1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/eventhandler.h> 63 #include <sys/kernel.h> 64 #include <sys/types.h> 65 #include <sys/queue.h> 66 #include <sys/malloc.h> 67 #include <sys/ktr.h> 68 #include <sys/lock.h> 69 #include <sys/sysctl.h> 70 #include <sys/mutex.h> 71 #include <sys/proc.h> 72 #include <sys/random.h> 73 #include <sys/rwlock.h> 74 #include <sys/sbuf.h> 75 #include <sys/sched.h> 76 #include <sys/smp.h> 77 #include <sys/taskqueue.h> 78 #include <sys/vmmeter.h> 79 80 #include <vm/vm.h> 81 #include <vm/vm_object.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pageout.h> 84 #include <vm/vm_param.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_kern.h> 87 #include <vm/vm_extern.h> 88 #include <vm/uma.h> 89 #include <vm/uma_int.h> 90 #include <vm/uma_dbg.h> 91 92 #include <ddb/ddb.h> 93 94 #ifdef DEBUG_MEMGUARD 95 #include <vm/memguard.h> 96 #endif 97 98 /* 99 * This is the zone and keg from which all zones are spawned. The idea is that 100 * even the zone & keg heads are allocated from the allocator, so we use the 101 * bss section to bootstrap us. 102 */ 103 static struct uma_keg masterkeg; 104 static struct uma_zone masterzone_k; 105 static struct uma_zone masterzone_z; 106 static uma_zone_t kegs = &masterzone_k; 107 static uma_zone_t zones = &masterzone_z; 108 109 /* This is the zone from which all of uma_slab_t's are allocated. */ 110 static uma_zone_t slabzone; 111 112 /* 113 * The initial hash tables come out of this zone so they can be allocated 114 * prior to malloc coming up. 115 */ 116 static uma_zone_t hashzone; 117 118 /* The boot-time adjusted value for cache line alignment. */ 119 int uma_align_cache = 64 - 1; 120 121 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 122 123 /* 124 * Are we allowed to allocate buckets? 125 */ 126 static int bucketdisable = 1; 127 128 /* Linked list of all kegs in the system */ 129 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 130 131 /* Linked list of all cache-only zones in the system */ 132 static LIST_HEAD(,uma_zone) uma_cachezones = 133 LIST_HEAD_INITIALIZER(uma_cachezones); 134 135 /* This RW lock protects the keg list */ 136 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 137 138 /* 139 * Pointer and counter to pool of pages, that is preallocated at 140 * startup to bootstrap UMA. Early zones continue to use the pool 141 * until it is depleted, so allocations may happen after boot, thus 142 * we need a mutex to protect it. 143 */ 144 static char *bootmem; 145 static int boot_pages; 146 static struct mtx uma_boot_pages_mtx; 147 148 static struct sx uma_drain_lock; 149 150 /* Is the VM done starting up? */ 151 static int booted = 0; 152 #define UMA_STARTUP 1 153 #define UMA_STARTUP2 2 154 155 /* 156 * This is the handle used to schedule events that need to happen 157 * outside of the allocation fast path. 158 */ 159 static struct callout uma_callout; 160 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 161 162 /* 163 * This structure is passed as the zone ctor arg so that I don't have to create 164 * a special allocation function just for zones. 165 */ 166 struct uma_zctor_args { 167 const char *name; 168 size_t size; 169 uma_ctor ctor; 170 uma_dtor dtor; 171 uma_init uminit; 172 uma_fini fini; 173 uma_import import; 174 uma_release release; 175 void *arg; 176 uma_keg_t keg; 177 int align; 178 uint32_t flags; 179 }; 180 181 struct uma_kctor_args { 182 uma_zone_t zone; 183 size_t size; 184 uma_init uminit; 185 uma_fini fini; 186 int align; 187 uint32_t flags; 188 }; 189 190 struct uma_bucket_zone { 191 uma_zone_t ubz_zone; 192 char *ubz_name; 193 int ubz_entries; /* Number of items it can hold. */ 194 int ubz_maxsize; /* Maximum allocation size per-item. */ 195 }; 196 197 /* 198 * Compute the actual number of bucket entries to pack them in power 199 * of two sizes for more efficient space utilization. 200 */ 201 #define BUCKET_SIZE(n) \ 202 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 203 204 #define BUCKET_MAX BUCKET_SIZE(256) 205 206 struct uma_bucket_zone bucket_zones[] = { 207 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 208 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 209 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 210 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 211 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 212 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 213 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 214 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 215 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 216 { NULL, NULL, 0} 217 }; 218 219 /* 220 * Flags and enumerations to be passed to internal functions. 221 */ 222 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 223 224 /* Prototypes.. */ 225 226 static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 227 static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 228 static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 229 static void page_free(void *, vm_size_t, uint8_t); 230 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 231 static void cache_drain(uma_zone_t); 232 static void bucket_drain(uma_zone_t, uma_bucket_t); 233 static void bucket_cache_drain(uma_zone_t zone); 234 static int keg_ctor(void *, int, void *, int); 235 static void keg_dtor(void *, int, void *); 236 static int zone_ctor(void *, int, void *, int); 237 static void zone_dtor(void *, int, void *); 238 static int zero_init(void *, int, int); 239 static void keg_small_init(uma_keg_t keg); 240 static void keg_large_init(uma_keg_t keg); 241 static void zone_foreach(void (*zfunc)(uma_zone_t)); 242 static void zone_timeout(uma_zone_t zone); 243 static int hash_alloc(struct uma_hash *); 244 static int hash_expand(struct uma_hash *, struct uma_hash *); 245 static void hash_free(struct uma_hash *hash); 246 static void uma_timeout(void *); 247 static void uma_startup3(void); 248 static void *zone_alloc_item(uma_zone_t, void *, int); 249 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 250 static void bucket_enable(void); 251 static void bucket_init(void); 252 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 253 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 254 static void bucket_zone_drain(void); 255 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 256 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 257 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 258 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 259 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 260 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 261 uma_fini fini, int align, uint32_t flags); 262 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 263 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 264 static void uma_zero_item(void *item, uma_zone_t zone); 265 266 void uma_print_zone(uma_zone_t); 267 void uma_print_stats(void); 268 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 269 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 270 271 #ifdef INVARIANTS 272 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 273 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 274 #endif 275 276 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 277 278 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 279 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 280 281 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 282 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 283 284 static int zone_warnings = 1; 285 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 286 "Warn when UMA zones becomes full"); 287 288 /* 289 * This routine checks to see whether or not it's safe to enable buckets. 290 */ 291 static void 292 bucket_enable(void) 293 { 294 bucketdisable = vm_page_count_min(); 295 } 296 297 /* 298 * Initialize bucket_zones, the array of zones of buckets of various sizes. 299 * 300 * For each zone, calculate the memory required for each bucket, consisting 301 * of the header and an array of pointers. 302 */ 303 static void 304 bucket_init(void) 305 { 306 struct uma_bucket_zone *ubz; 307 int size; 308 309 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 310 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 311 size += sizeof(void *) * ubz->ubz_entries; 312 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 313 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 314 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 315 } 316 } 317 318 /* 319 * Given a desired number of entries for a bucket, return the zone from which 320 * to allocate the bucket. 321 */ 322 static struct uma_bucket_zone * 323 bucket_zone_lookup(int entries) 324 { 325 struct uma_bucket_zone *ubz; 326 327 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 328 if (ubz->ubz_entries >= entries) 329 return (ubz); 330 ubz--; 331 return (ubz); 332 } 333 334 static int 335 bucket_select(int size) 336 { 337 struct uma_bucket_zone *ubz; 338 339 ubz = &bucket_zones[0]; 340 if (size > ubz->ubz_maxsize) 341 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 342 343 for (; ubz->ubz_entries != 0; ubz++) 344 if (ubz->ubz_maxsize < size) 345 break; 346 ubz--; 347 return (ubz->ubz_entries); 348 } 349 350 static uma_bucket_t 351 bucket_alloc(uma_zone_t zone, void *udata, int flags) 352 { 353 struct uma_bucket_zone *ubz; 354 uma_bucket_t bucket; 355 356 /* 357 * This is to stop us from allocating per cpu buckets while we're 358 * running out of vm.boot_pages. Otherwise, we would exhaust the 359 * boot pages. This also prevents us from allocating buckets in 360 * low memory situations. 361 */ 362 if (bucketdisable) 363 return (NULL); 364 /* 365 * To limit bucket recursion we store the original zone flags 366 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 367 * NOVM flag to persist even through deep recursions. We also 368 * store ZFLAG_BUCKET once we have recursed attempting to allocate 369 * a bucket for a bucket zone so we do not allow infinite bucket 370 * recursion. This cookie will even persist to frees of unused 371 * buckets via the allocation path or bucket allocations in the 372 * free path. 373 */ 374 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 375 udata = (void *)(uintptr_t)zone->uz_flags; 376 else { 377 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 378 return (NULL); 379 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 380 } 381 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 382 flags |= M_NOVM; 383 ubz = bucket_zone_lookup(zone->uz_count); 384 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 385 ubz++; 386 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 387 if (bucket) { 388 #ifdef INVARIANTS 389 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 390 #endif 391 bucket->ub_cnt = 0; 392 bucket->ub_entries = ubz->ubz_entries; 393 } 394 395 return (bucket); 396 } 397 398 static void 399 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 400 { 401 struct uma_bucket_zone *ubz; 402 403 KASSERT(bucket->ub_cnt == 0, 404 ("bucket_free: Freeing a non free bucket.")); 405 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 406 udata = (void *)(uintptr_t)zone->uz_flags; 407 ubz = bucket_zone_lookup(bucket->ub_entries); 408 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 409 } 410 411 static void 412 bucket_zone_drain(void) 413 { 414 struct uma_bucket_zone *ubz; 415 416 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 417 zone_drain(ubz->ubz_zone); 418 } 419 420 static void 421 zone_log_warning(uma_zone_t zone) 422 { 423 static const struct timeval warninterval = { 300, 0 }; 424 425 if (!zone_warnings || zone->uz_warning == NULL) 426 return; 427 428 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 429 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 430 } 431 432 static inline void 433 zone_maxaction(uma_zone_t zone) 434 { 435 436 if (zone->uz_maxaction.ta_func != NULL) 437 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 438 } 439 440 static void 441 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 442 { 443 uma_klink_t klink; 444 445 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 446 kegfn(klink->kl_keg); 447 } 448 449 /* 450 * Routine called by timeout which is used to fire off some time interval 451 * based calculations. (stats, hash size, etc.) 452 * 453 * Arguments: 454 * arg Unused 455 * 456 * Returns: 457 * Nothing 458 */ 459 static void 460 uma_timeout(void *unused) 461 { 462 bucket_enable(); 463 zone_foreach(zone_timeout); 464 465 /* Reschedule this event */ 466 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 467 } 468 469 /* 470 * Routine to perform timeout driven calculations. This expands the 471 * hashes and does per cpu statistics aggregation. 