xref: /freebsd/sys/vm/uma_core.c (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6  * Copyright (c) 2004-2006 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 /*
32  * uma_core.c  Implementation of the Universal Memory allocator
33  *
34  * This allocator is intended to replace the multitude of similar object caches
35  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
36  * efficient.  A primary design goal is to return unused memory to the rest of
37  * the system.  This will make the system as a whole more flexible due to the
38  * ability to move memory to subsystems which most need it instead of leaving
39  * pools of reserved memory unused.
40  *
41  * The basic ideas stem from similar slab/zone based allocators whose algorithms
42  * are well known.
43  *
44  */
45 
46 /*
47  * TODO:
48  *	- Improve memory usage for large allocations
49  *	- Investigate cache size adjustments
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include "opt_ddb.h"
56 #include "opt_param.h"
57 #include "opt_vm.h"
58 
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/asan.h>
62 #include <sys/bitset.h>
63 #include <sys/domainset.h>
64 #include <sys/eventhandler.h>
65 #include <sys/kernel.h>
66 #include <sys/types.h>
67 #include <sys/limits.h>
68 #include <sys/queue.h>
69 #include <sys/malloc.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/msan.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/random.h>
76 #include <sys/rwlock.h>
77 #include <sys/sbuf.h>
78 #include <sys/sched.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/smp.h>
81 #include <sys/smr.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 #include <sys/vmmeter.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/vm_domainset.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_phys.h>
93 #include <vm/vm_pagequeue.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_dumpset.h>
98 #include <vm/uma.h>
99 #include <vm/uma_int.h>
100 #include <vm/uma_dbg.h>
101 
102 #include <ddb/ddb.h>
103 
104 #ifdef DEBUG_MEMGUARD
105 #include <vm/memguard.h>
106 #endif
107 
108 #include <machine/md_var.h>
109 
110 #ifdef INVARIANTS
111 #define	UMA_ALWAYS_CTORDTOR	1
112 #else
113 #define	UMA_ALWAYS_CTORDTOR	0
114 #endif
115 
116 /*
117  * This is the zone and keg from which all zones are spawned.
118  */
119 static uma_zone_t kegs;
120 static uma_zone_t zones;
121 
122 /*
123  * On INVARIANTS builds, the slab contains a second bitset of the same size,
124  * "dbg_bits", which is laid out immediately after us_free.
125  */
126 #ifdef INVARIANTS
127 #define	SLAB_BITSETS	2
128 #else
129 #define	SLAB_BITSETS	1
130 #endif
131 
132 /*
133  * These are the two zones from which all offpage uma_slab_ts are allocated.
134  *
135  * One zone is for slab headers that can represent a larger number of items,
136  * making the slabs themselves more efficient, and the other zone is for
137  * headers that are smaller and represent fewer items, making the headers more
138  * efficient.
139  */
140 #define	SLABZONE_SIZE(setsize)					\
141     (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS)
142 #define	SLABZONE0_SETSIZE	(PAGE_SIZE / 16)
143 #define	SLABZONE1_SETSIZE	SLAB_MAX_SETSIZE
144 #define	SLABZONE0_SIZE	SLABZONE_SIZE(SLABZONE0_SETSIZE)
145 #define	SLABZONE1_SIZE	SLABZONE_SIZE(SLABZONE1_SETSIZE)
146 static uma_zone_t slabzones[2];
147 
148 /*
149  * The initial hash tables come out of this zone so they can be allocated
150  * prior to malloc coming up.
151  */
152 static uma_zone_t hashzone;
153 
154 /* The boot-time adjusted value for cache line alignment. */
155 int uma_align_cache = 64 - 1;
156 
157 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
158 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc");
159 
160 /*
161  * Are we allowed to allocate buckets?
162  */
163 static int bucketdisable = 1;
164 
165 /* Linked list of all kegs in the system */
166 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
167 
168 /* Linked list of all cache-only zones in the system */
169 static LIST_HEAD(,uma_zone) uma_cachezones =
170     LIST_HEAD_INITIALIZER(uma_cachezones);
171 
172 /*
173  * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of
174  * zones.
175  */
176 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
177 
178 static struct sx uma_reclaim_lock;
179 
180 /*
181  * First available virual address for boot time allocations.
182  */
183 static vm_offset_t bootstart;
184 static vm_offset_t bootmem;
185 
186 /*
187  * kmem soft limit, initialized by uma_set_limit().  Ensure that early
188  * allocations don't trigger a wakeup of the reclaim thread.
189  */
190 unsigned long uma_kmem_limit = LONG_MAX;
191 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0,
192     "UMA kernel memory soft limit");
193 unsigned long uma_kmem_total;
194 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0,
195     "UMA kernel memory usage");
196 
197 /* Is the VM done starting up? */
198 static enum {
199 	BOOT_COLD,
200 	BOOT_KVA,
201 	BOOT_PCPU,
202 	BOOT_RUNNING,
203 	BOOT_SHUTDOWN,
204 } booted = BOOT_COLD;
205 
206 /*
207  * This is the handle used to schedule events that need to happen
208  * outside of the allocation fast path.
209  */
210 static struct timeout_task uma_timeout_task;
211 #define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
212 
213 /*
214  * This structure is passed as the zone ctor arg so that I don't have to create
215  * a special allocation function just for zones.
216  */
217 struct uma_zctor_args {
218 	const char *name;
219 	size_t size;
220 	uma_ctor ctor;
221 	uma_dtor dtor;
222 	uma_init uminit;
223 	uma_fini fini;
224 	uma_import import;
225 	uma_release release;
226 	void *arg;
227 	uma_keg_t keg;
228 	int align;
229 	uint32_t flags;
230 };
231 
232 struct uma_kctor_args {
233 	uma_zone_t zone;
234 	size_t size;
235 	uma_init uminit;
236 	uma_fini fini;
237 	int align;
238 	uint32_t flags;
239 };
240 
241 struct uma_bucket_zone {
242 	uma_zone_t	ubz_zone;
243 	const char	*ubz_name;
244 	int		ubz_entries;	/* Number of items it can hold. */
245 	int		ubz_maxsize;	/* Maximum allocation size per-item. */
246 };
247 
248 /*
249  * Compute the actual number of bucket entries to pack them in power
250  * of two sizes for more efficient space utilization.
