1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/asan.h> 62 #include <sys/bitset.h> 63 #include <sys/domainset.h> 64 #include <sys/eventhandler.h> 65 #include <sys/kernel.h> 66 #include <sys/types.h> 67 #include <sys/limits.h> 68 #include <sys/queue.h> 69 #include <sys/malloc.h> 70 #include <sys/ktr.h> 71 #include <sys/lock.h> 72 #include <sys/msan.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/random.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/sched.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/smp.h> 81 #include <sys/smr.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 #include <sys/vmmeter.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_domainset.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_phys.h> 93 #include <vm/vm_pagequeue.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vm_dumpset.h> 98 #include <vm/uma.h> 99 #include <vm/uma_int.h> 100 #include <vm/uma_dbg.h> 101 102 #include <ddb/ddb.h> 103 104 #ifdef DEBUG_MEMGUARD 105 #include <vm/memguard.h> 106 #endif 107 108 #include <machine/md_var.h> 109 110 #ifdef INVARIANTS 111 #define UMA_ALWAYS_CTORDTOR 1 112 #else 113 #define UMA_ALWAYS_CTORDTOR 0 114 #endif 115 116 /* 117 * This is the zone and keg from which all zones are spawned. 118 */ 119 static uma_zone_t kegs; 120 static uma_zone_t zones; 121 122 /* 123 * On INVARIANTS builds, the slab contains a second bitset of the same size, 124 * "dbg_bits", which is laid out immediately after us_free. 125 */ 126 #ifdef INVARIANTS 127 #define SLAB_BITSETS 2 128 #else 129 #define SLAB_BITSETS 1 130 #endif 131 132 /* 133 * These are the two zones from which all offpage uma_slab_ts are allocated. 134 * 135 * One zone is for slab headers that can represent a larger number of items, 136 * making the slabs themselves more efficient, and the other zone is for 137 * headers that are smaller and represent fewer items, making the headers more 138 * efficient. 139 */ 140 #define SLABZONE_SIZE(setsize) \ 141 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 142 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 143 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 144 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 145 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 146 static uma_zone_t slabzones[2]; 147 148 /* 149 * The initial hash tables come out of this zone so they can be allocated 150 * prior to malloc coming up. 151 */ 152 static uma_zone_t hashzone; 153 154 /* The boot-time adjusted value for cache line alignment. */ 155 int uma_align_cache = 64 - 1; 156 157 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 158 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 159 160 /* 161 * Are we allowed to allocate buckets? 162 */ 163 static int bucketdisable = 1; 164 165 /* Linked list of all kegs in the system */ 166 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 167 168 /* Linked list of all cache-only zones in the system */ 169 static LIST_HEAD(,uma_zone) uma_cachezones = 170 LIST_HEAD_INITIALIZER(uma_cachezones); 171 172 /* 173 * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of 174 * zones. 175 */ 176 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 177 178 static struct sx uma_reclaim_lock; 179 180 /* 181 * First available virual address for boot time allocations. 182 */ 183 static vm_offset_t bootstart; 184 static vm_offset_t bootmem; 185 186 /* 187 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 188 * allocations don't trigger a wakeup of the reclaim thread. 189 */ 190 unsigned long uma_kmem_limit = LONG_MAX; 191 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 192 "UMA kernel memory soft limit"); 193 unsigned long uma_kmem_total; 194 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 195 "UMA kernel memory usage"); 196 197 /* Is the VM done starting up? */ 198 static enum { 199 BOOT_COLD, 200 BOOT_KVA, 201 BOOT_PCPU, 202 BOOT_RUNNING, 203 BOOT_SHUTDOWN, 204 } booted = BOOT_COLD; 205 206 /* 207 * This is the handle used to schedule events that need to happen 208 * outside of the allocation fast path. 209 */ 210 static struct callout uma_callout; 211 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 212 213 /* 214 * This structure is passed as the zone ctor arg so that I don't have to create 215 * a special allocation function just for zones. 216 */ 217 struct uma_zctor_args { 218 const char *name; 219 size_t size; 220 uma_ctor ctor; 221 uma_dtor dtor; 222 uma_init uminit; 223 uma_fini fini; 224 uma_import import; 225 uma_release release; 226 void *arg; 227 uma_keg_t keg; 228 int align; 229 uint32_t flags; 230 }; 231 232 struct uma_kctor_args { 233 uma_zone_t zone; 234 size_t size; 235 uma_init uminit; 236 uma_fini fini; 237 int align; 238 uint32_t flags; 239 }; 240 241 struct uma_bucket_zone { 242 uma_zone_t ubz_zone; 243 const char *ubz_name; 244 int ubz_entries; /* Number of items it can hold. */ 245 int ubz_maxsize; /* Maximum allocation size per-item. */ 246 }; 247 248 /* 249 * Compute the actual number of bucket entries to pack them in power 250 * of two sizes for more efficient space utilization. 251 */ 252 #define BUCKET_SIZE(n) \ 253 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 254 255 #define BUCKET_MAX BUCKET_SIZE(256) 256 257 struct uma_bucket_zone bucket_zones[] = { 258 /* Literal bucket sizes. */ 259 { NULL, "2 Bucket", 2, 4096 }, 260 { NULL, "4 Bucket", 4, 3072 }, 261 { NULL, "8 Bucket", 8, 2048 }, 262 { NULL, "16 Bucket", 16, 1024 }, 263 /* Rounded down power of 2 sizes for efficiency. */ 264 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 265 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 266 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 267 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 268 { NULL, NULL, 0} 269 }; 270 271 /* 272 * Flags and enumerations to be passed to internal functions. 273 */ 274 enum zfreeskip { 275 SKIP_NONE = 0, 276 SKIP_CNT = 0x00000001, 277 SKIP_DTOR = 0x00010000, 278 SKIP_FINI = 0x00020000, 279 }; 280 281 /* Prototypes.. */ 282 283 void uma_startup1(vm_offset_t); 284 void uma_startup2(void); 285 286 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 287 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 288 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 289 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 290 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 291 static void page_free(void *, vm_size_t, uint8_t); 292 static void pcpu_page_free(void *, vm_size_t, uint8_t); 293 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 294 static void cache_drain(uma_zone_t); 295 static void bucket_drain(uma_zone_t, uma_bucket_t); 296 static void bucket_cache_reclaim(uma_zone_t zone, bool, int); 297 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int); 298 static int keg_ctor(void *, int, void *, int); 299 static void keg_dtor(void *, int, void *); 300 static void keg_drain(uma_keg_t keg, int domain); 301 static int zone_ctor(void *, int, void *, int); 302 static void zone_dtor(void *, int, void *); 303 static inline void item_dtor(uma_zone_t zone, void *item, int size, 304 void *udata, enum zfreeskip skip); 305 static int zero_init(void *, int, int); 306 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 307 int itemdomain, bool ws); 308 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 309 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 310 static void zone_timeout(uma_zone_t zone, void *); 311 static int hash_alloc(struct uma_hash *, u_int); 312 static int hash_expand(struct uma_hash *, struct uma_hash *); 313 static void hash_free(struct uma_hash *hash); 314 static void uma_timeout(void *); 315 static void uma_shutdown(void); 316 static void *zone_alloc_item(uma_zone_t, void *, int, int); 317 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 318 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 319 static void zone_free_limit(uma_zone_t zone, int count); 320 static void bucket_enable(void); 321 static void bucket_init(void); 322 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 323 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 324 static void bucket_zone_drain(int domain); 325 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 326 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 327 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 328 static size_t slab_sizeof(int nitems); 329 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 330 uma_fini fini, int align, uint32_t flags); 331 static int zone_import(void *, void **, int, int, int); 332 static void zone_release(void *, void **, int); 333 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 334 static bool cache_free(uma_zone_t, uma_cache_t, void *, int); 335 336 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 337 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 338 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 339 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 340 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 341 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 342 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 343 344 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 345 346 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 347 "Memory allocation debugging"); 348 349 #ifdef INVARIANTS 350 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 351 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 352 353 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 354 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 355 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 356 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 357 358 static u_int dbg_divisor = 1; 359 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 360 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 361 "Debug & thrash every this item in memory allocator"); 362 363 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 364 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 365 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 366 &uma_dbg_cnt, "memory items debugged"); 367 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 368 &uma_skip_cnt, "memory items skipped, not debugged"); 369 #endif 370 371 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 372 "Universal Memory Allocator"); 373 374 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 375 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 376 377 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 378 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 379 380 static int zone_warnings = 1; 381 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 382 "Warn when UMA zones becomes full"); 383 384 static int multipage_slabs = 1; 385 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 386 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 387 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 388 "UMA may choose larger slab sizes for better efficiency"); 389 390 /* 391 * Select the slab zone for an offpage slab with the given maximum item count. 392 */ 393 static inline uma_zone_t 394 slabzone(int ipers) 395 { 396 397 return (slabzones[ipers > SLABZONE0_SETSIZE]); 398 } 399 400 /* 401 * This routine checks to see whether or not it's safe to enable buckets. 402 */ 403 static void 404 bucket_enable(void) 405 { 406 407 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 408 bucketdisable = vm_page_count_min(); 409 } 410 411 /* 412 * Initialize bucket_zones, the array of zones of buckets of various sizes. 413 * 414 * For each zone, calculate the memory required for each bucket, consisting 415 * of the header and an array of pointers. 416 */ 417 static void 418 bucket_init(void) 419 { 420 struct uma_bucket_zone *ubz; 421 int size; 422 423 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 424 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 425 size += sizeof(void *) * ubz->ubz_entries; 426 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 427 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 428 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 429 UMA_ZONE_FIRSTTOUCH); 430 } 431 } 432 433 /* 434 * Given a desired number of entries for a bucket, return the zone from which 435 * to allocate the bucket. 436 */ 437 static struct uma_bucket_zone * 438 bucket_zone_lookup(int entries) 439 { 440 struct uma_bucket_zone *ubz; 441 442 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 443 if (ubz->ubz_entries >= entries) 444 return (ubz); 445 ubz--; 446 return (ubz); 447 } 448 449 static int 450 bucket_select(int size) 451 { 452 struct uma_bucket_zone *ubz; 453 454 ubz = &bucket_zones[0]; 455 if (size > ubz->ubz_maxsize) 456 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 457 458 for (; ubz->ubz_entries != 0; ubz++) 459 if (ubz->ubz_maxsize < size) 460 break; 461 ubz--; 462 return (ubz->ubz_entries); 463 } 464 465 static uma_bucket_t 466 bucket_alloc(uma_zone_t zone, void *udata, int flags) 467 { 468 struct uma_bucket_zone *ubz; 469 uma_bucket_t bucket; 470 471 /* 472 * Don't allocate buckets early in boot. 473 */ 474 if (__predict_false(booted < BOOT_KVA)) 475 return (NULL); 476 477 /* 478 * To limit bucket recursion we store the original zone flags 479 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 480 * NOVM flag to persist even through deep recursions. We also 481 * store ZFLAG_BUCKET once we have recursed attempting to allocate 482 * a bucket for a bucket zone so we do not allow infinite bucket 483 * recursion. This cookie will even persist to frees of unused 484 * buckets via the allocation path or bucket allocations in the 485 * free path. 486 */ 487 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 488 udata = (void *)(uintptr_t)zone->uz_flags; 489 else { 490 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 491 return (NULL); 492 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 493 } 494 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 495 flags |= M_NOVM; 496 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size)); 497 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 498 ubz++; 499 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 500 if (bucket) { 501 #ifdef INVARIANTS 502 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 503 #endif 504 bucket->ub_cnt = 0; 505 bucket->ub_entries = min(ubz->ubz_entries, 506 zone->uz_bucket_size_max); 507 bucket->ub_seq = SMR_SEQ_INVALID; 508 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 509 zone->uz_name, zone, bucket); 510 } 511 512 return (bucket); 513 } 514 515 static void 516 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 517 { 518 struct uma_bucket_zone *ubz; 519 520 if (bucket->ub_cnt != 0) 521 bucket_drain(zone, bucket); 522 523 KASSERT(bucket->ub_cnt == 0, 524 ("bucket_free: Freeing a non free bucket.")); 525 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 526 ("bucket_free: Freeing an SMR bucket.")); 527 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 528 udata = (void *)(uintptr_t)zone->uz_flags; 529 ubz = bucket_zone_lookup(bucket->ub_entries); 530 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 531 } 532 533 static void 534 bucket_zone_drain(int domain) 535 { 536 struct uma_bucket_zone *ubz; 537 538 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 539 uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN, 540 domain); 541 } 542 543 #ifdef KASAN 544 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0, 545 "Base UMA allocation size not a multiple of the KASAN scale factor"); 546 547 static void 548 kasan_mark_item_valid(uma_zone_t zone, void *item) 549 { 550 void *pcpu_item; 551 size_t sz, rsz; 552 int i; 553 554 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 555 return; 556 557 sz = zone->uz_size; 558 rsz = roundup2(sz, KASAN_SHADOW_SCALE); 559 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 560 kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE); 561 } else { 562 pcpu_item = zpcpu_base_to_offset(item); 563 for (i = 0; i <= mp_maxid; i++) 564 kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz, 565 KASAN_GENERIC_REDZONE); 566 } 567 } 568 569 static void 570 kasan_mark_item_invalid(uma_zone_t zone, void *item) 571 { 572 void *pcpu_item; 573 size_t sz; 574 int i; 575 576 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 577 return; 578 579 sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE); 580 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 581 kasan_mark(item, 0, sz, KASAN_UMA_FREED); 582 } else { 583 pcpu_item = zpcpu_base_to_offset(item); 584 for (i = 0; i <= mp_maxid; i++) 585 kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz, 586 KASAN_UMA_FREED); 587 } 588 } 589 590 static void 591 kasan_mark_slab_valid(uma_keg_t keg, void *mem) 592 { 593 size_t sz; 594 595 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 596 sz = keg->uk_ppera * PAGE_SIZE; 597 kasan_mark(mem, sz, sz, 0); 598 } 599 } 600 601 static void 602 kasan_mark_slab_invalid(uma_keg_t keg, void *mem) 603 { 604 size_t sz; 605 606 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 607 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 608 sz = keg->uk_ppera * PAGE_SIZE; 609 else 610 sz = keg->uk_pgoff; 611 kasan_mark(mem, 0, sz, KASAN_UMA_FREED); 612 } 613 } 614 #else /* !KASAN */ 615 static void 616 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused) 617 { 618 } 619 620 static void 621 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused) 622 { 623 } 624 625 static void 626 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused) 627 { 628 } 629 630 static void 631 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused) 632 { 633 } 634 #endif /* KASAN */ 635 636 #ifdef KMSAN 637 static inline void 638 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item) 639 { 640 void *pcpu_item; 641 size_t sz; 642 int i; 643 644 if ((zone->uz_flags & 645 (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) { 646 /* 647 * Cache zones should not be instrumented by default, as UMA 648 * does not have enough information to do so correctly. 649 * Consumers can mark items themselves if it makes sense to do 650 * so. 651 * 652 * Items from secondary zones are initialized by the parent 653 * zone and thus cannot safely be marked by UMA. 654 * 655 * malloc zones are handled directly by malloc(9) and friends, 656 * since they can provide more precise origin tracking. 657 */ 658 return; 659 } 660 if (zone->uz_keg->uk_init != NULL) { 661 /* 662 * By definition, initialized items cannot be marked. The 663 * best we can do is mark items from these zones after they 664 * are freed to the keg. 665 */ 666 return; 667 } 668 669 sz = zone->uz_size; 670 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 671 kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 672 kmsan_mark(item, sz, KMSAN_STATE_UNINIT); 673 } else { 674 pcpu_item = zpcpu_base_to_offset(item); 675 for (i = 0; i <= mp_maxid; i++) { 676 kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz, 677 KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 678 kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz, 679 KMSAN_STATE_INITED); 680 } 681 } 682 } 683 #else /* !KMSAN */ 684 static inline void 685 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused) 686 { 687 } 688 #endif /* KMSAN */ 689 690 /* 691 * Acquire the domain lock and record contention. 692 */ 693 static uma_zone_domain_t 694 zone_domain_lock(uma_zone_t zone, int domain) 695 { 696 uma_zone_domain_t zdom; 697 bool lockfail; 698 699 zdom = ZDOM_GET(zone, domain); 700 lockfail = false; 701 if (ZDOM_OWNED(zdom)) 702 lockfail = true; 703 ZDOM_LOCK(zdom); 704 /* This is unsynchronized. The counter does not need to be precise. */ 705 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 706 zone->uz_bucket_size++; 707 return (zdom); 708 } 709 710 /* 711 * Search for the domain with the least cached items and return it if it 712 * is out of balance with the preferred domain. 713 */ 714 static __noinline int 715 zone_domain_lowest(uma_zone_t zone, int pref) 716 { 717 long least, nitems, prefitems; 718 int domain; 719 int i; 720 721 prefitems = least = LONG_MAX; 722 domain = 0; 723 for (i = 0; i < vm_ndomains; i++) { 724 nitems = ZDOM_GET(zone, i)->uzd_nitems; 725 if (nitems < least) { 726 domain = i; 727 least = nitems; 728 } 729 if (domain == pref) 730 prefitems = nitems; 731 } 732 if (prefitems < least * 2) 733 return (pref); 734 735 return (domain); 736 } 737 738 /* 739 * Search for the domain with the most cached items and return it or the 740 * preferred domain if it has enough to proceed. 741 */ 742 static __noinline int 743 zone_domain_highest(uma_zone_t zone, int pref) 744 { 745 long most, nitems; 746 int domain; 747 int i; 748 749 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 750 return (pref); 751 752 most = 0; 753 domain = 0; 754 for (i = 0; i < vm_ndomains; i++) { 755 nitems = ZDOM_GET(zone, i)->uzd_nitems; 756 if (nitems > most) { 757 domain = i; 758 most = nitems; 759 } 760 } 761 762 return (domain); 763 } 764 765 /* 766 * Set the maximum imax value. 767 */ 768 static void 769 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 770 { 771 long old; 772 773 old = zdom->uzd_imax; 774 do { 775 if (old >= nitems) 776 return; 777 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 778 779 /* 780 * We are at new maximum, so do the last WSS update for the old 781 * bimin and prepare to measure next allocation batch. 