472 * 473 * Returns nothing. 474 */ 475 static void 476 keg_timeout(uma_keg_t keg) 477 { 478 479 KEG_LOCK(keg); 480 /* 481 * Expand the keg hash table. 482 * 483 * This is done if the number of slabs is larger than the hash size. 484 * What I'm trying to do here is completely reduce collisions. This 485 * may be a little aggressive. Should I allow for two collisions max? 486 */ 487 if (keg->uk_flags & UMA_ZONE_HASH && 488 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 489 struct uma_hash newhash; 490 struct uma_hash oldhash; 491 int ret; 492 493 /* 494 * This is so involved because allocating and freeing 495 * while the keg lock is held will lead to deadlock. 496 * I have to do everything in stages and check for 497 * races. 498 */ 499 newhash = keg->uk_hash; 500 KEG_UNLOCK(keg); 501 ret = hash_alloc(&newhash); 502 KEG_LOCK(keg); 503 if (ret) { 504 if (hash_expand(&keg->uk_hash, &newhash)) { 505 oldhash = keg->uk_hash; 506 keg->uk_hash = newhash; 507 } else 508 oldhash = newhash; 509 510 KEG_UNLOCK(keg); 511 hash_free(&oldhash); 512 return; 513 } 514 } 515 KEG_UNLOCK(keg); 516 } 517 518 static void 519 zone_timeout(uma_zone_t zone) 520 { 521 522 zone_foreach_keg(zone, &keg_timeout); 523 } 524 525 /* 526 * Allocate and zero fill the next sized hash table from the appropriate 527 * backing store. 528 * 529 * Arguments: 530 * hash A new hash structure with the old hash size in uh_hashsize 531 * 532 * Returns: 533 * 1 on success and 0 on failure. 534 */ 535 static int 536 hash_alloc(struct uma_hash *hash) 537 { 538 int oldsize; 539 int alloc; 540 541 oldsize = hash->uh_hashsize; 542 543 /* We're just going to go to a power of two greater */ 544 if (oldsize) { 545 hash->uh_hashsize = oldsize * 2; 546 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 547 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 548 M_UMAHASH, M_NOWAIT); 549 } else { 550 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 551 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 552 M_WAITOK); 553 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 554 } 555 if (hash->uh_slab_hash) { 556 bzero(hash->uh_slab_hash, alloc); 557 hash->uh_hashmask = hash->uh_hashsize - 1; 558 return (1); 559 } 560 561 return (0); 562 } 563 564 /* 565 * Expands the hash table for HASH zones. This is done from zone_timeout 566 * to reduce collisions. This must not be done in the regular allocation 567 * path, otherwise, we can recurse on the vm while allocating pages. 568 * 569 * Arguments: 570 * oldhash The hash you want to expand 571 * newhash The hash structure for the new table 572 * 573 * Returns: 574 * Nothing 575 * 576 * Discussion: 577 */ 578 static int 579 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 580 { 581 uma_slab_t slab; 582 int hval; 583 int i; 584 585 if (!newhash->uh_slab_hash) 586 return (0); 587 588 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 589 return (0); 590 591 /* 592 * I need to investigate hash algorithms for resizing without a 593 * full rehash. 594 */ 595 596 for (i = 0; i < oldhash->uh_hashsize; i++) 597 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 598 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 599 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 600 hval = UMA_HASH(newhash, slab->us_data); 601 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 602 slab, us_hlink); 603 } 604 605 return (1); 606 } 607 608 /* 609 * Free the hash bucket to the appropriate backing store. 610 * 611 * Arguments: 612 * slab_hash The hash bucket we're freeing 613 * hashsize The number of entries in that hash bucket 614 * 615 * Returns: 616 * Nothing 617 */ 618 static void 619 hash_free(struct uma_hash *hash) 620 { 621 if (hash->uh_slab_hash == NULL) 622 return; 623 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 624 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 625 else 626 free(hash->uh_slab_hash, M_UMAHASH); 627 } 628 629 /* 630 * Frees all outstanding items in a bucket 631 * 632 * Arguments: 633 * zone The zone to free to, must be unlocked. 634 * bucket The free/alloc bucket with items, cpu queue must be locked. 635 * 636 * Returns: 637 * Nothing 638 */ 639 640 static void 641 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 642 { 643 int i; 644 645 if (bucket == NULL) 646 return; 647 648 if (zone->uz_fini) 649 for (i = 0; i < bucket->ub_cnt; i++) 650 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 651 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 652 bucket->ub_cnt = 0; 653 } 654 655 /* 656 * Drains the per cpu caches for a zone. 657 * 658 * NOTE: This may only be called while the zone is being turn down, and not 659 * during normal operation. This is necessary in order that we do not have 660 * to migrate CPUs to drain the per-CPU caches. 661 * 662 * Arguments: 663 * zone The zone to drain, must be unlocked. 664 * 665 * Returns: 666 * Nothing 667 */ 668 static void 669 cache_drain(uma_zone_t zone) 670 { 671 uma_cache_t cache; 672 int cpu; 673 674 /* 675 * XXX: It is safe to not lock the per-CPU caches, because we're 676 * tearing down the zone anyway. I.e., there will be no further use 677 * of the caches at this point. 678 * 679 * XXX: It would good to be able to assert that the zone is being 680 * torn down to prevent improper use of cache_drain(). 681 * 682 * XXX: We lock the zone before passing into bucket_cache_drain() as 683 * it is used elsewhere. Should the tear-down path be made special 684 * there in some form? 685 */ 686 CPU_FOREACH(cpu) { 687 cache = &zone->uz_cpu[cpu]; 688 bucket_drain(zone, cache->uc_allocbucket); 689 bucket_drain(zone, cache->uc_freebucket); 690 if (cache->uc_allocbucket != NULL) 691 bucket_free(zone, cache->uc_allocbucket, NULL); 692 if (cache->uc_freebucket != NULL) 693 bucket_free(zone, cache->uc_freebucket, NULL); 694 cache->uc_allocbucket = cache->uc_freebucket = NULL; 695 } 696 ZONE_LOCK(zone); 697 bucket_cache_drain(zone); 698 ZONE_UNLOCK(zone); 699 } 700 701 static void 702 cache_shrink(uma_zone_t zone) 703 { 704 705 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 706 return; 707 708 ZONE_LOCK(zone); 709 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 710 ZONE_UNLOCK(zone); 711 } 712 713 static void 714 cache_drain_safe_cpu(uma_zone_t zone) 715 { 716 uma_cache_t cache; 717 uma_bucket_t b1, b2; 718 719 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 720 return; 721 722 b1 = b2 = NULL; 723 ZONE_LOCK(zone); 724 critical_enter(); 725 cache = &zone->uz_cpu[curcpu]; 726 if (cache->uc_allocbucket) { 727 if (cache->uc_allocbucket->ub_cnt != 0) 728 LIST_INSERT_HEAD(&zone->uz_buckets, 729 cache->uc_allocbucket, ub_link); 730 else 731 b1 = cache->uc_allocbucket; 732 cache->uc_allocbucket = NULL; 733 } 734 if (cache->uc_freebucket) { 735 if (cache->uc_freebucket->ub_cnt != 0) 736 LIST_INSERT_HEAD(&zone->uz_buckets, 737 cache->uc_freebucket, ub_link); 738 else 739 b2 = cache->uc_freebucket; 740 cache->uc_freebucket = NULL; 741 } 742 critical_exit(); 743 ZONE_UNLOCK(zone); 744 if (b1) 745 bucket_free(zone, b1, NULL); 746 if (b2) 747 bucket_free(zone, b2, NULL); 748 } 749 750 /* 751 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 752 * This is an expensive call because it needs to bind to all CPUs 753 * one by one and enter a critical section on each of them in order 754 * to safely access their cache buckets. 755 * Zone lock must not be held on call this function. 756 */ 757 static void 758 cache_drain_safe(uma_zone_t zone) 759 { 760 int cpu; 761 762 /* 763 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 764 */ 765 if (zone) 766 cache_shrink(zone); 767 else 768 zone_foreach(cache_shrink); 769 770 CPU_FOREACH(cpu) { 771 thread_lock(curthread); 772 sched_bind(curthread, cpu); 773 thread_unlock(curthread); 774 775 if (zone) 776 cache_drain_safe_cpu(zone); 777 else 778 zone_foreach(cache_drain_safe_cpu); 779 } 780 thread_lock(curthread); 781 sched_unbind(curthread); 782 thread_unlock(curthread); 783 } 784 785 /* 786 * Drain the cached buckets from a zone. Expects a locked zone on entry. 787 */ 788 static void 789 bucket_cache_drain(uma_zone_t zone) 790 { 791 uma_bucket_t bucket; 792 793 /* 794 * Drain the bucket queues and free the buckets, we just keep two per 795 * cpu (alloc/free). 796 */ 797 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 798 LIST_REMOVE(bucket, ub_link); 799 ZONE_UNLOCK(zone); 800 bucket_drain(zone, bucket); 801 bucket_free(zone, bucket, NULL); 802 ZONE_LOCK(zone); 803 } 804 805 /* 806 * Shrink further bucket sizes. Price of single zone lock collision 807 * is probably lower then price of global cache drain. 808 */ 809 if (zone->uz_count > zone->uz_count_min) 810 zone->uz_count--; 811 } 812 813 static void 814 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 815 { 816 uint8_t *mem; 817 int i; 818 uint8_t flags; 819 820 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 821 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 822 823 mem = slab->us_data; 824 flags = slab->us_flags; 825 i = start; 826 if (keg->uk_fini != NULL) { 827 for (i--; i > -1; i--) 828 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 829 keg->uk_size); 830 } 831 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 832 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 833 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 834 } 835 836 /* 837 * Frees pages from a keg back to the system. This is done on demand from 838 * the pageout daemon. 839 * 840 * Returns nothing. 841 */ 842 static void 843 keg_drain(uma_keg_t keg) 844 { 845 struct slabhead freeslabs = { 0 }; 846 uma_slab_t slab, tmp; 847 848 /* 849 * We don't want to take pages from statically allocated kegs at this 850 * time 851 */ 852 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 853 return; 854 855 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 856 keg->uk_name, keg, keg->uk_free); 857 KEG_LOCK(keg); 858 if (keg->uk_free == 0) 859 goto finished; 860 861 LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) { 862 /* We have nowhere to free these to. */ 863 if (slab->us_flags & UMA_SLAB_BOOT) 864 continue; 865 866 LIST_REMOVE(slab, us_link); 867 keg->uk_pages -= keg->uk_ppera; 868 keg->uk_free -= keg->uk_ipers; 869 870 if (keg->uk_flags & UMA_ZONE_HASH) 871 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 872 873 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 874 } 875 finished: 876 KEG_UNLOCK(keg); 877 878 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 879 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 880 keg_free_slab(keg, slab, keg->uk_ipers); 881 } 882 } 883 884 static void 885 zone_drain_wait(uma_zone_t zone, int waitok) 886 { 887 888 /* 889 * Set draining to interlock with zone_dtor() so we can release our 890 * locks as we go. Only dtor() should do a WAITOK call since it 891 * is the only call that knows the structure will still be available 892 * when it wakes up. 893 */ 894 ZONE_LOCK(zone); 895 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 896 if (waitok == M_NOWAIT) 897 goto out; 898 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 899 } 900 zone->uz_flags |= UMA_ZFLAG_DRAINING; 901 bucket_cache_drain(zone); 902 ZONE_UNLOCK(zone); 903 /* 904 * The DRAINING flag protects us from being freed while 905 * we're running. Normally the uma_rwlock would protect us but we 906 * must be able to release and acquire the right lock for each keg. 907 */ 908 zone_foreach_keg(zone, &keg_drain); 909 ZONE_LOCK(zone); 910 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 911 wakeup(zone); 912 out: 913 ZONE_UNLOCK(zone); 914 } 915 916 void 917 zone_drain(uma_zone_t zone) 918 { 919 920 zone_drain_wait(zone, M_NOWAIT); 921 } 922 923 /* 924 * Allocate a new slab for a keg. This does not insert the slab onto a list. 925 * 926 * Arguments: 927 * wait Shall we wait? 928 * 929 * Returns: 930 * The slab that was allocated or NULL if there is no memory and the 931 * caller specified M_NOWAIT. 