); 2394 2395 /* Now make a zone for slab headers */ 2396 slabzone = uma_zcreate("UMA Slabs", 2397 slab_sizeof(SLAB_MAX_SETSIZE), 2398 NULL, NULL, NULL, NULL, 2399 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2400 2401 hashzone = uma_zcreate("UMA Hash", 2402 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2403 NULL, NULL, NULL, NULL, 2404 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2405 2406 bucket_init(); 2407 2408 booted = BOOT_STRAPPED; 2409 } 2410 2411 void 2412 uma_startup1(void) 2413 { 2414 2415 #ifdef DIAGNOSTIC 2416 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2417 #endif 2418 booted = BOOT_PAGEALLOC; 2419 } 2420 2421 void 2422 uma_startup2(void) 2423 { 2424 2425 #ifdef DIAGNOSTIC 2426 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2427 #endif 2428 booted = BOOT_BUCKETS; 2429 sx_init(&uma_reclaim_lock, "umareclaim"); 2430 bucket_enable(); 2431 } 2432 2433 /* 2434 * Initialize our callout handle 2435 * 2436 */ 2437 static void 2438 uma_startup3(void) 2439 { 2440 2441 #ifdef INVARIANTS 2442 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2443 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2444 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2445 #endif 2446 zone_foreach(zone_alloc_counters, NULL); 2447 zone_foreach(zone_alloc_sysctl, NULL); 2448 callout_init(&uma_callout, 1); 2449 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2450 booted = BOOT_RUNNING; 2451 } 2452 2453 static uma_keg_t 2454 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2455 int align, uint32_t flags) 2456 { 2457 struct uma_kctor_args args; 2458 2459 args.size = size; 2460 args.uminit = uminit; 2461 args.fini = fini; 2462 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2463 args.flags = flags; 2464 args.zone = zone; 2465 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2466 } 2467 2468 /* Public functions */ 2469 /* See uma.h */ 2470 void 2471 uma_set_align(int align) 2472 { 2473 2474 if (align != UMA_ALIGN_CACHE) 2475 uma_align_cache = align; 2476 } 2477 2478 /* See uma.h */ 2479 uma_zone_t 2480 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2481 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2482 2483 { 2484 struct uma_zctor_args args; 2485 uma_zone_t res; 2486 bool locked; 2487 2488 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2489 align, name)); 2490 2491 /* Sets all zones to a first-touch domain policy. */ 2492 #ifdef UMA_FIRSTTOUCH 2493 flags |= UMA_ZONE_NUMA; 2494 #endif 2495 2496 /* This stuff is essential for the zone ctor */ 2497 memset(&args, 0, sizeof(args)); 2498 args.name = name; 2499 args.size = size; 2500 args.ctor = ctor; 2501 args.dtor = dtor; 2502 args.uminit = uminit; 2503 args.fini = fini; 2504 #ifdef INVARIANTS 2505 /* 2506 * Inject procedures which check for memory use after free if we are 2507 * allowed to scramble the memory while it is not allocated. This 2508 * requires that: UMA is actually able to access the memory, no init 2509 * or fini procedures, no dependency on the initial value of the 2510 * memory, and no (legitimate) use of the memory after free. Note, 2511 * the ctor and dtor do not need to be empty. 2512 * 2513 * XXX UMA_ZONE_OFFPAGE. 2514 */ 2515 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2516 uminit == NULL && fini == NULL) { 2517 args.uminit = trash_init; 2518 args.fini = trash_fini; 2519 } 2520 #endif 2521 args.align = align; 2522 args.flags = flags; 2523 args.keg = NULL; 2524 2525 if (booted < BOOT_BUCKETS) { 2526 locked = false; 2527 } else { 2528 sx_slock(&uma_reclaim_lock); 2529 locked = true; 2530 } 2531 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2532 if (locked) 2533 sx_sunlock(&uma_reclaim_lock); 2534 return (res); 2535 } 2536 2537 /* See uma.h */ 2538 uma_zone_t 2539 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2540 uma_init zinit, uma_fini zfini, uma_zone_t master) 2541 { 2542 struct uma_zctor_args args; 2543 uma_keg_t keg; 2544 uma_zone_t res; 2545 bool locked; 2546 2547 keg = master->uz_keg; 2548 memset(&args, 0, sizeof(args)); 2549 args.name = name; 2550 args.size = keg->uk_size; 2551 args.ctor = ctor; 2552 args.dtor = dtor; 2553 args.uminit = zinit; 2554 args.fini = zfini; 2555 args.align = keg->uk_align; 2556 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2557 args.keg = keg; 2558 2559 if (booted < BOOT_BUCKETS) { 2560 locked = false; 2561 } else { 2562 sx_slock(&uma_reclaim_lock); 2563 locked = true; 2564 } 2565 /* XXX Attaches only one keg of potentially many. */ 2566 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2567 if (locked) 2568 sx_sunlock(&uma_reclaim_lock); 2569 return (res); 2570 } 2571 2572 /* See uma.h */ 2573 uma_zone_t 2574 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2575 uma_init zinit, uma_fini zfini, uma_import zimport, 2576 uma_release zrelease, void *arg, int flags) 2577 { 2578 struct uma_zctor_args args; 2579 2580 memset(&args, 0, sizeof(args)); 2581 args.name = name; 2582 args.size = size; 2583 args.ctor = ctor; 2584 args.dtor = dtor; 2585 args.uminit = zinit; 2586 args.fini = zfini; 2587 args.import = zimport; 2588 args.release = zrelease; 2589 args.arg = arg; 2590 args.align = 0; 2591 args.flags = flags | UMA_ZFLAG_CACHE; 2592 2593 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2594 } 2595 2596 /* See uma.h */ 2597 void 2598 uma_zdestroy(uma_zone_t zone) 2599 { 2600 2601 sx_slock(&uma_reclaim_lock); 2602 zone_free_item(zones, zone, NULL, SKIP_NONE); 2603 sx_sunlock(&uma_reclaim_lock); 2604 } 2605 2606 void 2607 uma_zwait(uma_zone_t zone) 2608 { 2609 void *item; 2610 2611 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2612 uma_zfree(zone, item); 2613 } 2614 2615 void * 2616 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2617 { 2618 void *item; 2619 #ifdef SMP 2620 int i; 2621 2622 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2623 #endif 2624 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2625 if (item != NULL && (flags & M_ZERO)) { 2626 #ifdef SMP 2627 for (i = 0; i <= mp_maxid; i++) 2628 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2629 #else 2630 bzero(item, zone->uz_size); 2631 #endif 2632 } 2633 return (item); 2634 } 2635 2636 /* 2637 * A stub while both regular and pcpu cases are identical. 2638 */ 2639 void 2640 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2641 { 2642 2643 #ifdef SMP 2644 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2645 #endif 2646 uma_zfree_arg(zone, item, udata); 2647 } 2648 2649 static inline void * 2650 bucket_pop(uma_zone_t zone, uma_cache_t cache, uma_bucket_t bucket) 2651 { 2652 void *item; 2653 2654 bucket->ub_cnt--; 2655 item = bucket->ub_bucket[bucket->ub_cnt]; 2656 #ifdef INVARIANTS 2657 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2658 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2659 #endif 2660 cache->uc_allocs++; 2661 2662 return (item); 2663 } 2664 2665 static inline void 2666 bucket_push(uma_zone_t zone, uma_cache_t cache, uma_bucket_t bucket, 2667 void *item) 2668 { 2669 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2670 ("uma_zfree: Freeing to non free bucket index.")); 2671 bucket->ub_bucket[bucket->ub_cnt] = item; 2672 bucket->ub_cnt++; 2673 cache->uc_frees++; 2674 } 2675 2676 static void * 2677 item_ctor(uma_zone_t zone, void *udata, int flags, void *item) 2678 { 2679 #ifdef INVARIANTS 2680 bool skipdbg; 2681 2682 skipdbg = uma_dbg_zskip(zone, item); 2683 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 2684 zone->uz_ctor != trash_ctor) 2685 trash_ctor(item, zone->uz_size, udata, flags); 2686 #endif 2687 if (__predict_false(zone->uz_ctor != NULL) && 2688 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2689 counter_u64_add(zone->uz_fails, 1); 2690 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2691 return (NULL); 2692 } 2693 #ifdef INVARIANTS 2694 if (!skipdbg) 2695 uma_dbg_alloc(zone, NULL, item); 2696 #endif 2697 if (flags & M_ZERO) 2698 uma_zero_item(item, zone); 2699 2700 return (item); 2701 } 2702 2703 static inline void 2704 item_dtor(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2705 { 2706 #ifdef INVARIANTS 2707 bool skipdbg; 2708 2709 skipdbg = uma_dbg_zskip(zone, item); 2710 if (skip == SKIP_NONE && !skipdbg) { 2711 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 2712 uma_dbg_free(zone, udata, item); 2713 else 2714 uma_dbg_free(zone, NULL, item); 2715 } 2716 #endif 2717 if (skip < SKIP_DTOR) { 2718 if (zone->uz_dtor != NULL) 2719 zone->uz_dtor(item, zone->uz_size, udata); 2720 #ifdef INVARIANTS 2721 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 2722 zone->uz_dtor != trash_dtor) 2723 trash_dtor(item, zone->uz_size, udata); 2724 #endif 2725 } 2726 } 2727 2728 /* See uma.h */ 2729 void * 2730 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2731 { 2732 uma_bucket_t bucket; 2733 uma_cache_t cache; 2734 void *item; 2735 int cpu, domain; 2736 2737 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2738 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2739 2740 /* This is the fast path allocation */ 2741 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2742 curthread, zone->uz_name, zone, flags); 2743 2744 if (flags & M_WAITOK) { 2745 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2746 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2747 } 2748 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2749 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2750 ("uma_zalloc_arg: called with spinlock or critical section held")); 2751 if (zone->uz_flags & UMA_ZONE_PCPU) 2752 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2753 "with M_ZERO passed")); 2754 2755 #ifdef DEBUG_MEMGUARD 2756 if (memguard_cmp_zone(zone)) { 2757 item = memguard_alloc(zone->uz_size, flags); 2758 if (item != NULL) { 2759 if (zone->uz_init != NULL && 2760 zone->uz_init(item, zone->uz_size, flags) != 0) 2761 return (NULL); 2762 if (zone->uz_ctor != NULL && 2763 zone->uz_ctor(item, zone->uz_size, udata, 2764 flags) != 0) { 2765 counter_u64_add(zone->uz_fails, 1); 2766 zone->uz_fini(item, zone->uz_size); 2767 return (NULL); 2768 } 2769 return (item); 2770 } 2771 /* This is unfortunate but should not be fatal. */ 2772 } 2773 #endif 2774 /* 2775 * If possible, allocate from the per-CPU cache. There are two 2776 * requirements for safe access to the per-CPU cache: (1) the thread 2777 * accessing the cache must not be preempted or yield during access, 2778 * and (2) the thread must not migrate CPUs without switching which 2779 * cache it accesses. We rely on a critical section to prevent 2780 * preemption and migration. We release the critical section in 2781 * order to acquire the zone mutex if we are unable to allocate from 2782 * the current cache; when we re-acquire the critical section, we 2783 * must detect and handle migration if it has occurred. 2784 */ 2785 critical_enter(); 2786 do { 2787 cpu = curcpu; 2788 cache = &zone->uz_cpu[cpu]; 2789 bucket = cache->uc_allocbucket; 2790 if (__predict_true(bucket != NULL && bucket->ub_cnt != 0)) { 2791 item = bucket_pop(zone, cache, bucket); 2792 critical_exit(); 2793 return (item_ctor(zone, udata, flags, item)); 2794 } 2795 } while (cache_alloc(zone, cache, udata, flags)); 2796 critical_exit(); 2797 2798 /* 2799 * We can not get a bucket so try to return a single item. 2800 */ 2801 if (zone->uz_flags & UMA_ZONE_NUMA) 2802 domain = PCPU_GET(domain); 2803 else 2804 domain = UMA_ANYDOMAIN; 2805 return (zone_alloc_item_locked(zone, udata, domain, flags)); 2806 } 2807 2808 /* 2809 * Replenish an alloc bucket and possibly restore an old one. Called in 2810 * a critical section. Returns in a critical section. 2811 * 2812 * A false return value indicates failure and returns with the zone lock 2813 * held. A true return value indicates success and the caller should retry. 2814 */ 2815 static __noinline bool 2816 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 2817 { 2818 uma_zone_domain_t zdom; 2819 uma_bucket_t bucket; 2820 int cpu, domain; 2821 bool lockfail; 2822 2823 CRITICAL_ASSERT(curthread); 2824 2825 /* 2826 * If we have run out of items in our alloc bucket see 2827 * if we can switch with the free bucket. 2828 */ 2829 bucket = cache->uc_freebucket; 2830 if (bucket != NULL && bucket->ub_cnt != 0) { 2831 cache->uc_freebucket = cache->uc_allocbucket; 2832 cache->uc_allocbucket = bucket; 2833 return (true); 2834 } 2835 2836 /* 2837 * Discard any empty allocation bucket while we hold no locks. 2838 */ 2839 bucket = cache->uc_allocbucket; 2840 cache->uc_allocbucket = NULL; 2841 critical_exit(); 2842 if (bucket != NULL) 2843 bucket_free(zone, bucket, udata); 2844 2845 /* 2846 * Attempt to retrieve the item from the per-CPU cache has failed, so 2847 * we must go back to the zone. This requires the zone lock, so we 2848 * must drop the critical section, then re-acquire it when we go back 2849 * to the cache. Since the critical section is released, we may be 2850 * preempted or migrate. As such, make sure not to maintain any 2851 * thread-local state specific to the cache from prior to releasing 2852 * the critical section. 2853 */ 2854 lockfail = 0; 2855 if (ZONE_TRYLOCK(zone) == 0) { 2856 /* Record contention to size the buckets. */ 2857 ZONE_LOCK(zone); 2858 lockfail = 1; 2859 } 2860 2861 critical_enter(); 2862 /* Short-circuit for zones without buckets and low memory. */ 2863 if (zone->uz_bucket_size == 0 || bucketdisable) 2864 return (false); 2865 2866 cpu = curcpu; 2867 cache = &zone->uz_cpu[cpu]; 2868 2869 /* See if we lost the race to fill the cache. */ 2870 if (cache->uc_allocbucket != NULL) { 2871 ZONE_UNLOCK(zone); 2872 return (true); 2873 } 2874 2875 /* 2876 * Check the zone's cache of buckets. 2877 */ 2878 if (zone->uz_flags & UMA_ZONE_NUMA) { 2879 domain = PCPU_GET(domain); 2880 zdom = &zone->uz_domain[domain]; 2881 } else { 2882 domain = UMA_ANYDOMAIN; 2883 zdom = &zone->uz_domain[0]; 2884 } 2885 2886 if ((bucket = zone_fetch_bucket(zone, zdom)) != NULL) { 2887 ZONE_UNLOCK(zone); 2888 KASSERT(bucket->ub_cnt != 0, 2889 ("uma_zalloc_arg: Returning an empty bucket.")); 2890 cache->uc_allocbucket = bucket; 2891 return (true); 2892 } 2893 /* We are no longer associated with this CPU. */ 2894 critical_exit(); 2895 2896 /* 2897 * We bump the uz count when the cache size is insufficient to 2898 * handle the working set. 2899 */ 2900 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 2901 zone->uz_bucket_size++; 2902 2903 /* 2904 * Fill a bucket and attempt to use it as the alloc bucket. 2905 */ 2906 bucket = zone_alloc_bucket(zone, udata, domain, flags); 2907 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2908 zone->uz_name, zone, bucket); 2909 critical_enter(); 2910 if (bucket == NULL) 2911 return (false); 2912 2913 /* 2914 * See if we lost the race or were migrated. Cache the 2915 * initialized bucket to make this less likely or claim 2916 * the memory directly. 2917 */ 2918 cpu = curcpu; 2919 cache = &zone->uz_cpu[cpu]; 2920 if (cache->uc_allocbucket == NULL && 2921 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 2922 domain == PCPU_GET(domain))) { 2923 cache->uc_allocbucket = bucket; 2924 zdom->uzd_imax += bucket->ub_cnt; 2925 } else if (zone->uz_bkt_count >= zone->uz_bkt_max) { 2926 critical_exit(); 2927 ZONE_UNLOCK(zone); 2928 bucket_drain(zone, bucket); 2929 bucket_free(zone, bucket, udata); 2930 critical_enter(); 2931 return (true); 2932 } else 2933 zone_put_bucket(zone, zdom, bucket, false); 2934 ZONE_UNLOCK(zone); 2935 return (true); 2936 } 2937 2938 void * 2939 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2940 { 2941 2942 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2943 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2944 2945 /* This is the fast path allocation */ 2946 CTR5(KTR_UMA, 2947 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2948 curthread, zone->uz_name, zone, domain, flags); 2949 2950 if (flags & M_WAITOK) { 2951 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2952 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2953 } 2954 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2955 ("uma_zalloc_domain: called with spinlock or critical section held")); 2956 2957 return (zone_alloc_item(zone, udata, domain, flags)); 2958 } 2959 2960 /* 2961 * Find a slab with some space. Prefer slabs that are partially used over those 2962 * that are totally full. This helps to reduce fragmentation. 