1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/smp.h> 79 #include <sys/taskqueue.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_domainset.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_phys.h> 89 #include <vm/vm_pagequeue.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 #include <vm/uma_int.h> 95 #include <vm/uma_dbg.h> 96 97 #include <ddb/ddb.h> 98 99 #ifdef DEBUG_MEMGUARD 100 #include <vm/memguard.h> 101 #endif 102 103 /* 104 * This is the zone and keg from which all zones are spawned. 105 */ 106 static uma_zone_t kegs; 107 static uma_zone_t zones; 108 109 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 110 static uma_zone_t slabzone; 111 112 /* 113 * The initial hash tables come out of this zone so they can be allocated 114 * prior to malloc coming up. 115 */ 116 static uma_zone_t hashzone; 117 118 /* The boot-time adjusted value for cache line alignment. */ 119 int uma_align_cache = 64 - 1; 120 121 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 122 123 /* 124 * Are we allowed to allocate buckets? 125 */ 126 static int bucketdisable = 1; 127 128 /* Linked list of all kegs in the system */ 129 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 130 131 /* Linked list of all cache-only zones in the system */ 132 static LIST_HEAD(,uma_zone) uma_cachezones = 133 LIST_HEAD_INITIALIZER(uma_cachezones); 134 135 /* This RW lock protects the keg list */ 136 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 137 138 /* 139 * Pointer and counter to pool of pages, that is preallocated at 140 * startup to bootstrap UMA. 141 */ 142 static char *bootmem; 143 static int boot_pages; 144 145 static struct sx uma_drain_lock; 146 147 /* kmem soft limit. */ 148 static unsigned long uma_kmem_limit = LONG_MAX; 149 static volatile unsigned long uma_kmem_total; 150 151 /* Is the VM done starting up? */ 152 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 153 BOOT_RUNNING } booted = BOOT_COLD; 154 155 /* 156 * This is the handle used to schedule events that need to happen 157 * outside of the allocation fast path. 158 */ 159 static struct callout uma_callout; 160 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 161 162 /* 163 * This structure is passed as the zone ctor arg so that I don't have to create 164 * a special allocation function just for zones. 165 */ 166 struct uma_zctor_args { 167 const char *name; 168 size_t size; 169 uma_ctor ctor; 170 uma_dtor dtor; 171 uma_init uminit; 172 uma_fini fini; 173 uma_import import; 174 uma_release release; 175 void *arg; 176 uma_keg_t keg; 177 int align; 178 uint32_t flags; 179 }; 180 181 struct uma_kctor_args { 182 uma_zone_t zone; 183 size_t size; 184 uma_init uminit; 185 uma_fini fini; 186 int align; 187 uint32_t flags; 188 }; 189 190 struct uma_bucket_zone { 191 uma_zone_t ubz_zone; 192 char *ubz_name; 193 int ubz_entries; /* Number of items it can hold. */ 194 int ubz_maxsize; /* Maximum allocation size per-item. */ 195 }; 196 197 /* 198 * Compute the actual number of bucket entries to pack them in power 199 * of two sizes for more efficient space utilization. 200 */ 201 #define BUCKET_SIZE(n) \ 202 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 203 204 #define BUCKET_MAX BUCKET_SIZE(256) 205 206 struct uma_bucket_zone bucket_zones[] = { 207 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 208 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 209 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 210 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 211 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 212 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 213 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 214 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 215 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 216 { NULL, NULL, 0} 217 }; 218 219 /* 220 * Flags and enumerations to be passed to internal functions. 221 */ 222 enum zfreeskip { 223 SKIP_NONE = 0, 224 SKIP_CNT = 0x00000001, 225 SKIP_DTOR = 0x00010000, 226 SKIP_FINI = 0x00020000, 227 }; 228 229 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ 230 231 /* Prototypes.. */ 232 233 int uma_startup_count(int); 234 void uma_startup(void *, int); 235 void uma_startup1(void); 236 void uma_startup2(void); 237 238 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 239 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 240 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 241 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 242 static void page_free(void *, vm_size_t, uint8_t); 243 static void pcpu_page_free(void *, vm_size_t, uint8_t); 244 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 245 static void cache_drain(uma_zone_t); 246 static void bucket_drain(uma_zone_t, uma_bucket_t); 247 static void bucket_cache_drain(uma_zone_t zone); 248 static int keg_ctor(void *, int, void *, int); 249 static void keg_dtor(void *, int, void *); 250 static int zone_ctor(void *, int, void *, int); 251 static void zone_dtor(void *, int, void *); 252 static int zero_init(void *, int, int); 253 static void keg_small_init(uma_keg_t keg); 254 static void keg_large_init(uma_keg_t keg); 255 static void zone_foreach(void (*zfunc)(uma_zone_t)); 256 static void zone_timeout(uma_zone_t zone); 257 static int hash_alloc(struct uma_hash *); 258 static int hash_expand(struct uma_hash *, struct uma_hash *); 259 static void hash_free(struct uma_hash *hash); 260 static void uma_timeout(void *); 261 static void uma_startup3(void); 262 static void *zone_alloc_item(uma_zone_t, void *, int, int); 263 static void *zone_alloc_item_locked(uma_zone_t, void *, int, int); 264 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 265 static void bucket_enable(void); 266 static void bucket_init(void); 267 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 268 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 269 static void bucket_zone_drain(void); 270 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int, int); 271 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 272 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 273 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 274 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 275 uma_fini fini, int align, uint32_t flags); 276 static int zone_import(uma_zone_t, void **, int, int, int); 277 static void zone_release(uma_zone_t, void **, int); 278 static void uma_zero_item(void *, uma_zone_t); 279 280 void uma_print_zone(uma_zone_t); 281 void uma_print_stats(void); 282 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 283 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 284 285 #ifdef INVARIANTS 286 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 287 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 288 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 289 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 290 291 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 292 "Memory allocation debugging"); 293 294 static u_int dbg_divisor = 1; 295 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 296 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 297 "Debug & thrash every this item in memory allocator"); 298 299 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 300 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 301 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 302 &uma_dbg_cnt, "memory items debugged"); 303 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 304 &uma_skip_cnt, "memory items skipped, not debugged"); 305 #endif 306 307 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 308 309 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 310 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 311 312 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 313 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 314 315 static int zone_warnings = 1; 316 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 317 "Warn when UMA zones becomes full"); 318 319 /* Adjust bytes under management by UMA. */ 320 static inline void 321 uma_total_dec(unsigned long size) 322 { 323 324 atomic_subtract_long(&uma_kmem_total, size); 325 } 326 327 static inline void 328 uma_total_inc(unsigned long size) 329 { 330 331 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 332 uma_reclaim_wakeup(); 333 } 334 335 /* 336 * This routine checks to see whether or not it's safe to enable buckets. 337 */ 338 static void 339 bucket_enable(void) 340 { 341 bucketdisable = vm_page_count_min(); 342 } 343 344 /* 345 * Initialize bucket_zones, the array of zones of buckets of various sizes. 346 * 347 * For each zone, calculate the memory required for each bucket, consisting 348 * of the header and an array of pointers. 349 */ 350 static void 351 bucket_init(void) 352 { 353 struct uma_bucket_zone *ubz; 354 int size; 355 356 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 357 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 358 size += sizeof(void *) * ubz->ubz_entries; 359 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 360 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 361 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 362 } 363 } 364 365 /* 366 * Given a desired number of entries for a bucket, return the zone from which 367 * to allocate the bucket. 368 */ 369 static struct uma_bucket_zone * 370 bucket_zone_lookup(int entries) 371 { 372 struct uma_bucket_zone *ubz; 373 374 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 375 if (ubz->ubz_entries >= entries) 376 return (ubz); 377 ubz--; 378 return (ubz); 379 } 380 381 static int 382 bucket_select(int size) 383 { 384 struct uma_bucket_zone *ubz; 385 386 ubz = &bucket_zones[0]; 387 if (size > ubz->ubz_maxsize) 388 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 389 390 for (; ubz->ubz_entries != 0; ubz++) 391 if (ubz->ubz_maxsize < size) 392 break; 393 ubz--; 394 return (ubz->ubz_entries); 395 } 396 397 static uma_bucket_t 398 bucket_alloc(uma_zone_t zone, void *udata, int flags) 399 { 400 struct uma_bucket_zone *ubz; 401 uma_bucket_t bucket; 402 403 /* 404 * This is to stop us from allocating per cpu buckets while we're 405 * running out of vm.boot_pages. Otherwise, we would exhaust the 406 * boot pages. This also prevents us from allocating buckets in 407 * low memory situations. 408 */ 409 if (bucketdisable) 410 return (NULL); 411 /* 412 * To limit bucket recursion we store the original zone flags 413 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 414 * NOVM flag to persist even through deep recursions. We also 415 * store ZFLAG_BUCKET once we have recursed attempting to allocate 416 * a bucket for a bucket zone so we do not allow infinite bucket 417 * recursion. This cookie will even persist to frees of unused 418 * buckets via the allocation path or bucket allocations in the 419 * free path. 420 */ 421 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 422 udata = (void *)(uintptr_t)zone->uz_flags; 423 else { 424 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 425 return (NULL); 426 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 427 } 428 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 429 flags |= M_NOVM; 430 ubz = bucket_zone_lookup(zone->uz_count); 431 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 432 ubz++; 433 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 434 if (bucket) { 435 #ifdef INVARIANTS 436 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 437 #endif 438 bucket->ub_cnt = 0; 439 bucket->ub_entries = ubz->ubz_entries; 440 } 441 442 return (bucket); 443 } 444 445 static void 446 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 447 { 448 struct uma_bucket_zone *ubz; 449 450 KASSERT(bucket->ub_cnt == 0, 451 ("bucket_free: Freeing a non free bucket.")); 452 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 453 udata = (void *)(uintptr_t)zone->uz_flags; 454 ubz = bucket_zone_lookup(bucket->ub_entries); 455 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 456 } 457 458 static void 459 bucket_zone_drain(void) 460 { 461 struct uma_bucket_zone *ubz; 462 463 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 464 zone_drain(ubz->ubz_zone); 465 } 466 467 static uma_bucket_t 468 zone_try_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, const bool ws) 469 { 470 uma_bucket_t bucket; 471 472 ZONE_LOCK_ASSERT(zone); 473 474 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 475 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 476 LIST_REMOVE(bucket, ub_link); 477 zdom->uzd_nitems -= bucket->ub_cnt; 478 if (ws && zdom->uzd_imin > zdom->uzd_nitems) 479 zdom->uzd_imin = zdom->uzd_nitems; 480 zone->uz_bkt_count -= bucket->ub_cnt; 481 } 482 return (bucket); 483 } 484 485 static void 486 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 487 const bool ws) 488 { 489 490 ZONE_LOCK_ASSERT(zone); 491 KASSERT(zone->uz_bkt_count < zone->uz_bkt_max, ("%s: zone %p overflow", 492 __func__, zone)); 493 494 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 495 zdom->uzd_nitems += bucket->ub_cnt; 496 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 497 zdom->uzd_imax = zdom->uzd_nitems; 498 zone->uz_bkt_count += bucket->ub_cnt; 499 } 500 501 static void 502 zone_log_warning(uma_zone_t zone) 503 { 504 static const struct timeval warninterval = { 300, 0 }; 505 506 if (!zone_warnings || zone->uz_warning == NULL) 507 return; 508 509 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 510 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 511 } 512 513 static inline void 514 zone_maxaction(uma_zone_t zone) 515 { 516 517 if (zone->uz_maxaction.ta_func != NULL) 518 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 519 } 520 521 /* 522 * Routine called by timeout which is used to fire off some time interval 523 * based calculations. (stats, hash size, etc.) 524 * 525 * Arguments: 526 * arg Unused 527 * 528 * Returns: 529 * Nothing 530 */ 531 static void 532 uma_timeout(void *unused) 533 { 534 bucket_enable(); 535 zone_foreach(zone_timeout); 536 537 /* Reschedule this event */ 538 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 539 } 540 541 /* 542 * Update the working set size estimate for the zone's bucket cache. 