932 */ 933 static uma_slab_t 934 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 935 { 936 uma_alloc allocf; 937 uma_slab_t slab; 938 uint8_t *mem; 939 uint8_t flags; 940 int i; 941 942 mtx_assert(&keg->uk_lock, MA_OWNED); 943 slab = NULL; 944 mem = NULL; 945 946 allocf = keg->uk_allocf; 947 KEG_UNLOCK(keg); 948 949 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 950 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 951 if (slab == NULL) 952 goto out; 953 } 954 955 /* 956 * This reproduces the old vm_zone behavior of zero filling pages the 957 * first time they are added to a zone. 958 * 959 * Malloced items are zeroed in uma_zalloc. 960 */ 961 962 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 963 wait |= M_ZERO; 964 else 965 wait &= ~M_ZERO; 966 967 if (keg->uk_flags & UMA_ZONE_NODUMP) 968 wait |= M_NODUMP; 969 970 /* zone is passed for legacy reasons. */ 971 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 972 if (mem == NULL) { 973 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 974 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 975 slab = NULL; 976 goto out; 977 } 978 979 /* Point the slab into the allocated memory */ 980 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 981 slab = (uma_slab_t )(mem + keg->uk_pgoff); 982 983 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 984 for (i = 0; i < keg->uk_ppera; i++) 985 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 986 987 slab->us_keg = keg; 988 slab->us_data = mem; 989 slab->us_freecount = keg->uk_ipers; 990 slab->us_flags = flags; 991 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 992 #ifdef INVARIANTS 993 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 994 #endif 995 996 if (keg->uk_init != NULL) { 997 for (i = 0; i < keg->uk_ipers; i++) 998 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 999 keg->uk_size, wait) != 0) 1000 break; 1001 if (i != keg->uk_ipers) { 1002 keg_free_slab(keg, slab, i); 1003 slab = NULL; 1004 goto out; 1005 } 1006 } 1007 out: 1008 KEG_LOCK(keg); 1009 1010 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1011 slab, keg->uk_name, keg); 1012 1013 if (slab != NULL) { 1014 if (keg->uk_flags & UMA_ZONE_HASH) 1015 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1016 1017 keg->uk_pages += keg->uk_ppera; 1018 keg->uk_free += keg->uk_ipers; 1019 } 1020 1021 return (slab); 1022 } 1023 1024 /* 1025 * This function is intended to be used early on in place of page_alloc() so 1026 * that we may use the boot time page cache to satisfy allocations before 1027 * the VM is ready. 1028 */ 1029 static void * 1030 startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1031 { 1032 uma_keg_t keg; 1033 void *mem; 1034 int pages; 1035 1036 keg = zone_first_keg(zone); 1037 pages = howmany(bytes, PAGE_SIZE); 1038 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1039 1040 /* 1041 * Check our small startup cache to see if it has pages remaining. 1042 */ 1043 mtx_lock(&uma_boot_pages_mtx); 1044 if (pages <= boot_pages) { 1045 mem = bootmem; 1046 boot_pages -= pages; 1047 bootmem += pages * PAGE_SIZE; 1048 mtx_unlock(&uma_boot_pages_mtx); 1049 *pflag = UMA_SLAB_BOOT; 1050 return (mem); 1051 } 1052 mtx_unlock(&uma_boot_pages_mtx); 1053 if (booted < UMA_STARTUP2) 1054 panic("UMA: Increase vm.boot_pages"); 1055 /* 1056 * Now that we've booted reset these users to their real allocator. 1057 */ 1058 #ifdef UMA_MD_SMALL_ALLOC 1059 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1060 #else 1061 keg->uk_allocf = page_alloc; 1062 #endif 1063 return keg->uk_allocf(zone, bytes, pflag, wait); 1064 } 1065 1066 /* 1067 * Allocates a number of pages from the system 1068 * 1069 * Arguments: 1070 * bytes The number of bytes requested 1071 * wait Shall we wait? 1072 * 1073 * Returns: 1074 * A pointer to the alloced memory or possibly 1075 * NULL if M_NOWAIT is set. 1076 */ 1077 static void * 1078 page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1079 { 1080 void *p; /* Returned page */ 1081 1082 *pflag = UMA_SLAB_KMEM; 1083 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1084 1085 return (p); 1086 } 1087 1088 /* 1089 * Allocates a number of pages from within an object 1090 * 1091 * Arguments: 1092 * bytes The number of bytes requested 1093 * wait Shall we wait? 1094 * 1095 * Returns: 1096 * A pointer to the alloced memory or possibly 1097 * NULL if M_NOWAIT is set. 1098 */ 1099 static void * 1100 noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait) 1101 { 1102 TAILQ_HEAD(, vm_page) alloctail; 1103 u_long npages; 1104 vm_offset_t retkva, zkva; 1105 vm_page_t p, p_next; 1106 uma_keg_t keg; 1107 1108 TAILQ_INIT(&alloctail); 1109 keg = zone_first_keg(zone); 1110 1111 npages = howmany(bytes, PAGE_SIZE); 1112 while (npages > 0) { 1113 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1114 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1115 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1116 VM_ALLOC_NOWAIT)); 1117 if (p != NULL) { 1118 /* 1119 * Since the page does not belong to an object, its 1120 * listq is unused. 1121 */ 1122 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1123 npages--; 1124 continue; 1125 } 1126 /* 1127 * Page allocation failed, free intermediate pages and 1128 * exit. 1129 */ 1130 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1131 vm_page_unwire(p, PQ_NONE); 1132 vm_page_free(p); 1133 } 1134 return (NULL); 1135 } 1136 *flags = UMA_SLAB_PRIV; 1137 zkva = keg->uk_kva + 1138 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1139 retkva = zkva; 1140 TAILQ_FOREACH(p, &alloctail, listq) { 1141 pmap_qenter(zkva, &p, 1); 1142 zkva += PAGE_SIZE; 1143 } 1144 1145 return ((void *)retkva); 1146 } 1147 1148 /* 1149 * Frees a number of pages to the system 1150 * 1151 * Arguments: 1152 * mem A pointer to the memory to be freed 1153 * size The size of the memory being freed 1154 * flags The original p->us_flags field 1155 * 1156 * Returns: 1157 * Nothing 1158 */ 1159 static void 1160 page_free(void *mem, vm_size_t size, uint8_t flags) 1161 { 1162 struct vmem *vmem; 1163 1164 if (flags & UMA_SLAB_KMEM) 1165 vmem = kmem_arena; 1166 else if (flags & UMA_SLAB_KERNEL) 1167 vmem = kernel_arena; 1168 else 1169 panic("UMA: page_free used with invalid flags %x", flags); 1170 1171 kmem_free(vmem, (vm_offset_t)mem, size); 1172 } 1173 1174 /* 1175 * Zero fill initializer 1176 * 1177 * Arguments/Returns follow uma_init specifications 1178 */ 1179 static int 1180 zero_init(void *mem, int size, int flags) 1181 { 1182 bzero(mem, size); 1183 return (0); 1184 } 1185 1186 /* 1187 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1188 * 1189 * Arguments 1190 * keg The zone we should initialize 1191 * 1192 * Returns 1193 * Nothing 1194 */ 1195 static void 1196 keg_small_init(uma_keg_t keg) 1197 { 1198 u_int rsize; 1199 u_int memused; 1200 u_int wastedspace; 1201 u_int shsize; 1202 u_int slabsize; 1203 1204 if (keg->uk_flags & UMA_ZONE_PCPU) { 1205 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1206 1207 slabsize = sizeof(struct pcpu); 1208 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1209 PAGE_SIZE); 1210 } else { 1211 slabsize = UMA_SLAB_SIZE; 1212 keg->uk_ppera = 1; 1213 } 1214 1215 /* 1216 * Calculate the size of each allocation (rsize) according to 1217 * alignment. If the requested size is smaller than we have 1218 * allocation bits for we round it up. 1219 */ 1220 rsize = keg->uk_size; 1221 if (rsize < slabsize / SLAB_SETSIZE) 1222 rsize = slabsize / SLAB_SETSIZE; 1223 if (rsize & keg->uk_align) 1224 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1225 keg->uk_rsize = rsize; 1226 1227 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1228 keg->uk_rsize < sizeof(struct pcpu), 1229 ("%s: size %u too large", __func__, keg->uk_rsize)); 1230 1231 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1232 shsize = 0; 1233 else 1234 shsize = sizeof(struct uma_slab); 1235 1236 keg->uk_ipers = (slabsize - shsize) / rsize; 1237 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1238 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1239 1240 memused = keg->uk_ipers * rsize + shsize; 1241 wastedspace = slabsize - memused; 1242 1243 /* 1244 * We can't do OFFPAGE if we're internal or if we've been 1245 * asked to not go to the VM for buckets. If we do this we 1246 * may end up going to the VM for slabs which we do not 1247 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1248 * of UMA_ZONE_VM, which clearly forbids it. 1249 */ 1250 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1251 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1252 return; 1253 1254 /* 1255 * See if using an OFFPAGE slab will limit our waste. Only do 1256 * this if it permits more items per-slab. 1257 * 1258 * XXX We could try growing slabsize to limit max waste as well. 1259 * Historically this was not done because the VM could not 1260 * efficiently handle contiguous allocations. 1261 */ 1262 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1263 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1264 keg->uk_ipers = slabsize / keg->uk_rsize; 1265 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1266 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1267 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1268 "keg: %s(%p), calculated wastedspace = %d, " 1269 "maximum wasted space allowed = %d, " 1270 "calculated ipers = %d, " 1271 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1272 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1273 slabsize - keg->uk_ipers * keg->uk_rsize); 1274 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1275 } 1276 1277 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1278 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1279 keg->uk_flags |= UMA_ZONE_HASH; 1280 } 1281 1282 /* 1283 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1284 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1285 * more complicated. 1286 * 1287 * Arguments 1288 * keg The keg we should initialize 1289 * 1290 * Returns 1291 * Nothing 1292 */ 1293 static void 1294 keg_large_init(uma_keg_t keg) 1295 { 1296 u_int shsize; 1297 1298 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1299 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1300 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1301 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1302 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1303 1304 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1305 keg->uk_ipers = 1; 1306 keg->uk_rsize = keg->uk_size; 1307 1308 /* Check whether we have enough space to not do OFFPAGE. */ 1309 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1310 shsize = sizeof(struct uma_slab); 1311 if (shsize & UMA_ALIGN_PTR) 1312 shsize = (shsize & ~UMA_ALIGN_PTR) + 1313 (UMA_ALIGN_PTR + 1); 1314 1315 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) { 1316 /* 1317 * We can't do OFFPAGE if we're internal, in which case 1318 * we need an extra page per allocation to contain the 1319 * slab header. 