2963 * 2964 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2965 * only 'domain'. 2966 */ 2967 static uma_slab_t 2968 keg_first_slab(uma_keg_t keg, int domain, bool rr) 2969 { 2970 uma_domain_t dom; 2971 uma_slab_t slab; 2972 int start; 2973 2974 KASSERT(domain >= 0 && domain < vm_ndomains, 2975 ("keg_first_slab: domain %d out of range", domain)); 2976 KEG_LOCK_ASSERT(keg); 2977 2978 slab = NULL; 2979 start = domain; 2980 do { 2981 dom = &keg->uk_domain[domain]; 2982 if (!LIST_EMPTY(&dom->ud_part_slab)) 2983 return (LIST_FIRST(&dom->ud_part_slab)); 2984 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2985 slab = LIST_FIRST(&dom->ud_free_slab); 2986 LIST_REMOVE(slab, us_link); 2987 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2988 return (slab); 2989 } 2990 if (rr) 2991 domain = (domain + 1) % vm_ndomains; 2992 } while (domain != start); 2993 2994 return (NULL); 2995 } 2996 2997 static uma_slab_t 2998 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 2999 { 3000 uint32_t reserve; 3001 3002 KEG_LOCK_ASSERT(keg); 3003 3004 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3005 if (keg->uk_free <= reserve) 3006 return (NULL); 3007 return (keg_first_slab(keg, domain, rr)); 3008 } 3009 3010 static uma_slab_t 3011 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3012 { 3013 struct vm_domainset_iter di; 3014 uma_domain_t dom; 3015 uma_slab_t slab; 3016 int aflags, domain; 3017 bool rr; 3018 3019 restart: 3020 KEG_LOCK_ASSERT(keg); 3021 3022 /* 3023 * Use the keg's policy if upper layers haven't already specified a 3024 * domain (as happens with first-touch zones). 3025 * 3026 * To avoid races we run the iterator with the keg lock held, but that 3027 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3028 * clear M_WAITOK and handle low memory conditions locally. 3029 */ 3030 rr = rdomain == UMA_ANYDOMAIN; 3031 if (rr) { 3032 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3033 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3034 &aflags); 3035 } else { 3036 aflags = flags; 3037 domain = rdomain; 3038 } 3039 3040 for (;;) { 3041 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3042 if (slab != NULL) 3043 return (slab); 3044 3045 /* 3046 * M_NOVM means don't ask at all! 3047 */ 3048 if (flags & M_NOVM) 3049 break; 3050 3051 KASSERT(zone->uz_max_items == 0 || 3052 zone->uz_items <= zone->uz_max_items, 3053 ("%s: zone %p overflow", __func__, zone)); 3054 3055 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3056 /* 3057 * If we got a slab here it's safe to mark it partially used 3058 * and return. We assume that the caller is going to remove 3059 * at least one item. 3060 */ 3061 if (slab) { 3062 dom = &keg->uk_domain[slab->us_domain]; 3063 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3064 return (slab); 3065 } 3066 KEG_LOCK(keg); 3067 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3068 if ((flags & M_WAITOK) != 0) { 3069 KEG_UNLOCK(keg); 3070 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3071 KEG_LOCK(keg); 3072 goto restart; 3073 } 3074 break; 3075 } 3076 } 3077 3078 /* 3079 * We might not have been able to get a slab but another cpu 3080 * could have while we were unlocked. Check again before we 3081 * fail. 3082 */ 3083 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) { 3084 return (slab); 3085 } 3086 return (NULL); 3087 } 3088 3089 static void * 3090 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3091 { 3092 uma_domain_t dom; 3093 void *item; 3094 uint8_t freei; 3095 3096 KEG_LOCK_ASSERT(keg); 3097 3098 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3099 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3100 item = slab->us_data + (keg->uk_rsize * freei); 3101 slab->us_freecount--; 3102 keg->uk_free--; 3103 3104 /* Move this slab to the full list */ 3105 if (slab->us_freecount == 0) { 3106 LIST_REMOVE(slab, us_link); 3107 dom = &keg->uk_domain[slab->us_domain]; 3108 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3109 } 3110 3111 return (item); 3112 } 3113 3114 static int 3115 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3116 { 3117 uma_zone_t zone; 3118 uma_slab_t slab; 3119 uma_keg_t keg; 3120 #ifdef NUMA 3121 int stripe; 3122 #endif 3123 int i; 3124 3125 zone = arg; 3126 slab = NULL; 3127 keg = zone->uz_keg; 3128 KEG_LOCK(keg); 3129 /* Try to keep the buckets totally full */ 3130 for (i = 0; i < max; ) { 3131 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3132 break; 3133 #ifdef NUMA 3134 stripe = howmany(max, vm_ndomains); 3135 #endif 3136 while (slab->us_freecount && i < max) { 3137 bucket[i++] = slab_alloc_item(keg, slab); 3138 if (keg->uk_free <= keg->uk_reserve) 3139 break; 3140 #ifdef NUMA 3141 /* 3142 * If the zone is striped we pick a new slab for every 3143 * N allocations. Eliminating this conditional will 3144 * instead pick a new domain for each bucket rather 3145 * than stripe within each bucket. The current option 3146 * produces more fragmentation and requires more cpu 3147 * time but yields better distribution. 3148 */ 3149 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 3150 vm_ndomains > 1 && --stripe == 0) 3151 break; 3152 #endif 3153 } 3154 /* Don't block if we allocated any successfully. */ 3155 flags &= ~M_WAITOK; 3156 flags |= M_NOWAIT; 3157 } 3158 KEG_UNLOCK(keg); 3159 3160 return i; 3161 } 3162 3163 static uma_bucket_t 3164 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3165 { 3166 uma_bucket_t bucket; 3167 int maxbucket, cnt; 3168 3169 CTR1(KTR_UMA, "zone_alloc:_bucket domain %d)", domain); 3170 3171 /* Avoid allocs targeting empty domains. */ 3172 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3173 domain = UMA_ANYDOMAIN; 3174 3175 if (zone->uz_max_items > 0) { 3176 if (zone->uz_items >= zone->uz_max_items) 3177 return (false); 3178 maxbucket = MIN(zone->uz_bucket_size, 3179 zone->uz_max_items - zone->uz_items); 3180 zone->uz_items += maxbucket; 3181 } else 3182 maxbucket = zone->uz_bucket_size; 3183 ZONE_UNLOCK(zone); 3184 3185 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3186 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3187 if (bucket == NULL) { 3188 cnt = 0; 3189 goto out; 3190 } 3191 3192 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3193 MIN(maxbucket, bucket->ub_entries), domain, flags); 3194 3195 /* 3196 * Initialize the memory if necessary. 3197 */ 3198 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3199 int i; 3200 3201 for (i = 0; i < bucket->ub_cnt; i++) 3202 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3203 flags) != 0) 3204 break; 3205 /* 3206 * If we couldn't initialize the whole bucket, put the 3207 * rest back onto the freelist. 