1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/bitset.h> 67 #include <sys/kernel.h> 68 #include <sys/types.h> 69 #include <sys/queue.h> 70 #include <sys/malloc.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/sysctl.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/random.h> 77 #include <sys/rwlock.h> 78 #include <sys/sbuf.h> 79 #include <sys/sched.h> 80 #include <sys/smp.h> 81 #include <sys/vmmeter.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_kern.h> 90 #include <vm/vm_extern.h> 91 #include <vm/uma.h> 92 #include <vm/uma_int.h> 93 #include <vm/uma_dbg.h> 94 95 #include <ddb/ddb.h> 96 97 #ifdef DEBUG_MEMGUARD 98 #include <vm/memguard.h> 99 #endif 100 101 /* 102 * This is the zone and keg from which all zones are spawned. The idea is that 103 * even the zone & keg heads are allocated from the allocator, so we use the 104 * bss section to bootstrap us. 105 */ 106 static struct uma_keg masterkeg; 107 static struct uma_zone masterzone_k; 108 static struct uma_zone masterzone_z; 109 static uma_zone_t kegs = &masterzone_k; 110 static uma_zone_t zones = &masterzone_z; 111 112 /* This is the zone from which all of uma_slab_t's are allocated. */ 113 static uma_zone_t slabzone; 114 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 115 116 /* 117 * The initial hash tables come out of this zone so they can be allocated 118 * prior to malloc coming up. 119 */ 120 static uma_zone_t hashzone; 121 122 /* The boot-time adjusted value for cache line alignment. */ 123 int uma_align_cache = 64 - 1; 124 125 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 126 127 /* 128 * Are we allowed to allocate buckets? 129 */ 130 static int bucketdisable = 1; 131 132 /* Linked list of all kegs in the system */ 133 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 134 135 /* Linked list of all cache-only zones in the system */ 136 static LIST_HEAD(,uma_zone) uma_cachezones = 137 LIST_HEAD_INITIALIZER(uma_cachezones); 138 139 /* This RW lock protects the keg list */ 140 static struct rwlock_padalign uma_rwlock; 141 142 /* Linked list of boot time pages */ 143 static LIST_HEAD(,uma_slab) uma_boot_pages = 144 LIST_HEAD_INITIALIZER(uma_boot_pages); 145 146 /* This mutex protects the boot time pages list */ 147 static struct mtx_padalign uma_boot_pages_mtx; 148 149 static struct sx uma_drain_lock; 150 151 /* Is the VM done starting up? */ 152 static int booted = 0; 153 #define UMA_STARTUP 1 154 #define UMA_STARTUP2 2 155 156 /* 157 * Only mbuf clusters use ref zones. Just provide enough references 158 * to support the one user. New code should not use the ref facility. 159 */ 160 static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES; 161 162 /* 163 * This is the handle used to schedule events that need to happen 164 * outside of the allocation fast path. 165 */ 166 static struct callout uma_callout; 167 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 168 169 /* 170 * This structure is passed as the zone ctor arg so that I don't have to create 171 * a special allocation function just for zones. 172 */ 173 struct uma_zctor_args { 174 const char *name; 175 size_t size; 176 uma_ctor ctor; 177 uma_dtor dtor; 178 uma_init uminit; 179 uma_fini fini; 180 uma_import import; 181 uma_release release; 182 void *arg; 183 uma_keg_t keg; 184 int align; 185 uint32_t flags; 186 }; 187 188 struct uma_kctor_args { 189 uma_zone_t zone; 190 size_t size; 191 uma_init uminit; 192 uma_fini fini; 193 int align; 194 uint32_t flags; 195 }; 196 197 struct uma_bucket_zone { 198 uma_zone_t ubz_zone; 199 char *ubz_name; 200 int ubz_entries; /* Number of items it can hold. */ 201 int ubz_maxsize; /* Maximum allocation size per-item. */ 202 }; 203 204 /* 205 * Compute the actual number of bucket entries to pack them in power 206 * of two sizes for more efficient space utilization. 207 */ 208 #define BUCKET_SIZE(n) \ 209 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 210 211 #define BUCKET_MAX BUCKET_SIZE(256) 212 213 struct uma_bucket_zone bucket_zones[] = { 214 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 215 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 216 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 217 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 218 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 219 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 220 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 221 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 222 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 223 { NULL, NULL, 0} 224 }; 225 226 /* 227 * Flags and enumerations to be passed to internal functions. 228 */ 229 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 230 231 /* Prototypes.. */ 232 233 static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 234 static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 235 static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 236 static void page_free(void *, vm_size_t, uint8_t); 237 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 238 static void cache_drain(uma_zone_t); 239 static void bucket_drain(uma_zone_t, uma_bucket_t); 240 static void bucket_cache_drain(uma_zone_t zone); 241 static int keg_ctor(void *, int, void *, int); 242 static void keg_dtor(void *, int, void *); 243 static int zone_ctor(void *, int, void *, int); 244 static void zone_dtor(void *, int, void *); 245 static int zero_init(void *, int, int); 246 static void keg_small_init(uma_keg_t keg); 247 static void keg_large_init(uma_keg_t keg); 248 static void zone_foreach(void (*zfunc)(uma_zone_t)); 249 static void zone_timeout(uma_zone_t zone); 250 static int hash_alloc(struct uma_hash *); 251 static int hash_expand(struct uma_hash *, struct uma_hash *); 252 static void hash_free(struct uma_hash *hash); 253 static void uma_timeout(void *); 254 static void uma_startup3(void); 255 static void *zone_alloc_item(uma_zone_t, void *, int); 256 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 257 static void bucket_enable(void); 258 static void bucket_init(void); 259 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 260 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 261 static void bucket_zone_drain(void); 262 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 263 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 264 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 265 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 266 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 267 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 268 uma_fini fini, int align, uint32_t flags); 269 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 270 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 271 static void uma_zero_item(void *item, uma_zone_t zone); 272 273 void uma_print_zone(uma_zone_t); 274 void uma_print_stats(void); 275 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 276 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 277 278 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 279 280 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 281 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 282 283 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 284 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 285 286 static int zone_warnings = 1; 287 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 288 "Warn when UMA zones becomes full"); 289 290 /* 291 * This routine checks to see whether or not it's safe to enable buckets. 292 */ 293 static void 294 bucket_enable(void) 295 { 296 bucketdisable = vm_page_count_min(); 297 } 298 299 /* 300 * Initialize bucket_zones, the array of zones of buckets of various sizes. 301 * 302 * For each zone, calculate the memory required for each bucket, consisting 303 * of the header and an array of pointers. 304 */ 305 static void 306 bucket_init(void) 307 { 308 struct uma_bucket_zone *ubz; 309 int size; 310 311 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 312 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 313 size += sizeof(void *) * ubz->ubz_entries; 314 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 315 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 316 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 317 } 318 } 319 320 /* 321 * Given a desired number of entries for a bucket, return the zone from which 322 * to allocate the bucket. 323 */ 324 static struct uma_bucket_zone * 325 bucket_zone_lookup(int entries) 326 { 327 struct uma_bucket_zone *ubz; 328 329 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 330 if (ubz->ubz_entries >= entries) 331 return (ubz); 332 ubz--; 333 return (ubz); 334 } 335 336 static int 337 bucket_select(int size) 338 { 339 struct uma_bucket_zone *ubz; 340 341 ubz = &bucket_zones[0]; 342 if (size > ubz->ubz_maxsize) 343 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 344 345 for (; ubz->ubz_entries != 0; ubz++) 346 if (ubz->ubz_maxsize < size) 347 break; 348 ubz--; 349 return (ubz->ubz_entries); 350 } 351 352 static uma_bucket_t 353 bucket_alloc(uma_zone_t zone, void *udata, int flags) 354 { 355 struct uma_bucket_zone *ubz; 356 uma_bucket_t bucket; 357 358 /* 359 * This is to stop us from allocating per cpu buckets while we're 360 * running out of vm.boot_pages. Otherwise, we would exhaust the 361 * boot pages. This also prevents us from allocating buckets in 362 * low memory situations. 363 */ 364 if (bucketdisable) 365 return (NULL); 366 /* 367 * To limit bucket recursion we store the original zone flags 368 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 369 * NOVM flag to persist even through deep recursions. We also 370 * store ZFLAG_BUCKET once we have recursed attempting to allocate 371 * a bucket for a bucket zone so we do not allow infinite bucket 372 * recursion. This cookie will even persist to frees of unused 373 * buckets via the allocation path or bucket allocations in the 374 * free path. 375 */ 376 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 377 udata = (void *)(uintptr_t)zone->uz_flags; 378 else { 379 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 380 return (NULL); 381 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 382 } 383 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 384 flags |= M_NOVM; 385 ubz = bucket_zone_lookup(zone->uz_count); 386 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 387 ubz++; 388 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 389 if (bucket) { 390 #ifdef INVARIANTS 391 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 392 #endif 393 bucket->ub_cnt = 0; 394 bucket->ub_entries = ubz->ubz_entries; 395 } 396 397 return (bucket); 398 } 399 400 static void 401 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 402 { 403 struct uma_bucket_zone *ubz; 404 405 KASSERT(bucket->ub_cnt == 0, 406 ("bucket_free: Freeing a non free bucket.")); 407 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 408 udata = (void *)(uintptr_t)zone->uz_flags; 409 ubz = bucket_zone_lookup(bucket->ub_entries); 410 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 411 } 412 413 static void 414 bucket_zone_drain(void) 415 { 416 struct uma_bucket_zone *ubz; 417 418 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 419 zone_drain(ubz->ubz_zone); 420 } 421 422 static void 423 zone_log_warning(uma_zone_t zone) 424 { 425 static const struct timeval warninterval = { 300, 0 }; 426 427 if (!zone_warnings || zone->uz_warning == NULL) 428 return; 429 430 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 431 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 432 } 433 434 static inline void 435 zone_maxaction(uma_zone_t zone) 436 { 437 if (zone->uz_maxaction) 438 (*zone->uz_maxaction)(zone); 439 } 440 441 static void 442 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 443 { 444 uma_klink_t klink; 445 446 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 447 kegfn(klink->kl_keg); 448 } 449 450 /* 451 * Routine called by timeout which is used to fire off some time interval 452 * based calculations. (stats, hash size, etc.) 453 * 454 * Arguments: 455 * arg Unused 456 * 457 * Returns: 458 * Nothing 459 */ 460 static void 461 uma_timeout(void *unused) 462 { 463 bucket_enable(); 464 zone_foreach(zone_timeout); 465 466 /* Reschedule this event */ 467 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 468 } 469 470 /* 471 * Routine to perform timeout driven calculations. This expands the 472 * hashes and does per cpu statistics aggregation. 