782 */ 783 if (zdom->uzd_wss < old - zdom->uzd_bimin) 784 zdom->uzd_wss = old - zdom->uzd_bimin; 785 zdom->uzd_bimin = nitems; 786 } 787 788 /* 789 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 790 * zone's caches. If a bucket is found the zone is not locked on return. 791 */ 792 static uma_bucket_t 793 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 794 { 795 uma_bucket_t bucket; 796 long cnt; 797 int i; 798 bool dtor = false; 799 800 ZDOM_LOCK_ASSERT(zdom); 801 802 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 803 return (NULL); 804 805 /* SMR Buckets can not be re-used until readers expire. */ 806 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 807 bucket->ub_seq != SMR_SEQ_INVALID) { 808 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 809 return (NULL); 810 bucket->ub_seq = SMR_SEQ_INVALID; 811 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 812 if (STAILQ_NEXT(bucket, ub_link) != NULL) 813 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 814 } 815 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 816 817 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt, 818 ("%s: item count underflow (%ld, %d)", 819 __func__, zdom->uzd_nitems, bucket->ub_cnt)); 820 KASSERT(bucket->ub_cnt > 0, 821 ("%s: empty bucket in bucket cache", __func__)); 822 zdom->uzd_nitems -= bucket->ub_cnt; 823 824 if (reclaim) { 825 /* 826 * Shift the bounds of the current WSS interval to avoid 827 * perturbing the estimates. 828 */ 829 cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt); 830 atomic_subtract_long(&zdom->uzd_imax, cnt); 831 zdom->uzd_bimin -= cnt; 832 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 833 if (zdom->uzd_limin >= bucket->ub_cnt) { 834 zdom->uzd_limin -= bucket->ub_cnt; 835 } else { 836 zdom->uzd_limin = 0; 837 zdom->uzd_timin = 0; 838 } 839 } else if (zdom->uzd_bimin > zdom->uzd_nitems) { 840 zdom->uzd_bimin = zdom->uzd_nitems; 841 if (zdom->uzd_imin > zdom->uzd_nitems) 842 zdom->uzd_imin = zdom->uzd_nitems; 843 } 844 845 ZDOM_UNLOCK(zdom); 846 if (dtor) 847 for (i = 0; i < bucket->ub_cnt; i++) 848 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 849 NULL, SKIP_NONE); 850 851 return (bucket); 852 } 853 854 /* 855 * Insert a full bucket into the specified cache. The "ws" parameter indicates 856 * whether the bucket's contents should be counted as part of the zone's working 857 * set. The bucket may be freed if it exceeds the bucket limit. 858 */ 859 static void 860 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 861 const bool ws) 862 { 863 uma_zone_domain_t zdom; 864 865 /* We don't cache empty buckets. This can happen after a reclaim. */ 866 if (bucket->ub_cnt == 0) 867 goto out; 868 zdom = zone_domain_lock(zone, domain); 869 870 /* 871 * Conditionally set the maximum number of items. 872 */ 873 zdom->uzd_nitems += bucket->ub_cnt; 874 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 875 if (ws) { 876 zone_domain_imax_set(zdom, zdom->uzd_nitems); 877 } else { 878 /* 879 * Shift the bounds of the current WSS interval to 880 * avoid perturbing the estimates. 881 */ 882 atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt); 883 zdom->uzd_imin += bucket->ub_cnt; 884 zdom->uzd_bimin += bucket->ub_cnt; 885 zdom->uzd_limin += bucket->ub_cnt; 886 } 887 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 888 zdom->uzd_seq = bucket->ub_seq; 889 890 /* 891 * Try to promote reuse of recently used items. For items 892 * protected by SMR, try to defer reuse to minimize polling. 893 */ 894 if (bucket->ub_seq == SMR_SEQ_INVALID) 895 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 896 else 897 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 898 ZDOM_UNLOCK(zdom); 899 return; 900 } 901 zdom->uzd_nitems -= bucket->ub_cnt; 902 ZDOM_UNLOCK(zdom); 903 out: 904 bucket_free(zone, bucket, udata); 905 } 906 907 /* Pops an item out of a per-cpu cache bucket. */ 908 static inline void * 909 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 910 { 911 void *item; 912 913 CRITICAL_ASSERT(curthread); 914 915 bucket->ucb_cnt--; 916 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 917 #ifdef INVARIANTS 918 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 919 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 920 #endif 921 cache->uc_allocs++; 922 923 return (item); 924 } 925 926 /* Pushes an item into a per-cpu cache bucket. */ 927 static inline void 928 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 929 { 930 931 CRITICAL_ASSERT(curthread); 932 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 933 ("uma_zfree: Freeing to non free bucket index.")); 934 935 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 936 bucket->ucb_cnt++; 937 cache->uc_frees++; 938 } 939 940 /* 941 * Unload a UMA bucket from a per-cpu cache. 942 */ 943 static inline uma_bucket_t 944 cache_bucket_unload(uma_cache_bucket_t bucket) 945 { 946 uma_bucket_t b; 947 948 b = bucket->ucb_bucket; 949 if (b != NULL) { 950 MPASS(b->ub_entries == bucket->ucb_entries); 951 b->ub_cnt = bucket->ucb_cnt; 952 bucket->ucb_bucket = NULL; 953 bucket->ucb_entries = bucket->ucb_cnt = 0; 954 } 955 956 return (b); 957 } 958 959 static inline uma_bucket_t 960 cache_bucket_unload_alloc(uma_cache_t cache) 961 { 962 963 return (cache_bucket_unload(&cache->uc_allocbucket)); 964 } 965 966 static inline uma_bucket_t 967 cache_bucket_unload_free(uma_cache_t cache) 968 { 969 970 return (cache_bucket_unload(&cache->uc_freebucket)); 971 } 972 973 static inline uma_bucket_t 974 cache_bucket_unload_cross(uma_cache_t cache) 975 { 976 977 return (cache_bucket_unload(&cache->uc_crossbucket)); 978 } 979 980 /* 981 * Load a bucket into a per-cpu cache bucket. 982 */ 983 static inline void 984 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 985 { 986 987 CRITICAL_ASSERT(curthread); 988 MPASS(bucket->ucb_bucket == NULL); 989 MPASS(b->ub_seq == SMR_SEQ_INVALID); 990 991 bucket->ucb_bucket = b; 992 bucket->ucb_cnt = b->ub_cnt; 993 bucket->ucb_entries = b->ub_entries; 994 } 995 996 static inline void 997 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 998 { 999 1000 cache_bucket_load(&cache->uc_allocbucket, b); 1001 } 1002 1003 static inline void 1004 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 1005 { 1006 1007 cache_bucket_load(&cache->uc_freebucket, b); 1008 } 1009 1010 #ifdef NUMA 1011 static inline void 1012 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 1013 { 1014 1015 cache_bucket_load(&cache->uc_crossbucket, b); 1016 } 1017 #endif 1018 1019 /* 1020 * Copy and preserve ucb_spare. 1021 */ 1022 static inline void 1023 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1024 { 1025 1026 b1->ucb_bucket = b2->ucb_bucket; 1027 b1->ucb_entries = b2->ucb_entries; 1028 b1->ucb_cnt = b2->ucb_cnt; 1029 } 1030 1031 /* 1032 * Swap two cache buckets. 1033 */ 1034 static inline void 1035 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1036 { 1037 struct uma_cache_bucket b3; 1038 1039 CRITICAL_ASSERT(curthread); 1040 1041 cache_bucket_copy(&b3, b1); 1042 cache_bucket_copy(b1, b2); 1043 cache_bucket_copy(b2, &b3); 1044 } 1045 1046 /* 1047 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 1048 */ 1049 static uma_bucket_t 1050 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 1051 { 1052 uma_zone_domain_t zdom; 1053 uma_bucket_t bucket; 1054 smr_seq_t seq; 1055 1056 /* 1057 * Avoid the lock if possible. 1058 */ 1059 zdom = ZDOM_GET(zone, domain); 1060 if (zdom->uzd_nitems == 0) 1061 return (NULL); 1062 1063 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 1064 (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID && 1065 !smr_poll(zone->uz_smr, seq, false)) 1066 return (NULL); 1067 1068 /* 1069 * Check the zone's cache of buckets. 1070 */ 1071 zdom = zone_domain_lock(zone, domain); 1072 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) 1073 return (bucket); 1074 ZDOM_UNLOCK(zdom); 1075 1076 return (NULL); 1077 } 1078 1079 static void 1080 zone_log_warning(uma_zone_t zone) 1081 { 1082 static const struct timeval warninterval = { 300, 0 }; 1083 1084 if (!zone_warnings || zone->uz_warning == NULL) 1085 return; 1086 1087 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 1088 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 1089 } 1090 1091 static inline void 1092 zone_maxaction(uma_zone_t zone) 1093 { 1094 1095 if (zone->uz_maxaction.ta_func != NULL) 1096 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 1097 } 1098 1099 /* 1100 * Routine called by timeout which is used to fire off some time interval 1101 * based calculations. (stats, hash size, etc.) 1102 * 1103 * Arguments: 1104 * arg Unused 1105 * 1106 * Returns: 1107 * Nothing 1108 */ 1109 static void 1110 uma_timeout(void *unused) 1111 { 1112 bucket_enable(); 1113 zone_foreach(zone_timeout, NULL); 1114 1115 /* Reschedule this event */ 1116 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1117 } 1118 1119 /* 1120 * Update the working set size estimates for the zone's bucket cache. 1121 * The constants chosen here are somewhat arbitrary. 1122 */ 1123 static void 1124 zone_domain_update_wss(uma_zone_domain_t zdom) 1125 { 1126 long m; 1127 1128 ZDOM_LOCK_ASSERT(zdom); 1129 MPASS(zdom->uzd_imax >= zdom->uzd_nitems); 1130 MPASS(zdom->uzd_nitems >= zdom->uzd_bimin); 1131 MPASS(zdom->uzd_bimin >= zdom->uzd_imin); 1132 1133 /* 1134 * Estimate WSS as modified moving average of biggest allocation 1135 * batches for each period over few minutes (UMA_TIMEOUT of 20s). 1136 */ 1137 zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4, 1138 zdom->uzd_imax - zdom->uzd_bimin); 1139 1140 /* 1141 * Estimate longtime minimum item count as a combination of recent 1142 * minimum item count, adjusted by WSS for safety, and the modified 1143 * moving average over the last several hours (UMA_TIMEOUT of 20s). 1144 * timin measures time since limin tried to go negative, that means 1145 * we were dangerously close to or got out of cache. 1146 */ 1147 m = zdom->uzd_imin - zdom->uzd_wss; 1148 if (m >= 0) { 1149 if (zdom->uzd_limin >= m) 1150 zdom->uzd_limin = m; 1151 else 1152 zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256; 1153 zdom->uzd_timin++; 1154 } else { 1155 zdom->uzd_limin = 0; 1156 zdom->uzd_timin = 0; 1157 } 1158 1159 /* To reduce period edge effects on WSS keep half of the imax. */ 1160 atomic_subtract_long(&zdom->uzd_imax, 1161 (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2); 1162 zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems; 1163 } 1164 1165 /* 1166 * Routine to perform timeout driven calculations. This expands the 1167 * hashes and does per cpu statistics aggregation. 1168 * 1169 * Returns nothing. 1170 */ 1171 static void 1172 zone_timeout(uma_zone_t zone, void *unused) 1173 { 1174 uma_keg_t keg; 1175 u_int slabs, pages; 1176 1177 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 1178 goto trim; 1179 1180 keg = zone->uz_keg; 1181 1182 /* 1183 * Hash zones are non-numa by definition so the first domain 1184 * is the only one present. 1185 */ 1186 KEG_LOCK(keg, 0); 1187 pages = keg->uk_domain[0].ud_pages; 1188 1189 /* 1190 * Expand the keg hash table. 1191 * 1192 * This is done if the number of slabs is larger than the hash size. 1193 * What I'm trying to do here is completely reduce collisions. This 1194 * may be a little aggressive. Should I allow for two collisions max? 1195 */ 1196 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1197 struct uma_hash newhash; 1198 struct uma_hash oldhash; 1199 int ret; 1200 1201 /* 1202 * This is so involved because allocating and freeing 1203 * while the keg lock is held will lead to deadlock. 1204 * I have to do everything in stages and check for 1205 * races. 1206 */ 1207 KEG_UNLOCK(keg, 0); 1208 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1209 KEG_LOCK(keg, 0); 1210 if (ret) { 1211 if (hash_expand(&keg->uk_hash, &newhash)) { 1212 oldhash = keg->uk_hash; 1213 keg->uk_hash = newhash; 1214 } else 1215 oldhash = newhash; 1216 1217 KEG_UNLOCK(keg, 0); 1218 hash_free(&oldhash); 1219 goto trim; 1220 } 1221 } 1222 KEG_UNLOCK(keg, 0); 1223 1224 trim: 1225 /* Trim caches not used for a long time. */ 1226 if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) { 1227 for (int i = 0; i < vm_ndomains; i++) { 1228 if (bucket_cache_reclaim_domain(zone, false, false, i) && 1229 (zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1230 keg_drain(zone->uz_keg, i); 1231 } 1232 } 1233 } 1234 1235 /* 1236 * Allocate and zero fill the next sized hash table from the appropriate 1237 * backing store. 1238 * 1239 * Arguments: 1240 * hash A new hash structure with the old hash size in uh_hashsize 1241 * 1242 * Returns: 1243 * 1 on success and 0 on failure. 1244 */ 1245 static int 1246 hash_alloc(struct uma_hash *hash, u_int size) 1247 { 1248 size_t alloc; 1249 1250 KASSERT(powerof2(size), ("hash size must be power of 2")); 1251 if (size > UMA_HASH_SIZE_INIT) { 1252 hash->uh_hashsize = size; 1253 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1254 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1255 } else { 1256 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1257 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1258 UMA_ANYDOMAIN, M_WAITOK); 1259 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1260 } 1261 if (hash->uh_slab_hash) { 1262 bzero(hash->uh_slab_hash, alloc); 1263 hash->uh_hashmask = hash->uh_hashsize - 1; 1264 return (1); 1265 } 1266 1267 return (0); 1268 } 1269 1270 /* 1271 * Expands the hash table for HASH zones. This is done from zone_timeout 1272 * to reduce collisions. This must not be done in the regular allocation 1273 * path, otherwise, we can recurse on the vm while allocating pages. 1274 * 1275 * Arguments: 1276 * oldhash The hash you want to expand 1277 * newhash The hash structure for the new table 1278 * 1279 * Returns: 1280 * Nothing 1281 * 1282 * Discussion: 1283 */ 1284 static int 1285 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1286 { 1287 uma_hash_slab_t slab; 1288 u_int hval; 1289 u_int idx; 1290 1291 if (!newhash->uh_slab_hash) 1292 return (0); 1293 1294 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1295 return (0); 1296 1297 /* 1298 * I need to investigate hash algorithms for resizing without a 1299 * full rehash. 1300 */ 1301 1302 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1303 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1304 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1305 LIST_REMOVE(slab, uhs_hlink); 1306 hval = UMA_HASH(newhash, slab->uhs_data); 1307 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1308 slab, uhs_hlink); 1309 } 1310 1311 return (1); 1312 } 1313 1314 /* 1315 * Free the hash bucket to the appropriate backing store. 1316 * 1317 * Arguments: 1318 * slab_hash The hash bucket we're freeing 1319 * hashsize The number of entries in that hash bucket 1320 * 1321 * Returns: 1322 * Nothing 1323 */ 1324 static void 1325 hash_free(struct uma_hash *hash) 1326 { 1327 if (hash->uh_slab_hash == NULL) 1328 return; 1329 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1330 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1331 else 1332 free(hash->uh_slab_hash, M_UMAHASH); 1333 } 1334 1335 /* 1336 * Frees all outstanding items in a bucket 1337 * 1338 * Arguments: 1339 * zone The zone to free to, must be unlocked. 1340 * bucket The free/alloc bucket with items. 1341 * 1342 * Returns: 1343 * Nothing 1344 */ 1345 static void 1346 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1347 { 1348 int i; 1349 1350 if (bucket->ub_cnt == 0) 1351 return; 1352 1353 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1354 bucket->ub_seq != SMR_SEQ_INVALID) { 1355 smr_wait(zone->uz_smr, bucket->ub_seq); 1356 bucket->ub_seq = SMR_SEQ_INVALID; 1357 for (i = 0; i < bucket->ub_cnt; i++) 1358 item_dtor(zone, bucket->ub_bucket[i], 1359 zone->uz_size, NULL, SKIP_NONE); 1360 } 1361 if (zone->uz_fini) 1362 for (i = 0; i < bucket->ub_cnt; i++) { 1363 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 1364 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1365 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 1366 } 1367 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1368 if (zone->uz_max_items > 0) 1369 zone_free_limit(zone, bucket->ub_cnt); 1370 #ifdef INVARIANTS 1371 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1372 #endif 1373 bucket->ub_cnt = 0; 1374 } 1375 1376 /* 1377 * Drains the per cpu caches for a zone. 1378 * 1379 * NOTE: This may only be called while the zone is being torn down, and not 1380 * during normal operation. This is necessary in order that we do not have 1381 * to migrate CPUs to drain the per-CPU caches. 1382 * 1383 * Arguments: 1384 * zone The zone to drain, must be unlocked. 1385 * 1386 * Returns: 1387 * Nothing 1388 */ 1389 static void 1390 cache_drain(uma_zone_t zone) 1391 { 1392 uma_cache_t cache; 1393 uma_bucket_t bucket; 1394 smr_seq_t seq; 1395 int cpu; 1396 1397 /* 1398 * XXX: It is safe to not lock the per-CPU caches, because we're 1399 * tearing down the zone anyway. I.e., there will be no further use 1400 * of the caches at this point. 1401 * 1402 * XXX: It would good to be able to assert that the zone is being 1403 * torn down to prevent improper use of cache_drain(). 1404 */ 1405 seq = SMR_SEQ_INVALID; 1406 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1407 seq = smr_advance(zone->uz_smr); 1408 CPU_FOREACH(cpu) { 1409 cache = &zone->uz_cpu[cpu]; 1410 bucket = cache_bucket_unload_alloc(cache); 1411 if (bucket != NULL) 1412 bucket_free(zone, bucket, NULL); 1413 bucket = cache_bucket_unload_free(cache); 1414 if (bucket != NULL) { 1415 bucket->ub_seq = seq; 1416 bucket_free(zone, bucket, NULL); 1417 } 1418 bucket = cache_bucket_unload_cross(cache); 1419 if (bucket != NULL) { 1420 bucket->ub_seq = seq; 1421 bucket_free(zone, bucket, NULL); 1422 } 1423 } 1424 bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN); 1425 } 1426 1427 static void 1428 cache_shrink(uma_zone_t zone, void *unused) 1429 { 1430 1431 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1432 return; 1433 1434 ZONE_LOCK(zone); 1435 zone->uz_bucket_size = 1436 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1437 ZONE_UNLOCK(zone); 1438 } 1439 1440 static void 1441 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1442 { 1443 uma_cache_t cache; 1444 uma_bucket_t b1, b2, b3; 1445 int domain; 1446 1447 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1448 return; 1449 1450 b1 = b2 = b3 = NULL; 1451 critical_enter(); 1452 cache = &zone->uz_cpu[curcpu]; 1453 domain = PCPU_GET(domain); 1454 b1 = cache_bucket_unload_alloc(cache); 1455 1456 /* 1457 * Don't flush SMR zone buckets. This leaves the zone without a 1458 * bucket and forces every free to synchronize(). 1459 */ 1460 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1461 b2 = cache_bucket_unload_free(cache); 1462 b3 = cache_bucket_unload_cross(cache); 1463 } 1464 critical_exit(); 1465 1466 if (b1 != NULL) 1467 zone_free_bucket(zone, b1, NULL, domain, false); 1468 if (b2 != NULL) 1469 zone_free_bucket(zone, b2, NULL, domain, false); 1470 if (b3 != NULL) { 1471 /* Adjust the domain so it goes to zone_free_cross. */ 1472 domain = (domain + 1) % vm_ndomains; 1473 zone_free_bucket(zone, b3, NULL, domain, false); 1474 } 1475 } 1476 1477 /* 1478 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1479 * This is an expensive call because it needs to bind to all CPUs 1480 * one by one and enter a critical section on each of them in order 1481 * to safely access their cache buckets. 1482 * Zone lock must not be held on call this function. 1483 */ 1484 static void 1485 pcpu_cache_drain_safe(uma_zone_t zone) 1486 { 1487 int cpu; 1488 1489 /* 1490 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1491 */ 1492 if (zone) 1493 cache_shrink(zone, NULL); 1494 else 1495 zone_foreach(cache_shrink, NULL); 1496 1497 CPU_FOREACH(cpu) { 1498 thread_lock(curthread); 1499 sched_bind(curthread, cpu); 1500 thread_unlock(curthread); 1501 1502 if (zone) 1503 cache_drain_safe_cpu(zone, NULL); 1504 else 1505 zone_foreach(cache_drain_safe_cpu, NULL); 1506 } 1507 thread_lock(curthread); 1508 sched_unbind(curthread); 1509 thread_unlock(curthread); 1510 } 1511 1512 /* 1513 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1514 * requested a drain, otherwise the per-domain caches are trimmed to either 1515 * estimated working set size. 1516 */ 1517 static bool 1518 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain) 1519 { 1520 uma_zone_domain_t zdom; 1521 uma_bucket_t bucket; 1522 long target; 1523 bool done = false; 1524 1525 /* 1526 * The cross bucket is partially filled and not part of 1527 * the item count. Reclaim it individually here. 1528 */ 1529 zdom = ZDOM_GET(zone, domain); 1530 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1531 ZONE_CROSS_LOCK(zone); 1532 bucket = zdom->uzd_cross; 1533 zdom->uzd_cross = NULL; 1534 ZONE_CROSS_UNLOCK(zone); 1535 if (bucket != NULL) 1536 bucket_free(zone, bucket, NULL); 1537 } 1538 1539 /* 1540 * If we were asked to drain the zone, we are done only once 1541 * this bucket cache is empty. If trim, we reclaim items in 1542 * excess of the zone's estimated working set size. Multiple 1543 * consecutive calls will shrink the WSS and so reclaim more. 1544 * If neither drain nor trim, then voluntarily reclaim 1/4 1545 * (to reduce first spike) of items not used for a long time. 1546 */ 1547 ZDOM_LOCK(zdom); 1548 zone_domain_update_wss(zdom); 1549 if (drain) 1550 target = 0; 1551 else if (trim) 1552 target = zdom->uzd_wss; 1553 else if (zdom->uzd_timin > 900 / UMA_TIMEOUT) 1554 target = zdom->uzd_nitems - zdom->uzd_limin / 4; 1555 else { 1556 ZDOM_UNLOCK(zdom); 1557 return (done); 1558 } 1559 while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL && 1560 zdom->uzd_nitems >= target + bucket->ub_cnt) { 1561 bucket = zone_fetch_bucket(zone, zdom, true); 1562 if (bucket == NULL) 1563 break; 1564 bucket_free(zone, bucket, NULL); 1565 done = true; 1566 ZDOM_LOCK(zdom); 1567 } 1568 ZDOM_UNLOCK(zdom); 1569 return (done); 1570 } 1571 1572 static void 1573 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain) 1574 { 1575 int i; 1576 1577 /* 1578 * Shrink the zone bucket size to ensure that the per-CPU caches 1579 * don't grow too large. 