3208 */ 3209 if (i != bucket->ub_cnt) { 3210 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3211 bucket->ub_cnt - i); 3212 #ifdef INVARIANTS 3213 bzero(&bucket->ub_bucket[i], 3214 sizeof(void *) * (bucket->ub_cnt - i)); 3215 #endif 3216 bucket->ub_cnt = i; 3217 } 3218 } 3219 3220 cnt = bucket->ub_cnt; 3221 if (bucket->ub_cnt == 0) { 3222 bucket_free(zone, bucket, udata); 3223 counter_u64_add(zone->uz_fails, 1); 3224 bucket = NULL; 3225 } 3226 out: 3227 ZONE_LOCK(zone); 3228 if (zone->uz_max_items > 0 && cnt < maxbucket) { 3229 MPASS(zone->uz_items >= maxbucket - cnt); 3230 zone->uz_items -= maxbucket - cnt; 3231 if (zone->uz_sleepers > 0 && 3232 (cnt == 0 ? zone->uz_items + 1 : zone->uz_items) < 3233 zone->uz_max_items) 3234 wakeup_one(zone); 3235 } 3236 3237 return (bucket); 3238 } 3239 3240 /* 3241 * Allocates a single item from a zone. 3242 * 3243 * Arguments 3244 * zone The zone to alloc for. 3245 * udata The data to be passed to the constructor. 3246 * domain The domain to allocate from or UMA_ANYDOMAIN. 3247 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3248 * 3249 * Returns 3250 * NULL if there is no memory and M_NOWAIT is set 3251 * An item if successful 3252 */ 3253 3254 static void * 3255 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3256 { 3257 3258 ZONE_LOCK(zone); 3259 return (zone_alloc_item_locked(zone, udata, domain, flags)); 3260 } 3261 3262 /* 3263 * Returns with zone unlocked. 3264 */ 3265 static void * 3266 zone_alloc_item_locked(uma_zone_t zone, void *udata, int domain, int flags) 3267 { 3268 void *item; 3269 3270 ZONE_LOCK_ASSERT(zone); 3271 3272 if (zone->uz_max_items > 0) { 3273 if (zone->uz_items >= zone->uz_max_items) { 3274 zone_log_warning(zone); 3275 zone_maxaction(zone); 3276 if (flags & M_NOWAIT) { 3277 ZONE_UNLOCK(zone); 3278 return (NULL); 3279 } 3280 zone->uz_sleeps++; 3281 zone->uz_sleepers++; 3282 while (zone->uz_items >= zone->uz_max_items) 3283 mtx_sleep(zone, zone->uz_lockptr, PVM, 3284 "zonelimit", 0); 3285 zone->uz_sleepers--; 3286 if (zone->uz_sleepers > 0 && 3287 zone->uz_items + 1 < zone->uz_max_items) 3288 wakeup_one(zone); 3289 } 3290 zone->uz_items++; 3291 } 3292 ZONE_UNLOCK(zone); 3293 3294 /* Avoid allocs targeting empty domains. */ 3295 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3296 domain = UMA_ANYDOMAIN; 3297 3298 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3299 goto fail_cnt; 3300 3301 /* 3302 * We have to call both the zone's init (not the keg's init) 3303 * and the zone's ctor. This is because the item is going from 3304 * a keg slab directly to the user, and the user is expecting it 3305 * to be both zone-init'd as well as zone-ctor'd. 3306 */ 3307 if (zone->uz_init != NULL) { 3308 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3309 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3310 goto fail_cnt; 3311 } 3312 } 3313 item = item_ctor(zone, udata, flags, item); 3314 if (item == NULL) 3315 goto fail; 3316 3317 counter_u64_add(zone->uz_allocs, 1); 3318 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3319 zone->uz_name, zone); 3320 3321 return (item); 3322 3323 fail_cnt: 3324 counter_u64_add(zone->uz_fails, 1); 3325 fail: 3326 if (zone->uz_max_items > 0) { 3327 ZONE_LOCK(zone); 3328 /* XXX Decrement without wakeup */ 3329 zone->uz_items--; 3330 ZONE_UNLOCK(zone); 3331 } 3332 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3333 zone->uz_name, zone); 3334 return (NULL); 3335 } 3336 3337 /* See uma.h */ 3338 void 3339 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3340 { 3341 uma_cache_t cache; 3342 uma_bucket_t bucket; 3343 int cpu, domain, itemdomain; 3344 3345 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3346 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3347 3348 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 3349 zone->uz_name); 3350 3351 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3352 ("uma_zfree_arg: called with spinlock or critical section held")); 3353 3354 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3355 if (item == NULL) 3356 return; 3357 #ifdef DEBUG_MEMGUARD 3358 if (is_memguard_addr(item)) { 3359 if (zone->uz_dtor != NULL) 3360 zone->uz_dtor(item, zone->uz_size, udata); 3361 if (zone->uz_fini != NULL) 3362 zone->uz_fini(item, zone->uz_size); 3363 memguard_free(item); 3364 return; 3365 } 3366 #endif 3367 item_dtor(zone, item, udata, SKIP_NONE); 3368 3369 /* 3370 * The race here is acceptable. If we miss it we'll just have to wait 3371 * a little longer for the limits to be reset. 3372 */ 3373 if (zone->uz_sleepers > 0) 3374 goto zfree_item; 3375 3376 /* 3377 * If possible, free to the per-CPU cache. There are two 3378 * requirements for safe access to the per-CPU cache: (1) the thread 3379 * accessing the cache must not be preempted or yield during access, 3380 * and (2) the thread must not migrate CPUs without switching which 3381 * cache it accesses. We rely on a critical section to prevent 3382 * preemption and migration. We release the critical section in 3383 * order to acquire the zone mutex if we are unable to free to the 3384 * current cache; when we re-acquire the critical section, we must 3385 * detect and handle migration if it has occurred. 3386 */ 3387 domain = itemdomain = 0; 3388 critical_enter(); 3389 do { 3390 cpu = curcpu; 3391 cache = &zone->uz_cpu[cpu]; 3392 bucket = cache->uc_allocbucket; 3393 #ifdef UMA_XDOMAIN 3394 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { 3395 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3396 domain = PCPU_GET(domain); 3397 } 3398 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0 && 3399 domain != itemdomain) { 3400 bucket = cache->uc_crossbucket; 3401 } else 3402 #endif 3403 3404 /* 3405 * Try to free into the allocbucket first to give LIFO ordering 3406 * for cache-hot datastructures. Spill over into the freebucket 3407 * if necessary. Alloc will swap them if one runs dry. 3408 */ 3409 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 3410 bucket = cache->uc_freebucket; 3411 if (__predict_true(bucket != NULL && 3412 bucket->ub_cnt < bucket->ub_entries)) { 3413 bucket_push(zone, cache, bucket, item); 3414 critical_exit(); 3415 return; 3416 } 3417 } while (cache_free(zone, cache, udata, item, itemdomain)); 3418 critical_exit(); 3419 3420 /* 3421 * If nothing else caught this, we'll just do an internal free. 3422 */ 3423 zfree_item: 3424 zone_free_item(zone, item, udata, SKIP_DTOR); 3425 } 3426 3427 static void 3428 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 3429 int domain, int itemdomain) 3430 { 3431 uma_zone_domain_t zdom; 3432 3433 #ifdef UMA_XDOMAIN 3434 /* 3435 * Buckets coming from the wrong domain will be entirely for the 3436 * only other domain on two domain systems. In this case we can 3437 * simply cache them. Otherwise we need to sort them back to 3438 * correct domains by freeing the contents to the slab layer. 3439 */ 3440 if (domain != itemdomain && vm_ndomains > 2) { 3441 CTR3(KTR_UMA, 3442 "uma_zfree: zone %s(%p) draining cross bucket %p", 3443 zone->uz_name, zone, bucket); 3444 bucket_drain(zone, bucket); 3445 bucket_free(zone, bucket, udata); 3446 return; 3447 } 3448 #endif 3449 /* 3450 * Attempt to save the bucket in the zone's domain bucket cache. 3451 * 3452 * We bump the uz count when the cache size is insufficient to 3453 * handle the working set. 3454 */ 3455 if (ZONE_TRYLOCK(zone) == 0) { 3456 /* Record contention to size the buckets. */ 3457 ZONE_LOCK(zone); 3458 if (zone->uz_bucket_size < zone->uz_bucket_size_max) 3459 zone->uz_bucket_size++; 3460 } 3461 3462 CTR3(KTR_UMA, 3463 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3464 zone->uz_name, zone, bucket); 3465 /* ub_cnt is pointing to the last free item */ 3466 KASSERT(bucket->ub_cnt == bucket->ub_entries, 3467 ("uma_zfree: Attempting to insert partial bucket onto the full list.\n")); 3468 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3469 ZONE_UNLOCK(zone); 3470 bucket_drain(zone, bucket); 3471 bucket_free(zone, bucket, udata); 3472 } else { 3473 zdom = &zone->uz_domain[itemdomain]; 3474 zone_put_bucket(zone, zdom, bucket, true); 3475 ZONE_UNLOCK(zone); 3476 } 3477 } 3478 3479 /* 3480 * Populate a free or cross bucket for the current cpu cache. Free any 3481 * existing full bucket either to the zone cache or back to the slab layer. 