xref: /freebsd/sys/vm/uma_core.c (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 /*-
2  * Copyright (c) 2002, 2003, 2004, 2005 Jeffrey Roberson <jeff@FreeBSD.org>
3  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4  * Copyright (c) 2004-2006 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * uma_core.c  Implementation of the Universal Memory allocator
31  *
32  * This allocator is intended to replace the multitude of similar object caches
33  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34  * effecient.  A primary design goal is to return unused memory to the rest of
35  * the system.  This will make the system as a whole more flexible due to the
36  * ability to move memory to subsystems which most need it instead of leaving
37  * pools of reserved memory unused.
38  *
39  * The basic ideas stem from similar slab/zone based allocators whose algorithms
40  * are well known.
41  *
42  */
43 
44 /*
45  * TODO:
46  *	- Improve memory usage for large allocations
47  *	- Investigate cache size adjustments
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /* I should really use ktr.. */
54 /*
55 #define UMA_DEBUG 1
56 #define UMA_DEBUG_ALLOC 1
57 #define UMA_DEBUG_ALLOC_1 1
58 */
59 
60 #include "opt_ddb.h"
61 #include "opt_param.h"
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/types.h>
67 #include <sys/queue.h>
68 #include <sys/malloc.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/sysctl.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/sbuf.h>
75 #include <sys/smp.h>
76 #include <sys/vmmeter.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_kern.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 #include <vm/uma_int.h>
87 #include <vm/uma_dbg.h>
88 
89 #include <machine/vmparam.h>
90 
91 #include <ddb/ddb.h>
92 
93 /*
94  * This is the zone and keg from which all zones are spawned.  The idea is that
95  * even the zone & keg heads are allocated from the allocator, so we use the
96  * bss section to bootstrap us.
97  */
98 static struct uma_keg masterkeg;
99 static struct uma_zone masterzone_k;
100 static struct uma_zone masterzone_z;
101 static uma_zone_t kegs = &masterzone_k;
102 static uma_zone_t zones = &masterzone_z;
103 
104 /* This is the zone from which all of uma_slab_t's are allocated. */
105 static uma_zone_t slabzone;
106 static uma_zone_t slabrefzone;	/* With refcounters (for UMA_ZONE_REFCNT) */
107 
108 /*
109  * The initial hash tables come out of this zone so they can be allocated
110  * prior to malloc coming up.
111  */
112 static uma_zone_t hashzone;
113 
114 /* The boot-time adjusted value for cache line alignment. */
115 static int uma_align_cache = 16 - 1;
116 
117 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
118 
119 /*
120  * Are we allowed to allocate buckets?
121  */
122 static int bucketdisable = 1;
123 
124 /* Linked list of all kegs in the system */
125 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(&uma_kegs);
126 
127 /* This mutex protects the keg list */
128 static struct mtx uma_mtx;
129 
130 /* Linked list of boot time pages */
131 static LIST_HEAD(,uma_slab) uma_boot_pages =
132     LIST_HEAD_INITIALIZER(&uma_boot_pages);
133 
134 /* This mutex protects the boot time pages list */
135 static struct mtx uma_boot_pages_mtx;
136 
137 /* Is the VM done starting up? */
138 static int booted = 0;
139 
140 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
141 static u_int uma_max_ipers;
142 static u_int uma_max_ipers_ref;
143 
144 /*
145  * This is the handle used to schedule events that need to happen
146  * outside of the allocation fast path.
147  */
148 static struct callout uma_callout;
149 #define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
150 
151 /*
152  * This structure is passed as the zone ctor arg so that I don't have to create
153  * a special allocation function just for zones.
154  */
155 struct uma_zctor_args {
156 	char *name;
157 	size_t size;
158 	uma_ctor ctor;
159 	uma_dtor dtor;
160 	uma_init uminit;
161 	uma_fini fini;
162 	uma_keg_t keg;
163 	int align;
164 	u_int32_t flags;
165 };
166 
167 struct uma_kctor_args {
168 	uma_zone_t zone;
169 	size_t size;
170 	uma_init uminit;
171 	uma_fini fini;
172 	int align;
173 	u_int32_t flags;
174 };
175 
176 struct uma_bucket_zone {
177 	uma_zone_t	ubz_zone;
178 	char		*ubz_name;
179 	int		ubz_entries;
180 };
181 
182 #define	BUCKET_MAX	128
183 
184 struct uma_bucket_zone bucket_zones[] = {
185 	{ NULL, "16 Bucket", 16 },
186 	{ NULL, "32 Bucket", 32 },
187 	{ NULL, "64 Bucket", 64 },
188 	{ NULL, "128 Bucket", 128 },
189 	{ NULL, NULL, 0}
190 };
191 
192 #define	BUCKET_SHIFT	4
193 #define	BUCKET_ZONES	((BUCKET_MAX >> BUCKET_SHIFT) + 1)
194 
195 /*
196  * bucket_size[] maps requested bucket sizes to zones that allocate a bucket
197  * of approximately the right size.
198  */
199 static uint8_t bucket_size[BUCKET_ZONES];
200 
201 /*
202  * Flags and enumerations to be passed to internal functions.
203  */
204 enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI };
205 
206 #define	ZFREE_STATFAIL	0x00000001	/* Update zone failure statistic. */
207 #define	ZFREE_STATFREE	0x00000002	/* Update zone free statistic. */
208 
209 /* Prototypes.. */
210 
211 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int);
212 static void *page_alloc(uma_zone_t, int, u_int8_t *, int);
213 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int);
214 static void page_free(void *, int, u_int8_t);
215 static uma_slab_t slab_zalloc(uma_zone_t, int);
216 static void cache_drain(uma_zone_t);
217 static void bucket_drain(uma_zone_t, uma_bucket_t);
218 static void bucket_cache_drain(uma_zone_t zone);
219 static int keg_ctor(void *, int, void *, int);
220 static void keg_dtor(void *, int, void *);
221 static int zone_ctor(void *, int, void *, int);
222 static void zone_dtor(void *, int, void *);
223 static int zero_init(void *, int, int);
224 static void zone_small_init(uma_zone_t zone);
225 static void zone_large_init(uma_zone_t zone);
226 static void zone_foreach(void (*zfunc)(uma_zone_t));
227 static void zone_timeout(uma_zone_t zone);
228 static int hash_alloc(struct uma_hash *);
229 static int hash_expand(struct uma_hash *, struct uma_hash *);
230 static void hash_free(struct uma_hash *hash);
231 static void uma_timeout(void *);
232 static void uma_startup3(void);
233 static void *uma_zalloc_internal(uma_zone_t, void *, int);
234 static void uma_zfree_internal(uma_zone_t, void *, void *, enum zfreeskip,
235     int);
236 static void bucket_enable(void);
237 static void bucket_init(void);
238 static uma_bucket_t bucket_alloc(int, int);
239 static void bucket_free(uma_bucket_t);
240 static void bucket_zone_drain(void);
241 static int uma_zalloc_bucket(uma_zone_t zone, int flags);
242 static uma_slab_t uma_zone_slab(uma_zone_t zone, int flags);
243 static void *uma_slab_alloc(uma_zone_t zone, uma_slab_t slab);
244 static uma_zone_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
245     uma_fini fini, int align, u_int32_t flags);
246 
247 void uma_print_zone(uma_zone_t);
248 void uma_print_stats(void);
249 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
250 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
251 
252 #ifdef WITNESS
253 static int nosleepwithlocks = 1;
254 #else
255 static int nosleepwithlocks = 0;
256 #endif
257 SYSCTL_INT(_debug, OID_AUTO, nosleepwithlocks, CTLFLAG_RW, &nosleepwithlocks,
258     0, "Convert M_WAITOK to M_NOWAIT to avoid lock-held-across-sleep paths");
259 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
260 
261 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
262     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
263 
264 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
265     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
266 
267 /*
268  * This routine checks to see whether or not it's safe to enable buckets.
269  */
270 
271 static void
272 bucket_enable(void)
273 {
274 	if (cnt.v_free_count < cnt.v_free_min)
275 		bucketdisable = 1;
276 	else
277 		bucketdisable = 0;
278 }
279 
280 /*
281  * Initialize bucket_zones, the array of zones of buckets of various sizes.
282  *
283  * For each zone, calculate the memory required for each bucket, consisting
284  * of the header and an array of pointers.  Initialize bucket_size[] to point
285  * the range of appropriate bucket sizes at the zone.
286  */
287 static void
288 bucket_init(void)
289 {
290 	struct uma_bucket_zone *ubz;
291 	int i;
292 	int j;
293 
294 	for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) {
295 		int size;
296 
297 		ubz = &bucket_zones[j];
298 		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
299 		size += sizeof(void *) * ubz->ubz_entries;
300 		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
301 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
302 		for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT))
303 			bucket_size[i >> BUCKET_SHIFT] = j;
304 	}
305 }
306 
307 /*
308  * Given a desired number of entries for a bucket, return the zone from which
309  * to allocate the bucket.
310  */
311 static struct uma_bucket_zone *
312 bucket_zone_lookup(int entries)
313 {
314 	int idx;
315 
316 	idx = howmany(entries, 1 << BUCKET_SHIFT);
317 	return (&bucket_zones[bucket_size[idx]]);
318 }
319 
320 static uma_bucket_t
321 bucket_alloc(int entries, int bflags)
322 {
323 	struct uma_bucket_zone *ubz;
324 	uma_bucket_t bucket;
325 
326 	/*
327 	 * This is to stop us from allocating per cpu buckets while we're
328 	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
329 	 * boot pages.  This also prevents us from allocating buckets in
330 	 * low memory situations.
331 	 */
332 	if (bucketdisable)
333 		return (NULL);
334 
335 	ubz = bucket_zone_lookup(entries);
336 	bucket = uma_zalloc_internal(ubz->ubz_zone, NULL, bflags);
337 	if (bucket) {
338 #ifdef INVARIANTS
339 		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
340 #endif
341 		bucket->ub_cnt = 0;
342 		bucket->ub_entries = ubz->ubz_entries;
343 	}
344 
345 	return (bucket);
346 }
347 
348 static void
349 bucket_free(uma_bucket_t bucket)
350 {
351 	struct uma_bucket_zone *ubz;
352 
353 	ubz = bucket_zone_lookup(bucket->ub_entries);
354 	uma_zfree_internal(ubz->ubz_zone, bucket, NULL, SKIP_NONE,
355 	    ZFREE_STATFREE);
356 }
357 
358 static void
359 bucket_zone_drain(void)
360 {
361 	struct uma_bucket_zone *ubz;
362 
363 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
364 		zone_drain(ubz->ubz_zone);
365 }
366 
367 
368 /*
369  * Routine called by timeout which is used to fire off some time interval
370  * based calculations.  (stats, hash size, etc.)
371  *
372  * Arguments:
373  *	arg   Unused
374  *
375  * Returns:
376  *	Nothing
377  */
378 static void
379 uma_timeout(void *unused)
380 {
381 	bucket_enable();
382 	zone_foreach(zone_timeout);
383 
384 	/* Reschedule this event */
385 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
386 }
387 
388 /*
389  * Routine to perform timeout driven calculations.  This expands the
390  * hashes and does per cpu statistics aggregation.
391  *
392  *  Arguments:
393  *	zone  The zone to operate on
394  *
395  *  Returns:
396  *	Nothing
397  */
398 static void
399 zone_timeout(uma_zone_t zone)
400 {
401 	uma_keg_t keg;
402 	u_int64_t alloc;
403 
404 	keg = zone->uz_keg;
405 	alloc = 0;
406 
407 	/*
408 	 * Expand the zone hash table.
409 	 *
410 	 * This is done if the number of slabs is larger than the hash size.
411 	 * What I'm trying to do here is completely reduce collisions.  This
412 	 * may be a little aggressive.  Should I allow for two collisions max?
413 	 */
414 	ZONE_LOCK(zone);
415 	if (keg->uk_flags & UMA_ZONE_HASH &&
416 	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
417 		struct uma_hash newhash;
418 		struct uma_hash oldhash;
419 		int ret;
420 
421 		/*
422 		 * This is so involved because allocating and freeing
423 		 * while the zone lock is held will lead to deadlock.
424 		 * I have to do everything in stages and check for
425 		 * races.
426 		 */
427 		newhash = keg->uk_hash;
428 		ZONE_UNLOCK(zone);
429 		ret = hash_alloc(&newhash);
430 		ZONE_LOCK(zone);
431 		if (ret) {
432 			if (hash_expand(&keg->uk_hash, &newhash)) {
433 				oldhash = keg->uk_hash;
434 				keg->uk_hash = newhash;
435 			} else
436 				oldhash = newhash;
437 
438 			ZONE_UNLOCK(zone);
439 			hash_free(&oldhash);
440 			ZONE_LOCK(zone);
441 		}
442 	}
443 	ZONE_UNLOCK(zone);
444 }
445 
446 /*
447  * Allocate and zero fill the next sized hash table from the appropriate
448  * backing store.