473 * 474 * Returns nothing. 475 */ 476 static void 477 keg_timeout(uma_keg_t keg) 478 { 479 480 KEG_LOCK(keg); 481 /* 482 * Expand the keg hash table. 483 * 484 * This is done if the number of slabs is larger than the hash size. 485 * What I'm trying to do here is completely reduce collisions. This 486 * may be a little aggressive. Should I allow for two collisions max? 487 */ 488 if (keg->uk_flags & UMA_ZONE_HASH && 489 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 490 struct uma_hash newhash; 491 struct uma_hash oldhash; 492 int ret; 493 494 /* 495 * This is so involved because allocating and freeing 496 * while the keg lock is held will lead to deadlock. 497 * I have to do everything in stages and check for 498 * races. 499 */ 500 newhash = keg->uk_hash; 501 KEG_UNLOCK(keg); 502 ret = hash_alloc(&newhash); 503 KEG_LOCK(keg); 504 if (ret) { 505 if (hash_expand(&keg->uk_hash, &newhash)) { 506 oldhash = keg->uk_hash; 507 keg->uk_hash = newhash; 508 } else 509 oldhash = newhash; 510 511 KEG_UNLOCK(keg); 512 hash_free(&oldhash); 513 return; 514 } 515 } 516 KEG_UNLOCK(keg); 517 } 518 519 static void 520 zone_timeout(uma_zone_t zone) 521 { 522 523 zone_foreach_keg(zone, &keg_timeout); 524 } 525 526 /* 527 * Allocate and zero fill the next sized hash table from the appropriate 528 * backing store. 529 * 530 * Arguments: 531 * hash A new hash structure with the old hash size in uh_hashsize 532 * 533 * Returns: 534 * 1 on sucess and 0 on failure. 535 */ 536 static int 537 hash_alloc(struct uma_hash *hash) 538 { 539 int oldsize; 540 int alloc; 541 542 oldsize = hash->uh_hashsize; 543 544 /* We're just going to go to a power of two greater */ 545 if (oldsize) { 546 hash->uh_hashsize = oldsize * 2; 547 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 548 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 549 M_UMAHASH, M_NOWAIT); 550 } else { 551 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 552 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 553 M_WAITOK); 554 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 555 } 556 if (hash->uh_slab_hash) { 557 bzero(hash->uh_slab_hash, alloc); 558 hash->uh_hashmask = hash->uh_hashsize - 1; 559 return (1); 560 } 561 562 return (0); 563 } 564 565 /* 566 * Expands the hash table for HASH zones. This is done from zone_timeout 567 * to reduce collisions. This must not be done in the regular allocation 568 * path, otherwise, we can recurse on the vm while allocating pages. 569 * 570 * Arguments: 571 * oldhash The hash you want to expand 572 * newhash The hash structure for the new table 573 * 574 * Returns: 575 * Nothing 576 * 577 * Discussion: 578 */ 579 static int 580 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 581 { 582 uma_slab_t slab; 583 int hval; 584 int i; 585 586 if (!newhash->uh_slab_hash) 587 return (0); 588 589 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 590 return (0); 591 592 /* 593 * I need to investigate hash algorithms for resizing without a 594 * full rehash. 595 */ 596 597 for (i = 0; i < oldhash->uh_hashsize; i++) 598 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 599 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 600 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 601 hval = UMA_HASH(newhash, slab->us_data); 602 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 603 slab, us_hlink); 604 } 605 606 return (1); 607 } 608 609 /* 610 * Free the hash bucket to the appropriate backing store. 611 * 612 * Arguments: 613 * slab_hash The hash bucket we're freeing 614 * hashsize The number of entries in that hash bucket 615 * 616 * Returns: 617 * Nothing 618 */ 619 static void 620 hash_free(struct uma_hash *hash) 621 { 622 if (hash->uh_slab_hash == NULL) 623 return; 624 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 625 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 626 else 627 free(hash->uh_slab_hash, M_UMAHASH); 628 } 629 630 /* 631 * Frees all outstanding items in a bucket 632 * 633 * Arguments: 634 * zone The zone to free to, must be unlocked. 635 * bucket The free/alloc bucket with items, cpu queue must be locked. 636 * 637 * Returns: 638 * Nothing 639 */ 640 641 static void 642 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 643 { 644 int i; 645 646 if (bucket == NULL) 647 return; 648 649 if (zone->uz_fini) 650 for (i = 0; i < bucket->ub_cnt; i++) 651 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 652 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 653 bucket->ub_cnt = 0; 654 } 655 656 /* 657 * Drains the per cpu caches for a zone. 658 * 659 * NOTE: This may only be called while the zone is being turn down, and not 660 * during normal operation. This is necessary in order that we do not have 661 * to migrate CPUs to drain the per-CPU caches. 662 * 663 * Arguments: 664 * zone The zone to drain, must be unlocked. 665 * 666 * Returns: 667 * Nothing 668 */ 669 static void 670 cache_drain(uma_zone_t zone) 671 { 672 uma_cache_t cache; 673 int cpu; 674 675 /* 676 * XXX: It is safe to not lock the per-CPU caches, because we're 677 * tearing down the zone anyway. I.e., there will be no further use 678 * of the caches at this point. 679 * 680 * XXX: It would good to be able to assert that the zone is being 681 * torn down to prevent improper use of cache_drain(). 682 * 683 * XXX: We lock the zone before passing into bucket_cache_drain() as 684 * it is used elsewhere. Should the tear-down path be made special 685 * there in some form? 686 */ 687 CPU_FOREACH(cpu) { 688 cache = &zone->uz_cpu[cpu]; 689 bucket_drain(zone, cache->uc_allocbucket); 690 bucket_drain(zone, cache->uc_freebucket); 691 if (cache->uc_allocbucket != NULL) 692 bucket_free(zone, cache->uc_allocbucket, NULL); 693 if (cache->uc_freebucket != NULL) 694 bucket_free(zone, cache->uc_freebucket, NULL); 695 cache->uc_allocbucket = cache->uc_freebucket = NULL; 696 } 697 ZONE_LOCK(zone); 698 bucket_cache_drain(zone); 699 ZONE_UNLOCK(zone); 700 } 701 702 static void 703 cache_shrink(uma_zone_t zone) 704 { 705 706 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 707 return; 708 709 ZONE_LOCK(zone); 710 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 711 ZONE_UNLOCK(zone); 712 } 713 714 static void 715 cache_drain_safe_cpu(uma_zone_t zone) 716 { 717 uma_cache_t cache; 718 uma_bucket_t b1, b2; 719 720 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 721 return; 722 723 b1 = b2 = NULL; 724 ZONE_LOCK(zone); 725 critical_enter(); 726 cache = &zone->uz_cpu[curcpu]; 727 if (cache->uc_allocbucket) { 728 if (cache->uc_allocbucket->ub_cnt != 0) 729 LIST_INSERT_HEAD(&zone->uz_buckets, 730 cache->uc_allocbucket, ub_link); 731 else 732 b1 = cache->uc_allocbucket; 733 cache->uc_allocbucket = NULL; 734 } 735 if (cache->uc_freebucket) { 736 if (cache->uc_freebucket->ub_cnt != 0) 737 LIST_INSERT_HEAD(&zone->uz_buckets, 738 cache->uc_freebucket, ub_link); 739 else 740 b2 = cache->uc_freebucket; 741 cache->uc_freebucket = NULL; 742 } 743 critical_exit(); 744 ZONE_UNLOCK(zone); 745 if (b1) 746 bucket_free(zone, b1, NULL); 747 if (b2) 748 bucket_free(zone, b2, NULL); 749 } 750 751 /* 752 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 753 * This is an expensive call because it needs to bind to all CPUs 754 * one by one and enter a critical section on each of them in order 755 * to safely access their cache buckets. 756 * Zone lock must not be held on call this function. 757 */ 758 static void 759 cache_drain_safe(uma_zone_t zone) 760 { 761 int cpu; 762 763 /* 764 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 765 */ 766 if (zone) 767 cache_shrink(zone); 768 else 769 zone_foreach(cache_shrink); 770 771 CPU_FOREACH(cpu) { 772 thread_lock(curthread); 773 sched_bind(curthread, cpu); 774 thread_unlock(curthread); 775 776 if (zone) 777 cache_drain_safe_cpu(zone); 778 else 779 zone_foreach(cache_drain_safe_cpu); 780 } 781 thread_lock(curthread); 782 sched_unbind(curthread); 783 thread_unlock(curthread); 784 } 785 786 /* 787 * Drain the cached buckets from a zone. Expects a locked zone on entry. 788 */ 789 static void 790 bucket_cache_drain(uma_zone_t zone) 791 { 792 uma_bucket_t bucket; 793 794 /* 795 * Drain the bucket queues and free the buckets, we just keep two per 796 * cpu (alloc/free). 797 */ 798 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 799 LIST_REMOVE(bucket, ub_link); 800 ZONE_UNLOCK(zone); 801 bucket_drain(zone, bucket); 802 bucket_free(zone, bucket, NULL); 803 ZONE_LOCK(zone); 804 } 805 806 /* 807 * Shrink further bucket sizes. Price of single zone lock collision 808 * is probably lower then price of global cache drain. 809 */ 810 if (zone->uz_count > zone->uz_count_min) 811 zone->uz_count--; 812 } 813 814 static void 815 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 816 { 817 uint8_t *mem; 818 int i; 819 uint8_t flags; 820 821 mem = slab->us_data; 822 flags = slab->us_flags; 823 i = start; 824 if (keg->uk_fini != NULL) { 825 for (i--; i > -1; i--) 826 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 827 keg->uk_size); 828 } 829 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 830 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 831 #ifdef UMA_DEBUG 832 printf("%s: Returning %d bytes.\n", keg->uk_name, 833 PAGE_SIZE * keg->uk_ppera); 834 #endif 835 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 836 } 837 838 /* 839 * Frees pages from a keg back to the system. This is done on demand from 840 * the pageout daemon. 841 * 842 * Returns nothing. 843 */ 844 static void 845 keg_drain(uma_keg_t keg) 846 { 847 struct slabhead freeslabs = { 0 }; 848 uma_slab_t slab; 849 uma_slab_t n; 850 851 /* 852 * We don't want to take pages from statically allocated kegs at this 853 * time 854 */ 855 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 856 return; 857 858 #ifdef UMA_DEBUG 859 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 860 #endif 861 KEG_LOCK(keg); 862 if (keg->uk_free == 0) 863 goto finished; 864 865 slab = LIST_FIRST(&keg->uk_free_slab); 866 while (slab) { 867 n = LIST_NEXT(slab, us_link); 868 869 /* We have no where to free these to */ 870 if (slab->us_flags & UMA_SLAB_BOOT) { 871 slab = n; 872 continue; 873 } 874 875 LIST_REMOVE(slab, us_link); 876 keg->uk_pages -= keg->uk_ppera; 877 keg->uk_free -= keg->uk_ipers; 878 879 if (keg->uk_flags & UMA_ZONE_HASH) 880 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 881 882 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 883 884 slab = n; 885 } 886 finished: 887 KEG_UNLOCK(keg); 888 889 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 890 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 891 keg_free_slab(keg, slab, keg->uk_ipers); 892 } 893 } 894 895 static void 896 zone_drain_wait(uma_zone_t zone, int waitok) 897 { 898 899 /* 900 * Set draining to interlock with zone_dtor() so we can release our 901 * locks as we go. Only dtor() should do a WAITOK call since it 902 * is the only call that knows the structure will still be available 903 * when it wakes up. 904 */ 905 ZONE_LOCK(zone); 906 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 907 if (waitok == M_NOWAIT) 908 goto out; 909 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 910 } 911 zone->uz_flags |= UMA_ZFLAG_DRAINING; 912 bucket_cache_drain(zone); 913 ZONE_UNLOCK(zone); 914 /* 915 * The DRAINING flag protects us from being freed while 916 * we're running. Normally the uma_rwlock would protect us but we 917 * must be able to release and acquire the right lock for each keg. 918 */ 919 zone_foreach_keg(zone, &keg_drain); 920 ZONE_LOCK(zone); 921 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 922 wakeup(zone); 923 out: 924 ZONE_UNLOCK(zone); 925 } 926 927 void 928 zone_drain(uma_zone_t zone) 929 { 930 931 zone_drain_wait(zone, M_NOWAIT); 932 } 933 934 /* 935 * Allocate a new slab for a keg. This does not insert the slab onto a list. 936 * 937 * Arguments: 938 * wait Shall we wait? 939 * 940 * Returns: 941 * The slab that was allocated or NULL if there is no memory and the 942 * caller specified M_NOWAIT. 943 */ 944 static uma_slab_t 945 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 946 { 947 uma_slabrefcnt_t slabref; 948 uma_alloc allocf; 949 uma_slab_t slab; 950 uint8_t *mem; 951 uint8_t flags; 952 int i; 953 954 mtx_assert(&keg->uk_lock, MA_OWNED); 955 slab = NULL; 956 mem = NULL; 957 958 #ifdef UMA_DEBUG 959 printf("alloc_slab: Allocating a new slab for %s\n", keg->uk_name); 960 #endif 961 allocf = keg->uk_allocf; 962 KEG_UNLOCK(keg); 963 964 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 965 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 966 if (slab == NULL) 967 goto out; 968 } 969 970 /* 971 * This reproduces the old vm_zone behavior of zero filling pages the 972 * first time they are added to a zone. 973 * 974 * Malloced items are zeroed in uma_zalloc. 