251  */
252 #define	BUCKET_SIZE(n)						\
253     (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
254 
255 #define	BUCKET_MAX	BUCKET_SIZE(256)
256 
257 struct uma_bucket_zone bucket_zones[] = {
258 	/* Literal bucket sizes. */
259 	{ NULL, "2 Bucket", 2, 4096 },
260 	{ NULL, "4 Bucket", 4, 3072 },
261 	{ NULL, "8 Bucket", 8, 2048 },
262 	{ NULL, "16 Bucket", 16, 1024 },
263 	/* Rounded down power of 2 sizes for efficiency. */
264 	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
265 	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
266 	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
267 	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
268 	{ NULL, NULL, 0}
269 };
270 
271 /*
272  * Flags and enumerations to be passed to internal functions.
273  */
274 enum zfreeskip {
275 	SKIP_NONE =	0,
276 	SKIP_CNT =	0x00000001,
277 	SKIP_DTOR =	0x00010000,
278 	SKIP_FINI =	0x00020000,
279 };
280 
281 /* Prototypes.. */
282 
283 void	uma_startup1(vm_offset_t);
284 void	uma_startup2(void);
285 
286 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
287 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
288 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
289 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
290 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
291 static void page_free(void *, vm_size_t, uint8_t);
292 static void pcpu_page_free(void *, vm_size_t, uint8_t);
293 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int);
294 static void cache_drain(uma_zone_t);
295 static void bucket_drain(uma_zone_t, uma_bucket_t);
296 static void bucket_cache_reclaim(uma_zone_t zone, bool, int);
297 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int);
298 static int keg_ctor(void *, int, void *, int);
299 static void keg_dtor(void *, int, void *);
300 static void keg_drain(uma_keg_t keg, int domain);
301 static int zone_ctor(void *, int, void *, int);
302 static void zone_dtor(void *, int, void *);
303 static inline void item_dtor(uma_zone_t zone, void *item, int size,
304     void *udata, enum zfreeskip skip);
305 static int zero_init(void *, int, int);
306 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
307     int itemdomain, bool ws);
308 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *);
309 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *);
310 static void zone_timeout(uma_zone_t zone, void *);
311 static int hash_alloc(struct uma_hash *, u_int);
312 static int hash_expand(struct uma_hash *, struct uma_hash *);
313 static void hash_free(struct uma_hash *hash);
314 static void uma_timeout(void *, int);
315 static void uma_shutdown(void);
316 static void *zone_alloc_item(uma_zone_t, void *, int, int);
317 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
318 static int zone_alloc_limit(uma_zone_t zone, int count, int flags);
319 static void zone_free_limit(uma_zone_t zone, int count);
320 static void bucket_enable(void);
321 static void bucket_init(void);
322 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
323 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
324 static void bucket_zone_drain(int domain);
325 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
326 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
327 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item);
328 static size_t slab_sizeof(int nitems);
329 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
330     uma_fini fini, int align, uint32_t flags);
331 static int zone_import(void *, void **, int, int, int);
332 static void zone_release(void *, void **, int);
333 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int);
334 static bool cache_free(uma_zone_t, uma_cache_t, void *, int);
335 
336 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
337 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
338 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS);
339 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS);
340 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS);
341 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS);
342 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS);
343 
344 static uint64_t uma_zone_get_allocs(uma_zone_t zone);
345 
346 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
347     "Memory allocation debugging");
348 
349 #ifdef INVARIANTS
350 static uint64_t uma_keg_get_allocs(uma_keg_t zone);
351 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg);
352 
353 static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
354 static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
355 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
356 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
357 
358 static u_int dbg_divisor = 1;
359 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
360     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
361     "Debug & thrash every this item in memory allocator");
362 
363 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
364 static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
365 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
366     &uma_dbg_cnt, "memory items debugged");
367 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
368     &uma_skip_cnt, "memory items skipped, not debugged");
369 #endif
370 
371 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
372     "Universal Memory Allocator");
373 
374 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT,
375     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
376 
377 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT,
378     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
379 
380 static int zone_warnings = 1;
381 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
382     "Warn when UMA zones becomes full");
383 
384 static int multipage_slabs = 1;
385 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs);
386 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs,
387     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0,
388     "UMA may choose larger slab sizes for better efficiency");
389 
390 /*
391  * Select the slab zone for an offpage slab with the given maximum item count.
392  */
393 static inline uma_zone_t
394 slabzone(int ipers)
395 {
396 
397 	return (slabzones[ipers > SLABZONE0_SETSIZE]);
398 }
399 
400 /*
401  * This routine checks to see whether or not it's safe to enable buckets.
402  */
403 static void
404 bucket_enable(void)
405 {
406 
407 	KASSERT(booted >= BOOT_KVA, ("Bucket enable before init"));
408 	bucketdisable = vm_page_count_min();
409 }
410 
411 /*
412  * Initialize bucket_zones, the array of zones of buckets of various sizes.
413  *
414  * For each zone, calculate the memory required for each bucket, consisting
415  * of the header and an array of pointers.
416  */
417 static void
418 bucket_init(void)
419 {
420 	struct uma_bucket_zone *ubz;
421 	int size;
422 
423 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
424 		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
425 		size += sizeof(void *) * ubz->ubz_entries;
426 		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
427 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
428 		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET |
429 		    UMA_ZONE_FIRSTTOUCH);
430 	}
431 }
432 
433 /*
434  * Given a desired number of entries for a bucket, return the zone from which
435  * to allocate the bucket.
436  */
437 static struct uma_bucket_zone *
438 bucket_zone_lookup(int entries)
439 {
440 	struct uma_bucket_zone *ubz;
441 
442 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
443 		if (ubz->ubz_entries >= entries)
444 			return (ubz);
445 	ubz--;
446 	return (ubz);
447 }
448 
449 static int
450 bucket_select(int size)
451 {
452 	struct uma_bucket_zone *ubz;
453 
454 	ubz = &bucket_zones[0];
455 	if (size > ubz->ubz_maxsize)
456 		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
457 
458 	for (; ubz->ubz_entries != 0; ubz++)
459 		if (ubz->ubz_maxsize < size)
460 			break;
461 	ubz--;
462 	return (ubz->ubz_entries);
463 }
464 
465 static uma_bucket_t
466 bucket_alloc(uma_zone_t zone, void *udata, int flags)
467 {
468 	struct uma_bucket_zone *ubz;
469 	uma_bucket_t bucket;
470 
471 	/*
472 	 * Don't allocate buckets early in boot.