1580 */ 1581 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1582 zone->uz_bucket_size--; 1583 1584 if (domain != UMA_ANYDOMAIN && 1585 (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) { 1586 bucket_cache_reclaim_domain(zone, drain, true, domain); 1587 } else { 1588 for (i = 0; i < vm_ndomains; i++) 1589 bucket_cache_reclaim_domain(zone, drain, true, i); 1590 } 1591 } 1592 1593 static void 1594 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1595 { 1596 uint8_t *mem; 1597 size_t size; 1598 int i; 1599 uint8_t flags; 1600 1601 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1602 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1603 1604 mem = slab_data(slab, keg); 1605 size = PAGE_SIZE * keg->uk_ppera; 1606 1607 kasan_mark_slab_valid(keg, mem); 1608 if (keg->uk_fini != NULL) { 1609 for (i = start - 1; i > -1; i--) 1610 #ifdef INVARIANTS 1611 /* 1612 * trash_fini implies that dtor was trash_dtor. trash_fini 1613 * would check that memory hasn't been modified since free, 1614 * which executed trash_dtor. 1615 * That's why we need to run uma_dbg_kskip() check here, 1616 * albeit we don't make skip check for other init/fini 1617 * invocations. 1618 */ 1619 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1620 keg->uk_fini != trash_fini) 1621 #endif 1622 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1623 } 1624 flags = slab->us_flags; 1625 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1626 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1627 NULL, SKIP_NONE); 1628 } 1629 keg->uk_freef(mem, size, flags); 1630 uma_total_dec(size); 1631 } 1632 1633 static void 1634 keg_drain_domain(uma_keg_t keg, int domain) 1635 { 1636 struct slabhead freeslabs; 1637 uma_domain_t dom; 1638 uma_slab_t slab, tmp; 1639 uint32_t i, stofree, stokeep, partial; 1640 1641 dom = &keg->uk_domain[domain]; 1642 LIST_INIT(&freeslabs); 1643 1644 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1645 keg->uk_name, keg, domain, dom->ud_free_items); 1646 1647 KEG_LOCK(keg, domain); 1648 1649 /* 1650 * Are the free items in partially allocated slabs sufficient to meet 1651 * the reserve? If not, compute the number of fully free slabs that must 1652 * be kept. 1653 */ 1654 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers; 1655 if (partial < keg->uk_reserve) { 1656 stokeep = min(dom->ud_free_slabs, 1657 howmany(keg->uk_reserve - partial, keg->uk_ipers)); 1658 } else { 1659 stokeep = 0; 1660 } 1661 stofree = dom->ud_free_slabs - stokeep; 1662 1663 /* 1664 * Partition the free slabs into two sets: those that must be kept in 1665 * order to maintain the reserve, and those that may be released back to 1666 * the system. Since one set may be much larger than the other, 1667 * populate the smaller of the two sets and swap them if necessary. 1668 */ 1669 for (i = min(stofree, stokeep); i > 0; i--) { 1670 slab = LIST_FIRST(&dom->ud_free_slab); 1671 LIST_REMOVE(slab, us_link); 1672 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1673 } 1674 if (stofree > stokeep) 1675 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1676 1677 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1678 LIST_FOREACH(slab, &freeslabs, us_link) 1679 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1680 } 1681 dom->ud_free_items -= stofree * keg->uk_ipers; 1682 dom->ud_free_slabs -= stofree; 1683 dom->ud_pages -= stofree * keg->uk_ppera; 1684 KEG_UNLOCK(keg, domain); 1685 1686 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1687 keg_free_slab(keg, slab, keg->uk_ipers); 1688 } 1689 1690 /* 1691 * Frees pages from a keg back to the system. This is done on demand from 1692 * the pageout daemon. 1693 * 1694 * Returns nothing. 1695 */ 1696 static void 1697 keg_drain(uma_keg_t keg, int domain) 1698 { 1699 int i; 1700 1701 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0) 1702 return; 1703 if (domain != UMA_ANYDOMAIN) { 1704 keg_drain_domain(keg, domain); 1705 } else { 1706 for (i = 0; i < vm_ndomains; i++) 1707 keg_drain_domain(keg, i); 1708 } 1709 } 1710 1711 static void 1712 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain) 1713 { 1714 /* 1715 * Count active reclaim operations in order to interlock with 1716 * zone_dtor(), which removes the zone from global lists before 1717 * attempting to reclaim items itself. 1718 * 1719 * The zone may be destroyed while sleeping, so only zone_dtor() should 1720 * specify M_WAITOK. 1721 */ 1722 ZONE_LOCK(zone); 1723 if (waitok == M_WAITOK) { 1724 while (zone->uz_reclaimers > 0) 1725 msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1); 1726 } 1727 zone->uz_reclaimers++; 1728 ZONE_UNLOCK(zone); 1729 bucket_cache_reclaim(zone, drain, domain); 1730 1731 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1732 keg_drain(zone->uz_keg, domain); 1733 ZONE_LOCK(zone); 1734 zone->uz_reclaimers--; 1735 if (zone->uz_reclaimers == 0) 1736 wakeup(zone); 1737 ZONE_UNLOCK(zone); 1738 } 1739 1740 /* 1741 * Allocate a new slab for a keg and inserts it into the partial slab list. 1742 * The keg should be unlocked on entry. If the allocation succeeds it will 1743 * be locked on return. 1744 * 1745 * Arguments: 1746 * flags Wait flags for the item initialization routine 1747 * aflags Wait flags for the slab allocation 1748 * 1749 * Returns: 1750 * The slab that was allocated or NULL if there is no memory and the 1751 * caller specified M_NOWAIT. 1752 */ 1753 static uma_slab_t 1754 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1755 int aflags) 1756 { 1757 uma_domain_t dom; 1758 uma_slab_t slab; 1759 unsigned long size; 1760 uint8_t *mem; 1761 uint8_t sflags; 1762 int i; 1763 1764 KASSERT(domain >= 0 && domain < vm_ndomains, 1765 ("keg_alloc_slab: domain %d out of range", domain)); 1766 1767 slab = NULL; 1768 mem = NULL; 1769 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1770 uma_hash_slab_t hslab; 1771 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1772 domain, aflags); 1773 if (hslab == NULL) 1774 goto fail; 1775 slab = &hslab->uhs_slab; 1776 } 1777 1778 /* 1779 * This reproduces the old vm_zone behavior of zero filling pages the 1780 * first time they are added to a zone. 1781 * 1782 * Malloced items are zeroed in uma_zalloc. 1783 */ 1784 1785 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1786 aflags |= M_ZERO; 1787 else 1788 aflags &= ~M_ZERO; 1789 1790 if (keg->uk_flags & UMA_ZONE_NODUMP) 1791 aflags |= M_NODUMP; 1792 1793 /* zone is passed for legacy reasons. */ 1794 size = keg->uk_ppera * PAGE_SIZE; 1795 mem = keg->uk_allocf(zone, size, domain, &sflags, aflags); 1796 if (mem == NULL) { 1797 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1798 zone_free_item(slabzone(keg->uk_ipers), 1799 slab_tohashslab(slab), NULL, SKIP_NONE); 1800 goto fail; 1801 } 1802 uma_total_inc(size); 1803 1804 /* For HASH zones all pages go to the same uma_domain. */ 1805 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1806 domain = 0; 1807 1808 /* Point the slab into the allocated memory */ 1809 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1810 slab = (uma_slab_t)(mem + keg->uk_pgoff); 1811 else 1812 slab_tohashslab(slab)->uhs_data = mem; 1813 1814 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1815 for (i = 0; i < keg->uk_ppera; i++) 1816 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1817 zone, slab); 1818 1819 slab->us_freecount = keg->uk_ipers; 1820 slab->us_flags = sflags; 1821 slab->us_domain = domain; 1822 1823 BIT_FILL(keg->uk_ipers, &slab->us_free); 1824 #ifdef INVARIANTS 1825 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1826 #endif 1827 1828 if (keg->uk_init != NULL) { 1829 for (i = 0; i < keg->uk_ipers; i++) 1830 if (keg->uk_init(slab_item(slab, keg, i), 1831 keg->uk_size, flags) != 0) 1832 break; 1833 if (i != keg->uk_ipers) { 1834 keg_free_slab(keg, slab, i); 1835 goto fail; 1836 } 1837 } 1838 kasan_mark_slab_invalid(keg, mem); 1839 KEG_LOCK(keg, domain); 1840 1841 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1842 slab, keg->uk_name, keg); 1843 1844 if (keg->uk_flags & UMA_ZFLAG_HASH) 1845 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1846 1847 /* 1848 * If we got a slab here it's safe to mark it partially used 1849 * and return. We assume that the caller is going to remove 1850 * at least one item. 1851 */ 1852 dom = &keg->uk_domain[domain]; 1853 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1854 dom->ud_pages += keg->uk_ppera; 1855 dom->ud_free_items += keg->uk_ipers; 1856 1857 return (slab); 1858 1859 fail: 1860 return (NULL); 1861 } 1862 1863 /* 1864 * This function is intended to be used early on in place of page_alloc(). It 1865 * performs contiguous physical memory allocations and uses a bump allocator for 1866 * KVA, so is usable before the kernel map is initialized. 1867 */ 1868 static void * 1869 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1870 int wait) 1871 { 1872 vm_paddr_t pa; 1873 vm_page_t m; 1874 int i, pages; 1875 1876 pages = howmany(bytes, PAGE_SIZE); 1877 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1878 1879 *pflag = UMA_SLAB_BOOT; 1880 m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) | 1881 VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, 1882 VM_MEMATTR_DEFAULT); 1883 if (m == NULL) 1884 return (NULL); 1885 1886 pa = VM_PAGE_TO_PHYS(m); 1887 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1888 #if defined(__aarch64__) || defined(__amd64__) || \ 1889 defined(__riscv) || defined(__powerpc64__) 1890 if ((wait & M_NODUMP) == 0) 1891 dump_add_page(pa); 1892 #endif 1893 } 1894 1895 /* Allocate KVA and indirectly advance bootmem. */ 1896 return ((void *)pmap_map(&bootmem, m->phys_addr, 1897 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE)); 1898 } 1899 1900 static void 1901 startup_free(void *mem, vm_size_t bytes) 1902 { 1903 vm_offset_t va; 1904 vm_page_t m; 1905 1906 va = (vm_offset_t)mem; 1907 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1908 1909 /* 1910 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid 1911 * unmapping ranges of the direct map. 1912 */ 1913 if (va >= bootstart && va + bytes <= bootmem) 1914 pmap_remove(kernel_pmap, va, va + bytes); 1915 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1916 #if defined(__aarch64__) || defined(__amd64__) || \ 1917 defined(__riscv) || defined(__powerpc64__) 1918 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1919 #endif 1920 vm_page_unwire_noq(m); 1921 vm_page_free(m); 1922 } 1923 } 1924 1925 /* 1926 * Allocates a number of pages from the system 1927 * 1928 * Arguments: 1929 * bytes The number of bytes requested 1930 * wait Shall we wait? 1931 * 1932 * Returns: 1933 * A pointer to the alloced memory or possibly 1934 * NULL if M_NOWAIT is set. 1935 */ 1936 static void * 1937 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1938 int wait) 1939 { 1940 void *p; /* Returned page */ 1941 1942 *pflag = UMA_SLAB_KERNEL; 1943 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1944 1945 return (p); 1946 } 1947 1948 static void * 1949 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1950 int wait) 1951 { 1952 struct pglist alloctail; 1953 vm_offset_t addr, zkva; 1954 int cpu, flags; 1955 vm_page_t p, p_next; 1956 #ifdef NUMA 1957 struct pcpu *pc; 1958 #endif 1959 1960 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1961 1962 TAILQ_INIT(&alloctail); 1963 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait); 1964 *pflag = UMA_SLAB_KERNEL; 1965 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1966 if (CPU_ABSENT(cpu)) { 1967 p = vm_page_alloc_noobj(flags); 1968 } else { 1969 #ifndef NUMA 1970 p = vm_page_alloc_noobj(flags); 1971 #else 1972 pc = pcpu_find(cpu); 1973 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1974 p = NULL; 1975 else 1976 p = vm_page_alloc_noobj_domain(pc->pc_domain, 1977 flags); 1978 if (__predict_false(p == NULL)) 1979 p = vm_page_alloc_noobj(flags); 1980 #endif 1981 } 1982 if (__predict_false(p == NULL)) 1983 goto fail; 1984 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1985 } 1986 if ((addr = kva_alloc(bytes)) == 0) 1987 goto fail; 1988 zkva = addr; 1989 TAILQ_FOREACH(p, &alloctail, listq) { 1990 pmap_qenter(zkva, &p, 1); 1991 zkva += PAGE_SIZE; 1992 } 1993 return ((void*)addr); 1994 fail: 1995 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1996 vm_page_unwire_noq(p); 1997 vm_page_free(p); 1998 } 1999 return (NULL); 2000 } 2001 2002 /* 2003 * Allocates a number of pages not belonging to a VM object 2004 * 2005 * Arguments: 2006 * bytes The number of bytes requested 2007 * wait Shall we wait? 2008 * 2009 * Returns: 2010 * A pointer to the alloced memory or possibly 2011 * NULL if M_NOWAIT is set. 2012 */ 2013 static void * 2014 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 2015 int wait) 2016 { 2017 TAILQ_HEAD(, vm_page) alloctail; 2018 u_long npages; 2019 vm_offset_t retkva, zkva; 2020 vm_page_t p, p_next; 2021 uma_keg_t keg; 2022 int req; 2023 2024 TAILQ_INIT(&alloctail); 2025 keg = zone->uz_keg; 2026 req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 2027 if ((wait & M_WAITOK) != 0) 2028 req |= VM_ALLOC_WAITOK; 2029 2030 npages = howmany(bytes, PAGE_SIZE); 2031 while (npages > 0) { 2032 p = vm_page_alloc_noobj_domain(domain, req); 2033 if (p != NULL) { 2034 /* 2035 * Since the page does not belong to an object, its 2036 * listq is unused. 2037 */ 2038 TAILQ_INSERT_TAIL(&alloctail, p, listq); 2039 npages--; 2040 continue; 2041 } 2042 /* 2043 * Page allocation failed, free intermediate pages and 2044 * exit. 2045 */ 2046 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 2047 vm_page_unwire_noq(p); 2048 vm_page_free(p); 2049 } 2050 return (NULL); 2051 } 2052 *flags = UMA_SLAB_PRIV; 2053 zkva = keg->uk_kva + 2054 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 2055 retkva = zkva; 2056 TAILQ_FOREACH(p, &alloctail, listq) { 2057 pmap_qenter(zkva, &p, 1); 2058 zkva += PAGE_SIZE; 2059 } 2060 2061 return ((void *)retkva); 2062 } 2063 2064 /* 2065 * Allocate physically contiguous pages. 2066 */ 2067 static void * 2068 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 2069 int wait) 2070 { 2071 2072 *pflag = UMA_SLAB_KERNEL; 2073 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 2074 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 2075 } 2076 2077 /* 2078 * Frees a number of pages to the system 2079 * 2080 * Arguments: 2081 * mem A pointer to the memory to be freed 2082 * size The size of the memory being freed 2083 * flags The original p->us_flags field 2084 * 2085 * Returns: 2086 * Nothing 2087 */ 2088 static void 2089 page_free(void *mem, vm_size_t size, uint8_t flags) 2090 { 2091 2092 if ((flags & UMA_SLAB_BOOT) != 0) { 2093 startup_free(mem, size); 2094 return; 2095 } 2096 2097 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 2098 ("UMA: page_free used with invalid flags %x", flags)); 2099 2100 kmem_free((vm_offset_t)mem, size); 2101 } 2102 2103 /* 2104 * Frees pcpu zone allocations 2105 * 2106 * Arguments: 2107 * mem A pointer to the memory to be freed 2108 * size The size of the memory being freed 2109 * flags The original p->us_flags field 2110 * 2111 * Returns: 2112 * Nothing 2113 */ 2114 static void 2115 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 2116 { 2117 vm_offset_t sva, curva; 2118 vm_paddr_t paddr; 2119 vm_page_t m; 2120 2121 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 2122 2123 if ((flags & UMA_SLAB_BOOT) != 0) { 2124 startup_free(mem, size); 2125 return; 2126 } 2127 2128 sva = (vm_offset_t)mem; 2129 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 2130 paddr = pmap_kextract(curva); 2131 m = PHYS_TO_VM_PAGE(paddr); 2132 vm_page_unwire_noq(m); 2133 vm_page_free(m); 2134 } 2135 pmap_qremove(sva, size >> PAGE_SHIFT); 2136 kva_free(sva, size); 2137 } 2138 2139 /* 2140 * Zero fill initializer 2141 * 2142 * Arguments/Returns follow uma_init specifications 2143 */ 2144 static int 2145 zero_init(void *mem, int size, int flags) 2146 { 2147 bzero(mem, size); 2148 return (0); 2149 } 2150 2151 #ifdef INVARIANTS 2152 static struct noslabbits * 2153 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 2154 { 2155 2156 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 2157 } 2158 #endif 2159 2160 /* 2161 * Actual size of embedded struct slab (!OFFPAGE). 2162 */ 2163 static size_t 2164 slab_sizeof(int nitems) 2165 { 2166 size_t s; 2167 2168 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 2169 return (roundup(s, UMA_ALIGN_PTR + 1)); 2170 } 2171 2172 #define UMA_FIXPT_SHIFT 31 2173 #define UMA_FRAC_FIXPT(n, d) \ 2174 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 2175 #define UMA_FIXPT_PCT(f) \ 2176 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 2177 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 2178 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 2179 2180 /* 2181 * Compute the number of items that will fit in a slab. If hdr is true, the 2182 * item count may be limited to provide space in the slab for an inline slab 2183 * header. Otherwise, all slab space will be provided for item storage. 2184 */ 2185 static u_int 2186 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 2187 { 2188 u_int ipers; 2189 u_int padpi; 2190 2191 /* The padding between items is not needed after the last item. */ 2192 padpi = rsize - size; 2193 2194 if (hdr) { 2195 /* 2196 * Start with the maximum item count and remove items until 2197 * the slab header first alongside the allocatable memory. 2198 */ 2199 for (ipers = MIN(SLAB_MAX_SETSIZE, 2200 (slabsize + padpi - slab_sizeof(1)) / rsize); 2201 ipers > 0 && 2202 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 2203 ipers--) 2204 continue; 2205 } else { 2206 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 2207 } 2208 2209 return (ipers); 2210 } 2211 2212 struct keg_layout_result { 2213 u_int format; 2214 u_int slabsize; 2215 u_int ipers; 2216 u_int eff; 2217 }; 2218 2219 static void 2220 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 2221 struct keg_layout_result *kl) 2222 { 2223 u_int total; 2224 2225 kl->format = fmt; 2226 kl->slabsize = slabsize; 2227 2228 /* Handle INTERNAL as inline with an extra page. */ 2229 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 2230 kl->format &= ~UMA_ZFLAG_INTERNAL; 2231 kl->slabsize += PAGE_SIZE; 2232 } 2233 2234 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2235 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2236 2237 /* Account for memory used by an offpage slab header. */ 2238 total = kl->slabsize; 2239 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2240 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2241 2242 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2243 } 2244 2245 /* 2246 * Determine the format of a uma keg. This determines where the slab header 2247 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2248 * 2249 * Arguments 2250 * keg The zone we should initialize 2251 * 2252 * Returns 2253 * Nothing 2254 */ 2255 static void 2256 keg_layout(uma_keg_t keg) 2257 { 2258 struct keg_layout_result kl = {}, kl_tmp; 2259 u_int fmts[2]; 2260 u_int alignsize; 2261 u_int nfmt; 2262 u_int pages; 2263 u_int rsize; 2264 u_int slabsize; 2265 u_int i, j; 2266 2267 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2268 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2269 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2270 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2271 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2272 PRINT_UMA_ZFLAGS)); 2273 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2274 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2275 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2276 PRINT_UMA_ZFLAGS)); 2277 2278 alignsize = keg->uk_align + 1; 2279 #ifdef KASAN 2280 /* 2281 * ASAN requires that each allocation be aligned to the shadow map 2282 * scale factor. 2283 */ 2284 if (alignsize < KASAN_SHADOW_SCALE) 2285 alignsize = KASAN_SHADOW_SCALE; 2286 #endif 2287 2288 /* 2289 * Calculate the size of each allocation (rsize) according to 2290 * alignment. If the requested size is smaller than we have 2291 * allocation bits for we round it up. 2292 */ 2293 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2294 rsize = roundup2(rsize, alignsize); 2295 2296 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2297 /* 2298 * We want one item to start on every align boundary in a page. 2299 * To do this we will span pages. We will also extend the item 2300 * by the size of align if it is an even multiple of align. 