975 */ 976 977 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 978 wait |= M_ZERO; 979 else 980 wait &= ~M_ZERO; 981 982 if (keg->uk_flags & UMA_ZONE_NODUMP) 983 wait |= M_NODUMP; 984 985 /* zone is passed for legacy reasons. */ 986 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 987 if (mem == NULL) { 988 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 989 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 990 slab = NULL; 991 goto out; 992 } 993 994 /* Point the slab into the allocated memory */ 995 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 996 slab = (uma_slab_t )(mem + keg->uk_pgoff); 997 998 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 999 for (i = 0; i < keg->uk_ppera; i++) 1000 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1001 1002 slab->us_keg = keg; 1003 slab->us_data = mem; 1004 slab->us_freecount = keg->uk_ipers; 1005 slab->us_flags = flags; 1006 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1007 #ifdef INVARIANTS 1008 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1009 #endif 1010 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1011 slabref = (uma_slabrefcnt_t)slab; 1012 for (i = 0; i < keg->uk_ipers; i++) 1013 slabref->us_refcnt[i] = 0; 1014 } 1015 1016 if (keg->uk_init != NULL) { 1017 for (i = 0; i < keg->uk_ipers; i++) 1018 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1019 keg->uk_size, wait) != 0) 1020 break; 1021 if (i != keg->uk_ipers) { 1022 keg_free_slab(keg, slab, i); 1023 slab = NULL; 1024 goto out; 1025 } 1026 } 1027 out: 1028 KEG_LOCK(keg); 1029 1030 if (slab != NULL) { 1031 if (keg->uk_flags & UMA_ZONE_HASH) 1032 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1033 1034 keg->uk_pages += keg->uk_ppera; 1035 keg->uk_free += keg->uk_ipers; 1036 } 1037 1038 return (slab); 1039 } 1040 1041 /* 1042 * This function is intended to be used early on in place of page_alloc() so 1043 * that we may use the boot time page cache to satisfy allocations before 1044 * the VM is ready. 1045 */ 1046 static void * 1047 startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1048 { 1049 uma_keg_t keg; 1050 uma_slab_t tmps; 1051 int pages, check_pages; 1052 1053 keg = zone_first_keg(zone); 1054 pages = howmany(bytes, PAGE_SIZE); 1055 check_pages = pages - 1; 1056 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1057 1058 /* 1059 * Check our small startup cache to see if it has pages remaining. 1060 */ 1061 mtx_lock(&uma_boot_pages_mtx); 1062 1063 /* First check if we have enough room. */ 1064 tmps = LIST_FIRST(&uma_boot_pages); 1065 while (tmps != NULL && check_pages-- > 0) 1066 tmps = LIST_NEXT(tmps, us_link); 1067 if (tmps != NULL) { 1068 /* 1069 * It's ok to lose tmps references. The last one will 1070 * have tmps->us_data pointing to the start address of 1071 * "pages" contiguous pages of memory. 1072 */ 1073 while (pages-- > 0) { 1074 tmps = LIST_FIRST(&uma_boot_pages); 1075 LIST_REMOVE(tmps, us_link); 1076 } 1077 mtx_unlock(&uma_boot_pages_mtx); 1078 *pflag = tmps->us_flags; 1079 return (tmps->us_data); 1080 } 1081 mtx_unlock(&uma_boot_pages_mtx); 1082 if (booted < UMA_STARTUP2) 1083 panic("UMA: Increase vm.boot_pages"); 1084 /* 1085 * Now that we've booted reset these users to their real allocator. 1086 */ 1087 #ifdef UMA_MD_SMALL_ALLOC 1088 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1089 #else 1090 keg->uk_allocf = page_alloc; 1091 #endif 1092 return keg->uk_allocf(zone, bytes, pflag, wait); 1093 } 1094 1095 /* 1096 * Allocates a number of pages from the system 1097 * 1098 * Arguments: 1099 * bytes The number of bytes requested 1100 * wait Shall we wait? 1101 * 1102 * Returns: 1103 * A pointer to the alloced memory or possibly 1104 * NULL if M_NOWAIT is set. 1105 */ 1106 static void * 1107 page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1108 { 1109 void *p; /* Returned page */ 1110 1111 *pflag = UMA_SLAB_KMEM; 1112 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1113 1114 return (p); 1115 } 1116 1117 /* 1118 * Allocates a number of pages from within an object 1119 * 1120 * Arguments: 1121 * bytes The number of bytes requested 1122 * wait Shall we wait? 1123 * 1124 * Returns: 1125 * A pointer to the alloced memory or possibly 1126 * NULL if M_NOWAIT is set. 1127 */ 1128 static void * 1129 noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait) 1130 { 1131 TAILQ_HEAD(, vm_page) alloctail; 1132 u_long npages; 1133 vm_offset_t retkva, zkva; 1134 vm_page_t p, p_next; 1135 uma_keg_t keg; 1136 1137 TAILQ_INIT(&alloctail); 1138 keg = zone_first_keg(zone); 1139 1140 npages = howmany(bytes, PAGE_SIZE); 1141 while (npages > 0) { 1142 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1143 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); 1144 if (p != NULL) { 1145 /* 1146 * Since the page does not belong to an object, its 1147 * listq is unused. 1148 */ 1149 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1150 npages--; 1151 continue; 1152 } 1153 if (wait & M_WAITOK) { 1154 VM_WAIT; 1155 continue; 1156 } 1157 1158 /* 1159 * Page allocation failed, free intermediate pages and 1160 * exit. 1161 */ 1162 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1163 vm_page_unwire(p, PQ_NONE); 1164 vm_page_free(p); 1165 } 1166 return (NULL); 1167 } 1168 *flags = UMA_SLAB_PRIV; 1169 zkva = keg->uk_kva + 1170 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1171 retkva = zkva; 1172 TAILQ_FOREACH(p, &alloctail, listq) { 1173 pmap_qenter(zkva, &p, 1); 1174 zkva += PAGE_SIZE; 1175 } 1176 1177 return ((void *)retkva); 1178 } 1179 1180 /* 1181 * Frees a number of pages to the system 1182 * 1183 * Arguments: 1184 * mem A pointer to the memory to be freed 1185 * size The size of the memory being freed 1186 * flags The original p->us_flags field 1187 * 1188 * Returns: 1189 * Nothing 1190 */ 1191 static void 1192 page_free(void *mem, vm_size_t size, uint8_t flags) 1193 { 1194 struct vmem *vmem; 1195 1196 if (flags & UMA_SLAB_KMEM) 1197 vmem = kmem_arena; 1198 else if (flags & UMA_SLAB_KERNEL) 1199 vmem = kernel_arena; 1200 else 1201 panic("UMA: page_free used with invalid flags %d", flags); 1202 1203 kmem_free(vmem, (vm_offset_t)mem, size); 1204 } 1205 1206 /* 1207 * Zero fill initializer 1208 * 1209 * Arguments/Returns follow uma_init specifications 1210 */ 1211 static int 1212 zero_init(void *mem, int size, int flags) 1213 { 1214 bzero(mem, size); 1215 return (0); 1216 } 1217 1218 /* 1219 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1220 * 1221 * Arguments 1222 * keg The zone we should initialize 1223 * 1224 * Returns 1225 * Nothing 1226 */ 1227 static void 1228 keg_small_init(uma_keg_t keg) 1229 { 1230 u_int rsize; 1231 u_int memused; 1232 u_int wastedspace; 1233 u_int shsize; 1234 1235 if (keg->uk_flags & UMA_ZONE_PCPU) { 1236 u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1237 1238 keg->uk_slabsize = sizeof(struct pcpu); 1239 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1240 PAGE_SIZE); 1241 } else { 1242 keg->uk_slabsize = UMA_SLAB_SIZE; 1243 keg->uk_ppera = 1; 1244 } 1245 1246 /* 1247 * Calculate the size of each allocation (rsize) according to 1248 * alignment. If the requested size is smaller than we have 1249 * allocation bits for we round it up. 1250 */ 1251 rsize = keg->uk_size; 1252 if (rsize < keg->uk_slabsize / SLAB_SETSIZE) 1253 rsize = keg->uk_slabsize / SLAB_SETSIZE; 1254 if (rsize & keg->uk_align) 1255 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1256 keg->uk_rsize = rsize; 1257 1258 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1259 keg->uk_rsize < sizeof(struct pcpu), 1260 ("%s: size %u too large", __func__, keg->uk_rsize)); 1261 1262 if (keg->uk_flags & UMA_ZONE_REFCNT) 1263 rsize += sizeof(uint32_t); 1264 1265 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1266 shsize = 0; 1267 else 1268 shsize = sizeof(struct uma_slab); 1269 1270 keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize; 1271 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1272 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1273 1274 memused = keg->uk_ipers * rsize + shsize; 1275 wastedspace = keg->uk_slabsize - memused; 1276 1277 /* 1278 * We can't do OFFPAGE if we're internal or if we've been 1279 * asked to not go to the VM for buckets. If we do this we 1280 * may end up going to the VM for slabs which we do not 1281 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1282 * of UMA_ZONE_VM, which clearly forbids it. 1283 */ 1284 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1285 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1286 return; 1287 1288 /* 1289 * See if using an OFFPAGE slab will limit our waste. Only do 1290 * this if it permits more items per-slab. 1291 * 1292 * XXX We could try growing slabsize to limit max waste as well. 1293 * Historically this was not done because the VM could not 1294 * efficiently handle contiguous allocations. 1295 */ 1296 if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) && 1297 (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) { 1298 keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize; 1299 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1300 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1301 #ifdef UMA_DEBUG 1302 printf("UMA decided we need offpage slab headers for " 1303 "keg: %s, calculated wastedspace = %d, " 1304 "maximum wasted space allowed = %d, " 1305 "calculated ipers = %d, " 1306 "new wasted space = %d\n", keg->uk_name, wastedspace, 1307 keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1308 keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize); 1309 #endif 1310 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1311 } 1312 1313 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1314 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1315 keg->uk_flags |= UMA_ZONE_HASH; 1316 } 1317 1318 /* 1319 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1320 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1321 * more complicated. 1322 * 1323 * Arguments 1324 * keg The keg we should initialize 1325 * 1326 * Returns 1327 * Nothing 1328 */ 1329 static void 1330 keg_large_init(uma_keg_t keg) 1331 { 1332 u_int shsize; 1333 1334 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1335 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1336 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1337 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1338 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1339 1340 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1341 keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE; 1342 keg->uk_ipers = 1; 1343 keg->uk_rsize = keg->uk_size; 1344 1345 /* We can't do OFFPAGE if we're internal, bail out here. */ 1346 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1347 return; 1348 1349 /* Check whether we have enough space to not do OFFPAGE. */ 1350 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1351 shsize = sizeof(struct uma_slab); 1352 if (keg->uk_flags & UMA_ZONE_REFCNT) 1353 shsize += keg->uk_ipers * sizeof(uint32_t); 1354 if (shsize & UMA_ALIGN_PTR) 1355 shsize = (shsize & ~UMA_ALIGN_PTR) + 1356 (UMA_ALIGN_PTR + 1); 1357 1358 if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize) 1359 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1360 } 1361 1362 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1363 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1364 keg->uk_flags |= UMA_ZONE_HASH; 1365 } 1366 1367 static void 1368 keg_cachespread_init(uma_keg_t keg) 1369 { 1370 int alignsize; 1371 int trailer; 1372 int pages; 1373 int rsize; 1374 1375 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1376 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1377 1378 alignsize = keg->uk_align + 1; 1379 rsize = keg->uk_size; 1380 /* 1381 * We want one item to start on every align boundary in a page. To 1382 * do this we will span pages. We will also extend the item by the 1383 * size of align if it is an even multiple of align. Otherwise, it 1384 * would fall on the same boundary every time. 1385 */ 1386 if (rsize & keg->uk_align) 1387 rsize = (rsize & ~keg->uk_align) + alignsize; 