1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/smr.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_domainset.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_param.h> 90 #include <vm/vm_phys.h> 91 #include <vm/vm_pagequeue.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/uma.h> 96 #include <vm/uma_int.h> 97 #include <vm/uma_dbg.h> 98 99 #include <ddb/ddb.h> 100 101 #ifdef DEBUG_MEMGUARD 102 #include <vm/memguard.h> 103 #endif 104 105 #include <machine/md_var.h> 106 107 #ifdef INVARIANTS 108 #define UMA_ALWAYS_CTORDTOR 1 109 #else 110 #define UMA_ALWAYS_CTORDTOR 0 111 #endif 112 113 /* 114 * This is the zone and keg from which all zones are spawned. 115 */ 116 static uma_zone_t kegs; 117 static uma_zone_t zones; 118 119 /* 120 * These are the two zones from which all offpage uma_slab_ts are allocated. 121 * 122 * One zone is for slab headers that can represent a larger number of items, 123 * making the slabs themselves more efficient, and the other zone is for 124 * headers that are smaller and represent fewer items, making the headers more 125 * efficient. 126 */ 127 #define SLABZONE_SIZE(setsize) \ 128 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 129 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 130 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 131 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 132 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 133 static uma_zone_t slabzones[2]; 134 135 /* 136 * The initial hash tables come out of this zone so they can be allocated 137 * prior to malloc coming up. 138 */ 139 static uma_zone_t hashzone; 140 141 /* The boot-time adjusted value for cache line alignment. */ 142 int uma_align_cache = 64 - 1; 143 144 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 145 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 146 147 /* 148 * Are we allowed to allocate buckets? 149 */ 150 static int bucketdisable = 1; 151 152 /* Linked list of all kegs in the system */ 153 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 154 155 /* Linked list of all cache-only zones in the system */ 156 static LIST_HEAD(,uma_zone) uma_cachezones = 157 LIST_HEAD_INITIALIZER(uma_cachezones); 158 159 /* This RW lock protects the keg list */ 160 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 161 162 /* 163 * First available virual address for boot time allocations. 164 */ 165 static vm_offset_t bootstart; 166 static vm_offset_t bootmem; 167 168 static struct sx uma_reclaim_lock; 169 170 /* 171 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 172 * allocations don't trigger a wakeup of the reclaim thread. 173 */ 174 unsigned long uma_kmem_limit = LONG_MAX; 175 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 176 "UMA kernel memory soft limit"); 177 unsigned long uma_kmem_total; 178 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 179 "UMA kernel memory usage"); 180 181 /* Is the VM done starting up? */ 182 static enum { 183 BOOT_COLD, 184 BOOT_KVA, 185 BOOT_RUNNING, 186 BOOT_SHUTDOWN, 187 } booted = BOOT_COLD; 188 189 /* 190 * This is the handle used to schedule events that need to happen 191 * outside of the allocation fast path. 192 */ 193 static struct callout uma_callout; 194 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 195 196 /* 197 * This structure is passed as the zone ctor arg so that I don't have to create 198 * a special allocation function just for zones. 199 */ 200 struct uma_zctor_args { 201 const char *name; 202 size_t size; 203 uma_ctor ctor; 204 uma_dtor dtor; 205 uma_init uminit; 206 uma_fini fini; 207 uma_import import; 208 uma_release release; 209 void *arg; 210 uma_keg_t keg; 211 int align; 212 uint32_t flags; 213 }; 214 215 struct uma_kctor_args { 216 uma_zone_t zone; 217 size_t size; 218 uma_init uminit; 219 uma_fini fini; 220 int align; 221 uint32_t flags; 222 }; 223 224 struct uma_bucket_zone { 225 uma_zone_t ubz_zone; 226 const char *ubz_name; 227 int ubz_entries; /* Number of items it can hold. */ 228 int ubz_maxsize; /* Maximum allocation size per-item. */ 229 }; 230 231 /* 232 * Compute the actual number of bucket entries to pack them in power 233 * of two sizes for more efficient space utilization. 234 */ 235 #define BUCKET_SIZE(n) \ 236 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 237 238 #define BUCKET_MAX BUCKET_SIZE(256) 239 #define BUCKET_MIN 2 240 241 struct uma_bucket_zone bucket_zones[] = { 242 /* Literal bucket sizes. */ 243 { NULL, "2 Bucket", 2, 4096 }, 244 { NULL, "4 Bucket", 4, 3072 }, 245 { NULL, "8 Bucket", 8, 2048 }, 246 { NULL, "16 Bucket", 16, 1024 }, 247 /* Rounded down power of 2 sizes for efficiency. */ 248 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 249 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 250 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 251 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 252 { NULL, NULL, 0} 253 }; 254 255 /* 256 * Flags and enumerations to be passed to internal functions. 257 */ 258 enum zfreeskip { 259 SKIP_NONE = 0, 260 SKIP_CNT = 0x00000001, 261 SKIP_DTOR = 0x00010000, 262 SKIP_FINI = 0x00020000, 263 }; 264 265 /* Prototypes.. */ 266 267 void uma_startup1(vm_offset_t); 268 void uma_startup2(void); 269 270 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 271 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 272 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 273 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 274 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 275 static void page_free(void *, vm_size_t, uint8_t); 276 static void pcpu_page_free(void *, vm_size_t, uint8_t); 277 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 278 static void cache_drain(uma_zone_t); 279 static void bucket_drain(uma_zone_t, uma_bucket_t); 280 static void bucket_cache_reclaim(uma_zone_t zone, bool); 281 static int keg_ctor(void *, int, void *, int); 282 static void keg_dtor(void *, int, void *); 283 static int zone_ctor(void *, int, void *, int); 284 static void zone_dtor(void *, int, void *); 285 static inline void item_dtor(uma_zone_t zone, void *item, int size, 286 void *udata, enum zfreeskip skip); 287 static int zero_init(void *, int, int); 288 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 289 int itemdomain, bool ws); 290 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 291 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 292 static void zone_timeout(uma_zone_t zone, void *); 293 static int hash_alloc(struct uma_hash *, u_int); 294 static int hash_expand(struct uma_hash *, struct uma_hash *); 295 static void hash_free(struct uma_hash *hash); 296 static void uma_timeout(void *); 297 static void uma_startup3(void); 298 static void uma_shutdown(void); 299 static void *zone_alloc_item(uma_zone_t, void *, int, int); 300 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 301 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 302 static void zone_free_limit(uma_zone_t zone, int count); 303 static void bucket_enable(void); 304 static void bucket_init(void); 305 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 306 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 307 static void bucket_zone_drain(void); 308 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 309 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 310 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 311 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 312 uma_fini fini, int align, uint32_t flags); 313 static int zone_import(void *, void **, int, int, int); 314 static void zone_release(void *, void **, int); 315 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 316 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 317 318 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 319 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 320 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 321 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 322 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 323 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 324 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 325 326 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 327 328 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 329 "Memory allocation debugging"); 330 331 #ifdef INVARIANTS 332 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 333 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 334 335 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 336 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 337 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 338 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 339 340 static u_int dbg_divisor = 1; 341 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 342 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 343 "Debug & thrash every this item in memory allocator"); 344 345 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 346 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 347 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 348 &uma_dbg_cnt, "memory items debugged"); 349 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 350 &uma_skip_cnt, "memory items skipped, not debugged"); 351 #endif 352 353 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 354 355 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 356 "Universal Memory Allocator"); 357 358 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 359 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 360 361 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 362 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 363 364 static int zone_warnings = 1; 365 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 366 "Warn when UMA zones becomes full"); 367 368 static int multipage_slabs = 1; 369 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 370 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 371 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 372 "UMA may choose larger slab sizes for better efficiency"); 373 374 /* 375 * Select the slab zone for an offpage slab with the given maximum item count. 376 */ 377 static inline uma_zone_t 378 slabzone(int ipers) 379 { 380 381 return (slabzones[ipers > SLABZONE0_SETSIZE]); 382 } 383 384 /* 385 * This routine checks to see whether or not it's safe to enable buckets. 386 */ 387 static void 388 bucket_enable(void) 389 { 390 391 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 392 bucketdisable = vm_page_count_min(); 393 } 394 395 /* 396 * Initialize bucket_zones, the array of zones of buckets of various sizes. 397 * 398 * For each zone, calculate the memory required for each bucket, consisting 399 * of the header and an array of pointers. 400 */ 401 static void 402 bucket_init(void) 403 { 404 struct uma_bucket_zone *ubz; 405 int size; 406 407 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 408 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 409 size += sizeof(void *) * ubz->ubz_entries; 410 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 411 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 412 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 413 UMA_ZONE_FIRSTTOUCH); 414 } 415 } 416 417 /* 418 * Given a desired number of entries for a bucket, return the zone from which 419 * to allocate the bucket. 420 */ 421 static struct uma_bucket_zone * 422 bucket_zone_lookup(int entries) 423 { 424 struct uma_bucket_zone *ubz; 425 426 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 427 if (ubz->ubz_entries >= entries) 428 return (ubz); 429 ubz--; 430 return (ubz); 431 } 432 433 static struct uma_bucket_zone * 434 bucket_zone_max(uma_zone_t zone, int nitems) 435 { 436 struct uma_bucket_zone *ubz; 437 int bpcpu; 438 439 bpcpu = 2; 440 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 441 /* Count the cross-domain bucket. */ 442 bpcpu++; 443 444 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 445 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 446 break; 447 if (ubz == &bucket_zones[0]) 448 ubz = NULL; 449 else 450 ubz--; 451 return (ubz); 452 } 453 454 static int 455 bucket_select(int size) 456 { 457 struct uma_bucket_zone *ubz; 458 459 ubz = &bucket_zones[0]; 460 if (size > ubz->ubz_maxsize) 461 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 462 463 for (; ubz->ubz_entries != 0; ubz++) 464 if (ubz->ubz_maxsize < size) 465 break; 466 ubz--; 467 return (ubz->ubz_entries); 468 } 469 470 static uma_bucket_t 471 bucket_alloc(uma_zone_t zone, void *udata, int flags) 472 { 473 struct uma_bucket_zone *ubz; 474 uma_bucket_t bucket; 475 476 /* 477 * Don't allocate buckets early in boot. 478 */ 479 if (__predict_false(booted < BOOT_KVA)) 480 return (NULL); 481 482 /* 483 * To limit bucket recursion we store the original zone flags 484 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 485 * NOVM flag to persist even through deep recursions. We also 486 * store ZFLAG_BUCKET once we have recursed attempting to allocate 487 * a bucket for a bucket zone so we do not allow infinite bucket 488 * recursion. This cookie will even persist to frees of unused 489 * buckets via the allocation path or bucket allocations in the 490 * free path. 491 */ 492 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 493 udata = (void *)(uintptr_t)zone->uz_flags; 494 else { 495 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 496 return (NULL); 497 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 498 } 499 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 500 flags |= M_NOVM; 501 ubz = bucket_zone_lookup(zone->uz_bucket_size); 502 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 503 ubz++; 504 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 505 if (bucket) { 506 #ifdef INVARIANTS 507 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 508 #endif 509 bucket->ub_cnt = 0; 510 bucket->ub_entries = ubz->ubz_entries; 511 bucket->ub_seq = SMR_SEQ_INVALID; 512 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 513 zone->uz_name, zone, bucket); 514 } 515 516 return (bucket); 517 } 518 519 static void 520 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 521 { 522 struct uma_bucket_zone *ubz; 523 524 if (bucket->ub_cnt != 0) 525 bucket_drain(zone, bucket); 526 527 KASSERT(bucket->ub_cnt == 0, 528 ("bucket_free: Freeing a non free bucket.")); 529 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 530 ("bucket_free: Freeing an SMR bucket.")); 531 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 532 udata = (void *)(uintptr_t)zone->uz_flags; 533 ubz = bucket_zone_lookup(bucket->ub_entries); 534 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 535 } 536 537 static void 538 bucket_zone_drain(void) 539 { 540 struct uma_bucket_zone *ubz; 541 542 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 543 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 544 } 545 546 /* 547 * Acquire the domain lock and record contention. 548 */ 549 static uma_zone_domain_t 550 zone_domain_lock(uma_zone_t zone, int domain) 551 { 552 uma_zone_domain_t zdom; 553 bool lockfail; 554 555 zdom = ZDOM_GET(zone, domain); 556 lockfail = false; 557 if (ZDOM_OWNED(zdom)) 558 lockfail = true; 559 ZDOM_LOCK(zdom); 560 /* This is unsynchronized. The counter does not need to be precise. */ 561 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 562 zone->uz_bucket_size++; 563 return (zdom); 564 } 565 566 /* 567 * Search for the domain with the least cached items and return it if it 568 * is out of balance with the preferred domain. 569 */ 570 static __noinline int 571 zone_domain_lowest(uma_zone_t zone, int pref) 572 { 573 long least, nitems, prefitems; 574 int domain; 575 int i; 576 577 prefitems = least = LONG_MAX; 578 domain = 0; 579 for (i = 0; i < vm_ndomains; i++) { 580 nitems = ZDOM_GET(zone, i)->uzd_nitems; 581 if (nitems < least) { 582 domain = i; 583 least = nitems; 584 } 585 if (domain == pref) 586 prefitems = nitems; 587 } 588 if (prefitems < least * 2) 589 return (pref); 590 591 return (domain); 592 } 593 594 /* 595 * Search for the domain with the most cached items and return it or the 596 * preferred domain if it has enough to proceed. 597 */ 598 static __noinline int 599 zone_domain_highest(uma_zone_t zone, int pref) 600 { 601 long most, nitems; 602 int domain; 603 int i; 604 605 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 606 return (pref); 607 608 most = 0; 609 domain = 0; 610 for (i = 0; i < vm_ndomains; i++) { 611 nitems = ZDOM_GET(zone, i)->uzd_nitems; 612 if (nitems > most) { 613 domain = i; 614 most = nitems; 615 } 616 } 617 618 return (domain); 619 } 620 621 /* 622 * Safely subtract cnt from imax. 623 */ 624 static void 625 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt) 626 { 627 long new; 628 long old; 629 630 old = zdom->uzd_imax; 631 do { 632 if (old <= cnt) 633 new = 0; 634 else 635 new = old - cnt; 636 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0); 637 } 638 639 /* 640 * Set the maximum imax value. 641 */ 642 static void 643 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 644 { 645 long old; 646 647 old = zdom->uzd_imax; 648 do { 649 if (old >= nitems) 650 break; 651 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 652 } 653 654 /* 655 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 656 * zone's caches. If a bucket is found the zone is not locked on return. 657 */ 658 static uma_bucket_t 659 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 660 { 661 uma_bucket_t bucket; 662 int i; 663 bool dtor = false; 664 665 ZDOM_LOCK_ASSERT(zdom); 666 667 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 668 return (NULL); 669 670 /* SMR Buckets can not be re-used until readers expire. */ 671 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 672 bucket->ub_seq != SMR_SEQ_INVALID) { 673 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 674 return (NULL); 675 bucket->ub_seq = SMR_SEQ_INVALID; 676 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 677 if (STAILQ_NEXT(bucket, ub_link) != NULL) 678 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 679 } 680 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 681 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 682 zdom->uzd_nitems -= bucket->ub_cnt; 683 684 /* 685 * Shift the bounds of the current WSS interval to avoid 686 * perturbing the estimate. 687 */ 688 if (reclaim) { 689 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 690 zone_domain_imax_sub(zdom, bucket->ub_cnt); 691 } else if (zdom->uzd_imin > zdom->uzd_nitems) 692 zdom->uzd_imin = zdom->uzd_nitems; 693 694 ZDOM_UNLOCK(zdom); 695 if (dtor) 696 for (i = 0; i < bucket->ub_cnt; i++) 697 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 698 NULL, SKIP_NONE); 699 700 return (bucket); 701 } 702 703 /* 704 * Insert a full bucket into the specified cache. The "ws" parameter indicates 705 * whether the bucket's contents should be counted as part of the zone's working 706 * set. The bucket may be freed if it exceeds the bucket limit. 707 */ 708 static void 709 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 710 const bool ws) 711 { 712 uma_zone_domain_t zdom; 713 714 /* We don't cache empty buckets. This can happen after a reclaim. */ 715 if (bucket->ub_cnt == 0) 716 goto out; 717 zdom = zone_domain_lock(zone, domain); 718 719 KASSERT(!ws || zdom->uzd_nitems < zone->uz_bucket_max, 720 ("%s: zone %p overflow", __func__, zone)); 721 722 /* 723 * Conditionally set the maximum number of items. 