1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/eventhandler.h> 63 #include <sys/kernel.h> 64 #include <sys/types.h> 65 #include <sys/limits.h> 66 #include <sys/queue.h> 67 #include <sys/malloc.h> 68 #include <sys/ktr.h> 69 #include <sys/lock.h> 70 #include <sys/sysctl.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/random.h> 74 #include <sys/rwlock.h> 75 #include <sys/sbuf.h> 76 #include <sys/sched.h> 77 #include <sys/smp.h> 78 #include <sys/taskqueue.h> 79 #include <sys/vmmeter.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_phys.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/uma.h> 91 #include <vm/uma_int.h> 92 #include <vm/uma_dbg.h> 93 94 #include <ddb/ddb.h> 95 96 #ifdef DEBUG_MEMGUARD 97 #include <vm/memguard.h> 98 #endif 99 100 /* 101 * This is the zone and keg from which all zones are spawned. 102 */ 103 static uma_zone_t kegs; 104 static uma_zone_t zones; 105 106 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 107 static uma_zone_t slabzone; 108 109 /* 110 * The initial hash tables come out of this zone so they can be allocated 111 * prior to malloc coming up. 112 */ 113 static uma_zone_t hashzone; 114 115 /* The boot-time adjusted value for cache line alignment. */ 116 int uma_align_cache = 64 - 1; 117 118 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 119 120 /* 121 * Are we allowed to allocate buckets? 122 */ 123 static int bucketdisable = 1; 124 125 /* Linked list of all kegs in the system */ 126 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 127 128 /* Linked list of all cache-only zones in the system */ 129 static LIST_HEAD(,uma_zone) uma_cachezones = 130 LIST_HEAD_INITIALIZER(uma_cachezones); 131 132 /* This RW lock protects the keg list */ 133 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 134 135 /* 136 * Pointer and counter to pool of pages, that is preallocated at 137 * startup to bootstrap UMA. 138 */ 139 static char *bootmem; 140 static int boot_pages; 141 142 static struct sx uma_drain_lock; 143 144 /* kmem soft limit. */ 145 static unsigned long uma_kmem_limit = LONG_MAX; 146 static volatile unsigned long uma_kmem_total; 147 148 /* Is the VM done starting up? */ 149 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 150 BOOT_RUNNING } booted = BOOT_COLD; 151 152 /* 153 * This is the handle used to schedule events that need to happen 154 * outside of the allocation fast path. 155 */ 156 static struct callout uma_callout; 157 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 158 159 /* 160 * This structure is passed as the zone ctor arg so that I don't have to create 161 * a special allocation function just for zones. 162 */ 163 struct uma_zctor_args { 164 const char *name; 165 size_t size; 166 uma_ctor ctor; 167 uma_dtor dtor; 168 uma_init uminit; 169 uma_fini fini; 170 uma_import import; 171 uma_release release; 172 void *arg; 173 uma_keg_t keg; 174 int align; 175 uint32_t flags; 176 }; 177 178 struct uma_kctor_args { 179 uma_zone_t zone; 180 size_t size; 181 uma_init uminit; 182 uma_fini fini; 183 int align; 184 uint32_t flags; 185 }; 186 187 struct uma_bucket_zone { 188 uma_zone_t ubz_zone; 189 char *ubz_name; 190 int ubz_entries; /* Number of items it can hold. */ 191 int ubz_maxsize; /* Maximum allocation size per-item. */ 192 }; 193 194 /* 195 * Compute the actual number of bucket entries to pack them in power 196 * of two sizes for more efficient space utilization. 197 */ 198 #define BUCKET_SIZE(n) \ 199 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 200 201 #define BUCKET_MAX BUCKET_SIZE(256) 202 203 struct uma_bucket_zone bucket_zones[] = { 204 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 205 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 206 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 207 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 208 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 209 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 210 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 211 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 212 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 213 { NULL, NULL, 0} 214 }; 215 216 /* 217 * Flags and enumerations to be passed to internal functions. 218 */ 219 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 220 221 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ 222 223 /* Prototypes.. */ 224 225 int uma_startup_count(int); 226 void uma_startup(void *, int); 227 void uma_startup1(void); 228 void uma_startup2(void); 229 230 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 231 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 232 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 233 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 234 static void page_free(void *, vm_size_t, uint8_t); 235 static void pcpu_page_free(void *, vm_size_t, uint8_t); 236 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int); 237 static void cache_drain(uma_zone_t); 238 static void bucket_drain(uma_zone_t, uma_bucket_t); 239 static void bucket_cache_drain(uma_zone_t zone); 240 static int keg_ctor(void *, int, void *, int); 241 static void keg_dtor(void *, int, void *); 242 static int zone_ctor(void *, int, void *, int); 243 static void zone_dtor(void *, int, void *); 244 static int zero_init(void *, int, int); 245 static void keg_small_init(uma_keg_t keg); 246 static void keg_large_init(uma_keg_t keg); 247 static void zone_foreach(void (*zfunc)(uma_zone_t)); 248 static void zone_timeout(uma_zone_t zone); 249 static int hash_alloc(struct uma_hash *); 250 static int hash_expand(struct uma_hash *, struct uma_hash *); 251 static void hash_free(struct uma_hash *hash); 252 static void uma_timeout(void *); 253 static void uma_startup3(void); 254 static void *zone_alloc_item(uma_zone_t, void *, int, int); 255 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 256 static void bucket_enable(void); 257 static void bucket_init(void); 258 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 259 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 260 static void bucket_zone_drain(void); 261 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 262 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 263 static uma_slab_t zone_fetch_slab_multi(uma_zone_t, uma_keg_t, int, int); 264 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 265 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 266 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 267 uma_fini fini, int align, uint32_t flags); 268 static int zone_import(uma_zone_t, void **, int, int, int); 269 static void zone_release(uma_zone_t, void **, int); 270 static void uma_zero_item(void *, uma_zone_t); 271 272 void uma_print_zone(uma_zone_t); 273 void uma_print_stats(void); 274 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 275 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 276 277 #ifdef INVARIANTS 278 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 279 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 280 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 281 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 282 283 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 284 "Memory allocation debugging"); 285 286 static u_int dbg_divisor = 1; 287 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 288 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 289 "Debug & thrash every this item in memory allocator"); 290 291 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 292 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 293 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 294 &uma_dbg_cnt, "memory items debugged"); 295 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 296 &uma_skip_cnt, "memory items skipped, not debugged"); 297 #endif 298 299 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 300 301 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 302 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 303 304 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 305 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 306 307 static int zone_warnings = 1; 308 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 309 "Warn when UMA zones becomes full"); 310 311 /* Adjust bytes under management by UMA. */ 312 static inline void 313 uma_total_dec(unsigned long size) 314 { 315 316 atomic_subtract_long(&uma_kmem_total, size); 317 } 318 319 static inline void 320 uma_total_inc(unsigned long size) 321 { 322 323 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 324 uma_reclaim_wakeup(); 325 } 326 327 /* 328 * This routine checks to see whether or not it's safe to enable buckets. 329 */ 330 static void 331 bucket_enable(void) 332 { 333 bucketdisable = vm_page_count_min(); 334 } 335 336 /* 337 * Initialize bucket_zones, the array of zones of buckets of various sizes. 338 * 339 * For each zone, calculate the memory required for each bucket, consisting 340 * of the header and an array of pointers. 341 */ 342 static void 343 bucket_init(void) 344 { 345 struct uma_bucket_zone *ubz; 346 int size; 347 348 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 349 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 350 size += sizeof(void *) * ubz->ubz_entries; 351 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 352 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 353 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 354 } 355 } 356 357 /* 358 * Given a desired number of entries for a bucket, return the zone from which 359 * to allocate the bucket. 360 */ 361 static struct uma_bucket_zone * 362 bucket_zone_lookup(int entries) 363 { 364 struct uma_bucket_zone *ubz; 365 366 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 367 if (ubz->ubz_entries >= entries) 368 return (ubz); 369 ubz--; 370 return (ubz); 371 } 372 373 static int 374 bucket_select(int size) 375 { 376 struct uma_bucket_zone *ubz; 377 378 ubz = &bucket_zones[0]; 379 if (size > ubz->ubz_maxsize) 380 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 381 382 for (; ubz->ubz_entries != 0; ubz++) 383 if (ubz->ubz_maxsize < size) 384 break; 385 ubz--; 386 return (ubz->ubz_entries); 387 } 388 389 static uma_bucket_t 390 bucket_alloc(uma_zone_t zone, void *udata, int flags) 391 { 392 struct uma_bucket_zone *ubz; 393 uma_bucket_t bucket; 394 395 /* 396 * This is to stop us from allocating per cpu buckets while we're 397 * running out of vm.boot_pages. Otherwise, we would exhaust the 398 * boot pages. This also prevents us from allocating buckets in 399 * low memory situations. 400 */ 401 if (bucketdisable) 402 return (NULL); 403 /* 404 * To limit bucket recursion we store the original zone flags 405 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 406 * NOVM flag to persist even through deep recursions. We also 407 * store ZFLAG_BUCKET once we have recursed attempting to allocate 408 * a bucket for a bucket zone so we do not allow infinite bucket 409 * recursion. This cookie will even persist to frees of unused 410 * buckets via the allocation path or bucket allocations in the 411 * free path. 412 */ 413 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 414 udata = (void *)(uintptr_t)zone->uz_flags; 415 else { 416 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 417 return (NULL); 418 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 419 } 420 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 421 flags |= M_NOVM; 422 ubz = bucket_zone_lookup(zone->uz_count); 423 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 424 ubz++; 425 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 426 if (bucket) { 427 #ifdef INVARIANTS 428 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 429 #endif 430 bucket->ub_cnt = 0; 431 bucket->ub_entries = ubz->ubz_entries; 432 } 433 434 return (bucket); 435 } 436 437 static void 438 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 439 { 440 struct uma_bucket_zone *ubz; 441 442 KASSERT(bucket->ub_cnt == 0, 443 ("bucket_free: Freeing a non free bucket.")); 444 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 445 udata = (void *)(uintptr_t)zone->uz_flags; 446 ubz = bucket_zone_lookup(bucket->ub_entries); 447 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 448 } 449 450 static void 451 bucket_zone_drain(void) 452 { 453 struct uma_bucket_zone *ubz; 454 455 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 456 zone_drain(ubz->ubz_zone); 457 } 458 459 static void 460 zone_log_warning(uma_zone_t zone) 461 { 462 static const struct timeval warninterval = { 300, 0 }; 463 464 if (!zone_warnings || zone->uz_warning == NULL) 465 return; 466 467 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 468 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 469 } 470 471 static inline void 472 zone_maxaction(uma_zone_t zone) 473 { 474 475 if (zone->uz_maxaction.ta_func != NULL) 476 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 477 } 478 479 static void 480 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 481 { 482 uma_klink_t klink; 483 484 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 485 kegfn(klink->kl_keg); 486 } 487 488 /* 489 * Routine called by timeout which is used to fire off some time interval 490 * based calculations. (stats, hash size, etc.) 491 * 492 * Arguments: 493 * arg Unused 494 * 495 * Returns: 496 * Nothing 497 */ 498 static void 499 uma_timeout(void *unused) 500 { 501 bucket_enable(); 502 zone_foreach(zone_timeout); 503 504 /* Reschedule this event */ 505 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 506 } 507 508 /* 509 * Routine to perform timeout driven calculations. This expands the 510 * hashes and does per cpu statistics aggregation. 511 * 512 * Returns nothing. 513 */ 514 static void 515 keg_timeout(uma_keg_t keg) 516 { 517 518 KEG_LOCK(keg); 519 /* 520 * Expand the keg hash table. 521 * 522 * This is done if the number of slabs is larger than the hash size. 523 * What I'm trying to do here is completely reduce collisions. This 524 * may be a little aggressive. Should I allow for two collisions max? 525 */ 526 if (keg->uk_flags & UMA_ZONE_HASH && 527 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 528 struct uma_hash newhash; 529 struct uma_hash oldhash; 530 int ret; 531 532 /* 533 * This is so involved because allocating and freeing 534 * while the keg lock is held will lead to deadlock. 535 * I have to do everything in stages and check for 536 * races. 