473 	 */
474 	if (__predict_false(booted < BOOT_KVA))
475 		return (NULL);
476 
477 	/*
478 	 * To limit bucket recursion we store the original zone flags
479 	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
480 	 * NOVM flag to persist even through deep recursions.  We also
481 	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
482 	 * a bucket for a bucket zone so we do not allow infinite bucket
483 	 * recursion.  This cookie will even persist to frees of unused
484 	 * buckets via the allocation path or bucket allocations in the
485 	 * free path.
486 	 */
487 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
488 		udata = (void *)(uintptr_t)zone->uz_flags;
489 	else {
490 		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
491 			return (NULL);
492 		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
493 	}
494 	if (((uintptr_t)udata & UMA_ZONE_VM) != 0)
495 		flags |= M_NOVM;
496 	ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size));
497 	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
498 		ubz++;
499 	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
500 	if (bucket) {
501 #ifdef INVARIANTS
502 		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
503 #endif
504 		bucket->ub_cnt = 0;
505 		bucket->ub_entries = min(ubz->ubz_entries,
506 		    zone->uz_bucket_size_max);
507 		bucket->ub_seq = SMR_SEQ_INVALID;
508 		CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p",
509 		    zone->uz_name, zone, bucket);
510 	}
511 
512 	return (bucket);
513 }
514 
515 static void
516 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
517 {
518 	struct uma_bucket_zone *ubz;
519 
520 	if (bucket->ub_cnt != 0)
521 		bucket_drain(zone, bucket);
522 
523 	KASSERT(bucket->ub_cnt == 0,
524 	    ("bucket_free: Freeing a non free bucket."));
525 	KASSERT(bucket->ub_seq == SMR_SEQ_INVALID,
526 	    ("bucket_free: Freeing an SMR bucket."));
527 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
528 		udata = (void *)(uintptr_t)zone->uz_flags;
529 	ubz = bucket_zone_lookup(bucket->ub_entries);
530 	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
531 }
532 
533 static void
534 bucket_zone_drain(int domain)
535 {
536 	struct uma_bucket_zone *ubz;
537 
538 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
539 		uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN,
540 		    domain);
541 }
542 
543 #ifdef KASAN
544 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0,
545     "Base UMA allocation size not a multiple of the KASAN scale factor");
546 
547 static void
548 kasan_mark_item_valid(uma_zone_t zone, void *item)
549 {
550 	void *pcpu_item;
551 	size_t sz, rsz;
552 	int i;
553 
554 	if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
555 		return;
556 
557 	sz = zone->uz_size;
558 	rsz = roundup2(sz, KASAN_SHADOW_SCALE);
559 	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
560 		kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE);
561 	} else {
562 		pcpu_item = zpcpu_base_to_offset(item);
563 		for (i = 0; i <= mp_maxid; i++)
564 			kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz,
565 			    KASAN_GENERIC_REDZONE);
566 	}
567 }
568 
569 static void
570 kasan_mark_item_invalid(uma_zone_t zone, void *item)
571 {
572 	void *pcpu_item;
573 	size_t sz;
574 	int i;
575 
576 	if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
577 		return;
578 
579 	sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE);
580 	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
581 		kasan_mark(item, 0, sz, KASAN_UMA_FREED);
582 	} else {
583 		pcpu_item = zpcpu_base_to_offset(item);
584 		for (i = 0; i <= mp_maxid; i++)
585 			kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz,
586 			    KASAN_UMA_FREED);
587 	}
588 }
589 
590 static void
591 kasan_mark_slab_valid(uma_keg_t keg, void *mem)
592 {
593 	size_t sz;
594 
595 	if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
596 		sz = keg->uk_ppera * PAGE_SIZE;
597 		kasan_mark(mem, sz, sz, 0);
598 	}
599 }
600 
601 static void
602 kasan_mark_slab_invalid(uma_keg_t keg, void *mem)
603 {
604 	size_t sz;
605 
606 	if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
607 		if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
608 			sz = keg->uk_ppera * PAGE_SIZE;
609 		else
610 			sz = keg->uk_pgoff;
611 		kasan_mark(mem, 0, sz, KASAN_UMA_FREED);
612 	}
613 }
614 #else /* !KASAN */
615 static void
616 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused)
617 {
618 }
619 
620 static void
621 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused)
622 {
623 }
624 
625 static void
626 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused)
627 {
628 }
629 
630 static void
631 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused)
632 {
633 }
634 #endif /* KASAN */
635 
636 #ifdef KMSAN
637 static inline void
638 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item)
639 {
640 	void *pcpu_item;
641 	size_t sz;
642 	int i;
643 
644 	if ((zone->uz_flags &
645 	    (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) {
646 		/*
647 		 * Cache zones should not be instrumented by default, as UMA
648 		 * does not have enough information to do so correctly.
649 		 * Consumers can mark items themselves if it makes sense to do
650 		 * so.
651 		 *
652 		 * Items from secondary zones are initialized by the parent
653 		 * zone and thus cannot safely be marked by UMA.
654 		 *
655 		 * malloc zones are handled directly by malloc(9) and friends,
656 		 * since they can provide more precise origin tracking.
657 		 */
658 		return;
659 	}
660 	if (zone->uz_keg->uk_init != NULL) {
661 		/*
662 		 * By definition, initialized items cannot be marked.  The
663 		 * best we can do is mark items from these zones after they
664 		 * are freed to the keg.
665 		 */
666 		return;
667 	}
668 
669 	sz = zone->uz_size;
670 	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
671 		kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
672 		kmsan_mark(item, sz, KMSAN_STATE_UNINIT);
673 	} else {
674 		pcpu_item = zpcpu_base_to_offset(item);
675 		for (i = 0; i <= mp_maxid; i++) {
676 			kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz,
677 			    KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
678 			kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz,
679 			    KMSAN_STATE_INITED);
680 		}
681 	}
682 }
683 #else /* !KMSAN */
684 static inline void
685 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused)
686 {
687 }
688 #endif /* KMSAN */
689 
690 /*
691  * Acquire the domain lock and record contention.
692  */
693 static uma_zone_domain_t
694 zone_domain_lock(uma_zone_t zone, int domain)
695 {
696 	uma_zone_domain_t zdom;
697 	bool lockfail;
698 
699 	zdom = ZDOM_GET(zone, domain);
700 	lockfail = false;
701 	if (ZDOM_OWNED(zdom))
702 		lockfail = true;
703 	ZDOM_LOCK(zdom);
704 	/* This is unsynchronized.  The counter does not need to be precise. */
705 	if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max)
706 		zone->uz_bucket_size++;
707 	return (zdom);
708 }
709 
710 /*
711  * Search for the domain with the least cached items and return it if it
712  * is out of balance with the preferred domain.