1388 if ((rsize & alignsize) == 0) 1389 rsize += alignsize; 1390 trailer = rsize - keg->uk_size; 1391 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1392 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1393 keg->uk_rsize = rsize; 1394 keg->uk_ppera = pages; 1395 keg->uk_slabsize = UMA_SLAB_SIZE; 1396 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1397 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1398 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1399 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1400 keg->uk_ipers)); 1401 } 1402 1403 /* 1404 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1405 * the keg onto the global keg list. 1406 * 1407 * Arguments/Returns follow uma_ctor specifications 1408 * udata Actually uma_kctor_args 1409 */ 1410 static int 1411 keg_ctor(void *mem, int size, void *udata, int flags) 1412 { 1413 struct uma_kctor_args *arg = udata; 1414 uma_keg_t keg = mem; 1415 uma_zone_t zone; 1416 1417 bzero(keg, size); 1418 keg->uk_size = arg->size; 1419 keg->uk_init = arg->uminit; 1420 keg->uk_fini = arg->fini; 1421 keg->uk_align = arg->align; 1422 keg->uk_free = 0; 1423 keg->uk_reserve = 0; 1424 keg->uk_pages = 0; 1425 keg->uk_flags = arg->flags; 1426 keg->uk_allocf = page_alloc; 1427 keg->uk_freef = page_free; 1428 keg->uk_slabzone = NULL; 1429 1430 /* 1431 * The master zone is passed to us at keg-creation time. 1432 */ 1433 zone = arg->zone; 1434 keg->uk_name = zone->uz_name; 1435 1436 if (arg->flags & UMA_ZONE_VM) 1437 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1438 1439 if (arg->flags & UMA_ZONE_ZINIT) 1440 keg->uk_init = zero_init; 1441 1442 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC) 1443 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1444 1445 if (arg->flags & UMA_ZONE_PCPU) 1446 #ifdef SMP 1447 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1448 #else 1449 keg->uk_flags &= ~UMA_ZONE_PCPU; 1450 #endif 1451 1452 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1453 keg_cachespread_init(keg); 1454 } else if (keg->uk_flags & UMA_ZONE_REFCNT) { 1455 if (keg->uk_size > 1456 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - 1457 sizeof(uint32_t))) 1458 keg_large_init(keg); 1459 else 1460 keg_small_init(keg); 1461 } else { 1462 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1463 keg_large_init(keg); 1464 else 1465 keg_small_init(keg); 1466 } 1467 1468 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1469 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1470 if (keg->uk_ipers > uma_max_ipers_ref) 1471 panic("Too many ref items per zone: %d > %d\n", 1472 keg->uk_ipers, uma_max_ipers_ref); 1473 keg->uk_slabzone = slabrefzone; 1474 } else 1475 keg->uk_slabzone = slabzone; 1476 } 1477 1478 /* 1479 * If we haven't booted yet we need allocations to go through the 1480 * startup cache until the vm is ready. 1481 */ 1482 if (keg->uk_ppera == 1) { 1483 #ifdef UMA_MD_SMALL_ALLOC 1484 keg->uk_allocf = uma_small_alloc; 1485 keg->uk_freef = uma_small_free; 1486 1487 if (booted < UMA_STARTUP) 1488 keg->uk_allocf = startup_alloc; 1489 #else 1490 if (booted < UMA_STARTUP2) 1491 keg->uk_allocf = startup_alloc; 1492 #endif 1493 } else if (booted < UMA_STARTUP2 && 1494 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1495 keg->uk_allocf = startup_alloc; 1496 1497 /* 1498 * Initialize keg's lock 1499 */ 1500 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1501 1502 /* 1503 * If we're putting the slab header in the actual page we need to 1504 * figure out where in each page it goes. This calculates a right 1505 * justified offset into the memory on an ALIGN_PTR boundary. 1506 */ 1507 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1508 u_int totsize; 1509 1510 /* Size of the slab struct and free list */ 1511 totsize = sizeof(struct uma_slab); 1512 1513 /* Size of the reference counts. */ 1514 if (keg->uk_flags & UMA_ZONE_REFCNT) 1515 totsize += keg->uk_ipers * sizeof(uint32_t); 1516 1517 if (totsize & UMA_ALIGN_PTR) 1518 totsize = (totsize & ~UMA_ALIGN_PTR) + 1519 (UMA_ALIGN_PTR + 1); 1520 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1521 1522 /* 1523 * The only way the following is possible is if with our 1524 * UMA_ALIGN_PTR adjustments we are now bigger than 1525 * UMA_SLAB_SIZE. I haven't checked whether this is 1526 * mathematically possible for all cases, so we make 1527 * sure here anyway. 1528 */ 1529 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1530 if (keg->uk_flags & UMA_ZONE_REFCNT) 1531 totsize += keg->uk_ipers * sizeof(uint32_t); 1532 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1533 printf("zone %s ipers %d rsize %d size %d\n", 1534 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1535 keg->uk_size); 1536 panic("UMA slab won't fit."); 1537 } 1538 } 1539 1540 if (keg->uk_flags & UMA_ZONE_HASH) 1541 hash_alloc(&keg->uk_hash); 1542 1543 #ifdef UMA_DEBUG 1544 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n", 1545 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1546 keg->uk_ipers, keg->uk_ppera, 1547 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1548 #endif 1549 1550 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1551 1552 rw_wlock(&uma_rwlock); 1553 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1554 rw_wunlock(&uma_rwlock); 1555 return (0); 1556 } 1557 1558 /* 1559 * Zone header ctor. This initializes all fields, locks, etc. 1560 * 1561 * Arguments/Returns follow uma_ctor specifications 1562 * udata Actually uma_zctor_args 1563 */ 1564 static int 1565 zone_ctor(void *mem, int size, void *udata, int flags) 1566 { 1567 struct uma_zctor_args *arg = udata; 1568 uma_zone_t zone = mem; 1569 uma_zone_t z; 1570 uma_keg_t keg; 1571 1572 bzero(zone, size); 1573 zone->uz_name = arg->name; 1574 zone->uz_ctor = arg->ctor; 1575 zone->uz_dtor = arg->dtor; 1576 zone->uz_slab = zone_fetch_slab; 1577 zone->uz_init = NULL; 1578 zone->uz_fini = NULL; 1579 zone->uz_allocs = 0; 1580 zone->uz_frees = 0; 1581 zone->uz_fails = 0; 1582 zone->uz_sleeps = 0; 1583 zone->uz_count = 0; 1584 zone->uz_count_min = 0; 1585 zone->uz_flags = 0; 1586 zone->uz_warning = NULL; 1587 timevalclear(&zone->uz_ratecheck); 1588 zone->uz_maxaction = NULL; 1589 keg = arg->keg; 1590 1591 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1592 1593 /* 1594 * This is a pure cache zone, no kegs. 1595 */ 1596 if (arg->import) { 1597 if (arg->flags & UMA_ZONE_VM) 1598 arg->flags |= UMA_ZFLAG_CACHEONLY; 1599 zone->uz_flags = arg->flags; 1600 zone->uz_size = arg->size; 1601 zone->uz_import = arg->import; 1602 zone->uz_release = arg->release; 1603 zone->uz_arg = arg->arg; 1604 zone->uz_lockptr = &zone->uz_lock; 1605 rw_wlock(&uma_rwlock); 1606 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1607 rw_wunlock(&uma_rwlock); 1608 goto out; 1609 } 1610 1611 /* 1612 * Use the regular zone/keg/slab allocator. 1613 */ 1614 zone->uz_import = (uma_import)zone_import; 1615 zone->uz_release = (uma_release)zone_release; 1616 zone->uz_arg = zone; 1617 1618 if (arg->flags & UMA_ZONE_SECONDARY) { 1619 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1620 zone->uz_init = arg->uminit; 1621 zone->uz_fini = arg->fini; 1622 zone->uz_lockptr = &keg->uk_lock; 1623 zone->uz_flags |= UMA_ZONE_SECONDARY; 1624 rw_wlock(&uma_rwlock); 1625 ZONE_LOCK(zone); 1626 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1627 if (LIST_NEXT(z, uz_link) == NULL) { 1628 LIST_INSERT_AFTER(z, zone, uz_link); 1629 break; 1630 } 1631 } 1632 ZONE_UNLOCK(zone); 1633 rw_wunlock(&uma_rwlock); 1634 } else if (keg == NULL) { 1635 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1636 arg->align, arg->flags)) == NULL) 1637 return (ENOMEM); 1638 } else { 1639 struct uma_kctor_args karg; 1640 int error; 1641 1642 /* We should only be here from uma_startup() */ 1643 karg.size = arg->size; 1644 karg.uminit = arg->uminit; 1645 karg.fini = arg->fini; 1646 karg.align = arg->align; 1647 karg.flags = arg->flags; 1648 karg.zone = zone; 1649 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1650 flags); 1651 if (error) 1652 return (error); 1653 } 1654 1655 /* 1656 * Link in the first keg. 1657 */ 1658 zone->uz_klink.kl_keg = keg; 1659 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1660 zone->uz_lockptr = &keg->uk_lock; 1661 zone->uz_size = keg->uk_size; 1662 zone->uz_flags |= (keg->uk_flags & 1663 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1664 1665 /* 1666 * Some internal zones don't have room allocated for the per cpu 1667 * caches. If we're internal, bail out here. 1668 */ 1669 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1670 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1671 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1672 return (0); 1673 } 1674 1675 out: 1676 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1677 zone->uz_count = bucket_select(zone->uz_size); 1678 else 1679 zone->uz_count = BUCKET_MAX; 1680 zone->uz_count_min = zone->uz_count; 1681 1682 return (0); 1683 } 1684 1685 /* 1686 * Keg header dtor. This frees all data, destroys locks, frees the hash 1687 * table and removes the keg from the global list. 1688 * 1689 * Arguments/Returns follow uma_dtor specifications 1690 * udata unused 1691 */ 1692 static void 1693 keg_dtor(void *arg, int size, void *udata) 1694 { 1695 uma_keg_t keg; 1696 1697 keg = (uma_keg_t)arg; 1698 KEG_LOCK(keg); 1699 if (keg->uk_free != 0) { 1700 printf("Freed UMA keg (%s) was not empty (%d items). " 1701 " Lost %d pages of memory.\n", 1702 keg->uk_name ? keg->uk_name : "", 1703 keg->uk_free, keg->uk_pages); 1704 } 1705 KEG_UNLOCK(keg); 1706 1707 hash_free(&keg->uk_hash); 1708 1709 KEG_LOCK_FINI(keg); 1710 } 1711 1712 /* 1713 * Zone header dtor. 1714 * 1715 * Arguments/Returns follow uma_dtor specifications 1716 * udata unused 1717 */ 1718 static void 1719 zone_dtor(void *arg, int size, void *udata) 1720 { 1721 uma_klink_t klink; 1722 uma_zone_t zone; 1723 uma_keg_t keg; 1724 1725 zone = (uma_zone_t)arg; 1726 keg = zone_first_keg(zone); 1727 1728 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1729 cache_drain(zone); 1730 1731 rw_wlock(&uma_rwlock); 1732 LIST_REMOVE(zone, uz_link); 1733 rw_wunlock(&uma_rwlock); 1734 /* 1735 * XXX there are some races here where 1736 * the zone can be drained but zone lock 1737 * released and then refilled before we 1738 * remove it... we dont care for now 1739 */ 1740 zone_drain_wait(zone, M_WAITOK); 1741 /* 1742 * Unlink all of our kegs. 1743 */ 1744 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1745 klink->kl_keg = NULL; 1746 LIST_REMOVE(klink, kl_link); 1747 if (klink == &zone->uz_klink) 1748 continue; 1749 free(klink, M_TEMP); 1750 } 1751 /* 1752 * We only destroy kegs from non secondary zones. 1753 */ 1754 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1755 rw_wlock(&uma_rwlock); 1756 LIST_REMOVE(keg, uk_link); 1757 rw_wunlock(&uma_rwlock); 1758 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1759 } 1760 ZONE_LOCK_FINI(zone); 1761 } 1762 1763 /* 1764 * Traverses every zone in the system and calls a callback 1765 * 1766 * Arguments: 1767 * zfunc A pointer to a function which accepts a zone 1768 * as an argument. 1769 * 1770 * Returns: 1771 * Nothing 1772 */ 1773 static void 1774 zone_foreach(void (*zfunc)(uma_zone_t)) 1775 { 1776 uma_keg_t keg; 1777 uma_zone_t zone; 1778 1779 rw_rlock(&uma_rwlock); 1780 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1781 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1782 zfunc(zone); 1783 } 1784 rw_runlock(&uma_rwlock); 1785 } 1786 1787 /* Public functions */ 1788 /* See uma.h */ 1789 void 1790 uma_startup(void *bootmem, int boot_pages) 1791 { 1792 struct uma_zctor_args args; 1793 uma_slab_t slab; 1794 u_int slabsize; 1795 int i; 1796 1797 #ifdef UMA_DEBUG 1798 printf("Creating uma keg headers zone and keg.\n"); 1799 #endif 1800 rw_init(&uma_rwlock, "UMA lock"); 1801 1802 /* "manually" create the initial zone */ 1803 memset(&args, 0, sizeof(args)); 1804 args.name = "UMA Kegs"; 1805 args.size = sizeof(struct uma_keg); 1806 args.ctor = keg_ctor; 1807 args.dtor = keg_dtor; 1808 args.uminit = zero_init; 1809 args.fini = NULL; 1810 args.keg = &masterkeg; 1811 args.align = 32 - 1; 1812 args.flags = UMA_ZFLAG_INTERNAL; 1813 /* The initial zone has no Per cpu queues so it's smaller */ 1814 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1815 1816 #ifdef UMA_DEBUG 1817 printf("Filling boot free list.