3482 * 3483 * Enters and returns in a critical section. false return indicates that 3484 * we can not satisfy this free in the cache layer. true indicates that 3485 * the caller should retry. 3486 */ 3487 static __noinline bool 3488 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 3489 int itemdomain) 3490 { 3491 uma_bucket_t bucket; 3492 int cpu, domain; 3493 3494 CRITICAL_ASSERT(curthread); 3495 3496 if (zone->uz_bucket_size == 0 || bucketdisable) 3497 return false; 3498 3499 cpu = curcpu; 3500 cache = &zone->uz_cpu[cpu]; 3501 3502 /* 3503 * NUMA domains need to free to the correct zdom. When XDOMAIN 3504 * is enabled this is the zdom of the item and the bucket may be 3505 * the cross bucket if they do not match. 3506 */ 3507 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 3508 #ifdef UMA_XDOMAIN 3509 domain = PCPU_GET(domain); 3510 #else 3511 itemdomain = domain = PCPU_GET(domain); 3512 #endif 3513 else 3514 itemdomain = domain = 0; 3515 #ifdef UMA_XDOMAIN 3516 if (domain != itemdomain) { 3517 bucket = cache->uc_crossbucket; 3518 cache->uc_crossbucket = NULL; 3519 if (bucket != NULL) 3520 atomic_add_64(&zone->uz_xdomain, bucket->ub_cnt); 3521 } else 3522 #endif 3523 { 3524 bucket = cache->uc_freebucket; 3525 cache->uc_freebucket = NULL; 3526 } 3527 3528 3529 /* We are no longer associated with this CPU. */ 3530 critical_exit(); 3531 3532 if (bucket != NULL) 3533 zone_free_bucket(zone, bucket, udata, domain, itemdomain); 3534 3535 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3536 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3537 zone->uz_name, zone, bucket); 3538 critical_enter(); 3539 if (bucket == NULL) 3540 return (false); 3541 cpu = curcpu; 3542 cache = &zone->uz_cpu[cpu]; 3543 #ifdef UMA_XDOMAIN 3544 /* 3545 * Check to see if we should be populating the cross bucket. If it 3546 * is already populated we will fall through and attempt to populate 3547 * the free bucket. 3548 */ 3549 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { 3550 domain = PCPU_GET(domain); 3551 if (domain != itemdomain && cache->uc_crossbucket == NULL) { 3552 cache->uc_crossbucket = bucket; 3553 return (true); 3554 } 3555 } 3556 #endif 3557 /* 3558 * We may have lost the race to fill the bucket or switched CPUs. 3559 */ 3560 if (cache->uc_freebucket != NULL) { 3561 critical_exit(); 3562 bucket_free(zone, bucket, udata); 3563 critical_enter(); 3564 } else 3565 cache->uc_freebucket = bucket; 3566 3567 return (true); 3568 } 3569 3570 void 3571 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3572 { 3573 3574 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3575 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3576 3577 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3578 zone->uz_name); 3579 3580 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3581 ("uma_zfree_domain: called with spinlock or critical section held")); 3582 3583 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3584 if (item == NULL) 3585 return; 3586 zone_free_item(zone, item, udata, SKIP_NONE); 3587 } 3588 3589 static void 3590 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 3591 { 3592 uma_keg_t keg; 3593 uma_domain_t dom; 3594 uint8_t freei; 3595 3596 keg = zone->uz_keg; 3597 MPASS(zone->uz_lockptr == &keg->uk_lock); 3598 KEG_LOCK_ASSERT(keg); 3599 3600 dom = &keg->uk_domain[slab->us_domain]; 3601 3602 /* Do we need to remove from any lists? */ 3603 if (slab->us_freecount+1 == keg->uk_ipers) { 3604 LIST_REMOVE(slab, us_link); 3605 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3606 } else if (slab->us_freecount == 0) { 3607 LIST_REMOVE(slab, us_link); 3608 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3609 } 3610 3611 /* Slab management. */ 3612 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3613 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 3614 slab->us_freecount++; 3615 3616 /* Keg statistics. */ 3617 keg->uk_free++; 3618 } 3619 3620 static void 3621 zone_release(void *arg, void **bucket, int cnt) 3622 { 3623 uma_zone_t zone; 3624 void *item; 3625 uma_slab_t slab; 3626 uma_keg_t keg; 3627 uint8_t *mem; 3628 int i; 3629 3630 zone = arg; 3631 keg = zone->uz_keg; 3632 KEG_LOCK(keg); 3633 for (i = 0; i < cnt; i++) { 3634 item = bucket[i]; 3635 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3636 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3637 if (zone->uz_flags & UMA_ZONE_HASH) { 3638 slab = hash_sfind(&keg->uk_hash, mem); 3639 } else { 3640 mem += keg->uk_pgoff; 3641 slab = (uma_slab_t)mem; 3642 } 3643 } else 3644 slab = vtoslab((vm_offset_t)item); 3645 slab_free_item(zone, slab, item); 3646 } 3647 KEG_UNLOCK(keg); 3648 } 3649 3650 /* 3651 * Frees a single item to any zone. 3652 * 3653 * Arguments: 3654 * zone The zone to free to 3655 * item The item we're freeing 3656 * udata User supplied data for the dtor 3657 * skip Skip dtors and finis 3658 */ 3659 static void 3660 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3661 { 3662 3663 item_dtor(zone, item, udata, skip); 3664 3665 if (skip < SKIP_FINI && zone->uz_fini) 3666 zone->uz_fini(item, zone->uz_size); 3667 3668 zone->uz_release(zone->uz_arg, &item, 1); 3669 3670 if (skip & SKIP_CNT) 3671 return; 3672 3673 counter_u64_add(zone->uz_frees, 1); 3674 3675 if (zone->uz_max_items > 0) { 3676 ZONE_LOCK(zone); 3677 zone->uz_items--; 3678 if (zone->uz_sleepers > 0 && 3679 zone->uz_items < zone->uz_max_items) 3680 wakeup_one(zone); 3681 ZONE_UNLOCK(zone); 3682 } 3683 } 3684 3685 /* See uma.h */ 3686 int 3687 uma_zone_set_max(uma_zone_t zone, int nitems) 3688 { 3689 struct uma_bucket_zone *ubz; 3690 int count; 3691 3692 ZONE_LOCK(zone); 3693 ubz = bucket_zone_max(zone, nitems); 3694 count = ubz != NULL ? ubz->ubz_entries : 0; 3695 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 3696 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 3697 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 3698 zone->uz_max_items = nitems; 3699 ZONE_UNLOCK(zone); 3700 3701 return (nitems); 3702 } 3703 3704 /* See uma.h */ 3705 void 3706 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 3707 { 3708 struct uma_bucket_zone *ubz; 3709 int bpcpu; 3710 3711 ZONE_LOCK(zone); 3712 ubz = bucket_zone_max(zone, nitems); 3713 if (ubz != NULL) { 3714 bpcpu = 2; 3715 #ifdef UMA_XDOMAIN 3716 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 3717 /* Count the cross-domain bucket. */ 3718 bpcpu++; 3719 #endif 3720 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 3721 zone->uz_bucket_size_max = ubz->ubz_entries; 3722 } else { 3723 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 3724 } 3725 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 3726 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 3727 zone->uz_bkt_max = nitems; 3728 ZONE_UNLOCK(zone); 3729 } 3730 3731 /* See uma.h */ 3732 int 3733 uma_zone_get_max(uma_zone_t zone) 3734 { 3735 int nitems; 3736 3737 ZONE_LOCK(zone); 3738 nitems = zone->uz_max_items; 3739 ZONE_UNLOCK(zone); 3740 3741 return (nitems); 3742 } 3743 3744 /* See uma.h */ 3745 void 3746 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3747 { 3748 3749 ZONE_LOCK(zone); 3750 zone->uz_warning = warning; 3751 ZONE_UNLOCK(zone); 3752 } 3753 3754 /* See uma.h */ 3755 void 3756 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3757 { 3758 3759 ZONE_LOCK(zone); 3760 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3761 ZONE_UNLOCK(zone); 3762 } 3763 3764 /* See uma.h */ 3765 int 3766 uma_zone_get_cur(uma_zone_t zone) 3767 { 3768 int64_t nitems; 3769 u_int i; 3770 3771 ZONE_LOCK(zone); 3772 nitems = counter_u64_fetch(zone->uz_allocs) - 3773 counter_u64_fetch(zone->uz_frees); 3774 if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) == 0) { 3775 CPU_FOREACH(i) { 3776 /* 3777 * See the comment in uma_vm_zone_stats() regarding 3778 * the safety of accessing the per-cpu caches. With 3779 * the zone lock held, it is safe, but can potentially 3780 * result in stale data. 3781 */ 3782 nitems += zone->uz_cpu[i].uc_allocs - 3783 zone->uz_cpu[i].uc_frees; 3784 } 3785 } 3786 ZONE_UNLOCK(zone); 3787 3788 return (nitems < 0 ? 