713  */
714 static __noinline int
715 zone_domain_lowest(uma_zone_t zone, int pref)
716 {
717 	long least, nitems, prefitems;
718 	int domain;
719 	int i;
720 
721 	prefitems = least = LONG_MAX;
722 	domain = 0;
723 	for (i = 0; i < vm_ndomains; i++) {
724 		nitems = ZDOM_GET(zone, i)->uzd_nitems;
725 		if (nitems < least) {
726 			domain = i;
727 			least = nitems;
728 		}
729 		if (domain == pref)
730 			prefitems = nitems;
731 	}
732 	if (prefitems < least * 2)
733 		return (pref);
734 
735 	return (domain);
736 }
737 
738 /*
739  * Search for the domain with the most cached items and return it or the
740  * preferred domain if it has enough to proceed.
741  */
742 static __noinline int
743 zone_domain_highest(uma_zone_t zone, int pref)
744 {
745 	long most, nitems;
746 	int domain;
747 	int i;
748 
749 	if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX)
750 		return (pref);
751 
752 	most = 0;
753 	domain = 0;
754 	for (i = 0; i < vm_ndomains; i++) {
755 		nitems = ZDOM_GET(zone, i)->uzd_nitems;
756 		if (nitems > most) {
757 			domain = i;
758 			most = nitems;
759 		}
760 	}
761 
762 	return (domain);
763 }
764 
765 /*
766  * Set the maximum imax value.
767  */
768 static void
769 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems)
770 {
771 	long old;
772 
773 	old = zdom->uzd_imax;
774 	do {
775 		if (old >= nitems)
776 			return;
777 	} while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0);
778 
779 	/*
780 	 * We are at new maximum, so do the last WSS update for the old
781 	 * bimin and prepare to measure next allocation batch.
782 	 */
783 	if (zdom->uzd_wss < old - zdom->uzd_bimin)
784 		zdom->uzd_wss = old - zdom->uzd_bimin;
785 	zdom->uzd_bimin = nitems;
786 }
787 
788 /*
789  * Attempt to satisfy an allocation by retrieving a full bucket from one of the
790  * zone's caches.  If a bucket is found the zone is not locked on return.
791  */
792 static uma_bucket_t
793 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim)
794 {
795 	uma_bucket_t bucket;
796 	long cnt;
797 	int i;
798 	bool dtor = false;
799 
800 	ZDOM_LOCK_ASSERT(zdom);
801 
802 	if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL)
803 		return (NULL);
804 
805 	/* SMR Buckets can not be re-used until readers expire. */
806 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
807 	    bucket->ub_seq != SMR_SEQ_INVALID) {
808 		if (!smr_poll(zone->uz_smr, bucket->ub_seq, false))
809 			return (NULL);
810 		bucket->ub_seq = SMR_SEQ_INVALID;
811 		dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR;
812 		if (STAILQ_NEXT(bucket, ub_link) != NULL)
813 			zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq;
814 	}
815 	STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link);
816 
817 	KASSERT(zdom->uzd_nitems >= bucket->ub_cnt,
818 	    ("%s: item count underflow (%ld, %d)",
819 	    __func__, zdom->uzd_nitems, bucket->ub_cnt));
820 	KASSERT(bucket->ub_cnt > 0,
821 	    ("%s: empty bucket in bucket cache", __func__));
822 	zdom->uzd_nitems -= bucket->ub_cnt;
823 
824 	if (reclaim) {
825 		/*
826 		 * Shift the bounds of the current WSS interval to avoid
827 		 * perturbing the estimates.
828 		 */
829 		cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt);
830 		atomic_subtract_long(&zdom->uzd_imax, cnt);
831 		zdom->uzd_bimin -= cnt;
832 		zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt);
833 		if (zdom->uzd_limin >= bucket->ub_cnt) {
834 			zdom->uzd_limin -= bucket->ub_cnt;
835 		} else {
836 			zdom->uzd_limin = 0;
837 			zdom->uzd_timin = 0;
838 		}
839 	} else if (zdom->uzd_bimin > zdom->uzd_nitems) {
840 		zdom->uzd_bimin = zdom->uzd_nitems;
841 		if (zdom->uzd_imin > zdom->uzd_nitems)
842 			zdom->uzd_imin = zdom->uzd_nitems;
843 	}
844 
845 	ZDOM_UNLOCK(zdom);
846 	if (dtor)
847 		for (i = 0; i < bucket->ub_cnt; i++)
848 			item_dtor(zone, bucket->ub_bucket[i], zone->uz_size,
849 			    NULL, SKIP_NONE);
850 
851 	return (bucket);
852 }
853 
854 /*
855  * Insert a full bucket into the specified cache.  The "ws" parameter indicates
856  * whether the bucket's contents should be counted as part of the zone's working
857  * set.  The bucket may be freed if it exceeds the bucket limit.
858  */
859 static void
860 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata,
861     const bool ws)
862 {
863 	uma_zone_domain_t zdom;
864 
865 	/* We don't cache empty buckets.  This can happen after a reclaim. */
866 	if (bucket->ub_cnt == 0)
867 		goto out;
868 	zdom = zone_domain_lock(zone, domain);
869 
870 	/*
871 	 * Conditionally set the maximum number of items.
872 	 */
873 	zdom->uzd_nitems += bucket->ub_cnt;
874 	if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) {
875 		if (ws) {
876 			zone_domain_imax_set(zdom, zdom->uzd_nitems);
877 		} else {
878 			/*
879 			 * Shift the bounds of the current WSS interval to
880 			 * avoid perturbing the estimates.
881 			 */
882 			atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt);
883 			zdom->uzd_imin += bucket->ub_cnt;
884 			zdom->uzd_bimin += bucket->ub_cnt;
885 			zdom->uzd_limin += bucket->ub_cnt;
886 		}
887 		if (STAILQ_EMPTY(&zdom->uzd_buckets))
888 			zdom->uzd_seq = bucket->ub_seq;
889 
890 		/*
891 		 * Try to promote reuse of recently used items.  For items
892 		 * protected by SMR, try to defer reuse to minimize polling.