1320 */ 1321 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1322 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1323 else 1324 keg->uk_ppera++; 1325 } 1326 } 1327 1328 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1329 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1330 keg->uk_flags |= UMA_ZONE_HASH; 1331 } 1332 1333 static void 1334 keg_cachespread_init(uma_keg_t keg) 1335 { 1336 int alignsize; 1337 int trailer; 1338 int pages; 1339 int rsize; 1340 1341 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1342 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1343 1344 alignsize = keg->uk_align + 1; 1345 rsize = keg->uk_size; 1346 /* 1347 * We want one item to start on every align boundary in a page. To 1348 * do this we will span pages. We will also extend the item by the 1349 * size of align if it is an even multiple of align. Otherwise, it 1350 * would fall on the same boundary every time. 1351 */ 1352 if (rsize & keg->uk_align) 1353 rsize = (rsize & ~keg->uk_align) + alignsize; 1354 if ((rsize & alignsize) == 0) 1355 rsize += alignsize; 1356 trailer = rsize - keg->uk_size; 1357 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1358 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1359 keg->uk_rsize = rsize; 1360 keg->uk_ppera = pages; 1361 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1362 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1363 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1364 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1365 keg->uk_ipers)); 1366 } 1367 1368 /* 1369 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1370 * the keg onto the global keg list. 1371 * 1372 * Arguments/Returns follow uma_ctor specifications 1373 * udata Actually uma_kctor_args 1374 */ 1375 static int 1376 keg_ctor(void *mem, int size, void *udata, int flags) 1377 { 1378 struct uma_kctor_args *arg = udata; 1379 uma_keg_t keg = mem; 1380 uma_zone_t zone; 1381 1382 bzero(keg, size); 1383 keg->uk_size = arg->size; 1384 keg->uk_init = arg->uminit; 1385 keg->uk_fini = arg->fini; 1386 keg->uk_align = arg->align; 1387 keg->uk_free = 0; 1388 keg->uk_reserve = 0; 1389 keg->uk_pages = 0; 1390 keg->uk_flags = arg->flags; 1391 keg->uk_slabzone = NULL; 1392 1393 /* 1394 * The master zone is passed to us at keg-creation time. 1395 */ 1396 zone = arg->zone; 1397 keg->uk_name = zone->uz_name; 1398 1399 if (arg->flags & UMA_ZONE_VM) 1400 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1401 1402 if (arg->flags & UMA_ZONE_ZINIT) 1403 keg->uk_init = zero_init; 1404 1405 if (arg->flags & UMA_ZONE_MALLOC) 1406 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1407 1408 if (arg->flags & UMA_ZONE_PCPU) 1409 #ifdef SMP 1410 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1411 #else 1412 keg->uk_flags &= ~UMA_ZONE_PCPU; 1413 #endif 1414 1415 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1416 keg_cachespread_init(keg); 1417 } else { 1418 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1419 keg_large_init(keg); 1420 else 1421 keg_small_init(keg); 1422 } 1423 1424 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1425 keg->uk_slabzone = slabzone; 1426 1427 /* 1428 * If we haven't booted yet we need allocations to go through the 1429 * startup cache until the vm is ready. 1430 */ 1431 if (booted < UMA_STARTUP2) 1432 keg->uk_allocf = startup_alloc; 1433 #ifdef UMA_MD_SMALL_ALLOC 1434 else if (keg->uk_ppera == 1) 1435 keg->uk_allocf = uma_small_alloc; 1436 #endif 1437 else 1438 keg->uk_allocf = page_alloc; 1439 #ifdef UMA_MD_SMALL_ALLOC 1440 if (keg->uk_ppera == 1) 1441 keg->uk_freef = uma_small_free; 1442 else 1443 #endif 1444 keg->uk_freef = page_free; 1445 1446 /* 1447 * Initialize keg's lock 1448 */ 1449 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1450 1451 /* 1452 * If we're putting the slab header in the actual page we need to 1453 * figure out where in each page it goes. This calculates a right 1454 * justified offset into the memory on an ALIGN_PTR boundary. 1455 */ 1456 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1457 u_int totsize; 1458 1459 /* Size of the slab struct and free list */ 1460 totsize = sizeof(struct uma_slab); 1461 1462 if (totsize & UMA_ALIGN_PTR) 1463 totsize = (totsize & ~UMA_ALIGN_PTR) + 1464 (UMA_ALIGN_PTR + 1); 1465 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1466 1467 /* 1468 * The only way the following is possible is if with our 1469 * UMA_ALIGN_PTR adjustments we are now bigger than 1470 * UMA_SLAB_SIZE. I haven't checked whether this is 1471 * mathematically possible for all cases, so we make 1472 * sure here anyway. 1473 */ 1474 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1475 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1476 printf("zone %s ipers %d rsize %d size %d\n", 1477 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1478 keg->uk_size); 1479 panic("UMA slab won't fit."); 1480 } 1481 } 1482 1483 if (keg->uk_flags & UMA_ZONE_HASH) 1484 hash_alloc(&keg->uk_hash); 1485 1486 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1487 keg, zone->uz_name, zone, 1488 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1489 keg->uk_free); 1490 1491 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1492 1493 rw_wlock(&uma_rwlock); 1494 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1495 rw_wunlock(&uma_rwlock); 1496 return (0); 1497 } 1498 1499 /* 1500 * Zone header ctor. This initializes all fields, locks, etc. 1501 * 1502 * Arguments/Returns follow uma_ctor specifications 1503 * udata Actually uma_zctor_args 1504 */ 1505 static int 1506 zone_ctor(void *mem, int size, void *udata, int flags) 1507 { 1508 struct uma_zctor_args *arg = udata; 1509 uma_zone_t zone = mem; 1510 uma_zone_t z; 1511 uma_keg_t keg; 1512 1513 bzero(zone, size); 1514 zone->uz_name = arg->name; 1515 zone->uz_ctor = arg->ctor; 1516 zone->uz_dtor = arg->dtor; 1517 zone->uz_slab = zone_fetch_slab; 1518 zone->uz_init = NULL; 1519 zone->uz_fini = NULL; 1520 zone->uz_allocs = 0; 1521 zone->uz_frees = 0; 1522 zone->uz_fails = 0; 1523 zone->uz_sleeps = 0; 1524 zone->uz_count = 0; 1525 zone->uz_count_min = 0; 1526 zone->uz_flags = 0; 1527 zone->uz_warning = NULL; 1528 timevalclear(&zone->uz_ratecheck); 1529 keg = arg->keg; 1530 1531 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1532 1533 /* 1534 * This is a pure cache zone, no kegs. 1535 */ 1536 if (arg->import) { 1537 if (arg->flags & UMA_ZONE_VM) 1538 arg->flags |= UMA_ZFLAG_CACHEONLY; 1539 zone->uz_flags = arg->flags; 1540 zone->uz_size = arg->size; 1541 zone->uz_import = arg->import; 1542 zone->uz_release = arg->release; 1543 zone->uz_arg = arg->arg; 1544 zone->uz_lockptr = &zone->uz_lock; 1545 rw_wlock(&uma_rwlock); 1546 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1547 rw_wunlock(&uma_rwlock); 1548 goto out; 1549 } 1550 1551 /* 1552 * Use the regular zone/keg/slab allocator. 1553 */ 1554 zone->uz_import = (uma_import)zone_import; 1555 zone->uz_release = (uma_release)zone_release; 1556 zone->uz_arg = zone; 1557 1558 if (arg->flags & UMA_ZONE_SECONDARY) { 1559 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1560 zone->uz_init = arg->uminit; 1561 zone->uz_fini = arg->fini; 1562 zone->uz_lockptr = &keg->uk_lock; 1563 zone->uz_flags |= UMA_ZONE_SECONDARY; 1564 rw_wlock(&uma_rwlock); 1565 ZONE_LOCK(zone); 1566 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1567 if (LIST_NEXT(z, uz_link) == NULL) { 1568 LIST_INSERT_AFTER(z, zone, uz_link); 1569 break; 1570 } 1571 } 1572 ZONE_UNLOCK(zone); 1573 rw_wunlock(&uma_rwlock); 1574 } else if (keg == NULL) { 1575 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1576 arg->align, arg->flags)) == NULL) 1577 return (ENOMEM); 1578 } else { 1579 struct uma_kctor_args karg; 1580 int error; 1581 1582 /* We should only be here from uma_startup() */ 1583 karg.size = arg->size; 1584 karg.uminit = arg->uminit; 1585 karg.fini = arg->fini; 1586 karg.align = arg->align; 1587 karg.flags = arg->flags; 1588 karg.zone = zone; 1589 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1590 flags); 1591 if (error) 1592 return (error); 1593 } 1594 1595 /* 1596 * Link in the first keg. 1597 */ 1598 zone->uz_klink.kl_keg = keg; 1599 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1600 zone->uz_lockptr = &keg->uk_lock; 1601 zone->uz_size = keg->uk_size; 1602 zone->uz_flags |= (keg->uk_flags & 1603 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1604 1605 /* 1606 * Some internal zones don't have room allocated for the per cpu 1607 * caches. If we're internal, bail out here. 1608 */ 1609 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1610 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1611 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1612 return (0); 1613 } 1614 1615 out: 1616 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1617 zone->uz_count = bucket_select(zone->uz_size); 1618 else 1619 zone->uz_count = BUCKET_MAX; 1620 zone->uz_count_min = zone->uz_count; 1621 1622 return (0); 1623 } 1624 1625 /* 1626 * Keg header dtor. This frees all data, destroys locks, frees the hash 1627 * table and removes the keg from the global list. 1628 * 1629 * Arguments/Returns follow uma_dtor specifications 1630 * udata unused 1631 */ 1632 static void 1633 keg_dtor(void *arg, int size, void *udata) 1634 { 1635 uma_keg_t keg; 1636 1637 keg = (uma_keg_t)arg; 1638 KEG_LOCK(keg); 1639 if (keg->uk_free != 0) { 1640 printf("Freed UMA keg (%s) was not empty (%d items). " 1641 " Lost %d pages of memory.\n", 1642 keg->uk_name ? keg->uk_name : "", 1643 keg->uk_free, keg->uk_pages); 1644 } 1645 KEG_UNLOCK(keg); 1646 1647 hash_free(&keg->uk_hash); 1648 1649 KEG_LOCK_FINI(keg); 1650 } 1651 1652 /* 1653 * Zone header dtor. 1654 * 1655 * Arguments/Returns follow uma_dtor specifications 1656 * udata unused 1657 */ 1658 static void 1659 zone_dtor(void *arg, int size, void *udata) 1660 { 1661 uma_klink_t klink; 1662 uma_zone_t zone; 1663 uma_keg_t keg; 1664 1665 zone = (uma_zone_t)arg; 1666 keg = zone_first_keg(zone); 1667 1668 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1669 cache_drain(zone); 1670 1671 rw_wlock(&uma_rwlock); 1672 LIST_REMOVE(zone, uz_link); 1673 rw_wunlock(&uma_rwlock); 1674 /* 1675 * XXX there are some races here where 1676 * the zone can be drained but zone lock 1677 * released and then refilled before we 1678 * remove it... we dont care for now 1679 */ 1680 zone_drain_wait(zone, M_WAITOK); 1681 /* 1682 * Unlink all of our kegs. 1683 */ 1684 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1685 klink->kl_keg = NULL; 1686 LIST_REMOVE(klink, kl_link); 1687 if (klink == &zone->uz_klink) 1688 continue; 1689 free(klink, M_TEMP); 1690 } 1691 /* 1692 * We only destroy kegs from non secondary zones. 1693 */ 1694 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1695 rw_wlock(&uma_rwlock); 1696 LIST_REMOVE(keg, uk_link); 1697 rw_wunlock(&uma_rwlock); 1698 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1699 } 1700 ZONE_LOCK_FINI(zone); 1701 } 1702 1703 /* 1704 * Traverses every zone in the system and calls a callback 1705 * 1706 * Arguments: 1707 * zfunc A pointer to a function which accepts a zone 1708 * as an argument. 1709 * 1710 * Returns: 1711 * Nothing 1712 */ 1713 static void 1714 zone_foreach(void (*zfunc)(uma_zone_t)) 1715 { 1716 uma_keg_t keg; 1717 uma_zone_t zone; 1718 1719 rw_rlock(&uma_rwlock); 1720 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1721 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1722 zfunc(zone); 1723 } 1724 rw_runlock(&uma_rwlock); 1725 } 1726 1727 /* Public functions */ 1728 /* See uma.h */ 1729 void 1730 uma_startup(void *mem, int npages) 1731 { 1732 struct uma_zctor_args args; 1733 1734 rw_init(&uma_rwlock, "UMA lock"); 1735 1736 /* "manually" create the initial zone */ 1737 memset(&args, 0, sizeof(args)); 1738 args.name = "UMA Kegs"; 1739 args.size = sizeof(struct uma_keg); 1740 args.ctor = keg_ctor; 1741 args.dtor = keg_dtor; 1742 args.uminit = zero_init; 1743 args.fini = NULL; 1744 args.keg = &masterkeg; 1745 args.align = 32 - 1; 1746 args.flags = UMA_ZFLAG_INTERNAL; 1747 /* The initial zone has no Per cpu queues so it's smaller */ 1748 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1749 1750 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1751 bootmem = mem; 1752 boot_pages = npages; 1753 1754 args.name = "UMA Zones"; 1755 args.size = sizeof(struct uma_zone) + 1756 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1757 args.ctor = zone_ctor; 1758 args.dtor = zone_dtor; 1759 args.uminit = zero_init; 1760 args.fini = NULL; 1761 args.keg = NULL; 1762 args.align = 32 - 1; 1763 args.flags = UMA_ZFLAG_INTERNAL; 1764 /* The initial zone has no Per cpu queues so it's smaller */ 1765 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1766 1767 /* Now make a zone for slab headers */ 1768 slabzone = uma_zcreate("UMA Slabs", 1769 sizeof(struct uma_slab), 1770 NULL, NULL, NULL, NULL, 1771 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1772 1773 hashzone = uma_zcreate("UMA Hash", 1774 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1775 NULL, NULL, NULL, NULL, 1776 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1777 1778 bucket_init(); 1779 1780 booted = UMA_STARTUP; 1781 } 1782 1783 /* see uma.h */ 1784 void 1785 uma_startup2(void) 1786 { 1787 booted = UMA_STARTUP2; 1788 bucket_enable(); 1789 sx_init(&uma_drain_lock, "umadrain"); 1790 } 1791 1792 /* 1793 * Initialize our callout handle 1794 * 1795 */ 1796 1797 static void 1798 uma_startup3(void) 1799 { 1800 1801 callout_init(&uma_callout, 1); 1802 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1803 } 1804 1805 static uma_keg_t 1806 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1807 int align, uint32_t flags) 1808 { 1809 struct