449  *
450  * Arguments:
451  *	hash  A new hash structure with the old hash size in uh_hashsize
452  *
453  * Returns:
454  *	1 on sucess and 0 on failure.
455  */
456 static int
457 hash_alloc(struct uma_hash *hash)
458 {
459 	int oldsize;
460 	int alloc;
461 
462 	oldsize = hash->uh_hashsize;
463 
464 	/* We're just going to go to a power of two greater */
465 	if (oldsize)  {
466 		hash->uh_hashsize = oldsize * 2;
467 		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
468 		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
469 		    M_UMAHASH, M_NOWAIT);
470 	} else {
471 		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
472 		hash->uh_slab_hash = uma_zalloc_internal(hashzone, NULL,
473 		    M_WAITOK);
474 		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
475 	}
476 	if (hash->uh_slab_hash) {
477 		bzero(hash->uh_slab_hash, alloc);
478 		hash->uh_hashmask = hash->uh_hashsize - 1;
479 		return (1);
480 	}
481 
482 	return (0);
483 }
484 
485 /*
486  * Expands the hash table for HASH zones.  This is done from zone_timeout
487  * to reduce collisions.  This must not be done in the regular allocation
488  * path, otherwise, we can recurse on the vm while allocating pages.
489  *
490  * Arguments:
491  *	oldhash  The hash you want to expand
492  *	newhash  The hash structure for the new table
493  *
494  * Returns:
495  *	Nothing
496  *
497  * Discussion:
498  */
499 static int
500 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
501 {
502 	uma_slab_t slab;
503 	int hval;
504 	int i;
505 
506 	if (!newhash->uh_slab_hash)
507 		return (0);
508 
509 	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
510 		return (0);
511 
512 	/*
513 	 * I need to investigate hash algorithms for resizing without a
514 	 * full rehash.
515 	 */
516 
517 	for (i = 0; i < oldhash->uh_hashsize; i++)
518 		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
519 			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
520 			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
521 			hval = UMA_HASH(newhash, slab->us_data);
522 			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
523 			    slab, us_hlink);
524 		}
525 
526 	return (1);
527 }
528 
529 /*
530  * Free the hash bucket to the appropriate backing store.
531  *
532  * Arguments:
533  *	slab_hash  The hash bucket we're freeing
534  *	hashsize   The number of entries in that hash bucket
535  *
536  * Returns:
537  *	Nothing
538  */
539 static void
540 hash_free(struct uma_hash *hash)
541 {
542 	if (hash->uh_slab_hash == NULL)
543 		return;
544 	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
545 		uma_zfree_internal(hashzone,
546 		    hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE);
547 	else
548 		free(hash->uh_slab_hash, M_UMAHASH);
549 }
550 
551 /*
552  * Frees all outstanding items in a bucket
553  *
554  * Arguments:
555  *	zone   The zone to free to, must be unlocked.
556  *	bucket The free/alloc bucket with items, cpu queue must be locked.
557  *
558  * Returns:
559  *	Nothing
560  */
561 
562 static void
563 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
564 {
565 	uma_slab_t slab;
566 	int mzone;
567 	void *item;
568 
569 	if (bucket == NULL)
570 		return;
571 
572 	slab = NULL;
573 	mzone = 0;
574 
575 	/* We have to lookup the slab again for malloc.. */
576 	if (zone->uz_keg->uk_flags & UMA_ZONE_MALLOC)
577 		mzone = 1;
578 
579 	while (bucket->ub_cnt > 0)  {
580 		bucket->ub_cnt--;
581 		item = bucket->ub_bucket[bucket->ub_cnt];
582 #ifdef INVARIANTS
583 		bucket->ub_bucket[bucket->ub_cnt] = NULL;
584 		KASSERT(item != NULL,
585 		    ("bucket_drain: botched ptr, item is NULL"));
586 #endif
587 		/*
588 		 * This is extremely inefficient.  The slab pointer was passed
589 		 * to uma_zfree_arg, but we lost it because the buckets don't
590 		 * hold them.  This will go away when free() gets a size passed
591 		 * to it.
592 		 */
593 		if (mzone)
594 			slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK));
595 		uma_zfree_internal(zone, item, slab, SKIP_DTOR, 0);
596 	}
597 }
598 
599 /*
600  * Drains the per cpu caches for a zone.
601  *
602  * NOTE: This may only be called while the zone is being turn down, and not
603  * during normal operation.  This is necessary in order that we do not have
604  * to migrate CPUs to drain the per-CPU caches.
605  *
606  * Arguments:
607  *	zone     The zone to drain, must be unlocked.
608  *
609  * Returns:
610  *	Nothing
611  */
612 static void
613 cache_drain(uma_zone_t zone)
614 {
615 	uma_cache_t cache;
616 	int cpu;
617 
618 	/*
619 	 * XXX: It is safe to not lock the per-CPU caches, because we're
620 	 * tearing down the zone anyway.  I.e., there will be no further use
621 	 * of the caches at this point.
622 	 *
623 	 * XXX: It would good to be able to assert that the zone is being
624 	 * torn down to prevent improper use of cache_drain().
625 	 *
626 	 * XXX: We lock the zone before passing into bucket_cache_drain() as
627 	 * it is used elsewhere.  Should the tear-down path be made special
628 	 * there in some form?
629 	 */
630 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
631 		if (CPU_ABSENT(cpu))
632 			continue;
633 		cache = &zone->uz_cpu[cpu];
634 		bucket_drain(zone, cache->uc_allocbucket);
635 		bucket_drain(zone, cache->uc_freebucket);
636 		if (cache->uc_allocbucket != NULL)
637 			bucket_free(cache->uc_allocbucket);
638 		if (cache->uc_freebucket != NULL)
639 			bucket_free(cache->uc_freebucket);
640 		cache->uc_allocbucket = cache->uc_freebucket = NULL;
641 	}
642 	ZONE_LOCK(zone);
643 	bucket_cache_drain(zone);
644 	ZONE_UNLOCK(zone);
645 }
646 
647 /*
648  * Drain the cached buckets from a zone.  Expects a locked zone on entry.
649  */
650 static void
651 bucket_cache_drain(uma_zone_t zone)
652 {
653 	uma_bucket_t bucket;
654 
655 	/*
656 	 * Drain the bucket queues and free the buckets, we just keep two per
657 	 * cpu (alloc/free).
658 	 */
659 	while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
660 		LIST_REMOVE(bucket, ub_link);
661 		ZONE_UNLOCK(zone);
662 		bucket_drain(zone, bucket);
663 		bucket_free(bucket);
664 		ZONE_LOCK(zone);
665 	}
666 
667 	/* Now we do the free queue.. */
668 	while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
669 		LIST_REMOVE(bucket, ub_link);
670 		bucket_free(bucket);
671 	}
672 }
673 
674 /*
675  * Frees pages from a zone back to the system.  This is done on demand from
676  * the pageout daemon.
677  *
678  * Arguments:
679  *	zone  The zone to free pages from
680  *	 all  Should we drain all items?
681  *
682  * Returns:
683  *	Nothing.
684  */
685 void
686 zone_drain(uma_zone_t zone)
687 {
688 	struct slabhead freeslabs = { 0 };
689 	uma_keg_t keg;
690 	uma_slab_t slab;
691 	uma_slab_t n;
692 	u_int8_t flags;
693 	u_int8_t *mem;
694 	int i;
695 
696 	keg = zone->uz_keg;
697 
698 	/*
699 	 * We don't want to take pages from statically allocated zones at this
700 	 * time
701 	 */
702 	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
703 		return;
704 
705 	ZONE_LOCK(zone);
706 
707 #ifdef UMA_DEBUG
708 	printf("%s free items: %u\n", zone->uz_name, keg->uk_free);
709 #endif
710 	bucket_cache_drain(zone);
711 	if (keg->uk_free == 0)
712 		goto finished;
713 
714 	slab = LIST_FIRST(&keg->uk_free_slab);
715 	while (slab) {
716 		n = LIST_NEXT(slab, us_link);
717 
718 		/* We have no where to free these to */
719 		if (slab->us_flags & UMA_SLAB_BOOT) {
720 			slab = n;
721 			continue;
722 		}
723 
724 		LIST_REMOVE(slab, us_link);
725 		keg->uk_pages -= keg->uk_ppera;
726 		keg->uk_free -= keg->uk_ipers;
727 
728 		if (keg->uk_flags & UMA_ZONE_HASH)
729 			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
730 
731 		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
732 
733 		slab = n;
734 	}
735 finished:
736 	ZONE_UNLOCK(zone);
737 
738 	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
739 		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
740 		if (keg->uk_fini)
741 			for (i = 0; i < keg->uk_ipers; i++)
742 				keg->uk_fini(
743 				    slab->us_data + (keg->uk_rsize * i),
744 				    keg->uk_size);
745 		flags = slab->us_flags;
746 		mem = slab->us_data;
747 
748 		if ((keg->uk_flags & UMA_ZONE_MALLOC) ||
749 		    (keg->uk_flags & UMA_ZONE_REFCNT)) {
750 			vm_object_t obj;
751 
752 			if (flags & UMA_SLAB_KMEM)
753 				obj = kmem_object;
754 			else
755 				obj = NULL;
756 			for (i = 0; i < keg->uk_ppera; i++)
757 				vsetobj((vm_offset_t)mem + (i * PAGE_SIZE),
758 				    obj);
759 		}
760 		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
761 			uma_zfree_internal(keg->uk_slabzone, slab, NULL,
762 			    SKIP_NONE, ZFREE_STATFREE);
763 #ifdef UMA_DEBUG
764 		printf("%s: Returning %d bytes.\n",
765 		    zone->uz_name, UMA_SLAB_SIZE * keg->uk_ppera);
766 #endif
767 		keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags);
768 	}
769 }
770 
771 /*
772  * Allocate a new slab for a zone.  This does not insert the slab onto a list.
773  *
774  * Arguments:
775  *	zone  The zone to allocate slabs for
776  *	wait  Shall we wait?
777  *
778  * Returns:
779  *	The slab that was allocated or NULL if there is no memory and the
780  *	caller specified M_NOWAIT.
781  */
782 static uma_slab_t
783 slab_zalloc(uma_zone_t zone, int wait)
784 {
785 	uma_slabrefcnt_t slabref;
786 	uma_slab_t slab;
787 	uma_keg_t keg;
788 	u_int8_t *mem;
789 	u_int8_t flags;
790 	int i;
791 
792 	slab = NULL;
793 	keg = zone->uz_keg;
794 
795 #ifdef UMA_DEBUG
796 	printf("slab_zalloc:  Allocating a new slab for %s\n", zone->uz_name);
797 #endif
798 	ZONE_UNLOCK(zone);
799 
800 	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
801 		slab = uma_zalloc_internal(keg->uk_slabzone, NULL, wait);
802 		if (slab == NULL) {
803 			ZONE_LOCK(zone);
804 			return NULL;
805 		}
806 	}
807 
808 	/*
809 	 * This reproduces the old vm_zone behavior of zero filling pages the
810 	 * first time they are added to a zone.
811 	 *
812 	 * Malloced items are zeroed in uma_zalloc.
813 	 */
814 
815 	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
816 		wait |= M_ZERO;
817 	else
818 		wait &= ~M_ZERO;
819 
820 	mem = keg->uk_allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE,
821 	    &flags, wait);
822 	if (mem == NULL) {
823 		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
824 			uma_zfree_internal(keg->uk_slabzone, slab, NULL,
825 			    SKIP_NONE, ZFREE_STATFREE);
826 		ZONE_LOCK(zone);
827 		return (NULL);
828 	}
829 
830 	/* Point the slab into the allocated memory */
831 	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
832 		slab = (uma_slab_t )(mem + keg->uk_pgoff);
833 
834 	if ((keg->uk_flags & UMA_ZONE_MALLOC) ||
835 	    (keg->uk_flags & UMA_ZONE_REFCNT))
836 		for (i = 0; i < keg->uk_ppera; i++)
837 			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
838 
839 	slab->us_keg = keg;
840 	slab->us_data = mem;
841 	slab->us_freecount = keg->uk_ipers;
842 	slab->us_firstfree = 0;
843 	slab->us_flags = flags;
844 
845 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
846 		slabref = (uma_slabrefcnt_t)slab;
847 		for (i = 0; i < keg->uk_ipers; i++) {
848 			slabref->us_freelist[i].us_refcnt = 0;
849 			slabref->us_freelist[i].us_item = i+1;
850 		}
851 	} else {
852 		for (i = 0; i < keg->uk_ipers; i++)
853 			slab->us_freelist[i].us_item = i+1;
854 	}
855 
856 	if (keg->uk_init != NULL) {
857 		for (i = 0; i < keg->uk_ipers; i++)
858 			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
859 			    keg->uk_size, wait) != 0)
860 				break;
861 		if (i != keg->uk_ipers) {
862 			if (keg->uk_fini != NULL) {
863 				for (i--; i > -1; i--)
864 					keg->uk_fini(slab->us_data +
865 					    (keg->uk_rsize * i),
866 					    keg->uk_size);
867 			}
868 			if ((keg->uk_flags & UMA_ZONE_MALLOC) ||
869 			    (keg->uk_flags & UMA_ZONE_REFCNT)) {
870 				vm_object_t obj;
871 
872 				if (flags & UMA_SLAB_KMEM)
873 					obj = kmem_object;
874 				else
875 					obj = NULL;
876 				for (i = 0; i < keg->uk_ppera; i++)
877 					vsetobj((vm_offset_t)mem +
878 					    (i * PAGE_SIZE), obj);
879 			}
880 			if (keg->uk_flags & UMA_ZONE_OFFPAGE)
881 				uma_zfree_internal(keg->uk_slabzone, slab,
882 				    NULL, SKIP_NONE, ZFREE_STATFREE);
883 			keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera,
884 			    flags);
885 			ZONE_LOCK(zone);
886 			return (NULL);
887 		}
888 	}
889 	ZONE_LOCK(zone);
890 
891 	if (keg->uk_flags & UMA_ZONE_HASH)
892 		UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
893 
894 	keg->uk_pages += keg->uk_ppera;
895 	keg->uk_free += keg->uk_ipers;
896 
897 	return (slab);
898 }
899 
900 /*
901  * This function is intended to be used early on in place of page_alloc() so
902  * that we may use the boot time page cache to satisfy allocations before
903  * the VM is ready.