0 : nitems); 3789 } 3790 3791 static uint64_t 3792 uma_zone_get_allocs(uma_zone_t zone) 3793 { 3794 uint64_t nitems; 3795 u_int i; 3796 3797 ZONE_LOCK(zone); 3798 nitems = counter_u64_fetch(zone->uz_allocs); 3799 if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) == 0) { 3800 CPU_FOREACH(i) { 3801 /* 3802 * See the comment in uma_vm_zone_stats() regarding 3803 * the safety of accessing the per-cpu caches. With 3804 * the zone lock held, it is safe, but can potentially 3805 * result in stale data. 3806 */ 3807 nitems += zone->uz_cpu[i].uc_allocs; 3808 } 3809 } 3810 ZONE_UNLOCK(zone); 3811 3812 return (nitems); 3813 } 3814 3815 static uint64_t 3816 uma_zone_get_frees(uma_zone_t zone) 3817 { 3818 uint64_t nitems; 3819 u_int i; 3820 3821 ZONE_LOCK(zone); 3822 nitems = counter_u64_fetch(zone->uz_frees); 3823 if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) == 0) { 3824 CPU_FOREACH(i) { 3825 /* 3826 * See the comment in uma_vm_zone_stats() regarding 3827 * the safety of accessing the per-cpu caches. With 3828 * the zone lock held, it is safe, but can potentially 3829 * result in stale data. 3830 */ 3831 nitems += zone->uz_cpu[i].uc_frees; 3832 } 3833 } 3834 ZONE_UNLOCK(zone); 3835 3836 return (nitems); 3837 } 3838 3839 /* See uma.h */ 3840 void 3841 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3842 { 3843 uma_keg_t keg; 3844 3845 KEG_GET(zone, keg); 3846 KEG_LOCK(keg); 3847 KASSERT(keg->uk_pages == 0, 3848 ("uma_zone_set_init on non-empty keg")); 3849 keg->uk_init = uminit; 3850 KEG_UNLOCK(keg); 3851 } 3852 3853 /* See uma.h */ 3854 void 3855 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3856 { 3857 uma_keg_t keg; 3858 3859 KEG_GET(zone, keg); 3860 KEG_LOCK(keg); 3861 KASSERT(keg->uk_pages == 0, 3862 ("uma_zone_set_fini on non-empty keg")); 3863 keg->uk_fini = fini; 3864 KEG_UNLOCK(keg); 3865 } 3866 3867 /* See uma.h */ 3868 void 3869 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3870 { 3871 3872 ZONE_LOCK(zone); 3873 KASSERT(zone->uz_keg->uk_pages == 0, 3874 ("uma_zone_set_zinit on non-empty keg")); 3875 zone->uz_init = zinit; 3876 ZONE_UNLOCK(zone); 3877 } 3878 3879 /* See uma.h */ 3880 void 3881 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3882 { 3883 3884 ZONE_LOCK(zone); 3885 KASSERT(zone->uz_keg->uk_pages == 0, 3886 ("uma_zone_set_zfini on non-empty keg")); 3887 zone->uz_fini = zfini; 3888 ZONE_UNLOCK(zone); 3889 } 3890 3891 /* See uma.h */ 3892 /* XXX uk_freef is not actually used with the zone locked */ 3893 void 3894 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3895 { 3896 uma_keg_t keg; 3897 3898 KEG_GET(zone, keg); 3899 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3900 KEG_LOCK(keg); 3901 keg->uk_freef = freef; 3902 KEG_UNLOCK(keg); 3903 } 3904 3905 /* See uma.h */ 3906 /* XXX uk_allocf is not actually used with the zone locked */ 3907 void 3908 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3909 { 3910 uma_keg_t keg; 3911 3912 KEG_GET(zone, keg); 3913 KEG_LOCK(keg); 3914 keg->uk_allocf = allocf; 3915 KEG_UNLOCK(keg); 3916 } 3917 3918 /* See uma.h */ 3919 void 3920 uma_zone_reserve(uma_zone_t zone, int items) 3921 { 3922 uma_keg_t keg; 3923 3924 KEG_GET(zone, keg); 3925 KEG_LOCK(keg); 3926 keg->uk_reserve = items; 3927 KEG_UNLOCK(keg); 3928 } 3929 3930 /* See uma.h */ 3931 int 3932 uma_zone_reserve_kva(uma_zone_t zone, int count) 3933 { 3934 uma_keg_t keg; 3935 vm_offset_t kva; 3936 u_int pages; 3937 3938 KEG_GET(zone, keg); 3939 3940 pages = count / keg->uk_ipers; 3941 if (pages * keg->uk_ipers < count) 3942 pages++; 3943 pages *= keg->uk_ppera; 3944 3945 #ifdef UMA_MD_SMALL_ALLOC 3946 if (keg->uk_ppera > 1) { 3947 #else 3948 if (1) { 3949 #endif 3950 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3951 if (kva == 0) 3952 return (0); 3953 } else 3954 kva = 0; 3955 3956 ZONE_LOCK(zone); 3957 MPASS(keg->uk_kva == 0); 3958 keg->uk_kva = kva; 3959 keg->uk_offset = 0; 3960 zone->uz_max_items = pages * keg->uk_ipers; 3961 #ifdef UMA_MD_SMALL_ALLOC 3962 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3963 #else 3964 keg->uk_allocf = noobj_alloc; 3965 #endif 3966 keg->uk_flags |= UMA_ZONE_NOFREE; 3967 ZONE_UNLOCK(zone); 3968 3969 return (1); 3970 } 3971 3972 /* See uma.h */ 3973 void 3974 uma_prealloc(uma_zone_t zone, int items) 3975 { 3976 struct vm_domainset_iter di; 3977 uma_domain_t dom; 3978 uma_slab_t slab; 3979 uma_keg_t keg; 3980 int aflags, domain, slabs; 3981 3982 KEG_GET(zone, keg); 3983 KEG_LOCK(keg); 3984 slabs = items / keg->uk_ipers; 3985 if (slabs * keg->uk_ipers < items) 3986 slabs++; 3987 while (slabs-- > 0) { 3988 aflags = M_NOWAIT; 3989 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3990 &aflags); 3991 for (;;) { 3992 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 3993 aflags); 3994 if (slab != NULL) { 3995 dom = &keg->uk_domain[slab->us_domain]; 3996 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 3997 us_link); 3998 break; 3999 } 4000 KEG_LOCK(keg); 4001 if (vm_domainset_iter_policy(&di, &domain) != 0) { 4002 KEG_UNLOCK(keg); 4003 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 4004 KEG_LOCK(keg); 4005 } 4006 } 4007 } 4008 KEG_UNLOCK(keg); 4009 } 4010 4011 /* See uma.h */ 4012 void 4013 uma_reclaim(int req) 4014 { 4015 4016 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4017 sx_xlock(&uma_reclaim_lock); 4018 bucket_enable(); 4019 4020 switch (req) { 4021 case UMA_RECLAIM_TRIM: 4022 zone_foreach(zone_trim, NULL); 4023 break; 4024 case UMA_RECLAIM_DRAIN: 4025 case UMA_RECLAIM_DRAIN_CPU: 4026 zone_foreach(zone_drain, NULL); 4027 if (req == UMA_RECLAIM_DRAIN_CPU) { 4028 pcpu_cache_drain_safe(NULL); 4029 zone_foreach(zone_drain, NULL); 4030 } 4031 break; 4032 default: 4033 panic("unhandled reclamation request %d", req); 4034 } 4035 4036 /* 4037 * Some slabs may have been freed but this zone will be visited early 4038 * we visit again so that we can free pages that are empty once other 4039 * zones are drained. We have to do the same for buckets. 4040 */ 4041 zone_drain(slabzone, NULL); 4042 bucket_zone_drain(); 4043 sx_xunlock(&uma_reclaim_lock); 4044 } 4045 4046 static volatile int uma_reclaim_needed; 4047 4048 void 4049 uma_reclaim_wakeup(void) 4050 { 4051 4052 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4053 wakeup(uma_reclaim); 4054 } 4055 4056 void 4057 uma_reclaim_worker(void *arg __unused) 4058 { 4059 4060 for (;;) { 4061 sx_xlock(&uma_reclaim_lock); 4062 while (atomic_load_int(&uma_reclaim_needed) == 0) 4063 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4064 hz); 4065 sx_xunlock(&uma_reclaim_lock); 4066 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4067 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4068 atomic_store_int(&uma_reclaim_needed, 0); 4069 /* Don't fire more than once per-second. */ 4070 pause("umarclslp", hz); 4071 } 4072 } 4073 4074 /* See uma.h */ 4075 void 4076 uma_zone_reclaim(uma_zone_t zone, int req) 4077 { 4078 4079 switch (req) { 4080 case UMA_RECLAIM_TRIM: 4081 zone_trim(zone, NULL); 4082 break; 4083 case UMA_RECLAIM_DRAIN: 4084 zone_drain(zone, NULL); 4085 break; 4086 case UMA_RECLAIM_DRAIN_CPU: 4087 pcpu_cache_drain_safe(zone); 4088 zone_drain(zone, NULL); 4089 break; 4090 default: 4091 panic("unhandled reclamation request %d", req); 4092 } 4093 } 4094 4095 /* See uma.h */ 4096 int 4097 uma_zone_exhausted(uma_zone_t zone) 4098 { 4099 int full; 4100 4101 ZONE_LOCK(zone); 4102 full = zone->uz_sleepers > 0; 4103 ZONE_UNLOCK(zone); 4104 return (full); 4105 } 4106 4107 int 4108 uma_zone_exhausted_nolock(uma_zone_t zone) 4109 { 4110 return (zone->uz_sleepers > 0); 4111 } 4112 4113 static void 4114 uma_zero_item(void *item, uma_zone_t zone) 4115 { 4116 4117 bzero(item, zone->uz_size); 4118 } 4119 4120 unsigned long 4121 uma_limit(void) 4122 { 4123 4124 return (uma_kmem_limit); 4125 } 4126 4127 void 4128 uma_set_limit(unsigned long limit) 4129 { 4130 4131 uma_kmem_limit = limit; 4132 } 4133 4134 unsigned long 4135 uma_size(void) 4136 { 4137 4138 return (atomic_load_long(&uma_kmem_total)); 4139 } 4140 4141 long 4142 uma_avail(void) 4143 { 4144 4145 return (uma_kmem_limit - uma_size()); 4146 } 4147 4148 #ifdef DDB 4149 /* 4150 * Generate statistics across both the zone and its per-cpu cache's. Return 4151 * desired statistics if the pointer is non-NULL for that statistic. 