893 		 */
894 		if (bucket->ub_seq == SMR_SEQ_INVALID)
895 			STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
896 		else
897 			STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link);
898 		ZDOM_UNLOCK(zdom);
899 		return;
900 	}
901 	zdom->uzd_nitems -= bucket->ub_cnt;
902 	ZDOM_UNLOCK(zdom);
903 out:
904 	bucket_free(zone, bucket, udata);
905 }
906 
907 /* Pops an item out of a per-cpu cache bucket. */
908 static inline void *
909 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket)
910 {
911 	void *item;
912 
913 	CRITICAL_ASSERT(curthread);
914 
915 	bucket->ucb_cnt--;
916 	item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt];
917 #ifdef INVARIANTS
918 	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL;
919 	KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
920 #endif
921 	cache->uc_allocs++;
922 
923 	return (item);
924 }
925 
926 /* Pushes an item into a per-cpu cache bucket. */
927 static inline void
928 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item)
929 {
930 
931 	CRITICAL_ASSERT(curthread);
932 	KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL,
933 	    ("uma_zfree: Freeing to non free bucket index."));
934 
935 	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item;
936 	bucket->ucb_cnt++;
937 	cache->uc_frees++;
938 }
939 
940 /*
941  * Unload a UMA bucket from a per-cpu cache.
942  */
943 static inline uma_bucket_t
944 cache_bucket_unload(uma_cache_bucket_t bucket)
945 {
946 	uma_bucket_t b;
947 
948 	b = bucket->ucb_bucket;
949 	if (b != NULL) {
950 		MPASS(b->ub_entries == bucket->ucb_entries);
951 		b->ub_cnt = bucket->ucb_cnt;
952 		bucket->ucb_bucket = NULL;
953 		bucket->ucb_entries = bucket->ucb_cnt = 0;
954 	}
955 
956 	return (b);
957 }
958 
959 static inline uma_bucket_t
960 cache_bucket_unload_alloc(uma_cache_t cache)
961 {
962 
963 	return (cache_bucket_unload(&cache->uc_allocbucket));
964 }
965 
966 static inline uma_bucket_t
967 cache_bucket_unload_free(uma_cache_t cache)
968 {
969 
970 	return (cache_bucket_unload(&cache->uc_freebucket));
971 }
972 
973 static inline uma_bucket_t
974 cache_bucket_unload_cross(uma_cache_t cache)
975 {
976 
977 	return (cache_bucket_unload(&cache->uc_crossbucket));
978 }
979 
980 /*
981  * Load a bucket into a per-cpu cache bucket.
982  */
983 static inline void
984 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b)
985 {
986 
987 	CRITICAL_ASSERT(curthread);
988 	MPASS(bucket->ucb_bucket == NULL);
989 	MPASS(b->ub_seq == SMR_SEQ_INVALID);
990 
991 	bucket->ucb_bucket = b;
992 	bucket->ucb_cnt = b->ub_cnt;
993 	bucket->ucb_entries = b->ub_entries;
994 }
995 
996 static inline void
997 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b)
998 {
999 
1000 	cache_bucket_load(&cache->uc_allocbucket, b);
1001 }
1002 
1003 static inline void
1004 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b)
1005 {
1006 
1007 	cache_bucket_load(&cache->uc_freebucket, b);
1008 }
1009 
1010 #ifdef NUMA
1011 static inline void
1012 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b)
1013 {
1014 
1015 	cache_bucket_load(&cache->uc_crossbucket, b);
1016 }
1017 #endif
1018 
1019 /*
1020  * Copy and preserve ucb_spare.
1021  */
1022 static inline void
1023 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1024 {
1025 
1026 	b1->ucb_bucket = b2->ucb_bucket;
1027 	b1->ucb_entries = b2->ucb_entries;
1028 	b1->ucb_cnt = b2->ucb_cnt;
1029 }
1030 
1031 /*
1032  * Swap two cache buckets.
1033  */
1034 static inline void
1035 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1036 {
1037 	struct uma_cache_bucket b3;
1038 
1039 	CRITICAL_ASSERT(curthread);
1040 
1041 	cache_bucket_copy(&b3, b1);
1042 	cache_bucket_copy(b1, b2);
1043 	cache_bucket_copy(b2, &b3);
1044 }
1045 
1046 /*
1047  * Attempt to fetch a bucket from a zone on behalf of the current cpu cache.
1048  */
1049 static uma_bucket_t
1050 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain)
1051 {
1052 	uma_zone_domain_t zdom;
1053 	uma_bucket_t bucket;
1054 	smr_seq_t seq;
1055 
1056 	/*
1057 	 * Avoid the lock if possible.
1058 	 */
1059 	zdom = ZDOM_GET(zone, domain);
1060 	if (zdom->uzd_nitems == 0)
1061 		return (NULL);
1062 
1063 	if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 &&
1064 	    (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID &&
1065 	    !smr_poll(zone->uz_smr, seq, false))
1066 		return (NULL);
1067 
1068 	/*
1069 	 * Check the zone's cache of buckets.
1070 	 */
1071 	zdom = zone_domain_lock(zone, domain);
1072 	if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL)
1073 		return (bucket);
1074 	ZDOM_UNLOCK(zdom);
1075 
1076 	return (NULL);
1077 }
1078 
1079 static void
1080 zone_log_warning(uma_zone_t zone)
1081 {
1082 	static const struct timeval warninterval = { 300, 0 };
1083 
1084 	if (!zone_warnings || zone->uz_warning == NULL)
1085 		return;
1086 
1087 	if (ratecheck(&zone->uz_ratecheck, &warninterval))
1088 		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
1089 }
1090 
1091 static inline void
1092 zone_maxaction(uma_zone_t zone)
1093 {
1094 
1095 	if (zone->uz_maxaction.ta_func != NULL)
1096 		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
1097 }
1098 
1099 /*
1100  * Routine called by timeout which is used to fire off some time interval
1101  * based calculations.  (stats, hash size, etc.)
1102  *
1103  * Arguments:
1104  *	arg   Unused
1105  *
1106  * Returns:
1107  *	Nothing
1108  */
1109 static void
1110 uma_timeout(void *context __unused, int pending __unused)
1111 {
1112 	bucket_enable();
1113 	zone_foreach(zone_timeout, NULL);
1114 
1115 	/* Reschedule this event */
1116 	taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
1117 	    UMA_TIMEOUT * hz);
1118 }
1119 
1120 /*
1121  * Update the working set size estimates for the zone's bucket cache.
1122  * The constants chosen here are somewhat arbitrary.