2301 * Otherwise, it would fall on the same boundary every time. 2302 */ 2303 if ((rsize & alignsize) == 0) 2304 rsize += alignsize; 2305 slabsize = rsize * (PAGE_SIZE / alignsize); 2306 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2307 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2308 slabsize = round_page(slabsize); 2309 } else { 2310 /* 2311 * Start with a slab size of as many pages as it takes to 2312 * represent a single item. We will try to fit as many 2313 * additional items into the slab as possible. 2314 */ 2315 slabsize = round_page(keg->uk_size); 2316 } 2317 2318 /* Build a list of all of the available formats for this keg. */ 2319 nfmt = 0; 2320 2321 /* Evaluate an inline slab layout. */ 2322 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2323 fmts[nfmt++] = 0; 2324 2325 /* TODO: vm_page-embedded slab. */ 2326 2327 /* 2328 * We can't do OFFPAGE if we're internal or if we've been 2329 * asked to not go to the VM for buckets. If we do this we 2330 * may end up going to the VM for slabs which we do not want 2331 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2332 * In those cases, evaluate a pseudo-format called INTERNAL 2333 * which has an inline slab header and one extra page to 2334 * guarantee that it fits. 2335 * 2336 * Otherwise, see if using an OFFPAGE slab will improve our 2337 * efficiency. 2338 */ 2339 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2340 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2341 else 2342 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2343 2344 /* 2345 * Choose a slab size and format which satisfy the minimum efficiency. 2346 * Prefer the smallest slab size that meets the constraints. 2347 * 2348 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2349 * for small items (up to PAGE_SIZE), the iteration increment is one 2350 * page; and for large items, the increment is one item. 2351 */ 2352 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2353 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2354 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2355 rsize, i)); 2356 for ( ; ; i++) { 2357 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2358 round_page(rsize * (i - 1) + keg->uk_size); 2359 2360 for (j = 0; j < nfmt; j++) { 2361 /* Only if we have no viable format yet. */ 2362 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2363 kl.ipers > 0) 2364 continue; 2365 2366 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2367 if (kl_tmp.eff <= kl.eff) 2368 continue; 2369 2370 kl = kl_tmp; 2371 2372 CTR6(KTR_UMA, "keg %s layout: format %#x " 2373 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2374 keg->uk_name, kl.format, kl.ipers, rsize, 2375 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2376 2377 /* Stop when we reach the minimum efficiency. */ 2378 if (kl.eff >= UMA_MIN_EFF) 2379 break; 2380 } 2381 2382 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2383 slabsize >= SLAB_MAX_SETSIZE * rsize || 2384 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2385 break; 2386 } 2387 2388 pages = atop(kl.slabsize); 2389 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2390 pages *= mp_maxid + 1; 2391 2392 keg->uk_rsize = rsize; 2393 keg->uk_ipers = kl.ipers; 2394 keg->uk_ppera = pages; 2395 keg->uk_flags |= kl.format; 2396 2397 /* 2398 * How do we find the slab header if it is offpage or if not all item 2399 * start addresses are in the same page? We could solve the latter 2400 * case with vaddr alignment, but we don't. 2401 */ 2402 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2403 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2404 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2405 keg->uk_flags |= UMA_ZFLAG_HASH; 2406 else 2407 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2408 } 2409 2410 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2411 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2412 pages); 2413 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2414 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2415 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2416 keg->uk_ipers, pages)); 2417 } 2418 2419 /* 2420 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2421 * the keg onto the global keg list. 2422 * 2423 * Arguments/Returns follow uma_ctor specifications 2424 * udata Actually uma_kctor_args 2425 */ 2426 static int 2427 keg_ctor(void *mem, int size, void *udata, int flags) 2428 { 2429 struct uma_kctor_args *arg = udata; 2430 uma_keg_t keg = mem; 2431 uma_zone_t zone; 2432 int i; 2433 2434 bzero(keg, size); 2435 keg->uk_size = arg->size; 2436 keg->uk_init = arg->uminit; 2437 keg->uk_fini = arg->fini; 2438 keg->uk_align = arg->align; 2439 keg->uk_reserve = 0; 2440 keg->uk_flags = arg->flags; 2441 2442 /* 2443 * We use a global round-robin policy by default. Zones with 2444 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2445 * case the iterator is never run. 2446 */ 2447 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2448 keg->uk_dr.dr_iter = 0; 2449 2450 /* 2451 * The primary zone is passed to us at keg-creation time. 2452 */ 2453 zone = arg->zone; 2454 keg->uk_name = zone->uz_name; 2455 2456 if (arg->flags & UMA_ZONE_ZINIT) 2457 keg->uk_init = zero_init; 2458 2459 if (arg->flags & UMA_ZONE_MALLOC) 2460 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2461 2462 #ifndef SMP 2463 keg->uk_flags &= ~UMA_ZONE_PCPU; 2464 #endif 2465 2466 keg_layout(keg); 2467 2468 /* 2469 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2470 * work on. Use round-robin for everything else. 2471 * 2472 * Zones may override the default by specifying either. 2473 */ 2474 #ifdef NUMA 2475 if ((keg->uk_flags & 2476 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2477 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2478 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2479 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2480 #endif 2481 2482 /* 2483 * If we haven't booted yet we need allocations to go through the 2484 * startup cache until the vm is ready. 2485 */ 2486 #ifdef UMA_MD_SMALL_ALLOC 2487 if (keg->uk_ppera == 1) 2488 keg->uk_allocf = uma_small_alloc; 2489 else 2490 #endif 2491 if (booted < BOOT_KVA) 2492 keg->uk_allocf = startup_alloc; 2493 else if (keg->uk_flags & UMA_ZONE_PCPU) 2494 keg->uk_allocf = pcpu_page_alloc; 2495 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2496 keg->uk_allocf = contig_alloc; 2497 else 2498 keg->uk_allocf = page_alloc; 2499 #ifdef UMA_MD_SMALL_ALLOC 2500 if (keg->uk_ppera == 1) 2501 keg->uk_freef = uma_small_free; 2502 else 2503 #endif 2504 if (keg->uk_flags & UMA_ZONE_PCPU) 2505 keg->uk_freef = pcpu_page_free; 2506 else 2507 keg->uk_freef = page_free; 2508 2509 /* 2510 * Initialize keg's locks. 2511 */ 2512 for (i = 0; i < vm_ndomains; i++) 2513 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2514 2515 /* 2516 * If we're putting the slab header in the actual page we need to 2517 * figure out where in each page it goes. See slab_sizeof 2518 * definition. 2519 */ 2520 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2521 size_t shsize; 2522 2523 shsize = slab_sizeof(keg->uk_ipers); 2524 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2525 /* 2526 * The only way the following is possible is if with our 2527 * UMA_ALIGN_PTR adjustments we are now bigger than 2528 * UMA_SLAB_SIZE. I haven't checked whether this is 2529 * mathematically possible for all cases, so we make 2530 * sure here anyway. 2531 */ 2532 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2533 ("zone %s ipers %d rsize %d size %d slab won't fit", 2534 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2535 } 2536 2537 if (keg->uk_flags & UMA_ZFLAG_HASH) 2538 hash_alloc(&keg->uk_hash, 0); 2539 2540 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2541 2542 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2543 2544 rw_wlock(&uma_rwlock); 2545 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2546 rw_wunlock(&uma_rwlock); 2547 return (0); 2548 } 2549 2550 static void 2551 zone_kva_available(uma_zone_t zone, void *unused) 2552 { 2553 uma_keg_t keg; 2554 2555 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2556 return; 2557 KEG_GET(zone, keg); 2558 2559 if (keg->uk_allocf == startup_alloc) { 2560 /* Switch to the real allocator. */ 2561 if (keg->uk_flags & UMA_ZONE_PCPU) 2562 keg->uk_allocf = pcpu_page_alloc; 2563 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2564 keg->uk_ppera > 1) 2565 keg->uk_allocf = contig_alloc; 2566 else 2567 keg->uk_allocf = page_alloc; 2568 } 2569 } 2570 2571 static void 2572 zone_alloc_counters(uma_zone_t zone, void *unused) 2573 { 2574 2575 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2576 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2577 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2578 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2579 } 2580 2581 static void 2582 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2583 { 2584 uma_zone_domain_t zdom; 2585 uma_domain_t dom; 2586 uma_keg_t keg; 2587 struct sysctl_oid *oid, *domainoid; 2588 int domains, i, cnt; 2589 static const char *nokeg = "cache zone"; 2590 char *c; 2591 2592 /* 2593 * Make a sysctl safe copy of the zone name by removing 2594 * any special characters and handling dups by appending 2595 * an index. 2596 */ 2597 if (zone->uz_namecnt != 0) { 2598 /* Count the number of decimal digits and '_' separator. */ 2599 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2600 cnt /= 10; 2601 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2602 M_UMA, M_WAITOK); 2603 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2604 zone->uz_namecnt); 2605 } else 2606 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2607 for (c = zone->uz_ctlname; *c != '\0'; c++) 2608 if (strchr("./\\ -", *c) != NULL) 2609 *c = '_'; 2610 2611 /* 2612 * Basic parameters at the root. 2613 */ 2614 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2615 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2616 oid = zone->uz_oid; 2617 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2618 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2619 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2620 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2621 zone, 0, sysctl_handle_uma_zone_flags, "A", 2622 "Allocator configuration flags"); 2623 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2624 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2625 "Desired per-cpu cache size"); 2626 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2627 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2628 "Maximum allowed per-cpu cache size"); 2629 2630 /* 2631 * keg if present. 2632 */ 2633 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2634 domains = vm_ndomains; 2635 else 2636 domains = 1; 2637 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2638 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2639 keg = zone->uz_keg; 2640 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2641 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2642 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2643 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2644 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2645 "Real object size with alignment"); 2646 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2647 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2648 "pages per-slab allocation"); 2649 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2650 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2651 "items available per-slab"); 2652 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2653 "align", CTLFLAG_RD, &keg->uk_align, 0, 2654 "item alignment mask"); 2655 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2656 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0, 2657 "number of reserved items"); 2658 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2659 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2660 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2661 "Slab utilization (100 - internal fragmentation %)"); 2662 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2663 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2664 for (i = 0; i < domains; i++) { 2665 dom = &keg->uk_domain[i]; 2666 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2667 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2668 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2669 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2670 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2671 "Total pages currently allocated from VM"); 2672 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2673 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2674 "Items free in the slab layer"); 2675 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2676 "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0, 2677 "Unused slabs"); 2678 } 2679 } else 2680 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2681 "name", CTLFLAG_RD, nokeg, "Keg name"); 2682 2683 /* 2684 * Information about zone limits. 2685 */ 2686 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2687 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2688 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2689 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2690 zone, 0, sysctl_handle_uma_zone_items, "QU", 2691 "Current number of allocated items if limit is set"); 2692 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2693 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2694 "Maximum number of allocated and cached items"); 2695 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2696 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2697 "Number of threads sleeping at limit"); 2698 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2699 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2700 "Total zone limit sleeps"); 2701 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2702 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2703 "Maximum number of items in each domain's bucket cache"); 2704 2705 /* 2706 * Per-domain zone information. 2707 */ 2708 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2709 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2710 for (i = 0; i < domains; i++) { 2711 zdom = ZDOM_GET(zone, i); 2712 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2713 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2714 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2715 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2716 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2717 "number of items in this domain"); 2718 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2719 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2720 "maximum item count in this period"); 2721 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2722 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2723 "minimum item count in this period"); 2724 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2725 "bimin", CTLFLAG_RD, &zdom->uzd_bimin, 2726 "Minimum item count in this batch"); 2727 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2728 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2729 "Working set size"); 2730 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2731 "limin", CTLFLAG_RD, &zdom->uzd_limin, 2732 "Long time minimum item count"); 2733 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2734 "timin", CTLFLAG_RD, &zdom->uzd_timin, 0, 2735 "Time since zero long time minimum item count"); 2736 } 2737 2738 /* 2739 * General statistics. 2740 */ 2741 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2742 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2743 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2744 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2745 zone, 1, sysctl_handle_uma_zone_cur, "I", 2746 "Current number of allocated items"); 2747 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2748 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2749 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2750 "Total allocation calls"); 2751 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2752 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2753 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2754 "Total free calls"); 2755 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2756 "fails", CTLFLAG_RD, &zone->uz_fails, 2757 "Number of allocation failures"); 2758 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2759 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2760 "Free calls from the wrong domain"); 2761 } 2762 2763 struct uma_zone_count { 2764 const char *name; 2765 int count; 2766 }; 2767 2768 static void 2769 zone_count(uma_zone_t zone, void *arg) 2770 { 2771 struct uma_zone_count *cnt; 2772 2773 cnt = arg; 2774 /* 2775 * Some zones are rapidly created with identical names and 2776 * destroyed out of order. This can lead to gaps in the count. 2777 * Use one greater than the maximum observed for this name. 2778 */ 2779 if (strcmp(zone->uz_name, cnt->name) == 0) 2780 cnt->count = MAX(cnt->count, 2781 zone->uz_namecnt + 1); 2782 } 2783 2784 static void 2785 zone_update_caches(uma_zone_t zone) 2786 { 2787 int i; 2788 2789 for (i = 0; i <= mp_maxid; i++) { 2790 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2791 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2792 } 2793 } 2794 2795 /* 2796 * Zone header ctor. This initializes all fields, locks, etc. 2797 * 2798 * Arguments/Returns follow uma_ctor specifications 2799 * udata Actually uma_zctor_args 2800 */ 2801 static int 2802 zone_ctor(void *mem, int size, void *udata, int flags) 2803 { 2804 struct uma_zone_count cnt; 2805 struct uma_zctor_args *arg = udata; 2806 uma_zone_domain_t zdom; 2807 uma_zone_t zone = mem; 2808 uma_zone_t z; 2809 uma_keg_t keg; 2810 int i; 2811 2812 bzero(zone, size); 2813 zone->uz_name = arg->name; 2814 zone->uz_ctor = arg->ctor; 2815 zone->uz_dtor = arg->dtor; 2816 zone->uz_init = NULL; 2817 zone->uz_fini = NULL; 2818 zone->uz_sleeps = 0; 2819 zone->uz_bucket_size = 0; 2820 zone->uz_bucket_size_min = 0; 2821 zone->uz_bucket_size_max = BUCKET_MAX; 2822 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2823 zone->uz_warning = NULL; 2824 /* The domain structures follow the cpu structures. */ 2825 zone->uz_bucket_max = ULONG_MAX; 2826 timevalclear(&zone->uz_ratecheck); 2827 2828 /* Count the number of duplicate names. */ 2829 cnt.name = arg->name; 2830 cnt.count = 0; 2831 zone_foreach(zone_count, &cnt); 2832 zone->uz_namecnt = cnt.count; 2833 ZONE_CROSS_LOCK_INIT(zone); 2834 2835 for (i = 0; i < vm_ndomains; i++) { 2836 zdom = ZDOM_GET(zone, i); 2837 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2838 STAILQ_INIT(&zdom->uzd_buckets); 2839 } 2840 2841 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 2842 if (arg->uminit == trash_init && arg->fini == trash_fini) 2843 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2844 #elif defined(KASAN) 2845 if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0) 2846 arg->flags |= UMA_ZONE_NOKASAN; 2847 #endif 2848 2849 /* 2850 * This is a pure cache zone, no kegs. 2851 */ 2852 if (arg->import) { 2853 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2854 ("zone_ctor: Import specified for non-cache zone.")); 2855 zone->uz_flags = arg->flags; 2856 zone->uz_size = arg->size; 2857 zone->uz_import = arg->import; 2858 zone->uz_release = arg->release; 2859 zone->uz_arg = arg->arg; 2860 #ifdef NUMA 2861 /* 2862 * Cache zones are round-robin unless a policy is 2863 * specified because they may have incompatible 2864 * constraints. 2865 */ 2866 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2867 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2868 #endif 2869 rw_wlock(&uma_rwlock); 2870 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2871 rw_wunlock(&uma_rwlock); 2872 goto out; 2873 } 2874 2875 /* 2876 * Use the regular zone/keg/slab allocator. 