537 */ 538 newhash = keg->uk_hash; 539 KEG_UNLOCK(keg); 540 ret = hash_alloc(&newhash); 541 KEG_LOCK(keg); 542 if (ret) { 543 if (hash_expand(&keg->uk_hash, &newhash)) { 544 oldhash = keg->uk_hash; 545 keg->uk_hash = newhash; 546 } else 547 oldhash = newhash; 548 549 KEG_UNLOCK(keg); 550 hash_free(&oldhash); 551 return; 552 } 553 } 554 KEG_UNLOCK(keg); 555 } 556 557 static void 558 zone_timeout(uma_zone_t zone) 559 { 560 561 zone_foreach_keg(zone, &keg_timeout); 562 } 563 564 /* 565 * Allocate and zero fill the next sized hash table from the appropriate 566 * backing store. 567 * 568 * Arguments: 569 * hash A new hash structure with the old hash size in uh_hashsize 570 * 571 * Returns: 572 * 1 on success and 0 on failure. 573 */ 574 static int 575 hash_alloc(struct uma_hash *hash) 576 { 577 int oldsize; 578 int alloc; 579 580 oldsize = hash->uh_hashsize; 581 582 /* We're just going to go to a power of two greater */ 583 if (oldsize) { 584 hash->uh_hashsize = oldsize * 2; 585 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 586 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 587 M_UMAHASH, M_NOWAIT); 588 } else { 589 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 590 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 591 UMA_ANYDOMAIN, M_WAITOK); 592 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 593 } 594 if (hash->uh_slab_hash) { 595 bzero(hash->uh_slab_hash, alloc); 596 hash->uh_hashmask = hash->uh_hashsize - 1; 597 return (1); 598 } 599 600 return (0); 601 } 602 603 /* 604 * Expands the hash table for HASH zones. This is done from zone_timeout 605 * to reduce collisions. This must not be done in the regular allocation 606 * path, otherwise, we can recurse on the vm while allocating pages. 607 * 608 * Arguments: 609 * oldhash The hash you want to expand 610 * newhash The hash structure for the new table 611 * 612 * Returns: 613 * Nothing 614 * 615 * Discussion: 616 */ 617 static int 618 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 619 { 620 uma_slab_t slab; 621 int hval; 622 int i; 623 624 if (!newhash->uh_slab_hash) 625 return (0); 626 627 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 628 return (0); 629 630 /* 631 * I need to investigate hash algorithms for resizing without a 632 * full rehash. 633 */ 634 635 for (i = 0; i < oldhash->uh_hashsize; i++) 636 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 637 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 638 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 639 hval = UMA_HASH(newhash, slab->us_data); 640 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 641 slab, us_hlink); 642 } 643 644 return (1); 645 } 646 647 /* 648 * Free the hash bucket to the appropriate backing store. 649 * 650 * Arguments: 651 * slab_hash The hash bucket we're freeing 652 * hashsize The number of entries in that hash bucket 653 * 654 * Returns: 655 * Nothing 656 */ 657 static void 658 hash_free(struct uma_hash *hash) 659 { 660 if (hash->uh_slab_hash == NULL) 661 return; 662 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 663 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 664 else 665 free(hash->uh_slab_hash, M_UMAHASH); 666 } 667 668 /* 669 * Frees all outstanding items in a bucket 670 * 671 * Arguments: 672 * zone The zone to free to, must be unlocked. 673 * bucket The free/alloc bucket with items, cpu queue must be locked. 674 * 675 * Returns: 676 * Nothing 677 */ 678 679 static void 680 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 681 { 682 int i; 683 684 if (bucket == NULL) 685 return; 686 687 if (zone->uz_fini) 688 for (i = 0; i < bucket->ub_cnt; i++) 689 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 690 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 691 bucket->ub_cnt = 0; 692 } 693 694 /* 695 * Drains the per cpu caches for a zone. 696 * 697 * NOTE: This may only be called while the zone is being turn down, and not 698 * during normal operation. This is necessary in order that we do not have 699 * to migrate CPUs to drain the per-CPU caches. 700 * 701 * Arguments: 702 * zone The zone to drain, must be unlocked. 703 * 704 * Returns: 705 * Nothing 706 */ 707 static void 708 cache_drain(uma_zone_t zone) 709 { 710 uma_cache_t cache; 711 int cpu; 712 713 /* 714 * XXX: It is safe to not lock the per-CPU caches, because we're 715 * tearing down the zone anyway. I.e., there will be no further use 716 * of the caches at this point. 717 * 718 * XXX: It would good to be able to assert that the zone is being 719 * torn down to prevent improper use of cache_drain(). 720 * 721 * XXX: We lock the zone before passing into bucket_cache_drain() as 722 * it is used elsewhere. Should the tear-down path be made special 723 * there in some form? 724 */ 725 CPU_FOREACH(cpu) { 726 cache = &zone->uz_cpu[cpu]; 727 bucket_drain(zone, cache->uc_allocbucket); 728 bucket_drain(zone, cache->uc_freebucket); 729 if (cache->uc_allocbucket != NULL) 730 bucket_free(zone, cache->uc_allocbucket, NULL); 731 if (cache->uc_freebucket != NULL) 732 bucket_free(zone, cache->uc_freebucket, NULL); 733 cache->uc_allocbucket = cache->uc_freebucket = NULL; 734 } 735 ZONE_LOCK(zone); 736 bucket_cache_drain(zone); 737 ZONE_UNLOCK(zone); 738 } 739 740 static void 741 cache_shrink(uma_zone_t zone) 742 { 743 744 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 745 return; 746 747 ZONE_LOCK(zone); 748 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 749 ZONE_UNLOCK(zone); 750 } 751 752 static void 753 cache_drain_safe_cpu(uma_zone_t zone) 754 { 755 uma_cache_t cache; 756 uma_bucket_t b1, b2; 757 int domain; 758 759 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 760 return; 761 762 b1 = b2 = NULL; 763 ZONE_LOCK(zone); 764 critical_enter(); 765 if (zone->uz_flags & UMA_ZONE_NUMA) 766 domain = PCPU_GET(domain); 767 else 768 domain = 0; 769 cache = &zone->uz_cpu[curcpu]; 770 if (cache->uc_allocbucket) { 771 if (cache->uc_allocbucket->ub_cnt != 0) 772 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 773 cache->uc_allocbucket, ub_link); 774 else 775 b1 = cache->uc_allocbucket; 776 cache->uc_allocbucket = NULL; 777 } 778 if (cache->uc_freebucket) { 779 if (cache->uc_freebucket->ub_cnt != 0) 780 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets, 781 cache->uc_freebucket, ub_link); 782 else 783 b2 = cache->uc_freebucket; 784 cache->uc_freebucket = NULL; 785 } 786 critical_exit(); 787 ZONE_UNLOCK(zone); 788 if (b1) 789 bucket_free(zone, b1, NULL); 790 if (b2) 791 bucket_free(zone, b2, NULL); 792 } 793 794 /* 795 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 796 * This is an expensive call because it needs to bind to all CPUs 797 * one by one and enter a critical section on each of them in order 798 * to safely access their cache buckets. 799 * Zone lock must not be held on call this function. 800 */ 801 static void 802 cache_drain_safe(uma_zone_t zone) 803 { 804 int cpu; 805 806 /* 807 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 808 */ 809 if (zone) 810 cache_shrink(zone); 811 else 812 zone_foreach(cache_shrink); 813 814 CPU_FOREACH(cpu) { 815 thread_lock(curthread); 816 sched_bind(curthread, cpu); 817 thread_unlock(curthread); 818 819 if (zone) 820 cache_drain_safe_cpu(zone); 821 else 822 zone_foreach(cache_drain_safe_cpu); 823 } 824 thread_lock(curthread); 825 sched_unbind(curthread); 826 thread_unlock(curthread); 827 } 828 829 /* 830 * Drain the cached buckets from a zone. Expects a locked zone on entry. 831 */ 832 static void 833 bucket_cache_drain(uma_zone_t zone) 834 { 835 uma_zone_domain_t zdom; 836 uma_bucket_t bucket; 837 int i; 838 839 /* 840 * Drain the bucket queues and free the buckets. 841 */ 842 for (i = 0; i < vm_ndomains; i++) { 843 zdom = &zone->uz_domain[i]; 844 while ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 845 LIST_REMOVE(bucket, ub_link); 846 ZONE_UNLOCK(zone); 847 bucket_drain(zone, bucket); 848 bucket_free(zone, bucket, NULL); 849 ZONE_LOCK(zone); 850 } 851 } 852 853 /* 854 * Shrink further bucket sizes. Price of single zone lock collision 855 * is probably lower then price of global cache drain. 856 */ 857 if (zone->uz_count > zone->uz_count_min) 858 zone->uz_count--; 859 } 860 861 static void 862 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 863 { 864 uint8_t *mem; 865 int i; 866 uint8_t flags; 867 868 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 869 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 870 871 mem = slab->us_data; 872 flags = slab->us_flags; 873 i = start; 874 if (keg->uk_fini != NULL) { 875 for (i--; i > -1; i--) 876 #ifdef INVARIANTS 877 /* 878 * trash_fini implies that dtor was trash_dtor. trash_fini 879 * would check that memory hasn't been modified since free, 880 * which executed trash_dtor. 881 * That's why we need to run uma_dbg_kskip() check here, 882 * albeit we don't make skip check for other init/fini 883 * invocations. 884 */ 885 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) || 886 keg->uk_fini != trash_fini) 887 #endif 888 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 889 keg->uk_size); 890 } 891 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 892 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 893 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 894 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 895 } 896 897 /* 898 * Frees pages from a keg back to the system. This is done on demand from 899 * the pageout daemon. 900 * 901 * Returns nothing. 902 */ 903 static void 904 keg_drain(uma_keg_t keg) 905 { 906 struct slabhead freeslabs = { 0 }; 907 uma_domain_t dom; 908 uma_slab_t slab, tmp; 909 int i; 910 911 /* 912 * We don't want to take pages from statically allocated kegs at this 913 * time 914 */ 915 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 916 return; 917 918 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 919 keg->uk_name, keg, keg->uk_free); 920 KEG_LOCK(keg); 921 if (keg->uk_free == 0) 922 goto finished; 923 924 for (i = 0; i < vm_ndomains; i++) { 925 dom = &keg->uk_domain[i]; 926 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 927 /* We have nowhere to free these to. */ 928 if (slab->us_flags & UMA_SLAB_BOOT) 929 continue; 930 931 LIST_REMOVE(slab, us_link); 932 keg->uk_pages -= keg->uk_ppera; 933 keg->uk_free -= keg->uk_ipers; 934 935 if (keg->uk_flags & UMA_ZONE_HASH) 936 UMA_HASH_REMOVE(&keg->uk_hash, slab, 937 slab->us_data); 938 939 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 940 } 941 } 942 943 finished: 944 KEG_UNLOCK(keg); 945 946 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 947 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 948 keg_free_slab(keg, slab, keg->uk_ipers); 949 } 950 } 951 952 static void 953 zone_drain_wait(uma_zone_t zone, int waitok) 954 { 955 956 /* 957 * Set draining to interlock with zone_dtor() so we can release our 958 * locks as we go. Only dtor() should do a WAITOK call since it 959 * is the only call that knows the structure will still be available 960 * when it wakes up. 961 */ 962 ZONE_LOCK(zone); 963 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 964 if (waitok == M_NOWAIT) 965 goto out; 966 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 967 } 968 zone->uz_flags |= UMA_ZFLAG_DRAINING; 969 bucket_cache_drain(zone); 970 ZONE_UNLOCK(zone); 971 /* 972 * The DRAINING flag protects us from being freed while 973 * we're running. Normally the uma_rwlock would protect us but we 974 * must be able to release and acquire the right lock for each keg. 975 */ 976 zone_foreach_keg(zone, &keg_drain); 977 ZONE_LOCK(zone); 978 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 979 wakeup(zone); 980 out: 981 ZONE_UNLOCK(zone); 982 } 983 984 void 985 zone_drain(uma_zone_t zone) 986 { 987 988 zone_drain_wait(zone, M_NOWAIT); 989 } 990 991 /* 992 * Allocate a new slab for a keg. This does not insert the slab onto a list. 993 * 994 * Arguments: 995 * wait Shall we wait? 996 * 997 * Returns: 998 * The slab that was allocated or NULL if there is no memory and the 999 * caller specified M_NOWAIT. 1000 */ 1001 static uma_slab_t 1002 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int wait) 1003 { 1004 uma_alloc allocf; 1005 uma_slab_t slab; 1006 unsigned long size; 1007 uint8_t *mem; 1008 uint8_t flags; 1009 int i; 1010 1011 KASSERT(domain >= 0 && domain < vm_ndomains, 1012 ("keg_alloc_slab: domain %d out of range", domain)); 1013 mtx_assert(&keg->uk_lock, MA_OWNED); 1014 slab = NULL; 1015 mem = NULL; 1016 1017 allocf = keg->uk_allocf; 1018 KEG_UNLOCK(keg); 1019 size = keg->uk_ppera * PAGE_SIZE; 1020 1021 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1022 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, wait); 1023 if (slab == NULL) 1024 goto out; 1025 } 1026 1027 /* 1028 * This reproduces the old vm_zone behavior of zero filling pages the 1029 * first time they are added to a zone. 1030 * 1031 * Malloced items are zeroed in uma_zalloc. 1032 */ 1033 1034 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1035 wait |= M_ZERO; 1036 else 1037 wait &= ~M_ZERO; 1038 1039 if (keg->uk_flags & UMA_ZONE_NODUMP) 1040 wait |= M_NODUMP; 1041 1042 /* zone is passed for legacy reasons. */ 1043 mem = allocf(zone, size, domain, &flags, wait); 1044 if (mem == NULL) { 1045 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1046 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1047 slab = NULL; 1048 goto out; 1049 } 1050 uma_total_inc(size); 1051 1052 /* Point the slab into the allocated memory */ 1053 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1054 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1055 1056 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1057 for (i = 0; i < keg->uk_ppera; i++) 1058 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1059 1060 slab->us_keg = keg; 1061 slab->us_data = mem; 1062 slab->us_freecount = keg->uk_ipers; 1063 slab->us_flags = flags; 1064 slab->us_domain = domain; 1065 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1066 #ifdef INVARIANTS 1067 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1068 #endif 1069 1070 if (keg->uk_init != NULL) { 1071 for (i = 0; i < keg->uk_ipers; i++) 1072 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1073 keg->uk_size, wait) != 0) 1074 break; 1075 if (i != keg->uk_ipers) { 1076 keg_free_slab(keg, slab, i); 1077 slab = NULL; 1078 goto out; 1079 } 1080 } 1081 out: 1082 KEG_LOCK(keg); 1083 1084 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1085 slab, keg->uk_name, keg); 1086 1087 if (slab != NULL) { 1088 if (keg->uk_flags & UMA_ZONE_HASH) 1089 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1090 1091 keg->uk_pages += keg->uk_ppera; 1092 keg->uk_free += keg->uk_ipers; 1093 } 1094 1095 return (slab); 1096 } 1097 1098 /* 1099 * This function is intended to be used early on in place of page_alloc() so 1100 * that we may use the boot time page cache to satisfy allocations before 1101 * the VM is ready. 