904  */
905 static void *
906 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
907 {
908 	uma_keg_t keg;
909 	uma_slab_t tmps;
910 
911 	keg = zone->uz_keg;
912 
913 	/*
914 	 * Check our small startup cache to see if it has pages remaining.
915 	 */
916 	mtx_lock(&uma_boot_pages_mtx);
917 	if ((tmps = LIST_FIRST(&uma_boot_pages)) != NULL) {
918 		LIST_REMOVE(tmps, us_link);
919 		mtx_unlock(&uma_boot_pages_mtx);
920 		*pflag = tmps->us_flags;
921 		return (tmps->us_data);
922 	}
923 	mtx_unlock(&uma_boot_pages_mtx);
924 	if (booted == 0)
925 		panic("UMA: Increase vm.boot_pages");
926 	/*
927 	 * Now that we've booted reset these users to their real allocator.
928 	 */
929 #ifdef UMA_MD_SMALL_ALLOC
930 	keg->uk_allocf = uma_small_alloc;
931 #else
932 	keg->uk_allocf = page_alloc;
933 #endif
934 	return keg->uk_allocf(zone, bytes, pflag, wait);
935 }
936 
937 /*
938  * Allocates a number of pages from the system
939  *
940  * Arguments:
941  *	zone  Unused
942  *	bytes  The number of bytes requested
943  *	wait  Shall we wait?
944  *
945  * Returns:
946  *	A pointer to the alloced memory or possibly
947  *	NULL if M_NOWAIT is set.
948  */
949 static void *
950 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
951 {
952 	void *p;	/* Returned page */
953 
954 	*pflag = UMA_SLAB_KMEM;
955 	p = (void *) kmem_malloc(kmem_map, bytes, wait);
956 
957 	return (p);
958 }
959 
960 /*
961  * Allocates a number of pages from within an object
962  *
963  * Arguments:
964  *	zone   Unused
965  *	bytes  The number of bytes requested
966  *	wait   Shall we wait?
967  *
968  * Returns:
969  *	A pointer to the alloced memory or possibly
970  *	NULL if M_NOWAIT is set.
971  */
972 static void *
973 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
974 {
975 	vm_object_t object;
976 	vm_offset_t retkva, zkva;
977 	vm_page_t p;
978 	int pages, startpages;
979 
980 	object = zone->uz_keg->uk_obj;
981 	retkva = 0;
982 
983 	/*
984 	 * This looks a little weird since we're getting one page at a time.
985 	 */
986 	VM_OBJECT_LOCK(object);
987 	p = TAILQ_LAST(&object->memq, pglist);
988 	pages = p != NULL ? p->pindex + 1 : 0;
989 	startpages = pages;
990 	zkva = zone->uz_keg->uk_kva + pages * PAGE_SIZE;
991 	for (; bytes > 0; bytes -= PAGE_SIZE) {
992 		p = vm_page_alloc(object, pages,
993 		    VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
994 		if (p == NULL) {
995 			if (pages != startpages)
996 				pmap_qremove(retkva, pages - startpages);
997 			while (pages != startpages) {
998 				pages--;
999 				p = TAILQ_LAST(&object->memq, pglist);
1000 				vm_page_lock_queues();
1001 				vm_page_unwire(p, 0);
1002 				vm_page_free(p);
1003 				vm_page_unlock_queues();
1004 			}
1005 			retkva = 0;
1006 			goto done;
1007 		}
1008 		pmap_qenter(zkva, &p, 1);
1009 		if (retkva == 0)
1010 			retkva = zkva;
1011 		zkva += PAGE_SIZE;
1012 		pages += 1;
1013 	}
1014 done:
1015 	VM_OBJECT_UNLOCK(object);
1016 	*flags = UMA_SLAB_PRIV;
1017 
1018 	return ((void *)retkva);
1019 }
1020 
1021 /*
1022  * Frees a number of pages to the system
1023  *
1024  * Arguments:
1025  *	mem   A pointer to the memory to be freed
1026  *	size  The size of the memory being freed
1027  *	flags The original p->us_flags field
1028  *
1029  * Returns:
1030  *	Nothing
1031  */
1032 static void
1033 page_free(void *mem, int size, u_int8_t flags)
1034 {
1035 	vm_map_t map;
1036 
1037 	if (flags & UMA_SLAB_KMEM)
1038 		map = kmem_map;
1039 	else
1040 		panic("UMA: page_free used with invalid flags %d\n", flags);
1041 
1042 	kmem_free(map, (vm_offset_t)mem, size);
1043 }
1044 
1045 /*
1046  * Zero fill initializer
1047  *
1048  * Arguments/Returns follow uma_init specifications
1049  */
1050 static int
1051 zero_init(void *mem, int size, int flags)
1052 {
1053 	bzero(mem, size);
1054 	return (0);
1055 }
1056 
1057 /*
1058  * Finish creating a small uma zone.  This calculates ipers, and the zone size.
1059  *
1060  * Arguments
1061  *	zone  The zone we should initialize
1062  *
1063  * Returns
1064  *	Nothing
1065  */
1066 static void
1067 zone_small_init(uma_zone_t zone)
1068 {
1069 	uma_keg_t keg;
1070 	u_int rsize;
1071 	u_int memused;
1072 	u_int wastedspace;
1073 	u_int shsize;
1074 
1075 	keg = zone->uz_keg;
1076 	KASSERT(keg != NULL, ("Keg is null in zone_small_init"));
1077 	rsize = keg->uk_size;
1078 
1079 	if (rsize < UMA_SMALLEST_UNIT)
1080 		rsize = UMA_SMALLEST_UNIT;
1081 	if (rsize & keg->uk_align)
1082 		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1083 
1084 	keg->uk_rsize = rsize;
1085 	keg->uk_ppera = 1;
1086 
1087 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
1088 		rsize += UMA_FRITMREF_SZ;	/* linkage & refcnt */
1089 		shsize = sizeof(struct uma_slab_refcnt);
1090 	} else {
1091 		rsize += UMA_FRITM_SZ;	/* Account for linkage */
1092 		shsize = sizeof(struct uma_slab);
1093 	}
1094 
1095 	keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize;
1096 	KASSERT(keg->uk_ipers != 0, ("zone_small_init: ipers is 0"));
1097 	memused = keg->uk_ipers * rsize + shsize;
1098 	wastedspace = UMA_SLAB_SIZE - memused;
1099 
1100 	/*
1101 	 * We can't do OFFPAGE if we're internal or if we've been
1102 	 * asked to not go to the VM for buckets.  If we do this we
1103 	 * may end up going to the VM (kmem_map) for slabs which we
1104 	 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a
1105 	 * result of UMA_ZONE_VM, which clearly forbids it.
1106 	 */
1107 	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1108 	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1109 		return;
1110 
1111 	if ((wastedspace >= UMA_MAX_WASTE) &&
1112 	    (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) {
1113 		keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize;
1114 		KASSERT(keg->uk_ipers <= 255,
1115 		    ("zone_small_init: keg->uk_ipers too high!"));
1116 #ifdef UMA_DEBUG
1117 		printf("UMA decided we need offpage slab headers for "
1118 		    "zone: %s, calculated wastedspace = %d, "
1119 		    "maximum wasted space allowed = %d, "
1120 		    "calculated ipers = %d, "
1121 		    "new wasted space = %d\n", zone->uz_name, wastedspace,
1122 		    UMA_MAX_WASTE, keg->uk_ipers,
1123 		    UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize);
1124 #endif
1125 		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1126 		if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1127 			keg->uk_flags |= UMA_ZONE_HASH;
1128 	}
1129 }
1130 
1131 /*
1132  * Finish creating a large (> UMA_SLAB_SIZE) uma zone.  Just give in and do
1133  * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1134  * more complicated.
1135  *
1136  * Arguments
1137  *	zone  The zone we should initialize
1138  *
1139  * Returns
1140  *	Nothing
1141  */
1142 static void
1143 zone_large_init(uma_zone_t zone)
1144 {
1145 	uma_keg_t keg;
1146 	int pages;
1147 
1148 	keg = zone->uz_keg;
1149 
1150 	KASSERT(keg != NULL, ("Keg is null in zone_large_init"));
1151 	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1152 	    ("zone_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY zone"));
1153 
1154 	pages = keg->uk_size / UMA_SLAB_SIZE;
1155 
1156 	/* Account for remainder */
1157 	if ((pages * UMA_SLAB_SIZE) < keg->uk_size)
1158 		pages++;
1159 
1160 	keg->uk_ppera = pages;
1161 	keg->uk_ipers = 1;
1162 
1163 	keg->uk_flags |= UMA_ZONE_OFFPAGE;
1164 	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1165 		keg->uk_flags |= UMA_ZONE_HASH;
1166 
1167 	keg->uk_rsize = keg->uk_size;
1168 }
1169 
1170 /*
1171  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1172  * the keg onto the global keg list.
1173  *
1174  * Arguments/Returns follow uma_ctor specifications
1175  *	udata  Actually uma_kctor_args
1176  */
1177 static int
1178 keg_ctor(void *mem, int size, void *udata, int flags)
1179 {
1180 	struct uma_kctor_args *arg = udata;
1181 	uma_keg_t keg = mem;
1182 	uma_zone_t zone;
1183 
1184 	bzero(keg, size);
1185 	keg->uk_size = arg->size;
1186 	keg->uk_init = arg->uminit;
1187 	keg->uk_fini = arg->fini;
1188 	keg->uk_align = arg->align;
1189 	keg->uk_free = 0;
1190 	keg->uk_pages = 0;
1191 	keg->uk_flags = arg->flags;
1192 	keg->uk_allocf = page_alloc;
1193 	keg->uk_freef = page_free;
1194 	keg->uk_recurse = 0;
1195 	keg->uk_slabzone = NULL;
1196 
1197 	/*
1198 	 * The master zone is passed to us at keg-creation time.
1199 	 */
1200 	zone = arg->zone;
1201 	zone->uz_keg = keg;
1202 
1203 	if (arg->flags & UMA_ZONE_VM)
1204 		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1205 
1206 	if (arg->flags & UMA_ZONE_ZINIT)
1207 		keg->uk_init = zero_init;
1208 
1209 	/*
1210 	 * The +UMA_FRITM_SZ added to uk_size is to account for the
1211 	 * linkage that is added to the size in zone_small_init().  If
1212 	 * we don't account for this here then we may end up in
1213 	 * zone_small_init() with a calculated 'ipers' of 0.
1214 	 */
1215 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
1216 		if ((keg->uk_size+UMA_FRITMREF_SZ) >
1217 		    (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)))
1218 			zone_large_init(zone);
1219 		else
1220 			zone_small_init(zone);
1221 	} else {
1222 		if ((keg->uk_size+UMA_FRITM_SZ) >
1223 		    (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1224 			zone_large_init(zone);
1225 		else
1226 			zone_small_init(zone);
1227 	}
1228 
1229 	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1230 		if (keg->uk_flags & UMA_ZONE_REFCNT)
1231 			keg->uk_slabzone = slabrefzone;
1232 		else
1233 			keg->uk_slabzone = slabzone;
1234 	}
1235 
1236 	/*
1237 	 * If we haven't booted yet we need allocations to go through the
1238 	 * startup cache until the vm is ready.