1123  */
1124 static void
1125 zone_domain_update_wss(uma_zone_domain_t zdom)
1126 {
1127 	long m;
1128 
1129 	ZDOM_LOCK_ASSERT(zdom);
1130 	MPASS(zdom->uzd_imax >= zdom->uzd_nitems);
1131 	MPASS(zdom->uzd_nitems >= zdom->uzd_bimin);
1132 	MPASS(zdom->uzd_bimin >= zdom->uzd_imin);
1133 
1134 	/*
1135 	 * Estimate WSS as modified moving average of biggest allocation
1136 	 * batches for each period over few minutes (UMA_TIMEOUT of 20s).
1137 	 */
1138 	zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4,
1139 	    zdom->uzd_imax - zdom->uzd_bimin);
1140 
1141 	/*
1142 	 * Estimate longtime minimum item count as a combination of recent
1143 	 * minimum item count, adjusted by WSS for safety, and the modified
1144 	 * moving average over the last several hours (UMA_TIMEOUT of 20s).
1145 	 * timin measures time since limin tried to go negative, that means
1146 	 * we were dangerously close to or got out of cache.
1147 	 */
1148 	m = zdom->uzd_imin - zdom->uzd_wss;
1149 	if (m >= 0) {
1150 		if (zdom->uzd_limin >= m)
1151 			zdom->uzd_limin = m;
1152 		else
1153 			zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256;
1154 		zdom->uzd_timin++;
1155 	} else {
1156 		zdom->uzd_limin = 0;
1157 		zdom->uzd_timin = 0;
1158 	}
1159 
1160 	/* To reduce period edge effects on WSS keep half of the imax. */
1161 	atomic_subtract_long(&zdom->uzd_imax,
1162 	    (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2);
1163 	zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems;
1164 }
1165 
1166 /*
1167  * Routine to perform timeout driven calculations.  This expands the
1168  * hashes and does per cpu statistics aggregation.
1169  *
1170  *  Returns nothing.
1171  */
1172 static void
1173 zone_timeout(uma_zone_t zone, void *unused)
1174 {
1175 	uma_keg_t keg;
1176 	u_int slabs, pages;
1177 
1178 	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
1179 		goto trim;
1180 
1181 	keg = zone->uz_keg;
1182 
1183 	/*
1184 	 * Hash zones are non-numa by definition so the first domain
1185 	 * is the only one present.
1186 	 */
1187 	KEG_LOCK(keg, 0);
1188 	pages = keg->uk_domain[0].ud_pages;
1189 
1190 	/*
1191 	 * Expand the keg hash table.
1192 	 *
1193 	 * This is done if the number of slabs is larger than the hash size.
1194 	 * What I'm trying to do here is completely reduce collisions.  This
1195 	 * may be a little aggressive.  Should I allow for two collisions max?
1196 	 */
1197 	if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) {
1198 		struct uma_hash newhash;
1199 		struct uma_hash oldhash;
1200 		int ret;
1201 
1202 		/*
1203 		 * This is so involved because allocating and freeing
1204 		 * while the keg lock is held will lead to deadlock.
1205 		 * I have to do everything in stages and check for
1206 		 * races.
1207 		 */
1208 		KEG_UNLOCK(keg, 0);
1209 		ret = hash_alloc(&newhash, 1 << fls(slabs));
1210 		KEG_LOCK(keg, 0);
1211 		if (ret) {
1212 			if (hash_expand(&keg->uk_hash, &newhash)) {
1213 				oldhash = keg->uk_hash;
1214 				keg->uk_hash = newhash;
1215 			} else
1216 				oldhash = newhash;
1217 
1218 			KEG_UNLOCK(keg, 0);
1219 			hash_free(&oldhash);
1220 			goto trim;
1221 		}
1222 	}
1223 	KEG_UNLOCK(keg, 0);
1224 
1225 trim:
1226 	/* Trim caches not used for a long time. */
1227 	if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) {
1228 		for (int i = 0; i < vm_ndomains; i++) {
1229 			if (bucket_cache_reclaim_domain(zone, false, false, i) &&
1230 			    (zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1231 				keg_drain(zone->uz_keg, i);
1232 		}
1233 	}
1234 }
1235 
1236 /*
1237  * Allocate and zero fill the next sized hash table from the appropriate
1238  * backing store.
1239  *
1240  * Arguments:
1241  *	hash  A new hash structure with the old hash size in uh_hashsize
1242  *
1243  * Returns:
1244  *	1 on success and 0 on failure.
1245  */
1246 static int
1247 hash_alloc(struct uma_hash *hash, u_int size)
1248 {
1249 	size_t alloc;
1250 
1251 	KASSERT(powerof2(size), ("hash size must be power of 2"));
1252 	if (size > UMA_HASH_SIZE_INIT)  {
1253 		hash->uh_hashsize = size;
1254 		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
1255 		hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT);
1256 	} else {
1257 		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
1258 		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
1259 		    UMA_ANYDOMAIN, M_WAITOK);
1260 		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
1261 	}
1262 	if (hash->uh_slab_hash) {
1263 		bzero(hash->uh_slab_hash, alloc);
1264 		hash->uh_hashmask = hash->uh_hashsize - 1;
1265 		return (1);
1266 	}
1267 
1268 	return (0);
1269 }
1270 
1271 /*
1272  * Expands the hash table for HASH zones.  This is done from zone_timeout
1273  * to reduce collisions.  This must not be done in the regular allocation
1274  * path, otherwise, we can recurse on the vm while allocating pages.
1275  *
1276  * Arguments:
1277  *	oldhash  The hash you want to expand
1278  *	newhash  The hash structure for the new table
1279  *
1280  * Returns:
1281  *	Nothing
1282  *
1283  * Discussion:
1284  */
1285 static int
1286 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
1287 {
1288 	uma_hash_slab_t slab;
1289 	u_int hval;
1290 	u_int idx;
1291 
1292 	if (!newhash->uh_slab_hash)
1293 		return (0);
1294 
1295 	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
1296 		return (0);
1297 
1298 	/*
1299 	 * I need to investigate hash algorithms for resizing without a
1300 	 * full rehash.
1301 	 */
1302 
1303 	for (idx = 0; idx < oldhash->uh_hashsize; idx++)
1304 		while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
1305 			slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]);
1306 			LIST_REMOVE(slab, uhs_hlink);
1307 			hval = UMA_HASH(newhash, slab->uhs_data);
1308 			LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
1309 			    slab, uhs_hlink);
1310 		}
1311 
1312 	return (1);
1313 }
1314 
1315 /*
1316  * Free the hash bucket to the appropriate backing store.