4152 * 4153 * Note: does not update the zone statistics, as it can't safely clear the 4154 * per-CPU cache statistic. 4155 * 4156 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 4157 * safe from off-CPU; we should modify the caches to track this information 4158 * directly so that we don't have to. 4159 */ 4160 static void 4161 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4162 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4163 { 4164 uma_cache_t cache; 4165 uint64_t allocs, frees, sleeps, xdomain; 4166 int cachefree, cpu; 4167 4168 allocs = frees = sleeps = xdomain = 0; 4169 cachefree = 0; 4170 CPU_FOREACH(cpu) { 4171 cache = &z->uz_cpu[cpu]; 4172 if (cache->uc_allocbucket != NULL) 4173 cachefree += cache->uc_allocbucket->ub_cnt; 4174 if (cache->uc_freebucket != NULL) 4175 cachefree += cache->uc_freebucket->ub_cnt; 4176 if (cache->uc_crossbucket != NULL) { 4177 xdomain += cache->uc_crossbucket->ub_cnt; 4178 cachefree += cache->uc_crossbucket->ub_cnt; 4179 } 4180 allocs += cache->uc_allocs; 4181 frees += cache->uc_frees; 4182 } 4183 allocs += counter_u64_fetch(z->uz_allocs); 4184 frees += counter_u64_fetch(z->uz_frees); 4185 sleeps += z->uz_sleeps; 4186 xdomain += z->uz_xdomain; 4187 if (cachefreep != NULL) 4188 *cachefreep = cachefree; 4189 if (allocsp != NULL) 4190 *allocsp = allocs; 4191 if (freesp != NULL) 4192 *freesp = frees; 4193 if (sleepsp != NULL) 4194 *sleepsp = sleeps; 4195 if (xdomainp != NULL) 4196 *xdomainp = xdomain; 4197 } 4198 #endif /* DDB */ 4199 4200 static int 4201 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4202 { 4203 uma_keg_t kz; 4204 uma_zone_t z; 4205 int count; 4206 4207 count = 0; 4208 rw_rlock(&uma_rwlock); 4209 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4210 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4211 count++; 4212 } 4213 LIST_FOREACH(z, &uma_cachezones, uz_link) 4214 count++; 4215 4216 rw_runlock(&uma_rwlock); 4217 return (sysctl_handle_int(oidp, &count, 0, req)); 4218 } 4219 4220 static void 4221 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4222 struct uma_percpu_stat *ups, bool internal) 4223 { 4224 uma_zone_domain_t zdom; 4225 uma_bucket_t bucket; 4226 uma_cache_t cache; 4227 int i; 4228 4229 4230 for (i = 0; i < vm_ndomains; i++) { 4231 zdom = &z->uz_domain[i]; 4232 uth->uth_zone_free += zdom->uzd_nitems; 4233 } 4234 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4235 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4236 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4237 uth->uth_sleeps = z->uz_sleeps; 4238 uth->uth_xdomain = z->uz_xdomain; 4239 4240 /* 4241 * While it is not normally safe to access the cache bucket pointers 4242 * while not on the CPU that owns the cache, we only allow the pointers 4243 * to be exchanged without the zone lock held, not invalidated, so 4244 * accept the possible race associated with bucket exchange during 4245 * monitoring. Use atomic_load_ptr() to ensure that the bucket pointers 4246 * are loaded only once. 4247 */ 4248 for (i = 0; i < mp_maxid + 1; i++) { 4249 bzero(&ups[i], sizeof(*ups)); 4250 if (internal || CPU_ABSENT(i)) 4251 continue; 4252 cache = &z->uz_cpu[i]; 4253 bucket = (uma_bucket_t)atomic_load_ptr(&cache->uc_allocbucket); 4254 if (bucket != NULL) 4255 ups[i].ups_cache_free += bucket->ub_cnt; 4256 bucket = (uma_bucket_t)atomic_load_ptr(&cache->uc_freebucket); 4257 if (bucket != NULL) 4258 ups[i].ups_cache_free += bucket->ub_cnt; 4259 bucket = (uma_bucket_t)atomic_load_ptr(&cache->uc_crossbucket); 4260 if (bucket != NULL) 4261 ups[i].ups_cache_free += bucket->ub_cnt; 4262 ups[i].ups_allocs = cache->uc_allocs; 4263 ups[i].ups_frees = cache->uc_frees; 4264 } 4265 } 4266 4267 static int 4268 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 4269 { 4270 struct uma_stream_header ush; 4271 struct uma_type_header uth; 4272 struct uma_percpu_stat *ups; 4273 struct sbuf sbuf; 4274 uma_keg_t kz; 4275 uma_zone_t z; 4276 int count, error, i; 4277 4278 error = sysctl_wire_old_buffer(req, 0); 4279 if (error != 0) 4280 return (error); 4281 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 4282 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 4283 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 4284 4285 count = 0; 4286 rw_rlock(&uma_rwlock); 4287 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4288 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4289 count++; 4290 } 4291 4292 LIST_FOREACH(z, &uma_cachezones, uz_link) 4293 count++; 4294 4295 /* 4296 * Insert stream header. 4297 */ 4298 bzero(&ush, sizeof(ush)); 4299 ush.ush_version = UMA_STREAM_VERSION; 4300 ush.ush_maxcpus = (mp_maxid + 1); 4301 ush.ush_count = count; 4302 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 4303 4304 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4305 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4306 bzero(&uth, sizeof(uth)); 4307 ZONE_LOCK(z); 4308 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4309 uth.uth_align = kz->uk_align; 4310 uth.uth_size = kz->uk_size; 4311 uth.uth_rsize = kz->uk_rsize; 4312 if (z->uz_max_items > 0) 4313 uth.uth_pages = (z->uz_items / kz->uk_ipers) * 4314 kz->uk_ppera; 4315 else 4316 uth.uth_pages = kz->uk_pages; 4317 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 4318 kz->uk_ppera; 4319 uth.uth_limit = z->uz_max_items; 4320 uth.uth_keg_free = z->uz_keg->uk_free; 4321 4322 /* 4323 * A zone is secondary is it is not the first entry 4324 * on the keg's zone list. 4325 */ 4326 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 4327 (LIST_FIRST(&kz->uk_zones) != z)) 4328 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 4329 uma_vm_zone_stats(&uth, z, &sbuf, ups, 4330 kz->uk_flags & UMA_ZFLAG_INTERNAL); 4331 ZONE_UNLOCK(z); 4332 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4333 for (i = 0; i < mp_maxid + 1; i++) 4334 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4335 } 4336 } 4337 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4338 bzero(&uth, sizeof(uth)); 4339 ZONE_LOCK(z); 4340 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4341 uth.uth_size = z->uz_size; 4342 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 4343 ZONE_UNLOCK(z); 4344 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4345 for (i = 0; i < mp_maxid + 1; i++) 4346 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4347 } 4348 4349 rw_runlock(&uma_rwlock); 4350 error = sbuf_finish(&sbuf); 4351 sbuf_delete(&sbuf); 4352 free(ups, M_TEMP); 4353 return (error); 4354 } 4355 4356 int 4357 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4358 { 4359 uma_zone_t zone = *(uma_zone_t *)arg1; 4360 int error, max; 4361 4362 max = uma_zone_get_max(zone); 4363 error = sysctl_handle_int(oidp, &max, 0, req); 4364 if (error || !req->newptr) 4365 return (error); 4366 4367 uma_zone_set_max(zone, max); 4368 4369 return (0); 4370 } 4371 4372 int 4373 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4374 { 4375 uma_zone_t zone; 4376 int cur; 4377 4378 /* 4379 * Some callers want to add sysctls for global zones that 4380 * may not yet exist so they pass a pointer to a pointer. 