1239 	 */
1240 	if (keg->uk_ppera == 1) {
1241 #ifdef UMA_MD_SMALL_ALLOC
1242 		keg->uk_allocf = uma_small_alloc;
1243 		keg->uk_freef = uma_small_free;
1244 #endif
1245 		if (booted == 0)
1246 			keg->uk_allocf = startup_alloc;
1247 	}
1248 
1249 	/*
1250 	 * Initialize keg's lock (shared among zones) through
1251 	 * Master zone
1252 	 */
1253 	zone->uz_lock = &keg->uk_lock;
1254 	if (arg->flags & UMA_ZONE_MTXCLASS)
1255 		ZONE_LOCK_INIT(zone, 1);
1256 	else
1257 		ZONE_LOCK_INIT(zone, 0);
1258 
1259 	/*
1260 	 * If we're putting the slab header in the actual page we need to
1261 	 * figure out where in each page it goes.  This calculates a right
1262 	 * justified offset into the memory on an ALIGN_PTR boundary.
1263 	 */
1264 	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1265 		u_int totsize;
1266 
1267 		/* Size of the slab struct and free list */
1268 		if (keg->uk_flags & UMA_ZONE_REFCNT)
1269 			totsize = sizeof(struct uma_slab_refcnt) +
1270 			    keg->uk_ipers * UMA_FRITMREF_SZ;
1271 		else
1272 			totsize = sizeof(struct uma_slab) +
1273 			    keg->uk_ipers * UMA_FRITM_SZ;
1274 
1275 		if (totsize & UMA_ALIGN_PTR)
1276 			totsize = (totsize & ~UMA_ALIGN_PTR) +
1277 			    (UMA_ALIGN_PTR + 1);
1278 		keg->uk_pgoff = UMA_SLAB_SIZE - totsize;
1279 
1280 		if (keg->uk_flags & UMA_ZONE_REFCNT)
1281 			totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt)
1282 			    + keg->uk_ipers * UMA_FRITMREF_SZ;
1283 		else
1284 			totsize = keg->uk_pgoff + sizeof(struct uma_slab)
1285 			    + keg->uk_ipers * UMA_FRITM_SZ;
1286 
1287 		/*
1288 		 * The only way the following is possible is if with our
1289 		 * UMA_ALIGN_PTR adjustments we are now bigger than
1290 		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1291 		 * mathematically possible for all cases, so we make
1292 		 * sure here anyway.
1293 		 */
1294 		if (totsize > UMA_SLAB_SIZE) {
1295 			printf("zone %s ipers %d rsize %d size %d\n",
1296 			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1297 			    keg->uk_size);
1298 			panic("UMA slab won't fit.\n");
1299 		}
1300 	}
1301 
1302 	if (keg->uk_flags & UMA_ZONE_HASH)
1303 		hash_alloc(&keg->uk_hash);
1304 
1305 #ifdef UMA_DEBUG
1306 	printf("%s(%p) size = %d ipers = %d ppera = %d pgoff = %d\n",
1307 	    zone->uz_name, zone,
1308 	    keg->uk_size, keg->uk_ipers,
1309 	    keg->uk_ppera, keg->uk_pgoff);
1310 #endif
1311 
1312 	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1313 
1314 	mtx_lock(&uma_mtx);
1315 	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1316 	mtx_unlock(&uma_mtx);
1317 	return (0);
1318 }
1319 
1320 /*
1321  * Zone header ctor.  This initializes all fields, locks, etc.
1322  *
1323  * Arguments/Returns follow uma_ctor specifications
1324  *	udata  Actually uma_zctor_args
1325  */
1326 
1327 static int
1328 zone_ctor(void *mem, int size, void *udata, int flags)
1329 {
1330 	struct uma_zctor_args *arg = udata;
1331 	uma_zone_t zone = mem;
1332 	uma_zone_t z;
1333 	uma_keg_t keg;
1334 
1335 	bzero(zone, size);
1336 	zone->uz_name = arg->name;
1337 	zone->uz_ctor = arg->ctor;
1338 	zone->uz_dtor = arg->dtor;
1339 	zone->uz_init = NULL;
1340 	zone->uz_fini = NULL;
1341 	zone->uz_allocs = 0;
1342 	zone->uz_frees = 0;
1343 	zone->uz_fails = 0;
1344 	zone->uz_fills = zone->uz_count = 0;
1345 
1346 	if (arg->flags & UMA_ZONE_SECONDARY) {
1347 		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1348 		keg = arg->keg;
1349 		zone->uz_keg = keg;
1350 		zone->uz_init = arg->uminit;
1351 		zone->uz_fini = arg->fini;
1352 		zone->uz_lock = &keg->uk_lock;
1353 		mtx_lock(&uma_mtx);
1354 		ZONE_LOCK(zone);
1355 		keg->uk_flags |= UMA_ZONE_SECONDARY;
1356 		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1357 			if (LIST_NEXT(z, uz_link) == NULL) {
1358 				LIST_INSERT_AFTER(z, zone, uz_link);
1359 				break;
1360 			}
1361 		}
1362 		ZONE_UNLOCK(zone);
1363 		mtx_unlock(&uma_mtx);
1364 	} else if (arg->keg == NULL) {
1365 		if (uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1366 		    arg->align, arg->flags) == NULL)
1367 			return (ENOMEM);
1368 	} else {
1369 		struct uma_kctor_args karg;
1370 		int error;
1371 
1372 		/* We should only be here from uma_startup() */
1373 		karg.size = arg->size;
1374 		karg.uminit = arg->uminit;
1375 		karg.fini = arg->fini;
1376 		karg.align = arg->align;
1377 		karg.flags = arg->flags;
1378 		karg.zone = zone;
1379 		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1380 		    flags);
1381 		if (error)
1382 			return (error);
1383 	}
1384 	keg = zone->uz_keg;
1385 	zone->uz_lock = &keg->uk_lock;
1386 
1387 	/*
1388 	 * Some internal zones don't have room allocated for the per cpu
1389 	 * caches.  If we're internal, bail out here.
1390 	 */
1391 	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1392 		KASSERT((keg->uk_flags & UMA_ZONE_SECONDARY) == 0,
1393 		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1394 		return (0);
1395 	}
1396 
1397 	if (keg->uk_flags & UMA_ZONE_MAXBUCKET)
1398 		zone->uz_count = BUCKET_MAX;
1399 	else if (keg->uk_ipers <= BUCKET_MAX)
1400 		zone->uz_count = keg->uk_ipers;
1401 	else
1402 		zone->uz_count = BUCKET_MAX;
1403 	return (0);
1404 }
1405 
1406 /*
1407  * Keg header dtor.  This frees all data, destroys locks, frees the hash
1408  * table and removes the keg from the global list.
1409  *
1410  * Arguments/Returns follow uma_dtor specifications
1411  *	udata  unused
1412  */
1413 static void
1414 keg_dtor(void *arg, int size, void *udata)
1415 {
1416 	uma_keg_t keg;
1417 
1418 	keg = (uma_keg_t)arg;
1419 	mtx_lock(&keg->uk_lock);
1420 	if (keg->uk_free != 0) {
1421 		printf("Freed UMA keg was not empty (%d items). "
1422 		    " Lost %d pages of memory.\n",
1423 		    keg->uk_free, keg->uk_pages);
1424 	}
1425 	mtx_unlock(&keg->uk_lock);
1426 
1427 	if (keg->uk_flags & UMA_ZONE_HASH)
1428 		hash_free(&keg->uk_hash);
1429 
1430 	mtx_destroy(&keg->uk_lock);
1431 }
1432 
1433 /*
1434  * Zone header dtor.
1435  *
1436  * Arguments/Returns follow uma_dtor specifications
1437  *	udata  unused
1438  */
1439 static void
1440 zone_dtor(void *arg, int size, void *udata)
1441 {
1442 	uma_zone_t zone;
1443 	uma_keg_t keg;
1444 
1445 	zone = (uma_zone_t)arg;
1446 	keg = zone->uz_keg;
1447 
1448 	if (!(keg->uk_flags & UMA_ZFLAG_INTERNAL))
1449 		cache_drain(zone);
1450 
1451 	mtx_lock(&uma_mtx);
1452 	zone_drain(zone);
1453 	if (keg->uk_flags & UMA_ZONE_SECONDARY) {
1454 		LIST_REMOVE(zone, uz_link);
1455 		/*
1456 		 * XXX there are some races here where
1457 		 * the zone can be drained but zone lock
1458 		 * released and then refilled before we
1459 		 * remove it... we dont care for now
1460 		 */
1461 		ZONE_LOCK(zone);
1462 		if (LIST_EMPTY(&keg->uk_zones))
1463 			keg->uk_flags &= ~UMA_ZONE_SECONDARY;
1464 		ZONE_UNLOCK(zone);
1465 		mtx_unlock(&uma_mtx);
1466 	} else {
1467 		LIST_REMOVE(keg, uk_link);
1468 		LIST_REMOVE(zone, uz_link);
1469 		mtx_unlock(&uma_mtx);
1470 		uma_zfree_internal(kegs, keg, NULL, SKIP_NONE,
1471 		    ZFREE_STATFREE);
1472 	}
1473 	zone->uz_keg = NULL;
1474 }
1475 
1476 /*
1477  * Traverses every zone in the system and calls a callback
1478  *
1479  * Arguments:
1480  *	zfunc  A pointer to a function which accepts a zone
1481  *		as an argument.
1482  *
1483  * Returns:
1484  *	Nothing
1485  */
1486 static void
1487 zone_foreach(void (*zfunc)(uma_zone_t))
1488 {
1489 	uma_keg_t keg;
1490 	uma_zone_t zone;
1491 
1492 	mtx_lock(&uma_mtx);
1493 	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1494 		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1495 			zfunc(zone);
1496 	}
1497 	mtx_unlock(&uma_mtx);
1498 }
1499 
1500 /* Public functions */
1501 /* See uma.h */
1502 void
1503 uma_startup(void *bootmem, int boot_pages)
1504 {
1505 	struct uma_zctor_args args;
1506 	uma_slab_t slab;
1507 	u_int slabsize;
1508 	u_int objsize, totsize, wsize;
1509 	int i;
1510 
1511 #ifdef UMA_DEBUG
1512 	printf("Creating uma keg headers zone and keg.\n");
1513 #endif
1514 	mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
1515 
1516 	/*
1517 	 * Figure out the maximum number of items-per-slab we'll have if
1518 	 * we're using the OFFPAGE slab header to track free items, given
1519 	 * all possible object sizes and the maximum desired wastage
1520 	 * (UMA_MAX_WASTE).
1521 	 *
1522 	 * We iterate until we find an object size for
1523 	 * which the calculated wastage in zone_small_init() will be
1524 	 * enough to warrant OFFPAGE.  Since wastedspace versus objsize
1525 	 * is an overall increasing see-saw function, we find the smallest
1526 	 * objsize such that the wastage is always acceptable for objects
1527 	 * with that objsize or smaller.  Since a smaller objsize always
1528 	 * generates a larger possible uma_max_ipers, we use this computed
1529 	 * objsize to calculate the largest ipers possible.  Since the
1530 	 * ipers calculated for OFFPAGE slab headers is always larger than
1531 	 * the ipers initially calculated in zone_small_init(), we use
1532 	 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to
1533 	 * obtain the maximum ipers possible for offpage slab headers.
1534 	 *
1535 	 * It should be noted that ipers versus objsize is an inversly
1536 	 * proportional function which drops off rather quickly so as
1537 	 * long as our UMA_MAX_WASTE is such that the objsize we calculate
1538 	 * falls into the portion of the inverse relation AFTER the steep
1539 	 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386).
1540 	 *
1541 	 * Note that we have 8-bits (1 byte) to use as a freelist index
1542 	 * inside the actual slab header itself and this is enough to
1543 	 * accomodate us.  In the worst case, a UMA_SMALLEST_UNIT sized
1544 	 * object with offpage slab header would have ipers =
1545 	 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is
1546 	 * 1 greater than what our byte-integer freelist index can
1547 	 * accomodate, but we know that this situation never occurs as
1548 	 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate
1549 	 * that we need to go to offpage slab headers.  Or, if we do,
1550 	 * then we trap that condition below and panic in the INVARIANTS case.