\n"); 1818 #endif 1819 for (i = 0; i < boot_pages; i++) { 1820 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1821 slab->us_data = (uint8_t *)slab; 1822 slab->us_flags = UMA_SLAB_BOOT; 1823 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1824 } 1825 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1826 1827 #ifdef UMA_DEBUG 1828 printf("Creating uma zone headers zone and keg.\n"); 1829 #endif 1830 args.name = "UMA Zones"; 1831 args.size = sizeof(struct uma_zone) + 1832 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1833 args.ctor = zone_ctor; 1834 args.dtor = zone_dtor; 1835 args.uminit = zero_init; 1836 args.fini = NULL; 1837 args.keg = NULL; 1838 args.align = 32 - 1; 1839 args.flags = UMA_ZFLAG_INTERNAL; 1840 /* The initial zone has no Per cpu queues so it's smaller */ 1841 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1842 1843 #ifdef UMA_DEBUG 1844 printf("Creating slab and hash zones.\n"); 1845 #endif 1846 1847 /* Now make a zone for slab headers */ 1848 slabzone = uma_zcreate("UMA Slabs", 1849 sizeof(struct uma_slab), 1850 NULL, NULL, NULL, NULL, 1851 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1852 1853 /* 1854 * We also create a zone for the bigger slabs with reference 1855 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1856 */ 1857 slabsize = sizeof(struct uma_slab_refcnt); 1858 slabsize += uma_max_ipers_ref * sizeof(uint32_t); 1859 slabrefzone = uma_zcreate("UMA RCntSlabs", 1860 slabsize, 1861 NULL, NULL, NULL, NULL, 1862 UMA_ALIGN_PTR, 1863 UMA_ZFLAG_INTERNAL); 1864 1865 hashzone = uma_zcreate("UMA Hash", 1866 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1867 NULL, NULL, NULL, NULL, 1868 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1869 1870 bucket_init(); 1871 1872 booted = UMA_STARTUP; 1873 1874 #ifdef UMA_DEBUG 1875 printf("UMA startup complete.\n"); 1876 #endif 1877 } 1878 1879 /* see uma.h */ 1880 void 1881 uma_startup2(void) 1882 { 1883 booted = UMA_STARTUP2; 1884 bucket_enable(); 1885 sx_init(&uma_drain_lock, "umadrain"); 1886 #ifdef UMA_DEBUG 1887 printf("UMA startup2 complete.\n"); 1888 #endif 1889 } 1890 1891 /* 1892 * Initialize our callout handle 1893 * 1894 */ 1895 1896 static void 1897 uma_startup3(void) 1898 { 1899 #ifdef UMA_DEBUG 1900 printf("Starting callout.\n"); 1901 #endif 1902 callout_init(&uma_callout, 1); 1903 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1904 #ifdef UMA_DEBUG 1905 printf("UMA startup3 complete.\n"); 1906 #endif 1907 } 1908 1909 static uma_keg_t 1910 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1911 int align, uint32_t flags) 1912 { 1913 struct uma_kctor_args args; 1914 1915 args.size = size; 1916 args.uminit = uminit; 1917 args.fini = fini; 1918 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1919 args.flags = flags; 1920 args.zone = zone; 1921 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1922 } 1923 1924 /* See uma.h */ 1925 void 1926 uma_set_align(int align) 1927 { 1928 1929 if (align != UMA_ALIGN_CACHE) 1930 uma_align_cache = align; 1931 } 1932 1933 /* See uma.h */ 1934 uma_zone_t 1935 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1936 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1937 1938 { 1939 struct uma_zctor_args args; 1940 uma_zone_t res; 1941 bool locked; 1942 1943 /* This stuff is essential for the zone ctor */ 1944 memset(&args, 0, sizeof(args)); 1945 args.name = name; 1946 args.size = size; 1947 args.ctor = ctor; 1948 args.dtor = dtor; 1949 args.uminit = uminit; 1950 args.fini = fini; 1951 #ifdef INVARIANTS 1952 /* 1953 * If a zone is being created with an empty constructor and 1954 * destructor, pass UMA constructor/destructor which checks for 1955 * memory use after free. 1956 */ 1957 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 1958 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 1959 args.ctor = trash_ctor; 1960 args.dtor = trash_dtor; 1961 args.uminit = trash_init; 1962 args.fini = trash_fini; 1963 } 1964 #endif 1965 args.align = align; 1966 args.flags = flags; 1967 args.keg = NULL; 1968 1969 if (booted < UMA_STARTUP2) { 1970 locked = false; 1971 } else { 1972 sx_slock(&uma_drain_lock); 1973 locked = true; 1974 } 1975 res = zone_alloc_item(zones, &args, M_WAITOK); 1976 if (locked) 1977 sx_sunlock(&uma_drain_lock); 1978 return (res); 1979 } 1980 1981 /* See uma.h */ 1982 uma_zone_t 1983 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1984 uma_init zinit, uma_fini zfini, uma_zone_t master) 1985 { 1986 struct uma_zctor_args args; 1987 uma_keg_t keg; 1988 uma_zone_t res; 1989 bool locked; 1990 1991 keg = zone_first_keg(master); 1992 memset(&args, 0, sizeof(args)); 1993 args.name = name; 1994 args.size = keg->uk_size; 1995 args.ctor = ctor; 1996 args.dtor = dtor; 1997 args.uminit = zinit; 1998 args.fini = zfini; 1999 args.align = keg->uk_align; 2000 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2001 args.keg = keg; 2002 2003 if (booted < UMA_STARTUP2) { 2004 locked = false; 2005 } else { 2006 sx_slock(&uma_drain_lock); 2007 locked = true; 2008 } 2009 /* XXX Attaches only one keg of potentially many. */ 2010 res = zone_alloc_item(zones, &args, M_WAITOK); 2011 if (locked) 2012 sx_sunlock(&uma_drain_lock); 2013 return (res); 2014 } 2015 2016 /* See uma.h */ 2017 uma_zone_t 2018 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2019 uma_init zinit, uma_fini zfini, uma_import zimport, 2020 uma_release zrelease, void *arg, int flags) 2021 { 2022 struct uma_zctor_args args; 2023 2024 memset(&args, 0, sizeof(args)); 2025 args.name = name; 2026 args.size = size; 2027 args.ctor = ctor; 2028 args.dtor = dtor; 2029 args.uminit = zinit; 2030 args.fini = zfini; 2031 args.import = zimport; 2032 args.release = zrelease; 2033 args.arg = arg; 2034 args.align = 0; 2035 args.flags = flags; 2036 2037 return (zone_alloc_item(zones, &args, M_WAITOK)); 2038 } 2039 2040 static void 2041 zone_lock_pair(uma_zone_t a, uma_zone_t b) 2042 { 2043 if (a < b) { 2044 ZONE_LOCK(a); 2045 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2046 } else { 2047 ZONE_LOCK(b); 2048 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2049 } 2050 } 2051 2052 static void 2053 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2054 { 2055 2056 ZONE_UNLOCK(a); 2057 ZONE_UNLOCK(b); 2058 } 2059 2060 int 2061 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2062 { 2063 uma_klink_t klink; 2064 uma_klink_t kl; 2065 int error; 2066 2067 error = 0; 2068 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2069 2070 zone_lock_pair(zone, master); 2071 /* 2072 * zone must use vtoslab() to resolve objects and must already be 2073 * a secondary. 2074 */ 2075 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2076 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2077 error = EINVAL; 2078 goto out; 2079 } 2080 /* 2081 * The new master must also use vtoslab(). 2082 */ 2083 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2084 error = EINVAL; 2085 goto out; 2086 } 2087 /* 2088 * Both must either be refcnt, or not be refcnt. 2089 */ 2090 if ((zone->uz_flags & UMA_ZONE_REFCNT) != 2091 (master->uz_flags & UMA_ZONE_REFCNT)) { 2092 error = EINVAL; 2093 goto out; 2094 } 2095 /* 2096 * The underlying object must be the same size. rsize 2097 * may be different. 2098 */ 2099 if (master->uz_size != zone->uz_size) { 2100 error = E2BIG; 2101 goto out; 2102 } 2103 /* 2104 * Put it at the end of the list. 2105 */ 2106 klink->kl_keg = zone_first_keg(master); 2107 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2108 if (LIST_NEXT(kl, kl_link) == NULL) { 2109 LIST_INSERT_AFTER(kl, klink, kl_link); 2110 break; 2111 } 2112 } 2113 klink = NULL; 2114 zone->uz_flags |= UMA_ZFLAG_MULTI; 2115 zone->uz_slab = zone_fetch_slab_multi; 2116 2117 out: 2118 zone_unlock_pair(zone, master); 2119 if (klink != NULL) 2120 free(klink, M_TEMP); 2121 2122 return (error); 2123 } 2124 2125 2126 /* See uma.h */ 2127 void 2128 uma_zdestroy(uma_zone_t zone) 2129 { 2130 2131 sx_slock(&uma_drain_lock); 2132 zone_free_item(zones, zone, NULL, SKIP_NONE); 2133 sx_sunlock(&uma_drain_lock); 2134 } 2135 2136 /* See uma.h */ 2137 void * 2138 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2139 { 2140 void *item; 2141 uma_cache_t cache; 2142 uma_bucket_t bucket; 2143 int lockfail; 2144 int cpu; 2145 2146 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2147 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2148 2149 /* This is the fast path allocation */ 2150 #ifdef UMA_DEBUG_ALLOC_1 2151 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 2152 #endif 2153 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 2154 zone->uz_name, flags); 2155 2156 if (flags & M_WAITOK) { 2157 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2158 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2159 } 2160 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2161 ("uma_zalloc_arg: called with spinlock or critical section held")); 2162 2163 #ifdef DEBUG_MEMGUARD 2164 if (memguard_cmp_zone(zone)) { 2165 item = memguard_alloc(zone->uz_size, flags); 2166 if (item != NULL) { 2167 /* 2168 * Avoid conflict with the use-after-free 2169 * protecting infrastructure from INVARIANTS. 2170 */ 2171 if (zone->uz_init != NULL && 2172 zone->uz_init != mtrash_init && 2173 zone->uz_init(item, zone->uz_size, flags) != 0) 2174 return (NULL); 2175 if (zone->uz_ctor != NULL && 2176 zone->uz_ctor != mtrash_ctor && 2177 zone->uz_ctor(item, zone->uz_size, udata, 2178 flags) != 0) { 2179 zone->uz_fini(item, zone->uz_size); 2180 return (NULL); 2181 } 2182 return (item); 2183 } 2184 /* This is unfortunate but should not be fatal. */ 2185 } 2186 #endif 2187 /* 2188 * If possible, allocate from the per-CPU cache. There are two 2189 * requirements for safe access to the per-CPU cache: (1) the thread 2190 * accessing the cache must not be preempted or yield during access, 2191 * and (2) the thread must not migrate CPUs without switching which 2192 * cache it accesses. We rely on a critical section to prevent 2193 * preemption and migration. We release the critical section in 2194 * order to acquire the zone mutex if we are unable to allocate from 2195 * the current cache; when we re-acquire the critical section, we 2196 * must detect and handle migration if it has occurred. 2197 */ 2198 critical_enter(); 2199 cpu = curcpu; 2200 cache = &zone->uz_cpu[cpu]; 2201 2202 zalloc_start: 2203 bucket = cache->uc_allocbucket; 2204 if (bucket != NULL && bucket->ub_cnt > 0) { 2205 bucket->ub_cnt--; 2206 item = bucket->ub_bucket[bucket->ub_cnt]; 2207 #ifdef INVARIANTS 2208 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2209 #endif 2210 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2211 cache->uc_allocs++; 2212 critical_exit(); 2213 if (zone->uz_ctor != NULL && 2214 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2215 atomic_add_long(&zone->uz_fails, 1); 2216 zone_free_item(zone, item, udata, SKIP_DTOR); 2217 return (NULL); 2218 } 2219 #ifdef INVARIANTS 2220 uma_dbg_alloc(zone, NULL, item); 2221 #endif 2222 if (flags & M_ZERO) 2223 uma_zero_item(item, zone); 2224 return (item); 2225 } 2226 2227 /* 2228 * We have run out of items in our alloc bucket. 2229 * See if we can switch with our free bucket. 2230 */ 2231 bucket = cache->uc_freebucket; 2232 if (bucket != NULL && bucket->ub_cnt > 0) { 2233 #ifdef UMA_DEBUG_ALLOC 2234 printf("uma_zalloc: Swapping empty with alloc.\n"); 2235 #endif 2236 cache->uc_freebucket = cache->uc_allocbucket; 2237 cache->uc_allocbucket = bucket; 2238 goto zalloc_start; 2239 } 2240 2241 /* 2242 * Discard any empty allocation bucket while we hold no locks. 2243 */ 2244 bucket = cache->uc_allocbucket; 2245 cache->uc_allocbucket = NULL; 2246 critical_exit(); 2247 if (bucket != NULL) 2248 bucket_free(zone, bucket, udata); 2249 2250 /* Short-circuit for zones without buckets and low memory. */ 2251 if (zone->uz_count == 0 || bucketdisable) 2252 goto zalloc_item; 2253 2254 /* 2255 * Attempt to retrieve the item from the per-CPU cache has failed, so 2256 * we must go back to the zone. This requires the zone lock, so we 2257 * must drop the critical section, then re-acquire it when we go back 2258 * to the cache. Since the critical section is released, we may be 2259 * preempted or migrate. As such, make sure not to maintain any 2260 * thread-local state specific to the cache from prior to releasing 2261 * the critical section. 2262 */ 2263 lockfail = 0; 2264 if (ZONE_TRYLOCK(zone) == 0) { 2265 /* Record contention to size the buckets. */ 2266 ZONE_LOCK(zone); 2267 lockfail = 1; 2268 } 2269 critical_enter(); 2270 cpu = curcpu; 2271 cache = &zone->uz_cpu[cpu]; 2272 2273 /* 2274 * Since we have locked the zone we may as well send back our stats. 