724 */ 725 zdom->uzd_nitems += bucket->ub_cnt; 726 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 727 if (ws) 728 zone_domain_imax_set(zdom, zdom->uzd_nitems); 729 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 730 zdom->uzd_seq = bucket->ub_seq; 731 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 732 ZDOM_UNLOCK(zdom); 733 return; 734 } 735 zdom->uzd_nitems -= bucket->ub_cnt; 736 ZDOM_UNLOCK(zdom); 737 out: 738 bucket_free(zone, bucket, udata); 739 } 740 741 /* Pops an item out of a per-cpu cache bucket. */ 742 static inline void * 743 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 744 { 745 void *item; 746 747 CRITICAL_ASSERT(curthread); 748 749 bucket->ucb_cnt--; 750 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 751 #ifdef INVARIANTS 752 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 753 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 754 #endif 755 cache->uc_allocs++; 756 757 return (item); 758 } 759 760 /* Pushes an item into a per-cpu cache bucket. */ 761 static inline void 762 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 763 { 764 765 CRITICAL_ASSERT(curthread); 766 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 767 ("uma_zfree: Freeing to non free bucket index.")); 768 769 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 770 bucket->ucb_cnt++; 771 cache->uc_frees++; 772 } 773 774 /* 775 * Unload a UMA bucket from a per-cpu cache. 776 */ 777 static inline uma_bucket_t 778 cache_bucket_unload(uma_cache_bucket_t bucket) 779 { 780 uma_bucket_t b; 781 782 b = bucket->ucb_bucket; 783 if (b != NULL) { 784 MPASS(b->ub_entries == bucket->ucb_entries); 785 b->ub_cnt = bucket->ucb_cnt; 786 bucket->ucb_bucket = NULL; 787 bucket->ucb_entries = bucket->ucb_cnt = 0; 788 } 789 790 return (b); 791 } 792 793 static inline uma_bucket_t 794 cache_bucket_unload_alloc(uma_cache_t cache) 795 { 796 797 return (cache_bucket_unload(&cache->uc_allocbucket)); 798 } 799 800 static inline uma_bucket_t 801 cache_bucket_unload_free(uma_cache_t cache) 802 { 803 804 return (cache_bucket_unload(&cache->uc_freebucket)); 805 } 806 807 static inline uma_bucket_t 808 cache_bucket_unload_cross(uma_cache_t cache) 809 { 810 811 return (cache_bucket_unload(&cache->uc_crossbucket)); 812 } 813 814 /* 815 * Load a bucket into a per-cpu cache bucket. 816 */ 817 static inline void 818 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 819 { 820 821 CRITICAL_ASSERT(curthread); 822 MPASS(bucket->ucb_bucket == NULL); 823 MPASS(b->ub_seq == SMR_SEQ_INVALID); 824 825 bucket->ucb_bucket = b; 826 bucket->ucb_cnt = b->ub_cnt; 827 bucket->ucb_entries = b->ub_entries; 828 } 829 830 static inline void 831 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 832 { 833 834 cache_bucket_load(&cache->uc_allocbucket, b); 835 } 836 837 static inline void 838 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 839 { 840 841 cache_bucket_load(&cache->uc_freebucket, b); 842 } 843 844 #ifdef NUMA 845 static inline void 846 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 847 { 848 849 cache_bucket_load(&cache->uc_crossbucket, b); 850 } 851 #endif 852 853 /* 854 * Copy and preserve ucb_spare. 855 */ 856 static inline void 857 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 858 { 859 860 b1->ucb_bucket = b2->ucb_bucket; 861 b1->ucb_entries = b2->ucb_entries; 862 b1->ucb_cnt = b2->ucb_cnt; 863 } 864 865 /* 866 * Swap two cache buckets. 867 */ 868 static inline void 869 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 870 { 871 struct uma_cache_bucket b3; 872 873 CRITICAL_ASSERT(curthread); 874 875 cache_bucket_copy(&b3, b1); 876 cache_bucket_copy(b1, b2); 877 cache_bucket_copy(b2, &b3); 878 } 879 880 /* 881 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 882 */ 883 static uma_bucket_t 884 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 885 { 886 uma_zone_domain_t zdom; 887 uma_bucket_t bucket; 888 889 /* 890 * Avoid the lock if possible. 891 */ 892 zdom = ZDOM_GET(zone, domain); 893 if (zdom->uzd_nitems == 0) 894 return (NULL); 895 896 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 897 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 898 return (NULL); 899 900 /* 901 * Check the zone's cache of buckets. 902 */ 903 zdom = zone_domain_lock(zone, domain); 904 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 905 KASSERT(bucket->ub_cnt != 0, 906 ("cache_fetch_bucket: Returning an empty bucket.")); 907 return (bucket); 908 } 909 ZDOM_UNLOCK(zdom); 910 911 return (NULL); 912 } 913 914 static void 915 zone_log_warning(uma_zone_t zone) 916 { 917 static const struct timeval warninterval = { 300, 0 }; 918 919 if (!zone_warnings || zone->uz_warning == NULL) 920 return; 921 922 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 923 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 924 } 925 926 static inline void 927 zone_maxaction(uma_zone_t zone) 928 { 929 930 if (zone->uz_maxaction.ta_func != NULL) 931 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 932 } 933 934 /* 935 * Routine called by timeout which is used to fire off some time interval 936 * based calculations. (stats, hash size, etc.) 937 * 938 * Arguments: 939 * arg Unused 940 * 941 * Returns: 942 * Nothing 943 */ 944 static void 945 uma_timeout(void *unused) 946 { 947 bucket_enable(); 948 zone_foreach(zone_timeout, NULL); 949 950 /* Reschedule this event */ 951 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 952 } 953 954 /* 955 * Update the working set size estimate for the zone's bucket cache. 956 * The constants chosen here are somewhat arbitrary. With an update period of 957 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 958 * last 100s. 959 */ 960 static void 961 zone_domain_update_wss(uma_zone_domain_t zdom) 962 { 963 long wss; 964 965 ZDOM_LOCK(zdom); 966 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 967 wss = zdom->uzd_imax - zdom->uzd_imin; 968 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 969 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 970 ZDOM_UNLOCK(zdom); 971 } 972 973 /* 974 * Routine to perform timeout driven calculations. This expands the 975 * hashes and does per cpu statistics aggregation. 976 * 977 * Returns nothing. 978 */ 979 static void 980 zone_timeout(uma_zone_t zone, void *unused) 981 { 982 uma_keg_t keg; 983 u_int slabs, pages; 984 985 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 986 goto update_wss; 987 988 keg = zone->uz_keg; 989 990 /* 991 * Hash zones are non-numa by definition so the first domain 992 * is the only one present. 993 */ 994 KEG_LOCK(keg, 0); 995 pages = keg->uk_domain[0].ud_pages; 996 997 /* 998 * Expand the keg hash table. 999 * 1000 * This is done if the number of slabs is larger than the hash size. 1001 * What I'm trying to do here is completely reduce collisions. This 1002 * may be a little aggressive. Should I allow for two collisions max? 1003 */ 1004 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1005 struct uma_hash newhash; 1006 struct uma_hash oldhash; 1007 int ret; 1008 1009 /* 1010 * This is so involved because allocating and freeing 1011 * while the keg lock is held will lead to deadlock. 1012 * I have to do everything in stages and check for 1013 * races. 1014 */ 1015 KEG_UNLOCK(keg, 0); 1016 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1017 KEG_LOCK(keg, 0); 1018 if (ret) { 1019 if (hash_expand(&keg->uk_hash, &newhash)) { 1020 oldhash = keg->uk_hash; 1021 keg->uk_hash = newhash; 1022 } else 1023 oldhash = newhash; 1024 1025 KEG_UNLOCK(keg, 0); 1026 hash_free(&oldhash); 1027 goto update_wss; 1028 } 1029 } 1030 KEG_UNLOCK(keg, 0); 1031 1032 update_wss: 1033 for (int i = 0; i < vm_ndomains; i++) 1034 zone_domain_update_wss(ZDOM_GET(zone, i)); 1035 } 1036 1037 /* 1038 * Allocate and zero fill the next sized hash table from the appropriate 1039 * backing store. 1040 * 1041 * Arguments: 1042 * hash A new hash structure with the old hash size in uh_hashsize 1043 * 1044 * Returns: 1045 * 1 on success and 0 on failure. 1046 */ 1047 static int 1048 hash_alloc(struct uma_hash *hash, u_int size) 1049 { 1050 size_t alloc; 1051 1052 KASSERT(powerof2(size), ("hash size must be power of 2")); 1053 if (size > UMA_HASH_SIZE_INIT) { 1054 hash->uh_hashsize = size; 1055 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1056 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1057 } else { 1058 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1059 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1060 UMA_ANYDOMAIN, M_WAITOK); 1061 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1062 } 1063 if (hash->uh_slab_hash) { 1064 bzero(hash->uh_slab_hash, alloc); 1065 hash->uh_hashmask = hash->uh_hashsize - 1; 1066 return (1); 1067 } 1068 1069 return (0); 1070 } 1071 1072 /* 1073 * Expands the hash table for HASH zones. This is done from zone_timeout 1074 * to reduce collisions. This must not be done in the regular allocation 1075 * path, otherwise, we can recurse on the vm while allocating pages. 1076 * 1077 * Arguments: 1078 * oldhash The hash you want to expand 1079 * newhash The hash structure for the new table 1080 * 1081 * Returns: 1082 * Nothing 1083 * 1084 * Discussion: 1085 */ 1086 static int 1087 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1088 { 1089 uma_hash_slab_t slab; 1090 u_int hval; 1091 u_int idx; 1092 1093 if (!newhash->uh_slab_hash) 1094 return (0); 1095 1096 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1097 return (0); 1098 1099 /* 1100 * I need to investigate hash algorithms for resizing without a 1101 * full rehash. 1102 */ 1103 1104 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1105 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1106 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1107 LIST_REMOVE(slab, uhs_hlink); 1108 hval = UMA_HASH(newhash, slab->uhs_data); 1109 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1110 slab, uhs_hlink); 1111 } 1112 1113 return (1); 1114 } 1115 1116 /* 1117 * Free the hash bucket to the appropriate backing store. 1118 * 1119 * Arguments: 1120 * slab_hash The hash bucket we're freeing 1121 * hashsize The number of entries in that hash bucket 1122 * 1123 * Returns: 1124 * Nothing 1125 */ 1126 static void 1127 hash_free(struct uma_hash *hash) 1128 { 1129 if (hash->uh_slab_hash == NULL) 1130 return; 1131 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1132 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1133 else 1134 free(hash->uh_slab_hash, M_UMAHASH); 1135 } 1136 1137 /* 1138 * Frees all outstanding items in a bucket 1139 * 1140 * Arguments: 1141 * zone The zone to free to, must be unlocked. 1142 * bucket The free/alloc bucket with items. 1143 * 1144 * Returns: 1145 * Nothing 1146 */ 1147 static void 1148 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1149 { 1150 int i; 1151 1152 if (bucket->ub_cnt == 0) 1153 return; 1154 1155 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1156 bucket->ub_seq != SMR_SEQ_INVALID) { 1157 smr_wait(zone->uz_smr, bucket->ub_seq); 1158 bucket->ub_seq = SMR_SEQ_INVALID; 1159 for (i = 0; i < bucket->ub_cnt; i++) 1160 item_dtor(zone, bucket->ub_bucket[i], 1161 zone->uz_size, NULL, SKIP_NONE); 1162 } 1163 if (zone->uz_fini) 1164 for (i = 0; i < bucket->ub_cnt; i++) 1165 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1166 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1167 if (zone->uz_max_items > 0) 1168 zone_free_limit(zone, bucket->ub_cnt); 1169 #ifdef INVARIANTS 1170 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1171 #endif 1172 bucket->ub_cnt = 0; 1173 } 1174 1175 /* 1176 * Drains the per cpu caches for a zone. 1177 * 1178 * NOTE: This may only be called while the zone is being torn down, and not 1179 * during normal operation. This is necessary in order that we do not have 1180 * to migrate CPUs to drain the per-CPU caches. 1181 * 1182 * Arguments: 1183 * zone The zone to drain, must be unlocked. 1184 * 1185 * Returns: 1186 * Nothing 1187 */ 1188 static void 1189 cache_drain(uma_zone_t zone) 1190 { 1191 uma_cache_t cache; 1192 uma_bucket_t bucket; 1193 smr_seq_t seq; 1194 int cpu; 1195 1196 /* 1197 * XXX: It is safe to not lock the per-CPU caches, because we're 1198 * tearing down the zone anyway. I.e., there will be no further use 1199 * of the caches at this point. 1200 * 1201 * XXX: It would good to be able to assert that the zone is being 1202 * torn down to prevent improper use of cache_drain(). 1203 */ 1204 seq = SMR_SEQ_INVALID; 1205 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1206 seq = smr_advance(zone->uz_smr); 1207 CPU_FOREACH(cpu) { 1208 cache = &zone->uz_cpu[cpu]; 1209 bucket = cache_bucket_unload_alloc(cache); 1210 if (bucket != NULL) 1211 bucket_free(zone, bucket, NULL); 1212 bucket = cache_bucket_unload_free(cache); 1213 if (bucket != NULL) { 1214 bucket->ub_seq = seq; 1215 bucket_free(zone, bucket, NULL); 1216 } 1217 bucket = cache_bucket_unload_cross(cache); 1218 if (bucket != NULL) { 1219 bucket->ub_seq = seq; 1220 bucket_free(zone, bucket, NULL); 1221 } 1222 } 1223 bucket_cache_reclaim(zone, true); 1224 } 1225 1226 static void 1227 cache_shrink(uma_zone_t zone, void *unused) 1228 { 1229 1230 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1231 return; 1232 1233 zone->uz_bucket_size = 1234 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1235 } 1236 1237 static void 1238 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1239 { 1240 uma_cache_t cache; 1241 uma_bucket_t b1, b2, b3; 1242 int domain; 1243 1244 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1245 return; 1246 1247 b1 = b2 = b3 = NULL; 1248 critical_enter(); 1249 cache = &zone->uz_cpu[curcpu]; 1250 domain = PCPU_GET(domain); 1251 b1 = cache_bucket_unload_alloc(cache); 1252 1253 /* 1254 * Don't flush SMR zone buckets. This leaves the zone without a 1255 * bucket and forces every free to synchronize(). 1256 */ 1257 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1258 b2 = cache_bucket_unload_free(cache); 1259 b3 = cache_bucket_unload_cross(cache); 1260 } 1261 critical_exit(); 1262 1263 if (b1 != NULL) 1264 zone_free_bucket(zone, b1, NULL, domain, false); 1265 if (b2 != NULL) 1266 zone_free_bucket(zone, b2, NULL, domain, false); 1267 if (b3 != NULL) { 1268 /* Adjust the domain so it goes to zone_free_cross. */ 1269 domain = (domain + 1) % vm_ndomains; 1270 zone_free_bucket(zone, b3, NULL, domain, false); 1271 } 1272 } 1273 1274 /* 1275 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1276 * This is an expensive call because it needs to bind to all CPUs 1277 * one by one and enter a critical section on each of them in order 1278 * to safely access their cache buckets. 1279 * Zone lock must not be held on call this function. 1280 */ 1281 static void 1282 pcpu_cache_drain_safe(uma_zone_t zone) 1283 { 1284 int cpu; 1285 1286 /* 1287 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1288 */ 1289 if (zone) 1290 cache_shrink(zone, NULL); 1291 else 1292 zone_foreach(cache_shrink, NULL); 1293 1294 CPU_FOREACH(cpu) { 1295 thread_lock(curthread); 1296 sched_bind(curthread, cpu); 1297 thread_unlock(curthread); 1298 1299 if (zone) 1300 cache_drain_safe_cpu(zone, NULL); 1301 else 1302 zone_foreach(cache_drain_safe_cpu, NULL); 1303 } 1304 thread_lock(curthread); 1305 sched_unbind(curthread); 1306 thread_unlock(curthread); 1307 } 1308 1309 /* 1310 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1311 * requested a drain, otherwise the per-domain caches are trimmed to either 1312 * estimated working set size. 1313 */ 1314 static void 1315 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1316 { 1317 uma_zone_domain_t zdom; 1318 uma_bucket_t bucket; 1319 long target; 1320 int i; 1321 1322 /* 1323 * Shrink the zone bucket size to ensure that the per-CPU caches 1324 * don't grow too large. 1325 */ 1326 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1327 zone->uz_bucket_size--; 1328 1329 for (i = 0; i < vm_ndomains; i++) { 1330 /* 1331 * The cross bucket is partially filled and not part of 1332 * the item count. Reclaim it individually here. 1333 */ 1334 zdom = ZDOM_GET(zone, i); 1335 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1336 ZONE_CROSS_LOCK(zone); 1337 bucket = zdom->uzd_cross; 1338 zdom->uzd_cross = NULL; 1339 ZONE_CROSS_UNLOCK(zone); 1340 if (bucket != NULL) 1341 bucket_free(zone, bucket, NULL); 1342 } 1343 1344 /* 1345 * If we were asked to drain the zone, we are done only once 1346 * this bucket cache is empty. Otherwise, we reclaim items in 1347 * excess of the zone's estimated working set size. If the 1348 * difference nitems - imin is larger than the WSS estimate, 1349 * then the estimate will grow at the end of this interval and 1350 * we ignore the historical average. 1351 */ 1352 ZDOM_LOCK(zdom); 1353 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1354 zdom->uzd_imin); 1355 while (zdom->uzd_nitems > target) { 1356 bucket = zone_fetch_bucket(zone, zdom, true); 1357 if (bucket == NULL) 1358 break; 1359 bucket_free(zone, bucket, NULL); 1360 ZDOM_LOCK(zdom); 1361 } 1362 ZDOM_UNLOCK(zdom); 1363 } 1364 } 1365 1366 static void 1367 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1368 { 1369 uint8_t *mem; 1370 int i; 1371 uint8_t flags; 1372 1373 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1374 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1375 1376 mem = slab_data(slab, keg); 1377 flags = slab->us_flags; 1378 i = start; 1379 if (keg->uk_fini != NULL) { 1380 for (i--; i > -1; i--) 1381 #ifdef INVARIANTS 1382 /* 1383 * trash_fini implies that dtor was trash_dtor. trash_fini 1384 * would check that memory hasn't been modified since free, 1385 * which executed trash_dtor. 1386 * That's why we need to run uma_dbg_kskip() check here, 1387 * albeit we don't make skip check for other init/fini 1388 * invocations. 1389 */ 1390 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1391 keg->uk_fini != trash_fini) 1392 #endif 1393 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1394 } 1395 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1396 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1397 NULL, SKIP_NONE); 1398 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1399 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1400 } 1401 1402 /* 1403 * Frees pages from a keg back to the system. This is done on demand from 1404 * the pageout daemon. 1405 * 1406 * Returns nothing. 