1551 	 */
1552 	wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE;
1553 	totsize = wsize;
1554 	objsize = UMA_SMALLEST_UNIT;
1555 	while (totsize >= wsize) {
1556 		totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) /
1557 		    (objsize + UMA_FRITM_SZ);
1558 		totsize *= (UMA_FRITM_SZ + objsize);
1559 		objsize++;
1560 	}
1561 	if (objsize > UMA_SMALLEST_UNIT)
1562 		objsize--;
1563 	uma_max_ipers = UMA_SLAB_SIZE / objsize;
1564 
1565 	wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE;
1566 	totsize = wsize;
1567 	objsize = UMA_SMALLEST_UNIT;
1568 	while (totsize >= wsize) {
1569 		totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) /
1570 		    (objsize + UMA_FRITMREF_SZ);
1571 		totsize *= (UMA_FRITMREF_SZ + objsize);
1572 		objsize++;
1573 	}
1574 	if (objsize > UMA_SMALLEST_UNIT)
1575 		objsize--;
1576 	uma_max_ipers_ref = UMA_SLAB_SIZE / objsize;
1577 
1578 	KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255),
1579 	    ("uma_startup: calculated uma_max_ipers values too large!"));
1580 
1581 #ifdef UMA_DEBUG
1582 	printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers);
1583 	printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n",
1584 	    uma_max_ipers_ref);
1585 #endif
1586 
1587 	/* "manually" create the initial zone */
1588 	args.name = "UMA Kegs";
1589 	args.size = sizeof(struct uma_keg);
1590 	args.ctor = keg_ctor;
1591 	args.dtor = keg_dtor;
1592 	args.uminit = zero_init;
1593 	args.fini = NULL;
1594 	args.keg = &masterkeg;
1595 	args.align = 32 - 1;
1596 	args.flags = UMA_ZFLAG_INTERNAL;
1597 	/* The initial zone has no Per cpu queues so it's smaller */
1598 	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1599 
1600 #ifdef UMA_DEBUG
1601 	printf("Filling boot free list.\n");
1602 #endif
1603 	for (i = 0; i < boot_pages; i++) {
1604 		slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE));
1605 		slab->us_data = (u_int8_t *)slab;
1606 		slab->us_flags = UMA_SLAB_BOOT;
1607 		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1608 	}
1609 	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1610 
1611 #ifdef UMA_DEBUG
1612 	printf("Creating uma zone headers zone and keg.\n");
1613 #endif
1614 	args.name = "UMA Zones";
1615 	args.size = sizeof(struct uma_zone) +
1616 	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1617 	args.ctor = zone_ctor;
1618 	args.dtor = zone_dtor;
1619 	args.uminit = zero_init;
1620 	args.fini = NULL;
1621 	args.keg = NULL;
1622 	args.align = 32 - 1;
1623 	args.flags = UMA_ZFLAG_INTERNAL;
1624 	/* The initial zone has no Per cpu queues so it's smaller */
1625 	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1626 
1627 #ifdef UMA_DEBUG
1628 	printf("Initializing pcpu cache locks.\n");
1629 #endif
1630 #ifdef UMA_DEBUG
1631 	printf("Creating slab and hash zones.\n");
1632 #endif
1633 
1634 	/*
1635 	 * This is the max number of free list items we'll have with
1636 	 * offpage slabs.
1637 	 */
1638 	slabsize = uma_max_ipers * UMA_FRITM_SZ;
1639 	slabsize += sizeof(struct uma_slab);
1640 
1641 	/* Now make a zone for slab headers */
1642 	slabzone = uma_zcreate("UMA Slabs",
1643 				slabsize,
1644 				NULL, NULL, NULL, NULL,
1645 				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1646 
1647 	/*
1648 	 * We also create a zone for the bigger slabs with reference
1649 	 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1650 	 */
1651 	slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ;
1652 	slabsize += sizeof(struct uma_slab_refcnt);
1653 	slabrefzone = uma_zcreate("UMA RCntSlabs",
1654 				  slabsize,
1655 				  NULL, NULL, NULL, NULL,
1656 				  UMA_ALIGN_PTR,
1657 				  UMA_ZFLAG_INTERNAL);
1658 
1659 	hashzone = uma_zcreate("UMA Hash",
1660 	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1661 	    NULL, NULL, NULL, NULL,
1662 	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1663 
1664 	bucket_init();
1665 
1666 #ifdef UMA_MD_SMALL_ALLOC
1667 	booted = 1;
1668 #endif
1669 
1670 #ifdef UMA_DEBUG
1671 	printf("UMA startup complete.\n");
1672 #endif
1673 }
1674 
1675 /* see uma.h */
1676 void
1677 uma_startup2(void)
1678 {
1679 	booted = 1;
1680 	bucket_enable();
1681 #ifdef UMA_DEBUG
1682 	printf("UMA startup2 complete.\n");
1683 #endif
1684 }
1685 
1686 /*
1687  * Initialize our callout handle
1688  *
1689  */
1690 
1691 static void
1692 uma_startup3(void)
1693 {
1694 #ifdef UMA_DEBUG
1695 	printf("Starting callout.\n");
1696 #endif
1697 	callout_init(&uma_callout, CALLOUT_MPSAFE);
1698 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1699 #ifdef UMA_DEBUG
1700 	printf("UMA startup3 complete.\n");
1701 #endif
1702 }
1703 
1704 static uma_zone_t
1705 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1706 		int align, u_int32_t flags)
1707 {
1708 	struct uma_kctor_args args;
1709 
1710 	args.size = size;
1711 	args.uminit = uminit;
1712 	args.fini = fini;
1713 	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1714 	args.flags = flags;
1715 	args.zone = zone;
1716 	return (uma_zalloc_internal(kegs, &args, M_WAITOK));
1717 }
1718 
1719 /* See uma.h */
1720 void
1721 uma_set_align(int align)
1722 {
1723 
1724 	if (align != UMA_ALIGN_CACHE)
1725 		uma_align_cache = align;
1726 }
1727 
1728 /* See uma.h */
1729 uma_zone_t
1730 uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1731 		uma_init uminit, uma_fini fini, int align, u_int32_t flags)
1732 
1733 {
1734 	struct uma_zctor_args args;
1735 
1736 	/* This stuff is essential for the zone ctor */
1737 	args.name = name;
1738 	args.size = size;
1739 	args.ctor = ctor;
1740 	args.dtor = dtor;
1741 	args.uminit = uminit;
1742 	args.fini = fini;
1743 	args.align = align;
1744 	args.flags = flags;
1745 	args.keg = NULL;
1746 
1747 	return (uma_zalloc_internal(zones, &args, M_WAITOK));
1748 }
1749 
1750 /* See uma.h */
1751 uma_zone_t
1752 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1753 		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1754 {
1755 	struct uma_zctor_args args;
1756 
1757 	args.name = name;
1758 	args.size = master->uz_keg->uk_size;
1759 	args.ctor = ctor;
1760 	args.dtor = dtor;
1761 	args.uminit = zinit;
1762 	args.fini = zfini;
1763 	args.align = master->uz_keg->uk_align;
1764 	args.flags = master->uz_keg->uk_flags | UMA_ZONE_SECONDARY;
1765 	args.keg = master->uz_keg;
1766 
1767 	return (uma_zalloc_internal(zones, &args, M_WAITOK));
1768 }
1769 
1770 /* See uma.h */
1771 void
1772 uma_zdestroy(uma_zone_t zone)
1773 {
1774 
1775 	uma_zfree_internal(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE);
1776 }
1777 
1778 /* See uma.h */
1779 void *
1780 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
1781 {
1782 	void *item;
1783 	uma_cache_t cache;
1784 	uma_bucket_t bucket;
1785 	int cpu;
1786 
1787 	/* This is the fast path allocation */
1788 #ifdef UMA_DEBUG_ALLOC_1
1789 	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
1790 #endif
1791 	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
1792 	    zone->uz_name, flags);
1793 
1794 	if (flags & M_WAITOK) {
1795 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
1796 		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
1797 	}
1798 
1799 	/*
1800 	 * If possible, allocate from the per-CPU cache.  There are two
1801 	 * requirements for safe access to the per-CPU cache: (1) the thread
1802 	 * accessing the cache must not be preempted or yield during access,
1803 	 * and (2) the thread must not migrate CPUs without switching which
1804 	 * cache it accesses.  We rely on a critical section to prevent
1805 	 * preemption and migration.  We release the critical section in
1806 	 * order to acquire the zone mutex if we are unable to allocate from
1807 	 * the current cache; when we re-acquire the critical section, we
1808 	 * must detect and handle migration if it has occurred.
1809 	 */
1810 zalloc_restart:
1811 	critical_enter();
1812 	cpu = curcpu;
1813 	cache = &zone->uz_cpu[cpu];
1814 
1815 zalloc_start:
1816 	bucket = cache->uc_allocbucket;
1817 
1818 	if (bucket) {
1819 		if (bucket->ub_cnt > 0) {
1820 			bucket->ub_cnt--;
1821 			item = bucket->ub_bucket[bucket->ub_cnt];
1822 #ifdef INVARIANTS
1823 			bucket->ub_bucket[bucket->ub_cnt] = NULL;
1824 #endif
1825 			KASSERT(item != NULL,
1826 			    ("uma_zalloc: Bucket pointer mangled."));
1827 			cache->uc_allocs++;
1828 			critical_exit();
1829 #ifdef INVARIANTS
1830 			ZONE_LOCK(zone);
1831 			uma_dbg_alloc(zone, NULL, item);
1832 			ZONE_UNLOCK(zone);
1833 #endif
1834 			if (zone->uz_ctor != NULL) {
1835 				if (zone->uz_ctor(item, zone->uz_keg->uk_size,
1836 				    udata, flags) != 0) {
1837 					uma_zfree_internal(zone, item, udata,
1838 					    SKIP_DTOR, ZFREE_STATFAIL |
1839 					    ZFREE_STATFREE);
1840 					return (NULL);
1841 				}
1842 			}
1843 			if (flags & M_ZERO)
1844 				bzero(item, zone->uz_keg->uk_size);
1845 			return (item);
1846 		} else if (cache->uc_freebucket) {
1847 			/*
1848 			 * We have run out of items in our allocbucket.
1849 			 * See if we can switch with our free bucket.
1850 			 */
1851 			if (cache->uc_freebucket->ub_cnt > 0) {
1852 #ifdef UMA_DEBUG_ALLOC
1853 				printf("uma_zalloc: Swapping empty with"
1854 				    " alloc.\n");
1855 #endif
1856 				bucket = cache->uc_freebucket;
1857 				cache->uc_freebucket = cache->uc_allocbucket;
1858 				cache->uc_allocbucket = bucket;
1859 
1860 				goto zalloc_start;
1861 			}
1862 		}
1863 	}
1864 	/*
1865 	 * Attempt to retrieve the item from the per-CPU cache has failed, so
1866 	 * we must go back to the zone.  This requires the zone lock, so we
1867 	 * must drop the critical section, then re-acquire it when we go back
1868 	 * to the cache.  Since the critical section is released, we may be
1869 	 * preempted or migrate.  As such, make sure not to maintain any
1870 	 * thread-local state specific to the cache from prior to releasing
1871 	 * the critical section.
1872 	 */
1873 	critical_exit();
1874 	ZONE_LOCK(zone);
1875 	critical_enter();
1876 	cpu = curcpu;
1877 	cache = &zone->uz_cpu[cpu];
1878 	bucket = cache->uc_allocbucket;
1879 	if (bucket != NULL) {
1880 		if (bucket->ub_cnt > 0) {
1881 			ZONE_UNLOCK(zone);
1882 			goto zalloc_start;
1883 		}
1884 		bucket = cache->uc_freebucket;
1885 		if (bucket != NULL && bucket->ub_cnt > 0) {
1886 			ZONE_UNLOCK(zone);
1887 			goto zalloc_start;
1888 		}
1889 	}
1890 
1891 	/* Since we have locked the zone we may as well send back our stats */
1892 	zone->uz_allocs += cache->uc_allocs;
1893 	cache->uc_allocs = 0;
1894 	zone->uz_frees += cache->uc_frees;
1895 	cache->uc_frees = 0;
1896 
1897 	/* Our old one is now a free bucket */
1898 	if (cache->uc_allocbucket) {
1899 		KASSERT(cache->uc_allocbucket->ub_cnt == 0,
1900 		    ("uma_zalloc_arg: Freeing a non free bucket."));
1901 		LIST_INSERT_HEAD(&zone->uz_free_bucket,
1902 		    cache->uc_allocbucket, ub_link);
1903 		cache->uc_allocbucket = NULL;
1904 	}
1905 
1906 	/* Check the free list for a new alloc bucket */
1907 	if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
1908 		KASSERT(bucket->ub_cnt != 0,
1909 		    ("uma_zalloc_arg: Returning an empty bucket."));
1910 
1911 		LIST_REMOVE(bucket, ub_link);
1912 		cache->uc_allocbucket = bucket;
1913 		ZONE_UNLOCK(zone);
1914 		goto zalloc_start;
1915 	}
1916 	/* We are no longer associated with this CPU. */
1917 	critical_exit();
1918 
1919 	/* Bump up our uz_count so we get here less */
1920 	if (zone->uz_count < BUCKET_MAX)
1921 		zone->uz_count++;
1922 
1923 	/*
1924 	 * Now lets just fill a bucket and put it on the free list.  If that
1925 	 * works we'll restart the allocation from the begining.
1926 	 */
1927 	if (uma_zalloc_bucket(zone, flags)) {
1928 		ZONE_UNLOCK(zone);
1929 		goto zalloc_restart;
1930 	}
1931 	ZONE_UNLOCK(zone);
1932 	/*
1933 	 * We may not be able to get a bucket so return an actual item.