uma_kctor_args args; 1810 1811 args.size = size; 1812 args.uminit = uminit; 1813 args.fini = fini; 1814 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1815 args.flags = flags; 1816 args.zone = zone; 1817 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1818 } 1819 1820 /* See uma.h */ 1821 void 1822 uma_set_align(int align) 1823 { 1824 1825 if (align != UMA_ALIGN_CACHE) 1826 uma_align_cache = align; 1827 } 1828 1829 /* See uma.h */ 1830 uma_zone_t 1831 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1832 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1833 1834 { 1835 struct uma_zctor_args args; 1836 uma_zone_t res; 1837 bool locked; 1838 1839 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 1840 align, name)); 1841 1842 /* This stuff is essential for the zone ctor */ 1843 memset(&args, 0, sizeof(args)); 1844 args.name = name; 1845 args.size = size; 1846 args.ctor = ctor; 1847 args.dtor = dtor; 1848 args.uminit = uminit; 1849 args.fini = fini; 1850 #ifdef INVARIANTS 1851 /* 1852 * If a zone is being created with an empty constructor and 1853 * destructor, pass UMA constructor/destructor which checks for 1854 * memory use after free. 1855 */ 1856 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 1857 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 1858 args.ctor = trash_ctor; 1859 args.dtor = trash_dtor; 1860 args.uminit = trash_init; 1861 args.fini = trash_fini; 1862 } 1863 #endif 1864 args.align = align; 1865 args.flags = flags; 1866 args.keg = NULL; 1867 1868 if (booted < UMA_STARTUP2) { 1869 locked = false; 1870 } else { 1871 sx_slock(&uma_drain_lock); 1872 locked = true; 1873 } 1874 res = zone_alloc_item(zones, &args, M_WAITOK); 1875 if (locked) 1876 sx_sunlock(&uma_drain_lock); 1877 return (res); 1878 } 1879 1880 /* See uma.h */ 1881 uma_zone_t 1882 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1883 uma_init zinit, uma_fini zfini, uma_zone_t master) 1884 { 1885 struct uma_zctor_args args; 1886 uma_keg_t keg; 1887 uma_zone_t res; 1888 bool locked; 1889 1890 keg = zone_first_keg(master); 1891 memset(&args, 0, sizeof(args)); 1892 args.name = name; 1893 args.size = keg->uk_size; 1894 args.ctor = ctor; 1895 args.dtor = dtor; 1896 args.uminit = zinit; 1897 args.fini = zfini; 1898 args.align = keg->uk_align; 1899 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1900 args.keg = keg; 1901 1902 if (booted < UMA_STARTUP2) { 1903 locked = false; 1904 } else { 1905 sx_slock(&uma_drain_lock); 1906 locked = true; 1907 } 1908 /* XXX Attaches only one keg of potentially many. */ 1909 res = zone_alloc_item(zones, &args, M_WAITOK); 1910 if (locked) 1911 sx_sunlock(&uma_drain_lock); 1912 return (res); 1913 } 1914 1915 /* See uma.h */ 1916 uma_zone_t 1917 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 1918 uma_init zinit, uma_fini zfini, uma_import zimport, 1919 uma_release zrelease, void *arg, int flags) 1920 { 1921 struct uma_zctor_args args; 1922 1923 memset(&args, 0, sizeof(args)); 1924 args.name = name; 1925 args.size = size; 1926 args.ctor = ctor; 1927 args.dtor = dtor; 1928 args.uminit = zinit; 1929 args.fini = zfini; 1930 args.import = zimport; 1931 args.release = zrelease; 1932 args.arg = arg; 1933 args.align = 0; 1934 args.flags = flags; 1935 1936 return (zone_alloc_item(zones, &args, M_WAITOK)); 1937 } 1938 1939 static void 1940 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1941 { 1942 if (a < b) { 1943 ZONE_LOCK(a); 1944 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 1945 } else { 1946 ZONE_LOCK(b); 1947 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 1948 } 1949 } 1950 1951 static void 1952 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 1953 { 1954 1955 ZONE_UNLOCK(a); 1956 ZONE_UNLOCK(b); 1957 } 1958 1959 int 1960 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 1961 { 1962 uma_klink_t klink; 1963 uma_klink_t kl; 1964 int error; 1965 1966 error = 0; 1967 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 1968 1969 zone_lock_pair(zone, master); 1970 /* 1971 * zone must use vtoslab() to resolve objects and must already be 1972 * a secondary. 1973 */ 1974 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 1975 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 1976 error = EINVAL; 1977 goto out; 1978 } 1979 /* 1980 * The new master must also use vtoslab(). 1981 */ 1982 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 1983 error = EINVAL; 1984 goto out; 1985 } 1986 1987 /* 1988 * The underlying object must be the same size. rsize 1989 * may be different. 1990 */ 1991 if (master->uz_size != zone->uz_size) { 1992 error = E2BIG; 1993 goto out; 1994 } 1995 /* 1996 * Put it at the end of the list. 1997 */ 1998 klink->kl_keg = zone_first_keg(master); 1999 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2000 if (LIST_NEXT(kl, kl_link) == NULL) { 2001 LIST_INSERT_AFTER(kl, klink, kl_link); 2002 break; 2003 } 2004 } 2005 klink = NULL; 2006 zone->uz_flags |= UMA_ZFLAG_MULTI; 2007 zone->uz_slab = zone_fetch_slab_multi; 2008 2009 out: 2010 zone_unlock_pair(zone, master); 2011 if (klink != NULL) 2012 free(klink, M_TEMP); 2013 2014 return (error); 2015 } 2016 2017 2018 /* See uma.h */ 2019 void 2020 uma_zdestroy(uma_zone_t zone) 2021 { 2022 2023 sx_slock(&uma_drain_lock); 2024 zone_free_item(zones, zone, NULL, SKIP_NONE); 2025 sx_sunlock(&uma_drain_lock); 2026 } 2027 2028 void 2029 uma_zwait(uma_zone_t zone) 2030 { 2031 void *item; 2032 2033 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2034 uma_zfree(zone, item); 2035 } 2036 2037 /* See uma.h */ 2038 void * 2039 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2040 { 2041 void *item; 2042 uma_cache_t cache; 2043 uma_bucket_t bucket; 2044 int lockfail; 2045 int cpu; 2046 2047 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2048 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2049 2050 /* This is the fast path allocation */ 2051 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2052 curthread, zone->uz_name, zone, flags); 2053 2054 if (flags & M_WAITOK) { 2055 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2056 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2057 } 2058 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2059 ("uma_zalloc_arg: called with spinlock or critical section held")); 2060 2061 #ifdef DEBUG_MEMGUARD 2062 if (memguard_cmp_zone(zone)) { 2063 item = memguard_alloc(zone->uz_size, flags); 2064 if (item != NULL) { 2065 if (zone->uz_init != NULL && 2066 zone->uz_init(item, zone->uz_size, flags) != 0) 2067 return (NULL); 2068 if (zone->uz_ctor != NULL && 2069 zone->uz_ctor(item, zone->uz_size, udata, 2070 flags) != 0) { 2071 zone->uz_fini(item, zone->uz_size); 2072 return (NULL); 2073 } 2074 return (item); 2075 } 2076 /* This is unfortunate but should not be fatal. */ 2077 } 2078 #endif 2079 /* 2080 * If possible, allocate from the per-CPU cache. There are two 2081 * requirements for safe access to the per-CPU cache: (1) the thread 2082 * accessing the cache must not be preempted or yield during access, 2083 * and (2) the thread must not migrate CPUs without switching which 2084 * cache it accesses. We rely on a critical section to prevent 2085 * preemption and migration. We release the critical section in 2086 * order to acquire the zone mutex if we are unable to allocate from 2087 * the current cache; when we re-acquire the critical section, we 2088 * must detect and handle migration if it has occurred. 2089 */ 2090 critical_enter(); 2091 cpu = curcpu; 2092 cache = &zone->uz_cpu[cpu]; 2093 2094 zalloc_start: 2095 bucket = cache->uc_allocbucket; 2096 if (bucket != NULL && bucket->ub_cnt > 0) { 2097 bucket->ub_cnt--; 2098 item = bucket->ub_bucket[bucket->ub_cnt]; 2099 #ifdef INVARIANTS 2100 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2101 #endif 2102 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2103 cache->uc_allocs++; 2104 critical_exit(); 2105 if (zone->uz_ctor != NULL && 2106 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2107 atomic_add_long(&zone->uz_fails, 1); 2108 zone_free_item(zone, item, udata, SKIP_DTOR); 2109 return (NULL); 2110 } 2111 #ifdef INVARIANTS 2112 uma_dbg_alloc(zone, NULL, item); 2113 #endif 2114 if (flags & M_ZERO) 2115 uma_zero_item(item, zone); 2116 return (item); 2117 } 2118 2119 /* 2120 * We have run out of items in our alloc bucket. 2121 * See if we can switch with our free bucket. 2122 */ 2123 bucket = cache->uc_freebucket; 2124 if (bucket != NULL && bucket->ub_cnt > 0) { 2125 CTR2(KTR_UMA, 2126 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2127 zone->uz_name, zone); 2128 cache->uc_freebucket = cache->uc_allocbucket; 2129 cache->uc_allocbucket = bucket; 2130 goto zalloc_start; 2131 } 2132 2133 /* 2134 * Discard any empty allocation bucket while we hold no locks. 2135 */ 2136 bucket = cache->uc_allocbucket; 2137 cache->uc_allocbucket = NULL; 2138 critical_exit(); 2139 if (bucket != NULL) 2140 bucket_free(zone, bucket, udata); 2141 2142 /* Short-circuit for zones without buckets and low memory. */ 2143 if (zone->uz_count == 0 || bucketdisable) 2144 goto zalloc_item; 2145 2146 /* 2147 * Attempt to retrieve the item from the per-CPU cache has failed, so 2148 * we must go back to the zone. This requires the zone lock, so we 2149 * must drop the critical section, then re-acquire it when we go back 2150 * to the cache. Since the critical section is released, we may be 2151 * preempted or migrate. As such, make sure not to maintain any 2152 * thread-local state specific to the cache from prior to releasing 2153 * the critical section. 2154 */ 2155 lockfail = 0; 2156 if (ZONE_TRYLOCK(zone) == 0) { 2157 /* Record contention to size the buckets. */ 2158 ZONE_LOCK(zone); 2159 lockfail = 1; 2160 } 2161 critical_enter(); 2162 cpu = curcpu; 2163 cache = &zone->uz_cpu[cpu]; 2164 2165 /* 2166 * Since we have locked the zone we may as well send back our stats. 2167 */ 2168 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2169 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2170 cache->uc_allocs = 0; 2171 cache->uc_frees = 0; 2172 2173 /* See if we lost the race to fill the cache. */ 2174 if (cache->uc_allocbucket != NULL) { 2175 ZONE_UNLOCK(zone); 2176 goto zalloc_start; 2177 } 2178 2179 /* 2180 * Check the zone's cache of buckets. 2181 */ 2182 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2183 KASSERT(bucket->ub_cnt != 0, 2184 ("uma_zalloc_arg: Returning an empty bucket.")); 2185 2186 LIST_REMOVE(bucket, ub_link); 2187 cache->uc_allocbucket = bucket; 2188 ZONE_UNLOCK(zone); 2189 goto zalloc_start; 2190 } 2191 /* We are no longer associated with this CPU. */ 2192 critical_exit(); 2193 2194 /* 2195 * We bump the uz count when the cache size is insufficient to 2196 * handle the working set. 2197 */ 2198 if (lockfail && zone->uz_count < BUCKET_MAX) 2199 zone->uz_count++; 2200 ZONE_UNLOCK(zone); 2201 2202 /* 2203 * Now lets just fill a bucket and put it on the free list. If that 2204 * works we'll restart the allocation from the beginning and it 2205 * will use the just filled bucket. 2206 */ 2207 bucket = zone_alloc_bucket(zone, udata, flags); 2208 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2209 zone->uz_name, zone, bucket); 2210 if (bucket != NULL) { 2211 ZONE_LOCK(zone); 2212 critical_enter(); 2213 cpu = curcpu; 2214 cache = &zone->uz_cpu[cpu]; 2215 /* 2216 * See if we lost the race or were migrated. Cache the 2217 * initialized bucket to make this less likely or claim 2218 * the memory directly. 2219 */ 2220 if (cache->uc_allocbucket == NULL) 2221 cache->uc_allocbucket = bucket; 2222 else 2223 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2224 ZONE_UNLOCK(zone); 2225 goto zalloc_start; 2226 } 2227 2228 /* 2229 * We may not be able to get a bucket so return an actual item. 2230 */ 2231 zalloc_item: 2232 item = zone_alloc_item(zone, udata, flags); 2233 2234 return (item); 2235 } 2236 2237 static uma_slab_t 2238 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2239 { 2240 uma_slab_t slab; 2241 int reserve; 2242 2243 mtx_assert(&keg->uk_lock, MA_OWNED); 2244 slab = NULL; 2245 reserve = 0; 2246 if ((flags & M_USE_RESERVE) == 0) 2247 reserve = keg->uk_reserve; 2248 2249 for (;;) { 2250 /* 2251 * Find a slab with some space. Prefer slabs that are partially 2252 * used over those that are totally full. This helps to reduce 2253 * fragmentation. 