4381 */ 4382 if (arg2 == 0) 4383 zone = *(uma_zone_t *)arg1; 4384 else 4385 zone = arg1; 4386 cur = uma_zone_get_cur(zone); 4387 return (sysctl_handle_int(oidp, &cur, 0, req)); 4388 } 4389 4390 static int 4391 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 4392 { 4393 uma_zone_t zone = arg1; 4394 uint64_t cur; 4395 4396 cur = uma_zone_get_allocs(zone); 4397 return (sysctl_handle_64(oidp, &cur, 0, req)); 4398 } 4399 4400 static int 4401 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 4402 { 4403 uma_zone_t zone = arg1; 4404 uint64_t cur; 4405 4406 cur = uma_zone_get_frees(zone); 4407 return (sysctl_handle_64(oidp, &cur, 0, req)); 4408 } 4409 4410 #ifdef INVARIANTS 4411 static uma_slab_t 4412 uma_dbg_getslab(uma_zone_t zone, void *item) 4413 { 4414 uma_slab_t slab; 4415 uma_keg_t keg; 4416 uint8_t *mem; 4417 4418 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4419 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 4420 slab = vtoslab((vm_offset_t)mem); 4421 } else { 4422 /* 4423 * It is safe to return the slab here even though the 4424 * zone is unlocked because the item's allocation state 4425 * essentially holds a reference. 4426 */ 4427 if (zone->uz_lockptr == &zone->uz_lock) 4428 return (NULL); 4429 ZONE_LOCK(zone); 4430 keg = zone->uz_keg; 4431 if (keg->uk_flags & UMA_ZONE_HASH) 4432 slab = hash_sfind(&keg->uk_hash, mem); 4433 else 4434 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4435 ZONE_UNLOCK(zone); 4436 } 4437 4438 return (slab); 4439 } 4440 4441 static bool 4442 uma_dbg_zskip(uma_zone_t zone, void *mem) 4443 { 4444 4445 if (zone->uz_lockptr == &zone->uz_lock) 4446 return (true); 4447 4448 return (uma_dbg_kskip(zone->uz_keg, mem)); 4449 } 4450 4451 static bool 4452 uma_dbg_kskip(uma_keg_t keg, void *mem) 4453 { 4454 uintptr_t idx; 4455 4456 if (dbg_divisor == 0) 4457 return (true); 4458 4459 if (dbg_divisor == 1) 4460 return (false); 4461 4462 idx = (uintptr_t)mem >> PAGE_SHIFT; 4463 if (keg->uk_ipers > 1) { 4464 idx *= keg->uk_ipers; 4465 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4466 } 4467 4468 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4469 counter_u64_add(uma_skip_cnt, 1); 4470 return (true); 4471 } 4472 counter_u64_add(uma_dbg_cnt, 1); 4473 4474 return (false); 4475 } 4476 4477 /* 4478 * Set up the slab's freei data such that uma_dbg_free can function. 4479 * 4480 */ 4481 static void 4482 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4483 { 4484 uma_keg_t keg; 4485 int freei; 4486 4487 if (slab == NULL) { 4488 slab = uma_dbg_getslab(zone, item); 4489 if (slab == NULL) 4490 panic("uma: item %p did not belong to zone %s\n", 4491 item, zone->uz_name); 4492 } 4493 keg = zone->uz_keg; 4494 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4495 4496 if (BIT_ISSET(SLAB_MAX_SETSIZE, freei, &slab->us_debugfree)) 4497 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4498 item, zone, zone->uz_name, slab, freei); 4499 BIT_SET_ATOMIC(SLAB_MAX_SETSIZE, freei, &slab->us_debugfree); 4500 4501 return; 4502 } 4503 4504 /* 4505 * Verifies freed addresses. Checks for alignment, valid slab membership 4506 * and duplicate frees. 4507 * 4508 */ 4509 static void 4510 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4511 { 4512 uma_keg_t keg; 4513 int freei; 4514 4515 if (slab == NULL) { 4516 slab = uma_dbg_getslab(zone, item); 4517 if (slab == NULL) 4518 panic("uma: Freed item %p did not belong to zone %s\n", 4519 item, zone->uz_name); 4520 } 4521 keg = zone->uz_keg; 4522 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4523 4524 if (freei >= keg->uk_ipers) 4525 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4526 item, zone, zone->uz_name, slab, freei); 4527 4528 if (((freei * keg->uk_rsize) + slab->us_data) != item) 4529 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4530 item, zone, zone->uz_name, slab, freei); 4531 4532 if (!BIT_ISSET(SLAB_MAX_SETSIZE, freei, &slab->us_debugfree)) 4533 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4534 item, zone, zone->uz_name, slab, freei); 4535 4536 BIT_CLR_ATOMIC(SLAB_MAX_SETSIZE, freei, &slab->us_debugfree); 4537 } 4538 #endif /* INVARIANTS */ 4539 4540 #ifdef DDB 4541 static int64_t 4542 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 4543 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 4544 { 4545 uint64_t frees; 4546 int i; 4547 4548 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4549 *allocs = counter_u64_fetch(z->uz_allocs); 4550 frees = counter_u64_fetch(z->uz_frees); 4551 *sleeps = z->uz_sleeps; 4552 *cachefree = 0; 4553 *xdomain = 0; 4554 } else 4555 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 4556 xdomain); 4557 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4558 (LIST_FIRST(&kz->uk_zones) != z))) 4559 *cachefree += kz->uk_free; 4560 for (i = 0; i < vm_ndomains; i++) 4561 *cachefree += z->uz_domain[i].uzd_nitems; 4562 *used = *allocs - frees; 4563 return (((int64_t)*used + *cachefree) * kz->uk_size); 4564 } 4565 4566 DB_SHOW_COMMAND(uma, db_show_uma) 4567 { 4568 const char *fmt_hdr, *fmt_entry; 4569 uma_keg_t kz; 4570 uma_zone_t z; 4571 uint64_t allocs, used, sleeps, xdomain; 4572 long cachefree; 4573 /* variables for sorting */ 4574 uma_keg_t cur_keg; 4575 uma_zone_t cur_zone, last_zone; 4576 int64_t cur_size, last_size, size; 4577 int ties; 4578 4579 /* /i option produces machine-parseable CSV output */ 4580 if (modif[0] == 'i') { 4581 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 4582 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 4583 } else { 4584 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 4585 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 4586 } 4587 4588 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 4589 "Sleeps", "Bucket", "Total Mem", "XFree"); 4590 4591 /* Sort the zones with largest size first. */ 4592 last_zone = NULL; 4593 last_size = INT64_MAX; 4594 for (;;) { 4595 cur_zone = NULL; 4596 cur_size = -1; 4597 ties = 0; 4598 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4599 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4600 /* 4601 * In the case of size ties, print out zones 4602 * in the order they are encountered. That is, 4603 * when we encounter the most recently output 4604 * zone, we have already printed all preceding 4605 * ties, and we must print all following ties. 4606 */ 4607 if (z == last_zone) { 4608 ties = 1; 4609 continue; 4610 } 4611 size = get_uma_stats(kz, z, &allocs, &used, 4612 &sleeps, &cachefree, &xdomain); 4613 if (size > cur_size && size < last_size + ties) 4614 { 4615 cur_size = size; 4616 cur_zone = z; 4617 cur_keg = kz; 4618 } 4619 } 4620 } 4621 if (cur_zone == NULL) 4622 break; 4623 4624 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 4625 &sleeps, &cachefree, &xdomain); 4626 db_printf(fmt_entry, cur_zone->uz_name, 4627 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 4628 (uintmax_t)allocs, (uintmax_t)sleeps, 4629 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 4630 xdomain); 4631 4632 if (db_pager_quit) 4633 return; 4634 last_zone = cur_zone; 4635 last_size = cur_size; 4636 } 4637 } 4638 4639 DB_SHOW_COMMAND(umacache, db_show_umacache) 4640 { 4641 uma_zone_t z; 4642 uint64_t allocs, frees; 4643 long cachefree; 4644 int i; 4645 4646 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4647 "Requests", "Bucket"); 4648 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4649 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 4650 for (i = 0; i < vm_ndomains; i++) 4651 cachefree += z->uz_domain[i].uzd_nitems; 4652 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 4653 z->uz_name, (uintmax_t)z->uz_size, 4654 (intmax_t)(allocs - frees), cachefree, 4655 (uintmax_t)allocs, z->uz_bucket_size); 4656 if (db_pager_quit) 4657 return; 4658 } 4659 } 4660 #endif /* DDB */ 4661