1934 	 */
1935 #ifdef UMA_DEBUG
1936 	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
1937 #endif
1938 
1939 	return (uma_zalloc_internal(zone, udata, flags));
1940 }
1941 
1942 static uma_slab_t
1943 uma_zone_slab(uma_zone_t zone, int flags)
1944 {
1945 	uma_slab_t slab;
1946 	uma_keg_t keg;
1947 
1948 	keg = zone->uz_keg;
1949 
1950 	/*
1951 	 * This is to prevent us from recursively trying to allocate
1952 	 * buckets.  The problem is that if an allocation forces us to
1953 	 * grab a new bucket we will call page_alloc, which will go off
1954 	 * and cause the vm to allocate vm_map_entries.  If we need new
1955 	 * buckets there too we will recurse in kmem_alloc and bad
1956 	 * things happen.  So instead we return a NULL bucket, and make
1957 	 * the code that allocates buckets smart enough to deal with it
1958 	 *
1959 	 * XXX: While we want this protection for the bucket zones so that
1960 	 * recursion from the VM is handled (and the calling code that
1961 	 * allocates buckets knows how to deal with it), we do not want
1962 	 * to prevent allocation from the slab header zones (slabzone
1963 	 * and slabrefzone) if uk_recurse is not zero for them.  The
1964 	 * reason is that it could lead to NULL being returned for
1965 	 * slab header allocations even in the M_WAITOK case, and the
1966 	 * caller can't handle that.
1967 	 */
1968 	if (keg->uk_flags & UMA_ZFLAG_INTERNAL && keg->uk_recurse != 0)
1969 		if ((zone != slabzone) && (zone != slabrefzone))
1970 			return (NULL);
1971 
1972 	slab = NULL;
1973 
1974 	for (;;) {
1975 		/*
1976 		 * Find a slab with some space.  Prefer slabs that are partially
1977 		 * used over those that are totally full.  This helps to reduce
1978 		 * fragmentation.
1979 		 */
1980 		if (keg->uk_free != 0) {
1981 			if (!LIST_EMPTY(&keg->uk_part_slab)) {
1982 				slab = LIST_FIRST(&keg->uk_part_slab);
1983 			} else {
1984 				slab = LIST_FIRST(&keg->uk_free_slab);
1985 				LIST_REMOVE(slab, us_link);
1986 				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
1987 				    us_link);
1988 			}
1989 			return (slab);
1990 		}
1991 
1992 		/*
1993 		 * M_NOVM means don't ask at all!
1994 		 */
1995 		if (flags & M_NOVM)
1996 			break;
1997 
1998 		if (keg->uk_maxpages &&
1999 		    keg->uk_pages >= keg->uk_maxpages) {
2000 			keg->uk_flags |= UMA_ZFLAG_FULL;
2001 
2002 			if (flags & M_NOWAIT)
2003 				break;
2004 			else
2005 				msleep(keg, &keg->uk_lock, PVM,
2006 				    "zonelimit", 0);
2007 			continue;
2008 		}
2009 		keg->uk_recurse++;
2010 		slab = slab_zalloc(zone, flags);
2011 		keg->uk_recurse--;
2012 
2013 		/*
2014 		 * If we got a slab here it's safe to mark it partially used
2015 		 * and return.  We assume that the caller is going to remove
2016 		 * at least one item.
2017 		 */
2018 		if (slab) {
2019 			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2020 			return (slab);
2021 		}
2022 		/*
2023 		 * We might not have been able to get a slab but another cpu
2024 		 * could have while we were unlocked.  Check again before we
2025 		 * fail.
2026 		 */
2027 		if (flags & M_NOWAIT)
2028 			flags |= M_NOVM;
2029 	}
2030 	return (slab);
2031 }
2032 
2033 static void *
2034 uma_slab_alloc(uma_zone_t zone, uma_slab_t slab)
2035 {
2036 	uma_keg_t keg;
2037 	uma_slabrefcnt_t slabref;
2038 	void *item;
2039 	u_int8_t freei;
2040 
2041 	keg = zone->uz_keg;
2042 
2043 	freei = slab->us_firstfree;
2044 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
2045 		slabref = (uma_slabrefcnt_t)slab;
2046 		slab->us_firstfree = slabref->us_freelist[freei].us_item;
2047 	} else {
2048 		slab->us_firstfree = slab->us_freelist[freei].us_item;
2049 	}
2050 	item = slab->us_data + (keg->uk_rsize * freei);
2051 
2052 	slab->us_freecount--;
2053 	keg->uk_free--;
2054 #ifdef INVARIANTS
2055 	uma_dbg_alloc(zone, slab, item);
2056 #endif
2057 	/* Move this slab to the full list */
2058 	if (slab->us_freecount == 0) {
2059 		LIST_REMOVE(slab, us_link);
2060 		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2061 	}
2062 
2063 	return (item);
2064 }
2065 
2066 static int
2067 uma_zalloc_bucket(uma_zone_t zone, int flags)
2068 {
2069 	uma_bucket_t bucket;
2070 	uma_slab_t slab;
2071 	int16_t saved;
2072 	int max, origflags = flags;
2073 
2074 	/*
2075 	 * Try this zone's free list first so we don't allocate extra buckets.
2076 	 */
2077 	if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2078 		KASSERT(bucket->ub_cnt == 0,
2079 		    ("uma_zalloc_bucket: Bucket on free list is not empty."));
2080 		LIST_REMOVE(bucket, ub_link);
2081 	} else {
2082 		int bflags;
2083 
2084 		bflags = (flags & ~M_ZERO);
2085 		if (zone->uz_keg->uk_flags & UMA_ZFLAG_CACHEONLY)
2086 			bflags |= M_NOVM;
2087 
2088 		ZONE_UNLOCK(zone);
2089 		bucket = bucket_alloc(zone->uz_count, bflags);
2090 		ZONE_LOCK(zone);
2091 	}
2092 
2093 	if (bucket == NULL)
2094 		return (0);
2095 
2096 #ifdef SMP
2097 	/*
2098 	 * This code is here to limit the number of simultaneous bucket fills
2099 	 * for any given zone to the number of per cpu caches in this zone. This
2100 	 * is done so that we don't allocate more memory than we really need.
2101 	 */
2102 	if (zone->uz_fills >= mp_ncpus)
2103 		goto done;
2104 
2105 #endif
2106 	zone->uz_fills++;
2107 
2108 	max = MIN(bucket->ub_entries, zone->uz_count);
2109 	/* Try to keep the buckets totally full */
2110 	saved = bucket->ub_cnt;
2111 	while (bucket->ub_cnt < max &&
2112 	    (slab = uma_zone_slab(zone, flags)) != NULL) {
2113 		while (slab->us_freecount && bucket->ub_cnt < max) {
2114 			bucket->ub_bucket[bucket->ub_cnt++] =
2115 			    uma_slab_alloc(zone, slab);
2116 		}
2117 
2118 		/* Don't block on the next fill */
2119 		flags |= M_NOWAIT;
2120 	}
2121 
2122 	/*
2123 	 * We unlock here because we need to call the zone's init.
2124 	 * It should be safe to unlock because the slab dealt with
2125 	 * above is already on the appropriate list within the keg
2126 	 * and the bucket we filled is not yet on any list, so we
2127 	 * own it.
2128 	 */
2129 	if (zone->uz_init != NULL) {
2130 		int i;
2131 
2132 		ZONE_UNLOCK(zone);
2133 		for (i = saved; i < bucket->ub_cnt; i++)
2134 			if (zone->uz_init(bucket->ub_bucket[i],
2135 			    zone->uz_keg->uk_size, origflags) != 0)
2136 				break;
2137 		/*
2138 		 * If we couldn't initialize the whole bucket, put the
2139 		 * rest back onto the freelist.
2140 		 */
2141 		if (i != bucket->ub_cnt) {
2142 			int j;
2143 
2144 			for (j = i; j < bucket->ub_cnt; j++) {
2145 				uma_zfree_internal(zone, bucket->ub_bucket[j],
2146 				    NULL, SKIP_FINI, 0);
2147 #ifdef INVARIANTS
2148 				bucket->ub_bucket[j] = NULL;
2149 #endif
2150 			}
2151 			bucket->ub_cnt = i;
2152 		}
2153 		ZONE_LOCK(zone);
2154 	}
2155 
2156 	zone->uz_fills--;
2157 	if (bucket->ub_cnt != 0) {
2158 		LIST_INSERT_HEAD(&zone->uz_full_bucket,
2159 		    bucket, ub_link);
2160 		return (1);
2161 	}
2162 #ifdef SMP
2163 done:
2164 #endif
2165 	bucket_free(bucket);
2166 
2167 	return (0);
2168 }
2169 /*
2170  * Allocates an item for an internal zone
2171  *
2172  * Arguments
2173  *	zone   The zone to alloc for.
2174  *	udata  The data to be passed to the constructor.
2175  *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2176  *
2177  * Returns
2178  *	NULL if there is no memory and M_NOWAIT is set
2179  *	An item if successful
2180  */
2181 
2182 static void *
2183 uma_zalloc_internal(uma_zone_t zone, void *udata, int flags)
2184 {
2185 	uma_keg_t keg;
2186 	uma_slab_t slab;
2187 	void *item;
2188 
2189 	item = NULL;
2190 	keg = zone->uz_keg;
2191 
2192 #ifdef UMA_DEBUG_ALLOC
2193 	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2194 #endif
2195 	ZONE_LOCK(zone);
2196 
2197 	slab = uma_zone_slab(zone, flags);
2198 	if (slab == NULL) {
2199 		zone->uz_fails++;
2200 		ZONE_UNLOCK(zone);
2201 		return (NULL);
2202 	}
2203 
2204 	item = uma_slab_alloc(zone, slab);
2205 
2206 	zone->uz_allocs++;
2207 
2208 	ZONE_UNLOCK(zone);
2209 
2210 	/*
2211 	 * We have to call both the zone's init (not the keg's init)
2212 	 * and the zone's ctor.  This is because the item is going from
2213 	 * a keg slab directly to the user, and the user is expecting it
2214 	 * to be both zone-init'd as well as zone-ctor'd.
2215 	 */
2216 	if (zone->uz_init != NULL) {
2217 		if (zone->uz_init(item, keg->uk_size, flags) != 0) {
2218 			uma_zfree_internal(zone, item, udata, SKIP_FINI,
2219 			    ZFREE_STATFAIL | ZFREE_STATFREE);
2220 			return (NULL);
2221 		}
2222 	}
2223 	if (zone->uz_ctor != NULL) {
2224 		if (zone->uz_ctor(item, keg->uk_size, udata, flags) != 0) {
2225 			uma_zfree_internal(zone, item, udata, SKIP_DTOR,
2226 			    ZFREE_STATFAIL | ZFREE_STATFREE);
2227 			return (NULL);
2228 		}
2229 	}
2230 	if (flags & M_ZERO)
2231 		bzero(item, keg->uk_size);
2232 
2233 	return (item);
2234 }
2235 
2236 /* See uma.h */
2237 void
2238 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2239 {
2240 	uma_keg_t keg;
2241 	uma_cache_t cache;
2242 	uma_bucket_t bucket;
2243 	int bflags;
2244 	int cpu;
2245 
2246 	keg = zone->uz_keg;
2247 
2248 #ifdef UMA_DEBUG_ALLOC_1
2249 	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2250 #endif
2251 	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2252 	    zone->uz_name);
2253 
2254 	if (zone->uz_dtor)
2255 		zone->uz_dtor(item, keg->uk_size, udata);
2256 #ifdef INVARIANTS
2257 	ZONE_LOCK(zone);
2258 	if (keg->uk_flags & UMA_ZONE_MALLOC)
2259 		uma_dbg_free(zone, udata, item);
2260 	else
2261 		uma_dbg_free(zone, NULL, item);
2262 	ZONE_UNLOCK(zone);
2263 #endif
2264 	/*
2265 	 * The race here is acceptable.  If we miss it we'll just have to wait
2266 	 * a little longer for the limits to be reset.
2267 	 */
2268 	if (keg->uk_flags & UMA_ZFLAG_FULL)
2269 		goto zfree_internal;
2270 
2271 	/*
2272 	 * If possible, free to the per-CPU cache.  There are two
2273 	 * requirements for safe access to the per-CPU cache: (1) the thread
2274 	 * accessing the cache must not be preempted or yield during access,
2275 	 * and (2) the thread must not migrate CPUs without switching which
2276 	 * cache it accesses.  We rely on a critical section to prevent
2277 	 * preemption and migration.  We release the critical section in
2278 	 * order to acquire the zone mutex if we are unable to free to the
2279 	 * current cache; when we re-acquire the critical section, we must
2280 	 * detect and handle migration if it has occurred.
2281 	 */
2282 zfree_restart:
2283 	critical_enter();
2284 	cpu = curcpu;
2285 	cache = &zone->uz_cpu[cpu];
2286 
2287 zfree_start:
2288 	bucket = cache->uc_freebucket;
2289 
2290 	if (bucket) {
2291 		/*
2292 		 * Do we have room in our bucket? It is OK for this uz count
2293 		 * check to be slightly out of sync.