1407 */ 1408 static void 1409 keg_drain(uma_keg_t keg) 1410 { 1411 struct slabhead freeslabs; 1412 uma_domain_t dom; 1413 uma_slab_t slab, tmp; 1414 int i, n; 1415 1416 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1417 return; 1418 1419 for (i = 0; i < vm_ndomains; i++) { 1420 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1421 keg->uk_name, keg, i, dom->ud_free_items); 1422 dom = &keg->uk_domain[i]; 1423 LIST_INIT(&freeslabs); 1424 1425 KEG_LOCK(keg, i); 1426 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1427 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 1428 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1429 } 1430 n = dom->ud_free_slabs; 1431 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1432 dom->ud_free_slabs = 0; 1433 dom->ud_free_items -= n * keg->uk_ipers; 1434 dom->ud_pages -= n * keg->uk_ppera; 1435 KEG_UNLOCK(keg, i); 1436 1437 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1438 keg_free_slab(keg, slab, keg->uk_ipers); 1439 } 1440 } 1441 1442 static void 1443 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1444 { 1445 1446 /* 1447 * Set draining to interlock with zone_dtor() so we can release our 1448 * locks as we go. Only dtor() should do a WAITOK call since it 1449 * is the only call that knows the structure will still be available 1450 * when it wakes up. 1451 */ 1452 ZONE_LOCK(zone); 1453 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1454 if (waitok == M_NOWAIT) 1455 goto out; 1456 msleep(zone, &ZDOM_GET(zone, 0)->uzd_lock, PVM, "zonedrain", 1457 1); 1458 } 1459 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1460 ZONE_UNLOCK(zone); 1461 bucket_cache_reclaim(zone, drain); 1462 1463 /* 1464 * The DRAINING flag protects us from being freed while 1465 * we're running. Normally the uma_rwlock would protect us but we 1466 * must be able to release and acquire the right lock for each keg. 1467 */ 1468 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1469 keg_drain(zone->uz_keg); 1470 ZONE_LOCK(zone); 1471 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1472 wakeup(zone); 1473 out: 1474 ZONE_UNLOCK(zone); 1475 } 1476 1477 static void 1478 zone_drain(uma_zone_t zone, void *unused) 1479 { 1480 1481 zone_reclaim(zone, M_NOWAIT, true); 1482 } 1483 1484 static void 1485 zone_trim(uma_zone_t zone, void *unused) 1486 { 1487 1488 zone_reclaim(zone, M_NOWAIT, false); 1489 } 1490 1491 /* 1492 * Allocate a new slab for a keg and inserts it into the partial slab list. 1493 * The keg should be unlocked on entry. If the allocation succeeds it will 1494 * be locked on return. 1495 * 1496 * Arguments: 1497 * flags Wait flags for the item initialization routine 1498 * aflags Wait flags for the slab allocation 1499 * 1500 * Returns: 1501 * The slab that was allocated or NULL if there is no memory and the 1502 * caller specified M_NOWAIT. 1503 */ 1504 static uma_slab_t 1505 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1506 int aflags) 1507 { 1508 uma_domain_t dom; 1509 uma_alloc allocf; 1510 uma_slab_t slab; 1511 unsigned long size; 1512 uint8_t *mem; 1513 uint8_t sflags; 1514 int i; 1515 1516 KASSERT(domain >= 0 && domain < vm_ndomains, 1517 ("keg_alloc_slab: domain %d out of range", domain)); 1518 1519 allocf = keg->uk_allocf; 1520 slab = NULL; 1521 mem = NULL; 1522 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1523 uma_hash_slab_t hslab; 1524 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1525 domain, aflags); 1526 if (hslab == NULL) 1527 goto fail; 1528 slab = &hslab->uhs_slab; 1529 } 1530 1531 /* 1532 * This reproduces the old vm_zone behavior of zero filling pages the 1533 * first time they are added to a zone. 1534 * 1535 * Malloced items are zeroed in uma_zalloc. 1536 */ 1537 1538 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1539 aflags |= M_ZERO; 1540 else 1541 aflags &= ~M_ZERO; 1542 1543 if (keg->uk_flags & UMA_ZONE_NODUMP) 1544 aflags |= M_NODUMP; 1545 1546 /* zone is passed for legacy reasons. */ 1547 size = keg->uk_ppera * PAGE_SIZE; 1548 mem = allocf(zone, size, domain, &sflags, aflags); 1549 if (mem == NULL) { 1550 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1551 zone_free_item(slabzone(keg->uk_ipers), 1552 slab_tohashslab(slab), NULL, SKIP_NONE); 1553 goto fail; 1554 } 1555 uma_total_inc(size); 1556 1557 /* For HASH zones all pages go to the same uma_domain. */ 1558 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1559 domain = 0; 1560 1561 /* Point the slab into the allocated memory */ 1562 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1563 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1564 else 1565 slab_tohashslab(slab)->uhs_data = mem; 1566 1567 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1568 for (i = 0; i < keg->uk_ppera; i++) 1569 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1570 zone, slab); 1571 1572 slab->us_freecount = keg->uk_ipers; 1573 slab->us_flags = sflags; 1574 slab->us_domain = domain; 1575 1576 BIT_FILL(keg->uk_ipers, &slab->us_free); 1577 #ifdef INVARIANTS 1578 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1579 #endif 1580 1581 if (keg->uk_init != NULL) { 1582 for (i = 0; i < keg->uk_ipers; i++) 1583 if (keg->uk_init(slab_item(slab, keg, i), 1584 keg->uk_size, flags) != 0) 1585 break; 1586 if (i != keg->uk_ipers) { 1587 keg_free_slab(keg, slab, i); 1588 goto fail; 1589 } 1590 } 1591 KEG_LOCK(keg, domain); 1592 1593 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1594 slab, keg->uk_name, keg); 1595 1596 if (keg->uk_flags & UMA_ZFLAG_HASH) 1597 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1598 1599 /* 1600 * If we got a slab here it's safe to mark it partially used 1601 * and return. We assume that the caller is going to remove 1602 * at least one item. 1603 */ 1604 dom = &keg->uk_domain[domain]; 1605 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1606 dom->ud_pages += keg->uk_ppera; 1607 dom->ud_free_items += keg->uk_ipers; 1608 1609 return (slab); 1610 1611 fail: 1612 return (NULL); 1613 } 1614 1615 /* 1616 * This function is intended to be used early on in place of page_alloc() so 1617 * that we may use the boot time page cache to satisfy allocations before 1618 * the VM is ready. 1619 */ 1620 static void * 1621 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1622 int wait) 1623 { 1624 vm_paddr_t pa; 1625 vm_page_t m; 1626 void *mem; 1627 int pages; 1628 int i; 1629 1630 pages = howmany(bytes, PAGE_SIZE); 1631 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1632 1633 *pflag = UMA_SLAB_BOOT; 1634 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1635 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1636 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1637 if (m == NULL) 1638 return (NULL); 1639 1640 pa = VM_PAGE_TO_PHYS(m); 1641 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1642 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1643 defined(__riscv) || defined(__powerpc64__) 1644 if ((wait & M_NODUMP) == 0) 1645 dump_add_page(pa); 1646 #endif 1647 } 1648 /* Allocate KVA and indirectly advance bootmem. */ 1649 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1650 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1651 if ((wait & M_ZERO) != 0) 1652 bzero(mem, pages * PAGE_SIZE); 1653 1654 return (mem); 1655 } 1656 1657 static void 1658 startup_free(void *mem, vm_size_t bytes) 1659 { 1660 vm_offset_t va; 1661 vm_page_t m; 1662 1663 va = (vm_offset_t)mem; 1664 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1665 pmap_remove(kernel_pmap, va, va + bytes); 1666 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1667 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1668 defined(__riscv) || defined(__powerpc64__) 1669 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1670 #endif 1671 vm_page_unwire_noq(m); 1672 vm_page_free(m); 1673 } 1674 } 1675 1676 /* 1677 * Allocates a number of pages from the system 1678 * 1679 * Arguments: 1680 * bytes The number of bytes requested 1681 * wait Shall we wait? 1682 * 1683 * Returns: 1684 * A pointer to the alloced memory or possibly 1685 * NULL if M_NOWAIT is set. 1686 */ 1687 static void * 1688 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1689 int wait) 1690 { 1691 void *p; /* Returned page */ 1692 1693 *pflag = UMA_SLAB_KERNEL; 1694 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1695 1696 return (p); 1697 } 1698 1699 static void * 1700 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1701 int wait) 1702 { 1703 struct pglist alloctail; 1704 vm_offset_t addr, zkva; 1705 int cpu, flags; 1706 vm_page_t p, p_next; 1707 #ifdef NUMA 1708 struct pcpu *pc; 1709 #endif 1710 1711 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1712 1713 TAILQ_INIT(&alloctail); 1714 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1715 malloc2vm_flags(wait); 1716 *pflag = UMA_SLAB_KERNEL; 1717 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1718 if (CPU_ABSENT(cpu)) { 1719 p = vm_page_alloc(NULL, 0, flags); 1720 } else { 1721 #ifndef NUMA 1722 p = vm_page_alloc(NULL, 0, flags); 1723 #else 1724 pc = pcpu_find(cpu); 1725 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1726 p = NULL; 1727 else 1728 p = vm_page_alloc_domain(NULL, 0, 1729 pc->pc_domain, flags); 1730 if (__predict_false(p == NULL)) 1731 p = vm_page_alloc(NULL, 0, flags); 1732 #endif 1733 } 1734 if (__predict_false(p == NULL)) 1735 goto fail; 1736 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1737 } 1738 if ((addr = kva_alloc(bytes)) == 0) 1739 goto fail; 1740 zkva = addr; 1741 TAILQ_FOREACH(p, &alloctail, listq) { 1742 pmap_qenter(zkva, &p, 1); 1743 zkva += PAGE_SIZE; 1744 } 1745 return ((void*)addr); 1746 fail: 1747 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1748 vm_page_unwire_noq(p); 1749 vm_page_free(p); 1750 } 1751 return (NULL); 1752 } 1753 1754 /* 1755 * Allocates a number of pages from within an object 1756 * 1757 * Arguments: 1758 * bytes The number of bytes requested 1759 * wait Shall we wait? 1760 * 1761 * Returns: 1762 * A pointer to the alloced memory or possibly 1763 * NULL if M_NOWAIT is set. 1764 */ 1765 static void * 1766 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1767 int wait) 1768 { 1769 TAILQ_HEAD(, vm_page) alloctail; 1770 u_long npages; 1771 vm_offset_t retkva, zkva; 1772 vm_page_t p, p_next; 1773 uma_keg_t keg; 1774 1775 TAILQ_INIT(&alloctail); 1776 keg = zone->uz_keg; 1777 1778 npages = howmany(bytes, PAGE_SIZE); 1779 while (npages > 0) { 1780 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1781 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1782 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1783 VM_ALLOC_NOWAIT)); 1784 if (p != NULL) { 1785 /* 1786 * Since the page does not belong to an object, its 1787 * listq is unused. 1788 */ 1789 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1790 npages--; 1791 continue; 1792 } 1793 /* 1794 * Page allocation failed, free intermediate pages and 1795 * exit. 1796 */ 1797 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1798 vm_page_unwire_noq(p); 1799 vm_page_free(p); 1800 } 1801 return (NULL); 1802 } 1803 *flags = UMA_SLAB_PRIV; 1804 zkva = keg->uk_kva + 1805 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1806 retkva = zkva; 1807 TAILQ_FOREACH(p, &alloctail, listq) { 1808 pmap_qenter(zkva, &p, 1); 1809 zkva += PAGE_SIZE; 1810 } 1811 1812 return ((void *)retkva); 1813 } 1814 1815 /* 1816 * Allocate physically contiguous pages. 1817 */ 1818 static void * 1819 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1820 int wait) 1821 { 1822 1823 *pflag = UMA_SLAB_KERNEL; 1824 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 1825 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 1826 } 1827 1828 /* 1829 * Frees a number of pages to the system 1830 * 1831 * Arguments: 1832 * mem A pointer to the memory to be freed 1833 * size The size of the memory being freed 1834 * flags The original p->us_flags field 1835 * 1836 * Returns: 1837 * Nothing 1838 */ 1839 static void 1840 page_free(void *mem, vm_size_t size, uint8_t flags) 1841 { 1842 1843 if ((flags & UMA_SLAB_BOOT) != 0) { 1844 startup_free(mem, size); 1845 return; 1846 } 1847 1848 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 1849 ("UMA: page_free used with invalid flags %x", flags)); 1850 1851 kmem_free((vm_offset_t)mem, size); 1852 } 1853 1854 /* 1855 * Frees pcpu zone allocations 1856 * 1857 * Arguments: 1858 * mem A pointer to the memory to be freed 1859 * size The size of the memory being freed 1860 * flags The original p->us_flags field 1861 * 1862 * Returns: 1863 * Nothing 1864 */ 1865 static void 1866 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1867 { 1868 vm_offset_t sva, curva; 1869 vm_paddr_t paddr; 1870 vm_page_t m; 1871 1872 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1873 1874 if ((flags & UMA_SLAB_BOOT) != 0) { 1875 startup_free(mem, size); 1876 return; 1877 } 1878 1879 sva = (vm_offset_t)mem; 1880 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1881 paddr = pmap_kextract(curva); 1882 m = PHYS_TO_VM_PAGE(paddr); 1883 vm_page_unwire_noq(m); 1884 vm_page_free(m); 1885 } 1886 pmap_qremove(sva, size >> PAGE_SHIFT); 1887 kva_free(sva, size); 1888 } 1889 1890 1891 /* 1892 * Zero fill initializer 1893 * 1894 * Arguments/Returns follow uma_init specifications 1895 */ 1896 static int 1897 zero_init(void *mem, int size, int flags) 1898 { 1899 bzero(mem, size); 1900 return (0); 1901 } 1902 1903 #ifdef INVARIANTS 1904 struct noslabbits * 1905 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1906 { 1907 1908 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1909 } 1910 #endif 1911 1912 /* 1913 * Actual size of embedded struct slab (!OFFPAGE). 1914 */ 1915 size_t 1916 slab_sizeof(int nitems) 1917 { 1918 size_t s; 1919 1920 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1921 return (roundup(s, UMA_ALIGN_PTR + 1)); 1922 } 1923 1924 /* 1925 * Size of memory for embedded slabs (!OFFPAGE). 1926 */ 1927 size_t 1928 slab_space(int nitems) 1929 { 1930 return (UMA_SLAB_SIZE - slab_sizeof(nitems)); 1931 } 1932 1933 #define UMA_FIXPT_SHIFT 31 1934 #define UMA_FRAC_FIXPT(n, d) \ 1935 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1936 #define UMA_FIXPT_PCT(f) \ 1937 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1938 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1939 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1940 1941 /* 1942 * Compute the number of items that will fit in a slab. If hdr is true, the 1943 * item count may be limited to provide space in the slab for an inline slab 1944 * header. Otherwise, all slab space will be provided for item storage. 1945 */ 1946 static u_int 1947 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1948 { 1949 u_int ipers; 1950 u_int padpi; 1951 1952 /* The padding between items is not needed after the last item. */ 1953 padpi = rsize - size; 1954 1955 if (hdr) { 1956 /* 1957 * Start with the maximum item count and remove items until 1958 * the slab header first alongside the allocatable memory. 1959 */ 1960 for (ipers = MIN(SLAB_MAX_SETSIZE, 1961 (slabsize + padpi - slab_sizeof(1)) / rsize); 1962 ipers > 0 && 1963 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 1964 ipers--) 1965 continue; 1966 } else { 1967 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 1968 } 1969 1970 return (ipers); 1971 } 1972 1973 /* 1974 * Compute the number of items that will fit in a slab for a startup zone. 1975 */ 1976 int 1977 slab_ipers(size_t size, int align) 1978 { 1979 int rsize; 1980 1981 rsize = roundup(size, align + 1); /* Assume no CACHESPREAD */ 1982 return (slab_ipers_hdr(size, rsize, UMA_SLAB_SIZE, true)); 1983 } 1984 1985 struct keg_layout_result { 1986 u_int format; 1987 u_int slabsize; 1988 u_int ipers; 1989 u_int eff; 1990 }; 1991 1992 static void 1993 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 1994 struct keg_layout_result *kl) 1995 { 1996 u_int total; 1997 1998 kl->format = fmt; 1999 kl->slabsize = slabsize; 2000 2001 /* Handle INTERNAL as inline with an extra page. */ 2002 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 2003 kl->format &= ~UMA_ZFLAG_INTERNAL; 2004 kl->slabsize += PAGE_SIZE; 2005 } 2006 2007 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2008 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2009 2010 /* Account for memory used by an offpage slab header. */ 2011 total = kl->slabsize; 2012 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2013 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2014 2015 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2016 } 2017 2018 /* 2019 * Determine the format of a uma keg. This determines where the slab header 2020 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2021 * 2022 * Arguments 2023 * keg The zone we should initialize 2024 * 2025 * Returns 2026 * Nothing 2027 */ 2028 static void 2029 keg_layout(uma_keg_t keg) 2030 { 2031 struct keg_layout_result kl = {}, kl_tmp; 2032 u_int fmts[2]; 2033 u_int alignsize; 2034 u_int nfmt; 2035 u_int pages; 2036 u_int rsize; 2037 u_int slabsize; 2038 u_int i, j; 2039 2040 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2041 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2042 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2043 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2044 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2045 PRINT_UMA_ZFLAGS)); 2046 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2047 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2048 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2049 PRINT_UMA_ZFLAGS)); 2050 2051 alignsize = keg->uk_align + 1; 2052 2053 /* 2054 * Calculate the size of each allocation (rsize) according to 2055 * alignment. If the requested size is smaller than we have 2056 * allocation bits for we round it up. 2057 */ 2058 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2059 rsize = roundup2(rsize, alignsize); 2060 2061 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2062 /* 2063 * We want one item to start on every align boundary in a page. 2064 * To do this we will span pages. We will also extend the item 2065 * by the size of align if it is an even multiple of align. 2066 * Otherwise, it would fall on the same boundary every time. 2067 */ 2068 if ((rsize & alignsize) == 0) 2069 rsize += alignsize; 2070 slabsize = rsize * (PAGE_SIZE / alignsize); 2071 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2072 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2073 slabsize = round_page(slabsize); 2074 } else { 2075 /* 2076 * Start with a slab size of as many pages as it takes to 2077 * represent a single item. We will try to fit as many 2078 * additional items into the slab as possible. 2079 */ 2080 slabsize = round_page(keg->uk_size); 2081 } 2082 2083 /* Build a list of all of the available formats for this keg. */ 2084 nfmt = 0; 2085 2086 /* Evaluate an inline slab layout. */ 2087 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2088 fmts[nfmt++] = 0; 2089 2090 /* TODO: vm_page-embedded slab. */ 2091 2092 /* 2093 * We can't do OFFPAGE if we're internal or if we've been 2094 * asked to not go to the VM for buckets. If we do this we 2095 * may end up going to the VM for slabs which we do not want 2096 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2097 * In those cases, evaluate a pseudo-format called INTERNAL 2098 * which has an inline slab header and one extra page to 2099 * guarantee that it fits. 2100 * 2101 * Otherwise, see if using an OFFPAGE slab will improve our 2102 * efficiency. 2103 */ 2104 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2105 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2106 else 2107 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2108 2109 /* 2110 * Choose a slab size and format which satisfy the minimum efficiency. 2111 * Prefer the smallest slab size that meets the constraints. 