1102 */ 1103 static void * 1104 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1105 int wait) 1106 { 1107 uma_keg_t keg; 1108 void *mem; 1109 int pages; 1110 1111 keg = zone_first_keg(zone); 1112 1113 /* 1114 * If we are in BOOT_BUCKETS or higher, than switch to real 1115 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1116 */ 1117 switch (booted) { 1118 case BOOT_COLD: 1119 case BOOT_STRAPPED: 1120 break; 1121 case BOOT_PAGEALLOC: 1122 if (keg->uk_ppera > 1) 1123 break; 1124 case BOOT_BUCKETS: 1125 case BOOT_RUNNING: 1126 #ifdef UMA_MD_SMALL_ALLOC 1127 keg->uk_allocf = (keg->uk_ppera > 1) ? 1128 page_alloc : uma_small_alloc; 1129 #else 1130 keg->uk_allocf = page_alloc; 1131 #endif 1132 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1133 } 1134 1135 /* 1136 * Check our small startup cache to see if it has pages remaining. 1137 */ 1138 pages = howmany(bytes, PAGE_SIZE); 1139 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1140 if (pages > boot_pages) 1141 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1142 #ifdef DIAGNOSTIC 1143 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1144 boot_pages); 1145 #endif 1146 mem = bootmem; 1147 boot_pages -= pages; 1148 bootmem += pages * PAGE_SIZE; 1149 *pflag = UMA_SLAB_BOOT; 1150 1151 return (mem); 1152 } 1153 1154 /* 1155 * Allocates a number of pages from the system 1156 * 1157 * Arguments: 1158 * bytes The number of bytes requested 1159 * wait Shall we wait? 1160 * 1161 * Returns: 1162 * A pointer to the alloced memory or possibly 1163 * NULL if M_NOWAIT is set. 1164 */ 1165 static void * 1166 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1167 int wait) 1168 { 1169 void *p; /* Returned page */ 1170 1171 *pflag = UMA_SLAB_KERNEL; 1172 p = (void *) kmem_malloc_domain(domain, bytes, wait); 1173 1174 return (p); 1175 } 1176 1177 static void * 1178 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1179 int wait) 1180 { 1181 struct pglist alloctail; 1182 vm_offset_t addr, zkva; 1183 int cpu, flags; 1184 vm_page_t p, p_next; 1185 #ifdef NUMA 1186 struct pcpu *pc; 1187 #endif 1188 1189 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1190 1191 TAILQ_INIT(&alloctail); 1192 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1193 malloc2vm_flags(wait); 1194 *pflag = UMA_SLAB_KERNEL; 1195 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1196 if (CPU_ABSENT(cpu)) { 1197 p = vm_page_alloc(NULL, 0, flags); 1198 } else { 1199 #ifndef NUMA 1200 p = vm_page_alloc(NULL, 0, flags); 1201 #else 1202 pc = pcpu_find(cpu); 1203 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); 1204 if (__predict_false(p == NULL)) 1205 p = vm_page_alloc(NULL, 0, flags); 1206 #endif 1207 } 1208 if (__predict_false(p == NULL)) 1209 goto fail; 1210 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1211 } 1212 if ((addr = kva_alloc(bytes)) == 0) 1213 goto fail; 1214 zkva = addr; 1215 TAILQ_FOREACH(p, &alloctail, listq) { 1216 pmap_qenter(zkva, &p, 1); 1217 zkva += PAGE_SIZE; 1218 } 1219 return ((void*)addr); 1220 fail: 1221 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1222 vm_page_unwire(p, PQ_NONE); 1223 vm_page_free(p); 1224 } 1225 return (NULL); 1226 } 1227 1228 /* 1229 * Allocates a number of pages from within an object 1230 * 1231 * Arguments: 1232 * bytes The number of bytes requested 1233 * wait Shall we wait? 1234 * 1235 * Returns: 1236 * A pointer to the alloced memory or possibly 1237 * NULL if M_NOWAIT is set. 1238 */ 1239 static void * 1240 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1241 int wait) 1242 { 1243 TAILQ_HEAD(, vm_page) alloctail; 1244 u_long npages; 1245 vm_offset_t retkva, zkva; 1246 vm_page_t p, p_next; 1247 uma_keg_t keg; 1248 1249 TAILQ_INIT(&alloctail); 1250 keg = zone_first_keg(zone); 1251 1252 npages = howmany(bytes, PAGE_SIZE); 1253 while (npages > 0) { 1254 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1255 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1256 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1257 VM_ALLOC_NOWAIT)); 1258 if (p != NULL) { 1259 /* 1260 * Since the page does not belong to an object, its 1261 * listq is unused. 1262 */ 1263 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1264 npages--; 1265 continue; 1266 } 1267 /* 1268 * Page allocation failed, free intermediate pages and 1269 * exit. 1270 */ 1271 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1272 vm_page_unwire(p, PQ_NONE); 1273 vm_page_free(p); 1274 } 1275 return (NULL); 1276 } 1277 *flags = UMA_SLAB_PRIV; 1278 zkva = keg->uk_kva + 1279 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1280 retkva = zkva; 1281 TAILQ_FOREACH(p, &alloctail, listq) { 1282 pmap_qenter(zkva, &p, 1); 1283 zkva += PAGE_SIZE; 1284 } 1285 1286 return ((void *)retkva); 1287 } 1288 1289 /* 1290 * Frees a number of pages to the system 1291 * 1292 * Arguments: 1293 * mem A pointer to the memory to be freed 1294 * size The size of the memory being freed 1295 * flags The original p->us_flags field 1296 * 1297 * Returns: 1298 * Nothing 1299 */ 1300 static void 1301 page_free(void *mem, vm_size_t size, uint8_t flags) 1302 { 1303 1304 if ((flags & UMA_SLAB_KERNEL) == 0) 1305 panic("UMA: page_free used with invalid flags %x", flags); 1306 1307 kmem_free((vm_offset_t)mem, size); 1308 } 1309 1310 /* 1311 * Frees pcpu zone allocations 1312 * 1313 * Arguments: 1314 * mem A pointer to the memory to be freed 1315 * size The size of the memory being freed 1316 * flags The original p->us_flags field 1317 * 1318 * Returns: 1319 * Nothing 1320 */ 1321 static void 1322 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1323 { 1324 vm_offset_t sva, curva; 1325 vm_paddr_t paddr; 1326 vm_page_t m; 1327 1328 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1329 sva = (vm_offset_t)mem; 1330 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1331 paddr = pmap_kextract(curva); 1332 m = PHYS_TO_VM_PAGE(paddr); 1333 vm_page_unwire(m, PQ_NONE); 1334 vm_page_free(m); 1335 } 1336 pmap_qremove(sva, size >> PAGE_SHIFT); 1337 kva_free(sva, size); 1338 } 1339 1340 1341 /* 1342 * Zero fill initializer 1343 * 1344 * Arguments/Returns follow uma_init specifications 1345 */ 1346 static int 1347 zero_init(void *mem, int size, int flags) 1348 { 1349 bzero(mem, size); 1350 return (0); 1351 } 1352 1353 /* 1354 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1355 * 1356 * Arguments 1357 * keg The zone we should initialize 1358 * 1359 * Returns 1360 * Nothing 1361 */ 1362 static void 1363 keg_small_init(uma_keg_t keg) 1364 { 1365 u_int rsize; 1366 u_int memused; 1367 u_int wastedspace; 1368 u_int shsize; 1369 u_int slabsize; 1370 1371 if (keg->uk_flags & UMA_ZONE_PCPU) { 1372 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1373 1374 slabsize = UMA_PCPU_ALLOC_SIZE; 1375 keg->uk_ppera = ncpus; 1376 } else { 1377 slabsize = UMA_SLAB_SIZE; 1378 keg->uk_ppera = 1; 1379 } 1380 1381 /* 1382 * Calculate the size of each allocation (rsize) according to 1383 * alignment. If the requested size is smaller than we have 1384 * allocation bits for we round it up. 1385 */ 1386 rsize = keg->uk_size; 1387 if (rsize < slabsize / SLAB_SETSIZE) 1388 rsize = slabsize / SLAB_SETSIZE; 1389 if (rsize & keg->uk_align) 1390 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1391 keg->uk_rsize = rsize; 1392 1393 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1394 keg->uk_rsize < UMA_PCPU_ALLOC_SIZE, 1395 ("%s: size %u too large", __func__, keg->uk_rsize)); 1396 1397 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1398 shsize = 0; 1399 else 1400 shsize = sizeof(struct uma_slab); 1401 1402 if (rsize <= slabsize - shsize) 1403 keg->uk_ipers = (slabsize - shsize) / rsize; 1404 else { 1405 /* Handle special case when we have 1 item per slab, so 1406 * alignment requirement can be relaxed. */ 1407 KASSERT(keg->uk_size <= slabsize - shsize, 1408 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1409 keg->uk_ipers = 1; 1410 } 1411 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1412 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1413 1414 memused = keg->uk_ipers * rsize + shsize; 1415 wastedspace = slabsize - memused; 1416 1417 /* 1418 * We can't do OFFPAGE if we're internal or if we've been 1419 * asked to not go to the VM for buckets. If we do this we 1420 * may end up going to the VM for slabs which we do not 1421 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1422 * of UMA_ZONE_VM, which clearly forbids it. 1423 */ 1424 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1425 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1426 return; 1427 1428 /* 1429 * See if using an OFFPAGE slab will limit our waste. Only do 1430 * this if it permits more items per-slab. 1431 * 1432 * XXX We could try growing slabsize to limit max waste as well. 1433 * Historically this was not done because the VM could not 1434 * efficiently handle contiguous allocations. 1435 */ 1436 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1437 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1438 keg->uk_ipers = slabsize / keg->uk_rsize; 1439 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1440 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1441 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1442 "keg: %s(%p), calculated wastedspace = %d, " 1443 "maximum wasted space allowed = %d, " 1444 "calculated ipers = %d, " 1445 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1446 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1447 slabsize - keg->uk_ipers * keg->uk_rsize); 1448 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1449 } 1450 1451 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1452 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1453 keg->uk_flags |= UMA_ZONE_HASH; 1454 } 1455 1456 /* 1457 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1458 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1459 * more complicated. 1460 * 1461 * Arguments 1462 * keg The keg we should initialize 1463 * 1464 * Returns 1465 * Nothing 1466 */ 1467 static void 1468 keg_large_init(uma_keg_t keg) 1469 { 1470 u_int shsize; 1471 1472 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1473 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1474 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1475 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1476 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1477 1478 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1479 keg->uk_ipers = 1; 1480 keg->uk_rsize = keg->uk_size; 1481 1482 /* Check whether we have enough space to not do OFFPAGE. */ 1483 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1484 shsize = sizeof(struct uma_slab); 1485 if (shsize & UMA_ALIGN_PTR) 1486 shsize = (shsize & ~UMA_ALIGN_PTR) + 1487 (UMA_ALIGN_PTR + 1); 1488 1489 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) { 1490 /* 1491 * We can't do OFFPAGE if we're internal, in which case 1492 * we need an extra page per allocation to contain the 1493 * slab header. 1494 */ 1495 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1496 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1497 else 1498 keg->uk_ppera++; 1499 } 1500 } 1501 1502 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1503 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1504 keg->uk_flags |= UMA_ZONE_HASH; 1505 } 1506 1507 static void 1508 keg_cachespread_init(uma_keg_t keg) 1509 { 1510 int alignsize; 1511 int trailer; 1512 int pages; 1513 int rsize; 1514 1515 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1516 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1517 1518 alignsize = keg->uk_align + 1; 1519 rsize = keg->uk_size; 1520 /* 1521 * We want one item to start on every align boundary in a page. To 1522 * do this we will span pages. We will also extend the item by the 1523 * size of align if it is an even multiple of align. Otherwise, it 1524 * would fall on the same boundary every time. 1525 */ 1526 if (rsize & keg->uk_align) 1527 rsize = (rsize & ~keg->uk_align) + alignsize; 1528 if ((rsize & alignsize) == 0) 1529 rsize += alignsize; 1530 trailer = rsize - keg->uk_size; 1531 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1532 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1533 keg->uk_rsize = rsize; 1534 keg->uk_ppera = pages; 1535 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1536 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1537 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1538 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1539 keg->uk_ipers)); 1540 } 1541 1542 /* 1543 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1544 * the keg onto the global keg list. 1545 * 1546 * Arguments/Returns follow uma_ctor specifications 1547 * udata Actually uma_kctor_args 1548 */ 1549 static int 1550 keg_ctor(void *mem, int size, void *udata, int flags) 1551 { 1552 struct uma_kctor_args *arg = udata; 1553 uma_keg_t keg = mem; 1554 uma_zone_t zone; 1555 1556 bzero(keg, size); 1557 keg->uk_size = arg->size; 1558 keg->uk_init = arg->uminit; 1559 keg->uk_fini = arg->fini; 1560 keg->uk_align = arg->align; 1561 keg->uk_cursor = 0; 1562 keg->uk_free = 0; 1563 keg->uk_reserve = 0; 1564 keg->uk_pages = 0; 1565 keg->uk_flags = arg->flags; 1566 keg->uk_slabzone = NULL; 1567 1568 /* 1569 * The master zone is passed to us at keg-creation time. 1570 */ 1571 zone = arg->zone; 1572 keg->uk_name = zone->uz_name; 1573 1574 if (arg->flags & UMA_ZONE_VM) 1575 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1576 1577 if (arg->flags & UMA_ZONE_ZINIT) 1578 keg->uk_init = zero_init; 1579 1580 if (arg->flags & UMA_ZONE_MALLOC) 1581 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1582 1583 if (arg->flags & UMA_ZONE_PCPU) 1584 #ifdef SMP 1585 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1586 #else 1587 keg->uk_flags &= ~UMA_ZONE_PCPU; 1588 #endif 1589 1590 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1591 keg_cachespread_init(keg); 1592 } else { 1593 if (keg->uk_size > UMA_SLAB_SPACE) 1594 keg_large_init(keg); 1595 else 1596 keg_small_init(keg); 1597 } 1598 1599 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1600 keg->uk_slabzone = slabzone; 1601 1602 /* 1603 * If we haven't booted yet we need allocations to go through the 1604 * startup cache until the vm is ready. 