2294 		 */
2295 
2296 		if (bucket->ub_cnt < bucket->ub_entries) {
2297 			KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2298 			    ("uma_zfree: Freeing to non free bucket index."));
2299 			bucket->ub_bucket[bucket->ub_cnt] = item;
2300 			bucket->ub_cnt++;
2301 			cache->uc_frees++;
2302 			critical_exit();
2303 			return;
2304 		} else if (cache->uc_allocbucket) {
2305 #ifdef UMA_DEBUG_ALLOC
2306 			printf("uma_zfree: Swapping buckets.\n");
2307 #endif
2308 			/*
2309 			 * We have run out of space in our freebucket.
2310 			 * See if we can switch with our alloc bucket.
2311 			 */
2312 			if (cache->uc_allocbucket->ub_cnt <
2313 			    cache->uc_freebucket->ub_cnt) {
2314 				bucket = cache->uc_freebucket;
2315 				cache->uc_freebucket = cache->uc_allocbucket;
2316 				cache->uc_allocbucket = bucket;
2317 				goto zfree_start;
2318 			}
2319 		}
2320 	}
2321 	/*
2322 	 * We can get here for two reasons:
2323 	 *
2324 	 * 1) The buckets are NULL
2325 	 * 2) The alloc and free buckets are both somewhat full.
2326 	 *
2327 	 * We must go back the zone, which requires acquiring the zone lock,
2328 	 * which in turn means we must release and re-acquire the critical
2329 	 * section.  Since the critical section is released, we may be
2330 	 * preempted or migrate.  As such, make sure not to maintain any
2331 	 * thread-local state specific to the cache from prior to releasing
2332 	 * the critical section.
2333 	 */
2334 	critical_exit();
2335 	ZONE_LOCK(zone);
2336 	critical_enter();
2337 	cpu = curcpu;
2338 	cache = &zone->uz_cpu[cpu];
2339 	if (cache->uc_freebucket != NULL) {
2340 		if (cache->uc_freebucket->ub_cnt <
2341 		    cache->uc_freebucket->ub_entries) {
2342 			ZONE_UNLOCK(zone);
2343 			goto zfree_start;
2344 		}
2345 		if (cache->uc_allocbucket != NULL &&
2346 		    (cache->uc_allocbucket->ub_cnt <
2347 		    cache->uc_freebucket->ub_cnt)) {
2348 			ZONE_UNLOCK(zone);
2349 			goto zfree_start;
2350 		}
2351 	}
2352 
2353 	/* Since we have locked the zone we may as well send back our stats */
2354 	zone->uz_allocs += cache->uc_allocs;
2355 	cache->uc_allocs = 0;
2356 	zone->uz_frees += cache->uc_frees;
2357 	cache->uc_frees = 0;
2358 
2359 	bucket = cache->uc_freebucket;
2360 	cache->uc_freebucket = NULL;
2361 
2362 	/* Can we throw this on the zone full list? */
2363 	if (bucket != NULL) {
2364 #ifdef UMA_DEBUG_ALLOC
2365 		printf("uma_zfree: Putting old bucket on the free list.\n");
2366 #endif
2367 		/* ub_cnt is pointing to the last free item */
2368 		KASSERT(bucket->ub_cnt != 0,
2369 		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2370 		LIST_INSERT_HEAD(&zone->uz_full_bucket,
2371 		    bucket, ub_link);
2372 	}
2373 	if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2374 		LIST_REMOVE(bucket, ub_link);
2375 		ZONE_UNLOCK(zone);
2376 		cache->uc_freebucket = bucket;
2377 		goto zfree_start;
2378 	}
2379 	/* We are no longer associated with this CPU. */
2380 	critical_exit();
2381 
2382 	/* And the zone.. */
2383 	ZONE_UNLOCK(zone);
2384 
2385 #ifdef UMA_DEBUG_ALLOC
2386 	printf("uma_zfree: Allocating new free bucket.\n");
2387 #endif
2388 	bflags = M_NOWAIT;
2389 
2390 	if (keg->uk_flags & UMA_ZFLAG_CACHEONLY)
2391 		bflags |= M_NOVM;
2392 	bucket = bucket_alloc(zone->uz_count, bflags);
2393 	if (bucket) {
2394 		ZONE_LOCK(zone);
2395 		LIST_INSERT_HEAD(&zone->uz_free_bucket,
2396 		    bucket, ub_link);
2397 		ZONE_UNLOCK(zone);
2398 		goto zfree_restart;
2399 	}
2400 
2401 	/*
2402 	 * If nothing else caught this, we'll just do an internal free.
2403 	 */
2404 zfree_internal:
2405 	uma_zfree_internal(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE);
2406 
2407 	return;
2408 }
2409 
2410 /*
2411  * Frees an item to an INTERNAL zone or allocates a free bucket
2412  *
2413  * Arguments:
2414  *	zone   The zone to free to
2415  *	item   The item we're freeing
2416  *	udata  User supplied data for the dtor
2417  *	skip   Skip dtors and finis
2418  */
2419 static void
2420 uma_zfree_internal(uma_zone_t zone, void *item, void *udata,
2421     enum zfreeskip skip, int flags)
2422 {
2423 	uma_slab_t slab;
2424 	uma_slabrefcnt_t slabref;
2425 	uma_keg_t keg;
2426 	u_int8_t *mem;
2427 	u_int8_t freei;
2428 
2429 	keg = zone->uz_keg;
2430 
2431 	if (skip < SKIP_DTOR && zone->uz_dtor)
2432 		zone->uz_dtor(item, keg->uk_size, udata);
2433 	if (skip < SKIP_FINI && zone->uz_fini)
2434 		zone->uz_fini(item, keg->uk_size);
2435 
2436 	ZONE_LOCK(zone);
2437 
2438 	if (flags & ZFREE_STATFAIL)
2439 		zone->uz_fails++;
2440 	if (flags & ZFREE_STATFREE)
2441 		zone->uz_frees++;
2442 
2443 	if (!(keg->uk_flags & UMA_ZONE_MALLOC)) {
2444 		mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK));
2445 		if (keg->uk_flags & UMA_ZONE_HASH)
2446 			slab = hash_sfind(&keg->uk_hash, mem);
2447 		else {
2448 			mem += keg->uk_pgoff;
2449 			slab = (uma_slab_t)mem;
2450 		}
2451 	} else {
2452 		slab = (uma_slab_t)udata;
2453 	}
2454 
2455 	/* Do we need to remove from any lists? */
2456 	if (slab->us_freecount+1 == keg->uk_ipers) {
2457 		LIST_REMOVE(slab, us_link);
2458 		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2459 	} else if (slab->us_freecount == 0) {
2460 		LIST_REMOVE(slab, us_link);
2461 		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2462 	}
2463 
2464 	/* Slab management stuff */
2465 	freei = ((unsigned long)item - (unsigned long)slab->us_data)
2466 		/ keg->uk_rsize;
2467 
2468 #ifdef INVARIANTS
2469 	if (!skip)
2470 		uma_dbg_free(zone, slab, item);
2471 #endif
2472 
2473 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
2474 		slabref = (uma_slabrefcnt_t)slab;
2475 		slabref->us_freelist[freei].us_item = slab->us_firstfree;
2476 	} else {
2477 		slab->us_freelist[freei].us_item = slab->us_firstfree;
2478 	}
2479 	slab->us_firstfree = freei;
2480 	slab->us_freecount++;
2481 
2482 	/* Zone statistics */
2483 	keg->uk_free++;
2484 
2485 	if (keg->uk_flags & UMA_ZFLAG_FULL) {
2486 		if (keg->uk_pages < keg->uk_maxpages)
2487 			keg->uk_flags &= ~UMA_ZFLAG_FULL;
2488 
2489 		/*
2490 		 * We can handle one more allocation. Since we're clearing ZFLAG_FULL,
2491 		 * wake up all procs blocked on pages. This should be uncommon, so
2492 		 * keeping this simple for now (rather than adding count of blocked
2493 		 * threads etc).
2494 		 */
2495 		wakeup(keg);
2496 	}
2497 
2498 	ZONE_UNLOCK(zone);
2499 }
2500 
2501 /* See uma.h */
2502 void
2503 uma_zone_set_max(uma_zone_t zone, int nitems)
2504 {
2505 	uma_keg_t keg;
2506 
2507 	keg = zone->uz_keg;
2508 	ZONE_LOCK(zone);
2509 	if (keg->uk_ppera > 1)
2510 		keg->uk_maxpages = nitems * keg->uk_ppera;
2511 	else
2512 		keg->uk_maxpages = nitems / keg->uk_ipers;
2513 
2514 	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2515 		keg->uk_maxpages++;
2516 
2517 	ZONE_UNLOCK(zone);
2518 }
2519 
2520 /* See uma.h */
2521 void
2522 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
2523 {
2524 	ZONE_LOCK(zone);
2525 	KASSERT(zone->uz_keg->uk_pages == 0,
2526 	    ("uma_zone_set_init on non-empty keg"));
2527 	zone->uz_keg->uk_init = uminit;
2528 	ZONE_UNLOCK(zone);
2529 }
2530 
2531 /* See uma.h */
2532 void
2533 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
2534 {
2535 	ZONE_LOCK(zone);
2536 	KASSERT(zone->uz_keg->uk_pages == 0,
2537 	    ("uma_zone_set_fini on non-empty keg"));
2538 	zone->uz_keg->uk_fini = fini;
2539 	ZONE_UNLOCK(zone);
2540 }
2541 
2542 /* See uma.h */
2543 void
2544 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
2545 {
2546 	ZONE_LOCK(zone);
2547 	KASSERT(zone->uz_keg->uk_pages == 0,
2548 	    ("uma_zone_set_zinit on non-empty keg"));
2549 	zone->uz_init = zinit;
2550 	ZONE_UNLOCK(zone);
2551 }
2552 
2553 /* See uma.h */
2554 void
2555 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
2556 {
2557 	ZONE_LOCK(zone);
2558 	KASSERT(zone->uz_keg->uk_pages == 0,
2559 	    ("uma_zone_set_zfini on non-empty keg"));
2560 	zone->uz_fini = zfini;
2561 	ZONE_UNLOCK(zone);
2562 }
2563 
2564 /* See uma.h */
2565 /* XXX uk_freef is not actually used with the zone locked */
2566 void
2567 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
2568 {
2569 	ZONE_LOCK(zone);
2570 	zone->uz_keg->uk_freef = freef;
2571 	ZONE_UNLOCK(zone);
2572 }
2573 
2574 /* See uma.h */
2575 /* XXX uk_allocf is not actually used with the zone locked */
2576 void
2577 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
2578 {
2579 	ZONE_LOCK(zone);
2580 	zone->uz_keg->uk_flags |= UMA_ZFLAG_PRIVALLOC;
2581 	zone->uz_keg->uk_allocf = allocf;
2582 	ZONE_UNLOCK(zone);
2583 }
2584 
2585 /* See uma.h */
2586 int
2587 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count)
2588 {
2589 	uma_keg_t keg;
2590 	vm_offset_t kva;
2591 	int pages;
2592 
2593 	keg = zone->uz_keg;
2594 	pages = count / keg->uk_ipers;
2595 
2596 	if (pages * keg->uk_ipers < count)
2597 		pages++;
2598 
2599 	kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE);
2600 
2601 	if (kva == 0)
2602 		return (0);
2603 	if (obj == NULL) {
2604 		obj = vm_object_allocate(OBJT_DEFAULT,
2605 		    pages);
2606 	} else {
2607 		VM_OBJECT_LOCK_INIT(obj, "uma object");
2608 		_vm_object_allocate(OBJT_DEFAULT,
2609 		    pages, obj);
2610 	}
2611 	ZONE_LOCK(zone);
2612 	keg->uk_kva = kva;
2613 	keg->uk_obj = obj;
2614 	keg->uk_maxpages = pages;
2615 	keg->uk_allocf = obj_alloc;
2616 	keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC;
2617 	ZONE_UNLOCK(zone);
2618 	return (1);
2619 }
2620 
2621 /* See uma.h */
2622 void
2623 uma_prealloc(uma_zone_t zone, int items)
2624 {
2625 	int slabs;
2626 	uma_slab_t slab;
2627 	uma_keg_t keg;
2628 
2629 	keg = zone->uz_keg;
2630 	ZONE_LOCK(zone);
2631 	slabs = items / keg->uk_ipers;
2632 	if (slabs * keg->uk_ipers < items)
2633 		slabs++;
2634 	while (slabs > 0) {
2635 		slab = slab_zalloc(zone, M_WAITOK);
2636 		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2637 		slabs--;
2638 	}
2639 	ZONE_UNLOCK(zone);
2640 }
2641 
2642 /* See uma.h */
2643 u_int32_t *
2644 uma_find_refcnt(uma_zone_t zone, void *item)
2645 {
2646 	uma_slabrefcnt_t slabref;
2647 	uma_keg_t keg;
2648 	u_int32_t *refcnt;
2649 	int idx;
2650 
2651 	keg = zone->uz_keg;
2652 	slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item &
2653 	    (~UMA_SLAB_MASK));
2654 	KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT,
2655 	    ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
2656 	idx = ((unsigned long)item - (unsigned long)slabref->us_data)
2657 	    / keg->uk_rsize;
2658 	refcnt = &slabref->us_freelist[idx].us_refcnt;
2659 	return refcnt;
2660 }
2661 
2662 /* See uma.h */
2663 void
2664 uma_reclaim(void)
2665 {
2666 #ifdef UMA_DEBUG
2667 	printf("UMA: vm asked us to release pages!\n");
2668 #endif
2669 	bucket_enable();
2670 	zone_foreach(zone_drain);
2671 	/*
2672 	 * Some slabs may have been freed but this zone will be visited early
2673 	 * we visit again so that we can free pages that are empty once other
2674 	 * zones are drained.  We have to do the same for buckets.