2112 * 2113 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2114 * for small items (up to PAGE_SIZE), the iteration increment is one 2115 * page; and for large items, the increment is one item. 2116 */ 2117 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2118 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2119 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2120 rsize, i)); 2121 for ( ; ; i++) { 2122 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2123 round_page(rsize * (i - 1) + keg->uk_size); 2124 2125 for (j = 0; j < nfmt; j++) { 2126 /* Only if we have no viable format yet. */ 2127 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2128 kl.ipers > 0) 2129 continue; 2130 2131 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2132 if (kl_tmp.eff <= kl.eff) 2133 continue; 2134 2135 kl = kl_tmp; 2136 2137 CTR6(KTR_UMA, "keg %s layout: format %#x " 2138 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2139 keg->uk_name, kl.format, kl.ipers, rsize, 2140 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2141 2142 /* Stop when we reach the minimum efficiency. */ 2143 if (kl.eff >= UMA_MIN_EFF) 2144 break; 2145 } 2146 2147 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2148 slabsize >= SLAB_MAX_SETSIZE * rsize || 2149 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2150 break; 2151 } 2152 2153 pages = atop(kl.slabsize); 2154 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2155 pages *= mp_maxid + 1; 2156 2157 keg->uk_rsize = rsize; 2158 keg->uk_ipers = kl.ipers; 2159 keg->uk_ppera = pages; 2160 keg->uk_flags |= kl.format; 2161 2162 /* 2163 * How do we find the slab header if it is offpage or if not all item 2164 * start addresses are in the same page? We could solve the latter 2165 * case with vaddr alignment, but we don't. 2166 */ 2167 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2168 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2169 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2170 keg->uk_flags |= UMA_ZFLAG_HASH; 2171 else 2172 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2173 } 2174 2175 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2176 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2177 pages); 2178 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2179 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2180 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2181 keg->uk_ipers, pages)); 2182 } 2183 2184 /* 2185 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2186 * the keg onto the global keg list. 2187 * 2188 * Arguments/Returns follow uma_ctor specifications 2189 * udata Actually uma_kctor_args 2190 */ 2191 static int 2192 keg_ctor(void *mem, int size, void *udata, int flags) 2193 { 2194 struct uma_kctor_args *arg = udata; 2195 uma_keg_t keg = mem; 2196 uma_zone_t zone; 2197 int i; 2198 2199 bzero(keg, size); 2200 keg->uk_size = arg->size; 2201 keg->uk_init = arg->uminit; 2202 keg->uk_fini = arg->fini; 2203 keg->uk_align = arg->align; 2204 keg->uk_reserve = 0; 2205 keg->uk_flags = arg->flags; 2206 2207 /* 2208 * We use a global round-robin policy by default. Zones with 2209 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2210 * case the iterator is never run. 2211 */ 2212 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2213 keg->uk_dr.dr_iter = 0; 2214 2215 /* 2216 * The master zone is passed to us at keg-creation time. 2217 */ 2218 zone = arg->zone; 2219 keg->uk_name = zone->uz_name; 2220 2221 if (arg->flags & UMA_ZONE_ZINIT) 2222 keg->uk_init = zero_init; 2223 2224 if (arg->flags & UMA_ZONE_MALLOC) 2225 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2226 2227 #ifndef SMP 2228 keg->uk_flags &= ~UMA_ZONE_PCPU; 2229 #endif 2230 2231 keg_layout(keg); 2232 2233 /* 2234 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2235 * work on. Use round-robin for everything else. 2236 * 2237 * Zones may override the default by specifying either. 2238 */ 2239 #ifdef NUMA 2240 if ((keg->uk_flags & 2241 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2242 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2243 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2244 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2245 #endif 2246 2247 /* 2248 * If we haven't booted yet we need allocations to go through the 2249 * startup cache until the vm is ready. 2250 */ 2251 #ifdef UMA_MD_SMALL_ALLOC 2252 if (keg->uk_ppera == 1) 2253 keg->uk_allocf = uma_small_alloc; 2254 else 2255 #endif 2256 if (booted < BOOT_KVA) 2257 keg->uk_allocf = startup_alloc; 2258 else if (keg->uk_flags & UMA_ZONE_PCPU) 2259 keg->uk_allocf = pcpu_page_alloc; 2260 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2261 keg->uk_allocf = contig_alloc; 2262 else 2263 keg->uk_allocf = page_alloc; 2264 #ifdef UMA_MD_SMALL_ALLOC 2265 if (keg->uk_ppera == 1) 2266 keg->uk_freef = uma_small_free; 2267 else 2268 #endif 2269 if (keg->uk_flags & UMA_ZONE_PCPU) 2270 keg->uk_freef = pcpu_page_free; 2271 else 2272 keg->uk_freef = page_free; 2273 2274 /* 2275 * Initialize keg's locks. 2276 */ 2277 for (i = 0; i < vm_ndomains; i++) 2278 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2279 2280 /* 2281 * If we're putting the slab header in the actual page we need to 2282 * figure out where in each page it goes. See slab_sizeof 2283 * definition. 2284 */ 2285 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2286 size_t shsize; 2287 2288 shsize = slab_sizeof(keg->uk_ipers); 2289 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2290 /* 2291 * The only way the following is possible is if with our 2292 * UMA_ALIGN_PTR adjustments we are now bigger than 2293 * UMA_SLAB_SIZE. I haven't checked whether this is 2294 * mathematically possible for all cases, so we make 2295 * sure here anyway. 2296 */ 2297 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2298 ("zone %s ipers %d rsize %d size %d slab won't fit", 2299 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2300 } 2301 2302 if (keg->uk_flags & UMA_ZFLAG_HASH) 2303 hash_alloc(&keg->uk_hash, 0); 2304 2305 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2306 2307 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2308 2309 rw_wlock(&uma_rwlock); 2310 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2311 rw_wunlock(&uma_rwlock); 2312 return (0); 2313 } 2314 2315 static void 2316 zone_kva_available(uma_zone_t zone, void *unused) 2317 { 2318 uma_keg_t keg; 2319 2320 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2321 return; 2322 KEG_GET(zone, keg); 2323 2324 if (keg->uk_allocf == startup_alloc) { 2325 /* Switch to the real allocator. */ 2326 if (keg->uk_flags & UMA_ZONE_PCPU) 2327 keg->uk_allocf = pcpu_page_alloc; 2328 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2329 keg->uk_ppera > 1) 2330 keg->uk_allocf = contig_alloc; 2331 else 2332 keg->uk_allocf = page_alloc; 2333 } 2334 } 2335 2336 static void 2337 zone_alloc_counters(uma_zone_t zone, void *unused) 2338 { 2339 2340 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2341 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2342 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2343 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2344 } 2345 2346 static void 2347 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2348 { 2349 uma_zone_domain_t zdom; 2350 uma_domain_t dom; 2351 uma_keg_t keg; 2352 struct sysctl_oid *oid, *domainoid; 2353 int domains, i, cnt; 2354 static const char *nokeg = "cache zone"; 2355 char *c; 2356 2357 /* 2358 * Make a sysctl safe copy of the zone name by removing 2359 * any special characters and handling dups by appending 2360 * an index. 2361 */ 2362 if (zone->uz_namecnt != 0) { 2363 /* Count the number of decimal digits and '_' separator. */ 2364 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2365 cnt /= 10; 2366 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2367 M_UMA, M_WAITOK); 2368 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2369 zone->uz_namecnt); 2370 } else 2371 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2372 for (c = zone->uz_ctlname; *c != '\0'; c++) 2373 if (strchr("./\\ -", *c) != NULL) 2374 *c = '_'; 2375 2376 /* 2377 * Basic parameters at the root. 2378 */ 2379 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2380 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2381 oid = zone->uz_oid; 2382 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2383 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2384 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2385 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2386 zone, 0, sysctl_handle_uma_zone_flags, "A", 2387 "Allocator configuration flags"); 2388 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2389 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2390 "Desired per-cpu cache size"); 2391 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2392 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2393 "Maximum allowed per-cpu cache size"); 2394 2395 /* 2396 * keg if present. 2397 */ 2398 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2399 domains = vm_ndomains; 2400 else 2401 domains = 1; 2402 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2403 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2404 keg = zone->uz_keg; 2405 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2406 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2407 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2408 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2409 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2410 "Real object size with alignment"); 2411 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2412 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2413 "pages per-slab allocation"); 2414 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2415 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2416 "items available per-slab"); 2417 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2418 "align", CTLFLAG_RD, &keg->uk_align, 0, 2419 "item alignment mask"); 2420 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2421 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2422 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2423 "Slab utilization (100 - internal fragmentation %)"); 2424 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2425 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2426 for (i = 0; i < domains; i++) { 2427 dom = &keg->uk_domain[i]; 2428 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2429 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2430 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2431 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2432 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2433 "Total pages currently allocated from VM"); 2434 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2435 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2436 "items free in the slab layer"); 2437 } 2438 } else 2439 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2440 "name", CTLFLAG_RD, nokeg, "Keg name"); 2441 2442 /* 2443 * Information about zone limits. 2444 */ 2445 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2446 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2447 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2448 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2449 zone, 0, sysctl_handle_uma_zone_items, "QU", 2450 "current number of allocated items if limit is set"); 2451 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2452 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2453 "Maximum number of cached items"); 2454 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2455 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2456 "Number of threads sleeping at limit"); 2457 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2458 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2459 "Total zone limit sleeps"); 2460 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2461 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2462 "Maximum number of items in each domain's bucket cache"); 2463 2464 /* 2465 * Per-domain zone information. 2466 */ 2467 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2468 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2469 for (i = 0; i < domains; i++) { 2470 zdom = ZDOM_GET(zone, i); 2471 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2472 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2473 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2474 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2475 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2476 "number of items in this domain"); 2477 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2478 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2479 "maximum item count in this period"); 2480 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2481 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2482 "minimum item count in this period"); 2483 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2484 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2485 "Working set size"); 2486 } 2487 2488 /* 2489 * General statistics. 2490 */ 2491 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2492 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2493 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2494 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2495 zone, 1, sysctl_handle_uma_zone_cur, "I", 2496 "Current number of allocated items"); 2497 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2498 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2499 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2500 "Total allocation calls"); 2501 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2502 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2503 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2504 "Total free calls"); 2505 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2506 "fails", CTLFLAG_RD, &zone->uz_fails, 2507 "Number of allocation failures"); 2508 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2509 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2510 "Free calls from the wrong domain"); 2511 } 2512 2513 struct uma_zone_count { 2514 const char *name; 2515 int count; 2516 }; 2517 2518 static void 2519 zone_count(uma_zone_t zone, void *arg) 2520 { 2521 struct uma_zone_count *cnt; 2522 2523 cnt = arg; 2524 /* 2525 * Some zones are rapidly created with identical names and 2526 * destroyed out of order. This can lead to gaps in the count. 2527 * Use one greater than the maximum observed for this name. 2528 */ 2529 if (strcmp(zone->uz_name, cnt->name) == 0) 2530 cnt->count = MAX(cnt->count, 2531 zone->uz_namecnt + 1); 2532 } 2533 2534 static void 2535 zone_update_caches(uma_zone_t zone) 2536 { 2537 int i; 2538 2539 for (i = 0; i <= mp_maxid; i++) { 2540 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2541 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2542 } 2543 } 2544 2545 /* 2546 * Zone header ctor. This initializes all fields, locks, etc. 2547 * 2548 * Arguments/Returns follow uma_ctor specifications 2549 * udata Actually uma_zctor_args 2550 */ 2551 static int 2552 zone_ctor(void *mem, int size, void *udata, int flags) 2553 { 2554 struct uma_zone_count cnt; 2555 struct uma_zctor_args *arg = udata; 2556 uma_zone_domain_t zdom; 2557 uma_zone_t zone = mem; 2558 uma_zone_t z; 2559 uma_keg_t keg; 2560 int i; 2561 2562 bzero(zone, size); 2563 zone->uz_name = arg->name; 2564 zone->uz_ctor = arg->ctor; 2565 zone->uz_dtor = arg->dtor; 2566 zone->uz_init = NULL; 2567 zone->uz_fini = NULL; 2568 zone->uz_sleeps = 0; 2569 zone->uz_bucket_size = 0; 2570 zone->uz_bucket_size_min = 0; 2571 zone->uz_bucket_size_max = BUCKET_MAX; 2572 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2573 zone->uz_warning = NULL; 2574 /* The domain structures follow the cpu structures. */ 2575 zone->uz_bucket_max = ULONG_MAX; 2576 timevalclear(&zone->uz_ratecheck); 2577 2578 /* Count the number of duplicate names. */ 2579 cnt.name = arg->name; 2580 cnt.count = 0; 2581 zone_foreach(zone_count, &cnt); 2582 zone->uz_namecnt = cnt.count; 2583 ZONE_CROSS_LOCK_INIT(zone); 2584 2585 for (i = 0; i < vm_ndomains; i++) { 2586 zdom = ZDOM_GET(zone, i); 2587 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2588 STAILQ_INIT(&zdom->uzd_buckets); 2589 } 2590 2591 #ifdef INVARIANTS 2592 if (arg->uminit == trash_init && arg->fini == trash_fini) 2593 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2594 #endif 2595 2596 /* 2597 * This is a pure cache zone, no kegs. 2598 */ 2599 if (arg->import) { 2600 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2601 ("zone_ctor: Import specified for non-cache zone.")); 2602 zone->uz_flags = arg->flags; 2603 zone->uz_size = arg->size; 2604 zone->uz_import = arg->import; 2605 zone->uz_release = arg->release; 2606 zone->uz_arg = arg->arg; 2607 #ifdef NUMA 2608 /* 2609 * Cache zones are round-robin unless a policy is 2610 * specified because they may have incompatible 2611 * constraints. 2612 */ 2613 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2614 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2615 #endif 2616 rw_wlock(&uma_rwlock); 2617 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2618 rw_wunlock(&uma_rwlock); 2619 goto out; 2620 } 2621 2622 /* 2623 * Use the regular zone/keg/slab allocator. 2624 */ 2625 zone->uz_import = zone_import; 2626 zone->uz_release = zone_release; 2627 zone->uz_arg = zone; 2628 keg = arg->keg; 2629 2630 if (arg->flags & UMA_ZONE_SECONDARY) { 2631 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2632 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2633 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2634 zone->uz_init = arg->uminit; 2635 zone->uz_fini = arg->fini; 2636 zone->uz_flags |= UMA_ZONE_SECONDARY; 2637 rw_wlock(&uma_rwlock); 2638 ZONE_LOCK(zone); 2639 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2640 if (LIST_NEXT(z, uz_link) == NULL) { 2641 LIST_INSERT_AFTER(z, zone, uz_link); 2642 break; 2643 } 2644 } 2645 ZONE_UNLOCK(zone); 2646 rw_wunlock(&uma_rwlock); 2647 } else if (keg == NULL) { 2648 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2649 arg->align, arg->flags)) == NULL) 2650 return (ENOMEM); 2651 } else { 2652 struct uma_kctor_args karg; 2653 int error; 2654 2655 /* We should only be here from uma_startup() */ 2656 karg.size = arg->size; 2657 karg.uminit = arg->uminit; 2658 karg.fini = arg->fini; 2659 karg.align = arg->align; 2660 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2661 karg.zone = zone; 2662 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2663 flags); 2664 if (error) 2665 return (error); 2666 } 2667 2668 /* Inherit properties from the keg. */ 2669 zone->uz_keg = keg; 2670 zone->uz_size = keg->uk_size; 2671 zone->uz_flags |= (keg->uk_flags & 2672 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2673 2674 out: 2675 if (__predict_true(booted >= BOOT_RUNNING)) { 2676 zone_alloc_counters(zone, NULL); 2677 zone_alloc_sysctl(zone, NULL); 2678 } else { 2679 zone->uz_allocs = EARLY_COUNTER; 2680 zone->uz_frees = EARLY_COUNTER; 2681 zone->uz_fails = EARLY_COUNTER; 2682 } 2683 2684 /* Caller requests a private SMR context. */ 2685 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2686 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2687 2688 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2689 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2690 ("Invalid zone flag combination")); 2691 if (arg->flags & UMA_ZFLAG_INTERNAL) 2692 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2693 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2694 zone->uz_bucket_size = BUCKET_MAX; 2695 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2696 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2697 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2698 zone->uz_bucket_size = 0; 2699 else 2700 zone->uz_bucket_size = bucket_select(zone->uz_size); 2701 zone->uz_bucket_size_min = zone->uz_bucket_size; 2702 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2703 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2704 zone_update_caches(zone); 2705 2706 return (0); 2707 } 2708 2709 /* 2710 * Keg header dtor. This frees all data, destroys locks, frees the hash 2711 * table and removes the keg from the global list. 2712 * 2713 * Arguments/Returns follow uma_dtor specifications 2714 * udata unused 2715 */ 2716 static void 2717 keg_dtor(void *arg, int size, void *udata) 2718 { 2719 uma_keg_t keg; 2720 uint32_t free, pages; 2721 int i; 2722 2723 keg = (uma_keg_t)arg; 2724 free = pages = 0; 2725 for (i = 0; i < vm_ndomains; i++) { 2726 free += keg->uk_domain[i].ud_free_items; 2727 pages += keg->uk_domain[i].ud_pages; 2728 KEG_LOCK_FINI(keg, i); 2729 } 2730 if (pages != 0) 2731 printf("Freed UMA keg (%s) was not empty (%u items). " 2732 " Lost %u pages of memory.