1605 */ 1606 if (booted < BOOT_PAGEALLOC) 1607 keg->uk_allocf = startup_alloc; 1608 #ifdef UMA_MD_SMALL_ALLOC 1609 else if (keg->uk_ppera == 1) 1610 keg->uk_allocf = uma_small_alloc; 1611 #endif 1612 else if (keg->uk_flags & UMA_ZONE_PCPU) 1613 keg->uk_allocf = pcpu_page_alloc; 1614 else 1615 keg->uk_allocf = page_alloc; 1616 #ifdef UMA_MD_SMALL_ALLOC 1617 if (keg->uk_ppera == 1) 1618 keg->uk_freef = uma_small_free; 1619 else 1620 #endif 1621 if (keg->uk_flags & UMA_ZONE_PCPU) 1622 keg->uk_freef = pcpu_page_free; 1623 else 1624 keg->uk_freef = page_free; 1625 1626 /* 1627 * Initialize keg's lock 1628 */ 1629 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1630 1631 /* 1632 * If we're putting the slab header in the actual page we need to 1633 * figure out where in each page it goes. This calculates a right 1634 * justified offset into the memory on an ALIGN_PTR boundary. 1635 */ 1636 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1637 u_int totsize; 1638 1639 /* Size of the slab struct and free list */ 1640 totsize = sizeof(struct uma_slab); 1641 1642 if (totsize & UMA_ALIGN_PTR) 1643 totsize = (totsize & ~UMA_ALIGN_PTR) + 1644 (UMA_ALIGN_PTR + 1); 1645 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1646 1647 /* 1648 * The only way the following is possible is if with our 1649 * UMA_ALIGN_PTR adjustments we are now bigger than 1650 * UMA_SLAB_SIZE. I haven't checked whether this is 1651 * mathematically possible for all cases, so we make 1652 * sure here anyway. 1653 */ 1654 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1655 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1656 printf("zone %s ipers %d rsize %d size %d\n", 1657 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1658 keg->uk_size); 1659 panic("UMA slab won't fit."); 1660 } 1661 } 1662 1663 if (keg->uk_flags & UMA_ZONE_HASH) 1664 hash_alloc(&keg->uk_hash); 1665 1666 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1667 keg, zone->uz_name, zone, 1668 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1669 keg->uk_free); 1670 1671 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1672 1673 rw_wlock(&uma_rwlock); 1674 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1675 rw_wunlock(&uma_rwlock); 1676 return (0); 1677 } 1678 1679 /* 1680 * Zone header ctor. This initializes all fields, locks, etc. 1681 * 1682 * Arguments/Returns follow uma_ctor specifications 1683 * udata Actually uma_zctor_args 1684 */ 1685 static int 1686 zone_ctor(void *mem, int size, void *udata, int flags) 1687 { 1688 struct uma_zctor_args *arg = udata; 1689 uma_zone_t zone = mem; 1690 uma_zone_t z; 1691 uma_keg_t keg; 1692 1693 bzero(zone, size); 1694 zone->uz_name = arg->name; 1695 zone->uz_ctor = arg->ctor; 1696 zone->uz_dtor = arg->dtor; 1697 zone->uz_slab = zone_fetch_slab; 1698 zone->uz_init = NULL; 1699 zone->uz_fini = NULL; 1700 zone->uz_allocs = 0; 1701 zone->uz_frees = 0; 1702 zone->uz_fails = 0; 1703 zone->uz_sleeps = 0; 1704 zone->uz_count = 0; 1705 zone->uz_count_min = 0; 1706 zone->uz_flags = 0; 1707 zone->uz_warning = NULL; 1708 /* The domain structures follow the cpu structures. */ 1709 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1710 timevalclear(&zone->uz_ratecheck); 1711 keg = arg->keg; 1712 1713 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1714 1715 /* 1716 * This is a pure cache zone, no kegs. 1717 */ 1718 if (arg->import) { 1719 if (arg->flags & UMA_ZONE_VM) 1720 arg->flags |= UMA_ZFLAG_CACHEONLY; 1721 zone->uz_flags = arg->flags; 1722 zone->uz_size = arg->size; 1723 zone->uz_import = arg->import; 1724 zone->uz_release = arg->release; 1725 zone->uz_arg = arg->arg; 1726 zone->uz_lockptr = &zone->uz_lock; 1727 rw_wlock(&uma_rwlock); 1728 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1729 rw_wunlock(&uma_rwlock); 1730 goto out; 1731 } 1732 1733 /* 1734 * Use the regular zone/keg/slab allocator. 1735 */ 1736 zone->uz_import = (uma_import)zone_import; 1737 zone->uz_release = (uma_release)zone_release; 1738 zone->uz_arg = zone; 1739 1740 if (arg->flags & UMA_ZONE_SECONDARY) { 1741 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1742 zone->uz_init = arg->uminit; 1743 zone->uz_fini = arg->fini; 1744 zone->uz_lockptr = &keg->uk_lock; 1745 zone->uz_flags |= UMA_ZONE_SECONDARY; 1746 rw_wlock(&uma_rwlock); 1747 ZONE_LOCK(zone); 1748 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1749 if (LIST_NEXT(z, uz_link) == NULL) { 1750 LIST_INSERT_AFTER(z, zone, uz_link); 1751 break; 1752 } 1753 } 1754 ZONE_UNLOCK(zone); 1755 rw_wunlock(&uma_rwlock); 1756 } else if (keg == NULL) { 1757 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1758 arg->align, arg->flags)) == NULL) 1759 return (ENOMEM); 1760 } else { 1761 struct uma_kctor_args karg; 1762 int error; 1763 1764 /* We should only be here from uma_startup() */ 1765 karg.size = arg->size; 1766 karg.uminit = arg->uminit; 1767 karg.fini = arg->fini; 1768 karg.align = arg->align; 1769 karg.flags = arg->flags; 1770 karg.zone = zone; 1771 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1772 flags); 1773 if (error) 1774 return (error); 1775 } 1776 1777 /* 1778 * Link in the first keg. 1779 */ 1780 zone->uz_klink.kl_keg = keg; 1781 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1782 zone->uz_lockptr = &keg->uk_lock; 1783 zone->uz_size = keg->uk_size; 1784 zone->uz_flags |= (keg->uk_flags & 1785 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1786 1787 /* 1788 * Some internal zones don't have room allocated for the per cpu 1789 * caches. If we're internal, bail out here. 1790 */ 1791 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1792 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1793 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1794 return (0); 1795 } 1796 1797 out: 1798 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 1799 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 1800 ("Invalid zone flag combination")); 1801 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 1802 zone->uz_count = BUCKET_MAX; 1803 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 1804 zone->uz_count = 0; 1805 else 1806 zone->uz_count = bucket_select(zone->uz_size); 1807 zone->uz_count_min = zone->uz_count; 1808 1809 return (0); 1810 } 1811 1812 /* 1813 * Keg header dtor. This frees all data, destroys locks, frees the hash 1814 * table and removes the keg from the global list. 1815 * 1816 * Arguments/Returns follow uma_dtor specifications 1817 * udata unused 1818 */ 1819 static void 1820 keg_dtor(void *arg, int size, void *udata) 1821 { 1822 uma_keg_t keg; 1823 1824 keg = (uma_keg_t)arg; 1825 KEG_LOCK(keg); 1826 if (keg->uk_free != 0) { 1827 printf("Freed UMA keg (%s) was not empty (%d items). " 1828 " Lost %d pages of memory.\n", 1829 keg->uk_name ? keg->uk_name : "", 1830 keg->uk_free, keg->uk_pages); 1831 } 1832 KEG_UNLOCK(keg); 1833 1834 hash_free(&keg->uk_hash); 1835 1836 KEG_LOCK_FINI(keg); 1837 } 1838 1839 /* 1840 * Zone header dtor. 1841 * 1842 * Arguments/Returns follow uma_dtor specifications 1843 * udata unused 1844 */ 1845 static void 1846 zone_dtor(void *arg, int size, void *udata) 1847 { 1848 uma_klink_t klink; 1849 uma_zone_t zone; 1850 uma_keg_t keg; 1851 1852 zone = (uma_zone_t)arg; 1853 keg = zone_first_keg(zone); 1854 1855 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1856 cache_drain(zone); 1857 1858 rw_wlock(&uma_rwlock); 1859 LIST_REMOVE(zone, uz_link); 1860 rw_wunlock(&uma_rwlock); 1861 /* 1862 * XXX there are some races here where 1863 * the zone can be drained but zone lock 1864 * released and then refilled before we 1865 * remove it... we dont care for now 1866 */ 1867 zone_drain_wait(zone, M_WAITOK); 1868 /* 1869 * Unlink all of our kegs. 1870 */ 1871 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1872 klink->kl_keg = NULL; 1873 LIST_REMOVE(klink, kl_link); 1874 if (klink == &zone->uz_klink) 1875 continue; 1876 free(klink, M_TEMP); 1877 } 1878 /* 1879 * We only destroy kegs from non secondary zones. 1880 */ 1881 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1882 rw_wlock(&uma_rwlock); 1883 LIST_REMOVE(keg, uk_link); 1884 rw_wunlock(&uma_rwlock); 1885 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1886 } 1887 ZONE_LOCK_FINI(zone); 1888 } 1889 1890 /* 1891 * Traverses every zone in the system and calls a callback 1892 * 1893 * Arguments: 1894 * zfunc A pointer to a function which accepts a zone 1895 * as an argument. 1896 * 1897 * Returns: 1898 * Nothing 1899 */ 1900 static void 1901 zone_foreach(void (*zfunc)(uma_zone_t)) 1902 { 1903 uma_keg_t keg; 1904 uma_zone_t zone; 1905 1906 rw_rlock(&uma_rwlock); 1907 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1908 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1909 zfunc(zone); 1910 } 1911 rw_runlock(&uma_rwlock); 1912 } 1913 1914 /* 1915 * Count how many pages do we need to bootstrap. VM supplies 1916 * its need in early zones in the argument, we add up our zones, 1917 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 1918 * zone of zones and zone of kegs are accounted separately. 1919 */ 1920 #define UMA_BOOT_ZONES 11 1921 /* Zone of zones and zone of kegs have arbitrary alignment. */ 1922 #define UMA_BOOT_ALIGN 32 1923 static int zsize, ksize; 1924 int 1925 uma_startup_count(int vm_zones) 1926 { 1927 int zones, pages; 1928 1929 ksize = sizeof(struct uma_keg) + 1930 (sizeof(struct uma_domain) * vm_ndomains); 1931 zsize = sizeof(struct uma_zone) + 1932 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 1933 (sizeof(struct uma_zone_domain) * vm_ndomains); 1934 1935 /* 1936 * Memory for the zone of kegs and its keg, 1937 * and for zone of zones. 1938 */ 1939 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 1940 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 1941 1942 #ifdef UMA_MD_SMALL_ALLOC 1943 zones = UMA_BOOT_ZONES; 1944 #else 1945 zones = UMA_BOOT_ZONES + vm_zones; 1946 vm_zones = 0; 1947 #endif 1948 1949 /* Memory for the rest of startup zones, UMA and VM, ... */ 1950 if (zsize > UMA_SLAB_SPACE) 1951 pages += (zones + vm_zones) * 1952 howmany(roundup2(zsize, UMA_BOOT_ALIGN), UMA_SLAB_SIZE); 1953 else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 1954 pages += zones; 1955 else 1956 pages += howmany(zones, 1957 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 1958 1959 /* ... and their kegs. Note that zone of zones allocates a keg! */ 1960 pages += howmany(zones + 1, 1961 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 1962 1963 /* 1964 * Most of startup zones are not going to be offpages, that's 1965 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 1966 * calculations. Some large bucket zones will be offpage, and 1967 * thus will allocate hashes. We take conservative approach 1968 * and assume that all zones may allocate hash. This may give 1969 * us some positive inaccuracy, usually an extra single page. 1970 */ 1971 pages += howmany(zones, UMA_SLAB_SPACE / 1972 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 1973 1974 return (pages); 1975 } 1976 1977 void 1978 uma_startup(void *mem, int npages) 1979 { 1980 struct uma_zctor_args args; 1981 uma_keg_t masterkeg; 1982 uintptr_t m; 1983 1984 #ifdef DIAGNOSTIC 1985 printf("Entering %s with %d boot pages configured\n", __func__, npages); 1986 #endif 1987 1988 rw_init(&uma_rwlock, "UMA lock"); 1989 1990 /* Use bootpages memory for the zone of zones and zone of kegs. */ 1991 m = (uintptr_t)mem; 1992 zones = (uma_zone_t)m; 1993 m += roundup(zsize, CACHE_LINE_SIZE); 1994 kegs = (uma_zone_t)m; 1995 m += roundup(zsize, CACHE_LINE_SIZE); 1996 masterkeg = (uma_keg_t)m; 1997 m += roundup(ksize, CACHE_LINE_SIZE); 1998 m = roundup(m, PAGE_SIZE); 1999 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 2000 mem = (void *)m; 2001 2002 /* "manually" create the initial zone */ 2003 memset(&args, 0, sizeof(args)); 2004 args.name = "UMA Kegs"; 2005 args.size = ksize; 2006 args.ctor = keg_ctor; 2007 args.dtor = keg_dtor; 2008 args.uminit = zero_init; 2009 args.fini = NULL; 2010 args.keg = masterkeg; 2011 args.align = UMA_BOOT_ALIGN - 1; 2012 args.flags = UMA_ZFLAG_INTERNAL; 2013 zone_ctor(kegs, zsize, &args, M_WAITOK); 2014 2015 bootmem = mem; 2016 boot_pages = npages; 2017 2018 args.name = "UMA Zones"; 2019 args.size = zsize; 2020 args.ctor = zone_ctor; 2021 args.dtor = zone_dtor; 2022 args.uminit = zero_init; 2023 args.fini = NULL; 2024 args.keg = NULL; 2025 args.align = UMA_BOOT_ALIGN - 1; 2026 args.flags = UMA_ZFLAG_INTERNAL; 2027 zone_ctor(zones, zsize, &args, M_WAITOK); 2028 2029 /* Now make a zone for slab headers */ 2030 slabzone = uma_zcreate("UMA Slabs", 2031 sizeof(struct uma_slab), 2032 NULL, NULL, NULL, NULL, 2033 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2034 2035 hashzone = uma_zcreate("UMA Hash", 2036 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2037 NULL, NULL, NULL, NULL, 2038 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2039 2040 bucket_init(); 2041 2042 booted = BOOT_STRAPPED; 2043 } 2044 2045 void 2046 uma_startup1(void) 2047 { 2048 2049 #ifdef DIAGNOSTIC 2050 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2051 #endif 2052 booted = BOOT_PAGEALLOC; 2053 } 2054 2055 void 2056 uma_startup2(void) 2057 { 2058 2059 #ifdef DIAGNOSTIC 2060 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2061 #endif 2062 booted = BOOT_BUCKETS; 2063 sx_init(&uma_drain_lock, "umadrain"); 2064 bucket_enable(); 2065 } 2066 2067 /* 2068 * Initialize our callout handle 2069 * 2070 */ 2071 static void 2072 uma_startup3(void) 2073 { 2074 2075 #ifdef INVARIANTS 2076 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2077 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2078 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2079 #endif 2080 callout_init(&uma_callout, 1); 2081 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2082 booted = BOOT_RUNNING; 2083 } 2084 2085 static uma_keg_t 2086 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2087 int align, uint32_t flags) 2088 { 2089 struct uma_kctor_args args; 2090 2091 args.size = size; 2092 args.uminit = uminit; 2093 args.fini = fini; 2094 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2095 