2675 	 */
2676 	zone_drain(slabzone);
2677 	zone_drain(slabrefzone);
2678 	bucket_zone_drain();
2679 }
2680 
2681 /* See uma.h */
2682 int
2683 uma_zone_exhausted(uma_zone_t zone)
2684 {
2685 	int full;
2686 
2687 	ZONE_LOCK(zone);
2688 	full = (zone->uz_keg->uk_flags & UMA_ZFLAG_FULL);
2689 	ZONE_UNLOCK(zone);
2690 	return (full);
2691 }
2692 
2693 int
2694 uma_zone_exhausted_nolock(uma_zone_t zone)
2695 {
2696 	return (zone->uz_keg->uk_flags & UMA_ZFLAG_FULL);
2697 }
2698 
2699 void *
2700 uma_large_malloc(int size, int wait)
2701 {
2702 	void *mem;
2703 	uma_slab_t slab;
2704 	u_int8_t flags;
2705 
2706 	slab = uma_zalloc_internal(slabzone, NULL, wait);
2707 	if (slab == NULL)
2708 		return (NULL);
2709 	mem = page_alloc(NULL, size, &flags, wait);
2710 	if (mem) {
2711 		vsetslab((vm_offset_t)mem, slab);
2712 		slab->us_data = mem;
2713 		slab->us_flags = flags | UMA_SLAB_MALLOC;
2714 		slab->us_size = size;
2715 	} else {
2716 		uma_zfree_internal(slabzone, slab, NULL, SKIP_NONE,
2717 		    ZFREE_STATFAIL | ZFREE_STATFREE);
2718 	}
2719 
2720 	return (mem);
2721 }
2722 
2723 void
2724 uma_large_free(uma_slab_t slab)
2725 {
2726 	vsetobj((vm_offset_t)slab->us_data, kmem_object);
2727 	page_free(slab->us_data, slab->us_size, slab->us_flags);
2728 	uma_zfree_internal(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE);
2729 }
2730 
2731 void
2732 uma_print_stats(void)
2733 {
2734 	zone_foreach(uma_print_zone);
2735 }
2736 
2737 static void
2738 slab_print(uma_slab_t slab)
2739 {
2740 	printf("slab: keg %p, data %p, freecount %d, firstfree %d\n",
2741 		slab->us_keg, slab->us_data, slab->us_freecount,
2742 		slab->us_firstfree);
2743 }
2744 
2745 static void
2746 cache_print(uma_cache_t cache)
2747 {
2748 	printf("alloc: %p(%d), free: %p(%d)\n",
2749 		cache->uc_allocbucket,
2750 		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
2751 		cache->uc_freebucket,
2752 		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
2753 }
2754 
2755 void
2756 uma_print_zone(uma_zone_t zone)
2757 {
2758 	uma_cache_t cache;
2759 	uma_keg_t keg;
2760 	uma_slab_t slab;
2761 	int i;
2762 
2763 	keg = zone->uz_keg;
2764 	printf("%s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n",
2765 	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
2766 	    keg->uk_ipers, keg->uk_ppera,
2767 	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
2768 	printf("Part slabs:\n");
2769 	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
2770 		slab_print(slab);
2771 	printf("Free slabs:\n");
2772 	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
2773 		slab_print(slab);
2774 	printf("Full slabs:\n");
2775 	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
2776 		slab_print(slab);
2777 	for (i = 0; i <= mp_maxid; i++) {
2778 		if (CPU_ABSENT(i))
2779 			continue;
2780 		cache = &zone->uz_cpu[i];
2781 		printf("CPU %d Cache:\n", i);
2782 		cache_print(cache);
2783 	}
2784 }
2785 
2786 #ifdef DDB
2787 /*
2788  * Generate statistics across both the zone and its per-cpu cache's.  Return
2789  * desired statistics if the pointer is non-NULL for that statistic.
2790  *
2791  * Note: does not update the zone statistics, as it can't safely clear the
2792  * per-CPU cache statistic.
2793  *
2794  * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
2795  * safe from off-CPU; we should modify the caches to track this information
2796  * directly so that we don't have to.
2797  */
2798 static void
2799 uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp,
2800     u_int64_t *freesp)
2801 {
2802 	uma_cache_t cache;
2803 	u_int64_t allocs, frees;
2804 	int cachefree, cpu;
2805 
2806 	allocs = frees = 0;
2807 	cachefree = 0;
2808 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
2809 		if (CPU_ABSENT(cpu))
2810 			continue;
2811 		cache = &z->uz_cpu[cpu];
2812 		if (cache->uc_allocbucket != NULL)
2813 			cachefree += cache->uc_allocbucket->ub_cnt;
2814 		if (cache->uc_freebucket != NULL)
2815 			cachefree += cache->uc_freebucket->ub_cnt;
2816 		allocs += cache->uc_allocs;
2817 		frees += cache->uc_frees;
2818 	}
2819 	allocs += z->uz_allocs;
2820 	frees += z->uz_frees;
2821 	if (cachefreep != NULL)
2822 		*cachefreep = cachefree;
2823 	if (allocsp != NULL)
2824 		*allocsp = allocs;
2825 	if (freesp != NULL)
2826 		*freesp = frees;
2827 }
2828 #endif /* DDB */
2829 
2830 static int
2831 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
2832 {
2833 	uma_keg_t kz;
2834 	uma_zone_t z;
2835 	int count;
2836 
2837 	count = 0;
2838 	mtx_lock(&uma_mtx);
2839 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
2840 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
2841 			count++;
2842 	}
2843 	mtx_unlock(&uma_mtx);
2844 	return (sysctl_handle_int(oidp, &count, 0, req));
2845 }
2846 
2847 static int
2848 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
2849 {
2850 	struct uma_stream_header ush;
2851 	struct uma_type_header uth;
2852 	struct uma_percpu_stat ups;
2853 	uma_bucket_t bucket;
2854 	struct sbuf sbuf;
2855 	uma_cache_t cache;
2856 	uma_keg_t kz;
2857 	uma_zone_t z;
2858 	char *buffer;
2859 	int buflen, count, error, i;
2860 
2861 	mtx_lock(&uma_mtx);
2862 restart:
2863 	mtx_assert(&uma_mtx, MA_OWNED);
2864 	count = 0;
2865 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
2866 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
2867 			count++;
2868 	}
2869 	mtx_unlock(&uma_mtx);
2870 
2871 	buflen = sizeof(ush) + count * (sizeof(uth) + sizeof(ups) *
2872 	    (mp_maxid + 1)) + 1;
2873 	buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO);
2874 
2875 	mtx_lock(&uma_mtx);
2876 	i = 0;
2877 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
2878 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
2879 			i++;
2880 	}
2881 	if (i > count) {
2882 		free(buffer, M_TEMP);
2883 		goto restart;
2884 	}
2885 	count =  i;
2886 
2887 	sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN);
2888 
2889 	/*
2890 	 * Insert stream header.
2891 	 */
2892 	bzero(&ush, sizeof(ush));
2893 	ush.ush_version = UMA_STREAM_VERSION;
2894 	ush.ush_maxcpus = (mp_maxid + 1);
2895 	ush.ush_count = count;
2896 	if (sbuf_bcat(&sbuf, &ush, sizeof(ush)) < 0) {
2897 		mtx_unlock(&uma_mtx);
2898 		error = ENOMEM;
2899 		goto out;
2900 	}
2901 
2902 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
2903 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
2904 			bzero(&uth, sizeof(uth));
2905 			ZONE_LOCK(z);
2906 			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
2907 			uth.uth_align = kz->uk_align;
2908 			uth.uth_pages = kz->uk_pages;
2909 			uth.uth_keg_free = kz->uk_free;
2910 			uth.uth_size = kz->uk_size;
2911 			uth.uth_rsize = kz->uk_rsize;
2912 			uth.uth_maxpages = kz->uk_maxpages;
2913 			if (kz->uk_ppera > 1)
2914 				uth.uth_limit = kz->uk_maxpages /
2915 				    kz->uk_ppera;
2916 			else
2917 				uth.uth_limit = kz->uk_maxpages *
2918 				    kz->uk_ipers;
2919 
2920 			/*
2921 			 * A zone is secondary is it is not the first entry
2922 			 * on the keg's zone list.
2923 			 */
2924 			if ((kz->uk_flags & UMA_ZONE_SECONDARY) &&
2925 			    (LIST_FIRST(&kz->uk_zones) != z))
2926 				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
2927 
2928 			LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
2929 				uth.uth_zone_free += bucket->ub_cnt;
2930 			uth.uth_allocs = z->uz_allocs;
2931 			uth.uth_frees = z->uz_frees;
2932 			uth.uth_fails = z->uz_fails;
2933 			if (sbuf_bcat(&sbuf, &uth, sizeof(uth)) < 0) {
2934 				ZONE_UNLOCK(z);
2935 				mtx_unlock(&uma_mtx);
2936 				error = ENOMEM;
2937 				goto out;
2938 			}
2939 			/*
2940 			 * While it is not normally safe to access the cache
2941 			 * bucket pointers while not on the CPU that owns the
2942 			 * cache, we only allow the pointers to be exchanged
2943 			 * without the zone lock held, not invalidated, so
2944 			 * accept the possible race associated with bucket
2945 			 * exchange during monitoring.
2946 			 */
2947 			for (i = 0; i < (mp_maxid + 1); i++) {
2948 				bzero(&ups, sizeof(ups));
2949 				if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
2950 					goto skip;
2951 				if (CPU_ABSENT(i))
2952 					goto skip;
2953 				cache = &z->uz_cpu[i];
2954 				if (cache->uc_allocbucket != NULL)
2955 					ups.ups_cache_free +=
2956 					    cache->uc_allocbucket->ub_cnt;
2957 				if (cache->uc_freebucket != NULL)
2958 					ups.ups_cache_free +=
2959 					    cache->uc_freebucket->ub_cnt;
2960 				ups.ups_allocs = cache->uc_allocs;
2961 				ups.ups_frees = cache->uc_frees;
2962 skip:
2963 				if (sbuf_bcat(&sbuf, &ups, sizeof(ups)) < 0) {
2964 					ZONE_UNLOCK(z);
2965 					mtx_unlock(&uma_mtx);
2966 					error = ENOMEM;
2967 					goto out;
2968 				}
2969 			}
2970 			ZONE_UNLOCK(z);
2971 		}
2972 	}
2973 	mtx_unlock(&uma_mtx);
2974 	sbuf_finish(&sbuf);
2975 	error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
2976 out:
2977 	free(buffer, M_TEMP);
2978 	return (error);
2979 }
2980 
2981 #ifdef DDB
2982 DB_SHOW_COMMAND(uma, db_show_uma)
2983 {
2984 	u_int64_t allocs, frees;
2985 	uma_bucket_t bucket;
2986 	uma_keg_t kz;
2987 	uma_zone_t z;
2988 	int cachefree;
2989 
2990 	db_printf("%18s %8s %8s %8s %12s\n", "Zone", "Size", "Used", "Free",
2991 	    "Requests");
2992 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
2993 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
2994 			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
2995 				allocs = z->uz_allocs;
2996 				frees = z->uz_frees;
2997 				cachefree = 0;
2998 			} else
2999 				uma_zone_sumstat(z, &cachefree, &allocs,
3000 				    &frees);
3001 			if (!((kz->uk_flags & UMA_ZONE_SECONDARY) &&
3002 			    (LIST_FIRST(&kz->uk_zones) != z)))
3003 				cachefree += kz->uk_free;
3004 			LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
3005 				cachefree += bucket->ub_cnt;
3006 			db_printf("%18s %8ju %8jd %8d %12ju\n", z->uz_name,
3007 			    (uintmax_t)kz->uk_size,
3008 			    (intmax_t)(allocs - frees), cachefree,
3009 			    (uintmax_t)allocs);
3010 		}
3011 	}
3012 }
3013 #endif
3014