\n", 2733 keg->uk_name ? keg->uk_name : "", 2734 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2735 2736 hash_free(&keg->uk_hash); 2737 } 2738 2739 /* 2740 * Zone header dtor. 2741 * 2742 * Arguments/Returns follow uma_dtor specifications 2743 * udata unused 2744 */ 2745 static void 2746 zone_dtor(void *arg, int size, void *udata) 2747 { 2748 uma_zone_t zone; 2749 uma_keg_t keg; 2750 int i; 2751 2752 zone = (uma_zone_t)arg; 2753 2754 sysctl_remove_oid(zone->uz_oid, 1, 1); 2755 2756 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2757 cache_drain(zone); 2758 2759 rw_wlock(&uma_rwlock); 2760 LIST_REMOVE(zone, uz_link); 2761 rw_wunlock(&uma_rwlock); 2762 zone_reclaim(zone, M_WAITOK, true); 2763 2764 /* 2765 * We only destroy kegs from non secondary/non cache zones. 2766 */ 2767 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2768 keg = zone->uz_keg; 2769 rw_wlock(&uma_rwlock); 2770 LIST_REMOVE(keg, uk_link); 2771 rw_wunlock(&uma_rwlock); 2772 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2773 } 2774 counter_u64_free(zone->uz_allocs); 2775 counter_u64_free(zone->uz_frees); 2776 counter_u64_free(zone->uz_fails); 2777 counter_u64_free(zone->uz_xdomain); 2778 free(zone->uz_ctlname, M_UMA); 2779 for (i = 0; i < vm_ndomains; i++) 2780 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 2781 ZONE_CROSS_LOCK_FINI(zone); 2782 } 2783 2784 static void 2785 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2786 { 2787 uma_keg_t keg; 2788 uma_zone_t zone; 2789 2790 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2791 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2792 zfunc(zone, arg); 2793 } 2794 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2795 zfunc(zone, arg); 2796 } 2797 2798 /* 2799 * Traverses every zone in the system and calls a callback 2800 * 2801 * Arguments: 2802 * zfunc A pointer to a function which accepts a zone 2803 * as an argument. 2804 * 2805 * Returns: 2806 * Nothing 2807 */ 2808 static void 2809 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2810 { 2811 2812 rw_rlock(&uma_rwlock); 2813 zone_foreach_unlocked(zfunc, arg); 2814 rw_runlock(&uma_rwlock); 2815 } 2816 2817 /* 2818 * Initialize the kernel memory allocator. This is done after pages can be 2819 * allocated but before general KVA is available. 2820 */ 2821 void 2822 uma_startup1(vm_offset_t virtual_avail) 2823 { 2824 struct uma_zctor_args args; 2825 size_t ksize, zsize, size; 2826 uma_keg_t masterkeg; 2827 uintptr_t m; 2828 uint8_t pflag; 2829 2830 bootstart = bootmem = virtual_avail; 2831 2832 rw_init(&uma_rwlock, "UMA lock"); 2833 sx_init(&uma_reclaim_lock, "umareclaim"); 2834 2835 ksize = sizeof(struct uma_keg) + 2836 (sizeof(struct uma_domain) * vm_ndomains); 2837 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2838 zsize = sizeof(struct uma_zone) + 2839 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2840 (sizeof(struct uma_zone_domain) * vm_ndomains); 2841 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2842 2843 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2844 size = (zsize * 2) + ksize; 2845 m = (uintptr_t)startup_alloc(NULL, size, 0, &pflag, M_NOWAIT | M_ZERO); 2846 zones = (uma_zone_t)m; 2847 m += zsize; 2848 kegs = (uma_zone_t)m; 2849 m += zsize; 2850 masterkeg = (uma_keg_t)m; 2851 2852 /* "manually" create the initial zone */ 2853 memset(&args, 0, sizeof(args)); 2854 args.name = "UMA Kegs"; 2855 args.size = ksize; 2856 args.ctor = keg_ctor; 2857 args.dtor = keg_dtor; 2858 args.uminit = zero_init; 2859 args.fini = NULL; 2860 args.keg = masterkeg; 2861 args.align = UMA_SUPER_ALIGN - 1; 2862 args.flags = UMA_ZFLAG_INTERNAL; 2863 zone_ctor(kegs, zsize, &args, M_WAITOK); 2864 2865 args.name = "UMA Zones"; 2866 args.size = zsize; 2867 args.ctor = zone_ctor; 2868 args.dtor = zone_dtor; 2869 args.uminit = zero_init; 2870 args.fini = NULL; 2871 args.keg = NULL; 2872 args.align = UMA_SUPER_ALIGN - 1; 2873 args.flags = UMA_ZFLAG_INTERNAL; 2874 zone_ctor(zones, zsize, &args, M_WAITOK); 2875 2876 /* Now make zones for slab headers */ 2877 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2878 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2879 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2880 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2881 2882 hashzone = uma_zcreate("UMA Hash", 2883 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2884 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2885 2886 bucket_init(); 2887 smr_init(); 2888 } 2889 2890 #ifndef UMA_MD_SMALL_ALLOC 2891 extern void vm_radix_reserve_kva(void); 2892 #endif 2893 2894 /* 2895 * Advertise the availability of normal kva allocations and switch to 2896 * the default back-end allocator. Marks the KVA we consumed on startup 2897 * as used in the map. 2898 */ 2899 void 2900 uma_startup2(void) 2901 { 2902 2903 if (bootstart != bootmem) { 2904 vm_map_lock(kernel_map); 2905 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2906 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2907 vm_map_unlock(kernel_map); 2908 } 2909 2910 #ifndef UMA_MD_SMALL_ALLOC 2911 /* Set up radix zone to use noobj_alloc. */ 2912 vm_radix_reserve_kva(); 2913 #endif 2914 2915 booted = BOOT_KVA; 2916 zone_foreach_unlocked(zone_kva_available, NULL); 2917 bucket_enable(); 2918 } 2919 2920 /* 2921 * Finish our initialization steps. 2922 */ 2923 static void 2924 uma_startup3(void) 2925 { 2926 2927 #ifdef INVARIANTS 2928 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2929 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2930 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2931 #endif 2932 zone_foreach_unlocked(zone_alloc_counters, NULL); 2933 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2934 callout_init(&uma_callout, 1); 2935 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2936 booted = BOOT_RUNNING; 2937 2938 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2939 EVENTHANDLER_PRI_FIRST); 2940 } 2941 2942 static void 2943 uma_shutdown(void) 2944 { 2945 2946 booted = BOOT_SHUTDOWN; 2947 } 2948 2949 static uma_keg_t 2950 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2951 int align, uint32_t flags) 2952 { 2953 struct uma_kctor_args args; 2954 2955 args.size = size; 2956 args.uminit = uminit; 2957 args.fini = fini; 2958 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2959 args.flags = flags; 2960 args.zone = zone; 2961 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2962 } 2963 2964 /* Public functions */ 2965 /* See uma.h */ 2966 void 2967 uma_set_align(int align) 2968 { 2969 2970 if (align != UMA_ALIGN_CACHE) 2971 uma_align_cache = align; 2972 } 2973 2974 /* See uma.h */ 2975 uma_zone_t 2976 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2977 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2978 2979 { 2980 struct uma_zctor_args args; 2981 uma_zone_t res; 2982 2983 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2984 align, name)); 2985 2986 /* This stuff is essential for the zone ctor */ 2987 memset(&args, 0, sizeof(args)); 2988 args.name = name; 2989 args.size = size; 2990 args.ctor = ctor; 2991 args.dtor = dtor; 2992 args.uminit = uminit; 2993 args.fini = fini; 2994 #ifdef INVARIANTS 2995 /* 2996 * Inject procedures which check for memory use after free if we are 2997 * allowed to scramble the memory while it is not allocated. This 2998 * requires that: UMA is actually able to access the memory, no init 2999 * or fini procedures, no dependency on the initial value of the 3000 * memory, and no (legitimate) use of the memory after free. Note, 3001 * the ctor and dtor do not need to be empty. 3002 */ 3003 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3004 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3005 args.uminit = trash_init; 3006 args.fini = trash_fini; 3007 } 3008 #endif 3009 args.align = align; 3010 args.flags = flags; 3011 args.keg = NULL; 3012 3013 sx_slock(&uma_reclaim_lock); 3014 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3015 sx_sunlock(&uma_reclaim_lock); 3016 3017 return (res); 3018 } 3019 3020 /* See uma.h */ 3021 uma_zone_t 3022 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3023 uma_init zinit, uma_fini zfini, uma_zone_t master) 3024 { 3025 struct uma_zctor_args args; 3026 uma_keg_t keg; 3027 uma_zone_t res; 3028 3029 keg = master->uz_keg; 3030 memset(&args, 0, sizeof(args)); 3031 args.name = name; 3032 args.size = keg->uk_size; 3033 args.ctor = ctor; 3034 args.dtor = dtor; 3035 args.uminit = zinit; 3036 args.fini = zfini; 3037 args.align = keg->uk_align; 3038 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3039 args.keg = keg; 3040 3041 sx_slock(&uma_reclaim_lock); 3042 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3043 sx_sunlock(&uma_reclaim_lock); 3044 3045 return (res); 3046 } 3047 3048 /* See uma.h */ 3049 uma_zone_t 3050 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3051 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3052 void *arg, int flags) 3053 { 3054 struct uma_zctor_args args; 3055 3056 memset(&args, 0, sizeof(args)); 3057 args.name = name; 3058 args.size = size; 3059 args.ctor = ctor; 3060 args.dtor = dtor; 3061 args.uminit = zinit; 3062 args.fini = zfini; 3063 args.import = zimport; 3064 args.release = zrelease; 3065 args.arg = arg; 3066 args.align = 0; 3067 args.flags = flags | UMA_ZFLAG_CACHE; 3068 3069 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3070 } 3071 3072 /* See uma.h */ 3073 void 3074 uma_zdestroy(uma_zone_t zone) 3075 { 3076 3077 /* 3078 * Large slabs are expensive to reclaim, so don't bother doing 3079 * unnecessary work if we're shutting down. 3080 */ 3081 if (booted == BOOT_SHUTDOWN && 3082 zone->uz_fini == NULL && zone->uz_release == zone_release) 3083 return; 3084 sx_slock(&uma_reclaim_lock); 3085 zone_free_item(zones, zone, NULL, SKIP_NONE); 3086 sx_sunlock(&uma_reclaim_lock); 3087 } 3088 3089 void 3090 uma_zwait(uma_zone_t zone) 3091 { 3092 3093 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3094 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3095 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3096 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3097 else 3098 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3099 } 3100 3101 void * 3102 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3103 { 3104 void *item, *pcpu_item; 3105 #ifdef SMP 3106 int i; 3107 3108 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3109 #endif 3110 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3111 if (item == NULL) 3112 return (NULL); 3113 pcpu_item = zpcpu_base_to_offset(item); 3114 if (flags & M_ZERO) { 3115 #ifdef SMP 3116 for (i = 0; i <= mp_maxid; i++) 3117 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3118 #else 3119 bzero(item, zone->uz_size); 3120 #endif 3121 } 3122 return (pcpu_item); 3123 } 3124 3125 /* 3126 * A stub while both regular and pcpu cases are identical. 3127 */ 3128 void 3129 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3130 { 3131 void *item; 3132 3133 #ifdef SMP 3134 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3135 #endif 3136 item = zpcpu_offset_to_base(pcpu_item); 3137 uma_zfree_arg(zone, item, udata); 3138 } 3139 3140 static inline void * 3141 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3142 void *item) 3143 { 3144 #ifdef INVARIANTS 3145 bool skipdbg; 3146 3147 skipdbg = uma_dbg_zskip(zone, item); 3148 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3149 zone->uz_ctor != trash_ctor) 3150 trash_ctor(item, size, udata, flags); 3151 #endif 3152 /* Check flags before loading ctor pointer. */ 3153 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3154 __predict_false(zone->uz_ctor != NULL) && 3155 zone->uz_ctor(item, size, udata, flags) != 0) { 3156 counter_u64_add(zone->uz_fails, 1); 3157 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3158 return (NULL); 3159 } 3160 #ifdef INVARIANTS 3161 if (!skipdbg) 3162 uma_dbg_alloc(zone, NULL, item); 3163 #endif 3164 if (__predict_false(flags & M_ZERO)) 3165 return (memset(item, 0, size)); 3166 3167 return (item); 3168 } 3169 3170 static inline void 3171 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3172 enum zfreeskip skip) 3173 { 3174 #ifdef INVARIANTS 3175 bool skipdbg; 3176 3177 skipdbg = uma_dbg_zskip(zone, item); 3178 if (skip == SKIP_NONE && !skipdbg) { 3179 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3180 uma_dbg_free(zone, udata, item); 3181 else 3182 uma_dbg_free(zone, NULL, item); 3183 } 3184 #endif 3185 if (__predict_true(skip < SKIP_DTOR)) { 3186 if (zone->uz_dtor != NULL) 3187 zone->uz_dtor(item, size, udata); 3188 #ifdef INVARIANTS 3189 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3190 zone->uz_dtor != trash_dtor) 3191 trash_dtor(item, size, udata); 3192 #endif 3193 } 3194 } 3195 3196 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3197 #define UMA_ZALLOC_DEBUG 3198 static int 3199 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3200 { 3201 int error; 3202 3203 error = 0; 3204 #ifdef WITNESS 3205 if (flags & M_WAITOK) { 3206 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3207 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3208 } 3209 #endif 3210 3211 #ifdef INVARIANTS 3212 KASSERT((flags & M_EXEC) == 0, 3213 ("uma_zalloc_debug: called with M_EXEC")); 3214 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3215 ("uma_zalloc_debug: called within spinlock or critical section")); 3216 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3217 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3218 #endif 3219 3220 #ifdef DEBUG_MEMGUARD 3221 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3222 void *item; 3223 item = memguard_alloc(zone->uz_size, flags); 3224 if (item != NULL) { 3225 error = EJUSTRETURN; 3226 if (zone->uz_init != NULL && 3227 zone->uz_init(item, zone->uz_size, flags) != 0) { 3228 *itemp = NULL; 3229 return (error); 3230 } 3231 if (zone->uz_ctor != NULL && 3232 zone->uz_ctor(item, zone->uz_size, udata, 3233 flags) != 0) { 3234 counter_u64_add(zone->uz_fails, 1); 3235 zone->uz_fini(item, zone->uz_size); 3236 *itemp = NULL; 3237 return (error); 3238 } 3239 *itemp = item; 3240 return (error); 3241 } 3242 /* This is unfortunate but should not be fatal. */ 3243 } 3244 #endif 3245 return (error); 3246 } 3247 3248 static int 3249 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3250 { 3251 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3252 ("uma_zfree_debug: called with spinlock or critical section held")); 3253 3254 #ifdef DEBUG_MEMGUARD 3255 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3256 if (zone->uz_dtor != NULL) 3257 zone->uz_dtor(item, zone->uz_size, udata); 3258 if (zone->uz_fini != NULL) 3259 zone->uz_fini(item, zone->uz_size); 3260 memguard_free(item); 3261 return (EJUSTRETURN); 3262 } 3263 #endif 3264 return (0); 3265 } 3266 #endif 3267 3268 static inline void * 3269 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3270 void *udata, int flags) 3271 { 3272 void *item; 3273 int size, uz_flags; 3274 3275 item = cache_bucket_pop(cache, bucket); 3276 size = cache_uz_size(cache); 3277 uz_flags = cache_uz_flags(cache); 3278 critical_exit(); 3279 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3280 } 3281 3282 static __noinline void * 3283 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3284 { 3285 uma_cache_bucket_t bucket; 3286 int domain; 3287 3288 while (cache_alloc(zone, cache, udata, flags)) { 3289 cache = &zone->uz_cpu[curcpu]; 3290 bucket = &cache->uc_allocbucket; 3291 if (__predict_false(bucket->ucb_cnt == 0)) 3292 continue; 3293 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3294 } 3295 critical_exit(); 3296 3297 /* 3298 * We can not get a bucket so try to return a single item. 3299 */ 3300 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3301 domain = PCPU_GET(domain); 3302 else 3303 domain = UMA_ANYDOMAIN; 3304 return (zone_alloc_item(zone, udata, domain, flags)); 3305 } 3306 3307 /* See uma.h */ 3308 void * 3309 uma_zalloc_smr(uma_zone_t zone, int flags) 3310 { 3311 uma_cache_bucket_t bucket; 3312 uma_cache_t cache; 3313 3314 #ifdef UMA_ZALLOC_DEBUG 3315 void *item; 3316 3317 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3318 ("uma_zalloc_arg: called with non-SMR zone.\n")); 3319 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3320 return (item); 3321 #endif 3322 3323 critical_enter(); 3324 cache = &zone->uz_cpu[curcpu]; 3325 bucket = &cache->uc_allocbucket; 3326 if (__predict_false(bucket->ucb_cnt == 0)) 3327 return (cache_alloc_retry(zone, cache, NULL, flags)); 3328 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3329 } 3330 3331 /* See uma.h */ 3332 void * 3333 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3334 { 3335 uma_cache_bucket_t bucket; 3336 uma_cache_t cache; 3337 3338 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3339 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3340 3341 /* This is the fast path allocation */ 3342 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3343 zone, flags); 3344 3345 #ifdef UMA_ZALLOC_DEBUG 3346 void *item; 3347 3348 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3349 ("uma_zalloc_arg: called with SMR zone.\n")); 3350 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3351 return (item); 3352 #endif 3353 3354 /* 3355 * If possible, allocate from the per-CPU cache. There are two 3356 * requirements for safe access to the per-CPU cache: (1) the thread 3357 * accessing the cache must not be preempted or yield during access, 3358 * and (2) the thread must not migrate CPUs without switching which 3359 * cache it accesses. We rely on a critical section to prevent 3360 * preemption and migration. We release the critical section in 3361 * order to acquire the zone mutex if we are unable to allocate from 3362 * the current cache; when we re-acquire the critical section, we 3363 * must detect and handle migration if it has occurred. 3364 */ 3365 critical_enter(); 3366 cache = &zone->uz_cpu[curcpu]; 3367 bucket = &cache->uc_allocbucket; 3368 if (__predict_false(bucket->ucb_cnt == 0)) 3369 return (cache_alloc_retry(zone, cache, udata, flags)); 3370 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3371 } 3372 3373 /* 3374 * Replenish an alloc bucket and possibly restore an old one. Called in 3375 * a critical section. Returns in a critical section. 3376 * 3377 * A false return value indicates an allocation failure. 3378 * A true return value indicates success and the caller should retry. 3379 */ 3380 static __noinline bool 3381 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3382 { 3383 uma_bucket_t bucket; 3384 int domain; 3385 bool new; 3386 3387 CRITICAL_ASSERT(curthread); 3388 3389 /* 3390 * If we have run out of items in our alloc bucket see 3391 * if we can switch with the free bucket. 