2877 */ 2878 zone->uz_import = zone_import; 2879 zone->uz_release = zone_release; 2880 zone->uz_arg = zone; 2881 keg = arg->keg; 2882 2883 if (arg->flags & UMA_ZONE_SECONDARY) { 2884 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2885 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2886 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2887 zone->uz_init = arg->uminit; 2888 zone->uz_fini = arg->fini; 2889 zone->uz_flags |= UMA_ZONE_SECONDARY; 2890 rw_wlock(&uma_rwlock); 2891 ZONE_LOCK(zone); 2892 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2893 if (LIST_NEXT(z, uz_link) == NULL) { 2894 LIST_INSERT_AFTER(z, zone, uz_link); 2895 break; 2896 } 2897 } 2898 ZONE_UNLOCK(zone); 2899 rw_wunlock(&uma_rwlock); 2900 } else if (keg == NULL) { 2901 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2902 arg->align, arg->flags)) == NULL) 2903 return (ENOMEM); 2904 } else { 2905 struct uma_kctor_args karg; 2906 int error; 2907 2908 /* We should only be here from uma_startup() */ 2909 karg.size = arg->size; 2910 karg.uminit = arg->uminit; 2911 karg.fini = arg->fini; 2912 karg.align = arg->align; 2913 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2914 karg.zone = zone; 2915 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2916 flags); 2917 if (error) 2918 return (error); 2919 } 2920 2921 /* Inherit properties from the keg. */ 2922 zone->uz_keg = keg; 2923 zone->uz_size = keg->uk_size; 2924 zone->uz_flags |= (keg->uk_flags & 2925 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2926 2927 out: 2928 if (booted >= BOOT_PCPU) { 2929 zone_alloc_counters(zone, NULL); 2930 if (booted >= BOOT_RUNNING) 2931 zone_alloc_sysctl(zone, NULL); 2932 } else { 2933 zone->uz_allocs = EARLY_COUNTER; 2934 zone->uz_frees = EARLY_COUNTER; 2935 zone->uz_fails = EARLY_COUNTER; 2936 } 2937 2938 /* Caller requests a private SMR context. */ 2939 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2940 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2941 2942 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2943 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2944 ("Invalid zone flag combination")); 2945 if (arg->flags & UMA_ZFLAG_INTERNAL) 2946 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2947 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2948 zone->uz_bucket_size = BUCKET_MAX; 2949 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2950 zone->uz_bucket_size = 0; 2951 else 2952 zone->uz_bucket_size = bucket_select(zone->uz_size); 2953 zone->uz_bucket_size_min = zone->uz_bucket_size; 2954 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2955 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2956 zone_update_caches(zone); 2957 2958 return (0); 2959 } 2960 2961 /* 2962 * Keg header dtor. This frees all data, destroys locks, frees the hash 2963 * table and removes the keg from the global list. 2964 * 2965 * Arguments/Returns follow uma_dtor specifications 2966 * udata unused 2967 */ 2968 static void 2969 keg_dtor(void *arg, int size, void *udata) 2970 { 2971 uma_keg_t keg; 2972 uint32_t free, pages; 2973 int i; 2974 2975 keg = (uma_keg_t)arg; 2976 free = pages = 0; 2977 for (i = 0; i < vm_ndomains; i++) { 2978 free += keg->uk_domain[i].ud_free_items; 2979 pages += keg->uk_domain[i].ud_pages; 2980 KEG_LOCK_FINI(keg, i); 2981 } 2982 if (pages != 0) 2983 printf("Freed UMA keg (%s) was not empty (%u items). " 2984 " Lost %u pages of memory.\n", 2985 keg->uk_name ? keg->uk_name : "", 2986 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2987 2988 hash_free(&keg->uk_hash); 2989 } 2990 2991 /* 2992 * Zone header dtor. 2993 * 2994 * Arguments/Returns follow uma_dtor specifications 2995 * udata unused 2996 */ 2997 static void 2998 zone_dtor(void *arg, int size, void *udata) 2999 { 3000 uma_zone_t zone; 3001 uma_keg_t keg; 3002 int i; 3003 3004 zone = (uma_zone_t)arg; 3005 3006 sysctl_remove_oid(zone->uz_oid, 1, 1); 3007 3008 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 3009 cache_drain(zone); 3010 3011 rw_wlock(&uma_rwlock); 3012 LIST_REMOVE(zone, uz_link); 3013 rw_wunlock(&uma_rwlock); 3014 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3015 keg = zone->uz_keg; 3016 keg->uk_reserve = 0; 3017 } 3018 zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true); 3019 3020 /* 3021 * We only destroy kegs from non secondary/non cache zones. 3022 */ 3023 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3024 keg = zone->uz_keg; 3025 rw_wlock(&uma_rwlock); 3026 LIST_REMOVE(keg, uk_link); 3027 rw_wunlock(&uma_rwlock); 3028 zone_free_item(kegs, keg, NULL, SKIP_NONE); 3029 } 3030 counter_u64_free(zone->uz_allocs); 3031 counter_u64_free(zone->uz_frees); 3032 counter_u64_free(zone->uz_fails); 3033 counter_u64_free(zone->uz_xdomain); 3034 free(zone->uz_ctlname, M_UMA); 3035 for (i = 0; i < vm_ndomains; i++) 3036 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 3037 ZONE_CROSS_LOCK_FINI(zone); 3038 } 3039 3040 static void 3041 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3042 { 3043 uma_keg_t keg; 3044 uma_zone_t zone; 3045 3046 LIST_FOREACH(keg, &uma_kegs, uk_link) { 3047 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 3048 zfunc(zone, arg); 3049 } 3050 LIST_FOREACH(zone, &uma_cachezones, uz_link) 3051 zfunc(zone, arg); 3052 } 3053 3054 /* 3055 * Traverses every zone in the system and calls a callback 3056 * 3057 * Arguments: 3058 * zfunc A pointer to a function which accepts a zone 3059 * as an argument. 3060 * 3061 * Returns: 3062 * Nothing 3063 */ 3064 static void 3065 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3066 { 3067 3068 rw_rlock(&uma_rwlock); 3069 zone_foreach_unlocked(zfunc, arg); 3070 rw_runlock(&uma_rwlock); 3071 } 3072 3073 /* 3074 * Initialize the kernel memory allocator. This is done after pages can be 3075 * allocated but before general KVA is available. 3076 */ 3077 void 3078 uma_startup1(vm_offset_t virtual_avail) 3079 { 3080 struct uma_zctor_args args; 3081 size_t ksize, zsize, size; 3082 uma_keg_t primarykeg; 3083 uintptr_t m; 3084 int domain; 3085 uint8_t pflag; 3086 3087 bootstart = bootmem = virtual_avail; 3088 3089 rw_init(&uma_rwlock, "UMA lock"); 3090 sx_init(&uma_reclaim_lock, "umareclaim"); 3091 3092 ksize = sizeof(struct uma_keg) + 3093 (sizeof(struct uma_domain) * vm_ndomains); 3094 ksize = roundup(ksize, UMA_SUPER_ALIGN); 3095 zsize = sizeof(struct uma_zone) + 3096 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 3097 (sizeof(struct uma_zone_domain) * vm_ndomains); 3098 zsize = roundup(zsize, UMA_SUPER_ALIGN); 3099 3100 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 3101 size = (zsize * 2) + ksize; 3102 for (domain = 0; domain < vm_ndomains; domain++) { 3103 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 3104 M_NOWAIT | M_ZERO); 3105 if (m != 0) 3106 break; 3107 } 3108 zones = (uma_zone_t)m; 3109 m += zsize; 3110 kegs = (uma_zone_t)m; 3111 m += zsize; 3112 primarykeg = (uma_keg_t)m; 3113 3114 /* "manually" create the initial zone */ 3115 memset(&args, 0, sizeof(args)); 3116 args.name = "UMA Kegs"; 3117 args.size = ksize; 3118 args.ctor = keg_ctor; 3119 args.dtor = keg_dtor; 3120 args.uminit = zero_init; 3121 args.fini = NULL; 3122 args.keg = primarykeg; 3123 args.align = UMA_SUPER_ALIGN - 1; 3124 args.flags = UMA_ZFLAG_INTERNAL; 3125 zone_ctor(kegs, zsize, &args, M_WAITOK); 3126 3127 args.name = "UMA Zones"; 3128 args.size = zsize; 3129 args.ctor = zone_ctor; 3130 args.dtor = zone_dtor; 3131 args.uminit = zero_init; 3132 args.fini = NULL; 3133 args.keg = NULL; 3134 args.align = UMA_SUPER_ALIGN - 1; 3135 args.flags = UMA_ZFLAG_INTERNAL; 3136 zone_ctor(zones, zsize, &args, M_WAITOK); 3137 3138 /* Now make zones for slab headers */ 3139 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 3140 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3141 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 3142 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3143 3144 hashzone = uma_zcreate("UMA Hash", 3145 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 3146 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3147 3148 bucket_init(); 3149 smr_init(); 3150 } 3151 3152 #ifndef UMA_MD_SMALL_ALLOC 3153 extern void vm_radix_reserve_kva(void); 3154 #endif 3155 3156 /* 3157 * Advertise the availability of normal kva allocations and switch to 3158 * the default back-end allocator. Marks the KVA we consumed on startup 3159 * as used in the map. 3160 */ 3161 void 3162 uma_startup2(void) 3163 { 3164 3165 if (bootstart != bootmem) { 3166 vm_map_lock(kernel_map); 3167 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 3168 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 3169 vm_map_unlock(kernel_map); 3170 } 3171 3172 #ifndef UMA_MD_SMALL_ALLOC 3173 /* Set up radix zone to use noobj_alloc. */ 3174 vm_radix_reserve_kva(); 3175 #endif 3176 3177 booted = BOOT_KVA; 3178 zone_foreach_unlocked(zone_kva_available, NULL); 3179 bucket_enable(); 3180 } 3181 3182 /* 3183 * Allocate counters as early as possible so that boot-time allocations are 3184 * accounted more precisely. 3185 */ 3186 static void 3187 uma_startup_pcpu(void *arg __unused) 3188 { 3189 3190 zone_foreach_unlocked(zone_alloc_counters, NULL); 3191 booted = BOOT_PCPU; 3192 } 3193 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 3194 3195 /* 3196 * Finish our initialization steps. 3197 */ 3198 static void 3199 uma_startup3(void *arg __unused) 3200 { 3201 3202 #ifdef INVARIANTS 3203 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 3204 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 3205 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 3206 #endif 3207 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 3208 callout_init(&uma_callout, 1); 3209 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 3210 booted = BOOT_RUNNING; 3211 3212 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 3213 EVENTHANDLER_PRI_FIRST); 3214 } 3215 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 3216 3217 static void 3218 uma_shutdown(void) 3219 { 3220 3221 booted = BOOT_SHUTDOWN; 3222 } 3223 3224 static uma_keg_t 3225 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 3226 int align, uint32_t flags) 3227 { 3228 struct uma_kctor_args args; 3229 3230 args.size = size; 3231 args.uminit = uminit; 3232 args.fini = fini; 3233 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 3234 args.flags = flags; 3235 args.zone = zone; 3236 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 3237 } 3238 3239 /* Public functions */ 3240 /* See uma.h */ 3241 void 3242 uma_set_align(int align) 3243 { 3244 3245 if (align != UMA_ALIGN_CACHE) 3246 uma_align_cache = align; 3247 } 3248 3249 /* See uma.h */ 3250 uma_zone_t 3251 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 3252 uma_init uminit, uma_fini fini, int align, uint32_t flags) 3253 3254 { 3255 struct uma_zctor_args args; 3256 uma_zone_t res; 3257 3258 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 3259 align, name)); 3260 3261 /* This stuff is essential for the zone ctor */ 3262 memset(&args, 0, sizeof(args)); 3263 args.name = name; 3264 args.size = size; 3265 args.ctor = ctor; 3266 args.dtor = dtor; 3267 args.uminit = uminit; 3268 args.fini = fini; 3269 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 3270 /* 3271 * Inject procedures which check for memory use after free if we are 3272 * allowed to scramble the memory while it is not allocated. This 3273 * requires that: UMA is actually able to access the memory, no init 3274 * or fini procedures, no dependency on the initial value of the 3275 * memory, and no (legitimate) use of the memory after free. Note, 3276 * the ctor and dtor do not need to be empty. 3277 */ 3278 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3279 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3280 args.uminit = trash_init; 3281 args.fini = trash_fini; 3282 } 3283 #endif 3284 args.align = align; 3285 args.flags = flags; 3286 args.keg = NULL; 3287 3288 sx_xlock(&uma_reclaim_lock); 3289 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3290 sx_xunlock(&uma_reclaim_lock); 3291 3292 return (res); 3293 } 3294 3295 /* See uma.h */ 3296 uma_zone_t 3297 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3298 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3299 { 3300 struct uma_zctor_args args; 3301 uma_keg_t keg; 3302 uma_zone_t res; 3303 3304 keg = primary->uz_keg; 3305 memset(&args, 0, sizeof(args)); 3306 args.name = name; 3307 args.size = keg->uk_size; 3308 args.ctor = ctor; 3309 args.dtor = dtor; 3310 args.uminit = zinit; 3311 args.fini = zfini; 3312 args.align = keg->uk_align; 3313 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3314 args.keg = keg; 3315 3316 sx_xlock(&uma_reclaim_lock); 3317 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3318 sx_xunlock(&uma_reclaim_lock); 3319 3320 return (res); 3321 } 3322 3323 /* See uma.h */ 3324 uma_zone_t 3325 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3326 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3327 void *arg, int flags) 3328 { 3329 struct uma_zctor_args args; 3330 3331 memset(&args, 0, sizeof(args)); 3332 args.name = name; 3333 args.size = size; 3334 args.ctor = ctor; 3335 args.dtor = dtor; 3336 args.uminit = zinit; 3337 args.fini = zfini; 3338 args.import = zimport; 3339 args.release = zrelease; 3340 args.arg = arg; 3341 args.align = 0; 3342 args.flags = flags | UMA_ZFLAG_CACHE; 3343 3344 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3345 } 3346 3347 /* See uma.h */ 3348 void 3349 uma_zdestroy(uma_zone_t zone) 3350 { 3351 3352 /* 3353 * Large slabs are expensive to reclaim, so don't bother doing 3354 * unnecessary work if we're shutting down. 3355 */ 3356 if (booted == BOOT_SHUTDOWN && 3357 zone->uz_fini == NULL && zone->uz_release == zone_release) 3358 return; 3359 sx_xlock(&uma_reclaim_lock); 3360 zone_free_item(zones, zone, NULL, SKIP_NONE); 3361 sx_xunlock(&uma_reclaim_lock); 3362 } 3363 3364 void 3365 uma_zwait(uma_zone_t zone) 3366 { 3367 3368 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3369 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3370 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3371 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3372 else 3373 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3374 } 3375 3376 void * 3377 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3378 { 3379 void *item, *pcpu_item; 3380 #ifdef SMP 3381 int i; 3382 3383 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3384 #endif 3385 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3386 if (item == NULL) 3387 return (NULL); 3388 pcpu_item = zpcpu_base_to_offset(item); 3389 if (flags & M_ZERO) { 3390 #ifdef SMP 3391 for (i = 0; i <= mp_maxid; i++) 3392 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3393 #else 3394 bzero(item, zone->uz_size); 3395 #endif 3396 } 3397 return (pcpu_item); 3398 } 3399 3400 /* 3401 * A stub while both regular and pcpu cases are identical. 3402 */ 3403 void 3404 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3405 { 3406 void *item; 3407 3408 #ifdef SMP 3409 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3410 #endif 3411 3412 /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */ 3413 if (pcpu_item == NULL) 3414 return; 3415 3416 item = zpcpu_offset_to_base(pcpu_item); 3417 uma_zfree_arg(zone, item, udata); 3418 } 3419 3420 static inline void * 3421 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3422 void *item) 3423 { 3424 #ifdef INVARIANTS 3425 bool skipdbg; 3426 #endif 3427 3428 kasan_mark_item_valid(zone, item); 3429 kmsan_mark_item_uninitialized(zone, item); 3430 3431 #ifdef INVARIANTS 3432 skipdbg = uma_dbg_zskip(zone, item); 3433 if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 && 3434 zone->uz_ctor != trash_ctor) 3435 trash_ctor(item, size, udata, flags); 3436 #endif 3437 3438 /* Check flags before loading ctor pointer. */ 3439 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3440 __predict_false(zone->uz_ctor != NULL) && 3441 zone->uz_ctor(item, size, udata, flags) != 0) { 3442 counter_u64_add(zone->uz_fails, 1); 3443 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3444 return (NULL); 3445 } 3446 #ifdef INVARIANTS 3447 if (!skipdbg) 3448 uma_dbg_alloc(zone, NULL, item); 3449 #endif 3450 if (__predict_false(flags & M_ZERO)) 3451 return (memset(item, 0, size)); 3452 3453 return (item); 3454 } 3455 3456 static inline void 3457 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3458 enum zfreeskip skip) 3459 { 3460 #ifdef INVARIANTS 3461 bool skipdbg; 3462 3463 skipdbg = uma_dbg_zskip(zone, item); 3464 if (skip == SKIP_NONE && !skipdbg) { 3465 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3466 uma_dbg_free(zone, udata, item); 3467 else 3468 uma_dbg_free(zone, NULL, item); 3469 } 3470 #endif 3471 if (__predict_true(skip < SKIP_DTOR)) { 3472 if (zone->uz_dtor != NULL) 3473 zone->uz_dtor(item, size, udata); 3474 #ifdef INVARIANTS 3475 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3476 zone->uz_dtor != trash_dtor) 3477 trash_dtor(item, size, udata); 3478 #endif 3479 } 3480 kasan_mark_item_invalid(zone, item); 3481 } 3482 3483 #ifdef NUMA 3484 static int 3485 item_domain(void *item) 3486 { 3487 int domain; 3488 3489 domain = vm_phys_domain(vtophys(item)); 3490 KASSERT(domain >= 0 && domain < vm_ndomains, 3491 ("%s: unknown domain for item %p", __func__, item)); 3492 return (domain); 3493 } 3494 #endif 3495 3496 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3497 #if defined(INVARIANTS) && (defined(DDB) || defined(STACK)) 3498 #include <sys/stack.h> 3499 #endif 3500 #define UMA_ZALLOC_DEBUG 3501 static int 3502 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3503 { 3504 int error; 3505 3506 error = 0; 3507 #ifdef WITNESS 3508 if (flags & M_WAITOK) { 3509 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3510 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3511 } 3512 #endif 3513 3514 #ifdef INVARIANTS 3515 KASSERT((flags & M_EXEC) == 0, 3516 ("uma_zalloc_debug: called with M_EXEC")); 3517 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3518 ("uma_zalloc_debug: called within spinlock or critical section")); 3519 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3520 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3521 3522 _Static_assert(M_NOWAIT != 0 && M_WAITOK != 0, 3523 "M_NOWAIT and M_WAITOK must be non-zero for this assertion:"); 3524 #if 0 3525 /* 3526 * Give the #elif clause time to find problems, then remove it 3527 * and enable this. (Remove <sys/stack.h> above, too.) 3528 */ 3529 KASSERT((flags & (M_NOWAIT|M_WAITOK)) == M_NOWAIT || 3530 (flags & (M_NOWAIT|M_WAITOK)) == M_WAITOK, 3531 ("uma_zalloc_debug: must pass one of M_NOWAIT or M_WAITOK")); 3532 #elif defined(DDB) || defined(STACK) 3533 if (__predict_false((flags & (M_NOWAIT|M_WAITOK)) != M_NOWAIT && 3534 (flags & (M_NOWAIT|M_WAITOK)) != M_WAITOK)) { 3535 static int stack_count; 3536 struct stack st; 3537 3538 if (stack_count < 10) { 3539 ++stack_count; 3540 printf("uma_zalloc* called with bad WAIT flags:\n"); 3541 stack_save(&st); 3542 stack_print(&st); 3543 } 3544 } 3545 #endif 3546 #endif 3547 3548 #ifdef DEBUG_MEMGUARD 3549 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3550 void *item; 3551 item = memguard_alloc(zone->uz_size, flags); 3552 if (item != NULL) { 3553 error = EJUSTRETURN; 3554 if (zone->uz_init != NULL && 3555 zone->uz_init(item, zone->uz_size, flags) != 0) { 3556 *itemp = NULL; 3557 return (error); 3558 } 3559 if (zone->uz_ctor != NULL && 3560 zone->uz_ctor(item, zone->uz_size, udata, 3561 flags) != 0) { 3562 counter_u64_add(zone->uz_fails, 1); 3563 if (zone->uz_fini != NULL) 3564 zone->uz_fini(item, zone->uz_size); 3565 *itemp = NULL; 3566 return (error); 3567 } 3568 *itemp = item; 3569 return (error); 3570 } 3571 /* This is unfortunate but should not be fatal. */ 3572 } 3573 #endif 3574 return (error); 3575 } 3576 3577 static int 3578 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3579 { 3580 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3581 ("uma_zfree_debug: called with spinlock or critical section held")); 3582 3583 #ifdef DEBUG_MEMGUARD 3584 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3585 if (zone->uz_dtor != NULL) 3586 zone->uz_dtor(item, zone->uz_size, udata); 3587 if (zone->uz_fini != NULL) 3588 zone->uz_fini(item, zone->uz_size); 3589 memguard_free(item); 3590 return (EJUSTRETURN); 3591 } 3592 #endif 3593 return (0); 3594 } 3595 #endif 3596 3597 static inline void * 3598 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3599 void *udata, int flags) 3600 { 3601 void *item; 3602 int size, uz_flags; 3603 3604 item = cache_bucket_pop(cache, bucket); 3605 size = cache_uz_size(cache); 3606 uz_flags = cache_uz_flags(cache); 3607 critical_exit(); 3608 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3609 } 3610 3611 static __noinline void * 3612 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3613 { 3614 uma_cache_bucket_t bucket; 3615 int domain; 3616 3617 while (cache_alloc(zone, cache, udata, flags)) { 3618 cache = &zone->uz_cpu[curcpu]; 3619 bucket = &cache->uc_allocbucket; 3620 if (__predict_false(bucket->ucb_cnt == 0)) 3621 continue; 3622 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3623 } 3624 critical_exit(); 3625 3626 /* 3627 * We can not get a bucket so try to return a single item. 3628 */ 3629 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3630 domain = PCPU_GET(domain); 3631 else 3632 domain = UMA_ANYDOMAIN; 3633 return (zone_alloc_item(zone, udata, domain, flags)); 3634 } 3635 3636 /* See uma.h */ 3637 void * 3638 uma_zalloc_smr(uma_zone_t zone, int flags) 3639 { 3640 uma_cache_bucket_t bucket; 3641 uma_cache_t cache; 3642 3643 CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name, 3644 zone, flags); 3645 3646 #ifdef UMA_ZALLOC_DEBUG 3647 void *item; 3648 3649 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3650 ("uma_zalloc_arg: called with non-SMR zone.")); 3651 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3652 return (item); 3653 #endif 3654 3655 critical_enter(); 3656 cache = &zone->uz_cpu[curcpu]; 3657 bucket = &cache->uc_allocbucket; 3658 if (__predict_false(bucket->ucb_cnt == 0)) 3659 return (cache_alloc_retry(zone, cache, NULL, flags)); 3660 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3661 } 3662 3663 /* See uma.h */ 3664 void * 3665 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3666 { 3667 uma_cache_bucket_t bucket; 3668 uma_cache_t cache; 3669 3670 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3671 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3672 3673 /* This is the fast path allocation */ 3674 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3675 zone, flags); 3676 3677 #ifdef UMA_ZALLOC_DEBUG 3678 void *item; 3679 3680 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3681 ("uma_zalloc_arg: called with SMR zone.")); 3682 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3683 return (item); 3684 #endif 3685 3686 /* 3687 * If possible, allocate from the per-CPU cache. There are two 3688 * requirements for safe access to the per-CPU cache: (1) the thread 3689 * accessing the cache must not be preempted or yield during access, 3690 * and (2) the thread must not migrate CPUs without switching which 3691 * cache it accesses. We rely on a critical section to prevent 3692 * preemption and migration. We release the critical section in 3693 * order to acquire the zone mutex if we are unable to allocate from 3694 * the current cache; when we re-acquire the critical section, we 3695 * must detect and handle migration if it has occurred. 