args.flags = flags; 2096 args.zone = zone; 2097 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2098 } 2099 2100 /* Public functions */ 2101 /* See uma.h */ 2102 void 2103 uma_set_align(int align) 2104 { 2105 2106 if (align != UMA_ALIGN_CACHE) 2107 uma_align_cache = align; 2108 } 2109 2110 /* See uma.h */ 2111 uma_zone_t 2112 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2113 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2114 2115 { 2116 struct uma_zctor_args args; 2117 uma_zone_t res; 2118 bool locked; 2119 2120 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2121 align, name)); 2122 2123 /* This stuff is essential for the zone ctor */ 2124 memset(&args, 0, sizeof(args)); 2125 args.name = name; 2126 args.size = size; 2127 args.ctor = ctor; 2128 args.dtor = dtor; 2129 args.uminit = uminit; 2130 args.fini = fini; 2131 #ifdef INVARIANTS 2132 /* 2133 * If a zone is being created with an empty constructor and 2134 * destructor, pass UMA constructor/destructor which checks for 2135 * memory use after free. 2136 */ 2137 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2138 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2139 args.ctor = trash_ctor; 2140 args.dtor = trash_dtor; 2141 args.uminit = trash_init; 2142 args.fini = trash_fini; 2143 } 2144 #endif 2145 args.align = align; 2146 args.flags = flags; 2147 args.keg = NULL; 2148 2149 if (booted < BOOT_BUCKETS) { 2150 locked = false; 2151 } else { 2152 sx_slock(&uma_drain_lock); 2153 locked = true; 2154 } 2155 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2156 if (locked) 2157 sx_sunlock(&uma_drain_lock); 2158 return (res); 2159 } 2160 2161 /* See uma.h */ 2162 uma_zone_t 2163 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2164 uma_init zinit, uma_fini zfini, uma_zone_t master) 2165 { 2166 struct uma_zctor_args args; 2167 uma_keg_t keg; 2168 uma_zone_t res; 2169 bool locked; 2170 2171 keg = zone_first_keg(master); 2172 memset(&args, 0, sizeof(args)); 2173 args.name = name; 2174 args.size = keg->uk_size; 2175 args.ctor = ctor; 2176 args.dtor = dtor; 2177 args.uminit = zinit; 2178 args.fini = zfini; 2179 args.align = keg->uk_align; 2180 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2181 args.keg = keg; 2182 2183 if (booted < BOOT_BUCKETS) { 2184 locked = false; 2185 } else { 2186 sx_slock(&uma_drain_lock); 2187 locked = true; 2188 } 2189 /* XXX Attaches only one keg of potentially many. */ 2190 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2191 if (locked) 2192 sx_sunlock(&uma_drain_lock); 2193 return (res); 2194 } 2195 2196 /* See uma.h */ 2197 uma_zone_t 2198 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2199 uma_init zinit, uma_fini zfini, uma_import zimport, 2200 uma_release zrelease, void *arg, int flags) 2201 { 2202 struct uma_zctor_args args; 2203 2204 memset(&args, 0, sizeof(args)); 2205 args.name = name; 2206 args.size = size; 2207 args.ctor = ctor; 2208 args.dtor = dtor; 2209 args.uminit = zinit; 2210 args.fini = zfini; 2211 args.import = zimport; 2212 args.release = zrelease; 2213 args.arg = arg; 2214 args.align = 0; 2215 args.flags = flags; 2216 2217 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2218 } 2219 2220 static void 2221 zone_lock_pair(uma_zone_t a, uma_zone_t b) 2222 { 2223 if (a < b) { 2224 ZONE_LOCK(a); 2225 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2226 } else { 2227 ZONE_LOCK(b); 2228 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2229 } 2230 } 2231 2232 static void 2233 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2234 { 2235 2236 ZONE_UNLOCK(a); 2237 ZONE_UNLOCK(b); 2238 } 2239 2240 int 2241 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2242 { 2243 uma_klink_t klink; 2244 uma_klink_t kl; 2245 int error; 2246 2247 error = 0; 2248 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2249 2250 zone_lock_pair(zone, master); 2251 /* 2252 * zone must use vtoslab() to resolve objects and must already be 2253 * a secondary. 2254 */ 2255 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2256 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2257 error = EINVAL; 2258 goto out; 2259 } 2260 /* 2261 * The new master must also use vtoslab(). 2262 */ 2263 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2264 error = EINVAL; 2265 goto out; 2266 } 2267 2268 /* 2269 * The underlying object must be the same size. rsize 2270 * may be different. 2271 */ 2272 if (master->uz_size != zone->uz_size) { 2273 error = E2BIG; 2274 goto out; 2275 } 2276 /* 2277 * Put it at the end of the list. 2278 */ 2279 klink->kl_keg = zone_first_keg(master); 2280 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2281 if (LIST_NEXT(kl, kl_link) == NULL) { 2282 LIST_INSERT_AFTER(kl, klink, kl_link); 2283 break; 2284 } 2285 } 2286 klink = NULL; 2287 zone->uz_flags |= UMA_ZFLAG_MULTI; 2288 zone->uz_slab = zone_fetch_slab_multi; 2289 2290 out: 2291 zone_unlock_pair(zone, master); 2292 if (klink != NULL) 2293 free(klink, M_TEMP); 2294 2295 return (error); 2296 } 2297 2298 2299 /* See uma.h */ 2300 void 2301 uma_zdestroy(uma_zone_t zone) 2302 { 2303 2304 sx_slock(&uma_drain_lock); 2305 zone_free_item(zones, zone, NULL, SKIP_NONE); 2306 sx_sunlock(&uma_drain_lock); 2307 } 2308 2309 void 2310 uma_zwait(uma_zone_t zone) 2311 { 2312 void *item; 2313 2314 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2315 uma_zfree(zone, item); 2316 } 2317 2318 void * 2319 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2320 { 2321 void *item; 2322 #ifdef SMP 2323 int i; 2324 2325 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2326 #endif 2327 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2328 if (item != NULL && (flags & M_ZERO)) { 2329 #ifdef SMP 2330 for (i = 0; i <= mp_maxid; i++) 2331 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2332 #else 2333 bzero(item, zone->uz_size); 2334 #endif 2335 } 2336 return (item); 2337 } 2338 2339 /* 2340 * A stub while both regular and pcpu cases are identical. 2341 */ 2342 void 2343 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2344 { 2345 2346 #ifdef SMP 2347 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2348 #endif 2349 uma_zfree_arg(zone, item, udata); 2350 } 2351 2352 /* See uma.h */ 2353 void * 2354 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2355 { 2356 uma_zone_domain_t zdom; 2357 uma_bucket_t bucket; 2358 uma_cache_t cache; 2359 void *item; 2360 int cpu, domain, lockfail; 2361 #ifdef INVARIANTS 2362 bool skipdbg; 2363 #endif 2364 2365 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2366 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2367 2368 /* This is the fast path allocation */ 2369 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2370 curthread, zone->uz_name, zone, flags); 2371 2372 if (flags & M_WAITOK) { 2373 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2374 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2375 } 2376 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2377 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2378 ("uma_zalloc_arg: called with spinlock or critical section held")); 2379 if (zone->uz_flags & UMA_ZONE_PCPU) 2380 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2381 "with M_ZERO passed")); 2382 2383 #ifdef DEBUG_MEMGUARD 2384 if (memguard_cmp_zone(zone)) { 2385 item = memguard_alloc(zone->uz_size, flags); 2386 if (item != NULL) { 2387 if (zone->uz_init != NULL && 2388 zone->uz_init(item, zone->uz_size, flags) != 0) 2389 return (NULL); 2390 if (zone->uz_ctor != NULL && 2391 zone->uz_ctor(item, zone->uz_size, udata, 2392 flags) != 0) { 2393 zone->uz_fini(item, zone->uz_size); 2394 return (NULL); 2395 } 2396 return (item); 2397 } 2398 /* This is unfortunate but should not be fatal. */ 2399 } 2400 #endif 2401 /* 2402 * If possible, allocate from the per-CPU cache. There are two 2403 * requirements for safe access to the per-CPU cache: (1) the thread 2404 * accessing the cache must not be preempted or yield during access, 2405 * and (2) the thread must not migrate CPUs without switching which 2406 * cache it accesses. We rely on a critical section to prevent 2407 * preemption and migration. We release the critical section in 2408 * order to acquire the zone mutex if we are unable to allocate from 2409 * the current cache; when we re-acquire the critical section, we 2410 * must detect and handle migration if it has occurred. 2411 */ 2412 critical_enter(); 2413 cpu = curcpu; 2414 cache = &zone->uz_cpu[cpu]; 2415 2416 zalloc_start: 2417 bucket = cache->uc_allocbucket; 2418 if (bucket != NULL && bucket->ub_cnt > 0) { 2419 bucket->ub_cnt--; 2420 item = bucket->ub_bucket[bucket->ub_cnt]; 2421 #ifdef INVARIANTS 2422 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2423 #endif 2424 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2425 cache->uc_allocs++; 2426 critical_exit(); 2427 #ifdef INVARIANTS 2428 skipdbg = uma_dbg_zskip(zone, item); 2429 #endif 2430 if (zone->uz_ctor != NULL && 2431 #ifdef INVARIANTS 2432 (!skipdbg || zone->uz_ctor != trash_ctor || 2433 zone->uz_dtor != trash_dtor) && 2434 #endif 2435 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2436 atomic_add_long(&zone->uz_fails, 1); 2437 zone_free_item(zone, item, udata, SKIP_DTOR); 2438 return (NULL); 2439 } 2440 #ifdef INVARIANTS 2441 if (!skipdbg) 2442 uma_dbg_alloc(zone, NULL, item); 2443 #endif 2444 if (flags & M_ZERO) 2445 uma_zero_item(item, zone); 2446 return (item); 2447 } 2448 2449 /* 2450 * We have run out of items in our alloc bucket. 2451 * See if we can switch with our free bucket. 2452 */ 2453 bucket = cache->uc_freebucket; 2454 if (bucket != NULL && bucket->ub_cnt > 0) { 2455 CTR2(KTR_UMA, 2456 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2457 zone->uz_name, zone); 2458 cache->uc_freebucket = cache->uc_allocbucket; 2459 cache->uc_allocbucket = bucket; 2460 goto zalloc_start; 2461 } 2462 2463 /* 2464 * Discard any empty allocation bucket while we hold no locks. 2465 */ 2466 bucket = cache->uc_allocbucket; 2467 cache->uc_allocbucket = NULL; 2468 critical_exit(); 2469 if (bucket != NULL) 2470 bucket_free(zone, bucket, udata); 2471 2472 if (zone->uz_flags & UMA_ZONE_NUMA) 2473 domain = PCPU_GET(domain); 2474 else 2475 domain = UMA_ANYDOMAIN; 2476 2477 /* Short-circuit for zones without buckets and low memory. */ 2478 if (zone->uz_count == 0 || bucketdisable) 2479 goto zalloc_item; 2480 2481 /* 2482 * Attempt to retrieve the item from the per-CPU cache has failed, so 2483 * we must go back to the zone. This requires the zone lock, so we 2484 * must drop the critical section, then re-acquire it when we go back 2485 * to the cache. Since the critical section is released, we may be 2486 * preempted or migrate. As such, make sure not to maintain any 2487 * thread-local state specific to the cache from prior to releasing 2488 * the critical section. 2489 */ 2490 lockfail = 0; 2491 if (ZONE_TRYLOCK(zone) == 0) { 2492 /* Record contention to size the buckets. */ 2493 ZONE_LOCK(zone); 2494 lockfail = 1; 2495 } 2496 critical_enter(); 2497 cpu = curcpu; 2498 cache = &zone->uz_cpu[cpu]; 2499 2500 /* See if we lost the race to fill the cache. */ 2501 if (cache->uc_allocbucket != NULL) { 2502 ZONE_UNLOCK(zone); 2503 goto zalloc_start; 2504 } 2505 2506 /* 2507 * Check the zone's cache of buckets. 2508 */ 2509 if (domain == UMA_ANYDOMAIN) 2510 zdom = &zone->uz_domain[0]; 2511 else 2512 zdom = &zone->uz_domain[domain]; 2513 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 2514 KASSERT(bucket->ub_cnt != 0, 2515 ("uma_zalloc_arg: Returning an empty bucket.")); 2516 2517 LIST_REMOVE(bucket, ub_link); 2518 cache->uc_allocbucket = bucket; 2519 ZONE_UNLOCK(zone); 2520 goto zalloc_start; 2521 } 2522 /* We are no longer associated with this CPU. */ 2523 critical_exit(); 2524 2525 /* 2526 * We bump the uz count when the cache size is insufficient to 2527 * handle the working set. 2528 */ 2529 if (lockfail && zone->uz_count < BUCKET_MAX) 2530 zone->uz_count++; 2531 ZONE_UNLOCK(zone); 2532 2533 /* 2534 * Now lets just fill a bucket and put it on the free list. If that 2535 * works we'll restart the allocation from the beginning and it 2536 * will use the just filled bucket. 2537 */ 2538 bucket = zone_alloc_bucket(zone, udata, domain, flags); 2539 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2540 zone->uz_name, zone, bucket); 2541 if (bucket != NULL) { 2542 ZONE_LOCK(zone); 2543 critical_enter(); 2544 cpu = curcpu; 2545 cache = &zone->uz_cpu[cpu]; 2546 /* 2547 * See if we lost the race or were migrated. Cache the 2548 * initialized bucket to make this less likely or claim 2549 * the memory directly. 2550 */ 2551 if (cache->uc_allocbucket != NULL || 2552 (zone->uz_flags & UMA_ZONE_NUMA && 2553 domain != PCPU_GET(domain))) 2554 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 2555 else 2556 cache->uc_allocbucket = bucket; 2557 ZONE_UNLOCK(zone); 2558 goto zalloc_start; 2559 } 2560 2561 /* 2562 * We may not be able to get a bucket so return an actual item. 2563 */ 2564 zalloc_item: 2565 item = zone_alloc_item(zone, udata, domain, flags); 2566 2567 return (item); 2568 } 2569 2570 void * 2571 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2572 { 2573 2574 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2575 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2576 2577 /* This is the fast path allocation */ 2578 CTR5(KTR_UMA, 2579 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2580 curthread, zone->uz_name, zone, domain, flags); 2581 2582 if (flags & M_WAITOK) { 2583 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2584 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2585 } 2586 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2587 ("uma_zalloc_domain: called with spinlock or critical section held")); 2588 2589 return (zone_alloc_item(zone, udata, domain, flags)); 2590 } 2591 2592 /* 2593 * Find a slab with some space. Prefer slabs that are partially used over those 2594 * that are totally full. This helps to reduce fragmentation. 2595 * 2596 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2597 * only 'domain'. 