1317  *
1318  * Arguments:
1319  *	slab_hash  The hash bucket we're freeing
1320  *	hashsize   The number of entries in that hash bucket
1321  *
1322  * Returns:
1323  *	Nothing
1324  */
1325 static void
1326 hash_free(struct uma_hash *hash)
1327 {
1328 	if (hash->uh_slab_hash == NULL)
1329 		return;
1330 	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
1331 		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
1332 	else
1333 		free(hash->uh_slab_hash, M_UMAHASH);
1334 }
1335 
1336 /*
1337  * Frees all outstanding items in a bucket
1338  *
1339  * Arguments:
1340  *	zone   The zone to free to, must be unlocked.
1341  *	bucket The free/alloc bucket with items.
1342  *
1343  * Returns:
1344  *	Nothing
1345  */
1346 static void
1347 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
1348 {
1349 	int i;
1350 
1351 	if (bucket->ub_cnt == 0)
1352 		return;
1353 
1354 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
1355 	    bucket->ub_seq != SMR_SEQ_INVALID) {
1356 		smr_wait(zone->uz_smr, bucket->ub_seq);
1357 		bucket->ub_seq = SMR_SEQ_INVALID;
1358 		for (i = 0; i < bucket->ub_cnt; i++)
1359 			item_dtor(zone, bucket->ub_bucket[i],
1360 			    zone->uz_size, NULL, SKIP_NONE);
1361 	}
1362 	if (zone->uz_fini)
1363 		for (i = 0; i < bucket->ub_cnt; i++) {
1364 			kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
1365 			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
1366 			kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
1367 		}
1368 	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
1369 	if (zone->uz_max_items > 0)
1370 		zone_free_limit(zone, bucket->ub_cnt);
1371 #ifdef INVARIANTS
1372 	bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt);
1373 #endif
1374 	bucket->ub_cnt = 0;
1375 }
1376 
1377 /*
1378  * Drains the per cpu caches for a zone.
1379  *
1380  * NOTE: This may only be called while the zone is being torn down, and not
1381  * during normal operation.  This is necessary in order that we do not have
1382  * to migrate CPUs to drain the per-CPU caches.
1383  *
1384  * Arguments:
1385  *	zone     The zone to drain, must be unlocked.
1386  *
1387  * Returns:
1388  *	Nothing
1389  */
1390 static void
1391 cache_drain(uma_zone_t zone)
1392 {
1393 	uma_cache_t cache;
1394 	uma_bucket_t bucket;
1395 	smr_seq_t seq;
1396 	int cpu;
1397 
1398 	/*
1399 	 * XXX: It is safe to not lock the per-CPU caches, because we're
1400 	 * tearing down the zone anyway.  I.e., there will be no further use
1401 	 * of the caches at this point.
1402 	 *
1403 	 * XXX: It would good to be able to assert that the zone is being
1404 	 * torn down to prevent improper use of cache_drain().
1405 	 */
1406 	seq = SMR_SEQ_INVALID;
1407 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
1408 		seq = smr_advance(zone->uz_smr);
1409 	CPU_FOREACH(cpu) {
1410 		cache = &zone->uz_cpu[cpu];
1411 		bucket = cache_bucket_unload_alloc(cache);
1412 		if (bucket != NULL)
1413 			bucket_free(zone, bucket, NULL);
1414 		bucket = cache_bucket_unload_free(cache);
1415 		if (bucket != NULL) {
1416 			bucket->ub_seq = seq;
1417 			bucket_free(zone, bucket, NULL);
1418 		}
1419 		bucket = cache_bucket_unload_cross(cache);
1420 		if (bucket != NULL) {
1421 			bucket->ub_seq = seq;
1422 			bucket_free(zone, bucket, NULL);
1423 		}
1424 	}
1425 	bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN);
1426 }
1427 
1428 static void
1429 cache_shrink(uma_zone_t zone, void *unused)
1430 {
1431 
1432 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1433 		return;
1434 
1435 	ZONE_LOCK(zone);
1436 	zone->uz_bucket_size =
1437 	    (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2;
1438 	ZONE_UNLOCK(zone);
1439 }
1440 
1441 static void
1442 cache_drain_safe_cpu(uma_zone_t zone, void *unused)
1443 {
1444 	uma_cache_t cache;
1445 	uma_bucket_t b1, b2, b3;
1446 	int domain;
1447 
1448 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1449 		return;
1450 
1451 	b1 = b2 = b3 = NULL;
1452 	critical_enter();
1453 	cache = &zone->uz_cpu[curcpu];
1454 	domain = PCPU_GET(domain);
1455 	b1 = cache_bucket_unload_alloc(cache);
1456 
1457 	/*
1458 	 * Don't flush SMR zone buckets.  This leaves the zone without a
1459 	 * bucket and forces every free to synchronize().
1460 	 */
1461 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0) {
1462 		b2 = cache_bucket_unload_free(cache);
1463 		b3 = cache_bucket_unload_cross(cache);
1464 	}
1465 	critical_exit();
1466 
1467 	if (b1 != NULL)
1468 		zone_free_bucket(zone, b1, NULL, domain, false);
1469 	if (b2 != NULL)
1470 		zone_free_bucket(zone, b2, NULL, domain, false);
1471 	if (b3 != NULL) {
1472 		/* Adjust the domain so it goes to zone_free_cross. */
1473 		domain = (domain + 1) % vm_ndomains;
1474 		zone_free_bucket(zone, b3, NULL, domain, false);
1475 	}
1476 }
1477 
1478 /*
1479  * Safely drain per-CPU caches of a zone(s) to alloc bucket.
1480  * This is an expensive call because it needs to bind to all CPUs
1481  * one by one and enter a critical section on each of them in order
1482  * to safely access their cache buckets.
1483  * Zone lock must not be held on call this function.
1484  */
1485 static void
1486 pcpu_cache_drain_safe(uma_zone_t zone)
1487 {
1488 	int cpu;
1489 
1490 	/*
1491 	 * Polite bucket sizes shrinking was not enough, shrink aggressively.
1492 	 */
1493 	if (zone)
1494 		cache_shrink(zone, NULL);
1495 	else
1496 		zone_foreach(cache_shrink, NULL);
1497 
1498 	CPU_FOREACH(cpu) {
1499 		thread_lock(curthread);
1500 		sched_bind(curthread, cpu);
1501 		thread_unlock(curthread);
1502 
1503 		if (zone)
1504 			cache_drain_safe_cpu(zone, NULL);
1505 		else
1506 			zone_foreach(cache_drain_safe_cpu, NULL);
1507 	}
1508 	thread_lock(curthread);
1509 	sched_unbind(curthread);
1510 	thread_unlock(curthread);
1511 }
1512 
1513 /*
1514  * Reclaim cached buckets from a zone.  All buckets are reclaimed if the caller
1515  * requested a drain, otherwise the per-domain caches are trimmed to either
1516  * estimated working set size.