3696 */ 3697 critical_enter(); 3698 cache = &zone->uz_cpu[curcpu]; 3699 bucket = &cache->uc_allocbucket; 3700 if (__predict_false(bucket->ucb_cnt == 0)) 3701 return (cache_alloc_retry(zone, cache, udata, flags)); 3702 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3703 } 3704 3705 /* 3706 * Replenish an alloc bucket and possibly restore an old one. Called in 3707 * a critical section. Returns in a critical section. 3708 * 3709 * A false return value indicates an allocation failure. 3710 * A true return value indicates success and the caller should retry. 3711 */ 3712 static __noinline bool 3713 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3714 { 3715 uma_bucket_t bucket; 3716 int curdomain, domain; 3717 bool new; 3718 3719 CRITICAL_ASSERT(curthread); 3720 3721 /* 3722 * If we have run out of items in our alloc bucket see 3723 * if we can switch with the free bucket. 3724 * 3725 * SMR Zones can't re-use the free bucket until the sequence has 3726 * expired. 3727 */ 3728 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3729 cache->uc_freebucket.ucb_cnt != 0) { 3730 cache_bucket_swap(&cache->uc_freebucket, 3731 &cache->uc_allocbucket); 3732 return (true); 3733 } 3734 3735 /* 3736 * Discard any empty allocation bucket while we hold no locks. 3737 */ 3738 bucket = cache_bucket_unload_alloc(cache); 3739 critical_exit(); 3740 3741 if (bucket != NULL) { 3742 KASSERT(bucket->ub_cnt == 0, 3743 ("cache_alloc: Entered with non-empty alloc bucket.")); 3744 bucket_free(zone, bucket, udata); 3745 } 3746 3747 /* 3748 * Attempt to retrieve the item from the per-CPU cache has failed, so 3749 * we must go back to the zone. This requires the zdom lock, so we 3750 * must drop the critical section, then re-acquire it when we go back 3751 * to the cache. Since the critical section is released, we may be 3752 * preempted or migrate. As such, make sure not to maintain any 3753 * thread-local state specific to the cache from prior to releasing 3754 * the critical section. 3755 */ 3756 domain = PCPU_GET(domain); 3757 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3758 VM_DOMAIN_EMPTY(domain)) 3759 domain = zone_domain_highest(zone, domain); 3760 bucket = cache_fetch_bucket(zone, cache, domain); 3761 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { 3762 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3763 new = true; 3764 } else { 3765 new = false; 3766 } 3767 3768 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3769 zone->uz_name, zone, bucket); 3770 if (bucket == NULL) { 3771 critical_enter(); 3772 return (false); 3773 } 3774 3775 /* 3776 * See if we lost the race or were migrated. Cache the 3777 * initialized bucket to make this less likely or claim 3778 * the memory directly. 3779 */ 3780 critical_enter(); 3781 cache = &zone->uz_cpu[curcpu]; 3782 if (cache->uc_allocbucket.ucb_bucket == NULL && 3783 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3784 (curdomain = PCPU_GET(domain)) == domain || 3785 VM_DOMAIN_EMPTY(curdomain))) { 3786 if (new) 3787 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3788 bucket->ub_cnt); 3789 cache_bucket_load_alloc(cache, bucket); 3790 return (true); 3791 } 3792 3793 /* 3794 * We lost the race, release this bucket and start over. 3795 */ 3796 critical_exit(); 3797 zone_put_bucket(zone, domain, bucket, udata, !new); 3798 critical_enter(); 3799 3800 return (true); 3801 } 3802 3803 void * 3804 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3805 { 3806 #ifdef NUMA 3807 uma_bucket_t bucket; 3808 uma_zone_domain_t zdom; 3809 void *item; 3810 #endif 3811 3812 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3813 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3814 3815 /* This is the fast path allocation */ 3816 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3817 zone->uz_name, zone, domain, flags); 3818 3819 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3820 ("uma_zalloc_domain: called with SMR zone.")); 3821 #ifdef NUMA 3822 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0, 3823 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone.")); 3824 3825 if (vm_ndomains == 1) 3826 return (uma_zalloc_arg(zone, udata, flags)); 3827 3828 #ifdef UMA_ZALLOC_DEBUG 3829 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3830 return (item); 3831 #endif 3832 3833 /* 3834 * Try to allocate from the bucket cache before falling back to the keg. 3835 * We could try harder and attempt to allocate from per-CPU caches or 3836 * the per-domain cross-domain buckets, but the complexity is probably 3837 * not worth it. It is more important that frees of previous 3838 * cross-domain allocations do not blow up the cache. 3839 */ 3840 zdom = zone_domain_lock(zone, domain); 3841 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 3842 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3843 #ifdef INVARIANTS 3844 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL; 3845 #endif 3846 bucket->ub_cnt--; 3847 zone_put_bucket(zone, domain, bucket, udata, true); 3848 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, 3849 flags, item); 3850 if (item != NULL) { 3851 KASSERT(item_domain(item) == domain, 3852 ("%s: bucket cache item %p from wrong domain", 3853 __func__, item)); 3854 counter_u64_add(zone->uz_allocs, 1); 3855 } 3856 return (item); 3857 } 3858 ZDOM_UNLOCK(zdom); 3859 return (zone_alloc_item(zone, udata, domain, flags)); 3860 #else 3861 return (uma_zalloc_arg(zone, udata, flags)); 3862 #endif 3863 } 3864 3865 /* 3866 * Find a slab with some space. Prefer slabs that are partially used over those 3867 * that are totally full. This helps to reduce fragmentation. 3868 * 3869 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3870 * only 'domain'. 3871 */ 3872 static uma_slab_t 3873 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3874 { 3875 uma_domain_t dom; 3876 uma_slab_t slab; 3877 int start; 3878 3879 KASSERT(domain >= 0 && domain < vm_ndomains, 3880 ("keg_first_slab: domain %d out of range", domain)); 3881 KEG_LOCK_ASSERT(keg, domain); 3882 3883 slab = NULL; 3884 start = domain; 3885 do { 3886 dom = &keg->uk_domain[domain]; 3887 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3888 return (slab); 3889 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3890 LIST_REMOVE(slab, us_link); 3891 dom->ud_free_slabs--; 3892 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3893 return (slab); 3894 } 3895 if (rr) 3896 domain = (domain + 1) % vm_ndomains; 3897 } while (domain != start); 3898 3899 return (NULL); 3900 } 3901 3902 /* 3903 * Fetch an existing slab from a free or partial list. Returns with the 3904 * keg domain lock held if a slab was found or unlocked if not. 3905 */ 3906 static uma_slab_t 3907 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3908 { 3909 uma_slab_t slab; 3910 uint32_t reserve; 3911 3912 /* HASH has a single free list. */ 3913 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3914 domain = 0; 3915 3916 KEG_LOCK(keg, domain); 3917 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3918 if (keg->uk_domain[domain].ud_free_items <= reserve || 3919 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3920 KEG_UNLOCK(keg, domain); 3921 return (NULL); 3922 } 3923 return (slab); 3924 } 3925 3926 static uma_slab_t 3927 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3928 { 3929 struct vm_domainset_iter di; 3930 uma_slab_t slab; 3931 int aflags, domain; 3932 bool rr; 3933 3934 KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM), 3935 ("%s: invalid flags %#x", __func__, flags)); 3936 3937 restart: 3938 /* 3939 * Use the keg's policy if upper layers haven't already specified a 3940 * domain (as happens with first-touch zones). 3941 * 3942 * To avoid races we run the iterator with the keg lock held, but that 3943 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3944 * clear M_WAITOK and handle low memory conditions locally. 3945 */ 3946 rr = rdomain == UMA_ANYDOMAIN; 3947 if (rr) { 3948 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3949 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3950 &aflags); 3951 } else { 3952 aflags = flags; 3953 domain = rdomain; 3954 } 3955 3956 for (;;) { 3957 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3958 if (slab != NULL) 3959 return (slab); 3960 3961 /* 3962 * M_NOVM is used to break the recursion that can otherwise 3963 * occur if low-level memory management routines use UMA. 3964 */ 3965 if ((flags & M_NOVM) == 0) { 3966 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3967 if (slab != NULL) 3968 return (slab); 3969 } 3970 3971 if (!rr) { 3972 if ((flags & M_USE_RESERVE) != 0) { 3973 /* 3974 * Drain reserves from other domains before 3975 * giving up or sleeping. It may be useful to 3976 * support per-domain reserves eventually. 3977 */ 3978 rdomain = UMA_ANYDOMAIN; 3979 goto restart; 3980 } 3981 if ((flags & M_WAITOK) == 0) 3982 break; 3983 vm_wait_domain(domain); 3984 } else if (vm_domainset_iter_policy(&di, &domain) != 0) { 3985 if ((flags & M_WAITOK) != 0) { 3986 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 3987 goto restart; 3988 } 3989 break; 3990 } 3991 } 3992 3993 /* 3994 * We might not have been able to get a slab but another cpu 3995 * could have while we were unlocked. Check again before we 3996 * fail. 3997 */ 3998 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3999 return (slab); 4000 4001 return (NULL); 4002 } 4003 4004 static void * 4005 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 4006 { 4007 uma_domain_t dom; 4008 void *item; 4009 int freei; 4010 4011 KEG_LOCK_ASSERT(keg, slab->us_domain); 4012 4013 dom = &keg->uk_domain[slab->us_domain]; 4014 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 4015 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 4016 item = slab_item(slab, keg, freei); 4017 slab->us_freecount--; 4018 dom->ud_free_items--; 4019 4020 /* 4021 * Move this slab to the full list. It must be on the partial list, so 4022 * we do not need to update the free slab count. In particular, 4023 * keg_fetch_slab() always returns slabs on the partial list. 4024 */ 4025 if (slab->us_freecount == 0) { 4026 LIST_REMOVE(slab, us_link); 4027 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 4028 } 4029 4030 return (item); 4031 } 4032 4033 static int 4034 zone_import(void *arg, void **bucket, int max, int domain, int flags) 4035 { 4036 uma_domain_t dom; 4037 uma_zone_t zone; 4038 uma_slab_t slab; 4039 uma_keg_t keg; 4040 #ifdef NUMA 4041 int stripe; 4042 #endif 4043 int i; 4044 4045 zone = arg; 4046 slab = NULL; 4047 keg = zone->uz_keg; 4048 /* Try to keep the buckets totally full */ 4049 for (i = 0; i < max; ) { 4050 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 4051 break; 4052 #ifdef NUMA 4053 stripe = howmany(max, vm_ndomains); 4054 #endif 4055 dom = &keg->uk_domain[slab->us_domain]; 4056 do { 4057 bucket[i++] = slab_alloc_item(keg, slab); 4058 if (keg->uk_reserve > 0 && 4059 dom->ud_free_items <= keg->uk_reserve) { 4060 /* 4061 * Avoid depleting the reserve after a 4062 * successful item allocation, even if 4063 * M_USE_RESERVE is specified. 4064 */ 4065 KEG_UNLOCK(keg, slab->us_domain); 4066 goto out; 4067 } 4068 #ifdef NUMA 4069 /* 4070 * If the zone is striped we pick a new slab for every 4071 * N allocations. Eliminating this conditional will 4072 * instead pick a new domain for each bucket rather 4073 * than stripe within each bucket. The current option 4074 * produces more fragmentation and requires more cpu 4075 * time but yields better distribution. 4076 */ 4077 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 4078 vm_ndomains > 1 && --stripe == 0) 4079 break; 4080 #endif 4081 } while (slab->us_freecount != 0 && i < max); 4082 KEG_UNLOCK(keg, slab->us_domain); 4083 4084 /* Don't block if we allocated any successfully. */ 4085 flags &= ~M_WAITOK; 4086 flags |= M_NOWAIT; 4087 } 4088 out: 4089 return i; 4090 } 4091 4092 static int 4093 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 4094 { 4095 uint64_t old, new, total, max; 4096 4097 /* 4098 * The hard case. We're going to sleep because there were existing 4099 * sleepers or because we ran out of items. This routine enforces 4100 * fairness by keeping fifo order. 4101 * 4102 * First release our ill gotten gains and make some noise. 4103 */ 4104 for (;;) { 4105 zone_free_limit(zone, count); 4106 zone_log_warning(zone); 4107 zone_maxaction(zone); 4108 if (flags & M_NOWAIT) 4109 return (0); 4110 4111 /* 4112 * We need to allocate an item or set ourself as a sleeper 4113 * while the sleepq lock is held to avoid wakeup races. This 4114 * is essentially a home rolled semaphore. 4115 */ 4116 sleepq_lock(&zone->uz_max_items); 4117 old = zone->uz_items; 4118 do { 4119 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 4120 /* Cache the max since we will evaluate twice. */ 4121 max = zone->uz_max_items; 4122 if (UZ_ITEMS_SLEEPERS(old) != 0 || 4123 UZ_ITEMS_COUNT(old) >= max) 4124 new = old + UZ_ITEMS_SLEEPER; 4125 else 4126 new = old + MIN(count, max - old); 4127 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 4128 4129 /* We may have successfully allocated under the sleepq lock. */ 4130 if (UZ_ITEMS_SLEEPERS(new) == 0) { 4131 sleepq_release(&zone->uz_max_items); 4132 return (new - old); 4133 } 4134 4135 /* 4136 * This is in a different cacheline from uz_items so that we 4137 * don't constantly invalidate the fastpath cacheline when we 4138 * adjust item counts. This could be limited to toggling on 4139 * transitions. 4140 */ 4141 atomic_add_32(&zone->uz_sleepers, 1); 4142 atomic_add_64(&zone->uz_sleeps, 1); 4143 4144 /* 4145 * We have added ourselves as a sleeper. The sleepq lock 4146 * protects us from wakeup races. Sleep now and then retry. 4147 */ 4148 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 4149 sleepq_wait(&zone->uz_max_items, PVM); 4150 4151 /* 4152 * After wakeup, remove ourselves as a sleeper and try 4153 * again. We no longer have the sleepq lock for protection. 4154 * 4155 * Subract ourselves as a sleeper while attempting to add 4156 * our count. 4157 */ 4158 atomic_subtract_32(&zone->uz_sleepers, 1); 4159 old = atomic_fetchadd_64(&zone->uz_items, 4160 -(UZ_ITEMS_SLEEPER - count)); 4161 /* We're no longer a sleeper. */ 4162 old -= UZ_ITEMS_SLEEPER; 4163 4164 /* 4165 * If we're still at the limit, restart. Notably do not 4166 * block on other sleepers. Cache the max value to protect 4167 * against changes via sysctl. 4168 */ 4169 total = UZ_ITEMS_COUNT(old); 4170 max = zone->uz_max_items; 4171 if (total >= max) 4172 continue; 4173 /* Truncate if necessary, otherwise wake other sleepers. */ 4174 if (total + count > max) { 4175 zone_free_limit(zone, total + count - max); 4176 count = max - total; 4177 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 4178 wakeup_one(&zone->uz_max_items); 4179 4180 return (count); 4181 } 4182 } 4183 4184 /* 4185 * Allocate 'count' items from our max_items limit. Returns the number 4186 * available. If M_NOWAIT is not specified it will sleep until at least 4187 * one item can be allocated. 4188 */ 4189 static int 4190 zone_alloc_limit(uma_zone_t zone, int count, int flags) 4191 { 4192 uint64_t old; 4193 uint64_t max; 4194 4195 max = zone->uz_max_items; 4196 MPASS(max > 0); 4197 4198 /* 4199 * We expect normal allocations to succeed with a simple 4200 * fetchadd. 4201 */ 4202 old = atomic_fetchadd_64(&zone->uz_items, count); 4203 if (__predict_true(old + count <= max)) 4204 return (count); 4205 4206 /* 4207 * If we had some items and no sleepers just return the 4208 * truncated value. We have to release the excess space 4209 * though because that may wake sleepers who weren't woken 4210 * because we were temporarily over the limit. 4211 */ 4212 if (old < max) { 4213 zone_free_limit(zone, (old + count) - max); 4214 return (max - old); 4215 } 4216 return (zone_alloc_limit_hard(zone, count, flags)); 4217 } 4218 4219 /* 4220 * Free a number of items back to the limit. 4221 */ 4222 static void 4223 zone_free_limit(uma_zone_t zone, int count) 4224 { 4225 uint64_t old; 4226 4227 MPASS(count > 0); 4228 4229 /* 4230 * In the common case we either have no sleepers or 4231 * are still over the limit and can just return. 4232 */ 4233 old = atomic_fetchadd_64(&zone->uz_items, -count); 4234 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 4235 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 4236 return; 4237 4238 /* 4239 * Moderate the rate of wakeups. Sleepers will continue 4240 * to generate wakeups if necessary. 4241 */ 4242 wakeup_one(&zone->uz_max_items); 4243 } 4244 4245 static uma_bucket_t 4246 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 4247 { 4248 uma_bucket_t bucket; 4249 int error, maxbucket, cnt; 4250 4251 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 4252 zone, domain); 4253 4254 /* Avoid allocs targeting empty domains. */ 4255 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4256 domain = UMA_ANYDOMAIN; 4257 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4258 domain = UMA_ANYDOMAIN; 4259 4260 if (zone->uz_max_items > 0) 4261 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 4262 M_NOWAIT); 4263 else 4264 maxbucket = zone->uz_bucket_size; 4265 if (maxbucket == 0) 4266 return (NULL); 4267 4268 /* Don't wait for buckets, preserve caller's NOVM setting. */ 4269 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 4270 if (bucket == NULL) { 4271 cnt = 0; 4272 goto out; 4273 } 4274 4275 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 4276 MIN(maxbucket, bucket->ub_entries), domain, flags); 4277 4278 /* 4279 * Initialize the memory if necessary. 4280 */ 4281 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 4282 int i; 4283 4284 for (i = 0; i < bucket->ub_cnt; i++) { 4285 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 4286 error = zone->uz_init(bucket->ub_bucket[i], 4287 zone->uz_size, flags); 4288 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 4289 if (error != 0) 4290 break; 4291 } 4292 4293 /* 4294 * If we couldn't initialize the whole bucket, put the 4295 * rest back onto the freelist. 4296 */ 4297 if (i != bucket->ub_cnt) { 4298 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 4299 bucket->ub_cnt - i); 4300 #ifdef INVARIANTS 4301 bzero(&bucket->ub_bucket[i], 4302 sizeof(void *) * (bucket->ub_cnt - i)); 4303 #endif 4304 bucket->ub_cnt = i; 4305 } 4306 } 4307 4308 cnt = bucket->ub_cnt; 4309 if (bucket->ub_cnt == 0) { 4310 bucket_free(zone, bucket, udata); 4311 counter_u64_add(zone->uz_fails, 1); 4312 bucket = NULL; 4313 } 4314 out: 4315 if (zone->uz_max_items > 0 && cnt < maxbucket) 4316 zone_free_limit(zone, maxbucket - cnt); 4317 4318 return (bucket); 4319 } 4320 4321 /* 4322 * Allocates a single item from a zone. 4323 * 4324 * Arguments 4325 * zone The zone to alloc for. 4326 * udata The data to be passed to the constructor. 4327 * domain The domain to allocate from or UMA_ANYDOMAIN. 