3392 * 3393 * SMR Zones can't re-use the free bucket until the sequence has 3394 * expired. 3395 */ 3396 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3397 cache->uc_freebucket.ucb_cnt != 0) { 3398 cache_bucket_swap(&cache->uc_freebucket, 3399 &cache->uc_allocbucket); 3400 return (true); 3401 } 3402 3403 /* 3404 * Discard any empty allocation bucket while we hold no locks. 3405 */ 3406 bucket = cache_bucket_unload_alloc(cache); 3407 critical_exit(); 3408 3409 if (bucket != NULL) { 3410 KASSERT(bucket->ub_cnt == 0, 3411 ("cache_alloc: Entered with non-empty alloc bucket.")); 3412 bucket_free(zone, bucket, udata); 3413 } 3414 3415 /* Short-circuit for zones without buckets and low memory. */ 3416 if (zone->uz_bucket_size == 0 || bucketdisable) { 3417 critical_enter(); 3418 return (false); 3419 } 3420 3421 /* 3422 * Attempt to retrieve the item from the per-CPU cache has failed, so 3423 * we must go back to the zone. This requires the zdom lock, so we 3424 * must drop the critical section, then re-acquire it when we go back 3425 * to the cache. Since the critical section is released, we may be 3426 * preempted or migrate. As such, make sure not to maintain any 3427 * thread-local state specific to the cache from prior to releasing 3428 * the critical section. 3429 */ 3430 domain = PCPU_GET(domain); 3431 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0) 3432 domain = zone_domain_highest(zone, domain); 3433 bucket = cache_fetch_bucket(zone, cache, domain); 3434 if (bucket == NULL) { 3435 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3436 new = true; 3437 } else 3438 new = false; 3439 3440 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3441 zone->uz_name, zone, bucket); 3442 if (bucket == NULL) { 3443 critical_enter(); 3444 return (false); 3445 } 3446 3447 /* 3448 * See if we lost the race or were migrated. Cache the 3449 * initialized bucket to make this less likely or claim 3450 * the memory directly. 3451 */ 3452 critical_enter(); 3453 cache = &zone->uz_cpu[curcpu]; 3454 if (cache->uc_allocbucket.ucb_bucket == NULL && 3455 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3456 domain == PCPU_GET(domain))) { 3457 if (new) 3458 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3459 bucket->ub_cnt); 3460 cache_bucket_load_alloc(cache, bucket); 3461 return (true); 3462 } 3463 3464 /* 3465 * We lost the race, release this bucket and start over. 3466 */ 3467 critical_exit(); 3468 zone_put_bucket(zone, domain, bucket, udata, false); 3469 critical_enter(); 3470 3471 return (true); 3472 } 3473 3474 void * 3475 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3476 { 3477 3478 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3479 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3480 3481 /* This is the fast path allocation */ 3482 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3483 zone->uz_name, zone, domain, flags); 3484 3485 if (flags & M_WAITOK) { 3486 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3487 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3488 } 3489 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3490 ("uma_zalloc_domain: called with spinlock or critical section held")); 3491 3492 return (zone_alloc_item(zone, udata, domain, flags)); 3493 } 3494 3495 /* 3496 * Find a slab with some space. Prefer slabs that are partially used over those 3497 * that are totally full. This helps to reduce fragmentation. 3498 * 3499 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3500 * only 'domain'. 3501 */ 3502 static uma_slab_t 3503 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3504 { 3505 uma_domain_t dom; 3506 uma_slab_t slab; 3507 int start; 3508 3509 KASSERT(domain >= 0 && domain < vm_ndomains, 3510 ("keg_first_slab: domain %d out of range", domain)); 3511 KEG_LOCK_ASSERT(keg, domain); 3512 3513 slab = NULL; 3514 start = domain; 3515 do { 3516 dom = &keg->uk_domain[domain]; 3517 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3518 return (slab); 3519 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3520 LIST_REMOVE(slab, us_link); 3521 dom->ud_free_slabs--; 3522 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3523 return (slab); 3524 } 3525 if (rr) 3526 domain = (domain + 1) % vm_ndomains; 3527 } while (domain != start); 3528 3529 return (NULL); 3530 } 3531 3532 /* 3533 * Fetch an existing slab from a free or partial list. Returns with the 3534 * keg domain lock held if a slab was found or unlocked if not. 3535 */ 3536 static uma_slab_t 3537 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3538 { 3539 uma_slab_t slab; 3540 uint32_t reserve; 3541 3542 /* HASH has a single free list. */ 3543 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3544 domain = 0; 3545 3546 KEG_LOCK(keg, domain); 3547 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3548 if (keg->uk_domain[domain].ud_free_items <= reserve || 3549 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3550 KEG_UNLOCK(keg, domain); 3551 return (NULL); 3552 } 3553 return (slab); 3554 } 3555 3556 static uma_slab_t 3557 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3558 { 3559 struct vm_domainset_iter di; 3560 uma_slab_t slab; 3561 int aflags, domain; 3562 bool rr; 3563 3564 restart: 3565 /* 3566 * Use the keg's policy if upper layers haven't already specified a 3567 * domain (as happens with first-touch zones). 3568 * 3569 * To avoid races we run the iterator with the keg lock held, but that 3570 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3571 * clear M_WAITOK and handle low memory conditions locally. 3572 */ 3573 rr = rdomain == UMA_ANYDOMAIN; 3574 if (rr) { 3575 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3576 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3577 &aflags); 3578 } else { 3579 aflags = flags; 3580 domain = rdomain; 3581 } 3582 3583 for (;;) { 3584 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3585 if (slab != NULL) 3586 return (slab); 3587 3588 /* 3589 * M_NOVM means don't ask at all! 3590 */ 3591 if (flags & M_NOVM) 3592 break; 3593 3594 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3595 if (slab != NULL) 3596 return (slab); 3597 if (!rr && (flags & M_WAITOK) == 0) 3598 break; 3599 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3600 if ((flags & M_WAITOK) != 0) { 3601 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3602 goto restart; 3603 } 3604 break; 3605 } 3606 } 3607 3608 /* 3609 * We might not have been able to get a slab but another cpu 3610 * could have while we were unlocked. Check again before we 3611 * fail. 3612 */ 3613 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3614 return (slab); 3615 3616 return (NULL); 3617 } 3618 3619 static void * 3620 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3621 { 3622 uma_domain_t dom; 3623 void *item; 3624 int freei; 3625 3626 KEG_LOCK_ASSERT(keg, slab->us_domain); 3627 3628 dom = &keg->uk_domain[slab->us_domain]; 3629 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3630 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3631 item = slab_item(slab, keg, freei); 3632 slab->us_freecount--; 3633 dom->ud_free_items--; 3634 3635 /* 3636 * Move this slab to the full list. It must be on the partial list, so 3637 * we do not need to update the free slab count. In particular, 3638 * keg_fetch_slab() always returns slabs on the partial list. 3639 */ 3640 if (slab->us_freecount == 0) { 3641 LIST_REMOVE(slab, us_link); 3642 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3643 } 3644 3645 return (item); 3646 } 3647 3648 static int 3649 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3650 { 3651 uma_domain_t dom; 3652 uma_zone_t zone; 3653 uma_slab_t slab; 3654 uma_keg_t keg; 3655 #ifdef NUMA 3656 int stripe; 3657 #endif 3658 int i; 3659 3660 zone = arg; 3661 slab = NULL; 3662 keg = zone->uz_keg; 3663 /* Try to keep the buckets totally full */ 3664 for (i = 0; i < max; ) { 3665 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3666 break; 3667 #ifdef NUMA 3668 stripe = howmany(max, vm_ndomains); 3669 #endif 3670 dom = &keg->uk_domain[slab->us_domain]; 3671 while (slab->us_freecount && i < max) { 3672 bucket[i++] = slab_alloc_item(keg, slab); 3673 if (dom->ud_free_items <= keg->uk_reserve) 3674 break; 3675 #ifdef NUMA 3676 /* 3677 * If the zone is striped we pick a new slab for every 3678 * N allocations. Eliminating this conditional will 3679 * instead pick a new domain for each bucket rather 3680 * than stripe within each bucket. The current option 3681 * produces more fragmentation and requires more cpu 3682 * time but yields better distribution. 3683 */ 3684 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3685 vm_ndomains > 1 && --stripe == 0) 3686 break; 3687 #endif 3688 } 3689 KEG_UNLOCK(keg, slab->us_domain); 3690 /* Don't block if we allocated any successfully. */ 3691 flags &= ~M_WAITOK; 3692 flags |= M_NOWAIT; 3693 } 3694 3695 return i; 3696 } 3697 3698 static int 3699 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3700 { 3701 uint64_t old, new, total, max; 3702 3703 /* 3704 * The hard case. We're going to sleep because there were existing 3705 * sleepers or because we ran out of items. This routine enforces 3706 * fairness by keeping fifo order. 3707 * 3708 * First release our ill gotten gains and make some noise. 3709 */ 3710 for (;;) { 3711 zone_free_limit(zone, count); 3712 zone_log_warning(zone); 3713 zone_maxaction(zone); 3714 if (flags & M_NOWAIT) 3715 return (0); 3716 3717 /* 3718 * We need to allocate an item or set ourself as a sleeper 3719 * while the sleepq lock is held to avoid wakeup races. This 3720 * is essentially a home rolled semaphore. 3721 */ 3722 sleepq_lock(&zone->uz_max_items); 3723 old = zone->uz_items; 3724 do { 3725 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3726 /* Cache the max since we will evaluate twice. */ 3727 max = zone->uz_max_items; 3728 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3729 UZ_ITEMS_COUNT(old) >= max) 3730 new = old + UZ_ITEMS_SLEEPER; 3731 else 3732 new = old + MIN(count, max - old); 3733 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3734 3735 /* We may have successfully allocated under the sleepq lock. */ 3736 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3737 sleepq_release(&zone->uz_max_items); 3738 return (new - old); 3739 } 3740 3741 /* 3742 * This is in a different cacheline from uz_items so that we 3743 * don't constantly invalidate the fastpath cacheline when we 3744 * adjust item counts. This could be limited to toggling on 3745 * transitions. 3746 */ 3747 atomic_add_32(&zone->uz_sleepers, 1); 3748 atomic_add_64(&zone->uz_sleeps, 1); 3749 3750 /* 3751 * We have added ourselves as a sleeper. The sleepq lock 3752 * protects us from wakeup races. Sleep now and then retry. 3753 */ 3754 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3755 sleepq_wait(&zone->uz_max_items, PVM); 3756 3757 /* 3758 * After wakeup, remove ourselves as a sleeper and try 3759 * again. We no longer have the sleepq lock for protection. 3760 * 3761 * Subract ourselves as a sleeper while attempting to add 3762 * our count. 3763 */ 3764 atomic_subtract_32(&zone->uz_sleepers, 1); 3765 old = atomic_fetchadd_64(&zone->uz_items, 3766 -(UZ_ITEMS_SLEEPER - count)); 3767 /* We're no longer a sleeper. */ 3768 old -= UZ_ITEMS_SLEEPER; 3769 3770 /* 3771 * If we're still at the limit, restart. Notably do not 3772 * block on other sleepers. Cache the max value to protect 3773 * against changes via sysctl. 3774 */ 3775 total = UZ_ITEMS_COUNT(old); 3776 max = zone->uz_max_items; 3777 if (total >= max) 3778 continue; 3779 /* Truncate if necessary, otherwise wake other sleepers. */ 3780 if (total + count > max) { 3781 zone_free_limit(zone, total + count - max); 3782 count = max - total; 3783 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3784 wakeup_one(&zone->uz_max_items); 3785 3786 return (count); 3787 } 3788 } 3789 3790 /* 3791 * Allocate 'count' items from our max_items limit. Returns the number 3792 * available. If M_NOWAIT is not specified it will sleep until at least 3793 * one item can be allocated. 3794 */ 3795 static int 3796 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3797 { 3798 uint64_t old; 3799 uint64_t max; 3800 3801 max = zone->uz_max_items; 3802 MPASS(max > 0); 3803 3804 /* 3805 * We expect normal allocations to succeed with a simple 3806 * fetchadd. 3807 */ 3808 old = atomic_fetchadd_64(&zone->uz_items, count); 3809 if (__predict_true(old + count <= max)) 3810 return (count); 3811 3812 /* 3813 * If we had some items and no sleepers just return the 3814 * truncated value. We have to release the excess space 3815 * though because that may wake sleepers who weren't woken 3816 * because we were temporarily over the limit. 3817 */ 3818 if (old < max) { 3819 zone_free_limit(zone, (old + count) - max); 3820 return (max - old); 3821 } 3822 return (zone_alloc_limit_hard(zone, count, flags)); 3823 } 3824 3825 /* 3826 * Free a number of items back to the limit. 3827 */ 3828 static void 3829 zone_free_limit(uma_zone_t zone, int count) 3830 { 3831 uint64_t old; 3832 3833 MPASS(count > 0); 3834 3835 /* 3836 * In the common case we either have no sleepers or 3837 * are still over the limit and can just return. 3838 */ 3839 old = atomic_fetchadd_64(&zone->uz_items, -count); 3840 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3841 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3842 return; 3843 3844 /* 3845 * Moderate the rate of wakeups. Sleepers will continue 3846 * to generate wakeups if necessary. 3847 */ 3848 wakeup_one(&zone->uz_max_items); 3849 } 3850 3851 static uma_bucket_t 3852 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3853 { 3854 uma_bucket_t bucket; 3855 int maxbucket, cnt; 3856 3857 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3858 zone, domain); 3859 3860 /* Avoid allocs targeting empty domains. */ 3861 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3862 domain = UMA_ANYDOMAIN; 3863 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 3864 domain = UMA_ANYDOMAIN; 3865 3866 if (zone->uz_max_items > 0) 3867 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3868 M_NOWAIT); 3869 else 3870 maxbucket = zone->uz_bucket_size; 3871 if (maxbucket == 0) 3872 return (false); 3873 3874 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3875 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3876 if (bucket == NULL) { 3877 cnt = 0; 3878 goto out; 3879 } 3880 3881 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3882 MIN(maxbucket, bucket->ub_entries), domain, flags); 3883 3884 /* 3885 * Initialize the memory if necessary. 3886 */ 3887 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3888 int i; 3889 3890 for (i = 0; i < bucket->ub_cnt; i++) 3891 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3892 flags) != 0) 3893 break; 3894 /* 3895 * If we couldn't initialize the whole bucket, put the 3896 * rest back onto the freelist. 3897 */ 3898 if (i != bucket->ub_cnt) { 3899 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3900 bucket->ub_cnt - i); 3901 #ifdef INVARIANTS 3902 bzero(&bucket->ub_bucket[i], 3903 sizeof(void *) * (bucket->ub_cnt - i)); 3904 #endif 3905 bucket->ub_cnt = i; 3906 } 3907 } 3908 3909 cnt = bucket->ub_cnt; 3910 if (bucket->ub_cnt == 0) { 3911 bucket_free(zone, bucket, udata); 3912 counter_u64_add(zone->uz_fails, 1); 3913 bucket = NULL; 3914 } 3915 out: 3916 if (zone->uz_max_items > 0 && cnt < maxbucket) 3917 zone_free_limit(zone, maxbucket - cnt); 3918 3919 return (bucket); 3920 } 3921 3922 /* 3923 * Allocates a single item from a zone. 3924 * 3925 * Arguments 3926 * zone The zone to alloc for. 3927 * udata The data to be passed to the constructor. 3928 * domain The domain to allocate from or UMA_ANYDOMAIN. 3929 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3930 * 3931 * Returns 3932 * NULL if there is no memory and M_NOWAIT is set 3933 * An item if successful 3934 */ 3935 3936 static void * 3937 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3938 { 3939 void *item; 3940 3941 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) 3942 return (NULL); 3943 3944 /* Avoid allocs targeting empty domains. */ 3945 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3946 domain = UMA_ANYDOMAIN; 3947 3948 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3949 goto fail_cnt; 3950 3951 /* 3952 * We have to call both the zone's init (not the keg's init) 3953 * and the zone's ctor. This is because the item is going from 3954 * a keg slab directly to the user, and the user is expecting it 3955 * to be both zone-init'd as well as zone-ctor'd. 3956 */ 3957 if (zone->uz_init != NULL) { 3958 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3959 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3960 goto fail_cnt; 3961 } 3962 } 3963 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 3964 item); 3965 if (item == NULL) 3966 goto fail; 3967 3968 counter_u64_add(zone->uz_allocs, 1); 3969 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3970 zone->uz_name, zone); 3971 3972 return (item); 3973 3974 fail_cnt: 3975 counter_u64_add(zone->uz_fails, 1); 3976 fail: 3977 if (zone->uz_max_items > 0) 3978 zone_free_limit(zone, 1); 3979 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3980 zone->uz_name, zone); 3981 3982 return (NULL); 3983 } 3984 3985 /* See uma.h */ 3986 void 3987 uma_zfree_smr(uma_zone_t zone, void *item) 3988 { 3989 uma_cache_t cache; 3990 uma_cache_bucket_t bucket; 3991 int itemdomain, uz_flags; 3992 3993 #ifdef UMA_ZALLOC_DEBUG 3994 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3995 ("uma_zfree_smr: called with non-SMR zone.\n")); 3996 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 3997 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 3998 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 3999 return; 4000 #endif 4001 cache = &zone->uz_cpu[curcpu]; 4002 uz_flags = cache_uz_flags(cache); 4003 itemdomain = 0; 4004 #ifdef NUMA 4005 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4006 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4007 #endif 4008 critical_enter(); 4009 do { 4010 cache = &zone->uz_cpu[curcpu]; 4011 /* SMR Zones must free to the free bucket. */ 4012 bucket = &cache->uc_freebucket; 4013 #ifdef NUMA 4014 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4015 PCPU_GET(domain) != itemdomain) { 4016 bucket = &cache->uc_crossbucket; 4017 } 4018 #endif 4019 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4020 cache_bucket_push(cache, bucket, item); 4021 critical_exit(); 4022 return; 4023 } 4024 } while (cache_free(zone, cache, NULL, item, itemdomain)); 4025 critical_exit(); 4026 4027 /* 4028 * If nothing else caught this, we'll just do an internal free. 4029 */ 4030 zone_free_item(zone, item, NULL, SKIP_NONE); 4031 } 4032 4033 /* See uma.h */ 4034 void 4035 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4036 { 4037 uma_cache_t cache; 4038 uma_cache_bucket_t bucket; 4039 int itemdomain, uz_flags; 4040 4041 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4042 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4043 4044 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4045 4046 #ifdef UMA_ZALLOC_DEBUG 4047 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4048 ("uma_zfree_arg: called with SMR zone.