543 * The constants chosen here are somewhat arbitrary. With an update period of 544 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 545 * last 100s. 546 */ 547 static void 548 zone_domain_update_wss(uma_zone_domain_t zdom) 549 { 550 long wss; 551 552 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 553 wss = zdom->uzd_imax - zdom->uzd_imin; 554 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 555 zdom->uzd_wss = (3 * wss + 2 * zdom->uzd_wss) / 5; 556 } 557 558 /* 559 * Routine to perform timeout driven calculations. This expands the 560 * hashes and does per cpu statistics aggregation. 561 * 562 * Returns nothing. 563 */ 564 static void 565 zone_timeout(uma_zone_t zone) 566 { 567 uma_keg_t keg = zone->uz_keg; 568 569 KEG_LOCK(keg); 570 /* 571 * Expand the keg hash table. 572 * 573 * This is done if the number of slabs is larger than the hash size. 574 * What I'm trying to do here is completely reduce collisions. This 575 * may be a little aggressive. Should I allow for two collisions max? 576 */ 577 if (keg->uk_flags & UMA_ZONE_HASH && 578 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 579 struct uma_hash newhash; 580 struct uma_hash oldhash; 581 int ret; 582 583 /* 584 * This is so involved because allocating and freeing 585 * while the keg lock is held will lead to deadlock. 586 * I have to do everything in stages and check for 587 * races. 588 */ 589 newhash = keg->uk_hash; 590 KEG_UNLOCK(keg); 591 ret = hash_alloc(&newhash); 592 KEG_LOCK(keg); 593 if (ret) { 594 if (hash_expand(&keg->uk_hash, &newhash)) { 595 oldhash = keg->uk_hash; 596 keg->uk_hash = newhash; 597 } else 598 oldhash = newhash; 599 600 KEG_UNLOCK(keg); 601 hash_free(&oldhash); 602 return; 603 } 604 } 605 606 for (int i = 0; i < vm_ndomains; i++) 607 zone_domain_update_wss(&zone->uz_domain[i]); 608 609 KEG_UNLOCK(keg); 610 } 611 612 /* 613 * Allocate and zero fill the next sized hash table from the appropriate 614 * backing store. 615 * 616 * Arguments: 617 * hash A new hash structure with the old hash size in uh_hashsize 618 * 619 * Returns: 620 * 1 on success and 0 on failure. 621 */ 622 static int 623 hash_alloc(struct uma_hash *hash) 624 { 625 int oldsize; 626 int alloc; 627 628 oldsize = hash->uh_hashsize; 629 630 /* We're just going to go to a power of two greater */ 631 if (oldsize) { 632 hash->uh_hashsize = oldsize * 2; 633 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 634 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 635 M_UMAHASH, M_NOWAIT); 636 } else { 637 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 638 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 639 UMA_ANYDOMAIN, M_WAITOK); 640 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 641 } 642 if (hash->uh_slab_hash) { 643 bzero(hash->uh_slab_hash, alloc); 644 hash->uh_hashmask = hash->uh_hashsize - 1; 645 return (1); 646 } 647 648 return (0); 649 } 650 651 /* 652 * Expands the hash table for HASH zones. This is done from zone_timeout 653 * to reduce collisions. This must not be done in the regular allocation 654 * path, otherwise, we can recurse on the vm while allocating pages. 655 * 656 * Arguments: 657 * oldhash The hash you want to expand 658 * newhash The hash structure for the new table 659 * 660 * Returns: 661 * Nothing 662 * 663 * Discussion: 664 */ 665 static int 666 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 667 { 668 uma_slab_t slab; 669 int hval; 670 int i; 671 672 if (!newhash->uh_slab_hash) 673 return (0); 674 675 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 676 return (0); 677 678 /* 679 * I need to investigate hash algorithms for resizing without a 680 * full rehash. 681 */ 682 683 for (i = 0; i < oldhash->uh_hashsize; i++) 684 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 685 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 686 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 687 hval = UMA_HASH(newhash, slab->us_data); 688 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 689 slab, us_hlink); 690 } 691 692 return (1); 693 } 694 695 /* 696 * Free the hash bucket to the appropriate backing store. 697 * 698 * Arguments: 699 * slab_hash The hash bucket we're freeing 700 * hashsize The number of entries in that hash bucket 701 * 702 * Returns: 703 * Nothing 704 */ 705 static void 706 hash_free(struct uma_hash *hash) 707 { 708 if (hash->uh_slab_hash == NULL) 709 return; 710 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 711 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 712 else 713 free(hash->uh_slab_hash, M_UMAHASH); 714 } 715 716 /* 717 * Frees all outstanding items in a bucket 718 * 719 * Arguments: 720 * zone The zone to free to, must be unlocked. 721 * bucket The free/alloc bucket with items, cpu queue must be locked. 722 * 723 * Returns: 724 * Nothing 725 */ 726 727 static void 728 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 729 { 730 int i; 731 732 if (bucket == NULL) 733 return; 734 735 if (zone->uz_fini) 736 for (i = 0; i < bucket->ub_cnt; i++) 737 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 738 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 739 if (zone->uz_max_items > 0) { 740 ZONE_LOCK(zone); 741 zone->uz_items -= bucket->ub_cnt; 742 if (zone->uz_sleepers && zone->uz_items < zone->uz_max_items) 743 wakeup_one(zone); 744 ZONE_UNLOCK(zone); 745 } 746 bucket->ub_cnt = 0; 747 } 748 749 /* 750 * Drains the per cpu caches for a zone. 751 * 752 * NOTE: This may only be called while the zone is being turn down, and not 753 * during normal operation. This is necessary in order that we do not have 754 * to migrate CPUs to drain the per-CPU caches. 755 * 756 * Arguments: 757 * zone The zone to drain, must be unlocked. 758 * 759 * Returns: 760 * Nothing 761 */ 762 static void 763 cache_drain(uma_zone_t zone) 764 { 765 uma_cache_t cache; 766 int cpu; 767 768 /* 769 * XXX: It is safe to not lock the per-CPU caches, because we're 770 * tearing down the zone anyway. I.e., there will be no further use 771 * of the caches at this point. 772 * 773 * XXX: It would good to be able to assert that the zone is being 774 * torn down to prevent improper use of cache_drain(). 775 * 776 * XXX: We lock the zone before passing into bucket_cache_drain() as 777 * it is used elsewhere. Should the tear-down path be made special 778 * there in some form? 779 */ 780 CPU_FOREACH(cpu) { 781 cache = &zone->uz_cpu[cpu]; 782 bucket_drain(zone, cache->uc_allocbucket); 783 bucket_drain(zone, cache->uc_freebucket); 784 if (cache->uc_allocbucket != NULL) 785 bucket_free(zone, cache->uc_allocbucket, NULL); 786 if (cache->uc_freebucket != NULL) 787 bucket_free(zone, cache->uc_freebucket, NULL); 788 cache->uc_allocbucket = cache->uc_freebucket = NULL; 789 } 790 ZONE_LOCK(zone); 791 bucket_cache_drain(zone); 792 ZONE_UNLOCK(zone); 793 } 794 795 static void 796 cache_shrink(uma_zone_t zone) 797 { 798 799 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 800 return; 801 802 ZONE_LOCK(zone); 803 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 804 ZONE_UNLOCK(zone); 805 } 806 807 static void 808 cache_drain_safe_cpu(uma_zone_t zone) 809 { 810 uma_cache_t cache; 811 uma_bucket_t b1, b2; 812 int domain; 813 814 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 815 return; 816 817 b1 = b2 = NULL; 818 ZONE_LOCK(zone); 819 critical_enter(); 820 if (zone->uz_flags & UMA_ZONE_NUMA) 821 domain = PCPU_GET(domain); 822 else 823 domain = 0; 824 cache = &zone->uz_cpu[curcpu]; 825 if (cache->uc_allocbucket) { 826 if (cache->uc_allocbucket->ub_cnt != 0) 827 zone_put_bucket(zone, &zone->uz_domain[domain], 828 cache->uc_allocbucket, false); 829 else 830 b1 = cache->uc_allocbucket; 831 cache->uc_allocbucket = NULL; 832 } 833 if (cache->uc_freebucket) { 834 if (cache->uc_freebucket->ub_cnt != 0) 835 zone_put_bucket(zone, &zone->uz_domain[domain], 836 cache->uc_freebucket, false); 837 else 838 b2 = cache->uc_freebucket; 839 cache->uc_freebucket = NULL; 840 } 841 critical_exit(); 842 ZONE_UNLOCK(zone); 843 if (b1) 844 bucket_free(zone, b1, NULL); 845 if (b2) 846 bucket_free(zone, b2, NULL); 847 } 848 849 /* 850 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 851 * This is an expensive call because it needs to bind to all CPUs 852 * one by one and enter a critical section on each of them in order 853 * to safely access their cache buckets. 854 * Zone lock must not be held on call this function. 855 */ 856 static void 857 cache_drain_safe(uma_zone_t zone) 858 { 859 int cpu; 860 861 /* 862 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 863 */ 864 if (zone) 865 cache_shrink(zone); 866 else 867 zone_foreach(cache_shrink); 868 869 CPU_FOREACH(cpu) { 870 thread_lock(curthread); 871 sched_bind(curthread, cpu); 872 thread_unlock(curthread); 873 874 if (zone) 875 cache_drain_safe_cpu(zone); 876 else 877 zone_foreach(cache_drain_safe_cpu); 878 } 879 thread_lock(curthread); 880 sched_unbind(curthread); 881 thread_unlock(curthread); 882 } 883 884 /* 885 * Drain the cached buckets from a zone. Expects a locked zone on entry. 886 */ 887 static void 888 bucket_cache_drain(uma_zone_t zone) 889 { 890 uma_zone_domain_t zdom; 891 uma_bucket_t bucket; 892 int i; 893 894 /* 895 * Drain the bucket queues and free the buckets. 896 */ 897 for (i = 0; i < vm_ndomains; i++) { 898 zdom = &zone->uz_domain[i]; 899 while ((bucket = zone_try_fetch_bucket(zone, zdom, false)) != 900 NULL) { 901 ZONE_UNLOCK(zone); 902 bucket_drain(zone, bucket); 903 bucket_free(zone, bucket, NULL); 904 ZONE_LOCK(zone); 905 } 906 } 907 908 /* 909 * Shrink further bucket sizes. Price of single zone lock collision 910 * is probably lower then price of global cache drain. 911 */ 912 if (zone->uz_count > zone->uz_count_min) 913 zone->uz_count--; 914 } 915 916 static void 917 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 918 { 919 uint8_t *mem; 920 int i; 921 uint8_t flags; 922 923 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 924 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 925 926 mem = slab->us_data; 927 flags = slab->us_flags; 928 i = start; 929 if (keg->uk_fini != NULL) { 930 for (i--; i > -1; i--) 931 #ifdef INVARIANTS 932 /* 933 * trash_fini implies that dtor was trash_dtor. trash_fini 934 * would check that memory hasn't been modified since free, 935 * which executed trash_dtor. 936 * That's why we need to run uma_dbg_kskip() check here, 937 * albeit we don't make skip check for other init/fini 938 * invocations. 939 */ 940 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) || 941 keg->uk_fini != trash_fini) 942 #endif 943 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 944 keg->uk_size); 945 } 946 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 947 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 948 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 949 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 950 } 951 952 /* 953 * Frees pages from a keg back to the system. This is done on demand from 954 * the pageout daemon. 955 * 956 * Returns nothing. 957 */ 958 static void 959 keg_drain(uma_keg_t keg) 960 { 961 struct slabhead freeslabs = { 0 }; 962 uma_domain_t dom; 963 uma_slab_t slab, tmp; 964 int i; 965 966 /* 967 * We don't want to take pages from statically allocated kegs at this 968 * time 969 */ 970 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 971 return; 972 973 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 974 keg->uk_name, keg, keg->uk_free); 975 KEG_LOCK(keg); 976 if (keg->uk_free == 0) 977 goto finished; 978 979 for (i = 0; i < vm_ndomains; i++) { 980 dom = &keg->uk_domain[i]; 981 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 982 /* We have nowhere to free these to. */ 983 if (slab->us_flags & UMA_SLAB_BOOT) 984 continue; 985 986 LIST_REMOVE(slab, us_link); 987 keg->uk_pages -= keg->uk_ppera; 988 keg->uk_free -= keg->uk_ipers; 989 990 if (keg->uk_flags & UMA_ZONE_HASH) 991 UMA_HASH_REMOVE(&keg->uk_hash, slab, 992 slab->us_data); 993 994 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 995 } 996 } 997 998 finished: 999 KEG_UNLOCK(keg); 1000 1001 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 1002 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 1003 keg_free_slab(keg, slab, keg->uk_ipers); 1004 } 1005 } 1006 1007 static void 1008 zone_drain_wait(uma_zone_t zone, int waitok) 1009 { 1010 1011 /* 1012 * Set draining to interlock with zone_dtor() so we can release our 1013 * locks as we go. Only dtor() should do a WAITOK call since it 1014 * is the only call that knows the structure will still be available 1015 * when it wakes up. 1016 */ 1017 ZONE_LOCK(zone); 1018 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 1019 if (waitok == M_NOWAIT) 1020 goto out; 1021 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 1022 } 1023 zone->uz_flags |= UMA_ZFLAG_DRAINING; 1024 bucket_cache_drain(zone); 1025 ZONE_UNLOCK(zone); 1026 /* 1027 * The DRAINING flag protects us from being freed while 1028 * we're running. Normally the uma_rwlock would protect us but we 1029 * must be able to release and acquire the right lock for each keg. 1030 */ 1031 keg_drain(zone->uz_keg); 1032 ZONE_LOCK(zone); 1033 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 1034 wakeup(zone); 1035 out: 1036 ZONE_UNLOCK(zone); 1037 } 1038 1039 void 1040 zone_drain(uma_zone_t zone) 1041 { 1042 1043 zone_drain_wait(zone, M_NOWAIT); 1044 } 1045 1046 /* 1047 * Allocate a new slab for a keg. This does not insert the slab onto a list. 1048 * If the allocation was successful, the keg lock will be held upon return, 1049 * otherwise the keg will be left unlocked. 1050 * 1051 * Arguments: 1052 * flags Wait flags for the item initialization routine 1053 * aflags Wait flags for the slab allocation 1054 * 1055 * Returns: 1056 * The slab that was allocated or NULL if there is no memory and the 1057 * caller specified M_NOWAIT. 1058 */ 1059 static uma_slab_t 1060 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1061 int aflags) 1062 { 1063 uma_alloc allocf; 1064 uma_slab_t slab; 1065 unsigned long size; 1066 uint8_t *mem; 1067 uint8_t sflags; 1068 int i; 1069 1070 KASSERT(domain >= 0 && domain < vm_ndomains, 1071 ("keg_alloc_slab: domain %d out of range", domain)); 1072 KEG_LOCK_ASSERT(keg); 1073 MPASS(zone->uz_lockptr == &keg->uk_lock); 1074 1075 allocf = keg->uk_allocf; 1076 KEG_UNLOCK(keg); 1077 1078 slab = NULL; 1079 mem = NULL; 1080 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1081 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, aflags); 1082 if (slab == NULL) 1083 goto out; 1084 } 1085 1086 /* 1087 * This reproduces the old vm_zone behavior of zero filling pages the 1088 * first time they are added to a zone. 1089 * 1090 * Malloced items are zeroed in uma_zalloc. 