2598 */ 2599 static uma_slab_t 2600 keg_first_slab(uma_keg_t keg, int domain, int rr) 2601 { 2602 uma_domain_t dom; 2603 uma_slab_t slab; 2604 int start; 2605 2606 KASSERT(domain >= 0 && domain < vm_ndomains, 2607 ("keg_first_slab: domain %d out of range", domain)); 2608 2609 slab = NULL; 2610 start = domain; 2611 do { 2612 dom = &keg->uk_domain[domain]; 2613 if (!LIST_EMPTY(&dom->ud_part_slab)) 2614 return (LIST_FIRST(&dom->ud_part_slab)); 2615 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2616 slab = LIST_FIRST(&dom->ud_free_slab); 2617 LIST_REMOVE(slab, us_link); 2618 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2619 return (slab); 2620 } 2621 if (rr) 2622 domain = (domain + 1) % vm_ndomains; 2623 } while (domain != start); 2624 2625 return (NULL); 2626 } 2627 2628 static uma_slab_t 2629 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, int flags) 2630 { 2631 uma_domain_t dom; 2632 uma_slab_t slab; 2633 int allocflags, domain, reserve, rr, start; 2634 2635 mtx_assert(&keg->uk_lock, MA_OWNED); 2636 slab = NULL; 2637 reserve = 0; 2638 allocflags = flags; 2639 if ((flags & M_USE_RESERVE) == 0) 2640 reserve = keg->uk_reserve; 2641 2642 /* 2643 * Round-robin for non first-touch zones when there is more than one 2644 * domain. 2645 */ 2646 if (vm_ndomains == 1) 2647 rdomain = 0; 2648 rr = rdomain == UMA_ANYDOMAIN; 2649 if (rr) { 2650 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2651 domain = start = keg->uk_cursor; 2652 /* Only block on the second pass. */ 2653 if ((flags & (M_WAITOK | M_NOVM)) == M_WAITOK) 2654 allocflags = (allocflags & ~M_WAITOK) | M_NOWAIT; 2655 } else 2656 domain = start = rdomain; 2657 2658 again: 2659 do { 2660 if (keg->uk_free > reserve && 2661 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2662 MPASS(slab->us_keg == keg); 2663 return (slab); 2664 } 2665 2666 /* 2667 * M_NOVM means don't ask at all! 2668 */ 2669 if (flags & M_NOVM) 2670 break; 2671 2672 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2673 keg->uk_flags |= UMA_ZFLAG_FULL; 2674 /* 2675 * If this is not a multi-zone, set the FULL bit. 2676 * Otherwise slab_multi() takes care of it. 2677 */ 2678 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2679 zone->uz_flags |= UMA_ZFLAG_FULL; 2680 zone_log_warning(zone); 2681 zone_maxaction(zone); 2682 } 2683 if (flags & M_NOWAIT) 2684 return (NULL); 2685 zone->uz_sleeps++; 2686 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2687 continue; 2688 } 2689 slab = keg_alloc_slab(keg, zone, domain, allocflags); 2690 /* 2691 * If we got a slab here it's safe to mark it partially used 2692 * and return. We assume that the caller is going to remove 2693 * at least one item. 2694 */ 2695 if (slab) { 2696 MPASS(slab->us_keg == keg); 2697 dom = &keg->uk_domain[slab->us_domain]; 2698 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2699 return (slab); 2700 } 2701 if (rr) { 2702 keg->uk_cursor = (keg->uk_cursor + 1) % vm_ndomains; 2703 domain = keg->uk_cursor; 2704 } 2705 } while (domain != start); 2706 2707 /* Retry domain scan with blocking. */ 2708 if (allocflags != flags) { 2709 allocflags = flags; 2710 goto again; 2711 } 2712 2713 /* 2714 * We might not have been able to get a slab but another cpu 2715 * could have while we were unlocked. Check again before we 2716 * fail. 2717 */ 2718 if (keg->uk_free > reserve && 2719 (slab = keg_first_slab(keg, domain, rr)) != NULL) { 2720 MPASS(slab->us_keg == keg); 2721 return (slab); 2722 } 2723 return (NULL); 2724 } 2725 2726 static uma_slab_t 2727 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2728 { 2729 uma_slab_t slab; 2730 2731 if (keg == NULL) { 2732 keg = zone_first_keg(zone); 2733 KEG_LOCK(keg); 2734 } 2735 2736 for (;;) { 2737 slab = keg_fetch_slab(keg, zone, domain, flags); 2738 if (slab) 2739 return (slab); 2740 if (flags & (M_NOWAIT | M_NOVM)) 2741 break; 2742 } 2743 KEG_UNLOCK(keg); 2744 return (NULL); 2745 } 2746 2747 /* 2748 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2749 * with the keg locked. On NULL no lock is held. 2750 * 2751 * The last pointer is used to seed the search. It is not required. 2752 */ 2753 static uma_slab_t 2754 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int domain, int rflags) 2755 { 2756 uma_klink_t klink; 2757 uma_slab_t slab; 2758 uma_keg_t keg; 2759 int flags; 2760 int empty; 2761 int full; 2762 2763 /* 2764 * Don't wait on the first pass. This will skip limit tests 2765 * as well. We don't want to block if we can find a provider 2766 * without blocking. 2767 */ 2768 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2769 /* 2770 * Use the last slab allocated as a hint for where to start 2771 * the search. 2772 */ 2773 if (last != NULL) { 2774 slab = keg_fetch_slab(last, zone, domain, flags); 2775 if (slab) 2776 return (slab); 2777 KEG_UNLOCK(last); 2778 } 2779 /* 2780 * Loop until we have a slab incase of transient failures 2781 * while M_WAITOK is specified. I'm not sure this is 100% 2782 * required but we've done it for so long now. 2783 */ 2784 for (;;) { 2785 empty = 0; 2786 full = 0; 2787 /* 2788 * Search the available kegs for slabs. Be careful to hold the 2789 * correct lock while calling into the keg layer. 2790 */ 2791 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2792 keg = klink->kl_keg; 2793 KEG_LOCK(keg); 2794 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2795 slab = keg_fetch_slab(keg, zone, domain, flags); 2796 if (slab) 2797 return (slab); 2798 } 2799 if (keg->uk_flags & UMA_ZFLAG_FULL) 2800 full++; 2801 else 2802 empty++; 2803 KEG_UNLOCK(keg); 2804 } 2805 if (rflags & (M_NOWAIT | M_NOVM)) 2806 break; 2807 flags = rflags; 2808 /* 2809 * All kegs are full. XXX We can't atomically check all kegs 2810 * and sleep so just sleep for a short period and retry. 2811 */ 2812 if (full && !empty) { 2813 ZONE_LOCK(zone); 2814 zone->uz_flags |= UMA_ZFLAG_FULL; 2815 zone->uz_sleeps++; 2816 zone_log_warning(zone); 2817 zone_maxaction(zone); 2818 msleep(zone, zone->uz_lockptr, PVM, 2819 "zonelimit", hz/100); 2820 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2821 ZONE_UNLOCK(zone); 2822 continue; 2823 } 2824 } 2825 return (NULL); 2826 } 2827 2828 static void * 2829 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2830 { 2831 uma_domain_t dom; 2832 void *item; 2833 uint8_t freei; 2834 2835 MPASS(keg == slab->us_keg); 2836 mtx_assert(&keg->uk_lock, MA_OWNED); 2837 2838 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2839 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2840 item = slab->us_data + (keg->uk_rsize * freei); 2841 slab->us_freecount--; 2842 keg->uk_free--; 2843 2844 /* Move this slab to the full list */ 2845 if (slab->us_freecount == 0) { 2846 LIST_REMOVE(slab, us_link); 2847 dom = &keg->uk_domain[slab->us_domain]; 2848 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2849 } 2850 2851 return (item); 2852 } 2853 2854 static int 2855 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2856 { 2857 uma_slab_t slab; 2858 uma_keg_t keg; 2859 #ifdef NUMA 2860 int stripe; 2861 #endif 2862 int i; 2863 2864 slab = NULL; 2865 keg = NULL; 2866 /* Try to keep the buckets totally full */ 2867 for (i = 0; i < max; ) { 2868 if ((slab = zone->uz_slab(zone, keg, domain, flags)) == NULL) 2869 break; 2870 keg = slab->us_keg; 2871 #ifdef NUMA 2872 stripe = howmany(max, vm_ndomains); 2873 #endif 2874 while (slab->us_freecount && i < max) { 2875 bucket[i++] = slab_alloc_item(keg, slab); 2876 if (keg->uk_free <= keg->uk_reserve) 2877 break; 2878 #ifdef NUMA 2879 /* 2880 * If the zone is striped we pick a new slab for every 2881 * N allocations. Eliminating this conditional will 2882 * instead pick a new domain for each bucket rather 2883 * than stripe within each bucket. The current option 2884 * produces more fragmentation and requires more cpu 2885 * time but yields better distribution. 2886 */ 2887 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2888 vm_ndomains > 1 && --stripe == 0) 2889 break; 2890 #endif 2891 } 2892 /* Don't block if we allocated any successfully. */ 2893 flags &= ~M_WAITOK; 2894 flags |= M_NOWAIT; 2895 } 2896 if (slab != NULL) 2897 KEG_UNLOCK(keg); 2898 2899 return i; 2900 } 2901 2902 static uma_bucket_t 2903 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 2904 { 2905 uma_bucket_t bucket; 2906 int max; 2907 2908 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2909 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2910 if (bucket == NULL) 2911 return (NULL); 2912 2913 max = MIN(bucket->ub_entries, zone->uz_count); 2914 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2915 max, domain, flags); 2916 2917 /* 2918 * Initialize the memory if necessary. 2919 */ 2920 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2921 int i; 2922 2923 for (i = 0; i < bucket->ub_cnt; i++) 2924 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2925 flags) != 0) 2926 break; 2927 /* 2928 * If we couldn't initialize the whole bucket, put the 2929 * rest back onto the freelist. 2930 */ 2931 if (i != bucket->ub_cnt) { 2932 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2933 bucket->ub_cnt - i); 2934 #ifdef INVARIANTS 2935 bzero(&bucket->ub_bucket[i], 2936 sizeof(void *) * (bucket->ub_cnt - i)); 2937 #endif 2938 bucket->ub_cnt = i; 2939 } 2940 } 2941 2942 if (bucket->ub_cnt == 0) { 2943 bucket_free(zone, bucket, udata); 2944 atomic_add_long(&zone->uz_fails, 1); 2945 return (NULL); 2946 } 2947 2948 return (bucket); 2949 } 2950 2951 /* 2952 * Allocates a single item from a zone. 2953 * 2954 * Arguments 2955 * zone The zone to alloc for. 2956 * udata The data to be passed to the constructor. 2957 * domain The domain to allocate from or UMA_ANYDOMAIN. 2958 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2959 * 2960 * Returns 2961 * NULL if there is no memory and M_NOWAIT is set 2962 * An item if successful 2963 */ 2964 2965 static void * 2966 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 2967 { 2968 void *item; 2969 #ifdef INVARIANTS 2970 bool skipdbg; 2971 #endif 2972 2973 item = NULL; 2974 2975 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 2976 goto fail; 2977 atomic_add_long(&zone->uz_allocs, 1); 2978 2979 #ifdef INVARIANTS 2980 skipdbg = uma_dbg_zskip(zone, item); 2981 #endif 2982 /* 2983 * We have to call both the zone's init (not the keg's init) 2984 * and the zone's ctor. This is because the item is going from 2985 * a keg slab directly to the user, and the user is expecting it 2986 * to be both zone-init'd as well as zone-ctor'd. 2987 */ 2988 if (zone->uz_init != NULL) { 2989 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2990 zone_free_item(zone, item, udata, SKIP_FINI); 2991 goto fail; 2992 } 2993 } 2994 if (zone->uz_ctor != NULL && 2995 #ifdef INVARIANTS 2996 (!skipdbg || zone->uz_ctor != trash_ctor || 2997 zone->uz_dtor != trash_dtor) && 2998 #endif 2999 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 3000 zone_free_item(zone, item, udata, SKIP_DTOR); 3001 goto fail; 3002 } 3003 #ifdef INVARIANTS 3004 if (!skipdbg) 3005 uma_dbg_alloc(zone, NULL, item); 3006 #endif 3007 if (flags & M_ZERO) 3008 uma_zero_item(item, zone); 3009 3010 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3011 zone->uz_name, zone); 3012 3013 return (item); 3014 3015 fail: 3016 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3017 zone->uz_name, zone); 3018 atomic_add_long(&zone->uz_fails, 1); 3019 return (NULL); 3020 } 3021 3022 /* See uma.h */ 3023 void 3024 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3025 { 3026 uma_cache_t cache; 3027 uma_bucket_t bucket; 3028 uma_zone_domain_t zdom; 3029 int cpu, domain, lockfail; 3030 #ifdef INVARIANTS 3031 bool skipdbg; 3032 #endif 3033 3034 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3035 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3036 3037 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 3038 zone->uz_name); 3039 3040 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3041 ("uma_zfree_arg: called with spinlock or critical section held")); 3042 3043 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3044 if (item == NULL) 3045 return; 3046 #ifdef DEBUG_MEMGUARD 3047 if (is_memguard_addr(item)) { 3048 if (zone->uz_dtor != NULL) 3049 zone->uz_dtor(item, zone->uz_size, udata); 3050 if (zone->uz_fini != NULL) 3051 zone->uz_fini(item, zone->uz_size); 3052 memguard_free(item); 3053 return; 3054 } 3055 #endif 3056 #ifdef INVARIANTS 3057 skipdbg = uma_dbg_zskip(zone, item); 3058 if (skipdbg == false) { 3059 if (zone->uz_flags & UMA_ZONE_MALLOC) 3060 uma_dbg_free(zone, udata, item); 3061 else 3062 uma_dbg_free(zone, NULL, item); 3063 } 3064 if (zone->uz_dtor != NULL && (!skipdbg || 3065 zone->uz_dtor != trash_dtor || zone->uz_ctor != trash_ctor)) 3066 #else 3067 if (zone->uz_dtor != NULL) 3068 #endif 3069 zone->uz_dtor(item, zone->uz_size, udata); 3070 3071 /* 3072 * The race here is acceptable. If we miss it we'll just have to wait 3073 * a little longer for the limits to be reset. 3074 */ 3075 if (zone->uz_flags & UMA_ZFLAG_FULL) 3076 goto zfree_item; 3077 3078 /* 3079 * If possible, free to the per-CPU cache. There are two 3080 * requirements for safe access to the per-CPU cache: (1) the thread 3081 * accessing the cache must not be preempted or yield during access, 3082 * and (2) the thread must not migrate CPUs without switching which 3083 * cache it accesses. We rely on a critical section to prevent 3084 * preemption and migration. We release the critical section in 3085 * order to acquire the zone mutex if we are unable to free to the 3086 * current cache; when we re-acquire the critical section, we must 3087 * detect and handle migration if it has occurred. 3088 */ 3089 zfree_restart: 3090 critical_enter(); 3091 cpu = curcpu; 3092 cache = &zone->uz_cpu[cpu]; 3093 3094 zfree_start: 3095 /* 3096 * Try to free into the allocbucket first to give LIFO ordering 3097 * for cache-hot datastructures. Spill over into the freebucket 3098 * if necessary. Alloc will swap them if one runs dry. 3099 */ 3100 bucket = cache->uc_allocbucket; 3101 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 3102 bucket = cache->uc_freebucket; 3103 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3104 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 3105 ("uma_zfree: Freeing to non free bucket index.")); 3106 bucket->ub_bucket[bucket->ub_cnt] = item; 3107 bucket->ub_cnt++; 3108 cache->uc_frees++; 3109 critical_exit(); 3110 return; 3111 } 3112 3113 /* 3114 * We must go back the zone, which requires acquiring the zone lock, 3115 * which in turn means we must release and re-acquire the critical 3116 * section. Since the critical section is released, we may be 3117 * preempted or migrate. As such, make sure not to maintain any 3118 * thread-local state specific to the cache from prior to releasing 3119 * the critical section. 