\n")); 4049 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4050 return; 4051 #endif 4052 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4053 if (item == NULL) 4054 return; 4055 4056 /* 4057 * We are accessing the per-cpu cache without a critical section to 4058 * fetch size and flags. This is acceptable, if we are preempted we 4059 * will simply read another cpu's line. 4060 */ 4061 cache = &zone->uz_cpu[curcpu]; 4062 uz_flags = cache_uz_flags(cache); 4063 if (UMA_ALWAYS_CTORDTOR || 4064 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4065 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4066 4067 /* 4068 * The race here is acceptable. If we miss it we'll just have to wait 4069 * a little longer for the limits to be reset. 4070 */ 4071 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4072 if (zone->uz_sleepers > 0) 4073 goto zfree_item; 4074 } 4075 4076 /* 4077 * If possible, free to the per-CPU cache. There are two 4078 * requirements for safe access to the per-CPU cache: (1) the thread 4079 * accessing the cache must not be preempted or yield during access, 4080 * and (2) the thread must not migrate CPUs without switching which 4081 * cache it accesses. We rely on a critical section to prevent 4082 * preemption and migration. We release the critical section in 4083 * order to acquire the zone mutex if we are unable to free to the 4084 * current cache; when we re-acquire the critical section, we must 4085 * detect and handle migration if it has occurred. 4086 */ 4087 itemdomain = 0; 4088 #ifdef NUMA 4089 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4090 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4091 #endif 4092 critical_enter(); 4093 do { 4094 cache = &zone->uz_cpu[curcpu]; 4095 /* 4096 * Try to free into the allocbucket first to give LIFO 4097 * ordering for cache-hot datastructures. Spill over 4098 * into the freebucket if necessary. Alloc will swap 4099 * them if one runs dry. 4100 */ 4101 bucket = &cache->uc_allocbucket; 4102 #ifdef NUMA 4103 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4104 PCPU_GET(domain) != itemdomain) { 4105 bucket = &cache->uc_crossbucket; 4106 } else 4107 #endif 4108 if (bucket->ucb_cnt == bucket->ucb_entries && 4109 cache->uc_freebucket.ucb_cnt < 4110 cache->uc_freebucket.ucb_entries) 4111 cache_bucket_swap(&cache->uc_freebucket, 4112 &cache->uc_allocbucket); 4113 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4114 cache_bucket_push(cache, bucket, item); 4115 critical_exit(); 4116 return; 4117 } 4118 } while (cache_free(zone, cache, udata, item, itemdomain)); 4119 critical_exit(); 4120 4121 /* 4122 * If nothing else caught this, we'll just do an internal free. 4123 */ 4124 zfree_item: 4125 zone_free_item(zone, item, udata, SKIP_DTOR); 4126 } 4127 4128 #ifdef NUMA 4129 /* 4130 * sort crossdomain free buckets to domain correct buckets and cache 4131 * them. 4132 */ 4133 static void 4134 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4135 { 4136 struct uma_bucketlist fullbuckets; 4137 uma_zone_domain_t zdom; 4138 uma_bucket_t b; 4139 smr_seq_t seq; 4140 void *item; 4141 int domain; 4142 4143 CTR3(KTR_UMA, 4144 "uma_zfree: zone %s(%p) draining cross bucket %p", 4145 zone->uz_name, zone, bucket); 4146 4147 /* 4148 * It is possible for buckets to arrive here out of order so we fetch 4149 * the current smr seq rather than accepting the bucket's. 4150 */ 4151 seq = SMR_SEQ_INVALID; 4152 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4153 seq = smr_advance(zone->uz_smr); 4154 4155 /* 4156 * To avoid having ndomain * ndomain buckets for sorting we have a 4157 * lock on the current crossfree bucket. A full matrix with 4158 * per-domain locking could be used if necessary. 4159 */ 4160 STAILQ_INIT(&fullbuckets); 4161 ZONE_CROSS_LOCK(zone); 4162 while (bucket->ub_cnt > 0) { 4163 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4164 domain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4165 zdom = ZDOM_GET(zone, domain); 4166 if (zdom->uzd_cross == NULL) { 4167 zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT); 4168 if (zdom->uzd_cross == NULL) 4169 break; 4170 } 4171 b = zdom->uzd_cross; 4172 b->ub_bucket[b->ub_cnt++] = item; 4173 b->ub_seq = seq; 4174 if (b->ub_cnt == b->ub_entries) { 4175 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4176 zdom->uzd_cross = NULL; 4177 } 4178 bucket->ub_cnt--; 4179 } 4180 ZONE_CROSS_UNLOCK(zone); 4181 if (bucket->ub_cnt == 0) 4182 bucket->ub_seq = SMR_SEQ_INVALID; 4183 bucket_free(zone, bucket, udata); 4184 4185 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4186 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4187 domain = _vm_phys_domain(pmap_kextract( 4188 (vm_offset_t)b->ub_bucket[0])); 4189 zone_put_bucket(zone, domain, b, udata, true); 4190 } 4191 } 4192 #endif 4193 4194 static void 4195 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4196 int itemdomain, bool ws) 4197 { 4198 4199 #ifdef NUMA 4200 /* 4201 * Buckets coming from the wrong domain will be entirely for the 4202 * only other domain on two domain systems. In this case we can 4203 * simply cache them. Otherwise we need to sort them back to 4204 * correct domains. 4205 */ 4206 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4207 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4208 zone_free_cross(zone, bucket, udata); 4209 return; 4210 } 4211 #endif 4212 4213 /* 4214 * Attempt to save the bucket in the zone's domain bucket cache. 4215 */ 4216 CTR3(KTR_UMA, 4217 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4218 zone->uz_name, zone, bucket); 4219 /* ub_cnt is pointing to the last free item */ 4220 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4221 itemdomain = zone_domain_lowest(zone, itemdomain); 4222 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4223 } 4224 4225 /* 4226 * Populate a free or cross bucket for the current cpu cache. Free any 4227 * existing full bucket either to the zone cache or back to the slab layer. 4228 * 4229 * Enters and returns in a critical section. false return indicates that 4230 * we can not satisfy this free in the cache layer. true indicates that 4231 * the caller should retry. 4232 */ 4233 static __noinline bool 4234 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4235 int itemdomain) 4236 { 4237 uma_cache_bucket_t cbucket; 4238 uma_bucket_t newbucket, bucket; 4239 4240 CRITICAL_ASSERT(curthread); 4241 4242 if (zone->uz_bucket_size == 0) 4243 return false; 4244 4245 cache = &zone->uz_cpu[curcpu]; 4246 newbucket = NULL; 4247 4248 /* 4249 * FIRSTTOUCH domains need to free to the correct zdom. When 4250 * enabled this is the zdom of the item. The bucket is the 4251 * cross bucket if the current domain and itemdomain do not match. 4252 */ 4253 cbucket = &cache->uc_freebucket; 4254 #ifdef NUMA 4255 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4256 if (PCPU_GET(domain) != itemdomain) { 4257 cbucket = &cache->uc_crossbucket; 4258 if (cbucket->ucb_cnt != 0) 4259 counter_u64_add(zone->uz_xdomain, 4260 cbucket->ucb_cnt); 4261 } 4262 } 4263 #endif 4264 bucket = cache_bucket_unload(cbucket); 4265 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4266 ("cache_free: Entered with non-full free bucket.")); 4267 4268 /* We are no longer associated with this CPU. */ 4269 critical_exit(); 4270 4271 /* 4272 * Don't let SMR zones operate without a free bucket. Force 4273 * a synchronize and re-use this one. We will only degrade 4274 * to a synchronize every bucket_size items rather than every 4275 * item if we fail to allocate a bucket. 4276 */ 4277 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4278 if (bucket != NULL) 4279 bucket->ub_seq = smr_advance(zone->uz_smr); 4280 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4281 if (newbucket == NULL && bucket != NULL) { 4282 bucket_drain(zone, bucket); 4283 newbucket = bucket; 4284 bucket = NULL; 4285 } 4286 } else if (!bucketdisable) 4287 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4288 4289 if (bucket != NULL) 4290 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4291 4292 critical_enter(); 4293 if ((bucket = newbucket) == NULL) 4294 return (false); 4295 cache = &zone->uz_cpu[curcpu]; 4296 #ifdef NUMA 4297 /* 4298 * Check to see if we should be populating the cross bucket. If it 4299 * is already populated we will fall through and attempt to populate 4300 * the free bucket. 4301 */ 4302 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4303 if (PCPU_GET(domain) != itemdomain && 4304 cache->uc_crossbucket.ucb_bucket == NULL) { 4305 cache_bucket_load_cross(cache, bucket); 4306 return (true); 4307 } 4308 } 4309 #endif 4310 /* 4311 * We may have lost the race to fill the bucket or switched CPUs. 4312 */ 4313 if (cache->uc_freebucket.ucb_bucket != NULL) { 4314 critical_exit(); 4315 bucket_free(zone, bucket, udata); 4316 critical_enter(); 4317 } else 4318 cache_bucket_load_free(cache, bucket); 4319 4320 return (true); 4321 } 4322 4323 void 4324 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 4325 { 4326 4327 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4328 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4329 4330 CTR2(KTR_UMA, "uma_zfree_domain zone %s(%p)", zone->uz_name, zone); 4331 4332 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 4333 ("uma_zfree_domain: called with spinlock or critical section held")); 4334 4335 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4336 if (item == NULL) 4337 return; 4338 zone_free_item(zone, item, udata, SKIP_NONE); 4339 } 4340 4341 static void 4342 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4343 { 4344 uma_keg_t keg; 4345 uma_domain_t dom; 4346 int freei; 4347 4348 keg = zone->uz_keg; 4349 KEG_LOCK_ASSERT(keg, slab->us_domain); 4350 4351 /* Do we need to remove from any lists? */ 4352 dom = &keg->uk_domain[slab->us_domain]; 4353 if (slab->us_freecount + 1 == keg->uk_ipers) { 4354 LIST_REMOVE(slab, us_link); 4355 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4356 dom->ud_free_slabs++; 4357 } else if (slab->us_freecount == 0) { 4358 LIST_REMOVE(slab, us_link); 4359 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4360 } 4361 4362 /* Slab management. */ 4363 freei = slab_item_index(slab, keg, item); 4364 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4365 slab->us_freecount++; 4366 4367 /* Keg statistics. */ 4368 dom->ud_free_items++; 4369 } 4370 4371 static void 4372 zone_release(void *arg, void **bucket, int cnt) 4373 { 4374 struct mtx *lock; 4375 uma_zone_t zone; 4376 uma_slab_t slab; 4377 uma_keg_t keg; 4378 uint8_t *mem; 4379 void *item; 4380 int i; 4381 4382 zone = arg; 4383 keg = zone->uz_keg; 4384 lock = NULL; 4385 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4386 lock = KEG_LOCK(keg, 0); 4387 for (i = 0; i < cnt; i++) { 4388 item = bucket[i]; 4389 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4390 slab = vtoslab((vm_offset_t)item); 4391 } else { 4392 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4393 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4394 slab = hash_sfind(&keg->uk_hash, mem); 4395 else 4396 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4397 } 4398 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4399 if (lock != NULL) 4400 mtx_unlock(lock); 4401 lock = KEG_LOCK(keg, slab->us_domain); 4402 } 4403 slab_free_item(zone, slab, item); 4404 } 4405 if (lock != NULL) 4406 mtx_unlock(lock); 4407 } 4408 4409 /* 4410 * Frees a single item to any zone. 4411 * 4412 * Arguments: 4413 * zone The zone to free to 4414 * item The item we're freeing 4415 * udata User supplied data for the dtor 4416 * skip Skip dtors and finis 4417 */ 4418 static __noinline void 4419 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4420 { 4421 4422 /* 4423 * If a free is sent directly to an SMR zone we have to 4424 * synchronize immediately because the item can instantly 4425 * be reallocated. This should only happen in degenerate 4426 * cases when no memory is available for per-cpu caches. 4427 */ 4428 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4429 smr_synchronize(zone->uz_smr); 4430 4431 item_dtor(zone, item, zone->uz_size, udata, skip); 4432 4433 if (skip < SKIP_FINI && zone->uz_fini) 4434 zone->uz_fini(item, zone->uz_size); 4435 4436 zone->uz_release(zone->uz_arg, &item, 1); 4437 4438 if (skip & SKIP_CNT) 4439 return; 4440 4441 counter_u64_add(zone->uz_frees, 1); 4442 4443 if (zone->uz_max_items > 0) 4444 zone_free_limit(zone, 1); 4445 } 4446 4447 /* See uma.h */ 4448 int 4449 uma_zone_set_max(uma_zone_t zone, int nitems) 4450 { 4451 struct uma_bucket_zone *ubz; 4452 int count; 4453 4454 /* 4455 * XXX This can misbehave if the zone has any allocations with 4456 * no limit and a limit is imposed. There is currently no 4457 * way to clear a limit. 4458 */ 4459 ZONE_LOCK(zone); 4460 ubz = bucket_zone_max(zone, nitems); 4461 count = ubz != NULL ? ubz->ubz_entries : 0; 4462 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 4463 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4464 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4465 zone->uz_max_items = nitems; 4466 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4467 zone_update_caches(zone); 4468 /* We may need to wake waiters. */ 4469 wakeup(&zone->uz_max_items); 4470 ZONE_UNLOCK(zone); 4471 4472 return (nitems); 4473 } 4474 4475 /* See uma.h */ 4476 void 4477 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4478 { 4479 struct uma_bucket_zone *ubz; 4480 int bpcpu; 4481 4482 ZONE_LOCK(zone); 4483 ubz = bucket_zone_max(zone, nitems); 4484 if (ubz != NULL) { 4485 bpcpu = 2; 4486 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4487 /* Count the cross-domain bucket. */ 4488 bpcpu++; 4489 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 4490 zone->uz_bucket_size_max = ubz->ubz_entries; 4491 } else { 4492 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 4493 } 4494 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4495 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4496 zone->uz_bucket_max = nitems / vm_ndomains; 4497 ZONE_UNLOCK(zone); 4498 } 4499 4500 /* See uma.h */ 4501 int 4502 uma_zone_get_max(uma_zone_t zone) 4503 { 4504 int nitems; 4505 4506 nitems = atomic_load_64(&zone->uz_max_items); 4507 4508 return (nitems); 4509 } 4510 4511 /* See uma.h */ 4512 void 4513 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4514 { 4515 4516 ZONE_ASSERT_COLD(zone); 4517 zone->uz_warning = warning; 4518 } 4519 4520 /* See uma.h */ 4521 void 4522 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4523 { 4524 4525 ZONE_ASSERT_COLD(zone); 4526 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4527 } 4528 4529 /* See uma.h */ 4530 int 4531 uma_zone_get_cur(uma_zone_t zone) 4532 { 4533 int64_t nitems; 4534 u_int i; 4535 4536 nitems = 0; 4537 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4538 nitems = counter_u64_fetch(zone->uz_allocs) - 4539 counter_u64_fetch(zone->uz_frees); 4540 CPU_FOREACH(i) 4541 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4542 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4543 4544 return (nitems < 0 ? 0 : nitems); 4545 } 4546 4547 static uint64_t 4548 uma_zone_get_allocs(uma_zone_t zone) 4549 { 4550 uint64_t nitems; 4551 u_int i; 4552 4553 nitems = 0; 4554 if (zone->uz_allocs != EARLY_COUNTER) 4555 nitems = counter_u64_fetch(zone->uz_allocs); 4556 CPU_FOREACH(i) 4557 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4558 4559 return (nitems); 4560 } 4561 4562 static uint64_t 4563 uma_zone_get_frees(uma_zone_t zone) 4564 { 4565 uint64_t nitems; 4566 u_int i; 4567 4568 nitems = 0; 4569 if (zone->uz_frees != EARLY_COUNTER) 4570 nitems = counter_u64_fetch(zone->uz_frees); 4571 CPU_FOREACH(i) 4572 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4573 4574 return (nitems); 4575 } 4576 4577 #ifdef INVARIANTS 4578 /* Used only for KEG_ASSERT_COLD(). */ 4579 static uint64_t 4580 uma_keg_get_allocs(uma_keg_t keg) 4581 { 4582 uma_zone_t z; 4583 uint64_t nitems; 4584 4585 nitems = 0; 4586 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4587 nitems += uma_zone_get_allocs(z); 4588 4589 return (nitems); 4590 } 4591 #endif 4592 4593 /* See uma.h */ 4594 void 4595 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4596 { 4597 uma_keg_t keg; 4598 4599 KEG_GET(zone, keg); 4600 KEG_ASSERT_COLD(keg); 4601 keg->uk_init = uminit; 4602 } 4603 4604 /* See uma.h */ 4605 void 4606 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4607 { 4608 uma_keg_t keg; 4609 4610 KEG_GET(zone, keg); 4611 KEG_ASSERT_COLD(keg); 4612 keg->uk_fini = fini; 4613 } 4614 4615 /* See uma.h */ 4616 void 4617 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4618 { 4619 4620 ZONE_ASSERT_COLD(zone); 4621 zone->uz_init = zinit; 4622 } 4623 4624 /* See uma.h */ 4625 void 4626 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4627 { 4628 4629 ZONE_ASSERT_COLD(zone); 4630 zone->uz_fini = zfini; 4631 } 4632 4633 /* See uma.h */ 4634 void 4635 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4636 { 4637 uma_keg_t keg; 4638 4639 KEG_GET(zone, keg); 4640 KEG_ASSERT_COLD(keg); 4641 keg->uk_freef = freef; 4642 } 4643 4644 /* See uma.h */ 4645 void 4646 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4647 { 4648 uma_keg_t keg; 4649 4650 KEG_GET(zone, keg); 4651 KEG_ASSERT_COLD(keg); 4652 keg->uk_allocf = allocf; 4653 } 4654 4655 /* See uma.h */ 4656 void 4657 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4658 { 4659 4660 ZONE_ASSERT_COLD(zone); 4661 4662 KASSERT(smr != NULL, ("Got NULL smr")); 4663 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4664 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 4665 zone->uz_flags |= UMA_ZONE_SMR; 4666 zone->uz_smr = smr; 4667 zone_update_caches(zone); 4668 } 4669 4670 smr_t 4671 uma_zone_get_smr(uma_zone_t zone) 4672 { 4673 4674 return (zone->uz_smr); 4675 } 4676 4677 /* See uma.h */ 4678 void 4679 uma_zone_reserve(uma_zone_t zone, int items) 4680 { 4681 uma_keg_t keg; 4682 4683 KEG_GET(zone, keg); 4684 KEG_ASSERT_COLD(keg); 4685 keg->uk_reserve = items; 4686 } 4687 4688 /* See uma.h */ 4689 int 4690 uma_zone_reserve_kva(uma_zone_t zone, int count) 4691 { 4692 uma_keg_t keg; 4693 vm_offset_t kva; 4694 u_int pages; 4695 4696 KEG_GET(zone, keg); 4697 KEG_ASSERT_COLD(keg); 4698 ZONE_ASSERT_COLD(zone); 4699 4700 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4701 4702 #ifdef UMA_MD_SMALL_ALLOC 4703 if (keg->uk_ppera > 1) { 4704 #else 4705 if (1) { 4706 #endif 4707 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4708 if (kva == 0) 4709 return (0); 4710 } else 4711 kva = 0; 4712 4713 MPASS(keg->uk_kva == 0); 4714 keg->uk_kva = kva; 4715 keg->uk_offset = 0; 4716 zone->uz_max_items = pages * keg->uk_ipers; 4717 #ifdef UMA_MD_SMALL_ALLOC 4718 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4719 #else 4720 keg->uk_allocf = noobj_alloc; 4721 #endif 4722 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4723 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4724 zone_update_caches(zone); 4725 4726 return (1); 4727 } 4728 4729 /* See uma.h */ 4730 void 4731 uma_prealloc(uma_zone_t zone, int items) 4732 { 4733 struct vm_domainset_iter di; 4734 uma_domain_t dom; 4735 uma_slab_t slab; 4736 uma_keg_t keg; 4737 int aflags, domain, slabs; 4738 4739 KEG_GET(zone, keg); 4740 slabs = howmany(items, keg->uk_ipers); 4741 while (slabs-- > 0) { 4742 aflags = M_NOWAIT; 4743 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4744 &aflags); 4745 for (;;) { 4746 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4747 aflags); 4748 if (slab != NULL) { 4749 dom = &keg->uk_domain[slab->us_domain]; 4750 /* 4751 * keg_alloc_slab() always returns a slab on the 4752 * partial list. 4753 */ 4754 LIST_REMOVE(slab, us_link); 4755 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4756 us_link); 4757 dom->ud_free_slabs++; 4758 KEG_UNLOCK(keg, slab->us_domain); 4759 break; 4760 } 4761 if (vm_domainset_iter_policy(&di, &domain) != 0) 4762 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 4763 } 4764 } 4765 } 4766 4767 /* 4768 * Returns a snapshot of memory consumption in bytes. 