1091 */ 1092 1093 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1094 aflags |= M_ZERO; 1095 else 1096 aflags &= ~M_ZERO; 1097 1098 if (keg->uk_flags & UMA_ZONE_NODUMP) 1099 aflags |= M_NODUMP; 1100 1101 /* zone is passed for legacy reasons. */ 1102 size = keg->uk_ppera * PAGE_SIZE; 1103 mem = allocf(zone, size, domain, &sflags, aflags); 1104 if (mem == NULL) { 1105 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1106 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1107 slab = NULL; 1108 goto out; 1109 } 1110 uma_total_inc(size); 1111 1112 /* Point the slab into the allocated memory */ 1113 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1114 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1115 1116 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1117 for (i = 0; i < keg->uk_ppera; i++) 1118 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1119 1120 slab->us_keg = keg; 1121 slab->us_data = mem; 1122 slab->us_freecount = keg->uk_ipers; 1123 slab->us_flags = sflags; 1124 slab->us_domain = domain; 1125 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1126 #ifdef INVARIANTS 1127 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1128 #endif 1129 1130 if (keg->uk_init != NULL) { 1131 for (i = 0; i < keg->uk_ipers; i++) 1132 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1133 keg->uk_size, flags) != 0) 1134 break; 1135 if (i != keg->uk_ipers) { 1136 keg_free_slab(keg, slab, i); 1137 slab = NULL; 1138 goto out; 1139 } 1140 } 1141 KEG_LOCK(keg); 1142 1143 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1144 slab, keg->uk_name, keg); 1145 1146 if (keg->uk_flags & UMA_ZONE_HASH) 1147 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1148 1149 keg->uk_pages += keg->uk_ppera; 1150 keg->uk_free += keg->uk_ipers; 1151 1152 out: 1153 return (slab); 1154 } 1155 1156 /* 1157 * This function is intended to be used early on in place of page_alloc() so 1158 * that we may use the boot time page cache to satisfy allocations before 1159 * the VM is ready. 1160 */ 1161 static void * 1162 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1163 int wait) 1164 { 1165 uma_keg_t keg; 1166 void *mem; 1167 int pages; 1168 1169 keg = zone->uz_keg; 1170 /* 1171 * If we are in BOOT_BUCKETS or higher, than switch to real 1172 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1173 */ 1174 switch (booted) { 1175 case BOOT_COLD: 1176 case BOOT_STRAPPED: 1177 break; 1178 case BOOT_PAGEALLOC: 1179 if (keg->uk_ppera > 1) 1180 break; 1181 case BOOT_BUCKETS: 1182 case BOOT_RUNNING: 1183 #ifdef UMA_MD_SMALL_ALLOC 1184 keg->uk_allocf = (keg->uk_ppera > 1) ? 1185 page_alloc : uma_small_alloc; 1186 #else 1187 keg->uk_allocf = page_alloc; 1188 #endif 1189 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1190 } 1191 1192 /* 1193 * Check our small startup cache to see if it has pages remaining. 1194 */ 1195 pages = howmany(bytes, PAGE_SIZE); 1196 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1197 if (pages > boot_pages) 1198 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1199 #ifdef DIAGNOSTIC 1200 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1201 boot_pages); 1202 #endif 1203 mem = bootmem; 1204 boot_pages -= pages; 1205 bootmem += pages * PAGE_SIZE; 1206 *pflag = UMA_SLAB_BOOT; 1207 1208 return (mem); 1209 } 1210 1211 /* 1212 * Allocates a number of pages from the system 1213 * 1214 * Arguments: 1215 * bytes The number of bytes requested 1216 * wait Shall we wait? 1217 * 1218 * Returns: 1219 * A pointer to the alloced memory or possibly 1220 * NULL if M_NOWAIT is set. 1221 */ 1222 static void * 1223 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1224 int wait) 1225 { 1226 void *p; /* Returned page */ 1227 1228 *pflag = UMA_SLAB_KERNEL; 1229 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1230 1231 return (p); 1232 } 1233 1234 static void * 1235 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1236 int wait) 1237 { 1238 struct pglist alloctail; 1239 vm_offset_t addr, zkva; 1240 int cpu, flags; 1241 vm_page_t p, p_next; 1242 #ifdef NUMA 1243 struct pcpu *pc; 1244 #endif 1245 1246 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1247 1248 TAILQ_INIT(&alloctail); 1249 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1250 malloc2vm_flags(wait); 1251 *pflag = UMA_SLAB_KERNEL; 1252 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1253 if (CPU_ABSENT(cpu)) { 1254 p = vm_page_alloc(NULL, 0, flags); 1255 } else { 1256 #ifndef NUMA 1257 p = vm_page_alloc(NULL, 0, flags); 1258 #else 1259 pc = pcpu_find(cpu); 1260 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); 1261 if (__predict_false(p == NULL)) 1262 p = vm_page_alloc(NULL, 0, flags); 1263 #endif 1264 } 1265 if (__predict_false(p == NULL)) 1266 goto fail; 1267 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1268 } 1269 if ((addr = kva_alloc(bytes)) == 0) 1270 goto fail; 1271 zkva = addr; 1272 TAILQ_FOREACH(p, &alloctail, listq) { 1273 pmap_qenter(zkva, &p, 1); 1274 zkva += PAGE_SIZE; 1275 } 1276 return ((void*)addr); 1277 fail: 1278 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1279 vm_page_unwire(p, PQ_NONE); 1280 vm_page_free(p); 1281 } 1282 return (NULL); 1283 } 1284 1285 /* 1286 * Allocates a number of pages from within an object 1287 * 1288 * Arguments: 1289 * bytes The number of bytes requested 1290 * wait Shall we wait? 1291 * 1292 * Returns: 1293 * A pointer to the alloced memory or possibly 1294 * NULL if M_NOWAIT is set. 1295 */ 1296 static void * 1297 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1298 int wait) 1299 { 1300 TAILQ_HEAD(, vm_page) alloctail; 1301 u_long npages; 1302 vm_offset_t retkva, zkva; 1303 vm_page_t p, p_next; 1304 uma_keg_t keg; 1305 1306 TAILQ_INIT(&alloctail); 1307 keg = zone->uz_keg; 1308 1309 npages = howmany(bytes, PAGE_SIZE); 1310 while (npages > 0) { 1311 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1312 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1313 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1314 VM_ALLOC_NOWAIT)); 1315 if (p != NULL) { 1316 /* 1317 * Since the page does not belong to an object, its 1318 * listq is unused. 1319 */ 1320 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1321 npages--; 1322 continue; 1323 } 1324 /* 1325 * Page allocation failed, free intermediate pages and 1326 * exit. 1327 */ 1328 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1329 vm_page_unwire(p, PQ_NONE); 1330 vm_page_free(p); 1331 } 1332 return (NULL); 1333 } 1334 *flags = UMA_SLAB_PRIV; 1335 zkva = keg->uk_kva + 1336 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1337 retkva = zkva; 1338 TAILQ_FOREACH(p, &alloctail, listq) { 1339 pmap_qenter(zkva, &p, 1); 1340 zkva += PAGE_SIZE; 1341 } 1342 1343 return ((void *)retkva); 1344 } 1345 1346 /* 1347 * Frees a number of pages to the system 1348 * 1349 * Arguments: 1350 * mem A pointer to the memory to be freed 1351 * size The size of the memory being freed 1352 * flags The original p->us_flags field 1353 * 1354 * Returns: 1355 * Nothing 1356 */ 1357 static void 1358 page_free(void *mem, vm_size_t size, uint8_t flags) 1359 { 1360 1361 if ((flags & UMA_SLAB_KERNEL) == 0) 1362 panic("UMA: page_free used with invalid flags %x", flags); 1363 1364 kmem_free((vm_offset_t)mem, size); 1365 } 1366 1367 /* 1368 * Frees pcpu zone allocations 1369 * 1370 * Arguments: 1371 * mem A pointer to the memory to be freed 1372 * size The size of the memory being freed 1373 * flags The original p->us_flags field 1374 * 1375 * Returns: 1376 * Nothing 1377 */ 1378 static void 1379 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1380 { 1381 vm_offset_t sva, curva; 1382 vm_paddr_t paddr; 1383 vm_page_t m; 1384 1385 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1386 sva = (vm_offset_t)mem; 1387 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1388 paddr = pmap_kextract(curva); 1389 m = PHYS_TO_VM_PAGE(paddr); 1390 vm_page_unwire(m, PQ_NONE); 1391 vm_page_free(m); 1392 } 1393 pmap_qremove(sva, size >> PAGE_SHIFT); 1394 kva_free(sva, size); 1395 } 1396 1397 1398 /* 1399 * Zero fill initializer 1400 * 1401 * Arguments/Returns follow uma_init specifications 1402 */ 1403 static int 1404 zero_init(void *mem, int size, int flags) 1405 { 1406 bzero(mem, size); 1407 return (0); 1408 } 1409 1410 /* 1411 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1412 * 1413 * Arguments 1414 * keg The zone we should initialize 1415 * 1416 * Returns 1417 * Nothing 1418 */ 1419 static void 1420 keg_small_init(uma_keg_t keg) 1421 { 1422 u_int rsize; 1423 u_int memused; 1424 u_int wastedspace; 1425 u_int shsize; 1426 u_int slabsize; 1427 1428 if (keg->uk_flags & UMA_ZONE_PCPU) { 1429 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1430 1431 slabsize = UMA_PCPU_ALLOC_SIZE; 1432 keg->uk_ppera = ncpus; 1433 } else { 1434 slabsize = UMA_SLAB_SIZE; 1435 keg->uk_ppera = 1; 1436 } 1437 1438 /* 1439 * Calculate the size of each allocation (rsize) according to 1440 * alignment. If the requested size is smaller than we have 1441 * allocation bits for we round it up. 1442 */ 1443 rsize = keg->uk_size; 1444 if (rsize < slabsize / SLAB_SETSIZE) 1445 rsize = slabsize / SLAB_SETSIZE; 1446 if (rsize & keg->uk_align) 1447 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1448 keg->uk_rsize = rsize; 1449 1450 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1451 keg->uk_rsize < UMA_PCPU_ALLOC_SIZE, 1452 ("%s: size %u too large", __func__, keg->uk_rsize)); 1453 1454 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1455 shsize = 0; 1456 else 1457 shsize = SIZEOF_UMA_SLAB; 1458 1459 if (rsize <= slabsize - shsize) 1460 keg->uk_ipers = (slabsize - shsize) / rsize; 1461 else { 1462 /* Handle special case when we have 1 item per slab, so 1463 * alignment requirement can be relaxed. */ 1464 KASSERT(keg->uk_size <= slabsize - shsize, 1465 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1466 keg->uk_ipers = 1; 1467 } 1468 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1469 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1470 1471 memused = keg->uk_ipers * rsize + shsize; 1472 wastedspace = slabsize - memused; 1473 1474 /* 1475 * We can't do OFFPAGE if we're internal or if we've been 1476 * asked to not go to the VM for buckets. If we do this we 1477 * may end up going to the VM for slabs which we do not 1478 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1479 * of UMA_ZONE_VM, which clearly forbids it. 1480 */ 1481 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1482 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1483 return; 1484 1485 /* 1486 * See if using an OFFPAGE slab will limit our waste. Only do 1487 * this if it permits more items per-slab. 1488 * 1489 * XXX We could try growing slabsize to limit max waste as well. 1490 * Historically this was not done because the VM could not 1491 * efficiently handle contiguous allocations. 1492 */ 1493 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1494 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1495 keg->uk_ipers = slabsize / keg->uk_rsize; 1496 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1497 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1498 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1499 "keg: %s(%p), calculated wastedspace = %d, " 1500 "maximum wasted space allowed = %d, " 1501 "calculated ipers = %d, " 1502 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1503 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1504 slabsize - keg->uk_ipers * keg->uk_rsize); 1505 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1506 } 1507 1508 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1509 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1510 keg->uk_flags |= UMA_ZONE_HASH; 1511 } 1512 1513 /* 1514 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1515 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1516 * more complicated. 1517 * 1518 * Arguments 1519 * keg The keg we should initialize 1520 * 1521 * Returns 1522 * Nothing 1523 */ 1524 static void 1525 keg_large_init(uma_keg_t keg) 1526 { 1527 1528 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1529 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1530 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1531 1532 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1533 keg->uk_ipers = 1; 1534 keg->uk_rsize = keg->uk_size; 1535 1536 /* Check whether we have enough space to not do OFFPAGE. */ 1537 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0 && 1538 PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < SIZEOF_UMA_SLAB) { 1539 /* 1540 * We can't do OFFPAGE if we're internal, in which case 1541 * we need an extra page per allocation to contain the 1542 * slab header. 