3120 */ 3121 critical_exit(); 3122 if (zone->uz_count == 0 || bucketdisable) 3123 goto zfree_item; 3124 3125 lockfail = 0; 3126 if (ZONE_TRYLOCK(zone) == 0) { 3127 /* Record contention to size the buckets. */ 3128 ZONE_LOCK(zone); 3129 lockfail = 1; 3130 } 3131 critical_enter(); 3132 cpu = curcpu; 3133 cache = &zone->uz_cpu[cpu]; 3134 3135 bucket = cache->uc_freebucket; 3136 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3137 ZONE_UNLOCK(zone); 3138 goto zfree_start; 3139 } 3140 cache->uc_freebucket = NULL; 3141 /* We are no longer associated with this CPU. */ 3142 critical_exit(); 3143 3144 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) 3145 domain = PCPU_GET(domain); 3146 else 3147 domain = 0; 3148 zdom = &zone->uz_domain[0]; 3149 3150 /* Can we throw this on the zone full list? */ 3151 if (bucket != NULL) { 3152 CTR3(KTR_UMA, 3153 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3154 zone->uz_name, zone, bucket); 3155 /* ub_cnt is pointing to the last free item */ 3156 KASSERT(bucket->ub_cnt != 0, 3157 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 3158 if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) { 3159 ZONE_UNLOCK(zone); 3160 bucket_drain(zone, bucket); 3161 bucket_free(zone, bucket, udata); 3162 goto zfree_restart; 3163 } else 3164 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 3165 } 3166 3167 /* 3168 * We bump the uz count when the cache size is insufficient to 3169 * handle the working set. 3170 */ 3171 if (lockfail && zone->uz_count < BUCKET_MAX) 3172 zone->uz_count++; 3173 ZONE_UNLOCK(zone); 3174 3175 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3176 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3177 zone->uz_name, zone, bucket); 3178 if (bucket) { 3179 critical_enter(); 3180 cpu = curcpu; 3181 cache = &zone->uz_cpu[cpu]; 3182 if (cache->uc_freebucket == NULL && 3183 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3184 domain == PCPU_GET(domain))) { 3185 cache->uc_freebucket = bucket; 3186 goto zfree_start; 3187 } 3188 /* 3189 * We lost the race, start over. We have to drop our 3190 * critical section to free the bucket. 3191 */ 3192 critical_exit(); 3193 bucket_free(zone, bucket, udata); 3194 goto zfree_restart; 3195 } 3196 3197 /* 3198 * If nothing else caught this, we'll just do an internal free. 3199 */ 3200 zfree_item: 3201 zone_free_item(zone, item, udata, SKIP_DTOR); 3202 3203 return; 3204 } 3205 3206 void 3207 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3208 { 3209 3210 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3211 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3212 3213 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3214 zone->uz_name); 3215 3216 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3217 ("uma_zfree_domain: called with spinlock or critical section held")); 3218 3219 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3220 if (item == NULL) 3221 return; 3222 zone_free_item(zone, item, udata, SKIP_NONE); 3223 } 3224 3225 static void 3226 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 3227 { 3228 uma_domain_t dom; 3229 uint8_t freei; 3230 3231 mtx_assert(&keg->uk_lock, MA_OWNED); 3232 MPASS(keg == slab->us_keg); 3233 3234 dom = &keg->uk_domain[slab->us_domain]; 3235 3236 /* Do we need to remove from any lists? */ 3237 if (slab->us_freecount+1 == keg->uk_ipers) { 3238 LIST_REMOVE(slab, us_link); 3239 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3240 } else if (slab->us_freecount == 0) { 3241 LIST_REMOVE(slab, us_link); 3242 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3243 } 3244 3245 /* Slab management. */ 3246 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3247 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3248 slab->us_freecount++; 3249 3250 /* Keg statistics. */ 3251 keg->uk_free++; 3252 } 3253 3254 static void 3255 zone_release(uma_zone_t zone, void **bucket, int cnt) 3256 { 3257 void *item; 3258 uma_slab_t slab; 3259 uma_keg_t keg; 3260 uint8_t *mem; 3261 int clearfull; 3262 int i; 3263 3264 clearfull = 0; 3265 keg = zone_first_keg(zone); 3266 KEG_LOCK(keg); 3267 for (i = 0; i < cnt; i++) { 3268 item = bucket[i]; 3269 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3270 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3271 if (zone->uz_flags & UMA_ZONE_HASH) { 3272 slab = hash_sfind(&keg->uk_hash, mem); 3273 } else { 3274 mem += keg->uk_pgoff; 3275 slab = (uma_slab_t)mem; 3276 } 3277 } else { 3278 slab = vtoslab((vm_offset_t)item); 3279 if (slab->us_keg != keg) { 3280 KEG_UNLOCK(keg); 3281 keg = slab->us_keg; 3282 KEG_LOCK(keg); 3283 } 3284 } 3285 slab_free_item(keg, slab, item); 3286 if (keg->uk_flags & UMA_ZFLAG_FULL) { 3287 if (keg->uk_pages < keg->uk_maxpages) { 3288 keg->uk_flags &= ~UMA_ZFLAG_FULL; 3289 clearfull = 1; 3290 } 3291 3292 /* 3293 * We can handle one more allocation. Since we're 3294 * clearing ZFLAG_FULL, wake up all procs blocked 3295 * on pages. This should be uncommon, so keeping this 3296 * simple for now (rather than adding count of blocked 3297 * threads etc). 3298 */ 3299 wakeup(keg); 3300 } 3301 } 3302 KEG_UNLOCK(keg); 3303 if (clearfull) { 3304 ZONE_LOCK(zone); 3305 zone->uz_flags &= ~UMA_ZFLAG_FULL; 3306 wakeup(zone); 3307 ZONE_UNLOCK(zone); 3308 } 3309 3310 } 3311 3312 /* 3313 * Frees a single item to any zone. 3314 * 3315 * Arguments: 3316 * zone The zone to free to 3317 * item The item we're freeing 3318 * udata User supplied data for the dtor 3319 * skip Skip dtors and finis 3320 */ 3321 static void 3322 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3323 { 3324 #ifdef INVARIANTS 3325 bool skipdbg; 3326 3327 skipdbg = uma_dbg_zskip(zone, item); 3328 if (skip == SKIP_NONE && !skipdbg) { 3329 if (zone->uz_flags & UMA_ZONE_MALLOC) 3330 uma_dbg_free(zone, udata, item); 3331 else 3332 uma_dbg_free(zone, NULL, item); 3333 } 3334 3335 if (skip < SKIP_DTOR && zone->uz_dtor != NULL && 3336 (!skipdbg || zone->uz_dtor != trash_dtor || 3337 zone->uz_ctor != trash_ctor)) 3338 #else 3339 if (skip < SKIP_DTOR && zone->uz_dtor != NULL) 3340 #endif 3341 zone->uz_dtor(item, zone->uz_size, udata); 3342 3343 if (skip < SKIP_FINI && zone->uz_fini) 3344 zone->uz_fini(item, zone->uz_size); 3345 3346 atomic_add_long(&zone->uz_frees, 1); 3347 zone->uz_release(zone->uz_arg, &item, 1); 3348 } 3349 3350 /* See uma.h */ 3351 int 3352 uma_zone_set_max(uma_zone_t zone, int nitems) 3353 { 3354 uma_keg_t keg; 3355 3356 keg = zone_first_keg(zone); 3357 if (keg == NULL) 3358 return (0); 3359 KEG_LOCK(keg); 3360 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 3361 if (keg->uk_maxpages * keg->uk_ipers < nitems) 3362 keg->uk_maxpages += keg->uk_ppera; 3363 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3364 KEG_UNLOCK(keg); 3365 3366 return (nitems); 3367 } 3368 3369 /* See uma.h */ 3370 int 3371 uma_zone_get_max(uma_zone_t zone) 3372 { 3373 int nitems; 3374 uma_keg_t keg; 3375 3376 keg = zone_first_keg(zone); 3377 if (keg == NULL) 3378 return (0); 3379 KEG_LOCK(keg); 3380 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3381 KEG_UNLOCK(keg); 3382 3383 return (nitems); 3384 } 3385 3386 /* See uma.h */ 3387 void 3388 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3389 { 3390 3391 ZONE_LOCK(zone); 3392 zone->uz_warning = warning; 3393 ZONE_UNLOCK(zone); 3394 } 3395 3396 /* See uma.h */ 3397 void 3398 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3399 { 3400 3401 ZONE_LOCK(zone); 3402 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3403 ZONE_UNLOCK(zone); 3404 } 3405 3406 /* See uma.h */ 3407 int 3408 uma_zone_get_cur(uma_zone_t zone) 3409 { 3410 int64_t nitems; 3411 u_int i; 3412 3413 ZONE_LOCK(zone); 3414 nitems = zone->uz_allocs - zone->uz_frees; 3415 CPU_FOREACH(i) { 3416 /* 3417 * See the comment in sysctl_vm_zone_stats() regarding the 3418 * safety of accessing the per-cpu caches. With the zone lock 3419 * held, it is safe, but can potentially result in stale data. 3420 */ 3421 nitems += zone->uz_cpu[i].uc_allocs - 3422 zone->uz_cpu[i].uc_frees; 3423 } 3424 ZONE_UNLOCK(zone); 3425 3426 return (nitems < 0 ? 0 : nitems); 3427 } 3428 3429 /* See uma.h */ 3430 void 3431 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3432 { 3433 uma_keg_t keg; 3434 3435 keg = zone_first_keg(zone); 3436 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3437 KEG_LOCK(keg); 3438 KASSERT(keg->uk_pages == 0, 3439 ("uma_zone_set_init on non-empty keg")); 3440 keg->uk_init = uminit; 3441 KEG_UNLOCK(keg); 3442 } 3443 3444 /* See uma.h */ 3445 void 3446 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3447 { 3448 uma_keg_t keg; 3449 3450 keg = zone_first_keg(zone); 3451 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3452 KEG_LOCK(keg); 3453 KASSERT(keg->uk_pages == 0, 3454 ("uma_zone_set_fini on non-empty keg")); 3455 keg->uk_fini = fini; 3456 KEG_UNLOCK(keg); 3457 } 3458 3459 /* See uma.h */ 3460 void 3461 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3462 { 3463 3464 ZONE_LOCK(zone); 3465 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3466 ("uma_zone_set_zinit on non-empty keg")); 3467 zone->uz_init = zinit; 3468 ZONE_UNLOCK(zone); 3469 } 3470 3471 /* See uma.h */ 3472 void 3473 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3474 { 3475 3476 ZONE_LOCK(zone); 3477 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3478 ("uma_zone_set_zfini on non-empty keg")); 3479 zone->uz_fini = zfini; 3480 ZONE_UNLOCK(zone); 3481 } 3482 3483 /* See uma.h */ 3484 /* XXX uk_freef is not actually used with the zone locked */ 3485 void 3486 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3487 { 3488 uma_keg_t keg; 3489 3490 keg = zone_first_keg(zone); 3491 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3492 KEG_LOCK(keg); 3493 keg->uk_freef = freef; 3494 KEG_UNLOCK(keg); 3495 } 3496 3497 /* See uma.h */ 3498 /* XXX uk_allocf is not actually used with the zone locked */ 3499 void 3500 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3501 { 3502 uma_keg_t keg; 3503 3504 keg = zone_first_keg(zone); 3505 KEG_LOCK(keg); 3506 keg->uk_allocf = allocf; 3507 KEG_UNLOCK(keg); 3508 } 3509 3510 /* See uma.h */ 3511 void 3512 uma_zone_reserve(uma_zone_t zone, int items) 3513 { 3514 uma_keg_t keg; 3515 3516 keg = zone_first_keg(zone); 3517 if (keg == NULL) 3518 return; 3519 KEG_LOCK(keg); 3520 keg->uk_reserve = items; 3521 KEG_UNLOCK(keg); 3522 3523 return; 3524 } 3525 3526 /* See uma.h */ 3527 int 3528 uma_zone_reserve_kva(uma_zone_t zone, int count) 3529 { 3530 uma_keg_t keg; 3531 vm_offset_t kva; 3532 u_int pages; 3533 3534 keg = zone_first_keg(zone); 3535 if (keg == NULL) 3536 return (0); 3537 pages = count / keg->uk_ipers; 3538 3539 if (pages * keg->uk_ipers < count) 3540 pages++; 3541 pages *= keg->uk_ppera; 3542 3543 #ifdef UMA_MD_SMALL_ALLOC 3544 if (keg->uk_ppera > 1) { 3545 #else 3546 if (1) { 3547 #endif 3548 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3549 if (kva == 0) 3550 return (0); 3551 } else 3552 kva = 0; 3553 KEG_LOCK(keg); 3554 keg->uk_kva = kva; 3555 keg->uk_offset = 0; 3556 keg->uk_maxpages = pages; 3557 #ifdef UMA_MD_SMALL_ALLOC 3558 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3559 #else 3560 keg->uk_allocf = noobj_alloc; 3561 #endif 3562 keg->uk_flags |= UMA_ZONE_NOFREE; 3563 KEG_UNLOCK(keg); 3564 3565 return (1); 3566 } 3567 3568 /* See uma.h */ 3569 void 3570 uma_prealloc(uma_zone_t zone, int items) 3571 { 3572 uma_domain_t dom; 3573 uma_slab_t slab; 3574 uma_keg_t keg; 3575 int domain, slabs; 3576 3577 keg = zone_first_keg(zone); 3578 if (keg == NULL) 3579 return; 3580 KEG_LOCK(keg); 3581 slabs = items / keg->uk_ipers; 3582 domain = 0; 3583 if (slabs * keg->uk_ipers < items) 3584 slabs++; 3585 while (slabs > 0) { 3586 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK); 3587 if (slab == NULL) 3588 break; 3589 MPASS(slab->us_keg == keg); 3590 dom = &keg->uk_domain[slab->us_domain]; 3591 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3592 slabs--; 3593 domain = (domain + 1) % vm_ndomains; 3594 } 3595 KEG_UNLOCK(keg); 3596 } 3597 3598 /* See uma.h */ 3599 static void 3600 uma_reclaim_locked(bool kmem_danger) 3601 { 3602 3603 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3604 sx_assert(&uma_drain_lock, SA_XLOCKED); 3605 bucket_enable(); 3606 zone_foreach(zone_drain); 3607 if (vm_page_count_min() || kmem_danger) { 3608 cache_drain_safe(NULL); 3609 zone_foreach(zone_drain); 3610 } 3611 /* 3612 * Some slabs may have been freed but this zone will be visited early 3613 * we visit again so that we can free pages that are empty once other 3614 * zones are drained. We have to do the same for buckets. 