2254 */ 2255 if (keg->uk_free > reserve) { 2256 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2257 slab = LIST_FIRST(&keg->uk_part_slab); 2258 } else { 2259 slab = LIST_FIRST(&keg->uk_free_slab); 2260 LIST_REMOVE(slab, us_link); 2261 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2262 us_link); 2263 } 2264 MPASS(slab->us_keg == keg); 2265 return (slab); 2266 } 2267 2268 /* 2269 * M_NOVM means don't ask at all! 2270 */ 2271 if (flags & M_NOVM) 2272 break; 2273 2274 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2275 keg->uk_flags |= UMA_ZFLAG_FULL; 2276 /* 2277 * If this is not a multi-zone, set the FULL bit. 2278 * Otherwise slab_multi() takes care of it. 2279 */ 2280 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2281 zone->uz_flags |= UMA_ZFLAG_FULL; 2282 zone_log_warning(zone); 2283 zone_maxaction(zone); 2284 } 2285 if (flags & M_NOWAIT) 2286 break; 2287 zone->uz_sleeps++; 2288 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2289 continue; 2290 } 2291 slab = keg_alloc_slab(keg, zone, flags); 2292 /* 2293 * If we got a slab here it's safe to mark it partially used 2294 * and return. We assume that the caller is going to remove 2295 * at least one item. 2296 */ 2297 if (slab) { 2298 MPASS(slab->us_keg == keg); 2299 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2300 return (slab); 2301 } 2302 /* 2303 * We might not have been able to get a slab but another cpu 2304 * could have while we were unlocked. Check again before we 2305 * fail. 2306 */ 2307 flags |= M_NOVM; 2308 } 2309 return (slab); 2310 } 2311 2312 static uma_slab_t 2313 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2314 { 2315 uma_slab_t slab; 2316 2317 if (keg == NULL) { 2318 keg = zone_first_keg(zone); 2319 KEG_LOCK(keg); 2320 } 2321 2322 for (;;) { 2323 slab = keg_fetch_slab(keg, zone, flags); 2324 if (slab) 2325 return (slab); 2326 if (flags & (M_NOWAIT | M_NOVM)) 2327 break; 2328 } 2329 KEG_UNLOCK(keg); 2330 return (NULL); 2331 } 2332 2333 /* 2334 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2335 * with the keg locked. On NULL no lock is held. 2336 * 2337 * The last pointer is used to seed the search. It is not required. 2338 */ 2339 static uma_slab_t 2340 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2341 { 2342 uma_klink_t klink; 2343 uma_slab_t slab; 2344 uma_keg_t keg; 2345 int flags; 2346 int empty; 2347 int full; 2348 2349 /* 2350 * Don't wait on the first pass. This will skip limit tests 2351 * as well. We don't want to block if we can find a provider 2352 * without blocking. 2353 */ 2354 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2355 /* 2356 * Use the last slab allocated as a hint for where to start 2357 * the search. 2358 */ 2359 if (last != NULL) { 2360 slab = keg_fetch_slab(last, zone, flags); 2361 if (slab) 2362 return (slab); 2363 KEG_UNLOCK(last); 2364 } 2365 /* 2366 * Loop until we have a slab incase of transient failures 2367 * while M_WAITOK is specified. I'm not sure this is 100% 2368 * required but we've done it for so long now. 2369 */ 2370 for (;;) { 2371 empty = 0; 2372 full = 0; 2373 /* 2374 * Search the available kegs for slabs. Be careful to hold the 2375 * correct lock while calling into the keg layer. 2376 */ 2377 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2378 keg = klink->kl_keg; 2379 KEG_LOCK(keg); 2380 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2381 slab = keg_fetch_slab(keg, zone, flags); 2382 if (slab) 2383 return (slab); 2384 } 2385 if (keg->uk_flags & UMA_ZFLAG_FULL) 2386 full++; 2387 else 2388 empty++; 2389 KEG_UNLOCK(keg); 2390 } 2391 if (rflags & (M_NOWAIT | M_NOVM)) 2392 break; 2393 flags = rflags; 2394 /* 2395 * All kegs are full. XXX We can't atomically check all kegs 2396 * and sleep so just sleep for a short period and retry. 2397 */ 2398 if (full && !empty) { 2399 ZONE_LOCK(zone); 2400 zone->uz_flags |= UMA_ZFLAG_FULL; 2401 zone->uz_sleeps++; 2402 zone_log_warning(zone); 2403 zone_maxaction(zone); 2404 msleep(zone, zone->uz_lockptr, PVM, 2405 "zonelimit", hz/100); 2406 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2407 ZONE_UNLOCK(zone); 2408 continue; 2409 } 2410 } 2411 return (NULL); 2412 } 2413 2414 static void * 2415 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2416 { 2417 void *item; 2418 uint8_t freei; 2419 2420 MPASS(keg == slab->us_keg); 2421 mtx_assert(&keg->uk_lock, MA_OWNED); 2422 2423 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2424 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2425 item = slab->us_data + (keg->uk_rsize * freei); 2426 slab->us_freecount--; 2427 keg->uk_free--; 2428 2429 /* Move this slab to the full list */ 2430 if (slab->us_freecount == 0) { 2431 LIST_REMOVE(slab, us_link); 2432 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2433 } 2434 2435 return (item); 2436 } 2437 2438 static int 2439 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2440 { 2441 uma_slab_t slab; 2442 uma_keg_t keg; 2443 int i; 2444 2445 slab = NULL; 2446 keg = NULL; 2447 /* Try to keep the buckets totally full */ 2448 for (i = 0; i < max; ) { 2449 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2450 break; 2451 keg = slab->us_keg; 2452 while (slab->us_freecount && i < max) { 2453 bucket[i++] = slab_alloc_item(keg, slab); 2454 if (keg->uk_free <= keg->uk_reserve) 2455 break; 2456 } 2457 /* Don't grab more than one slab at a time. */ 2458 flags &= ~M_WAITOK; 2459 flags |= M_NOWAIT; 2460 } 2461 if (slab != NULL) 2462 KEG_UNLOCK(keg); 2463 2464 return i; 2465 } 2466 2467 static uma_bucket_t 2468 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2469 { 2470 uma_bucket_t bucket; 2471 int max; 2472 2473 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2474 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2475 if (bucket == NULL) 2476 return (NULL); 2477 2478 max = MIN(bucket->ub_entries, zone->uz_count); 2479 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2480 max, flags); 2481 2482 /* 2483 * Initialize the memory if necessary. 2484 */ 2485 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2486 int i; 2487 2488 for (i = 0; i < bucket->ub_cnt; i++) 2489 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2490 flags) != 0) 2491 break; 2492 /* 2493 * If we couldn't initialize the whole bucket, put the 2494 * rest back onto the freelist. 2495 */ 2496 if (i != bucket->ub_cnt) { 2497 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2498 bucket->ub_cnt - i); 2499 #ifdef INVARIANTS 2500 bzero(&bucket->ub_bucket[i], 2501 sizeof(void *) * (bucket->ub_cnt - i)); 2502 #endif 2503 bucket->ub_cnt = i; 2504 } 2505 } 2506 2507 if (bucket->ub_cnt == 0) { 2508 bucket_free(zone, bucket, udata); 2509 atomic_add_long(&zone->uz_fails, 1); 2510 return (NULL); 2511 } 2512 2513 return (bucket); 2514 } 2515 2516 /* 2517 * Allocates a single item from a zone. 2518 * 2519 * Arguments 2520 * zone The zone to alloc for. 2521 * udata The data to be passed to the constructor. 2522 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2523 * 2524 * Returns 2525 * NULL if there is no memory and M_NOWAIT is set 2526 * An item if successful 2527 */ 2528 2529 static void * 2530 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2531 { 2532 void *item; 2533 2534 item = NULL; 2535 2536 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2537 goto fail; 2538 atomic_add_long(&zone->uz_allocs, 1); 2539 2540 /* 2541 * We have to call both the zone's init (not the keg's init) 2542 * and the zone's ctor. This is because the item is going from 2543 * a keg slab directly to the user, and the user is expecting it 2544 * to be both zone-init'd as well as zone-ctor'd. 2545 */ 2546 if (zone->uz_init != NULL) { 2547 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2548 zone_free_item(zone, item, udata, SKIP_FINI); 2549 goto fail; 2550 } 2551 } 2552 if (zone->uz_ctor != NULL) { 2553 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2554 zone_free_item(zone, item, udata, SKIP_DTOR); 2555 goto fail; 2556 } 2557 } 2558 #ifdef INVARIANTS 2559 uma_dbg_alloc(zone, NULL, item); 2560 #endif 2561 if (flags & M_ZERO) 2562 uma_zero_item(item, zone); 2563 2564 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 2565 zone->uz_name, zone); 2566 2567 return (item); 2568 2569 fail: 2570 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 2571 zone->uz_name, zone); 2572 atomic_add_long(&zone->uz_fails, 1); 2573 return (NULL); 2574 } 2575 2576 /* See uma.h */ 2577 void 2578 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2579 { 2580 uma_cache_t cache; 2581 uma_bucket_t bucket; 2582 int lockfail; 2583 int cpu; 2584 2585 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2586 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2587 2588 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2589 zone->uz_name); 2590 2591 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2592 ("uma_zfree_arg: called with spinlock or critical section held")); 2593 2594 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2595 if (item == NULL) 2596 return; 2597 #ifdef DEBUG_MEMGUARD 2598 if (is_memguard_addr(item)) { 2599 if (zone->uz_dtor != NULL) 2600 zone->uz_dtor(item, zone->uz_size, udata); 2601 if (zone->uz_fini != NULL) 2602 zone->uz_fini(item, zone->uz_size); 2603 memguard_free(item); 2604 return; 2605 } 2606 #endif 2607 #ifdef INVARIANTS 2608 if (zone->uz_flags & UMA_ZONE_MALLOC) 2609 uma_dbg_free(zone, udata, item); 2610 else 2611 uma_dbg_free(zone, NULL, item); 2612 #endif 2613 if (zone->uz_dtor != NULL) 2614 zone->uz_dtor(item, zone->uz_size, udata); 2615 2616 /* 2617 * The race here is acceptable. If we miss it we'll just have to wait 2618 * a little longer for the limits to be reset. 2619 */ 2620 if (zone->uz_flags & UMA_ZFLAG_FULL) 2621 goto zfree_item; 2622 2623 /* 2624 * If possible, free to the per-CPU cache. There are two 2625 * requirements for safe access to the per-CPU cache: (1) the thread 2626 * accessing the cache must not be preempted or yield during access, 2627 * and (2) the thread must not migrate CPUs without switching which 2628 * cache it accesses. We rely on a critical section to prevent 2629 * preemption and migration. We release the critical section in 2630 * order to acquire the zone mutex if we are unable to free to the 2631 * current cache; when we re-acquire the critical section, we must 2632 * detect and handle migration if it has occurred. 2633 */ 2634 zfree_restart: 2635 critical_enter(); 2636 cpu = curcpu; 2637 cache = &zone->uz_cpu[cpu]; 2638 2639 zfree_start: 2640 /* 2641 * Try to free into the allocbucket first to give LIFO ordering 2642 * for cache-hot datastructures. Spill over into the freebucket 2643 * if necessary. Alloc will swap them if one runs dry. 2644 */ 2645 bucket = cache->uc_allocbucket; 2646 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2647 bucket = cache->uc_freebucket; 2648 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2649 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2650 ("uma_zfree: Freeing to non free bucket index.")); 2651 bucket->ub_bucket[bucket->ub_cnt] = item; 2652 bucket->ub_cnt++; 2653 cache->uc_frees++; 2654 critical_exit(); 2655 return; 2656 } 2657 2658 /* 2659 * We must go back the zone, which requires acquiring the zone lock, 2660 * which in turn means we must release and re-acquire the critical 2661 * section. Since the critical section is released, we may be 2662 * preempted or migrate. As such, make sure not to maintain any 2663 * thread-local state specific to the cache from prior to releasing 2664 * the critical section. 2665 */ 2666 critical_exit(); 2667 if (zone->uz_count == 0 || bucketdisable) 2668 goto zfree_item; 2669 2670 lockfail = 0; 2671 if (ZONE_TRYLOCK(zone) == 0) { 2672 /* Record contention to size the buckets. */ 2673 ZONE_LOCK(zone); 2674 lockfail = 1; 2675 } 2676 critical_enter(); 2677 cpu = curcpu; 2678 cache = &zone->uz_cpu[cpu]; 2679 2680 /* 2681 * Since we have locked the zone we may as well send back our stats. 