4769 */ 4770 size_t 4771 uma_zone_memory(uma_zone_t zone) 4772 { 4773 size_t sz; 4774 int i; 4775 4776 sz = 0; 4777 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 4778 for (i = 0; i < vm_ndomains; i++) 4779 sz += ZDOM_GET(zone, i)->uzd_nitems; 4780 return (sz * zone->uz_size); 4781 } 4782 for (i = 0; i < vm_ndomains; i++) 4783 sz += zone->uz_keg->uk_domain[i].ud_pages; 4784 4785 return (sz * PAGE_SIZE); 4786 } 4787 4788 /* See uma.h */ 4789 void 4790 uma_reclaim(int req) 4791 { 4792 4793 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4794 sx_xlock(&uma_reclaim_lock); 4795 bucket_enable(); 4796 4797 switch (req) { 4798 case UMA_RECLAIM_TRIM: 4799 zone_foreach(zone_trim, NULL); 4800 break; 4801 case UMA_RECLAIM_DRAIN: 4802 case UMA_RECLAIM_DRAIN_CPU: 4803 zone_foreach(zone_drain, NULL); 4804 if (req == UMA_RECLAIM_DRAIN_CPU) { 4805 pcpu_cache_drain_safe(NULL); 4806 zone_foreach(zone_drain, NULL); 4807 } 4808 break; 4809 default: 4810 panic("unhandled reclamation request %d", req); 4811 } 4812 4813 /* 4814 * Some slabs may have been freed but this zone will be visited early 4815 * we visit again so that we can free pages that are empty once other 4816 * zones are drained. We have to do the same for buckets. 4817 */ 4818 zone_drain(slabzones[0], NULL); 4819 zone_drain(slabzones[1], NULL); 4820 bucket_zone_drain(); 4821 sx_xunlock(&uma_reclaim_lock); 4822 } 4823 4824 static volatile int uma_reclaim_needed; 4825 4826 void 4827 uma_reclaim_wakeup(void) 4828 { 4829 4830 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4831 wakeup(uma_reclaim); 4832 } 4833 4834 void 4835 uma_reclaim_worker(void *arg __unused) 4836 { 4837 4838 for (;;) { 4839 sx_xlock(&uma_reclaim_lock); 4840 while (atomic_load_int(&uma_reclaim_needed) == 0) 4841 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4842 hz); 4843 sx_xunlock(&uma_reclaim_lock); 4844 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4845 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4846 atomic_store_int(&uma_reclaim_needed, 0); 4847 /* Don't fire more than once per-second. */ 4848 pause("umarclslp", hz); 4849 } 4850 } 4851 4852 /* See uma.h */ 4853 void 4854 uma_zone_reclaim(uma_zone_t zone, int req) 4855 { 4856 4857 switch (req) { 4858 case UMA_RECLAIM_TRIM: 4859 zone_trim(zone, NULL); 4860 break; 4861 case UMA_RECLAIM_DRAIN: 4862 zone_drain(zone, NULL); 4863 break; 4864 case UMA_RECLAIM_DRAIN_CPU: 4865 pcpu_cache_drain_safe(zone); 4866 zone_drain(zone, NULL); 4867 break; 4868 default: 4869 panic("unhandled reclamation request %d", req); 4870 } 4871 } 4872 4873 /* See uma.h */ 4874 int 4875 uma_zone_exhausted(uma_zone_t zone) 4876 { 4877 4878 return (atomic_load_32(&zone->uz_sleepers) > 0); 4879 } 4880 4881 unsigned long 4882 uma_limit(void) 4883 { 4884 4885 return (uma_kmem_limit); 4886 } 4887 4888 void 4889 uma_set_limit(unsigned long limit) 4890 { 4891 4892 uma_kmem_limit = limit; 4893 } 4894 4895 unsigned long 4896 uma_size(void) 4897 { 4898 4899 return (atomic_load_long(&uma_kmem_total)); 4900 } 4901 4902 long 4903 uma_avail(void) 4904 { 4905 4906 return (uma_kmem_limit - uma_size()); 4907 } 4908 4909 #ifdef DDB 4910 /* 4911 * Generate statistics across both the zone and its per-cpu cache's. Return 4912 * desired statistics if the pointer is non-NULL for that statistic. 4913 * 4914 * Note: does not update the zone statistics, as it can't safely clear the 4915 * per-CPU cache statistic. 4916 * 4917 */ 4918 static void 4919 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4920 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4921 { 4922 uma_cache_t cache; 4923 uint64_t allocs, frees, sleeps, xdomain; 4924 int cachefree, cpu; 4925 4926 allocs = frees = sleeps = xdomain = 0; 4927 cachefree = 0; 4928 CPU_FOREACH(cpu) { 4929 cache = &z->uz_cpu[cpu]; 4930 cachefree += cache->uc_allocbucket.ucb_cnt; 4931 cachefree += cache->uc_freebucket.ucb_cnt; 4932 xdomain += cache->uc_crossbucket.ucb_cnt; 4933 cachefree += cache->uc_crossbucket.ucb_cnt; 4934 allocs += cache->uc_allocs; 4935 frees += cache->uc_frees; 4936 } 4937 allocs += counter_u64_fetch(z->uz_allocs); 4938 frees += counter_u64_fetch(z->uz_frees); 4939 xdomain += counter_u64_fetch(z->uz_xdomain); 4940 sleeps += z->uz_sleeps; 4941 if (cachefreep != NULL) 4942 *cachefreep = cachefree; 4943 if (allocsp != NULL) 4944 *allocsp = allocs; 4945 if (freesp != NULL) 4946 *freesp = frees; 4947 if (sleepsp != NULL) 4948 *sleepsp = sleeps; 4949 if (xdomainp != NULL) 4950 *xdomainp = xdomain; 4951 } 4952 #endif /* DDB */ 4953 4954 static int 4955 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4956 { 4957 uma_keg_t kz; 4958 uma_zone_t z; 4959 int count; 4960 4961 count = 0; 4962 rw_rlock(&uma_rwlock); 4963 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4964 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4965 count++; 4966 } 4967 LIST_FOREACH(z, &uma_cachezones, uz_link) 4968 count++; 4969 4970 rw_runlock(&uma_rwlock); 4971 return (sysctl_handle_int(oidp, &count, 0, req)); 4972 } 4973 4974 static void 4975 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4976 struct uma_percpu_stat *ups, bool internal) 4977 { 4978 uma_zone_domain_t zdom; 4979 uma_cache_t cache; 4980 int i; 4981 4982 4983 for (i = 0; i < vm_ndomains; i++) { 4984 zdom = ZDOM_GET(z, i); 4985 uth->uth_zone_free += zdom->uzd_nitems; 4986 } 4987 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4988 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4989 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4990 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 4991 uth->uth_sleeps = z->uz_sleeps; 4992 4993 for (i = 0; i < mp_maxid + 1; i++) { 4994 bzero(&ups[i], sizeof(*ups)); 4995 if (internal || CPU_ABSENT(i)) 4996 continue; 4997 cache = &z->uz_cpu[i]; 4998 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 4999 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5000 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5001 ups[i].ups_allocs = cache->uc_allocs; 5002 ups[i].ups_frees = cache->uc_frees; 5003 } 5004 } 5005 5006 static int 5007 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5008 { 5009 struct uma_stream_header ush; 5010 struct uma_type_header uth; 5011 struct uma_percpu_stat *ups; 5012 struct sbuf sbuf; 5013 uma_keg_t kz; 5014 uma_zone_t z; 5015 uint64_t items; 5016 uint32_t kfree, pages; 5017 int count, error, i; 5018 5019 error = sysctl_wire_old_buffer(req, 0); 5020 if (error != 0) 5021 return (error); 5022 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5023 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5024 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5025 5026 count = 0; 5027 rw_rlock(&uma_rwlock); 5028 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5029 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5030 count++; 5031 } 5032 5033 LIST_FOREACH(z, &uma_cachezones, uz_link) 5034 count++; 5035 5036 /* 5037 * Insert stream header. 5038 */ 5039 bzero(&ush, sizeof(ush)); 5040 ush.ush_version = UMA_STREAM_VERSION; 5041 ush.ush_maxcpus = (mp_maxid + 1); 5042 ush.ush_count = count; 5043 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5044 5045 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5046 kfree = pages = 0; 5047 for (i = 0; i < vm_ndomains; i++) { 5048 kfree += kz->uk_domain[i].ud_free_items; 5049 pages += kz->uk_domain[i].ud_pages; 5050 } 5051 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5052 bzero(&uth, sizeof(uth)); 5053 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5054 uth.uth_align = kz->uk_align; 5055 uth.uth_size = kz->uk_size; 5056 uth.uth_rsize = kz->uk_rsize; 5057 if (z->uz_max_items > 0) { 5058 items = UZ_ITEMS_COUNT(z->uz_items); 5059 uth.uth_pages = (items / kz->uk_ipers) * 5060 kz->uk_ppera; 5061 } else 5062 uth.uth_pages = pages; 5063 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5064 kz->uk_ppera; 5065 uth.uth_limit = z->uz_max_items; 5066 uth.uth_keg_free = kfree; 5067 5068 /* 5069 * A zone is secondary is it is not the first entry 5070 * on the keg's zone list. 5071 */ 5072 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5073 (LIST_FIRST(&kz->uk_zones) != z)) 5074 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5075 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5076 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5077 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5078 for (i = 0; i < mp_maxid + 1; i++) 5079 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5080 } 5081 } 5082 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5083 bzero(&uth, sizeof(uth)); 5084 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5085 uth.uth_size = z->uz_size; 5086 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5087 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5088 for (i = 0; i < mp_maxid + 1; i++) 5089 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5090 } 5091 5092 rw_runlock(&uma_rwlock); 5093 error = sbuf_finish(&sbuf); 5094 sbuf_delete(&sbuf); 5095 free(ups, M_TEMP); 5096 return (error); 5097 } 5098 5099 int 5100 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5101 { 5102 uma_zone_t zone = *(uma_zone_t *)arg1; 5103 int error, max; 5104 5105 max = uma_zone_get_max(zone); 5106 error = sysctl_handle_int(oidp, &max, 0, req); 5107 if (error || !req->newptr) 5108 return (error); 5109 5110 uma_zone_set_max(zone, max); 5111 5112 return (0); 5113 } 5114 5115 int 5116 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5117 { 5118 uma_zone_t zone; 5119 int cur; 5120 5121 /* 5122 * Some callers want to add sysctls for global zones that 5123 * may not yet exist so they pass a pointer to a pointer. 5124 */ 5125 if (arg2 == 0) 5126 zone = *(uma_zone_t *)arg1; 5127 else 5128 zone = arg1; 5129 cur = uma_zone_get_cur(zone); 5130 return (sysctl_handle_int(oidp, &cur, 0, req)); 5131 } 5132 5133 static int 5134 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5135 { 5136 uma_zone_t zone = arg1; 5137 uint64_t cur; 5138 5139 cur = uma_zone_get_allocs(zone); 5140 return (sysctl_handle_64(oidp, &cur, 0, req)); 5141 } 5142 5143 static int 5144 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5145 { 5146 uma_zone_t zone = arg1; 5147 uint64_t cur; 5148 5149 cur = uma_zone_get_frees(zone); 5150 return (sysctl_handle_64(oidp, &cur, 0, req)); 5151 } 5152 5153 static int 5154 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5155 { 5156 struct sbuf sbuf; 5157 uma_zone_t zone = arg1; 5158 int error; 5159 5160 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5161 if (zone->uz_flags != 0) 5162 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5163 else 5164 sbuf_printf(&sbuf, "0"); 5165 error = sbuf_finish(&sbuf); 5166 sbuf_delete(&sbuf); 5167 5168 return (error); 5169 } 5170 5171 static int 5172 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5173 { 5174 uma_keg_t keg = arg1; 5175 int avail, effpct, total; 5176 5177 total = keg->uk_ppera * PAGE_SIZE; 5178 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5179 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5180 /* 5181 * We consider the client's requested size and alignment here, not the 5182 * real size determination uk_rsize, because we also adjust the real 5183 * size for internal implementation reasons (max bitset size). 5184 */ 5185 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5186 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5187 avail *= mp_maxid + 1; 5188 effpct = 100 * avail / total; 5189 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5190 } 5191 5192 static int 5193 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5194 { 5195 uma_zone_t zone = arg1; 5196 uint64_t cur; 5197 5198 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5199 return (sysctl_handle_64(oidp, &cur, 0, req)); 5200 } 5201 5202 #ifdef INVARIANTS 5203 static uma_slab_t 5204 uma_dbg_getslab(uma_zone_t zone, void *item) 5205 { 5206 uma_slab_t slab; 5207 uma_keg_t keg; 5208 uint8_t *mem; 5209 5210 /* 5211 * It is safe to return the slab here even though the 5212 * zone is unlocked because the item's allocation state 5213 * essentially holds a reference. 5214 */ 5215 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5216 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5217 return (NULL); 5218 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5219 return (vtoslab((vm_offset_t)mem)); 5220 keg = zone->uz_keg; 5221 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5222 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5223 KEG_LOCK(keg, 0); 5224 slab = hash_sfind(&keg->uk_hash, mem); 5225 KEG_UNLOCK(keg, 0); 5226 5227 return (slab); 5228 } 5229 5230 static bool 5231 uma_dbg_zskip(uma_zone_t zone, void *mem) 5232 { 5233 5234 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5235 return (true); 5236 5237 return (uma_dbg_kskip(zone->uz_keg, mem)); 5238 } 5239 5240 static bool 5241 uma_dbg_kskip(uma_keg_t keg, void *mem) 5242 { 5243 uintptr_t idx; 5244 5245 if (dbg_divisor == 0) 5246 return (true); 5247 5248 if (dbg_divisor == 1) 5249 return (false); 5250 5251 idx = (uintptr_t)mem >> PAGE_SHIFT; 5252 if (keg->uk_ipers > 1) { 5253 idx *= keg->uk_ipers; 5254 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5255 } 5256 5257 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5258 counter_u64_add(uma_skip_cnt, 1); 5259 return (true); 5260 } 5261 counter_u64_add(uma_dbg_cnt, 1); 5262 5263 return (false); 5264 } 5265 5266 /* 5267 * Set up the slab's freei data such that uma_dbg_free can function. 5268 * 5269 */ 5270 static void 5271 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5272 { 5273 uma_keg_t keg; 5274 int freei; 5275 5276 if (slab == NULL) { 5277 slab = uma_dbg_getslab(zone, item); 5278 if (slab == NULL) 5279 panic("uma: item %p did not belong to zone %s\n", 5280 item, zone->uz_name); 5281 } 5282 keg = zone->uz_keg; 5283 freei = slab_item_index(slab, keg, item); 5284 5285 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5286 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 5287 item, zone, zone->uz_name, slab, freei); 5288 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5289 } 5290 5291 /* 5292 * Verifies freed addresses. Checks for alignment, valid slab membership 5293 * and duplicate frees. 5294 * 5295 */ 5296 static void 5297 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5298 { 5299 uma_keg_t keg; 5300 int freei; 5301 5302 if (slab == NULL) { 5303 slab = uma_dbg_getslab(zone, item); 5304 if (slab == NULL) 5305 panic("uma: Freed item %p did not belong to zone %s\n", 5306 item, zone->uz_name); 5307 } 5308 keg = zone->uz_keg; 5309 freei = slab_item_index(slab, keg, item); 5310 5311 if (freei >= keg->uk_ipers) 5312 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 5313 item, zone, zone->uz_name, slab, freei); 5314 5315 if (slab_item(slab, keg, freei) != item) 5316 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 5317 item, zone, zone->uz_name, slab, freei); 5318 5319 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5320 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 5321 item, zone, zone->uz_name, slab, freei); 5322 5323 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5324 } 5325 #endif /* INVARIANTS */ 5326 5327 #ifdef DDB 5328 static int64_t 5329 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5330 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5331 { 5332 uint64_t frees; 5333 int i; 5334 5335 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5336 *allocs = counter_u64_fetch(z->uz_allocs); 5337 frees = counter_u64_fetch(z->uz_frees); 5338 *sleeps = z->uz_sleeps; 5339 *cachefree = 0; 5340 *xdomain = 0; 5341 } else 5342 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5343 xdomain); 5344 for (i = 0; i < vm_ndomains; i++) { 5345 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5346 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5347 (LIST_FIRST(&kz->uk_zones) != z))) 5348 *cachefree += kz->uk_domain[i].ud_free_items; 5349 } 5350 *used = *allocs - frees; 5351 return (((int64_t)*used + *cachefree) * kz->uk_size); 5352 } 5353 5354 DB_SHOW_COMMAND(uma, db_show_uma) 5355 { 5356 const char *fmt_hdr, *fmt_entry; 5357 uma_keg_t kz; 5358 uma_zone_t z; 5359 uint64_t allocs, used, sleeps, xdomain; 5360 long cachefree; 5361 /* variables for sorting */ 5362 uma_keg_t cur_keg; 5363 uma_zone_t cur_zone, last_zone; 5364 int64_t cur_size, last_size, size; 5365 int ties; 5366 5367 /* /i option produces machine-parseable CSV output */ 5368 if (modif[0] == 'i') { 5369 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5370 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5371 } else { 5372 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5373 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5374 } 5375 5376 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5377 "Sleeps", "Bucket", "Total Mem", "XFree"); 5378 5379 /* Sort the zones with largest size first. */ 5380 last_zone = NULL; 5381 last_size = INT64_MAX; 5382 for (;;) { 5383 cur_zone = NULL; 5384 cur_size = -1; 5385 ties = 0; 5386 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5387 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5388 /* 5389 * In the case of size ties, print out zones 5390 * in the order they are encountered. That is, 5391 * when we encounter the most recently output 5392 * zone, we have already printed all preceding 5393 * ties, and we must print all following ties. 5394 */ 5395 if (z == last_zone) { 5396 ties = 1; 5397 continue; 5398 } 5399 size = get_uma_stats(kz, z, &allocs, &used, 5400 &sleeps, &cachefree, &xdomain); 5401 if (size > cur_size && size < last_size + ties) 5402 { 5403 cur_size = size; 5404 cur_zone = z; 5405 cur_keg = kz; 5406 } 5407 } 5408 } 5409 if (cur_zone == NULL) 5410 break; 5411 5412 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5413 &sleeps, &cachefree, &xdomain); 5414 db_printf(fmt_entry, cur_zone->uz_name, 5415 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5416 (uintmax_t)allocs, (uintmax_t)sleeps, 5417 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5418 xdomain); 5419 5420 if (db_pager_quit) 5421 return; 5422 last_zone = cur_zone; 5423 last_size = cur_size; 5424 } 5425 } 5426 5427 DB_SHOW_COMMAND(umacache, db_show_umacache) 5428 { 5429 uma_zone_t z; 5430 uint64_t allocs, frees; 5431 long cachefree; 5432 int i; 5433 5434 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5435 "Requests", "Bucket"); 5436 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5437 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5438 for (i = 0; i < vm_ndomains; i++) 5439 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5440 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5441 z->uz_name, (uintmax_t)z->uz_size, 5442 (intmax_t)(allocs - frees), cachefree, 5443 (uintmax_t)allocs, z->uz_bucket_size); 5444 if (db_pager_quit) 5445 return; 5446 } 5447 } 5448 #endif /* DDB */ 5449