3615 */ 3616 zone_drain(slabzone); 3617 bucket_zone_drain(); 3618 } 3619 3620 void 3621 uma_reclaim(void) 3622 { 3623 3624 sx_xlock(&uma_drain_lock); 3625 uma_reclaim_locked(false); 3626 sx_xunlock(&uma_drain_lock); 3627 } 3628 3629 static volatile int uma_reclaim_needed; 3630 3631 void 3632 uma_reclaim_wakeup(void) 3633 { 3634 3635 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3636 wakeup(uma_reclaim); 3637 } 3638 3639 void 3640 uma_reclaim_worker(void *arg __unused) 3641 { 3642 3643 for (;;) { 3644 sx_xlock(&uma_drain_lock); 3645 while (atomic_load_int(&uma_reclaim_needed) == 0) 3646 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3647 hz); 3648 sx_xunlock(&uma_drain_lock); 3649 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3650 sx_xlock(&uma_drain_lock); 3651 uma_reclaim_locked(true); 3652 atomic_store_int(&uma_reclaim_needed, 0); 3653 sx_xunlock(&uma_drain_lock); 3654 /* Don't fire more than once per-second. */ 3655 pause("umarclslp", hz); 3656 } 3657 } 3658 3659 /* See uma.h */ 3660 int 3661 uma_zone_exhausted(uma_zone_t zone) 3662 { 3663 int full; 3664 3665 ZONE_LOCK(zone); 3666 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3667 ZONE_UNLOCK(zone); 3668 return (full); 3669 } 3670 3671 int 3672 uma_zone_exhausted_nolock(uma_zone_t zone) 3673 { 3674 return (zone->uz_flags & UMA_ZFLAG_FULL); 3675 } 3676 3677 void * 3678 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3679 { 3680 vm_offset_t addr; 3681 uma_slab_t slab; 3682 3683 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3684 if (slab == NULL) 3685 return (NULL); 3686 if (domain == UMA_ANYDOMAIN) 3687 addr = kmem_malloc(size, wait); 3688 else 3689 addr = kmem_malloc_domain(domain, size, wait); 3690 if (addr != 0) { 3691 vsetslab(addr, slab); 3692 slab->us_data = (void *)addr; 3693 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3694 slab->us_size = size; 3695 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3696 pmap_kextract(addr))); 3697 uma_total_inc(size); 3698 } else { 3699 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3700 } 3701 3702 return ((void *)addr); 3703 } 3704 3705 void * 3706 uma_large_malloc(vm_size_t size, int wait) 3707 { 3708 3709 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3710 } 3711 3712 void 3713 uma_large_free(uma_slab_t slab) 3714 { 3715 3716 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3717 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3718 kmem_free((vm_offset_t)slab->us_data, slab->us_size); 3719 uma_total_dec(slab->us_size); 3720 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3721 } 3722 3723 static void 3724 uma_zero_item(void *item, uma_zone_t zone) 3725 { 3726 3727 bzero(item, zone->uz_size); 3728 } 3729 3730 unsigned long 3731 uma_limit(void) 3732 { 3733 3734 return (uma_kmem_limit); 3735 } 3736 3737 void 3738 uma_set_limit(unsigned long limit) 3739 { 3740 3741 uma_kmem_limit = limit; 3742 } 3743 3744 unsigned long 3745 uma_size(void) 3746 { 3747 3748 return (uma_kmem_total); 3749 } 3750 3751 long 3752 uma_avail(void) 3753 { 3754 3755 return (uma_kmem_limit - uma_kmem_total); 3756 } 3757 3758 void 3759 uma_print_stats(void) 3760 { 3761 zone_foreach(uma_print_zone); 3762 } 3763 3764 static void 3765 slab_print(uma_slab_t slab) 3766 { 3767 printf("slab: keg %p, data %p, freecount %d\n", 3768 slab->us_keg, slab->us_data, slab->us_freecount); 3769 } 3770 3771 static void 3772 cache_print(uma_cache_t cache) 3773 { 3774 printf("alloc: %p(%d), free: %p(%d)\n", 3775 cache->uc_allocbucket, 3776 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3777 cache->uc_freebucket, 3778 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3779 } 3780 3781 static void 3782 uma_print_keg(uma_keg_t keg) 3783 { 3784 uma_domain_t dom; 3785 uma_slab_t slab; 3786 int i; 3787 3788 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3789 "out %d free %d limit %d\n", 3790 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3791 keg->uk_ipers, keg->uk_ppera, 3792 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3793 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3794 for (i = 0; i < vm_ndomains; i++) { 3795 dom = &keg->uk_domain[i]; 3796 printf("Part slabs:\n"); 3797 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3798 slab_print(slab); 3799 printf("Free slabs:\n"); 3800 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3801 slab_print(slab); 3802 printf("Full slabs:\n"); 3803 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3804 slab_print(slab); 3805 } 3806 } 3807 3808 void 3809 uma_print_zone(uma_zone_t zone) 3810 { 3811 uma_cache_t cache; 3812 uma_klink_t kl; 3813 int i; 3814 3815 printf("zone: %s(%p) size %d flags %#x\n", 3816 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3817 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3818 uma_print_keg(kl->kl_keg); 3819 CPU_FOREACH(i) { 3820 cache = &zone->uz_cpu[i]; 3821 printf("CPU %d Cache:\n", i); 3822 cache_print(cache); 3823 } 3824 } 3825 3826 #ifdef DDB 3827 /* 3828 * Generate statistics across both the zone and its per-cpu cache's. Return 3829 * desired statistics if the pointer is non-NULL for that statistic. 3830 * 3831 * Note: does not update the zone statistics, as it can't safely clear the 3832 * per-CPU cache statistic. 3833 * 3834 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3835 * safe from off-CPU; we should modify the caches to track this information 3836 * directly so that we don't have to. 3837 */ 3838 static void 3839 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3840 uint64_t *freesp, uint64_t *sleepsp) 3841 { 3842 uma_cache_t cache; 3843 uint64_t allocs, frees, sleeps; 3844 int cachefree, cpu; 3845 3846 allocs = frees = sleeps = 0; 3847 cachefree = 0; 3848 CPU_FOREACH(cpu) { 3849 cache = &z->uz_cpu[cpu]; 3850 if (cache->uc_allocbucket != NULL) 3851 cachefree += cache->uc_allocbucket->ub_cnt; 3852 if (cache->uc_freebucket != NULL) 3853 cachefree += cache->uc_freebucket->ub_cnt; 3854 allocs += cache->uc_allocs; 3855 frees += cache->uc_frees; 3856 } 3857 allocs += z->uz_allocs; 3858 frees += z->uz_frees; 3859 sleeps += z->uz_sleeps; 3860 if (cachefreep != NULL) 3861 *cachefreep = cachefree; 3862 if (allocsp != NULL) 3863 *allocsp = allocs; 3864 if (freesp != NULL) 3865 *freesp = frees; 3866 if (sleepsp != NULL) 3867 *sleepsp = sleeps; 3868 } 3869 #endif /* DDB */ 3870 3871 static int 3872 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3873 { 3874 uma_keg_t kz; 3875 uma_zone_t z; 3876 int count; 3877 3878 count = 0; 3879 rw_rlock(&uma_rwlock); 3880 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3881 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3882 count++; 3883 } 3884 rw_runlock(&uma_rwlock); 3885 return (sysctl_handle_int(oidp, &count, 0, req)); 3886 } 3887 3888 static int 3889 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3890 { 3891 struct uma_stream_header ush; 3892 struct uma_type_header uth; 3893 struct uma_percpu_stat *ups; 3894 uma_bucket_t bucket; 3895 uma_zone_domain_t zdom; 3896 struct sbuf sbuf; 3897 uma_cache_t cache; 3898 uma_klink_t kl; 3899 uma_keg_t kz; 3900 uma_zone_t z; 3901 uma_keg_t k; 3902 int count, error, i; 3903 3904 error = sysctl_wire_old_buffer(req, 0); 3905 if (error != 0) 3906 return (error); 3907 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3908 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3909 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 3910 3911 count = 0; 3912 rw_rlock(&uma_rwlock); 3913 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3914 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3915 count++; 3916 } 3917 3918 /* 3919 * Insert stream header. 3920 */ 3921 bzero(&ush, sizeof(ush)); 3922 ush.ush_version = UMA_STREAM_VERSION; 3923 ush.ush_maxcpus = (mp_maxid + 1); 3924 ush.ush_count = count; 3925 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3926 3927 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3928 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3929 bzero(&uth, sizeof(uth)); 3930 ZONE_LOCK(z); 3931 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3932 uth.uth_align = kz->uk_align; 3933 uth.uth_size = kz->uk_size; 3934 uth.uth_rsize = kz->uk_rsize; 3935 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3936 k = kl->kl_keg; 3937 uth.uth_maxpages += k->uk_maxpages; 3938 uth.uth_pages += k->uk_pages; 3939 uth.uth_keg_free += k->uk_free; 3940 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3941 * k->uk_ipers; 3942 } 3943 3944 /* 3945 * A zone is secondary is it is not the first entry 3946 * on the keg's zone list. 3947 */ 3948 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3949 (LIST_FIRST(&kz->uk_zones) != z)) 3950 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3951 3952 for (i = 0; i < vm_ndomains; i++) { 3953 zdom = &z->uz_domain[i]; 3954 LIST_FOREACH(bucket, &zdom->uzd_buckets, 3955 ub_link) 3956 uth.uth_zone_free += bucket->ub_cnt; 3957 } 3958 uth.uth_allocs = z->uz_allocs; 3959 uth.uth_frees = z->uz_frees; 3960 uth.uth_fails = z->uz_fails; 3961 uth.uth_sleeps = z->uz_sleeps; 3962 /* 3963 * While it is not normally safe to access the cache 3964 * bucket pointers while not on the CPU that owns the 3965 * cache, we only allow the pointers to be exchanged 3966 * without the zone lock held, not invalidated, so 3967 * accept the possible race associated with bucket 3968 * exchange during monitoring. 3969 */ 3970 for (i = 0; i < mp_maxid + 1; i++) { 3971 bzero(&ups[i], sizeof(*ups)); 3972 if (kz->uk_flags & UMA_ZFLAG_INTERNAL || 3973 CPU_ABSENT(i)) 3974 continue; 3975 cache = &z->uz_cpu[i]; 3976 if (cache->uc_allocbucket != NULL) 3977 ups[i].ups_cache_free += 3978 cache->uc_allocbucket->ub_cnt; 3979 if (cache->uc_freebucket != NULL) 3980 ups[i].ups_cache_free += 3981 cache->uc_freebucket->ub_cnt; 3982 ups[i].ups_allocs = cache->uc_allocs; 3983 ups[i].ups_frees = cache->uc_frees; 3984 } 3985 ZONE_UNLOCK(z); 3986 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3987 for (i = 0; i < mp_maxid + 1; i++) 3988 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 3989 } 3990 } 3991 rw_runlock(&uma_rwlock); 3992 error = sbuf_finish(&sbuf); 3993 sbuf_delete(&sbuf); 3994 free(ups, M_TEMP); 3995 return (error); 3996 } 3997 3998 int 3999 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4000 { 4001 uma_zone_t zone = *(uma_zone_t *)arg1; 4002 int error, max; 4003 4004 max = uma_zone_get_max(zone); 4005 error = sysctl_handle_int(oidp, &max, 0, req); 4006 if (error || !req->newptr) 4007 return (error); 4008 4009 uma_zone_set_max(zone, max); 4010 4011 return (0); 4012 } 4013 4014 int 4015 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4016 { 4017 uma_zone_t zone = *(uma_zone_t *)arg1; 4018 int cur; 4019 4020 cur = uma_zone_get_cur(zone); 4021 return (sysctl_handle_int(oidp, &cur, 0, req)); 4022 } 4023 4024 #ifdef INVARIANTS 4025 static uma_slab_t 4026 uma_dbg_getslab(uma_zone_t zone, void *item) 4027 { 4028 uma_slab_t slab; 4029 uma_keg_t keg; 4030 uint8_t *mem; 4031 4032 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4033 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 4034 slab = vtoslab((vm_offset_t)mem); 4035 } else { 4036 /* 4037 * It is safe to return the slab here even though the 4038 * zone is unlocked because the item's allocation state 4039 * essentially holds a reference. 4040 */ 4041 ZONE_LOCK(zone); 4042 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 4043 if (keg->uk_flags & UMA_ZONE_HASH) 4044 slab = hash_sfind(&keg->uk_hash, mem); 4045 else 4046 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4047 ZONE_UNLOCK(zone); 4048 } 4049 4050 return (slab); 4051 } 4052 4053 static bool 4054 uma_dbg_zskip(uma_zone_t zone, void *mem) 4055 { 4056 uma_keg_t keg; 4057 4058 if ((keg = zone_first_keg(zone)) == NULL) 4059 return (true); 4060 4061 return (uma_dbg_kskip(keg, mem)); 4062 } 4063 4064 static bool 4065 uma_dbg_kskip(uma_keg_t keg, void *mem) 4066 { 4067 uintptr_t idx; 4068 4069 if (dbg_divisor == 0) 4070 return (true); 4071 4072 if (dbg_divisor == 1) 4073 return (false); 4074 4075 idx = (uintptr_t)mem >> PAGE_SHIFT; 4076 if (keg->uk_ipers > 1) { 4077 idx *= keg->uk_ipers; 4078 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4079 } 4080 4081 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4082 counter_u64_add(uma_skip_cnt, 1); 4083 return (true); 4084 } 4085 counter_u64_add(uma_dbg_cnt, 1); 4086 4087 return (false); 4088 } 4089 4090 /* 4091 * Set up the slab's freei data such that uma_dbg_free can function. 4092 * 4093 */ 4094 static void 4095 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4096 { 4097 uma_keg_t keg; 4098 int freei; 4099 4100 if (slab == NULL) { 4101 slab = uma_dbg_getslab(zone, item); 4102 if (slab == NULL) 4103 panic("uma: item %p did not belong to zone %s\n", 4104 item, zone->uz_name); 4105 } 4106 keg = slab->us_keg; 4107 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4108 4109 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4110 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4111 item, zone, zone->uz_name, slab, freei); 4112 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4113 4114 return; 4115 } 4116 4117 /* 4118 * Verifies freed addresses. Checks for alignment, valid slab membership 4119 * and duplicate frees. 4120 * 4121 */ 4122 static void 4123 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4124 { 4125 uma_keg_t keg; 4126 int freei; 4127 4128 if (slab == NULL) { 4129 slab = uma_dbg_getslab(zone, item); 4130 if (slab == NULL) 4131 panic("uma: Freed item %p did not belong to zone %s\n", 4132 item, zone->uz_name); 4133 } 4134 keg = slab->us_keg; 4135 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4136 4137 if (freei >= keg->uk_ipers) 4138 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4139 item, zone, zone->uz_name, slab, freei); 4140 4141 if (((freei * keg->uk_rsize) + slab->us_data) != item) 4142 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4143 item, zone, zone->uz_name, slab, freei); 4144 4145 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4146 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4147 item, zone, zone->uz_name, slab, freei); 4148 4149 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4150 } 4151 #endif /* INVARIANTS */ 4152 4153 #ifdef DDB 4154 DB_SHOW_COMMAND(uma, db_show_uma) 4155 { 4156 uma_bucket_t bucket; 4157 uma_keg_t kz; 4158 uma_zone_t z; 4159 uma_zone_domain_t zdom; 4160 uint64_t allocs, frees, sleeps; 4161 int cachefree, i; 4162 4163 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 4164 "Free", "Requests", "Sleeps", "Bucket"); 4165 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4166 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4167 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4168 allocs = z->uz_allocs; 4169 frees = z->uz_frees; 4170 sleeps = z->uz_sleeps; 4171 cachefree = 0; 4172 } else 4173 uma_zone_sumstat(z, &cachefree, &allocs, 4174 &frees, &sleeps); 4175 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4176 (LIST_FIRST(&kz->uk_zones) != z))) 4177 cachefree += kz->uk_free; 4178 for (i = 0; i < vm_ndomains; i++) { 4179 zdom = &z->uz_domain[i]; 4180 LIST_FOREACH(bucket, &zdom->uzd_buckets, 4181 ub_link) 4182 cachefree += bucket->ub_cnt; 4183 } 4184 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 4185 z->uz_name, (uintmax_t)kz->uk_size, 4186 (intmax_t)(allocs - frees), cachefree, 4187 (uintmax_t)allocs, sleeps, z->uz_count); 4188 if (db_pager_quit) 4189 return; 4190 } 4191 } 4192 } 4193 4194 DB_SHOW_COMMAND(umacache, db_show_umacache) 4195 { 4196 uma_bucket_t bucket; 4197 uma_zone_t z; 4198 uma_zone_domain_t zdom; 4199 uint64_t allocs, frees; 4200 int cachefree, i; 4201 4202 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4203 "Requests", "Bucket"); 4204 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4205 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 4206 for (i = 0; i < vm_ndomains; i++) { 4207 zdom = &z->uz_domain[i]; 4208 LIST_FOREACH(bucket, &zdom->uzd_buckets, ub_link) 4209 cachefree += bucket->ub_cnt; 4210 } 4211 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 4212 z->uz_name, (uintmax_t)z->uz_size, 4213 (intmax_t)(allocs - frees), cachefree, 4214 (uintmax_t)allocs, z->uz_count); 4215 if (db_pager_quit) 4216 return; 4217 } 4218 } 4219 #endif /* DDB */ 4220