2682 */ 2683 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2684 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2685 cache->uc_allocs = 0; 2686 cache->uc_frees = 0; 2687 2688 bucket = cache->uc_freebucket; 2689 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2690 ZONE_UNLOCK(zone); 2691 goto zfree_start; 2692 } 2693 cache->uc_freebucket = NULL; 2694 /* We are no longer associated with this CPU. */ 2695 critical_exit(); 2696 2697 /* Can we throw this on the zone full list? */ 2698 if (bucket != NULL) { 2699 CTR3(KTR_UMA, 2700 "uma_zfree: zone %s(%p) putting bucket %p on free list", 2701 zone->uz_name, zone, bucket); 2702 /* ub_cnt is pointing to the last free item */ 2703 KASSERT(bucket->ub_cnt != 0, 2704 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2705 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2706 } 2707 2708 /* 2709 * We bump the uz count when the cache size is insufficient to 2710 * handle the working set. 2711 */ 2712 if (lockfail && zone->uz_count < BUCKET_MAX) 2713 zone->uz_count++; 2714 ZONE_UNLOCK(zone); 2715 2716 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2717 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 2718 zone->uz_name, zone, bucket); 2719 if (bucket) { 2720 critical_enter(); 2721 cpu = curcpu; 2722 cache = &zone->uz_cpu[cpu]; 2723 if (cache->uc_freebucket == NULL) { 2724 cache->uc_freebucket = bucket; 2725 goto zfree_start; 2726 } 2727 /* 2728 * We lost the race, start over. We have to drop our 2729 * critical section to free the bucket. 2730 */ 2731 critical_exit(); 2732 bucket_free(zone, bucket, udata); 2733 goto zfree_restart; 2734 } 2735 2736 /* 2737 * If nothing else caught this, we'll just do an internal free. 2738 */ 2739 zfree_item: 2740 zone_free_item(zone, item, udata, SKIP_DTOR); 2741 2742 return; 2743 } 2744 2745 static void 2746 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2747 { 2748 uint8_t freei; 2749 2750 mtx_assert(&keg->uk_lock, MA_OWNED); 2751 MPASS(keg == slab->us_keg); 2752 2753 /* Do we need to remove from any lists? */ 2754 if (slab->us_freecount+1 == keg->uk_ipers) { 2755 LIST_REMOVE(slab, us_link); 2756 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2757 } else if (slab->us_freecount == 0) { 2758 LIST_REMOVE(slab, us_link); 2759 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2760 } 2761 2762 /* Slab management. */ 2763 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2764 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2765 slab->us_freecount++; 2766 2767 /* Keg statistics. */ 2768 keg->uk_free++; 2769 } 2770 2771 static void 2772 zone_release(uma_zone_t zone, void **bucket, int cnt) 2773 { 2774 void *item; 2775 uma_slab_t slab; 2776 uma_keg_t keg; 2777 uint8_t *mem; 2778 int clearfull; 2779 int i; 2780 2781 clearfull = 0; 2782 keg = zone_first_keg(zone); 2783 KEG_LOCK(keg); 2784 for (i = 0; i < cnt; i++) { 2785 item = bucket[i]; 2786 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2787 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2788 if (zone->uz_flags & UMA_ZONE_HASH) { 2789 slab = hash_sfind(&keg->uk_hash, mem); 2790 } else { 2791 mem += keg->uk_pgoff; 2792 slab = (uma_slab_t)mem; 2793 } 2794 } else { 2795 slab = vtoslab((vm_offset_t)item); 2796 if (slab->us_keg != keg) { 2797 KEG_UNLOCK(keg); 2798 keg = slab->us_keg; 2799 KEG_LOCK(keg); 2800 } 2801 } 2802 slab_free_item(keg, slab, item); 2803 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2804 if (keg->uk_pages < keg->uk_maxpages) { 2805 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2806 clearfull = 1; 2807 } 2808 2809 /* 2810 * We can handle one more allocation. Since we're 2811 * clearing ZFLAG_FULL, wake up all procs blocked 2812 * on pages. This should be uncommon, so keeping this 2813 * simple for now (rather than adding count of blocked 2814 * threads etc). 2815 */ 2816 wakeup(keg); 2817 } 2818 } 2819 KEG_UNLOCK(keg); 2820 if (clearfull) { 2821 ZONE_LOCK(zone); 2822 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2823 wakeup(zone); 2824 ZONE_UNLOCK(zone); 2825 } 2826 2827 } 2828 2829 /* 2830 * Frees a single item to any zone. 2831 * 2832 * Arguments: 2833 * zone The zone to free to 2834 * item The item we're freeing 2835 * udata User supplied data for the dtor 2836 * skip Skip dtors and finis 2837 */ 2838 static void 2839 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2840 { 2841 2842 #ifdef INVARIANTS 2843 if (skip == SKIP_NONE) { 2844 if (zone->uz_flags & UMA_ZONE_MALLOC) 2845 uma_dbg_free(zone, udata, item); 2846 else 2847 uma_dbg_free(zone, NULL, item); 2848 } 2849 #endif 2850 if (skip < SKIP_DTOR && zone->uz_dtor) 2851 zone->uz_dtor(item, zone->uz_size, udata); 2852 2853 if (skip < SKIP_FINI && zone->uz_fini) 2854 zone->uz_fini(item, zone->uz_size); 2855 2856 atomic_add_long(&zone->uz_frees, 1); 2857 zone->uz_release(zone->uz_arg, &item, 1); 2858 } 2859 2860 /* See uma.h */ 2861 int 2862 uma_zone_set_max(uma_zone_t zone, int nitems) 2863 { 2864 uma_keg_t keg; 2865 2866 keg = zone_first_keg(zone); 2867 if (keg == NULL) 2868 return (0); 2869 KEG_LOCK(keg); 2870 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2871 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2872 keg->uk_maxpages += keg->uk_ppera; 2873 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 2874 KEG_UNLOCK(keg); 2875 2876 return (nitems); 2877 } 2878 2879 /* See uma.h */ 2880 int 2881 uma_zone_get_max(uma_zone_t zone) 2882 { 2883 int nitems; 2884 uma_keg_t keg; 2885 2886 keg = zone_first_keg(zone); 2887 if (keg == NULL) 2888 return (0); 2889 KEG_LOCK(keg); 2890 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 2891 KEG_UNLOCK(keg); 2892 2893 return (nitems); 2894 } 2895 2896 /* See uma.h */ 2897 void 2898 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2899 { 2900 2901 ZONE_LOCK(zone); 2902 zone->uz_warning = warning; 2903 ZONE_UNLOCK(zone); 2904 } 2905 2906 /* See uma.h */ 2907 void 2908 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 2909 { 2910 2911 ZONE_LOCK(zone); 2912 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 2913 ZONE_UNLOCK(zone); 2914 } 2915 2916 /* See uma.h */ 2917 int 2918 uma_zone_get_cur(uma_zone_t zone) 2919 { 2920 int64_t nitems; 2921 u_int i; 2922 2923 ZONE_LOCK(zone); 2924 nitems = zone->uz_allocs - zone->uz_frees; 2925 CPU_FOREACH(i) { 2926 /* 2927 * See the comment in sysctl_vm_zone_stats() regarding the 2928 * safety of accessing the per-cpu caches. With the zone lock 2929 * held, it is safe, but can potentially result in stale data. 2930 */ 2931 nitems += zone->uz_cpu[i].uc_allocs - 2932 zone->uz_cpu[i].uc_frees; 2933 } 2934 ZONE_UNLOCK(zone); 2935 2936 return (nitems < 0 ? 0 : nitems); 2937 } 2938 2939 /* See uma.h */ 2940 void 2941 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2942 { 2943 uma_keg_t keg; 2944 2945 keg = zone_first_keg(zone); 2946 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2947 KEG_LOCK(keg); 2948 KASSERT(keg->uk_pages == 0, 2949 ("uma_zone_set_init on non-empty keg")); 2950 keg->uk_init = uminit; 2951 KEG_UNLOCK(keg); 2952 } 2953 2954 /* See uma.h */ 2955 void 2956 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2957 { 2958 uma_keg_t keg; 2959 2960 keg = zone_first_keg(zone); 2961 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 2962 KEG_LOCK(keg); 2963 KASSERT(keg->uk_pages == 0, 2964 ("uma_zone_set_fini on non-empty keg")); 2965 keg->uk_fini = fini; 2966 KEG_UNLOCK(keg); 2967 } 2968 2969 /* See uma.h */ 2970 void 2971 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2972 { 2973 2974 ZONE_LOCK(zone); 2975 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2976 ("uma_zone_set_zinit on non-empty keg")); 2977 zone->uz_init = zinit; 2978 ZONE_UNLOCK(zone); 2979 } 2980 2981 /* See uma.h */ 2982 void 2983 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2984 { 2985 2986 ZONE_LOCK(zone); 2987 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2988 ("uma_zone_set_zfini on non-empty keg")); 2989 zone->uz_fini = zfini; 2990 ZONE_UNLOCK(zone); 2991 } 2992 2993 /* See uma.h */ 2994 /* XXX uk_freef is not actually used with the zone locked */ 2995 void 2996 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 2997 { 2998 uma_keg_t keg; 2999 3000 keg = zone_first_keg(zone); 3001 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3002 KEG_LOCK(keg); 3003 keg->uk_freef = freef; 3004 KEG_UNLOCK(keg); 3005 } 3006 3007 /* See uma.h */ 3008 /* XXX uk_allocf is not actually used with the zone locked */ 3009 void 3010 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3011 { 3012 uma_keg_t keg; 3013 3014 keg = zone_first_keg(zone); 3015 KEG_LOCK(keg); 3016 keg->uk_allocf = allocf; 3017 KEG_UNLOCK(keg); 3018 } 3019 3020 /* See uma.h */ 3021 void 3022 uma_zone_reserve(uma_zone_t zone, int items) 3023 { 3024 uma_keg_t keg; 3025 3026 keg = zone_first_keg(zone); 3027 if (keg == NULL) 3028 return; 3029 KEG_LOCK(keg); 3030 keg->uk_reserve = items; 3031 KEG_UNLOCK(keg); 3032 3033 return; 3034 } 3035 3036 /* See uma.h */ 3037 int 3038 uma_zone_reserve_kva(uma_zone_t zone, int count) 3039 { 3040 uma_keg_t keg; 3041 vm_offset_t kva; 3042 u_int pages; 3043 3044 keg = zone_first_keg(zone); 3045 if (keg == NULL) 3046 return (0); 3047 pages = count / keg->uk_ipers; 3048 3049 if (pages * keg->uk_ipers < count) 3050 pages++; 3051 pages *= keg->uk_ppera; 3052 3053 #ifdef UMA_MD_SMALL_ALLOC 3054 if (keg->uk_ppera > 1) { 3055 #else 3056 if (1) { 3057 #endif 3058 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3059 if (kva == 0) 3060 return (0); 3061 } else 3062 kva = 0; 3063 KEG_LOCK(keg); 3064 keg->uk_kva = kva; 3065 keg->uk_offset = 0; 3066 keg->uk_maxpages = pages; 3067 #ifdef UMA_MD_SMALL_ALLOC 3068 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3069 #else 3070 keg->uk_allocf = noobj_alloc; 3071 #endif 3072 keg->uk_flags |= UMA_ZONE_NOFREE; 3073 KEG_UNLOCK(keg); 3074 3075 return (1); 3076 } 3077 3078 /* See uma.h */ 3079 void 3080 uma_prealloc(uma_zone_t zone, int items) 3081 { 3082 int slabs; 3083 uma_slab_t slab; 3084 uma_keg_t keg; 3085 3086 keg = zone_first_keg(zone); 3087 if (keg == NULL) 3088 return; 3089 KEG_LOCK(keg); 3090 slabs = items / keg->uk_ipers; 3091 if (slabs * keg->uk_ipers < items) 3092 slabs++; 3093 while (slabs > 0) { 3094 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3095 if (slab == NULL) 3096 break; 3097 MPASS(slab->us_keg == keg); 3098 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3099 slabs--; 3100 } 3101 KEG_UNLOCK(keg); 3102 } 3103 3104 /* See uma.h */ 3105 static void 3106 uma_reclaim_locked(bool kmem_danger) 3107 { 3108 3109 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3110 sx_assert(&uma_drain_lock, SA_XLOCKED); 3111 bucket_enable(); 3112 zone_foreach(zone_drain); 3113 if (vm_page_count_min() || kmem_danger) { 3114 cache_drain_safe(NULL); 3115 zone_foreach(zone_drain); 3116 } 3117 /* 3118 * Some slabs may have been freed but this zone will be visited early 3119 * we visit again so that we can free pages that are empty once other 3120 * zones are drained. We have to do the same for buckets. 