4328 * flags M_WAITOK, M_NOWAIT, M_ZERO. 4329 * 4330 * Returns 4331 * NULL if there is no memory and M_NOWAIT is set 4332 * An item if successful 4333 */ 4334 4335 static void * 4336 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 4337 { 4338 void *item; 4339 4340 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { 4341 counter_u64_add(zone->uz_fails, 1); 4342 return (NULL); 4343 } 4344 4345 /* Avoid allocs targeting empty domains. */ 4346 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4347 domain = UMA_ANYDOMAIN; 4348 4349 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 4350 goto fail_cnt; 4351 4352 /* 4353 * We have to call both the zone's init (not the keg's init) 4354 * and the zone's ctor. This is because the item is going from 4355 * a keg slab directly to the user, and the user is expecting it 4356 * to be both zone-init'd as well as zone-ctor'd. 4357 */ 4358 if (zone->uz_init != NULL) { 4359 int error; 4360 4361 kasan_mark_item_valid(zone, item); 4362 error = zone->uz_init(item, zone->uz_size, flags); 4363 kasan_mark_item_invalid(zone, item); 4364 if (error != 0) { 4365 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 4366 goto fail_cnt; 4367 } 4368 } 4369 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 4370 item); 4371 if (item == NULL) 4372 goto fail; 4373 4374 counter_u64_add(zone->uz_allocs, 1); 4375 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 4376 zone->uz_name, zone); 4377 4378 return (item); 4379 4380 fail_cnt: 4381 counter_u64_add(zone->uz_fails, 1); 4382 fail: 4383 if (zone->uz_max_items > 0) 4384 zone_free_limit(zone, 1); 4385 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 4386 zone->uz_name, zone); 4387 4388 return (NULL); 4389 } 4390 4391 /* See uma.h */ 4392 void 4393 uma_zfree_smr(uma_zone_t zone, void *item) 4394 { 4395 uma_cache_t cache; 4396 uma_cache_bucket_t bucket; 4397 int itemdomain; 4398 #ifdef NUMA 4399 int uz_flags; 4400 #endif 4401 4402 CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p", 4403 zone->uz_name, zone, item); 4404 4405 #ifdef UMA_ZALLOC_DEBUG 4406 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4407 ("uma_zfree_smr: called with non-SMR zone.")); 4408 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4409 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4410 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4411 return; 4412 #endif 4413 cache = &zone->uz_cpu[curcpu]; 4414 itemdomain = 0; 4415 #ifdef NUMA 4416 uz_flags = cache_uz_flags(cache); 4417 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4418 itemdomain = item_domain(item); 4419 #endif 4420 critical_enter(); 4421 do { 4422 cache = &zone->uz_cpu[curcpu]; 4423 /* SMR Zones must free to the free bucket. */ 4424 bucket = &cache->uc_freebucket; 4425 #ifdef NUMA 4426 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4427 PCPU_GET(domain) != itemdomain) { 4428 bucket = &cache->uc_crossbucket; 4429 } 4430 #endif 4431 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4432 cache_bucket_push(cache, bucket, item); 4433 critical_exit(); 4434 return; 4435 } 4436 } while (cache_free(zone, cache, NULL, itemdomain)); 4437 critical_exit(); 4438 4439 /* 4440 * If nothing else caught this, we'll just do an internal free. 4441 */ 4442 zone_free_item(zone, item, NULL, SKIP_NONE); 4443 } 4444 4445 /* See uma.h */ 4446 void 4447 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4448 { 4449 uma_cache_t cache; 4450 uma_cache_bucket_t bucket; 4451 int itemdomain, uz_flags; 4452 4453 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4454 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4455 4456 CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p", 4457 zone->uz_name, zone, item); 4458 4459 #ifdef UMA_ZALLOC_DEBUG 4460 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4461 ("uma_zfree_arg: called with SMR zone.")); 4462 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4463 return; 4464 #endif 4465 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4466 if (item == NULL) 4467 return; 4468 4469 /* 4470 * We are accessing the per-cpu cache without a critical section to 4471 * fetch size and flags. This is acceptable, if we are preempted we 4472 * will simply read another cpu's line. 4473 */ 4474 cache = &zone->uz_cpu[curcpu]; 4475 uz_flags = cache_uz_flags(cache); 4476 if (UMA_ALWAYS_CTORDTOR || 4477 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4478 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4479 4480 /* 4481 * The race here is acceptable. If we miss it we'll just have to wait 4482 * a little longer for the limits to be reset. 4483 */ 4484 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4485 if (atomic_load_32(&zone->uz_sleepers) > 0) 4486 goto zfree_item; 4487 } 4488 4489 /* 4490 * If possible, free to the per-CPU cache. There are two 4491 * requirements for safe access to the per-CPU cache: (1) the thread 4492 * accessing the cache must not be preempted or yield during access, 4493 * and (2) the thread must not migrate CPUs without switching which 4494 * cache it accesses. We rely on a critical section to prevent 4495 * preemption and migration. We release the critical section in 4496 * order to acquire the zone mutex if we are unable to free to the 4497 * current cache; when we re-acquire the critical section, we must 4498 * detect and handle migration if it has occurred. 4499 */ 4500 itemdomain = 0; 4501 #ifdef NUMA 4502 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4503 itemdomain = item_domain(item); 4504 #endif 4505 critical_enter(); 4506 do { 4507 cache = &zone->uz_cpu[curcpu]; 4508 /* 4509 * Try to free into the allocbucket first to give LIFO 4510 * ordering for cache-hot datastructures. Spill over 4511 * into the freebucket if necessary. Alloc will swap 4512 * them if one runs dry. 4513 */ 4514 bucket = &cache->uc_allocbucket; 4515 #ifdef NUMA 4516 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4517 PCPU_GET(domain) != itemdomain) { 4518 bucket = &cache->uc_crossbucket; 4519 } else 4520 #endif 4521 if (bucket->ucb_cnt == bucket->ucb_entries && 4522 cache->uc_freebucket.ucb_cnt < 4523 cache->uc_freebucket.ucb_entries) 4524 cache_bucket_swap(&cache->uc_freebucket, 4525 &cache->uc_allocbucket); 4526 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4527 cache_bucket_push(cache, bucket, item); 4528 critical_exit(); 4529 return; 4530 } 4531 } while (cache_free(zone, cache, udata, itemdomain)); 4532 critical_exit(); 4533 4534 /* 4535 * If nothing else caught this, we'll just do an internal free. 4536 */ 4537 zfree_item: 4538 zone_free_item(zone, item, udata, SKIP_DTOR); 4539 } 4540 4541 #ifdef NUMA 4542 /* 4543 * sort crossdomain free buckets to domain correct buckets and cache 4544 * them. 4545 */ 4546 static void 4547 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4548 { 4549 struct uma_bucketlist emptybuckets, fullbuckets; 4550 uma_zone_domain_t zdom; 4551 uma_bucket_t b; 4552 smr_seq_t seq; 4553 void *item; 4554 int domain; 4555 4556 CTR3(KTR_UMA, 4557 "uma_zfree: zone %s(%p) draining cross bucket %p", 4558 zone->uz_name, zone, bucket); 4559 4560 /* 4561 * It is possible for buckets to arrive here out of order so we fetch 4562 * the current smr seq rather than accepting the bucket's. 4563 */ 4564 seq = SMR_SEQ_INVALID; 4565 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4566 seq = smr_advance(zone->uz_smr); 4567 4568 /* 4569 * To avoid having ndomain * ndomain buckets for sorting we have a 4570 * lock on the current crossfree bucket. A full matrix with 4571 * per-domain locking could be used if necessary. 4572 */ 4573 STAILQ_INIT(&emptybuckets); 4574 STAILQ_INIT(&fullbuckets); 4575 ZONE_CROSS_LOCK(zone); 4576 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) { 4577 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4578 domain = item_domain(item); 4579 zdom = ZDOM_GET(zone, domain); 4580 if (zdom->uzd_cross == NULL) { 4581 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4582 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4583 zdom->uzd_cross = b; 4584 } else { 4585 /* 4586 * Avoid allocating a bucket with the cross lock 4587 * held, since allocation can trigger a 4588 * cross-domain free and bucket zones may 4589 * allocate from each other. 4590 */ 4591 ZONE_CROSS_UNLOCK(zone); 4592 b = bucket_alloc(zone, udata, M_NOWAIT); 4593 if (b == NULL) 4594 goto out; 4595 ZONE_CROSS_LOCK(zone); 4596 if (zdom->uzd_cross != NULL) { 4597 STAILQ_INSERT_HEAD(&emptybuckets, b, 4598 ub_link); 4599 } else { 4600 zdom->uzd_cross = b; 4601 } 4602 } 4603 } 4604 b = zdom->uzd_cross; 4605 b->ub_bucket[b->ub_cnt++] = item; 4606 b->ub_seq = seq; 4607 if (b->ub_cnt == b->ub_entries) { 4608 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4609 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) 4610 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4611 zdom->uzd_cross = b; 4612 } 4613 } 4614 ZONE_CROSS_UNLOCK(zone); 4615 out: 4616 if (bucket->ub_cnt == 0) 4617 bucket->ub_seq = SMR_SEQ_INVALID; 4618 bucket_free(zone, bucket, udata); 4619 4620 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4621 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4622 bucket_free(zone, b, udata); 4623 } 4624 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4625 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4626 domain = item_domain(b->ub_bucket[0]); 4627 zone_put_bucket(zone, domain, b, udata, true); 4628 } 4629 } 4630 #endif 4631 4632 static void 4633 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4634 int itemdomain, bool ws) 4635 { 4636 4637 #ifdef NUMA 4638 /* 4639 * Buckets coming from the wrong domain will be entirely for the 4640 * only other domain on two domain systems. In this case we can 4641 * simply cache them. Otherwise we need to sort them back to 4642 * correct domains. 4643 */ 4644 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4645 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4646 zone_free_cross(zone, bucket, udata); 4647 return; 4648 } 4649 #endif 4650 4651 /* 4652 * Attempt to save the bucket in the zone's domain bucket cache. 4653 */ 4654 CTR3(KTR_UMA, 4655 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4656 zone->uz_name, zone, bucket); 4657 /* ub_cnt is pointing to the last free item */ 4658 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4659 itemdomain = zone_domain_lowest(zone, itemdomain); 4660 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4661 } 4662 4663 /* 4664 * Populate a free or cross bucket for the current cpu cache. Free any 4665 * existing full bucket either to the zone cache or back to the slab layer. 4666 * 4667 * Enters and returns in a critical section. false return indicates that 4668 * we can not satisfy this free in the cache layer. true indicates that 4669 * the caller should retry. 4670 */ 4671 static __noinline bool 4672 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain) 4673 { 4674 uma_cache_bucket_t cbucket; 4675 uma_bucket_t newbucket, bucket; 4676 4677 CRITICAL_ASSERT(curthread); 4678 4679 if (zone->uz_bucket_size == 0) 4680 return false; 4681 4682 cache = &zone->uz_cpu[curcpu]; 4683 newbucket = NULL; 4684 4685 /* 4686 * FIRSTTOUCH domains need to free to the correct zdom. When 4687 * enabled this is the zdom of the item. The bucket is the 4688 * cross bucket if the current domain and itemdomain do not match. 4689 */ 4690 cbucket = &cache->uc_freebucket; 4691 #ifdef NUMA 4692 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4693 if (PCPU_GET(domain) != itemdomain) { 4694 cbucket = &cache->uc_crossbucket; 4695 if (cbucket->ucb_cnt != 0) 4696 counter_u64_add(zone->uz_xdomain, 4697 cbucket->ucb_cnt); 4698 } 4699 } 4700 #endif 4701 bucket = cache_bucket_unload(cbucket); 4702 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4703 ("cache_free: Entered with non-full free bucket.")); 4704 4705 /* We are no longer associated with this CPU. */ 4706 critical_exit(); 4707 4708 /* 4709 * Don't let SMR zones operate without a free bucket. Force 4710 * a synchronize and re-use this one. We will only degrade 4711 * to a synchronize every bucket_size items rather than every 4712 * item if we fail to allocate a bucket. 4713 */ 4714 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4715 if (bucket != NULL) 4716 bucket->ub_seq = smr_advance(zone->uz_smr); 4717 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4718 if (newbucket == NULL && bucket != NULL) { 4719 bucket_drain(zone, bucket); 4720 newbucket = bucket; 4721 bucket = NULL; 4722 } 4723 } else if (!bucketdisable) 4724 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4725 4726 if (bucket != NULL) 4727 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4728 4729 critical_enter(); 4730 if ((bucket = newbucket) == NULL) 4731 return (false); 4732 cache = &zone->uz_cpu[curcpu]; 4733 #ifdef NUMA 4734 /* 4735 * Check to see if we should be populating the cross bucket. If it 4736 * is already populated we will fall through and attempt to populate 4737 * the free bucket. 4738 */ 4739 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4740 if (PCPU_GET(domain) != itemdomain && 4741 cache->uc_crossbucket.ucb_bucket == NULL) { 4742 cache_bucket_load_cross(cache, bucket); 4743 return (true); 4744 } 4745 } 4746 #endif 4747 /* 4748 * We may have lost the race to fill the bucket or switched CPUs. 4749 */ 4750 if (cache->uc_freebucket.ucb_bucket != NULL) { 4751 critical_exit(); 4752 bucket_free(zone, bucket, udata); 4753 critical_enter(); 4754 } else 4755 cache_bucket_load_free(cache, bucket); 4756 4757 return (true); 4758 } 4759 4760 static void 4761 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4762 { 4763 uma_keg_t keg; 4764 uma_domain_t dom; 4765 int freei; 4766 4767 keg = zone->uz_keg; 4768 KEG_LOCK_ASSERT(keg, slab->us_domain); 4769 4770 /* Do we need to remove from any lists? */ 4771 dom = &keg->uk_domain[slab->us_domain]; 4772 if (slab->us_freecount + 1 == keg->uk_ipers) { 4773 LIST_REMOVE(slab, us_link); 4774 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4775 dom->ud_free_slabs++; 4776 } else if (slab->us_freecount == 0) { 4777 LIST_REMOVE(slab, us_link); 4778 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4779 } 4780 4781 /* Slab management. */ 4782 freei = slab_item_index(slab, keg, item); 4783 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4784 slab->us_freecount++; 4785 4786 /* Keg statistics. */ 4787 dom->ud_free_items++; 4788 } 4789 4790 static void 4791 zone_release(void *arg, void **bucket, int cnt) 4792 { 4793 struct mtx *lock; 4794 uma_zone_t zone; 4795 uma_slab_t slab; 4796 uma_keg_t keg; 4797 uint8_t *mem; 4798 void *item; 4799 int i; 4800 4801 zone = arg; 4802 keg = zone->uz_keg; 4803 lock = NULL; 4804 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4805 lock = KEG_LOCK(keg, 0); 4806 for (i = 0; i < cnt; i++) { 4807 item = bucket[i]; 4808 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4809 slab = vtoslab((vm_offset_t)item); 4810 } else { 4811 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4812 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4813 slab = hash_sfind(&keg->uk_hash, mem); 4814 else 4815 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4816 } 4817 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4818 if (lock != NULL) 4819 mtx_unlock(lock); 4820 lock = KEG_LOCK(keg, slab->us_domain); 4821 } 4822 slab_free_item(zone, slab, item); 4823 } 4824 if (lock != NULL) 4825 mtx_unlock(lock); 4826 } 4827 4828 /* 4829 * Frees a single item to any zone. 4830 * 4831 * Arguments: 4832 * zone The zone to free to 4833 * item The item we're freeing 4834 * udata User supplied data for the dtor 4835 * skip Skip dtors and finis 4836 */ 4837 static __noinline void 4838 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4839 { 4840 4841 /* 4842 * If a free is sent directly to an SMR zone we have to 4843 * synchronize immediately because the item can instantly 4844 * be reallocated. This should only happen in degenerate 4845 * cases when no memory is available for per-cpu caches. 4846 */ 4847 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4848 smr_synchronize(zone->uz_smr); 4849 4850 item_dtor(zone, item, zone->uz_size, udata, skip); 4851 4852 if (skip < SKIP_FINI && zone->uz_fini) { 4853 kasan_mark_item_valid(zone, item); 4854 zone->uz_fini(item, zone->uz_size); 4855 kasan_mark_item_invalid(zone, item); 4856 } 4857 4858 zone->uz_release(zone->uz_arg, &item, 1); 4859 4860 if (skip & SKIP_CNT) 4861 return; 4862 4863 counter_u64_add(zone->uz_frees, 1); 4864 4865 if (zone->uz_max_items > 0) 4866 zone_free_limit(zone, 1); 4867 } 4868 4869 /* See uma.h */ 4870 int 4871 uma_zone_set_max(uma_zone_t zone, int nitems) 4872 { 4873 4874 /* 4875 * If the limit is small, we may need to constrain the maximum per-CPU 4876 * cache size, or disable caching entirely. 4877 */ 4878 uma_zone_set_maxcache(zone, nitems); 4879 4880 /* 4881 * XXX This can misbehave if the zone has any allocations with 4882 * no limit and a limit is imposed. There is currently no 4883 * way to clear a limit. 4884 */ 4885 ZONE_LOCK(zone); 4886 if (zone->uz_max_items == 0) 4887 ZONE_ASSERT_COLD(zone); 4888 zone->uz_max_items = nitems; 4889 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4890 zone_update_caches(zone); 4891 /* We may need to wake waiters. */ 4892 wakeup(&zone->uz_max_items); 4893 ZONE_UNLOCK(zone); 4894 4895 return (nitems); 4896 } 4897 4898 /* See uma.h */ 4899 void 4900 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4901 { 4902 int bpcpu, bpdom, bsize, nb; 4903 4904 ZONE_LOCK(zone); 4905 4906 /* 4907 * Compute a lower bound on the number of items that may be cached in 4908 * the zone. Each CPU gets at least two buckets, and for cross-domain 4909 * frees we use an additional bucket per CPU and per domain. Select the 4910 * largest bucket size that does not exceed half of the requested limit, 4911 * with the left over space given to the full bucket cache. 4912 */ 4913 bpdom = 0; 4914 bpcpu = 2; 4915 #ifdef NUMA 4916 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) { 4917 bpcpu++; 4918 bpdom++; 4919 } 4920 #endif 4921 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains; 4922 bsize = nitems / nb / 2; 4923 if (bsize > BUCKET_MAX) 4924 bsize = BUCKET_MAX; 4925 else if (bsize == 0 && nitems / nb > 0) 4926 bsize = 1; 4927 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize; 4928 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4929 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4930 zone->uz_bucket_max = nitems - nb * bsize; 4931 ZONE_UNLOCK(zone); 4932 } 4933 4934 /* See uma.h */ 4935 int 4936 uma_zone_get_max(uma_zone_t zone) 4937 { 4938 int nitems; 4939 4940 nitems = atomic_load_64(&zone->uz_max_items); 4941 4942 return (nitems); 4943 } 4944 4945 /* See uma.h */ 4946 void 4947 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4948 { 4949 4950 ZONE_ASSERT_COLD(zone); 4951 zone->uz_warning = warning; 4952 } 4953 4954 /* See uma.h */ 4955 void 4956 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4957 { 4958 4959 ZONE_ASSERT_COLD(zone); 4960 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4961 } 4962 4963 /* See uma.h */ 4964 int 4965 uma_zone_get_cur(uma_zone_t zone) 4966 { 4967 int64_t nitems; 4968 u_int i; 4969 4970 nitems = 0; 4971 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4972 nitems = counter_u64_fetch(zone->uz_allocs) - 4973 counter_u64_fetch(zone->uz_frees); 4974 CPU_FOREACH(i) 4975 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4976 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4977 4978 return (nitems < 0 ? 0 : nitems); 4979 } 4980 4981 static uint64_t 4982 uma_zone_get_allocs(uma_zone_t zone) 4983 { 4984 uint64_t nitems; 4985 u_int i; 4986 4987 nitems = 0; 4988 if (zone->uz_allocs != EARLY_COUNTER) 4989 nitems = counter_u64_fetch(zone->uz_allocs); 4990 CPU_FOREACH(i) 4991 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4992 4993 return (nitems); 4994 } 4995 4996 static uint64_t 4997 uma_zone_get_frees(uma_zone_t zone) 4998 { 4999 uint64_t nitems; 5000 u_int i; 5001 5002 nitems = 0; 5003 if (zone->uz_frees != EARLY_COUNTER) 5004 nitems = counter_u64_fetch(zone->uz_frees); 5005 CPU_FOREACH(i) 5006 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 5007 5008 return (nitems); 5009 } 5010 5011 #ifdef INVARIANTS 5012 /* Used only for KEG_ASSERT_COLD(). */ 5013 static uint64_t 5014 uma_keg_get_allocs(uma_keg_t keg) 5015 { 5016 uma_zone_t z; 5017 uint64_t nitems; 5018 5019 nitems = 0; 5020 LIST_FOREACH(z, &keg->uk_zones, uz_link) 5021 nitems += uma_zone_get_allocs(z); 5022 5023 return (nitems); 5024 } 5025 #endif 5026 5027 /* See uma.h */ 5028 void 5029 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 5030 { 5031 uma_keg_t keg; 5032 5033 KEG_GET(zone, keg); 5034 KEG_ASSERT_COLD(keg); 5035 keg->uk_init = uminit; 5036 } 5037 5038 /* See uma.h */ 5039 void 5040 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 5041 { 5042 uma_keg_t keg; 5043 5044 KEG_GET(zone, keg); 5045 KEG_ASSERT_COLD(keg); 5046 keg->uk_fini = fini; 5047 } 5048 5049 /* See uma.h */ 5050 void 5051 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 5052 { 5053 5054 ZONE_ASSERT_COLD(zone); 5055 zone->uz_init = zinit; 5056 } 5057 5058 /* See uma.h */ 5059 void 5060 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 5061 { 5062 5063 ZONE_ASSERT_COLD(zone); 5064 zone->uz_fini = zfini; 5065 } 5066 5067 /* See uma.h */ 5068 void 5069 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 5070 { 5071 uma_keg_t keg; 5072 5073 KEG_GET(zone, keg); 5074 KEG_ASSERT_COLD(keg); 5075 keg->uk_freef = freef; 5076 } 5077 5078 /* See uma.h */ 5079 void 5080 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 5081 { 5082 uma_keg_t keg; 5083 5084 KEG_GET(zone, keg); 5085 KEG_ASSERT_COLD(keg); 5086 keg->uk_allocf = allocf; 5087 } 5088 5089 /* See uma.h */ 5090 void 5091 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 5092 { 5093 5094 ZONE_ASSERT_COLD(zone); 5095 5096 KASSERT(smr != NULL, ("Got NULL smr")); 5097 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 5098 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 5099 zone->uz_flags |= UMA_ZONE_SMR; 5100 zone->uz_smr = smr; 5101 zone_update_caches(zone); 5102 } 5103 5104 smr_t 5105 uma_zone_get_smr(uma_zone_t zone) 5106 { 5107 5108 return (zone->uz_smr); 5109 } 5110 5111 /* See uma.h */ 5112 void 5113 uma_zone_reserve(uma_zone_t zone, int items) 5114 { 5115 uma_keg_t keg; 5116 5117 KEG_GET(zone, keg); 5118 KEG_ASSERT_COLD(keg); 5119 keg->uk_reserve = items; 5120 } 5121 5122 /* See uma.h */ 5123 int 5124 uma_zone_reserve_kva(uma_zone_t zone, int count) 5125 { 5126 uma_keg_t keg; 5127 vm_offset_t kva; 5128 u_int pages; 5129 5130 KEG_GET(zone, keg); 5131 KEG_ASSERT_COLD(keg); 5132 ZONE_ASSERT_COLD(zone); 5133 5134 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 5135 5136 #ifdef UMA_MD_SMALL_ALLOC 5137 if (keg->uk_ppera > 1) { 5138 #else 5139 if (1) { 5140 #endif 5141 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 5142 if (kva == 0) 5143 return (0); 5144 } else 5145 kva = 0; 5146 5147 MPASS(keg->uk_kva == 0); 5148 keg->uk_kva = kva; 5149 keg->uk_offset = 0; 5150 zone->uz_max_items = pages * keg->uk_ipers; 5151 #ifdef UMA_MD_SMALL_ALLOC 5152 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 5153 #else 5154 keg->uk_allocf = noobj_alloc; 5155 #endif 5156 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5157 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5158 zone_update_caches(zone); 5159 5160 return (1); 5161 } 5162 5163 /* See uma.h */ 5164 void 5165 uma_prealloc(uma_zone_t zone, int items) 5166 { 5167 struct vm_domainset_iter di; 5168 uma_domain_t dom; 5169 uma_slab_t slab; 5170 uma_keg_t keg; 5171 int aflags, domain, slabs; 5172 5173 KEG_GET(zone, keg); 5174 slabs = howmany(items, keg->uk_ipers); 5175 while (slabs-- > 0) { 5176 aflags = M_NOWAIT; 5177 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 5178 &aflags); 5179 for (;;) { 5180 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 5181 aflags); 5182 if (slab != NULL) { 5183 dom = &keg->uk_domain[slab->us_domain]; 5184 /* 5185 * keg_alloc_slab() always returns a slab on the 5186 * partial list. 5187 */ 5188 LIST_REMOVE(slab, us_link); 5189 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 5190 us_link); 5191 dom->ud_free_slabs++; 5192 KEG_UNLOCK(keg, slab->us_domain); 5193 break; 5194 } 5195 if (vm_domainset_iter_policy(&di, &domain) != 0) 5196 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 5197 } 5198 } 5199 } 5200 5201 /* 5202 * Returns a snapshot of memory consumption in bytes. 