1543 */ 1544 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1545 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1546 else 1547 keg->uk_ppera++; 1548 } 1549 1550 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1551 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1552 keg->uk_flags |= UMA_ZONE_HASH; 1553 } 1554 1555 static void 1556 keg_cachespread_init(uma_keg_t keg) 1557 { 1558 int alignsize; 1559 int trailer; 1560 int pages; 1561 int rsize; 1562 1563 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1564 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1565 1566 alignsize = keg->uk_align + 1; 1567 rsize = keg->uk_size; 1568 /* 1569 * We want one item to start on every align boundary in a page. To 1570 * do this we will span pages. We will also extend the item by the 1571 * size of align if it is an even multiple of align. Otherwise, it 1572 * would fall on the same boundary every time. 1573 */ 1574 if (rsize & keg->uk_align) 1575 rsize = (rsize & ~keg->uk_align) + alignsize; 1576 if ((rsize & alignsize) == 0) 1577 rsize += alignsize; 1578 trailer = rsize - keg->uk_size; 1579 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1580 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1581 keg->uk_rsize = rsize; 1582 keg->uk_ppera = pages; 1583 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1584 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1585 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1586 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1587 keg->uk_ipers)); 1588 } 1589 1590 /* 1591 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1592 * the keg onto the global keg list. 1593 * 1594 * Arguments/Returns follow uma_ctor specifications 1595 * udata Actually uma_kctor_args 1596 */ 1597 static int 1598 keg_ctor(void *mem, int size, void *udata, int flags) 1599 { 1600 struct uma_kctor_args *arg = udata; 1601 uma_keg_t keg = mem; 1602 uma_zone_t zone; 1603 1604 bzero(keg, size); 1605 keg->uk_size = arg->size; 1606 keg->uk_init = arg->uminit; 1607 keg->uk_fini = arg->fini; 1608 keg->uk_align = arg->align; 1609 keg->uk_free = 0; 1610 keg->uk_reserve = 0; 1611 keg->uk_pages = 0; 1612 keg->uk_flags = arg->flags; 1613 keg->uk_slabzone = NULL; 1614 1615 /* 1616 * We use a global round-robin policy by default. Zones with 1617 * UMA_ZONE_NUMA set will use first-touch instead, in which case the 1618 * iterator is never run. 1619 */ 1620 keg->uk_dr.dr_policy = DOMAINSET_RR(); 1621 keg->uk_dr.dr_iter = 0; 1622 1623 /* 1624 * The master zone is passed to us at keg-creation time. 1625 */ 1626 zone = arg->zone; 1627 keg->uk_name = zone->uz_name; 1628 1629 if (arg->flags & UMA_ZONE_VM) 1630 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1631 1632 if (arg->flags & UMA_ZONE_ZINIT) 1633 keg->uk_init = zero_init; 1634 1635 if (arg->flags & UMA_ZONE_MALLOC) 1636 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1637 1638 if (arg->flags & UMA_ZONE_PCPU) 1639 #ifdef SMP 1640 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1641 #else 1642 keg->uk_flags &= ~UMA_ZONE_PCPU; 1643 #endif 1644 1645 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1646 keg_cachespread_init(keg); 1647 } else { 1648 if (keg->uk_size > UMA_SLAB_SPACE) 1649 keg_large_init(keg); 1650 else 1651 keg_small_init(keg); 1652 } 1653 1654 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1655 keg->uk_slabzone = slabzone; 1656 1657 /* 1658 * If we haven't booted yet we need allocations to go through the 1659 * startup cache until the vm is ready. 1660 */ 1661 if (booted < BOOT_PAGEALLOC) 1662 keg->uk_allocf = startup_alloc; 1663 #ifdef UMA_MD_SMALL_ALLOC 1664 else if (keg->uk_ppera == 1) 1665 keg->uk_allocf = uma_small_alloc; 1666 #endif 1667 else if (keg->uk_flags & UMA_ZONE_PCPU) 1668 keg->uk_allocf = pcpu_page_alloc; 1669 else 1670 keg->uk_allocf = page_alloc; 1671 #ifdef UMA_MD_SMALL_ALLOC 1672 if (keg->uk_ppera == 1) 1673 keg->uk_freef = uma_small_free; 1674 else 1675 #endif 1676 if (keg->uk_flags & UMA_ZONE_PCPU) 1677 keg->uk_freef = pcpu_page_free; 1678 else 1679 keg->uk_freef = page_free; 1680 1681 /* 1682 * Initialize keg's lock 1683 */ 1684 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1685 1686 /* 1687 * If we're putting the slab header in the actual page we need to 1688 * figure out where in each page it goes. See SIZEOF_UMA_SLAB 1689 * macro definition. 1690 */ 1691 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1692 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - SIZEOF_UMA_SLAB; 1693 /* 1694 * The only way the following is possible is if with our 1695 * UMA_ALIGN_PTR adjustments we are now bigger than 1696 * UMA_SLAB_SIZE. I haven't checked whether this is 1697 * mathematically possible for all cases, so we make 1698 * sure here anyway. 1699 */ 1700 KASSERT(keg->uk_pgoff + sizeof(struct uma_slab) <= 1701 PAGE_SIZE * keg->uk_ppera, 1702 ("zone %s ipers %d rsize %d size %d slab won't fit", 1703 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 1704 } 1705 1706 if (keg->uk_flags & UMA_ZONE_HASH) 1707 hash_alloc(&keg->uk_hash); 1708 1709 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1710 keg, zone->uz_name, zone, 1711 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1712 keg->uk_free); 1713 1714 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1715 1716 rw_wlock(&uma_rwlock); 1717 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1718 rw_wunlock(&uma_rwlock); 1719 return (0); 1720 } 1721 1722 static void 1723 zone_alloc_counters(uma_zone_t zone) 1724 { 1725 1726 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 1727 zone->uz_frees = counter_u64_alloc(M_WAITOK); 1728 zone->uz_fails = counter_u64_alloc(M_WAITOK); 1729 } 1730 1731 /* 1732 * Zone header ctor. This initializes all fields, locks, etc. 1733 * 1734 * Arguments/Returns follow uma_ctor specifications 1735 * udata Actually uma_zctor_args 1736 */ 1737 static int 1738 zone_ctor(void *mem, int size, void *udata, int flags) 1739 { 1740 struct uma_zctor_args *arg = udata; 1741 uma_zone_t zone = mem; 1742 uma_zone_t z; 1743 uma_keg_t keg; 1744 1745 bzero(zone, size); 1746 zone->uz_name = arg->name; 1747 zone->uz_ctor = arg->ctor; 1748 zone->uz_dtor = arg->dtor; 1749 zone->uz_slab = zone_fetch_slab; 1750 zone->uz_init = NULL; 1751 zone->uz_fini = NULL; 1752 zone->uz_sleeps = 0; 1753 zone->uz_count = 0; 1754 zone->uz_count_min = 0; 1755 zone->uz_count_max = BUCKET_MAX; 1756 zone->uz_flags = 0; 1757 zone->uz_warning = NULL; 1758 /* The domain structures follow the cpu structures. */ 1759 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1760 zone->uz_bkt_max = ULONG_MAX; 1761 timevalclear(&zone->uz_ratecheck); 1762 1763 if (__predict_true(booted == BOOT_RUNNING)) 1764 zone_alloc_counters(zone); 1765 else { 1766 zone->uz_allocs = EARLY_COUNTER; 1767 zone->uz_frees = EARLY_COUNTER; 1768 zone->uz_fails = EARLY_COUNTER; 1769 } 1770 1771 /* 1772 * This is a pure cache zone, no kegs. 1773 */ 1774 if (arg->import) { 1775 if (arg->flags & UMA_ZONE_VM) 1776 arg->flags |= UMA_ZFLAG_CACHEONLY; 1777 zone->uz_flags = arg->flags; 1778 zone->uz_size = arg->size; 1779 zone->uz_import = arg->import; 1780 zone->uz_release = arg->release; 1781 zone->uz_arg = arg->arg; 1782 zone->uz_lockptr = &zone->uz_lock; 1783 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1784 rw_wlock(&uma_rwlock); 1785 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1786 rw_wunlock(&uma_rwlock); 1787 goto out; 1788 } 1789 1790 /* 1791 * Use the regular zone/keg/slab allocator. 1792 */ 1793 zone->uz_import = (uma_import)zone_import; 1794 zone->uz_release = (uma_release)zone_release; 1795 zone->uz_arg = zone; 1796 keg = arg->keg; 1797 1798 if (arg->flags & UMA_ZONE_SECONDARY) { 1799 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1800 zone->uz_init = arg->uminit; 1801 zone->uz_fini = arg->fini; 1802 zone->uz_lockptr = &keg->uk_lock; 1803 zone->uz_flags |= UMA_ZONE_SECONDARY; 1804 rw_wlock(&uma_rwlock); 1805 ZONE_LOCK(zone); 1806 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1807 if (LIST_NEXT(z, uz_link) == NULL) { 1808 LIST_INSERT_AFTER(z, zone, uz_link); 1809 break; 1810 } 1811 } 1812 ZONE_UNLOCK(zone); 1813 rw_wunlock(&uma_rwlock); 1814 } else if (keg == NULL) { 1815 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1816 arg->align, arg->flags)) == NULL) 1817 return (ENOMEM); 1818 } else { 1819 struct uma_kctor_args karg; 1820 int error; 1821 1822 /* We should only be here from uma_startup() */ 1823 karg.size = arg->size; 1824 karg.uminit = arg->uminit; 1825 karg.fini = arg->fini; 1826 karg.align = arg->align; 1827 karg.flags = arg->flags; 1828 karg.zone = zone; 1829 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1830 flags); 1831 if (error) 1832 return (error); 1833 } 1834 1835 zone->uz_keg = keg; 1836 zone->uz_size = keg->uk_size; 1837 zone->uz_flags |= (keg->uk_flags & 1838 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1839 1840 /* 1841 * Some internal zones don't have room allocated for the per cpu 1842 * caches. If we're internal, bail out here. 1843 */ 1844 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1845 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1846 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1847 return (0); 1848 } 1849 1850 out: 1851 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 1852 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 1853 ("Invalid zone flag combination")); 1854 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 1855 zone->uz_count = BUCKET_MAX; 1856 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 1857 zone->uz_count = 0; 1858 else 1859 zone->uz_count = bucket_select(zone->uz_size); 1860 zone->uz_count_min = zone->uz_count; 1861 1862 return (0); 1863 } 1864 1865 /* 1866 * Keg header dtor. This frees all data, destroys locks, frees the hash 1867 * table and removes the keg from the global list. 1868 * 1869 * Arguments/Returns follow uma_dtor specifications 1870 * udata unused 1871 */ 1872 static void 1873 keg_dtor(void *arg, int size, void *udata) 1874 { 1875 uma_keg_t keg; 1876 1877 keg = (uma_keg_t)arg; 1878 KEG_LOCK(keg); 1879 if (keg->uk_free != 0) { 1880 printf("Freed UMA keg (%s) was not empty (%d items). " 1881 " Lost %d pages of memory.\n", 1882 keg->uk_name ? keg->uk_name : "", 1883 keg->uk_free, keg->uk_pages); 1884 } 1885 KEG_UNLOCK(keg); 1886 1887 hash_free(&keg->uk_hash); 1888 1889 KEG_LOCK_FINI(keg); 1890 } 1891 1892 /* 1893 * Zone header dtor. 1894 * 1895 * Arguments/Returns follow uma_dtor specifications 1896 * udata unused 1897 */ 1898 static void 1899 zone_dtor(void *arg, int size, void *udata) 1900 { 1901 uma_zone_t zone; 1902 uma_keg_t keg; 1903 1904 zone = (uma_zone_t)arg; 1905 1906 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1907 cache_drain(zone); 1908 1909 rw_wlock(&uma_rwlock); 1910 LIST_REMOVE(zone, uz_link); 1911 rw_wunlock(&uma_rwlock); 1912 /* 1913 * XXX there are some races here where 1914 * the zone can be drained but zone lock 1915 * released and then refilled before we 1916 * remove it... we dont care for now 1917 */ 1918 zone_drain_wait(zone, M_WAITOK); 1919 /* 1920 * We only destroy kegs from non secondary zones. 1921 */ 1922 if ((keg = zone->uz_keg) != NULL && 1923 (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1924 rw_wlock(&uma_rwlock); 1925 LIST_REMOVE(keg, uk_link); 1926 rw_wunlock(&uma_rwlock); 1927 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1928 } 1929 counter_u64_free(zone->uz_allocs); 1930 counter_u64_free(zone->uz_frees); 1931 counter_u64_free(zone->uz_fails); 1932 if (zone->uz_lockptr == &zone->uz_lock) 1933 ZONE_LOCK_FINI(zone); 1934 } 1935 1936 /* 1937 * Traverses every zone in the system and calls a callback 1938 * 1939 * Arguments: 1940 * zfunc A pointer to a function which accepts a zone 1941 * as an argument. 1942 * 1943 * Returns: 1944 * Nothing 1945 */ 1946 static void 1947 zone_foreach(void (*zfunc)(uma_zone_t)) 1948 { 1949 uma_keg_t keg; 1950 uma_zone_t zone; 1951 1952 /* 1953 * Before BOOT_RUNNING we are guaranteed to be single 1954 * threaded, so locking isn't needed. Startup functions 1955 * are allowed to use M_WAITOK. 1956 */ 1957 if (__predict_true(booted == BOOT_RUNNING)) 1958 rw_rlock(&uma_rwlock); 1959 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1960 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1961 zfunc(zone); 1962 } 1963 if (__predict_true(booted == BOOT_RUNNING)) 1964 rw_runlock(&uma_rwlock); 1965 } 1966 1967 /* 1968 * Count how many pages do we need to bootstrap. VM supplies 1969 * its need in early zones in the argument, we add up our zones, 1970 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 1971 * zone of zones and zone of kegs are accounted separately. 1972 */ 1973 #define UMA_BOOT_ZONES 11 1974 /* Zone of zones and zone of kegs have arbitrary alignment. */ 1975 #define UMA_BOOT_ALIGN 32 1976 static int zsize, ksize; 1977 int 1978 uma_startup_count(int vm_zones) 1979 { 1980 int zones, pages; 1981 1982 ksize = sizeof(struct uma_keg) + 1983 (sizeof(struct uma_domain) * vm_ndomains); 1984 zsize = sizeof(struct uma_zone) + 1985 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 1986 (sizeof(struct uma_zone_domain) * vm_ndomains); 1987 1988 /* 1989 * Memory for the zone of kegs and its keg, 1990 * and for zone of zones. 1991 */ 1992 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 1993 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 1994 1995 #ifdef UMA_MD_SMALL_ALLOC 1996 zones = UMA_BOOT_ZONES; 1997 #else 1998 zones = UMA_BOOT_ZONES + vm_zones; 1999 vm_zones = 0; 2000 #endif 2001 2002 /* Memory for the rest of startup zones, UMA and VM, ... */ 2003 if (zsize > UMA_SLAB_SPACE) { 2004 /* See keg_large_init(). */ 2005 u_int ppera; 2006 2007 ppera = howmany(roundup2(zsize, UMA_BOOT_ALIGN), PAGE_SIZE); 2008 if (PAGE_SIZE * ppera - roundup2(zsize, UMA_BOOT_ALIGN) < 2009 SIZEOF_UMA_SLAB) 2010 ppera++; 2011 pages += (zones + vm_zones) * ppera; 2012 } else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 2013 /* See keg_small_init() special case for uk_ppera = 1. */ 2014 pages += zones; 2015 else 2016 pages += howmany(zones, 2017 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 2018 2019 /* ... and their kegs. Note that zone of zones allocates a keg! */ 2020 pages += howmany(zones + 1, 2021 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 2022 2023 /* 2024 * Most of startup zones are not going to be offpages, that's 2025 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 2026 * calculations. Some large bucket zones will be offpage, and 2027 * thus will allocate hashes. We take conservative approach 2028 * and assume that all zones may allocate hash. This may give 2029 * us some positive inaccuracy, usually an extra single page. 2030 */ 2031 pages += howmany(zones, UMA_SLAB_SPACE / 2032 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 2033 2034 return (pages); 2035 } 2036 2037 void 2038 uma_startup(void *mem, int npages) 2039 { 2040 struct uma_zctor_args args; 2041 uma_keg_t masterkeg; 2042 uintptr_t m; 2043 2044 #ifdef DIAGNOSTIC 2045 printf("Entering %s with %d boot pages configured\n", __func__, npages); 2046 #endif 2047 2048 rw_init(&uma_rwlock, "UMA lock"); 2049 2050 /* Use bootpages memory for the zone of zones and zone of kegs. */ 2051 m = (uintptr_t)mem; 2052 zones = (uma_zone_t)m; 2053 m += roundup(zsize, CACHE_LINE_SIZE); 2054 kegs = (uma_zone_t)m; 2055 m += roundup(zsize, CACHE_LINE_SIZE); 2056 masterkeg = (uma_keg_t)m; 2057 m += roundup(ksize, CACHE_LINE_SIZE); 2058 m = roundup(m, PAGE_SIZE); 2059 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 2060 mem = (void *)m; 2061 2062 /* "manually" create the initial zone */ 2063 memset(&args, 0, sizeof(args)); 2064 args.name = "UMA Kegs"; 2065 args.size = ksize; 2066 args.ctor = keg_ctor; 2067 args.dtor = keg_dtor; 2068 args.uminit = zero_init; 2069 args.fini = NULL; 2070 args.keg = masterkeg; 2071 args.align = UMA_BOOT_ALIGN - 1; 2072 args.flags = UMA_ZFLAG_INTERNAL; 2073 zone_ctor(kegs, zsize, &args, M_WAITOK); 2074 2075 bootmem = mem; 2076 boot_pages = npages; 2077 2078 args.name = "UMA Zones"; 2079 args.size = zsize; 2080 args.ctor = zone_ctor; 2081 args.dtor = zone_dtor; 2082 args.uminit = zero_init; 2083 args.fini = NULL; 2084 args.keg = NULL; 2085 args.align = UMA_BOOT_ALIGN - 1; 2086 args.flags = UMA_ZFLAG_INTERNAL; 2087 zone_ctor(zones, zsize, &args, M_WAITOK); 2088 2089 /* Now make a zone for slab headers */ 2090 slabzone = uma_zcreate("UMA Slabs", 2091 sizeof(struct uma_slab), 2092 NULL, NULL, NULL, NULL, 2093 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2094 2095 hashzone = uma_zcreate("UMA Hash", 2096 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2097 NULL, NULL, NULL, NULL, 2098 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2099 2100 bucket_init(); 2101 2102 booted = BOOT_STRAPPED; 2103 } 2104 2105 void 2106 uma_startup1(void) 2107 { 2108 2109 #ifdef DIAGNOSTIC 2110 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2111 #endif 2112 booted = BOOT_PAGEALLOC; 2113 } 2114 2115 void 2116 uma_startup2(void) 2117 { 2118 2119 #ifdef DIAGNOSTIC 2120 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2121 #endif 2122 booted = BOOT_BUCKETS; 2123 sx_init(&uma_drain_lock, "umadrain"); 2124 bucket_enable(); 2125 } 2126 2127 /* 2128 * Initialize our callout handle 2129 * 2130 */ 2131 static void 2132 uma_startup3(void) 2133 { 2134 2135 #ifdef INVARIANTS 2136 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2137 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2138 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2139 #endif 2140 zone_foreach(zone_alloc_counters); 2141 callout_init(&uma_callout, 1); 2142 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2143 booted = BOOT_RUNNING; 2144 } 2145 2146 static uma_keg_t 2147 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2148 int align, uint32_t flags) 2149 { 2150 struct uma_kctor_args args; 2151 2152 args.size = size; 2153 args.uminit = uminit; 2154 args.fini = fini; 2155 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2156 args.flags = flags; 2157 args.zone = zone; 2158 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2159 } 2160 2161 /* Public functions */ 2162 /* See uma.h */ 2163 void 2164 uma_set_align(int align) 2165 { 2166 2167 if (align != UMA_ALIGN_CACHE) 2168 uma_align_cache = align; 2169 } 2170 2171 /* See uma.h */ 2172 uma_zone_t 2173 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2174 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2175 2176 { 2177 struct uma_zctor_args args; 2178 uma_zone_t res; 2179 bool locked; 2180 2181 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2182 align, name)); 2183 2184 /* This stuff is essential for the zone ctor */ 2185 memset(&args, 0, sizeof(args)); 2186 args.name = name; 2187 args.size = size; 2188 args.ctor = ctor; 2189 args.dtor = dtor; 2190 args.uminit = uminit; 2191 args.fini = fini; 2192 #ifdef INVARIANTS 2193 /* 2194 * If a zone is being created with an empty constructor and 2195 * destructor, pass UMA constructor/destructor which checks for 2196 * memory use after free. 2197 */ 2198 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2199 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2200 args.ctor = trash_ctor; 2201 args.dtor = trash_dtor; 2202 args.uminit = trash_init; 2203 args.fini = trash_fini; 2204 } 2205 #endif 2206 args.align = align; 2207 args.flags = flags; 2208 args.keg = NULL; 2209 2210 if (booted < BOOT_BUCKETS) { 2211 locked = false; 2212 } else { 2213 sx_slock(&uma_drain_lock); 2214 locked = true; 2215 } 2216 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2217 if (locked) 2218 sx_sunlock(&uma_drain_lock); 2219 return (res); 2220 } 2221 2222 /* See uma.h */ 2223 uma_zone_t 2224 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2225 uma_init zinit, uma_fini zfini, uma_zone_t master) 2226 { 2227 struct uma_zctor_args args; 2228 uma_keg_t keg; 2229 uma_zone_t res; 2230 bool locked; 2231 2232 keg = master->uz_keg; 2233 memset(&args, 0, sizeof(args)); 2234 args.name = name; 2235 args.size = keg->uk_size; 2236 args.ctor = ctor; 2237 args.dtor = dtor; 2238 args.uminit = zinit; 2239 args.fini = zfini; 2240 args.align = keg->uk_align; 2241 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2242 args.keg = keg; 2243 2244 if (booted < BOOT_BUCKETS) { 2245 locked = false; 2246 } else { 2247 sx_slock(&uma_drain_lock); 2248 locked = true; 2249 } 2250 /* XXX Attaches only one keg of potentially many. */ 2251 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2252 if (locked) 2253 sx_sunlock(&uma_drain_lock); 2254 return (res); 2255 } 2256 2257 /* See uma.h */ 2258 uma_zone_t 2259 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2260 uma_init zinit, uma_fini zfini, uma_import zimport, 2261 uma_release zrelease, void *arg, int flags) 2262 { 2263 struct uma_zctor_args args; 2264 2265 memset(&args, 0, sizeof(args)); 2266 args.name = name; 2267 args.size = size; 2268 args.ctor = ctor; 2269 args.dtor = dtor; 2270 args.uminit = zinit; 2271 args.fini = zfini; 2272 args.import = zimport; 2273 args.release = zrelease; 2274 args.arg = arg; 2275 args.align = 0; 2276 args.flags = flags | UMA_ZFLAG_CACHE; 2277 2278 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2279 } 2280 2281 /* See uma.h */ 2282 void 2283 uma_zdestroy(uma_zone_t zone) 2284 { 2285 2286 sx_slock(&uma_drain_lock); 2287 zone_free_item(zones, zone, NULL, SKIP_NONE); 2288 sx_sunlock(&uma_drain_lock); 2289 } 2290 2291 void 2292 uma_zwait(uma_zone_t zone) 2293 { 2294 void *item; 2295 2296 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2297 uma_zfree(zone, item); 2298 } 2299 2300 void * 2301 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2302 { 2303 void *item; 2304 #ifdef SMP 2305 int i; 2306 2307 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2308 #endif 2309 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2310 if (item != NULL && (flags & M_ZERO)) { 2311 #ifdef SMP 2312 for (i = 0; i <= mp_maxid; i++) 2313 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2314 #else 2315 bzero(item, zone->uz_size); 2316 #endif 2317 } 2318 return (item); 2319 } 2320 2321 /* 2322 * A stub while both regular and pcpu cases are identical. 2323 */ 2324 void 2325 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2326 { 2327 2328 #ifdef SMP 2329 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2330 #endif 2331 uma_zfree_arg(zone, item, udata); 2332 } 2333 2334 /* See uma.h */ 2335 void * 2336 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2337 { 2338 uma_zone_domain_t zdom; 2339 uma_bucket_t bucket; 2340 uma_cache_t cache; 2341 void *item; 2342 int cpu, domain, lockfail, maxbucket; 2343 #ifdef INVARIANTS 2344 bool skipdbg; 2345 #endif 2346 2347 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2348 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2349 2350 /* This is the fast path allocation */ 2351 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2352 curthread, zone->uz_name, zone, flags); 2353 2354 if (flags & M_WAITOK) { 2355 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2356 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2357 } 2358 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2359 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2360 ("uma_zalloc_arg: called with spinlock or critical section held")); 2361 if (zone->uz_flags & UMA_ZONE_PCPU) 2362 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2363 "with M_ZERO passed")); 2364 2365 #ifdef DEBUG_MEMGUARD 2366 if (memguard_cmp_zone(zone)) { 2367 item = memguard_alloc(zone->uz_size, flags); 2368 if (item != NULL) { 2369 if (zone->uz_init != NULL && 2370 zone->uz_init(item, zone->uz_size, flags) != 0) 2371 return (NULL); 2372 if (zone->uz_ctor != NULL && 2373 zone->uz_ctor(item, zone->uz_size, udata, 2374 flags) != 0) { 2375 zone->uz_fini(item, zone->uz_size); 2376 return (NULL); 2377 } 2378 return (item); 2379 } 2380 /* This is unfortunate but should not be fatal. */ 2381 } 2382 #endif 2383 /* 2384 * If possible, allocate from the per-CPU cache. There are two 2385 * requirements for safe access to the per-CPU cache: (1) the thread 2386 * accessing the cache must not be preempted or yield during access, 2387 * and (2) the thread must not migrate CPUs without switching which 2388 * cache it accesses. We rely on a critical section to prevent 2389 * preemption and migration. We release the critical section in 2390 * order to acquire the zone mutex if we are unable to allocate from 2391 * the current cache; when we re-acquire the critical section, we 2392 * must detect and handle migration if it has occurred. 2393 */ 2394 zalloc_restart: 2395 critical_enter(); 2396 cpu = curcpu; 2397 cache = &zone->uz_cpu[cpu]; 2398 2399 zalloc_start: 2400 bucket = cache->uc_allocbucket; 2401 if (bucket != NULL && bucket->ub_cnt > 0) { 2402 bucket->ub_cnt--; 2403 item = bucket->ub_bucket[bucket->ub_cnt]; 2404 #ifdef INVARIANTS 2405 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2406 #endif 2407 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2408 cache->uc_allocs++; 2409 critical_exit(); 2410 #ifdef INVARIANTS 2411 skipdbg = uma_dbg_zskip(zone, item); 2412 #endif 2413 if (zone->uz_ctor != NULL && 2414 #ifdef INVARIANTS 2415 (!skipdbg || zone->uz_ctor != trash_ctor || 2416 zone->uz_dtor != trash_dtor) && 2417 #endif 2418 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2419 counter_u64_add(zone->uz_fails, 1); 2420 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2421 return (NULL); 2422 } 2423 #ifdef INVARIANTS 2424 if (!skipdbg) 2425 uma_dbg_alloc(zone, NULL, item); 2426 #endif 2427 if (flags & M_ZERO) 2428 uma_zero_item(item, zone); 2429 return (item); 2430 } 2431 2432 /* 2433 * We have run out of items in our alloc bucket. 2434 * See if we can switch with our free bucket. 2435 */ 2436 bucket = cache->uc_freebucket; 2437 if (bucket != NULL && bucket->ub_cnt > 0) { 2438 CTR2(KTR_UMA, 2439 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2440 zone->uz_name, zone); 2441 cache->uc_freebucket = cache->uc_allocbucket; 2442 cache->uc_allocbucket = bucket; 2443 goto zalloc_start; 2444 } 2445 2446 /* 2447 * Discard any empty allocation bucket while we hold no locks. 2448 */ 2449 bucket = cache->uc_allocbucket; 2450 cache->uc_allocbucket = NULL; 2451 critical_exit(); 2452 if (bucket != NULL) 2453 bucket_free(zone, bucket, udata); 2454 2455 if (zone->uz_flags & UMA_ZONE_NUMA) { 2456 domain = PCPU_GET(domain); 2457 if (VM_DOMAIN_EMPTY(domain)) 2458 domain = UMA_ANYDOMAIN; 2459 } else 2460 domain = UMA_ANYDOMAIN; 2461 2462 /* Short-circuit for zones without buckets and low memory. */ 2463 if (zone->uz_count == 0 || bucketdisable) { 2464 ZONE_LOCK(zone); 2465 goto zalloc_item; 2466 } 2467 2468 /* 2469 * Attempt to retrieve the item from the per-CPU cache has failed, so 2470 * we must go back to the zone. This requires the zone lock, so we 2471 * must drop the critical section, then re-acquire it when we go back 2472 * to the cache. Since the critical section is released, we may be 2473 * preempted or migrate. As such, make sure not to maintain any 2474 * thread-local state specific to the cache from prior to releasing 2475 * the critical section. 2476 */ 2477 lockfail = 0; 2478 if (ZONE_TRYLOCK(zone) == 0) { 2479 /* Record contention to size the buckets. */ 2480 ZONE_LOCK(zone); 2481 lockfail = 1; 2482 } 2483 critical_enter(); 2484 cpu = curcpu; 2485 cache = &zone->uz_cpu[cpu]; 2486 2487 /* See if we lost the race to fill the cache. */ 2488 if (cache->uc_allocbucket != NULL) { 2489 ZONE_UNLOCK(zone); 2490 goto zalloc_start; 2491 } 2492 2493 /* 2494 * Check the zone's cache of buckets. 2495 */ 2496 if (domain == UMA_ANYDOMAIN) 2497 zdom = &zone->uz_domain[0]; 2498 else 2499 zdom = &zone->uz_domain[domain]; 2500 if ((bucket = zone_try_fetch_bucket(zone, zdom, true)) != NULL) { 2501 KASSERT(bucket->ub_cnt != 0, 2502 ("uma_zalloc_arg: Returning an empty bucket.")); 2503 cache->uc_allocbucket = bucket; 2504 ZONE_UNLOCK(zone); 2505 goto zalloc_start; 2506 } 2507 /* We are no longer associated with this CPU. */ 2508 critical_exit(); 2509 2510 /* 2511 * We bump the uz count when the cache size is insufficient to 2512 * handle the working set. 2513 */ 2514 if (lockfail && zone->uz_count < zone->uz_count_max) 2515 zone->uz_count++; 2516 2517 if (zone->uz_max_items > 0) { 2518 if (zone->uz_items >= zone->uz_max_items) 2519 goto zalloc_item; 2520 maxbucket = MIN(zone->uz_count, 2521 zone->uz_max_items - zone->uz_items); 2522 zone->uz_items += maxbucket; 2523 } else 2524 maxbucket = zone->uz_count; 2525 ZONE_UNLOCK(zone); 2526 2527 /* 2528 * Now lets just fill a bucket and put it on the free list. If that 2529 * works we'll restart the allocation from the beginning and it 2530 * will use the just filled bucket. 2531 */ 2532 bucket = zone_alloc_bucket(zone, udata, domain, flags, maxbucket); 2533 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2534 zone->uz_name, zone, bucket); 2535 ZONE_LOCK(zone); 2536 if (bucket != NULL) { 2537 if (zone->uz_max_items > 0 && bucket->ub_cnt < maxbucket) { 2538 MPASS(zone->uz_items >= maxbucket - bucket->ub_cnt); 2539 zone->uz_items -= maxbucket - bucket->ub_cnt; 2540 if (zone->uz_sleepers > 0 && 2541 zone->uz_items < zone->uz_max_items) 2542 wakeup_one(zone); 2543 } 2544 critical_enter(); 2545 cpu = curcpu; 2546 cache = &zone->uz_cpu[cpu]; 2547 2548 /* 2549 * See if we lost the race or were migrated. Cache the 2550 * initialized bucket to make this less likely or claim 2551 * the memory directly. 2552 */ 2553 if (cache->uc_allocbucket == NULL && 2554 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 2555 domain == PCPU_GET(domain))) { 2556 cache->uc_allocbucket = bucket; 2557 zdom->uzd_imax += bucket->ub_cnt; 2558 } else if (zone->uz_bkt_count >= zone->uz_bkt_max) { 2559 critical_exit(); 2560 ZONE_UNLOCK(zone); 2561 bucket_drain(zone, bucket); 2562 bucket_free(zone, bucket, udata); 2563 goto zalloc_restart; 2564 } else 2565 zone_put_bucket(zone, zdom, bucket, false); 2566 ZONE_UNLOCK(zone); 2567 goto zalloc_start; 2568 } else if (zone->uz_max_items > 0) { 2569 zone->uz_items -= maxbucket; 2570 if (zone->uz_sleepers > 0 && 2571 zone->uz_items + 1 < zone->uz_max_items) 2572 wakeup_one(zone); 2573 } 2574 2575 /* 2576 * We may not be able to get a bucket so return an actual item. 2577 */ 2578 zalloc_item: 2579 item = zone_alloc_item_locked(zone, udata, domain, flags); 2580 2581 return (item); 2582 } 2583 2584 void * 2585 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2586 { 2587 2588 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2589 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2590 2591 /* This is the fast path allocation */ 2592 CTR5(KTR_UMA, 2593 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2594 curthread, zone->uz_name, zone, domain, flags); 2595 2596 if (flags & M_WAITOK) { 2597 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2598 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2599 } 2600 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2601 ("uma_zalloc_domain: called with spinlock or critical section held")); 2602 2603 return (zone_alloc_item(zone, udata, domain, flags)); 2604 } 2605 2606 /* 2607 * Find a slab with some space. Prefer slabs that are partially used over those 2608 * that are totally full. This helps to reduce fragmentation. 