2275 */ 2276 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2277 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2278 cache->uc_allocs = 0; 2279 cache->uc_frees = 0; 2280 2281 /* See if we lost the race to fill the cache. */ 2282 if (cache->uc_allocbucket != NULL) { 2283 ZONE_UNLOCK(zone); 2284 goto zalloc_start; 2285 } 2286 2287 /* 2288 * Check the zone's cache of buckets. 2289 */ 2290 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2291 KASSERT(bucket->ub_cnt != 0, 2292 ("uma_zalloc_arg: Returning an empty bucket.")); 2293 2294 LIST_REMOVE(bucket, ub_link); 2295 cache->uc_allocbucket = bucket; 2296 ZONE_UNLOCK(zone); 2297 goto zalloc_start; 2298 } 2299 /* We are no longer associated with this CPU. */ 2300 critical_exit(); 2301 2302 /* 2303 * We bump the uz count when the cache size is insufficient to 2304 * handle the working set. 2305 */ 2306 if (lockfail && zone->uz_count < BUCKET_MAX) 2307 zone->uz_count++; 2308 ZONE_UNLOCK(zone); 2309 2310 /* 2311 * Now lets just fill a bucket and put it on the free list. If that 2312 * works we'll restart the allocation from the begining and it 2313 * will use the just filled bucket. 2314 */ 2315 bucket = zone_alloc_bucket(zone, udata, flags); 2316 if (bucket != NULL) { 2317 ZONE_LOCK(zone); 2318 critical_enter(); 2319 cpu = curcpu; 2320 cache = &zone->uz_cpu[cpu]; 2321 /* 2322 * See if we lost the race or were migrated. Cache the 2323 * initialized bucket to make this less likely or claim 2324 * the memory directly. 2325 */ 2326 if (cache->uc_allocbucket == NULL) 2327 cache->uc_allocbucket = bucket; 2328 else 2329 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2330 ZONE_UNLOCK(zone); 2331 goto zalloc_start; 2332 } 2333 2334 /* 2335 * We may not be able to get a bucket so return an actual item. 2336 */ 2337 #ifdef UMA_DEBUG 2338 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2339 #endif 2340 2341 zalloc_item: 2342 item = zone_alloc_item(zone, udata, flags); 2343 2344 return (item); 2345 } 2346 2347 static uma_slab_t 2348 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2349 { 2350 uma_slab_t slab; 2351 int reserve; 2352 2353 mtx_assert(&keg->uk_lock, MA_OWNED); 2354 slab = NULL; 2355 reserve = 0; 2356 if ((flags & M_USE_RESERVE) == 0) 2357 reserve = keg->uk_reserve; 2358 2359 for (;;) { 2360 /* 2361 * Find a slab with some space. Prefer slabs that are partially 2362 * used over those that are totally full. This helps to reduce 2363 * fragmentation. 2364 */ 2365 if (keg->uk_free > reserve) { 2366 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2367 slab = LIST_FIRST(&keg->uk_part_slab); 2368 } else { 2369 slab = LIST_FIRST(&keg->uk_free_slab); 2370 LIST_REMOVE(slab, us_link); 2371 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2372 us_link); 2373 } 2374 MPASS(slab->us_keg == keg); 2375 return (slab); 2376 } 2377 2378 /* 2379 * M_NOVM means don't ask at all! 2380 */ 2381 if (flags & M_NOVM) 2382 break; 2383 2384 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2385 keg->uk_flags |= UMA_ZFLAG_FULL; 2386 /* 2387 * If this is not a multi-zone, set the FULL bit. 2388 * Otherwise slab_multi() takes care of it. 2389 */ 2390 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2391 zone->uz_flags |= UMA_ZFLAG_FULL; 2392 zone_log_warning(zone); 2393 zone_maxaction(zone); 2394 } 2395 if (flags & M_NOWAIT) 2396 break; 2397 zone->uz_sleeps++; 2398 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2399 continue; 2400 } 2401 slab = keg_alloc_slab(keg, zone, flags); 2402 /* 2403 * If we got a slab here it's safe to mark it partially used 2404 * and return. We assume that the caller is going to remove 2405 * at least one item. 2406 */ 2407 if (slab) { 2408 MPASS(slab->us_keg == keg); 2409 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2410 return (slab); 2411 } 2412 /* 2413 * We might not have been able to get a slab but another cpu 2414 * could have while we were unlocked. Check again before we 2415 * fail. 2416 */ 2417 flags |= M_NOVM; 2418 } 2419 return (slab); 2420 } 2421 2422 static uma_slab_t 2423 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2424 { 2425 uma_slab_t slab; 2426 2427 if (keg == NULL) { 2428 keg = zone_first_keg(zone); 2429 KEG_LOCK(keg); 2430 } 2431 2432 for (;;) { 2433 slab = keg_fetch_slab(keg, zone, flags); 2434 if (slab) 2435 return (slab); 2436 if (flags & (M_NOWAIT | M_NOVM)) 2437 break; 2438 } 2439 KEG_UNLOCK(keg); 2440 return (NULL); 2441 } 2442 2443 /* 2444 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2445 * with the keg locked. On NULL no lock is held. 2446 * 2447 * The last pointer is used to seed the search. It is not required. 2448 */ 2449 static uma_slab_t 2450 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2451 { 2452 uma_klink_t klink; 2453 uma_slab_t slab; 2454 uma_keg_t keg; 2455 int flags; 2456 int empty; 2457 int full; 2458 2459 /* 2460 * Don't wait on the first pass. This will skip limit tests 2461 * as well. We don't want to block if we can find a provider 2462 * without blocking. 2463 */ 2464 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2465 /* 2466 * Use the last slab allocated as a hint for where to start 2467 * the search. 2468 */ 2469 if (last != NULL) { 2470 slab = keg_fetch_slab(last, zone, flags); 2471 if (slab) 2472 return (slab); 2473 KEG_UNLOCK(last); 2474 } 2475 /* 2476 * Loop until we have a slab incase of transient failures 2477 * while M_WAITOK is specified. I'm not sure this is 100% 2478 * required but we've done it for so long now. 2479 */ 2480 for (;;) { 2481 empty = 0; 2482 full = 0; 2483 /* 2484 * Search the available kegs for slabs. Be careful to hold the 2485 * correct lock while calling into the keg layer. 2486 */ 2487 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2488 keg = klink->kl_keg; 2489 KEG_LOCK(keg); 2490 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2491 slab = keg_fetch_slab(keg, zone, flags); 2492 if (slab) 2493 return (slab); 2494 } 2495 if (keg->uk_flags & UMA_ZFLAG_FULL) 2496 full++; 2497 else 2498 empty++; 2499 KEG_UNLOCK(keg); 2500 } 2501 if (rflags & (M_NOWAIT | M_NOVM)) 2502 break; 2503 flags = rflags; 2504 /* 2505 * All kegs are full. XXX We can't atomically check all kegs 2506 * and sleep so just sleep for a short period and retry. 2507 */ 2508 if (full && !empty) { 2509 ZONE_LOCK(zone); 2510 zone->uz_flags |= UMA_ZFLAG_FULL; 2511 zone->uz_sleeps++; 2512 zone_log_warning(zone); 2513 zone_maxaction(zone); 2514 msleep(zone, zone->uz_lockptr, PVM, 2515 "zonelimit", hz/100); 2516 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2517 ZONE_UNLOCK(zone); 2518 continue; 2519 } 2520 } 2521 return (NULL); 2522 } 2523 2524 static void * 2525 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2526 { 2527 void *item; 2528 uint8_t freei; 2529 2530 MPASS(keg == slab->us_keg); 2531 mtx_assert(&keg->uk_lock, MA_OWNED); 2532 2533 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2534 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2535 item = slab->us_data + (keg->uk_rsize * freei); 2536 slab->us_freecount--; 2537 keg->uk_free--; 2538 2539 /* Move this slab to the full list */ 2540 if (slab->us_freecount == 0) { 2541 LIST_REMOVE(slab, us_link); 2542 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2543 } 2544 2545 return (item); 2546 } 2547 2548 static int 2549 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2550 { 2551 uma_slab_t slab; 2552 uma_keg_t keg; 2553 int i; 2554 2555 slab = NULL; 2556 keg = NULL; 2557 /* Try to keep the buckets totally full */ 2558 for (i = 0; i < max; ) { 2559 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2560 break; 2561 keg = slab->us_keg; 2562 while (slab->us_freecount && i < max) { 2563 bucket[i++] = slab_alloc_item(keg, slab); 2564 if (keg->uk_free <= keg->uk_reserve) 2565 break; 2566 } 2567 /* Don't grab more than one slab at a time. */ 2568 flags &= ~M_WAITOK; 2569 flags |= M_NOWAIT; 2570 } 2571 if (slab != NULL) 2572 KEG_UNLOCK(keg); 2573 2574 return i; 2575 } 2576 2577 static uma_bucket_t 2578 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2579 { 2580 uma_bucket_t bucket; 2581 int max; 2582 2583 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2584 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2585 if (bucket == NULL) 2586 return (NULL); 2587 2588 max = MIN(bucket->ub_entries, zone->uz_count); 2589 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2590 max, flags); 2591 2592 /* 2593 * Initialize the memory if necessary. 2594 */ 2595 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2596 int i; 2597 2598 for (i = 0; i < bucket->ub_cnt; i++) 2599 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2600 flags) != 0) 2601 break; 2602 /* 2603 * If we couldn't initialize the whole bucket, put the 2604 * rest back onto the freelist. 2605 */ 2606 if (i != bucket->ub_cnt) { 2607 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2608 bucket->ub_cnt - i); 2609 #ifdef INVARIANTS 2610 bzero(&bucket->ub_bucket[i], 2611 sizeof(void *) * (bucket->ub_cnt - i)); 2612 #endif 2613 bucket->ub_cnt = i; 2614 } 2615 } 2616 2617 if (bucket->ub_cnt == 0) { 2618 bucket_free(zone, bucket, udata); 2619 atomic_add_long(&zone->uz_fails, 1); 2620 return (NULL); 2621 } 2622 2623 return (bucket); 2624 } 2625 2626 /* 2627 * Allocates a single item from a zone. 2628 * 2629 * Arguments 2630 * zone The zone to alloc for. 2631 * udata The data to be passed to the constructor. 2632 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2633 * 2634 * Returns 2635 * NULL if there is no memory and M_NOWAIT is set 2636 * An item if successful 2637 */ 2638 2639 static void * 2640 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2641 { 2642 void *item; 2643 2644 item = NULL; 2645 2646 #ifdef UMA_DEBUG_ALLOC 2647 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2648 #endif 2649 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2650 goto fail; 2651 atomic_add_long(&zone->uz_allocs, 1); 2652 2653 /* 2654 * We have to call both the zone's init (not the keg's init) 2655 * and the zone's ctor. This is because the item is going from 2656 * a keg slab directly to the user, and the user is expecting it 2657 * to be both zone-init'd as well as zone-ctor'd. 2658 */ 2659 if (zone->uz_init != NULL) { 2660 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2661 zone_free_item(zone, item, udata, SKIP_FINI); 2662 goto fail; 2663 } 2664 } 2665 if (zone->uz_ctor != NULL) { 2666 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2667 zone_free_item(zone, item, udata, SKIP_DTOR); 2668 goto fail; 2669 } 2670 } 2671 #ifdef INVARIANTS 2672 uma_dbg_alloc(zone, NULL, item); 2673 #endif 2674 if (flags & M_ZERO) 2675 uma_zero_item(item, zone); 2676 2677 return (item); 2678 2679 fail: 2680 atomic_add_long(&zone->uz_fails, 1); 2681 return (NULL); 2682 } 2683 2684 /* See uma.h */ 2685 void 2686 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2687 { 2688 uma_cache_t cache; 2689 uma_bucket_t bucket; 2690 int lockfail; 2691 int cpu; 2692 2693 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2694 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2695 2696 #ifdef UMA_DEBUG_ALLOC_1 2697 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2698 #endif 2699 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2700 zone->uz_name); 2701 2702 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2703 ("uma_zfree_arg: called with spinlock or critical section held")); 2704 2705 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2706 if (item == NULL) 2707 return; 2708 #ifdef DEBUG_MEMGUARD 2709 if (is_memguard_addr(item)) { 2710 if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor) 2711 zone->uz_dtor(item, zone->uz_size, udata); 2712 if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini) 2713 zone->uz_fini(item, zone->uz_size); 2714 memguard_free(item); 2715 return; 2716 } 2717 #endif 2718 #ifdef INVARIANTS 2719 if (zone->uz_flags & UMA_ZONE_MALLOC) 2720 uma_dbg_free(zone, udata, item); 2721 else 2722 uma_dbg_free(zone, NULL, item); 2723 #endif 2724 if (zone->uz_dtor != NULL) 2725 zone->uz_dtor(item, zone->uz_size, udata); 2726 2727 /* 2728 * The race here is acceptable. If we miss it we'll just have to wait 2729 * a little longer for the limits to be reset. 