3121 */ 3122 zone_drain(slabzone); 3123 bucket_zone_drain(); 3124 } 3125 3126 void 3127 uma_reclaim(void) 3128 { 3129 3130 sx_xlock(&uma_drain_lock); 3131 uma_reclaim_locked(false); 3132 sx_xunlock(&uma_drain_lock); 3133 } 3134 3135 static int uma_reclaim_needed; 3136 3137 void 3138 uma_reclaim_wakeup(void) 3139 { 3140 3141 uma_reclaim_needed = 1; 3142 wakeup(&uma_reclaim_needed); 3143 } 3144 3145 void 3146 uma_reclaim_worker(void *arg __unused) 3147 { 3148 3149 sx_xlock(&uma_drain_lock); 3150 for (;;) { 3151 sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM, 3152 "umarcl", 0); 3153 if (uma_reclaim_needed) { 3154 uma_reclaim_needed = 0; 3155 sx_xunlock(&uma_drain_lock); 3156 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3157 sx_xlock(&uma_drain_lock); 3158 uma_reclaim_locked(true); 3159 } 3160 } 3161 } 3162 3163 /* See uma.h */ 3164 int 3165 uma_zone_exhausted(uma_zone_t zone) 3166 { 3167 int full; 3168 3169 ZONE_LOCK(zone); 3170 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3171 ZONE_UNLOCK(zone); 3172 return (full); 3173 } 3174 3175 int 3176 uma_zone_exhausted_nolock(uma_zone_t zone) 3177 { 3178 return (zone->uz_flags & UMA_ZFLAG_FULL); 3179 } 3180 3181 void * 3182 uma_large_malloc(vm_size_t size, int wait) 3183 { 3184 void *mem; 3185 uma_slab_t slab; 3186 uint8_t flags; 3187 3188 slab = zone_alloc_item(slabzone, NULL, wait); 3189 if (slab == NULL) 3190 return (NULL); 3191 mem = page_alloc(NULL, size, &flags, wait); 3192 if (mem) { 3193 vsetslab((vm_offset_t)mem, slab); 3194 slab->us_data = mem; 3195 slab->us_flags = flags | UMA_SLAB_MALLOC; 3196 slab->us_size = size; 3197 } else { 3198 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3199 } 3200 3201 return (mem); 3202 } 3203 3204 void 3205 uma_large_free(uma_slab_t slab) 3206 { 3207 3208 page_free(slab->us_data, slab->us_size, slab->us_flags); 3209 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3210 } 3211 3212 static void 3213 uma_zero_item(void *item, uma_zone_t zone) 3214 { 3215 int i; 3216 3217 if (zone->uz_flags & UMA_ZONE_PCPU) { 3218 CPU_FOREACH(i) 3219 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3220 } else 3221 bzero(item, zone->uz_size); 3222 } 3223 3224 void 3225 uma_print_stats(void) 3226 { 3227 zone_foreach(uma_print_zone); 3228 } 3229 3230 static void 3231 slab_print(uma_slab_t slab) 3232 { 3233 printf("slab: keg %p, data %p, freecount %d\n", 3234 slab->us_keg, slab->us_data, slab->us_freecount); 3235 } 3236 3237 static void 3238 cache_print(uma_cache_t cache) 3239 { 3240 printf("alloc: %p(%d), free: %p(%d)\n", 3241 cache->uc_allocbucket, 3242 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3243 cache->uc_freebucket, 3244 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3245 } 3246 3247 static void 3248 uma_print_keg(uma_keg_t keg) 3249 { 3250 uma_slab_t slab; 3251 3252 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3253 "out %d free %d limit %d\n", 3254 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3255 keg->uk_ipers, keg->uk_ppera, 3256 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3257 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3258 printf("Part slabs:\n"); 3259 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3260 slab_print(slab); 3261 printf("Free slabs:\n"); 3262 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3263 slab_print(slab); 3264 printf("Full slabs:\n"); 3265 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3266 slab_print(slab); 3267 } 3268 3269 void 3270 uma_print_zone(uma_zone_t zone) 3271 { 3272 uma_cache_t cache; 3273 uma_klink_t kl; 3274 int i; 3275 3276 printf("zone: %s(%p) size %d flags %#x\n", 3277 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3278 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3279 uma_print_keg(kl->kl_keg); 3280 CPU_FOREACH(i) { 3281 cache = &zone->uz_cpu[i]; 3282 printf("CPU %d Cache:\n", i); 3283 cache_print(cache); 3284 } 3285 } 3286 3287 #ifdef DDB 3288 /* 3289 * Generate statistics across both the zone and its per-cpu cache's. Return 3290 * desired statistics if the pointer is non-NULL for that statistic. 3291 * 3292 * Note: does not update the zone statistics, as it can't safely clear the 3293 * per-CPU cache statistic. 3294 * 3295 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3296 * safe from off-CPU; we should modify the caches to track this information 3297 * directly so that we don't have to. 3298 */ 3299 static void 3300 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3301 uint64_t *freesp, uint64_t *sleepsp) 3302 { 3303 uma_cache_t cache; 3304 uint64_t allocs, frees, sleeps; 3305 int cachefree, cpu; 3306 3307 allocs = frees = sleeps = 0; 3308 cachefree = 0; 3309 CPU_FOREACH(cpu) { 3310 cache = &z->uz_cpu[cpu]; 3311 if (cache->uc_allocbucket != NULL) 3312 cachefree += cache->uc_allocbucket->ub_cnt; 3313 if (cache->uc_freebucket != NULL) 3314 cachefree += cache->uc_freebucket->ub_cnt; 3315 allocs += cache->uc_allocs; 3316 frees += cache->uc_frees; 3317 } 3318 allocs += z->uz_allocs; 3319 frees += z->uz_frees; 3320 sleeps += z->uz_sleeps; 3321 if (cachefreep != NULL) 3322 *cachefreep = cachefree; 3323 if (allocsp != NULL) 3324 *allocsp = allocs; 3325 if (freesp != NULL) 3326 *freesp = frees; 3327 if (sleepsp != NULL) 3328 *sleepsp = sleeps; 3329 } 3330 #endif /* DDB */ 3331 3332 static int 3333 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3334 { 3335 uma_keg_t kz; 3336 uma_zone_t z; 3337 int count; 3338 3339 count = 0; 3340 rw_rlock(&uma_rwlock); 3341 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3342 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3343 count++; 3344 } 3345 rw_runlock(&uma_rwlock); 3346 return (sysctl_handle_int(oidp, &count, 0, req)); 3347 } 3348 3349 static int 3350 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3351 { 3352 struct uma_stream_header ush; 3353 struct uma_type_header uth; 3354 struct uma_percpu_stat ups; 3355 uma_bucket_t bucket; 3356 struct sbuf sbuf; 3357 uma_cache_t cache; 3358 uma_klink_t kl; 3359 uma_keg_t kz; 3360 uma_zone_t z; 3361 uma_keg_t k; 3362 int count, error, i; 3363 3364 error = sysctl_wire_old_buffer(req, 0); 3365 if (error != 0) 3366 return (error); 3367 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3368 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3369 3370 count = 0; 3371 rw_rlock(&uma_rwlock); 3372 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3373 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3374 count++; 3375 } 3376 3377 /* 3378 * Insert stream header. 3379 */ 3380 bzero(&ush, sizeof(ush)); 3381 ush.ush_version = UMA_STREAM_VERSION; 3382 ush.ush_maxcpus = (mp_maxid + 1); 3383 ush.ush_count = count; 3384 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3385 3386 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3387 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3388 bzero(&uth, sizeof(uth)); 3389 ZONE_LOCK(z); 3390 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3391 uth.uth_align = kz->uk_align; 3392 uth.uth_size = kz->uk_size; 3393 uth.uth_rsize = kz->uk_rsize; 3394 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3395 k = kl->kl_keg; 3396 uth.uth_maxpages += k->uk_maxpages; 3397 uth.uth_pages += k->uk_pages; 3398 uth.uth_keg_free += k->uk_free; 3399 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3400 * k->uk_ipers; 3401 } 3402 3403 /* 3404 * A zone is secondary is it is not the first entry 3405 * on the keg's zone list. 3406 */ 3407 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3408 (LIST_FIRST(&kz->uk_zones) != z)) 3409 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3410 3411 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3412 uth.uth_zone_free += bucket->ub_cnt; 3413 uth.uth_allocs = z->uz_allocs; 3414 uth.uth_frees = z->uz_frees; 3415 uth.uth_fails = z->uz_fails; 3416 uth.uth_sleeps = z->uz_sleeps; 3417 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3418 /* 3419 * While it is not normally safe to access the cache 3420 * bucket pointers while not on the CPU that owns the 3421 * cache, we only allow the pointers to be exchanged 3422 * without the zone lock held, not invalidated, so 3423 * accept the possible race associated with bucket 3424 * exchange during monitoring. 3425 */ 3426 for (i = 0; i < (mp_maxid + 1); i++) { 3427 bzero(&ups, sizeof(ups)); 3428 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3429 goto skip; 3430 if (CPU_ABSENT(i)) 3431 goto skip; 3432 cache = &z->uz_cpu[i]; 3433 if (cache->uc_allocbucket != NULL) 3434 ups.ups_cache_free += 3435 cache->uc_allocbucket->ub_cnt; 3436 if (cache->uc_freebucket != NULL) 3437 ups.ups_cache_free += 3438 cache->uc_freebucket->ub_cnt; 3439 ups.ups_allocs = cache->uc_allocs; 3440 ups.ups_frees = cache->uc_frees; 3441 skip: 3442 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3443 } 3444 ZONE_UNLOCK(z); 3445 } 3446 } 3447 rw_runlock(&uma_rwlock); 3448 error = sbuf_finish(&sbuf); 3449 sbuf_delete(&sbuf); 3450 return (error); 3451 } 3452 3453 int 3454 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3455 { 3456 uma_zone_t zone = *(uma_zone_t *)arg1; 3457 int error, max; 3458 3459 max = uma_zone_get_max(zone); 3460 error = sysctl_handle_int(oidp, &max, 0, req); 3461 if (error || !req->newptr) 3462 return (error); 3463 3464 uma_zone_set_max(zone, max); 3465 3466 return (0); 3467 } 3468 3469 int 3470 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3471 { 3472 uma_zone_t zone = *(uma_zone_t *)arg1; 3473 int cur; 3474 3475 cur = uma_zone_get_cur(zone); 3476 return (sysctl_handle_int(oidp, &cur, 0, req)); 3477 } 3478 3479 #ifdef INVARIANTS 3480 static uma_slab_t 3481 uma_dbg_getslab(uma_zone_t zone, void *item) 3482 { 3483 uma_slab_t slab; 3484 uma_keg_t keg; 3485 uint8_t *mem; 3486 3487 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3488 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3489 slab = vtoslab((vm_offset_t)mem); 3490 } else { 3491 /* 3492 * It is safe to return the slab here even though the 3493 * zone is unlocked because the item's allocation state 3494 * essentially holds a reference. 3495 */ 3496 ZONE_LOCK(zone); 3497 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3498 if (keg->uk_flags & UMA_ZONE_HASH) 3499 slab = hash_sfind(&keg->uk_hash, mem); 3500 else 3501 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3502 ZONE_UNLOCK(zone); 3503 } 3504 3505 return (slab); 3506 } 3507 3508 /* 3509 * Set up the slab's freei data such that uma_dbg_free can function. 3510 * 3511 */ 3512 static void 3513 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 3514 { 3515 uma_keg_t keg; 3516 int freei; 3517 3518 if (zone_first_keg(zone) == NULL) 3519 return; 3520 if (slab == NULL) { 3521 slab = uma_dbg_getslab(zone, item); 3522 if (slab == NULL) 3523 panic("uma: item %p did not belong to zone %s\n", 3524 item, zone->uz_name); 3525 } 3526 keg = slab->us_keg; 3527 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3528 3529 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3530 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 3531 item, zone, zone->uz_name, slab, freei); 3532 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3533 3534 return; 3535 } 3536 3537 /* 3538 * Verifies freed addresses. Checks for alignment, valid slab membership 3539 * and duplicate frees. 3540 * 3541 */ 3542 static void 3543 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 3544 { 3545 uma_keg_t keg; 3546 int freei; 3547 3548 if (zone_first_keg(zone) == NULL) 3549 return; 3550 if (slab == NULL) { 3551 slab = uma_dbg_getslab(zone, item); 3552 if (slab == NULL) 3553 panic("uma: Freed item %p did not belong to zone %s\n", 3554 item, zone->uz_name); 3555 } 3556 keg = slab->us_keg; 3557 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3558 3559 if (freei >= keg->uk_ipers) 3560 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 3561 item, zone, zone->uz_name, slab, freei); 3562 3563 if (((freei * keg->uk_rsize) + slab->us_data) != item) 3564 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 3565 item, zone, zone->uz_name, slab, freei); 3566 3567 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3568 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 3569 item, zone, zone->uz_name, slab, freei); 3570 3571 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3572 } 3573 #endif /* INVARIANTS */ 3574 3575 #ifdef DDB 3576 DB_SHOW_COMMAND(uma, db_show_uma) 3577 { 3578 uint64_t allocs, frees, sleeps; 3579 uma_bucket_t bucket; 3580 uma_keg_t kz; 3581 uma_zone_t z; 3582 int cachefree; 3583 3584 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3585 "Free", "Requests", "Sleeps", "Bucket"); 3586 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3587 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3588 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3589 allocs = z->uz_allocs; 3590 frees = z->uz_frees; 3591 sleeps = z->uz_sleeps; 3592 cachefree = 0; 3593 } else 3594 uma_zone_sumstat(z, &cachefree, &allocs, 3595 &frees, &sleeps); 3596 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3597 (LIST_FIRST(&kz->uk_zones) != z))) 3598 cachefree += kz->uk_free; 3599 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3600 cachefree += bucket->ub_cnt; 3601 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3602 z->uz_name, (uintmax_t)kz->uk_size, 3603 (intmax_t)(allocs - frees), cachefree, 3604 (uintmax_t)allocs, sleeps, z->uz_count); 3605 if (db_pager_quit) 3606 return; 3607 } 3608 } 3609 } 3610 3611 DB_SHOW_COMMAND(umacache, db_show_umacache) 3612 { 3613 uint64_t allocs, frees; 3614 uma_bucket_t bucket; 3615 uma_zone_t z; 3616 int cachefree; 3617 3618 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3619 "Requests", "Bucket"); 3620 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3621 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3622 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3623 cachefree += bucket->ub_cnt; 3624 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3625 z->uz_name, (uintmax_t)z->uz_size, 3626 (intmax_t)(allocs - frees), cachefree, 3627 (uintmax_t)allocs, z->uz_count); 3628 if (db_pager_quit) 3629 return; 3630 } 3631 } 3632 #endif /* DDB */ 3633