2609 * 2610 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2611 * only 'domain'. 2612 */ 2613 static uma_slab_t 2614 keg_first_slab(uma_keg_t keg, int domain, bool rr) 2615 { 2616 uma_domain_t dom; 2617 uma_slab_t slab; 2618 int start; 2619 2620 KASSERT(domain >= 0 && domain < vm_ndomains, 2621 ("keg_first_slab: domain %d out of range", domain)); 2622 KEG_LOCK_ASSERT(keg); 2623 2624 slab = NULL; 2625 start = domain; 2626 do { 2627 dom = &keg->uk_domain[domain]; 2628 if (!LIST_EMPTY(&dom->ud_part_slab)) 2629 return (LIST_FIRST(&dom->ud_part_slab)); 2630 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2631 slab = LIST_FIRST(&dom->ud_free_slab); 2632 LIST_REMOVE(slab, us_link); 2633 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2634 return (slab); 2635 } 2636 if (rr) 2637 domain = (domain + 1) % vm_ndomains; 2638 } while (domain != start); 2639 2640 return (NULL); 2641 } 2642 2643 static uma_slab_t 2644 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 2645 { 2646 uint32_t reserve; 2647 2648 KEG_LOCK_ASSERT(keg); 2649 2650 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 2651 if (keg->uk_free <= reserve) 2652 return (NULL); 2653 return (keg_first_slab(keg, domain, rr)); 2654 } 2655 2656 static uma_slab_t 2657 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 2658 { 2659 struct vm_domainset_iter di; 2660 uma_domain_t dom; 2661 uma_slab_t slab; 2662 int aflags, domain; 2663 bool rr; 2664 2665 restart: 2666 KEG_LOCK_ASSERT(keg); 2667 2668 /* 2669 * Use the keg's policy if upper layers haven't already specified a 2670 * domain (as happens with first-touch zones). 2671 * 2672 * To avoid races we run the iterator with the keg lock held, but that 2673 * means that we cannot allow the vm_domainset layer to sleep. Thus, 2674 * clear M_WAITOK and handle low memory conditions locally. 2675 */ 2676 rr = rdomain == UMA_ANYDOMAIN; 2677 if (rr) { 2678 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 2679 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 2680 &aflags); 2681 } else { 2682 aflags = flags; 2683 domain = rdomain; 2684 } 2685 2686 for (;;) { 2687 slab = keg_fetch_free_slab(keg, domain, rr, flags); 2688 if (slab != NULL) { 2689 MPASS(slab->us_keg == keg); 2690 return (slab); 2691 } 2692 2693 /* 2694 * M_NOVM means don't ask at all! 2695 */ 2696 if (flags & M_NOVM) 2697 break; 2698 2699 KASSERT(zone->uz_max_items == 0 || 2700 zone->uz_items <= zone->uz_max_items, 2701 ("%s: zone %p overflow", __func__, zone)); 2702 2703 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 2704 /* 2705 * If we got a slab here it's safe to mark it partially used 2706 * and return. We assume that the caller is going to remove 2707 * at least one item. 2708 */ 2709 if (slab) { 2710 MPASS(slab->us_keg == keg); 2711 dom = &keg->uk_domain[slab->us_domain]; 2712 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2713 return (slab); 2714 } 2715 KEG_LOCK(keg); 2716 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 2717 if ((flags & M_WAITOK) != 0) { 2718 KEG_UNLOCK(keg); 2719 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 2720 KEG_LOCK(keg); 2721 goto restart; 2722 } 2723 break; 2724 } 2725 } 2726 2727 /* 2728 * We might not have been able to get a slab but another cpu 2729 * could have while we were unlocked. Check again before we 2730 * fail. 2731 */ 2732 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) { 2733 MPASS(slab->us_keg == keg); 2734 return (slab); 2735 } 2736 return (NULL); 2737 } 2738 2739 static uma_slab_t 2740 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2741 { 2742 uma_slab_t slab; 2743 2744 if (keg == NULL) { 2745 keg = zone->uz_keg; 2746 KEG_LOCK(keg); 2747 } 2748 2749 for (;;) { 2750 slab = keg_fetch_slab(keg, zone, domain, flags); 2751 if (slab) 2752 return (slab); 2753 if (flags & (M_NOWAIT | M_NOVM)) 2754 break; 2755 } 2756 KEG_UNLOCK(keg); 2757 return (NULL); 2758 } 2759 2760 static void * 2761 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2762 { 2763 uma_domain_t dom; 2764 void *item; 2765 uint8_t freei; 2766 2767 MPASS(keg == slab->us_keg); 2768 KEG_LOCK_ASSERT(keg); 2769 2770 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2771 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2772 item = slab->us_data + (keg->uk_rsize * freei); 2773 slab->us_freecount--; 2774 keg->uk_free--; 2775 2776 /* Move this slab to the full list */ 2777 if (slab->us_freecount == 0) { 2778 LIST_REMOVE(slab, us_link); 2779 dom = &keg->uk_domain[slab->us_domain]; 2780 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2781 } 2782 2783 return (item); 2784 } 2785 2786 static int 2787 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2788 { 2789 uma_slab_t slab; 2790 uma_keg_t keg; 2791 #ifdef NUMA 2792 int stripe; 2793 #endif 2794 int i; 2795 2796 slab = NULL; 2797 keg = NULL; 2798 /* Try to keep the buckets totally full */ 2799 for (i = 0; i < max; ) { 2800 if ((slab = zone->uz_slab(zone, keg, domain, flags)) == NULL) 2801 break; 2802 keg = slab->us_keg; 2803 #ifdef NUMA 2804 stripe = howmany(max, vm_ndomains); 2805 #endif 2806 while (slab->us_freecount && i < max) { 2807 bucket[i++] = slab_alloc_item(keg, slab); 2808 if (keg->uk_free <= keg->uk_reserve) 2809 break; 2810 #ifdef NUMA 2811 /* 2812 * If the zone is striped we pick a new slab for every 2813 * N allocations. Eliminating this conditional will 2814 * instead pick a new domain for each bucket rather 2815 * than stripe within each bucket. The current option 2816 * produces more fragmentation and requires more cpu 2817 * time but yields better distribution. 2818 */ 2819 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2820 vm_ndomains > 1 && --stripe == 0) 2821 break; 2822 #endif 2823 } 2824 /* Don't block if we allocated any successfully. */ 2825 flags &= ~M_WAITOK; 2826 flags |= M_NOWAIT; 2827 } 2828 if (slab != NULL) 2829 KEG_UNLOCK(keg); 2830 2831 return i; 2832 } 2833 2834 static uma_bucket_t 2835 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags, int max) 2836 { 2837 uma_bucket_t bucket; 2838 2839 CTR1(KTR_UMA, "zone_alloc:_bucket domain %d)", domain); 2840 2841 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2842 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2843 if (bucket == NULL) 2844 return (NULL); 2845 2846 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2847 max, domain, flags); 2848 2849 /* 2850 * Initialize the memory if necessary. 2851 */ 2852 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2853 int i; 2854 2855 for (i = 0; i < bucket->ub_cnt; i++) 2856 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2857 flags) != 0) 2858 break; 2859 /* 2860 * If we couldn't initialize the whole bucket, put the 2861 * rest back onto the freelist. 2862 */ 2863 if (i != bucket->ub_cnt) { 2864 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2865 bucket->ub_cnt - i); 2866 #ifdef INVARIANTS 2867 bzero(&bucket->ub_bucket[i], 2868 sizeof(void *) * (bucket->ub_cnt - i)); 2869 #endif 2870 bucket->ub_cnt = i; 2871 } 2872 } 2873 2874 if (bucket->ub_cnt == 0) { 2875 bucket_free(zone, bucket, udata); 2876 counter_u64_add(zone->uz_fails, 1); 2877 return (NULL); 2878 } 2879 2880 return (bucket); 2881 } 2882 2883 /* 2884 * Allocates a single item from a zone. 2885 * 2886 * Arguments 2887 * zone The zone to alloc for. 2888 * udata The data to be passed to the constructor. 2889 * domain The domain to allocate from or UMA_ANYDOMAIN. 2890 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2891 * 2892 * Returns 2893 * NULL if there is no memory and M_NOWAIT is set 2894 * An item if successful 2895 */ 2896 2897 static void * 2898 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 2899 { 2900 2901 ZONE_LOCK(zone); 2902 return (zone_alloc_item_locked(zone, udata, domain, flags)); 2903 } 2904 2905 /* 2906 * Returns with zone unlocked. 2907 */ 2908 static void * 2909 zone_alloc_item_locked(uma_zone_t zone, void *udata, int domain, int flags) 2910 { 2911 void *item; 2912 #ifdef INVARIANTS 2913 bool skipdbg; 2914 #endif 2915 2916 ZONE_LOCK_ASSERT(zone); 2917 2918 if (zone->uz_max_items > 0) { 2919 if (zone->uz_items >= zone->uz_max_items) { 2920 zone_log_warning(zone); 2921 zone_maxaction(zone); 2922 if (flags & M_NOWAIT) { 2923 ZONE_UNLOCK(zone); 2924 return (NULL); 2925 } 2926 zone->uz_sleeps++; 2927 zone->uz_sleepers++; 2928 while (zone->uz_items >= zone->uz_max_items) 2929 mtx_sleep(zone, zone->uz_lockptr, PVM, 2930 "zonelimit", 0); 2931 zone->uz_sleepers--; 2932 if (zone->uz_sleepers > 0 && 2933 zone->uz_items + 1 < zone->uz_max_items) 2934 wakeup_one(zone); 2935 } 2936 zone->uz_items++; 2937 } 2938 ZONE_UNLOCK(zone); 2939 2940 if (domain != UMA_ANYDOMAIN) { 2941 /* avoid allocs targeting empty domains */ 2942 if (VM_DOMAIN_EMPTY(domain)) 2943 domain = UMA_ANYDOMAIN; 2944 } 2945 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 2946 goto fail; 2947 2948 #ifdef INVARIANTS 2949 skipdbg = uma_dbg_zskip(zone, item); 2950 #endif 2951 /* 2952 * We have to call both the zone's init (not the keg's init) 2953 * and the zone's ctor. This is because the item is going from 2954 * a keg slab directly to the user, and the user is expecting it 2955 * to be both zone-init'd as well as zone-ctor'd. 2956 */ 2957 if (zone->uz_init != NULL) { 2958 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2959 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 2960 goto fail; 2961 } 2962 } 2963 if (zone->uz_ctor != NULL && 2964 #ifdef INVARIANTS 2965 (!skipdbg || zone->uz_ctor != trash_ctor || 2966 zone->uz_dtor != trash_dtor) && 2967 #endif 2968 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2969 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 2970 goto fail; 2971 } 2972 #ifdef INVARIANTS 2973 if (!skipdbg) 2974 uma_dbg_alloc(zone, NULL, item); 2975 #endif 2976 if (flags & M_ZERO) 2977 uma_zero_item(item, zone); 2978 2979 counter_u64_add(zone->uz_allocs, 1); 2980 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 2981 zone->uz_name, zone); 2982 2983 return (item); 2984 2985 fail: 2986 if (zone->uz_max_items > 0) { 2987 ZONE_LOCK(zone); 2988 zone->uz_items--; 2989 ZONE_UNLOCK(zone); 2990 } 2991 counter_u64_add(zone->uz_fails, 1); 2992 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 2993 zone->uz_name, zone); 2994 return (NULL); 2995 } 2996 2997 /* See uma.h */ 2998 void 2999 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3000 { 3001 uma_cache_t cache; 3002 uma_bucket_t bucket; 3003 uma_zone_domain_t zdom; 3004 int cpu, domain; 3005 bool lockfail; 3006 #ifdef INVARIANTS 3007 bool skipdbg; 3008 #endif 3009 3010 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3011 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3012 3013 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 3014 zone->uz_name); 3015 3016 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3017 ("uma_zfree_arg: called with spinlock or critical section held")); 3018 3019 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3020 if (item == NULL) 3021 return; 3022 #ifdef DEBUG_MEMGUARD 3023 if (is_memguard_addr(item)) { 3024 if (zone->uz_dtor != NULL) 3025 zone->uz_dtor(item, zone->uz_size, udata); 3026 if (zone->uz_fini != NULL) 3027 zone->uz_fini(item, zone->uz_size); 3028 memguard_free(item); 3029 return; 3030 } 3031 #endif 3032 #ifdef INVARIANTS 3033 skipdbg = uma_dbg_zskip(zone, item); 3034 if (skipdbg == false) { 3035 if (zone->uz_flags & UMA_ZONE_MALLOC) 3036 uma_dbg_free(zone, udata, item); 3037 else 3038 uma_dbg_free(zone, NULL, item); 3039 } 3040 if (zone->uz_dtor != NULL && (!skipdbg || 3041 zone->uz_dtor != trash_dtor || zone->uz_ctor != trash_ctor)) 3042 #else 3043 if (zone->uz_dtor != NULL) 3044 #endif 3045 zone->uz_dtor(item, zone->uz_size, udata); 3046 3047 /* 3048 * The race here is acceptable. If we miss it we'll just have to wait 3049 * a little longer for the limits to be reset. 3050 */ 3051 if (zone->uz_sleepers > 0) 3052 goto zfree_item; 3053 3054 /* 3055 * If possible, free to the per-CPU cache. There are two 3056 * requirements for safe access to the per-CPU cache: (1) the thread 3057 * accessing the cache must not be preempted or yield during access, 3058 * and (2) the thread must not migrate CPUs without switching which 3059 * cache it accesses. We rely on a critical section to prevent 3060 * preemption and migration. We release the critical section in 3061 * order to acquire the zone mutex if we are unable to free to the 3062 * current cache; when we re-acquire the critical section, we must 3063 * detect and handle migration if it has occurred. 3064 */ 3065 zfree_restart: 3066 critical_enter(); 3067 cpu = curcpu; 3068 cache = &zone->uz_cpu[cpu]; 3069 3070 zfree_start: 3071 /* 3072 * Try to free into the allocbucket first to give LIFO ordering 3073 * for cache-hot datastructures. Spill over into the freebucket 3074 * if necessary. Alloc will swap them if one runs dry. 3075 */ 3076 bucket = cache->uc_allocbucket; 3077 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 3078 bucket = cache->uc_freebucket; 3079 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3080 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 3081 ("uma_zfree: Freeing to non free bucket index.")); 3082 bucket->ub_bucket[bucket->ub_cnt] = item; 3083 bucket->ub_cnt++; 3084 cache->uc_frees++; 3085 critical_exit(); 3086 return; 3087 } 3088 3089 /* 3090 * We must go back the zone, which requires acquiring the zone lock, 3091 * which in turn means we must release and re-acquire the critical 3092 * section. Since the critical section is released, we may be 3093 * preempted or migrate. As such, make sure not to maintain any 3094 * thread-local state specific to the cache from prior to releasing 3095 * the critical section. 