2730 */ 2731 if (zone->uz_flags & UMA_ZFLAG_FULL) 2732 goto zfree_item; 2733 2734 /* 2735 * If possible, free to the per-CPU cache. There are two 2736 * requirements for safe access to the per-CPU cache: (1) the thread 2737 * accessing the cache must not be preempted or yield during access, 2738 * and (2) the thread must not migrate CPUs without switching which 2739 * cache it accesses. We rely on a critical section to prevent 2740 * preemption and migration. We release the critical section in 2741 * order to acquire the zone mutex if we are unable to free to the 2742 * current cache; when we re-acquire the critical section, we must 2743 * detect and handle migration if it has occurred. 2744 */ 2745 zfree_restart: 2746 critical_enter(); 2747 cpu = curcpu; 2748 cache = &zone->uz_cpu[cpu]; 2749 2750 zfree_start: 2751 /* 2752 * Try to free into the allocbucket first to give LIFO ordering 2753 * for cache-hot datastructures. Spill over into the freebucket 2754 * if necessary. Alloc will swap them if one runs dry. 2755 */ 2756 bucket = cache->uc_allocbucket; 2757 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2758 bucket = cache->uc_freebucket; 2759 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2760 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2761 ("uma_zfree: Freeing to non free bucket index.")); 2762 bucket->ub_bucket[bucket->ub_cnt] = item; 2763 bucket->ub_cnt++; 2764 cache->uc_frees++; 2765 critical_exit(); 2766 return; 2767 } 2768 2769 /* 2770 * We must go back the zone, which requires acquiring the zone lock, 2771 * which in turn means we must release and re-acquire the critical 2772 * section. Since the critical section is released, we may be 2773 * preempted or migrate. As such, make sure not to maintain any 2774 * thread-local state specific to the cache from prior to releasing 2775 * the critical section. 2776 */ 2777 critical_exit(); 2778 if (zone->uz_count == 0 || bucketdisable) 2779 goto zfree_item; 2780 2781 lockfail = 0; 2782 if (ZONE_TRYLOCK(zone) == 0) { 2783 /* Record contention to size the buckets. */ 2784 ZONE_LOCK(zone); 2785 lockfail = 1; 2786 } 2787 critical_enter(); 2788 cpu = curcpu; 2789 cache = &zone->uz_cpu[cpu]; 2790 2791 /* 2792 * Since we have locked the zone we may as well send back our stats. 2793 */ 2794 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2795 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2796 cache->uc_allocs = 0; 2797 cache->uc_frees = 0; 2798 2799 bucket = cache->uc_freebucket; 2800 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2801 ZONE_UNLOCK(zone); 2802 goto zfree_start; 2803 } 2804 cache->uc_freebucket = NULL; 2805 2806 /* Can we throw this on the zone full list? */ 2807 if (bucket != NULL) { 2808 #ifdef UMA_DEBUG_ALLOC 2809 printf("uma_zfree: Putting old bucket on the free list.\n"); 2810 #endif 2811 /* ub_cnt is pointing to the last free item */ 2812 KASSERT(bucket->ub_cnt != 0, 2813 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2814 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2815 } 2816 2817 /* We are no longer associated with this CPU. */ 2818 critical_exit(); 2819 2820 /* 2821 * We bump the uz count when the cache size is insufficient to 2822 * handle the working set. 2823 */ 2824 if (lockfail && zone->uz_count < BUCKET_MAX) 2825 zone->uz_count++; 2826 ZONE_UNLOCK(zone); 2827 2828 #ifdef UMA_DEBUG_ALLOC 2829 printf("uma_zfree: Allocating new free bucket.\n"); 2830 #endif 2831 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2832 if (bucket) { 2833 critical_enter(); 2834 cpu = curcpu; 2835 cache = &zone->uz_cpu[cpu]; 2836 if (cache->uc_freebucket == NULL) { 2837 cache->uc_freebucket = bucket; 2838 goto zfree_start; 2839 } 2840 /* 2841 * We lost the race, start over. We have to drop our 2842 * critical section to free the bucket. 2843 */ 2844 critical_exit(); 2845 bucket_free(zone, bucket, udata); 2846 goto zfree_restart; 2847 } 2848 2849 /* 2850 * If nothing else caught this, we'll just do an internal free. 2851 */ 2852 zfree_item: 2853 zone_free_item(zone, item, udata, SKIP_DTOR); 2854 2855 return; 2856 } 2857 2858 static void 2859 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2860 { 2861 uint8_t freei; 2862 2863 mtx_assert(&keg->uk_lock, MA_OWNED); 2864 MPASS(keg == slab->us_keg); 2865 2866 /* Do we need to remove from any lists? */ 2867 if (slab->us_freecount+1 == keg->uk_ipers) { 2868 LIST_REMOVE(slab, us_link); 2869 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2870 } else if (slab->us_freecount == 0) { 2871 LIST_REMOVE(slab, us_link); 2872 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2873 } 2874 2875 /* Slab management. */ 2876 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2877 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2878 slab->us_freecount++; 2879 2880 /* Keg statistics. */ 2881 keg->uk_free++; 2882 } 2883 2884 static void 2885 zone_release(uma_zone_t zone, void **bucket, int cnt) 2886 { 2887 void *item; 2888 uma_slab_t slab; 2889 uma_keg_t keg; 2890 uint8_t *mem; 2891 int clearfull; 2892 int i; 2893 2894 clearfull = 0; 2895 keg = zone_first_keg(zone); 2896 KEG_LOCK(keg); 2897 for (i = 0; i < cnt; i++) { 2898 item = bucket[i]; 2899 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2900 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2901 if (zone->uz_flags & UMA_ZONE_HASH) { 2902 slab = hash_sfind(&keg->uk_hash, mem); 2903 } else { 2904 mem += keg->uk_pgoff; 2905 slab = (uma_slab_t)mem; 2906 } 2907 } else { 2908 slab = vtoslab((vm_offset_t)item); 2909 if (slab->us_keg != keg) { 2910 KEG_UNLOCK(keg); 2911 keg = slab->us_keg; 2912 KEG_LOCK(keg); 2913 } 2914 } 2915 slab_free_item(keg, slab, item); 2916 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2917 if (keg->uk_pages < keg->uk_maxpages) { 2918 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2919 clearfull = 1; 2920 } 2921 2922 /* 2923 * We can handle one more allocation. Since we're 2924 * clearing ZFLAG_FULL, wake up all procs blocked 2925 * on pages. This should be uncommon, so keeping this 2926 * simple for now (rather than adding count of blocked 2927 * threads etc). 2928 */ 2929 wakeup(keg); 2930 } 2931 } 2932 KEG_UNLOCK(keg); 2933 if (clearfull) { 2934 ZONE_LOCK(zone); 2935 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2936 wakeup(zone); 2937 ZONE_UNLOCK(zone); 2938 } 2939 2940 } 2941 2942 /* 2943 * Frees a single item to any zone. 2944 * 2945 * Arguments: 2946 * zone The zone to free to 2947 * item The item we're freeing 2948 * udata User supplied data for the dtor 2949 * skip Skip dtors and finis 2950 */ 2951 static void 2952 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2953 { 2954 2955 #ifdef INVARIANTS 2956 if (skip == SKIP_NONE) { 2957 if (zone->uz_flags & UMA_ZONE_MALLOC) 2958 uma_dbg_free(zone, udata, item); 2959 else 2960 uma_dbg_free(zone, NULL, item); 2961 } 2962 #endif 2963 if (skip < SKIP_DTOR && zone->uz_dtor) 2964 zone->uz_dtor(item, zone->uz_size, udata); 2965 2966 if (skip < SKIP_FINI && zone->uz_fini) 2967 zone->uz_fini(item, zone->uz_size); 2968 2969 atomic_add_long(&zone->uz_frees, 1); 2970 zone->uz_release(zone->uz_arg, &item, 1); 2971 } 2972 2973 /* See uma.h */ 2974 int 2975 uma_zone_set_max(uma_zone_t zone, int nitems) 2976 { 2977 uma_keg_t keg; 2978 2979 keg = zone_first_keg(zone); 2980 if (keg == NULL) 2981 return (0); 2982 KEG_LOCK(keg); 2983 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2984 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2985 keg->uk_maxpages += keg->uk_ppera; 2986 nitems = keg->uk_maxpages * keg->uk_ipers; 2987 KEG_UNLOCK(keg); 2988 2989 return (nitems); 2990 } 2991 2992 /* See uma.h */ 2993 int 2994 uma_zone_get_max(uma_zone_t zone) 2995 { 2996 int nitems; 2997 uma_keg_t keg; 2998 2999 keg = zone_first_keg(zone); 3000 if (keg == NULL) 3001 return (0); 3002 KEG_LOCK(keg); 3003 nitems = keg->uk_maxpages * keg->uk_ipers; 3004 KEG_UNLOCK(keg); 3005 3006 return (nitems); 3007 } 3008 3009 /* See uma.h */ 3010 void 3011 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3012 { 3013 3014 ZONE_LOCK(zone); 3015 zone->uz_warning = warning; 3016 ZONE_UNLOCK(zone); 3017 } 3018 3019 /* See uma.h */ 3020 void 3021 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3022 { 3023 3024 ZONE_LOCK(zone); 3025 zone->uz_maxaction = maxaction; 3026 ZONE_UNLOCK(zone); 3027 } 3028 3029 /* See uma.h */ 3030 int 3031 uma_zone_get_cur(uma_zone_t zone) 3032 { 3033 int64_t nitems; 3034 u_int i; 3035 3036 ZONE_LOCK(zone); 3037 nitems = zone->uz_allocs - zone->uz_frees; 3038 CPU_FOREACH(i) { 3039 /* 3040 * See the comment in sysctl_vm_zone_stats() regarding the 3041 * safety of accessing the per-cpu caches. With the zone lock 3042 * held, it is safe, but can potentially result in stale data. 3043 */ 3044 nitems += zone->uz_cpu[i].uc_allocs - 3045 zone->uz_cpu[i].uc_frees; 3046 } 3047 ZONE_UNLOCK(zone); 3048 3049 return (nitems < 0 ? 0 : nitems); 3050 } 3051 3052 /* See uma.h */ 3053 void 3054 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3055 { 3056 uma_keg_t keg; 3057 3058 keg = zone_first_keg(zone); 3059 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3060 KEG_LOCK(keg); 3061 KASSERT(keg->uk_pages == 0, 3062 ("uma_zone_set_init on non-empty keg")); 3063 keg->uk_init = uminit; 3064 KEG_UNLOCK(keg); 3065 } 3066 3067 /* See uma.h */ 3068 void 3069 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3070 { 3071 uma_keg_t keg; 3072 3073 keg = zone_first_keg(zone); 3074 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3075 KEG_LOCK(keg); 3076 KASSERT(keg->uk_pages == 0, 3077 ("uma_zone_set_fini on non-empty keg")); 3078 keg->uk_fini = fini; 3079 KEG_UNLOCK(keg); 3080 } 3081 3082 /* See uma.h */ 3083 void 3084 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3085 { 3086 3087 ZONE_LOCK(zone); 3088 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3089 ("uma_zone_set_zinit on non-empty keg")); 3090 zone->uz_init = zinit; 3091 ZONE_UNLOCK(zone); 3092 } 3093 3094 /* See uma.h */ 3095 void 3096 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3097 { 3098 3099 ZONE_LOCK(zone); 3100 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3101 ("uma_zone_set_zfini on non-empty keg")); 3102 zone->uz_fini = zfini; 3103 ZONE_UNLOCK(zone); 3104 } 3105 3106 /* See uma.h */ 3107 /* XXX uk_freef is not actually used with the zone locked */ 3108 void 3109 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3110 { 3111 uma_keg_t keg; 3112 3113 keg = zone_first_keg(zone); 3114 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3115 KEG_LOCK(keg); 3116 keg->uk_freef = freef; 3117 KEG_UNLOCK(keg); 3118 } 3119 3120 /* See uma.h */ 3121 /* XXX uk_allocf is not actually used with the zone locked */ 3122 void 3123 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3124 { 3125 uma_keg_t keg; 3126 3127 keg = zone_first_keg(zone); 3128 KEG_LOCK(keg); 3129 keg->uk_allocf = allocf; 3130 KEG_UNLOCK(keg); 3131 } 3132 3133 /* See uma.h */ 3134 void 3135 uma_zone_reserve(uma_zone_t zone, int items) 3136 { 3137 uma_keg_t keg; 3138 3139 keg = zone_first_keg(zone); 3140 if (keg == NULL) 3141 return; 3142 KEG_LOCK(keg); 3143 keg->uk_reserve = items; 3144 KEG_UNLOCK(keg); 3145 3146 return; 3147 } 3148 3149 /* See uma.h */ 3150 int 3151 uma_zone_reserve_kva(uma_zone_t zone, int count) 3152 { 3153 uma_keg_t keg; 3154 vm_offset_t kva; 3155 u_int pages; 3156 3157 keg = zone_first_keg(zone); 3158 if (keg == NULL) 3159 return (0); 3160 pages = count / keg->uk_ipers; 3161 3162 if (pages * keg->uk_ipers < count) 3163 pages++; 3164 3165 #ifdef UMA_MD_SMALL_ALLOC 3166 if (keg->uk_ppera > 1) { 3167 #else 3168 if (1) { 3169 #endif 3170 kva = kva_alloc((vm_size_t)pages * UMA_SLAB_SIZE); 3171 if (kva == 0) 3172 return (0); 3173 } else 3174 kva = 0; 3175 KEG_LOCK(keg); 3176 keg->uk_kva = kva; 3177 keg->uk_offset = 0; 3178 keg->uk_maxpages = pages; 3179 #ifdef UMA_MD_SMALL_ALLOC 3180 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3181 #else 3182 keg->uk_allocf = noobj_alloc; 3183 #endif 3184 keg->uk_flags |= UMA_ZONE_NOFREE; 3185 KEG_UNLOCK(keg); 3186 3187 return (1); 3188 } 3189 3190 /* See uma.h */ 3191 void 3192 uma_prealloc(uma_zone_t zone, int items) 3193 { 3194 int slabs; 3195 uma_slab_t slab; 3196 uma_keg_t keg; 3197 3198 keg = zone_first_keg(zone); 3199 if (keg == NULL) 3200 return; 3201 KEG_LOCK(keg); 3202 slabs = items / keg->uk_ipers; 3203 if (slabs * keg->uk_ipers < items) 3204 slabs++; 3205 while (slabs > 0) { 3206 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3207 if (slab == NULL) 3208 break; 3209 MPASS(slab->us_keg == keg); 3210 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3211 slabs--; 3212 } 3213 KEG_UNLOCK(keg); 3214 } 3215 3216 /* See uma.h */ 3217 uint32_t * 3218 uma_find_refcnt(uma_zone_t zone, void *item) 3219 { 3220 uma_slabrefcnt_t slabref; 3221 uma_slab_t slab; 3222 uma_keg_t keg; 3223 uint32_t *refcnt; 3224 int idx; 3225 3226 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 3227 slabref = (uma_slabrefcnt_t)slab; 3228 keg = slab->us_keg; 3229 KASSERT(keg->uk_flags & UMA_ZONE_REFCNT, 3230 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 3231 idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3232 refcnt = &slabref->us_refcnt[idx]; 3233 return refcnt; 3234 } 3235 3236 /* See uma.h */ 3237 static void 3238 uma_reclaim_locked(bool kmem_danger) 3239 { 3240 3241 #ifdef UMA_DEBUG 3242 printf("UMA: vm asked us to release pages!