5203 */ 5204 size_t 5205 uma_zone_memory(uma_zone_t zone) 5206 { 5207 size_t sz; 5208 int i; 5209 5210 sz = 0; 5211 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 5212 for (i = 0; i < vm_ndomains; i++) 5213 sz += ZDOM_GET(zone, i)->uzd_nitems; 5214 return (sz * zone->uz_size); 5215 } 5216 for (i = 0; i < vm_ndomains; i++) 5217 sz += zone->uz_keg->uk_domain[i].ud_pages; 5218 5219 return (sz * PAGE_SIZE); 5220 } 5221 5222 struct uma_reclaim_args { 5223 int domain; 5224 int req; 5225 }; 5226 5227 static void 5228 uma_reclaim_domain_cb(uma_zone_t zone, void *arg) 5229 { 5230 struct uma_reclaim_args *args; 5231 5232 args = arg; 5233 if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) 5234 uma_zone_reclaim_domain(zone, args->req, args->domain); 5235 } 5236 5237 /* See uma.h */ 5238 void 5239 uma_reclaim(int req) 5240 { 5241 uma_reclaim_domain(req, UMA_ANYDOMAIN); 5242 } 5243 5244 void 5245 uma_reclaim_domain(int req, int domain) 5246 { 5247 struct uma_reclaim_args args; 5248 5249 bucket_enable(); 5250 5251 args.domain = domain; 5252 args.req = req; 5253 5254 sx_slock(&uma_reclaim_lock); 5255 switch (req) { 5256 case UMA_RECLAIM_TRIM: 5257 case UMA_RECLAIM_DRAIN: 5258 zone_foreach(uma_reclaim_domain_cb, &args); 5259 break; 5260 case UMA_RECLAIM_DRAIN_CPU: 5261 zone_foreach(uma_reclaim_domain_cb, &args); 5262 pcpu_cache_drain_safe(NULL); 5263 zone_foreach(uma_reclaim_domain_cb, &args); 5264 break; 5265 default: 5266 panic("unhandled reclamation request %d", req); 5267 } 5268 5269 /* 5270 * Some slabs may have been freed but this zone will be visited early 5271 * we visit again so that we can free pages that are empty once other 5272 * zones are drained. We have to do the same for buckets. 5273 */ 5274 uma_zone_reclaim_domain(slabzones[0], UMA_RECLAIM_DRAIN, domain); 5275 uma_zone_reclaim_domain(slabzones[1], UMA_RECLAIM_DRAIN, domain); 5276 bucket_zone_drain(domain); 5277 sx_sunlock(&uma_reclaim_lock); 5278 } 5279 5280 static volatile int uma_reclaim_needed; 5281 5282 void 5283 uma_reclaim_wakeup(void) 5284 { 5285 5286 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 5287 wakeup(uma_reclaim); 5288 } 5289 5290 void 5291 uma_reclaim_worker(void *arg __unused) 5292 { 5293 5294 for (;;) { 5295 sx_xlock(&uma_reclaim_lock); 5296 while (atomic_load_int(&uma_reclaim_needed) == 0) 5297 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 5298 hz); 5299 sx_xunlock(&uma_reclaim_lock); 5300 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 5301 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 5302 atomic_store_int(&uma_reclaim_needed, 0); 5303 /* Don't fire more than once per-second. */ 5304 pause("umarclslp", hz); 5305 } 5306 } 5307 5308 /* See uma.h */ 5309 void 5310 uma_zone_reclaim(uma_zone_t zone, int req) 5311 { 5312 uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN); 5313 } 5314 5315 void 5316 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain) 5317 { 5318 switch (req) { 5319 case UMA_RECLAIM_TRIM: 5320 zone_reclaim(zone, domain, M_NOWAIT, false); 5321 break; 5322 case UMA_RECLAIM_DRAIN: 5323 zone_reclaim(zone, domain, M_NOWAIT, true); 5324 break; 5325 case UMA_RECLAIM_DRAIN_CPU: 5326 pcpu_cache_drain_safe(zone); 5327 zone_reclaim(zone, domain, M_NOWAIT, true); 5328 break; 5329 default: 5330 panic("unhandled reclamation request %d", req); 5331 } 5332 } 5333 5334 /* See uma.h */ 5335 int 5336 uma_zone_exhausted(uma_zone_t zone) 5337 { 5338 5339 return (atomic_load_32(&zone->uz_sleepers) > 0); 5340 } 5341 5342 unsigned long 5343 uma_limit(void) 5344 { 5345 5346 return (uma_kmem_limit); 5347 } 5348 5349 void 5350 uma_set_limit(unsigned long limit) 5351 { 5352 5353 uma_kmem_limit = limit; 5354 } 5355 5356 unsigned long 5357 uma_size(void) 5358 { 5359 5360 return (atomic_load_long(&uma_kmem_total)); 5361 } 5362 5363 long 5364 uma_avail(void) 5365 { 5366 5367 return (uma_kmem_limit - uma_size()); 5368 } 5369 5370 #ifdef DDB 5371 /* 5372 * Generate statistics across both the zone and its per-cpu cache's. Return 5373 * desired statistics if the pointer is non-NULL for that statistic. 5374 * 5375 * Note: does not update the zone statistics, as it can't safely clear the 5376 * per-CPU cache statistic. 5377 * 5378 */ 5379 static void 5380 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 5381 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 5382 { 5383 uma_cache_t cache; 5384 uint64_t allocs, frees, sleeps, xdomain; 5385 int cachefree, cpu; 5386 5387 allocs = frees = sleeps = xdomain = 0; 5388 cachefree = 0; 5389 CPU_FOREACH(cpu) { 5390 cache = &z->uz_cpu[cpu]; 5391 cachefree += cache->uc_allocbucket.ucb_cnt; 5392 cachefree += cache->uc_freebucket.ucb_cnt; 5393 xdomain += cache->uc_crossbucket.ucb_cnt; 5394 cachefree += cache->uc_crossbucket.ucb_cnt; 5395 allocs += cache->uc_allocs; 5396 frees += cache->uc_frees; 5397 } 5398 allocs += counter_u64_fetch(z->uz_allocs); 5399 frees += counter_u64_fetch(z->uz_frees); 5400 xdomain += counter_u64_fetch(z->uz_xdomain); 5401 sleeps += z->uz_sleeps; 5402 if (cachefreep != NULL) 5403 *cachefreep = cachefree; 5404 if (allocsp != NULL) 5405 *allocsp = allocs; 5406 if (freesp != NULL) 5407 *freesp = frees; 5408 if (sleepsp != NULL) 5409 *sleepsp = sleeps; 5410 if (xdomainp != NULL) 5411 *xdomainp = xdomain; 5412 } 5413 #endif /* DDB */ 5414 5415 static int 5416 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 5417 { 5418 uma_keg_t kz; 5419 uma_zone_t z; 5420 int count; 5421 5422 count = 0; 5423 rw_rlock(&uma_rwlock); 5424 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5425 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5426 count++; 5427 } 5428 LIST_FOREACH(z, &uma_cachezones, uz_link) 5429 count++; 5430 5431 rw_runlock(&uma_rwlock); 5432 return (sysctl_handle_int(oidp, &count, 0, req)); 5433 } 5434 5435 static void 5436 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 5437 struct uma_percpu_stat *ups, bool internal) 5438 { 5439 uma_zone_domain_t zdom; 5440 uma_cache_t cache; 5441 int i; 5442 5443 for (i = 0; i < vm_ndomains; i++) { 5444 zdom = ZDOM_GET(z, i); 5445 uth->uth_zone_free += zdom->uzd_nitems; 5446 } 5447 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 5448 uth->uth_frees = counter_u64_fetch(z->uz_frees); 5449 uth->uth_fails = counter_u64_fetch(z->uz_fails); 5450 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 5451 uth->uth_sleeps = z->uz_sleeps; 5452 5453 for (i = 0; i < mp_maxid + 1; i++) { 5454 bzero(&ups[i], sizeof(*ups)); 5455 if (internal || CPU_ABSENT(i)) 5456 continue; 5457 cache = &z->uz_cpu[i]; 5458 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 5459 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5460 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5461 ups[i].ups_allocs = cache->uc_allocs; 5462 ups[i].ups_frees = cache->uc_frees; 5463 } 5464 } 5465 5466 static int 5467 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5468 { 5469 struct uma_stream_header ush; 5470 struct uma_type_header uth; 5471 struct uma_percpu_stat *ups; 5472 struct sbuf sbuf; 5473 uma_keg_t kz; 5474 uma_zone_t z; 5475 uint64_t items; 5476 uint32_t kfree, pages; 5477 int count, error, i; 5478 5479 error = sysctl_wire_old_buffer(req, 0); 5480 if (error != 0) 5481 return (error); 5482 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5483 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5484 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5485 5486 count = 0; 5487 rw_rlock(&uma_rwlock); 5488 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5489 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5490 count++; 5491 } 5492 5493 LIST_FOREACH(z, &uma_cachezones, uz_link) 5494 count++; 5495 5496 /* 5497 * Insert stream header. 5498 */ 5499 bzero(&ush, sizeof(ush)); 5500 ush.ush_version = UMA_STREAM_VERSION; 5501 ush.ush_maxcpus = (mp_maxid + 1); 5502 ush.ush_count = count; 5503 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5504 5505 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5506 kfree = pages = 0; 5507 for (i = 0; i < vm_ndomains; i++) { 5508 kfree += kz->uk_domain[i].ud_free_items; 5509 pages += kz->uk_domain[i].ud_pages; 5510 } 5511 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5512 bzero(&uth, sizeof(uth)); 5513 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5514 uth.uth_align = kz->uk_align; 5515 uth.uth_size = kz->uk_size; 5516 uth.uth_rsize = kz->uk_rsize; 5517 if (z->uz_max_items > 0) { 5518 items = UZ_ITEMS_COUNT(z->uz_items); 5519 uth.uth_pages = (items / kz->uk_ipers) * 5520 kz->uk_ppera; 5521 } else 5522 uth.uth_pages = pages; 5523 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5524 kz->uk_ppera; 5525 uth.uth_limit = z->uz_max_items; 5526 uth.uth_keg_free = kfree; 5527 5528 /* 5529 * A zone is secondary is it is not the first entry 5530 * on the keg's zone list. 5531 */ 5532 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5533 (LIST_FIRST(&kz->uk_zones) != z)) 5534 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5535 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5536 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5537 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5538 for (i = 0; i < mp_maxid + 1; i++) 5539 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5540 } 5541 } 5542 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5543 bzero(&uth, sizeof(uth)); 5544 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5545 uth.uth_size = z->uz_size; 5546 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5547 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5548 for (i = 0; i < mp_maxid + 1; i++) 5549 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5550 } 5551 5552 rw_runlock(&uma_rwlock); 5553 error = sbuf_finish(&sbuf); 5554 sbuf_delete(&sbuf); 5555 free(ups, M_TEMP); 5556 return (error); 5557 } 5558 5559 int 5560 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5561 { 5562 uma_zone_t zone = *(uma_zone_t *)arg1; 5563 int error, max; 5564 5565 max = uma_zone_get_max(zone); 5566 error = sysctl_handle_int(oidp, &max, 0, req); 5567 if (error || !req->newptr) 5568 return (error); 5569 5570 uma_zone_set_max(zone, max); 5571 5572 return (0); 5573 } 5574 5575 int 5576 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5577 { 5578 uma_zone_t zone; 5579 int cur; 5580 5581 /* 5582 * Some callers want to add sysctls for global zones that 5583 * may not yet exist so they pass a pointer to a pointer. 5584 */ 5585 if (arg2 == 0) 5586 zone = *(uma_zone_t *)arg1; 5587 else 5588 zone = arg1; 5589 cur = uma_zone_get_cur(zone); 5590 return (sysctl_handle_int(oidp, &cur, 0, req)); 5591 } 5592 5593 static int 5594 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5595 { 5596 uma_zone_t zone = arg1; 5597 uint64_t cur; 5598 5599 cur = uma_zone_get_allocs(zone); 5600 return (sysctl_handle_64(oidp, &cur, 0, req)); 5601 } 5602 5603 static int 5604 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5605 { 5606 uma_zone_t zone = arg1; 5607 uint64_t cur; 5608 5609 cur = uma_zone_get_frees(zone); 5610 return (sysctl_handle_64(oidp, &cur, 0, req)); 5611 } 5612 5613 static int 5614 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5615 { 5616 struct sbuf sbuf; 5617 uma_zone_t zone = arg1; 5618 int error; 5619 5620 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5621 if (zone->uz_flags != 0) 5622 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5623 else 5624 sbuf_printf(&sbuf, "0"); 5625 error = sbuf_finish(&sbuf); 5626 sbuf_delete(&sbuf); 5627 5628 return (error); 5629 } 5630 5631 static int 5632 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5633 { 5634 uma_keg_t keg = arg1; 5635 int avail, effpct, total; 5636 5637 total = keg->uk_ppera * PAGE_SIZE; 5638 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5639 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5640 /* 5641 * We consider the client's requested size and alignment here, not the 5642 * real size determination uk_rsize, because we also adjust the real 5643 * size for internal implementation reasons (max bitset size). 5644 */ 5645 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5646 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5647 avail *= mp_maxid + 1; 5648 effpct = 100 * avail / total; 5649 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5650 } 5651 5652 static int 5653 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5654 { 5655 uma_zone_t zone = arg1; 5656 uint64_t cur; 5657 5658 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5659 return (sysctl_handle_64(oidp, &cur, 0, req)); 5660 } 5661 5662 #ifdef INVARIANTS 5663 static uma_slab_t 5664 uma_dbg_getslab(uma_zone_t zone, void *item) 5665 { 5666 uma_slab_t slab; 5667 uma_keg_t keg; 5668 uint8_t *mem; 5669 5670 /* 5671 * It is safe to return the slab here even though the 5672 * zone is unlocked because the item's allocation state 5673 * essentially holds a reference. 5674 */ 5675 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5676 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5677 return (NULL); 5678 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5679 return (vtoslab((vm_offset_t)mem)); 5680 keg = zone->uz_keg; 5681 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5682 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5683 KEG_LOCK(keg, 0); 5684 slab = hash_sfind(&keg->uk_hash, mem); 5685 KEG_UNLOCK(keg, 0); 5686 5687 return (slab); 5688 } 5689 5690 static bool 5691 uma_dbg_zskip(uma_zone_t zone, void *mem) 5692 { 5693 5694 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5695 return (true); 5696 5697 return (uma_dbg_kskip(zone->uz_keg, mem)); 5698 } 5699 5700 static bool 5701 uma_dbg_kskip(uma_keg_t keg, void *mem) 5702 { 5703 uintptr_t idx; 5704 5705 if (dbg_divisor == 0) 5706 return (true); 5707 5708 if (dbg_divisor == 1) 5709 return (false); 5710 5711 idx = (uintptr_t)mem >> PAGE_SHIFT; 5712 if (keg->uk_ipers > 1) { 5713 idx *= keg->uk_ipers; 5714 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5715 } 5716 5717 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5718 counter_u64_add(uma_skip_cnt, 1); 5719 return (true); 5720 } 5721 counter_u64_add(uma_dbg_cnt, 1); 5722 5723 return (false); 5724 } 5725 5726 /* 5727 * Set up the slab's freei data such that uma_dbg_free can function. 5728 * 5729 */ 5730 static void 5731 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5732 { 5733 uma_keg_t keg; 5734 int freei; 5735 5736 if (slab == NULL) { 5737 slab = uma_dbg_getslab(zone, item); 5738 if (slab == NULL) 5739 panic("uma: item %p did not belong to zone %s", 5740 item, zone->uz_name); 5741 } 5742 keg = zone->uz_keg; 5743 freei = slab_item_index(slab, keg, item); 5744 5745 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei, 5746 slab_dbg_bits(slab, keg))) 5747 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)", 5748 item, zone, zone->uz_name, slab, freei); 5749 } 5750 5751 /* 5752 * Verifies freed addresses. Checks for alignment, valid slab membership 5753 * and duplicate frees. 5754 * 5755 */ 5756 static void 5757 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5758 { 5759 uma_keg_t keg; 5760 int freei; 5761 5762 if (slab == NULL) { 5763 slab = uma_dbg_getslab(zone, item); 5764 if (slab == NULL) 5765 panic("uma: Freed item %p did not belong to zone %s", 5766 item, zone->uz_name); 5767 } 5768 keg = zone->uz_keg; 5769 freei = slab_item_index(slab, keg, item); 5770 5771 if (freei >= keg->uk_ipers) 5772 panic("Invalid free of %p from zone %p(%s) slab %p(%d)", 5773 item, zone, zone->uz_name, slab, freei); 5774 5775 if (slab_item(slab, keg, freei) != item) 5776 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)", 5777 item, zone, zone->uz_name, slab, freei); 5778 5779 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei, 5780 slab_dbg_bits(slab, keg))) 5781 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)", 5782 item, zone, zone->uz_name, slab, freei); 5783 } 5784 #endif /* INVARIANTS */ 5785 5786 #ifdef DDB 5787 static int64_t 5788 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5789 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5790 { 5791 uint64_t frees; 5792 int i; 5793 5794 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5795 *allocs = counter_u64_fetch(z->uz_allocs); 5796 frees = counter_u64_fetch(z->uz_frees); 5797 *sleeps = z->uz_sleeps; 5798 *cachefree = 0; 5799 *xdomain = 0; 5800 } else 5801 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5802 xdomain); 5803 for (i = 0; i < vm_ndomains; i++) { 5804 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5805 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5806 (LIST_FIRST(&kz->uk_zones) != z))) 5807 *cachefree += kz->uk_domain[i].ud_free_items; 5808 } 5809 *used = *allocs - frees; 5810 return (((int64_t)*used + *cachefree) * kz->uk_size); 5811 } 5812 5813 DB_SHOW_COMMAND(uma, db_show_uma) 5814 { 5815 const char *fmt_hdr, *fmt_entry; 5816 uma_keg_t kz; 5817 uma_zone_t z; 5818 uint64_t allocs, used, sleeps, xdomain; 5819 long cachefree; 5820 /* variables for sorting */ 5821 uma_keg_t cur_keg; 5822 uma_zone_t cur_zone, last_zone; 5823 int64_t cur_size, last_size, size; 5824 int ties; 5825 5826 /* /i option produces machine-parseable CSV output */ 5827 if (modif[0] == 'i') { 5828 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5829 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5830 } else { 5831 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5832 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5833 } 5834 5835 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5836 "Sleeps", "Bucket", "Total Mem", "XFree"); 5837 5838 /* Sort the zones with largest size first. */ 5839 last_zone = NULL; 5840 last_size = INT64_MAX; 5841 for (;;) { 5842 cur_zone = NULL; 5843 cur_size = -1; 5844 ties = 0; 5845 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5846 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5847 /* 5848 * In the case of size ties, print out zones 5849 * in the order they are encountered. That is, 5850 * when we encounter the most recently output 5851 * zone, we have already printed all preceding 5852 * ties, and we must print all following ties. 5853 */ 5854 if (z == last_zone) { 5855 ties = 1; 5856 continue; 5857 } 5858 size = get_uma_stats(kz, z, &allocs, &used, 5859 &sleeps, &cachefree, &xdomain); 5860 if (size > cur_size && size < last_size + ties) 5861 { 5862 cur_size = size; 5863 cur_zone = z; 5864 cur_keg = kz; 5865 } 5866 } 5867 } 5868 if (cur_zone == NULL) 5869 break; 5870 5871 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5872 &sleeps, &cachefree, &xdomain); 5873 db_printf(fmt_entry, cur_zone->uz_name, 5874 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5875 (uintmax_t)allocs, (uintmax_t)sleeps, 5876 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5877 xdomain); 5878 5879 if (db_pager_quit) 5880 return; 5881 last_zone = cur_zone; 5882 last_size = cur_size; 5883 } 5884 } 5885 5886 DB_SHOW_COMMAND(umacache, db_show_umacache) 5887 { 5888 uma_zone_t z; 5889 uint64_t allocs, frees; 5890 long cachefree; 5891 int i; 5892 5893 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5894 "Requests", "Bucket"); 5895 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5896 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5897 for (i = 0; i < vm_ndomains; i++) 5898 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5899 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5900 z->uz_name, (uintmax_t)z->uz_size, 5901 (intmax_t)(allocs - frees), cachefree, 5902 (uintmax_t)allocs, z->uz_bucket_size); 5903 if (db_pager_quit) 5904 return; 5905 } 5906 } 5907 #endif /* DDB */ 5908