3096 */ 3097 critical_exit(); 3098 if (zone->uz_count == 0 || bucketdisable) 3099 goto zfree_item; 3100 3101 lockfail = false; 3102 if (ZONE_TRYLOCK(zone) == 0) { 3103 /* Record contention to size the buckets. */ 3104 ZONE_LOCK(zone); 3105 lockfail = true; 3106 } 3107 critical_enter(); 3108 cpu = curcpu; 3109 cache = &zone->uz_cpu[cpu]; 3110 3111 bucket = cache->uc_freebucket; 3112 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3113 ZONE_UNLOCK(zone); 3114 goto zfree_start; 3115 } 3116 cache->uc_freebucket = NULL; 3117 /* We are no longer associated with this CPU. */ 3118 critical_exit(); 3119 3120 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { 3121 domain = PCPU_GET(domain); 3122 if (VM_DOMAIN_EMPTY(domain)) 3123 domain = UMA_ANYDOMAIN; 3124 } else 3125 domain = 0; 3126 zdom = &zone->uz_domain[0]; 3127 3128 /* Can we throw this on the zone full list? */ 3129 if (bucket != NULL) { 3130 CTR3(KTR_UMA, 3131 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3132 zone->uz_name, zone, bucket); 3133 /* ub_cnt is pointing to the last free item */ 3134 KASSERT(bucket->ub_cnt == bucket->ub_entries, 3135 ("uma_zfree: Attempting to insert not full bucket onto the full list.\n")); 3136 if (zone->uz_bkt_count >= zone->uz_bkt_max) { 3137 ZONE_UNLOCK(zone); 3138 bucket_drain(zone, bucket); 3139 bucket_free(zone, bucket, udata); 3140 goto zfree_restart; 3141 } else 3142 zone_put_bucket(zone, zdom, bucket, true); 3143 } 3144 3145 /* 3146 * We bump the uz count when the cache size is insufficient to 3147 * handle the working set. 3148 */ 3149 if (lockfail && zone->uz_count < zone->uz_count_max) 3150 zone->uz_count++; 3151 ZONE_UNLOCK(zone); 3152 3153 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3154 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3155 zone->uz_name, zone, bucket); 3156 if (bucket) { 3157 critical_enter(); 3158 cpu = curcpu; 3159 cache = &zone->uz_cpu[cpu]; 3160 if (cache->uc_freebucket == NULL && 3161 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3162 domain == PCPU_GET(domain))) { 3163 cache->uc_freebucket = bucket; 3164 goto zfree_start; 3165 } 3166 /* 3167 * We lost the race, start over. We have to drop our 3168 * critical section to free the bucket. 3169 */ 3170 critical_exit(); 3171 bucket_free(zone, bucket, udata); 3172 goto zfree_restart; 3173 } 3174 3175 /* 3176 * If nothing else caught this, we'll just do an internal free. 3177 */ 3178 zfree_item: 3179 zone_free_item(zone, item, udata, SKIP_DTOR); 3180 } 3181 3182 void 3183 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3184 { 3185 3186 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3187 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3188 3189 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3190 zone->uz_name); 3191 3192 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3193 ("uma_zfree_domain: called with spinlock or critical section held")); 3194 3195 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3196 if (item == NULL) 3197 return; 3198 zone_free_item(zone, item, udata, SKIP_NONE); 3199 } 3200 3201 static void 3202 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 3203 { 3204 uma_keg_t keg; 3205 uma_domain_t dom; 3206 uint8_t freei; 3207 3208 keg = zone->uz_keg; 3209 MPASS(zone->uz_lockptr == &keg->uk_lock); 3210 KEG_LOCK_ASSERT(keg); 3211 MPASS(keg == slab->us_keg); 3212 3213 dom = &keg->uk_domain[slab->us_domain]; 3214 3215 /* Do we need to remove from any lists? */ 3216 if (slab->us_freecount+1 == keg->uk_ipers) { 3217 LIST_REMOVE(slab, us_link); 3218 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3219 } else if (slab->us_freecount == 0) { 3220 LIST_REMOVE(slab, us_link); 3221 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3222 } 3223 3224 /* Slab management. */ 3225 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3226 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3227 slab->us_freecount++; 3228 3229 /* Keg statistics. */ 3230 keg->uk_free++; 3231 } 3232 3233 static void 3234 zone_release(uma_zone_t zone, void **bucket, int cnt) 3235 { 3236 void *item; 3237 uma_slab_t slab; 3238 uma_keg_t keg; 3239 uint8_t *mem; 3240 int i; 3241 3242 keg = zone->uz_keg; 3243 KEG_LOCK(keg); 3244 for (i = 0; i < cnt; i++) { 3245 item = bucket[i]; 3246 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3247 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3248 if (zone->uz_flags & UMA_ZONE_HASH) { 3249 slab = hash_sfind(&keg->uk_hash, mem); 3250 } else { 3251 mem += keg->uk_pgoff; 3252 slab = (uma_slab_t)mem; 3253 } 3254 } else { 3255 slab = vtoslab((vm_offset_t)item); 3256 MPASS(slab->us_keg == keg); 3257 } 3258 slab_free_item(zone, slab, item); 3259 } 3260 KEG_UNLOCK(keg); 3261 } 3262 3263 /* 3264 * Frees a single item to any zone. 3265 * 3266 * Arguments: 3267 * zone The zone to free to 3268 * item The item we're freeing 3269 * udata User supplied data for the dtor 3270 * skip Skip dtors and finis 3271 */ 3272 static void 3273 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3274 { 3275 #ifdef INVARIANTS 3276 bool skipdbg; 3277 3278 skipdbg = uma_dbg_zskip(zone, item); 3279 if (skip == SKIP_NONE && !skipdbg) { 3280 if (zone->uz_flags & UMA_ZONE_MALLOC) 3281 uma_dbg_free(zone, udata, item); 3282 else 3283 uma_dbg_free(zone, NULL, item); 3284 } 3285 3286 if (skip < SKIP_DTOR && zone->uz_dtor != NULL && 3287 (!skipdbg || zone->uz_dtor != trash_dtor || 3288 zone->uz_ctor != trash_ctor)) 3289 #else 3290 if (skip < SKIP_DTOR && zone->uz_dtor != NULL) 3291 #endif 3292 zone->uz_dtor(item, zone->uz_size, udata); 3293 3294 if (skip < SKIP_FINI && zone->uz_fini) 3295 zone->uz_fini(item, zone->uz_size); 3296 3297 zone->uz_release(zone->uz_arg, &item, 1); 3298 3299 if (skip & SKIP_CNT) 3300 return; 3301 3302 counter_u64_add(zone->uz_frees, 1); 3303 3304 if (zone->uz_max_items > 0) { 3305 ZONE_LOCK(zone); 3306 zone->uz_items--; 3307 if (zone->uz_sleepers > 0 && 3308 zone->uz_items < zone->uz_max_items) 3309 wakeup_one(zone); 3310 ZONE_UNLOCK(zone); 3311 } 3312 } 3313 3314 /* See uma.h */ 3315 int 3316 uma_zone_set_max(uma_zone_t zone, int nitems) 3317 { 3318 struct uma_bucket_zone *ubz; 3319 3320 /* 3321 * If limit is very low we may need to limit how 3322 * much items are allowed in CPU caches. 3323 */ 3324 ubz = &bucket_zones[0]; 3325 for (; ubz->ubz_entries != 0; ubz++) 3326 if (ubz->ubz_entries * 2 * mp_ncpus > nitems) 3327 break; 3328 if (ubz == &bucket_zones[0]) 3329 nitems = ubz->ubz_entries * 2 * mp_ncpus; 3330 else 3331 ubz--; 3332 3333 ZONE_LOCK(zone); 3334 zone->uz_count_max = zone->uz_count = ubz->ubz_entries; 3335 if (zone->uz_count_min > zone->uz_count_max) 3336 zone->uz_count_min = zone->uz_count_max; 3337 zone->uz_max_items = nitems; 3338 ZONE_UNLOCK(zone); 3339 3340 return (nitems); 3341 } 3342 3343 /* See uma.h */ 3344 int 3345 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 3346 { 3347 3348 ZONE_LOCK(zone); 3349 zone->uz_bkt_max = nitems; 3350 ZONE_UNLOCK(zone); 3351 3352 return (nitems); 3353 } 3354 3355 /* See uma.h */ 3356 int 3357 uma_zone_get_max(uma_zone_t zone) 3358 { 3359 int nitems; 3360 3361 ZONE_LOCK(zone); 3362 nitems = zone->uz_max_items; 3363 ZONE_UNLOCK(zone); 3364 3365 return (nitems); 3366 } 3367 3368 /* See uma.h */ 3369 void 3370 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3371 { 3372 3373 ZONE_LOCK(zone); 3374 zone->uz_warning = warning; 3375 ZONE_UNLOCK(zone); 3376 } 3377 3378 /* See uma.h */ 3379 void 3380 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3381 { 3382 3383 ZONE_LOCK(zone); 3384 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3385 ZONE_UNLOCK(zone); 3386 } 3387 3388 /* See uma.h */ 3389 int 3390 uma_zone_get_cur(uma_zone_t zone) 3391 { 3392 int64_t nitems; 3393 u_int i; 3394 3395 ZONE_LOCK(zone); 3396 nitems = counter_u64_fetch(zone->uz_allocs) - 3397 counter_u64_fetch(zone->uz_frees); 3398 CPU_FOREACH(i) { 3399 /* 3400 * See the comment in sysctl_vm_zone_stats() regarding the 3401 * safety of accessing the per-cpu caches. With the zone lock 3402 * held, it is safe, but can potentially result in stale data. 3403 */ 3404 nitems += zone->uz_cpu[i].uc_allocs - 3405 zone->uz_cpu[i].uc_frees; 3406 } 3407 ZONE_UNLOCK(zone); 3408 3409 return (nitems < 0 ? 0 : nitems); 3410 } 3411 3412 /* See uma.h */ 3413 void 3414 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3415 { 3416 uma_keg_t keg; 3417 3418 KEG_GET(zone, keg); 3419 KEG_LOCK(keg); 3420 KASSERT(keg->uk_pages == 0, 3421 ("uma_zone_set_init on non-empty keg")); 3422 keg->uk_init = uminit; 3423 KEG_UNLOCK(keg); 3424 } 3425 3426 /* See uma.h */ 3427 void 3428 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3429 { 3430 uma_keg_t keg; 3431 3432 KEG_GET(zone, keg); 3433 KEG_LOCK(keg); 3434 KASSERT(keg->uk_pages == 0, 3435 ("uma_zone_set_fini on non-empty keg")); 3436 keg->uk_fini = fini; 3437 KEG_UNLOCK(keg); 3438 } 3439 3440 /* See uma.h */ 3441 void 3442 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3443 { 3444 3445 ZONE_LOCK(zone); 3446 KASSERT(zone->uz_keg->uk_pages == 0, 3447 ("uma_zone_set_zinit on non-empty keg")); 3448 zone->uz_init = zinit; 3449 ZONE_UNLOCK(zone); 3450 } 3451 3452 /* See uma.h */ 3453 void 3454 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3455 { 3456 3457 ZONE_LOCK(zone); 3458 KASSERT(zone->uz_keg->uk_pages == 0, 3459 ("uma_zone_set_zfini on non-empty keg")); 3460 zone->uz_fini = zfini; 3461 ZONE_UNLOCK(zone); 3462 } 3463 3464 /* See uma.h */ 3465 /* XXX uk_freef is not actually used with the zone locked */ 3466 void 3467 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3468 { 3469 uma_keg_t keg; 3470 3471 KEG_GET(zone, keg); 3472 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3473 KEG_LOCK(keg); 3474 keg->uk_freef = freef; 3475 KEG_UNLOCK(keg); 3476 } 3477 3478 /* See uma.h */ 3479 /* XXX uk_allocf is not actually used with the zone locked */ 3480 void 3481 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3482 { 3483 uma_keg_t keg; 3484 3485 KEG_GET(zone, keg); 3486 KEG_LOCK(keg); 3487 keg->uk_allocf = allocf; 3488 KEG_UNLOCK(keg); 3489 } 3490 3491 /* See uma.h */ 3492 void 3493 uma_zone_reserve(uma_zone_t zone, int items) 3494 { 3495 uma_keg_t keg; 3496 3497 KEG_GET(zone, keg); 3498 KEG_LOCK(keg); 3499 keg->uk_reserve = items; 3500 KEG_UNLOCK(keg); 3501 } 3502 3503 /* See uma.h */ 3504 int 3505 uma_zone_reserve_kva(uma_zone_t zone, int count) 3506 { 3507 uma_keg_t keg; 3508 vm_offset_t kva; 3509 u_int pages; 3510 3511 KEG_GET(zone, keg); 3512 3513 pages = count / keg->uk_ipers; 3514 if (pages * keg->uk_ipers < count) 3515 pages++; 3516 pages *= keg->uk_ppera; 3517 3518 #ifdef UMA_MD_SMALL_ALLOC 3519 if (keg->uk_ppera > 1) { 3520 #else 3521 if (1) { 3522 #endif 3523 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3524 if (kva == 0) 3525 return (0); 3526 } else 3527 kva = 0; 3528 3529 ZONE_LOCK(zone); 3530 MPASS(keg->uk_kva == 0); 3531 keg->uk_kva = kva; 3532 keg->uk_offset = 0; 3533 zone->uz_max_items = pages * keg->uk_ipers; 3534 #ifdef UMA_MD_SMALL_ALLOC 3535 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3536 #else 3537 keg->uk_allocf = noobj_alloc; 3538 #endif 3539 keg->uk_flags |= UMA_ZONE_NOFREE; 3540 ZONE_UNLOCK(zone); 3541 3542 return (1); 3543 } 3544 3545 /* See uma.h */ 3546 void 3547 uma_prealloc(uma_zone_t zone, int items) 3548 { 3549 struct vm_domainset_iter di; 3550 uma_domain_t dom; 3551 uma_slab_t slab; 3552 uma_keg_t keg; 3553 int aflags, domain, slabs; 3554 3555 KEG_GET(zone, keg); 3556 KEG_LOCK(keg); 3557 slabs = items / keg->uk_ipers; 3558 if (slabs * keg->uk_ipers < items) 3559 slabs++; 3560 while (slabs-- > 0) { 3561 aflags = M_NOWAIT; 3562 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3563 &aflags); 3564 for (;;) { 3565 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 3566 aflags); 3567 if (slab != NULL) { 3568 MPASS(slab->us_keg == keg); 3569 dom = &keg->uk_domain[slab->us_domain]; 3570 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 3571 us_link); 3572 break; 3573 } 3574 KEG_LOCK(keg); 3575 if (vm_domainset_iter_policy(&di, &domain) != 0) { 3576 KEG_UNLOCK(keg); 3577 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3578 KEG_LOCK(keg); 3579 } 3580 } 3581 } 3582 KEG_UNLOCK(keg); 3583 } 3584 3585 /* See uma.h */ 3586 static void 3587 uma_reclaim_locked(bool kmem_danger) 3588 { 3589 3590 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3591 sx_assert(&uma_drain_lock, SA_XLOCKED); 3592 bucket_enable(); 3593 zone_foreach(zone_drain); 3594 if (vm_page_count_min() || kmem_danger) { 3595 cache_drain_safe(NULL); 3596 zone_foreach(zone_drain); 3597 } 3598 3599 /* 3600 * Some slabs may have been freed but this zone will be visited early 3601 * we visit again so that we can free pages that are empty once other 3602 * zones are drained. We have to do the same for buckets. 