\n"); 3243 #endif 3244 sx_assert(&uma_drain_lock, SA_XLOCKED); 3245 bucket_enable(); 3246 zone_foreach(zone_drain); 3247 if (vm_page_count_min() || kmem_danger) { 3248 cache_drain_safe(NULL); 3249 zone_foreach(zone_drain); 3250 } 3251 /* 3252 * Some slabs may have been freed but this zone will be visited early 3253 * we visit again so that we can free pages that are empty once other 3254 * zones are drained. We have to do the same for buckets. 3255 */ 3256 zone_drain(slabzone); 3257 zone_drain(slabrefzone); 3258 bucket_zone_drain(); 3259 } 3260 3261 void 3262 uma_reclaim(void) 3263 { 3264 3265 sx_xlock(&uma_drain_lock); 3266 uma_reclaim_locked(false); 3267 sx_xunlock(&uma_drain_lock); 3268 } 3269 3270 static int uma_reclaim_needed; 3271 3272 void 3273 uma_reclaim_wakeup(void) 3274 { 3275 3276 uma_reclaim_needed = 1; 3277 wakeup(&uma_reclaim_needed); 3278 } 3279 3280 void 3281 uma_reclaim_worker(void *arg __unused) 3282 { 3283 3284 sx_xlock(&uma_drain_lock); 3285 for (;;) { 3286 sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM, 3287 "umarcl", 0); 3288 if (uma_reclaim_needed) { 3289 uma_reclaim_needed = 0; 3290 uma_reclaim_locked(true); 3291 } 3292 } 3293 } 3294 3295 /* See uma.h */ 3296 int 3297 uma_zone_exhausted(uma_zone_t zone) 3298 { 3299 int full; 3300 3301 ZONE_LOCK(zone); 3302 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3303 ZONE_UNLOCK(zone); 3304 return (full); 3305 } 3306 3307 int 3308 uma_zone_exhausted_nolock(uma_zone_t zone) 3309 { 3310 return (zone->uz_flags & UMA_ZFLAG_FULL); 3311 } 3312 3313 void * 3314 uma_large_malloc(vm_size_t size, int wait) 3315 { 3316 void *mem; 3317 uma_slab_t slab; 3318 uint8_t flags; 3319 3320 slab = zone_alloc_item(slabzone, NULL, wait); 3321 if (slab == NULL) 3322 return (NULL); 3323 mem = page_alloc(NULL, size, &flags, wait); 3324 if (mem) { 3325 vsetslab((vm_offset_t)mem, slab); 3326 slab->us_data = mem; 3327 slab->us_flags = flags | UMA_SLAB_MALLOC; 3328 slab->us_size = size; 3329 } else { 3330 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3331 } 3332 3333 return (mem); 3334 } 3335 3336 void 3337 uma_large_free(uma_slab_t slab) 3338 { 3339 3340 page_free(slab->us_data, slab->us_size, slab->us_flags); 3341 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3342 } 3343 3344 static void 3345 uma_zero_item(void *item, uma_zone_t zone) 3346 { 3347 3348 if (zone->uz_flags & UMA_ZONE_PCPU) { 3349 for (int i = 0; i < mp_ncpus; i++) 3350 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3351 } else 3352 bzero(item, zone->uz_size); 3353 } 3354 3355 void 3356 uma_print_stats(void) 3357 { 3358 zone_foreach(uma_print_zone); 3359 } 3360 3361 static void 3362 slab_print(uma_slab_t slab) 3363 { 3364 printf("slab: keg %p, data %p, freecount %d\n", 3365 slab->us_keg, slab->us_data, slab->us_freecount); 3366 } 3367 3368 static void 3369 cache_print(uma_cache_t cache) 3370 { 3371 printf("alloc: %p(%d), free: %p(%d)\n", 3372 cache->uc_allocbucket, 3373 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3374 cache->uc_freebucket, 3375 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3376 } 3377 3378 static void 3379 uma_print_keg(uma_keg_t keg) 3380 { 3381 uma_slab_t slab; 3382 3383 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3384 "out %d free %d limit %d\n", 3385 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3386 keg->uk_ipers, keg->uk_ppera, 3387 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3388 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3389 printf("Part slabs:\n"); 3390 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3391 slab_print(slab); 3392 printf("Free slabs:\n"); 3393 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3394 slab_print(slab); 3395 printf("Full slabs:\n"); 3396 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3397 slab_print(slab); 3398 } 3399 3400 void 3401 uma_print_zone(uma_zone_t zone) 3402 { 3403 uma_cache_t cache; 3404 uma_klink_t kl; 3405 int i; 3406 3407 printf("zone: %s(%p) size %d flags %#x\n", 3408 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3409 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3410 uma_print_keg(kl->kl_keg); 3411 CPU_FOREACH(i) { 3412 cache = &zone->uz_cpu[i]; 3413 printf("CPU %d Cache:\n", i); 3414 cache_print(cache); 3415 } 3416 } 3417 3418 #ifdef DDB 3419 /* 3420 * Generate statistics across both the zone and its per-cpu cache's. Return 3421 * desired statistics if the pointer is non-NULL for that statistic. 3422 * 3423 * Note: does not update the zone statistics, as it can't safely clear the 3424 * per-CPU cache statistic. 3425 * 3426 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3427 * safe from off-CPU; we should modify the caches to track this information 3428 * directly so that we don't have to. 3429 */ 3430 static void 3431 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3432 uint64_t *freesp, uint64_t *sleepsp) 3433 { 3434 uma_cache_t cache; 3435 uint64_t allocs, frees, sleeps; 3436 int cachefree, cpu; 3437 3438 allocs = frees = sleeps = 0; 3439 cachefree = 0; 3440 CPU_FOREACH(cpu) { 3441 cache = &z->uz_cpu[cpu]; 3442 if (cache->uc_allocbucket != NULL) 3443 cachefree += cache->uc_allocbucket->ub_cnt; 3444 if (cache->uc_freebucket != NULL) 3445 cachefree += cache->uc_freebucket->ub_cnt; 3446 allocs += cache->uc_allocs; 3447 frees += cache->uc_frees; 3448 } 3449 allocs += z->uz_allocs; 3450 frees += z->uz_frees; 3451 sleeps += z->uz_sleeps; 3452 if (cachefreep != NULL) 3453 *cachefreep = cachefree; 3454 if (allocsp != NULL) 3455 *allocsp = allocs; 3456 if (freesp != NULL) 3457 *freesp = frees; 3458 if (sleepsp != NULL) 3459 *sleepsp = sleeps; 3460 } 3461 #endif /* DDB */ 3462 3463 static int 3464 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3465 { 3466 uma_keg_t kz; 3467 uma_zone_t z; 3468 int count; 3469 3470 count = 0; 3471 rw_rlock(&uma_rwlock); 3472 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3473 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3474 count++; 3475 } 3476 rw_runlock(&uma_rwlock); 3477 return (sysctl_handle_int(oidp, &count, 0, req)); 3478 } 3479 3480 static int 3481 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3482 { 3483 struct uma_stream_header ush; 3484 struct uma_type_header uth; 3485 struct uma_percpu_stat ups; 3486 uma_bucket_t bucket; 3487 struct sbuf sbuf; 3488 uma_cache_t cache; 3489 uma_klink_t kl; 3490 uma_keg_t kz; 3491 uma_zone_t z; 3492 uma_keg_t k; 3493 int count, error, i; 3494 3495 error = sysctl_wire_old_buffer(req, 0); 3496 if (error != 0) 3497 return (error); 3498 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3499 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3500 3501 count = 0; 3502 rw_rlock(&uma_rwlock); 3503 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3504 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3505 count++; 3506 } 3507 3508 /* 3509 * Insert stream header. 3510 */ 3511 bzero(&ush, sizeof(ush)); 3512 ush.ush_version = UMA_STREAM_VERSION; 3513 ush.ush_maxcpus = (mp_maxid + 1); 3514 ush.ush_count = count; 3515 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3516 3517 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3518 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3519 bzero(&uth, sizeof(uth)); 3520 ZONE_LOCK(z); 3521 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3522 uth.uth_align = kz->uk_align; 3523 uth.uth_size = kz->uk_size; 3524 uth.uth_rsize = kz->uk_rsize; 3525 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3526 k = kl->kl_keg; 3527 uth.uth_maxpages += k->uk_maxpages; 3528 uth.uth_pages += k->uk_pages; 3529 uth.uth_keg_free += k->uk_free; 3530 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3531 * k->uk_ipers; 3532 } 3533 3534 /* 3535 * A zone is secondary is it is not the first entry 3536 * on the keg's zone list. 3537 */ 3538 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3539 (LIST_FIRST(&kz->uk_zones) != z)) 3540 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3541 3542 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3543 uth.uth_zone_free += bucket->ub_cnt; 3544 uth.uth_allocs = z->uz_allocs; 3545 uth.uth_frees = z->uz_frees; 3546 uth.uth_fails = z->uz_fails; 3547 uth.uth_sleeps = z->uz_sleeps; 3548 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3549 /* 3550 * While it is not normally safe to access the cache 3551 * bucket pointers while not on the CPU that owns the 3552 * cache, we only allow the pointers to be exchanged 3553 * without the zone lock held, not invalidated, so 3554 * accept the possible race associated with bucket 3555 * exchange during monitoring. 3556 */ 3557 for (i = 0; i < (mp_maxid + 1); i++) { 3558 bzero(&ups, sizeof(ups)); 3559 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3560 goto skip; 3561 if (CPU_ABSENT(i)) 3562 goto skip; 3563 cache = &z->uz_cpu[i]; 3564 if (cache->uc_allocbucket != NULL) 3565 ups.ups_cache_free += 3566 cache->uc_allocbucket->ub_cnt; 3567 if (cache->uc_freebucket != NULL) 3568 ups.ups_cache_free += 3569 cache->uc_freebucket->ub_cnt; 3570 ups.ups_allocs = cache->uc_allocs; 3571 ups.ups_frees = cache->uc_frees; 3572 skip: 3573 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3574 } 3575 ZONE_UNLOCK(z); 3576 } 3577 } 3578 rw_runlock(&uma_rwlock); 3579 error = sbuf_finish(&sbuf); 3580 sbuf_delete(&sbuf); 3581 return (error); 3582 } 3583 3584 int 3585 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3586 { 3587 uma_zone_t zone = *(uma_zone_t *)arg1; 3588 int error, max; 3589 3590 max = uma_zone_get_max(zone); 3591 error = sysctl_handle_int(oidp, &max, 0, req); 3592 if (error || !req->newptr) 3593 return (error); 3594 3595 uma_zone_set_max(zone, max); 3596 3597 return (0); 3598 } 3599 3600 int 3601 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3602 { 3603 uma_zone_t zone = *(uma_zone_t *)arg1; 3604 int cur; 3605 3606 cur = uma_zone_get_cur(zone); 3607 return (sysctl_handle_int(oidp, &cur, 0, req)); 3608 } 3609 3610 #ifdef DDB 3611 DB_SHOW_COMMAND(uma, db_show_uma) 3612 { 3613 uint64_t allocs, frees, sleeps; 3614 uma_bucket_t bucket; 3615 uma_keg_t kz; 3616 uma_zone_t z; 3617 int cachefree; 3618 3619 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3620 "Free", "Requests", "Sleeps", "Bucket"); 3621 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3622 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3623 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3624 allocs = z->uz_allocs; 3625 frees = z->uz_frees; 3626 sleeps = z->uz_sleeps; 3627 cachefree = 0; 3628 } else 3629 uma_zone_sumstat(z, &cachefree, &allocs, 3630 &frees, &sleeps); 3631 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3632 (LIST_FIRST(&kz->uk_zones) != z))) 3633 cachefree += kz->uk_free; 3634 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3635 cachefree += bucket->ub_cnt; 3636 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3637 z->uz_name, (uintmax_t)kz->uk_size, 3638 (intmax_t)(allocs - frees), cachefree, 3639 (uintmax_t)allocs, sleeps, z->uz_count); 3640 if (db_pager_quit) 3641 return; 3642 } 3643 } 3644 } 3645 3646 DB_SHOW_COMMAND(umacache, db_show_umacache) 3647 { 3648 uint64_t allocs, frees; 3649 uma_bucket_t bucket; 3650 uma_zone_t z; 3651 int cachefree; 3652 3653 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3654 "Requests", "Bucket"); 3655 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3656 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3657 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3658 cachefree += bucket->ub_cnt; 3659 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3660 z->uz_name, (uintmax_t)z->uz_size, 3661 (intmax_t)(allocs - frees), cachefree, 3662 (uintmax_t)allocs, z->uz_count); 3663 if (db_pager_quit) 3664 return; 3665 } 3666 } 3667 #endif 3668