3603 */ 3604 zone_drain(slabzone); 3605 bucket_zone_drain(); 3606 } 3607 3608 void 3609 uma_reclaim(void) 3610 { 3611 3612 sx_xlock(&uma_drain_lock); 3613 uma_reclaim_locked(false); 3614 sx_xunlock(&uma_drain_lock); 3615 } 3616 3617 static volatile int uma_reclaim_needed; 3618 3619 void 3620 uma_reclaim_wakeup(void) 3621 { 3622 3623 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3624 wakeup(uma_reclaim); 3625 } 3626 3627 void 3628 uma_reclaim_worker(void *arg __unused) 3629 { 3630 3631 for (;;) { 3632 sx_xlock(&uma_drain_lock); 3633 while (atomic_load_int(&uma_reclaim_needed) == 0) 3634 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3635 hz); 3636 sx_xunlock(&uma_drain_lock); 3637 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3638 sx_xlock(&uma_drain_lock); 3639 uma_reclaim_locked(true); 3640 atomic_store_int(&uma_reclaim_needed, 0); 3641 sx_xunlock(&uma_drain_lock); 3642 /* Don't fire more than once per-second. */ 3643 pause("umarclslp", hz); 3644 } 3645 } 3646 3647 /* See uma.h */ 3648 int 3649 uma_zone_exhausted(uma_zone_t zone) 3650 { 3651 int full; 3652 3653 ZONE_LOCK(zone); 3654 full = zone->uz_sleepers > 0; 3655 ZONE_UNLOCK(zone); 3656 return (full); 3657 } 3658 3659 int 3660 uma_zone_exhausted_nolock(uma_zone_t zone) 3661 { 3662 return (zone->uz_sleepers > 0); 3663 } 3664 3665 void * 3666 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3667 { 3668 struct domainset *policy; 3669 vm_offset_t addr; 3670 uma_slab_t slab; 3671 3672 if (domain != UMA_ANYDOMAIN) { 3673 /* avoid allocs targeting empty domains */ 3674 if (VM_DOMAIN_EMPTY(domain)) 3675 domain = UMA_ANYDOMAIN; 3676 } 3677 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3678 if (slab == NULL) 3679 return (NULL); 3680 policy = (domain == UMA_ANYDOMAIN) ? DOMAINSET_RR() : 3681 DOMAINSET_FIXED(domain); 3682 addr = kmem_malloc_domainset(policy, size, wait); 3683 if (addr != 0) { 3684 vsetslab(addr, slab); 3685 slab->us_data = (void *)addr; 3686 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3687 slab->us_size = size; 3688 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3689 pmap_kextract(addr))); 3690 uma_total_inc(size); 3691 } else { 3692 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3693 } 3694 3695 return ((void *)addr); 3696 } 3697 3698 void * 3699 uma_large_malloc(vm_size_t size, int wait) 3700 { 3701 3702 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3703 } 3704 3705 void 3706 uma_large_free(uma_slab_t slab) 3707 { 3708 3709 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3710 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3711 kmem_free((vm_offset_t)slab->us_data, slab->us_size); 3712 uma_total_dec(slab->us_size); 3713 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3714 } 3715 3716 static void 3717 uma_zero_item(void *item, uma_zone_t zone) 3718 { 3719 3720 bzero(item, zone->uz_size); 3721 } 3722 3723 unsigned long 3724 uma_limit(void) 3725 { 3726 3727 return (uma_kmem_limit); 3728 } 3729 3730 void 3731 uma_set_limit(unsigned long limit) 3732 { 3733 3734 uma_kmem_limit = limit; 3735 } 3736 3737 unsigned long 3738 uma_size(void) 3739 { 3740 3741 return (uma_kmem_total); 3742 } 3743 3744 long 3745 uma_avail(void) 3746 { 3747 3748 return (uma_kmem_limit - uma_kmem_total); 3749 } 3750 3751 void 3752 uma_print_stats(void) 3753 { 3754 zone_foreach(uma_print_zone); 3755 } 3756 3757 static void 3758 slab_print(uma_slab_t slab) 3759 { 3760 printf("slab: keg %p, data %p, freecount %d\n", 3761 slab->us_keg, slab->us_data, slab->us_freecount); 3762 } 3763 3764 static void 3765 cache_print(uma_cache_t cache) 3766 { 3767 printf("alloc: %p(%d), free: %p(%d)\n", 3768 cache->uc_allocbucket, 3769 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3770 cache->uc_freebucket, 3771 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3772 } 3773 3774 static void 3775 uma_print_keg(uma_keg_t keg) 3776 { 3777 uma_domain_t dom; 3778 uma_slab_t slab; 3779 int i; 3780 3781 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3782 "out %d free %d\n", 3783 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3784 keg->uk_ipers, keg->uk_ppera, 3785 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3786 keg->uk_free); 3787 for (i = 0; i < vm_ndomains; i++) { 3788 dom = &keg->uk_domain[i]; 3789 printf("Part slabs:\n"); 3790 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3791 slab_print(slab); 3792 printf("Free slabs:\n"); 3793 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3794 slab_print(slab); 3795 printf("Full slabs:\n"); 3796 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3797 slab_print(slab); 3798 } 3799 } 3800 3801 void 3802 uma_print_zone(uma_zone_t zone) 3803 { 3804 uma_cache_t cache; 3805 int i; 3806 3807 printf("zone: %s(%p) size %d maxitems %ju flags %#x\n", 3808 zone->uz_name, zone, zone->uz_size, (uintmax_t)zone->uz_max_items, 3809 zone->uz_flags); 3810 if (zone->uz_lockptr != &zone->uz_lock) 3811 uma_print_keg(zone->uz_keg); 3812 CPU_FOREACH(i) { 3813 cache = &zone->uz_cpu[i]; 3814 printf("CPU %d Cache:\n", i); 3815 cache_print(cache); 3816 } 3817 } 3818 3819 #ifdef DDB 3820 /* 3821 * Generate statistics across both the zone and its per-cpu cache's. Return 3822 * desired statistics if the pointer is non-NULL for that statistic. 3823 * 3824 * Note: does not update the zone statistics, as it can't safely clear the 3825 * per-CPU cache statistic. 3826 * 3827 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3828 * safe from off-CPU; we should modify the caches to track this information 3829 * directly so that we don't have to. 3830 */ 3831 static void 3832 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 3833 uint64_t *freesp, uint64_t *sleepsp) 3834 { 3835 uma_cache_t cache; 3836 uint64_t allocs, frees, sleeps; 3837 int cachefree, cpu; 3838 3839 allocs = frees = sleeps = 0; 3840 cachefree = 0; 3841 CPU_FOREACH(cpu) { 3842 cache = &z->uz_cpu[cpu]; 3843 if (cache->uc_allocbucket != NULL) 3844 cachefree += cache->uc_allocbucket->ub_cnt; 3845 if (cache->uc_freebucket != NULL) 3846 cachefree += cache->uc_freebucket->ub_cnt; 3847 allocs += cache->uc_allocs; 3848 frees += cache->uc_frees; 3849 } 3850 allocs += counter_u64_fetch(z->uz_allocs); 3851 frees += counter_u64_fetch(z->uz_frees); 3852 sleeps += z->uz_sleeps; 3853 if (cachefreep != NULL) 3854 *cachefreep = cachefree; 3855 if (allocsp != NULL) 3856 *allocsp = allocs; 3857 if (freesp != NULL) 3858 *freesp = frees; 3859 if (sleepsp != NULL) 3860 *sleepsp = sleeps; 3861 } 3862 #endif /* DDB */ 3863 3864 static int 3865 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3866 { 3867 uma_keg_t kz; 3868 uma_zone_t z; 3869 int count; 3870 3871 count = 0; 3872 rw_rlock(&uma_rwlock); 3873 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3874 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3875 count++; 3876 } 3877 rw_runlock(&uma_rwlock); 3878 return (sysctl_handle_int(oidp, &count, 0, req)); 3879 } 3880 3881 static int 3882 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3883 { 3884 struct uma_stream_header ush; 3885 struct uma_type_header uth; 3886 struct uma_percpu_stat *ups; 3887 uma_zone_domain_t zdom; 3888 struct sbuf sbuf; 3889 uma_cache_t cache; 3890 uma_keg_t kz; 3891 uma_zone_t z; 3892 int count, error, i; 3893 3894 error = sysctl_wire_old_buffer(req, 0); 3895 if (error != 0) 3896 return (error); 3897 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3898 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3899 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 3900 3901 count = 0; 3902 rw_rlock(&uma_rwlock); 3903 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3904 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3905 count++; 3906 } 3907 3908 /* 3909 * Insert stream header. 3910 */ 3911 bzero(&ush, sizeof(ush)); 3912 ush.ush_version = UMA_STREAM_VERSION; 3913 ush.ush_maxcpus = (mp_maxid + 1); 3914 ush.ush_count = count; 3915 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3916 3917 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3918 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3919 bzero(&uth, sizeof(uth)); 3920 ZONE_LOCK(z); 3921 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3922 uth.uth_align = kz->uk_align; 3923 uth.uth_size = kz->uk_size; 3924 uth.uth_rsize = kz->uk_rsize; 3925 if (z->uz_max_items > 0) 3926 uth.uth_pages = (z->uz_items / kz->uk_ipers) * 3927 kz->uk_ppera; 3928 else 3929 uth.uth_pages = kz->uk_pages; 3930 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 3931 kz->uk_ppera; 3932 uth.uth_limit = z->uz_max_items; 3933 uth.uth_keg_free = z->uz_keg->uk_free; 3934 3935 /* 3936 * A zone is secondary is it is not the first entry 3937 * on the keg's zone list. 3938 */ 3939 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3940 (LIST_FIRST(&kz->uk_zones) != z)) 3941 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3942 3943 for (i = 0; i < vm_ndomains; i++) { 3944 zdom = &z->uz_domain[i]; 3945 uth.uth_zone_free += zdom->uzd_nitems; 3946 } 3947 uth.uth_allocs = counter_u64_fetch(z->uz_allocs); 3948 uth.uth_frees = counter_u64_fetch(z->uz_frees); 3949 uth.uth_fails = counter_u64_fetch(z->uz_fails); 3950 uth.uth_sleeps = z->uz_sleeps; 3951 /* 3952 * While it is not normally safe to access the cache 3953 * bucket pointers while not on the CPU that owns the 3954 * cache, we only allow the pointers to be exchanged 3955 * without the zone lock held, not invalidated, so 3956 * accept the possible race associated with bucket 3957 * exchange during monitoring. 3958 */ 3959 for (i = 0; i < mp_maxid + 1; i++) { 3960 bzero(&ups[i], sizeof(*ups)); 3961 if (kz->uk_flags & UMA_ZFLAG_INTERNAL || 3962 CPU_ABSENT(i)) 3963 continue; 3964 cache = &z->uz_cpu[i]; 3965 if (cache->uc_allocbucket != NULL) 3966 ups[i].ups_cache_free += 3967 cache->uc_allocbucket->ub_cnt; 3968 if (cache->uc_freebucket != NULL) 3969 ups[i].ups_cache_free += 3970 cache->uc_freebucket->ub_cnt; 3971 ups[i].ups_allocs = cache->uc_allocs; 3972 ups[i].ups_frees = cache->uc_frees; 3973 } 3974 ZONE_UNLOCK(z); 3975 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3976 for (i = 0; i < mp_maxid + 1; i++) 3977 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 3978 } 3979 } 3980 rw_runlock(&uma_rwlock); 3981 error = sbuf_finish(&sbuf); 3982 sbuf_delete(&sbuf); 3983 free(ups, M_TEMP); 3984 return (error); 3985 } 3986 3987 int 3988 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3989 { 3990 uma_zone_t zone = *(uma_zone_t *)arg1; 3991 int error, max; 3992 3993 max = uma_zone_get_max(zone); 3994 error = sysctl_handle_int(oidp, &max, 0, req); 3995 if (error || !req->newptr) 3996 return (error); 3997 3998 uma_zone_set_max(zone, max); 3999 4000 return (0); 4001 } 4002 4003 int 4004 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4005 { 4006 uma_zone_t zone = *(uma_zone_t *)arg1; 4007 int cur; 4008 4009 cur = uma_zone_get_cur(zone); 4010 return (sysctl_handle_int(oidp, &cur, 0, req)); 4011 } 4012 4013 #ifdef INVARIANTS 4014 static uma_slab_t 4015 uma_dbg_getslab(uma_zone_t zone, void *item) 4016 { 4017 uma_slab_t slab; 4018 uma_keg_t keg; 4019 uint8_t *mem; 4020 4021 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4022 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 4023 slab = vtoslab((vm_offset_t)mem); 4024 } else { 4025 /* 4026 * It is safe to return the slab here even though the 4027 * zone is unlocked because the item's allocation state 4028 * essentially holds a reference. 4029 */ 4030 if (zone->uz_lockptr == &zone->uz_lock) 4031 return (NULL); 4032 ZONE_LOCK(zone); 4033 keg = zone->uz_keg; 4034 if (keg->uk_flags & UMA_ZONE_HASH) 4035 slab = hash_sfind(&keg->uk_hash, mem); 4036 else 4037 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4038 ZONE_UNLOCK(zone); 4039 } 4040 4041 return (slab); 4042 } 4043 4044 static bool 4045 uma_dbg_zskip(uma_zone_t zone, void *mem) 4046 { 4047 4048 if (zone->uz_lockptr == &zone->uz_lock) 4049 return (true); 4050 4051 return (uma_dbg_kskip(zone->uz_keg, mem)); 4052 } 4053 4054 static bool 4055 uma_dbg_kskip(uma_keg_t keg, void *mem) 4056 { 4057 uintptr_t idx; 4058 4059 if (dbg_divisor == 0) 4060 return (true); 4061 4062 if (dbg_divisor == 1) 4063 return (false); 4064 4065 idx = (uintptr_t)mem >> PAGE_SHIFT; 4066 if (keg->uk_ipers > 1) { 4067 idx *= keg->uk_ipers; 4068 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4069 } 4070 4071 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4072 counter_u64_add(uma_skip_cnt, 1); 4073 return (true); 4074 } 4075 counter_u64_add(uma_dbg_cnt, 1); 4076 4077 return (false); 4078 } 4079 4080 /* 4081 * Set up the slab's freei data such that uma_dbg_free can function. 4082 * 4083 */ 4084 static void 4085 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4086 { 4087 uma_keg_t keg; 4088 int freei; 4089 4090 if (slab == NULL) { 4091 slab = uma_dbg_getslab(zone, item); 4092 if (slab == NULL) 4093 panic("uma: item %p did not belong to zone %s\n", 4094 item, zone->uz_name); 4095 } 4096 keg = slab->us_keg; 4097 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4098 4099 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4100 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4101 item, zone, zone->uz_name, slab, freei); 4102 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4103 4104 return; 4105 } 4106 4107 /* 4108 * Verifies freed addresses. Checks for alignment, valid slab membership 4109 * and duplicate frees. 4110 * 4111 */ 4112 static void 4113 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4114 { 4115 uma_keg_t keg; 4116 int freei; 4117 4118 if (slab == NULL) { 4119 slab = uma_dbg_getslab(zone, item); 4120 if (slab == NULL) 4121 panic("uma: Freed item %p did not belong to zone %s\n", 4122 item, zone->uz_name); 4123 } 4124 keg = slab->us_keg; 4125 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4126 4127 if (freei >= keg->uk_ipers) 4128 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4129 item, zone, zone->uz_name, slab, freei); 4130 4131 if (((freei * keg->uk_rsize) + slab->us_data) != item) 4132 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4133 item, zone, zone->uz_name, slab, freei); 4134 4135 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4136 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4137 item, zone, zone->uz_name, slab, freei); 4138 4139 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4140 } 4141 #endif /* INVARIANTS */ 4142 4143 #ifdef DDB 4144 DB_SHOW_COMMAND(uma, db_show_uma) 4145 { 4146 uma_keg_t kz; 4147 uma_zone_t z; 4148 uint64_t allocs, frees, sleeps; 4149 long cachefree; 4150 int i; 4151 4152 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 4153 "Free", "Requests", "Sleeps", "Bucket"); 4154 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4155 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4156 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4157 allocs = counter_u64_fetch(z->uz_allocs); 4158 frees = counter_u64_fetch(z->uz_frees); 4159 sleeps = z->uz_sleeps; 4160 cachefree = 0; 4161 } else 4162 uma_zone_sumstat(z, &cachefree, &allocs, 4163 &frees, &sleeps); 4164 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4165 (LIST_FIRST(&kz->uk_zones) != z))) 4166 cachefree += kz->uk_free; 4167 for (i = 0; i < vm_ndomains; i++) 4168 cachefree += z->uz_domain[i].uzd_nitems; 4169 4170 db_printf("%18s %8ju %8jd %8ld %12ju %8ju %8u\n", 4171 z->uz_name, (uintmax_t)kz->uk_size, 4172 (intmax_t)(allocs - frees), cachefree, 4173 (uintmax_t)allocs, sleeps, z->uz_count); 4174 if (db_pager_quit) 4175 return; 4176 } 4177 } 4178 } 4179 4180 DB_SHOW_COMMAND(umacache, db_show_umacache) 4181 { 4182 uma_zone_t z; 4183 uint64_t allocs, frees; 4184 long cachefree; 4185 int i; 4186 4187 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4188 "Requests", "Bucket"); 4189 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4190 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 4191 for (i = 0; i < vm_ndomains; i++) 4192 cachefree += z->uz_domain[i].uzd_nitems; 4193 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 4194 z->uz_name, (uintmax_t)z->uz_size, 4195 (intmax_t)(allocs - frees), cachefree, 4196 (uintmax_t)allocs, z->uz_count); 4197 if (db_pager_quit) 4198 return; 4199 } 4200 } 4201 #endif /* DDB */ 4202