1517  */
1518 static bool
1519 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain)
1520 {
1521 	uma_zone_domain_t zdom;
1522 	uma_bucket_t bucket;
1523 	long target;
1524 	bool done = false;
1525 
1526 	/*
1527 	 * The cross bucket is partially filled and not part of
1528 	 * the item count.  Reclaim it individually here.
1529 	 */
1530 	zdom = ZDOM_GET(zone, domain);
1531 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) {
1532 		ZONE_CROSS_LOCK(zone);
1533 		bucket = zdom->uzd_cross;
1534 		zdom->uzd_cross = NULL;
1535 		ZONE_CROSS_UNLOCK(zone);
1536 		if (bucket != NULL)
1537 			bucket_free(zone, bucket, NULL);
1538 	}
1539 
1540 	/*
1541 	 * If we were asked to drain the zone, we are done only once
1542 	 * this bucket cache is empty.  If trim, we reclaim items in
1543 	 * excess of the zone's estimated working set size.  Multiple
1544 	 * consecutive calls will shrink the WSS and so reclaim more.
1545 	 * If neither drain nor trim, then voluntarily reclaim 1/4
1546 	 * (to reduce first spike) of items not used for a long time.
1547 	 */
1548 	ZDOM_LOCK(zdom);
1549 	zone_domain_update_wss(zdom);
1550 	if (drain)
1551 		target = 0;
1552 	else if (trim)
1553 		target = zdom->uzd_wss;
1554 	else if (zdom->uzd_timin > 900 / UMA_TIMEOUT)
1555 		target = zdom->uzd_nitems - zdom->uzd_limin / 4;
1556 	else {
1557 		ZDOM_UNLOCK(zdom);
1558 		return (done);
1559 	}
1560 	while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL &&
1561 	    zdom->uzd_nitems >= target + bucket->ub_cnt) {
1562 		bucket = zone_fetch_bucket(zone, zdom, true);
1563 		if (bucket == NULL)
1564 			break;
1565 		bucket_free(zone, bucket, NULL);
1566 		done = true;
1567 		ZDOM_LOCK(zdom);
1568 	}
1569 	ZDOM_UNLOCK(zdom);
1570 	return (done);
1571 }
1572 
1573 static void
1574 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain)
1575 {
1576 	int i;
1577 
1578 	/*
1579 	 * Shrink the zone bucket size to ensure that the per-CPU caches
1580 	 * don't grow too large.
1581 	 */
1582 	if (zone->uz_bucket_size > zone->uz_bucket_size_min)
1583 		zone->uz_bucket_size--;
1584 
1585 	if (domain != UMA_ANYDOMAIN &&
1586 	    (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) {
1587 		bucket_cache_reclaim_domain(zone, drain, true, domain);
1588 	} else {
1589 		for (i = 0; i < vm_ndomains; i++)
1590 			bucket_cache_reclaim_domain(zone, drain, true, i);
1591 	}
1592 }
1593 
1594 static void
1595 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
1596 {
1597 	uint8_t *mem;
1598 	size_t size;
1599 	int i;
1600 	uint8_t flags;
1601 
1602 	CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
1603 	    keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
1604 
1605 	mem = slab_data(slab, keg);
1606 	size = PAGE_SIZE * keg->uk_ppera;
1607 
1608 	kasan_mark_slab_valid(keg, mem);
1609 	if (keg->uk_fini != NULL) {
1610 		for (i = start - 1; i > -1; i--)
1611 #ifdef INVARIANTS
1612 		/*
1613 		 * trash_fini implies that dtor was trash_dtor. trash_fini
1614 		 * would check that memory hasn't been modified since free,
1615 		 * which executed trash_dtor.
1616 		 * That's why we need to run uma_dbg_kskip() check here,
1617 		 * albeit we don't make skip check for other init/fini
1618 		 * invocations.
1619 		 */
1620 		if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) ||
1621 		    keg->uk_fini != trash_fini)
1622 #endif
1623 			keg->uk_fini(slab_item(slab, keg, i), keg->uk_size);
1624 	}
1625 	flags = slab->us_flags;
1626 	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1627 		zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab),
1628 		    NULL, SKIP_NONE);
1629 	}
1630 	keg->uk_freef(mem, size, flags);
1631 	uma_total_dec(size);
1632 }
1633 
1634 static void
1635 keg_drain_domain(uma_keg_t keg, int domain)
1636 {
1637 	struct slabhead freeslabs;
1638 	uma_domain_t dom;
1639 	uma_slab_t slab, tmp;
1640 	uint32_t i, stofree, stokeep, partial;
1641 
1642 	dom = &keg->uk_domain[domain];
1643 	LIST_INIT(&freeslabs);
1644 
1645 	CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u",
1646 	    keg->uk_name, keg, domain, dom->ud_free_items);
1647 
1648 	KEG_LOCK(keg, domain);
1649 
1650 	/*
1651 	 * Are the free items in partially allocated slabs sufficient to meet
1652 	 * the reserve? If not, compute the number of fully free slabs that must
1653 	 * be kept.
1654 	 */
1655 	partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers;
1656 	if (partial < keg->uk_reserve) {
1657 		stokeep = min(dom->ud_free_slabs,
1658 		    howmany(keg->uk_reserve - partial, keg->uk_ipers));
1659 	} else {
1660 		stokeep = 0;
1661 	}
1662 	stofree = dom->ud_free_slabs - stokeep;
1663 
1664 	/*
1665 	 * Partition the free slabs into two sets: those that must be kept in
1666 	 * order to maintain the reserve, and those that may be released back to
1667 	 * the system.  Since one set may be much larger than the other,
1668 	 * populate the smaller of the two sets and swap them if necessary.
1669 	 */
1670 	for (i = min(stofree, stokeep); i > 0; i--) {
1671 		slab = LIST_FIRST(&dom->ud_free_slab);
1672 		LIST_REMOVE(slab, us_link);
1673 		LIST_INSERT_HEAD(&freeslabs, slab, us_link);
1674 	}
1675 	if (stofree > stokeep)
1676 		LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link);
1677 
1678 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) {
1679 		LIST_FOREACH(slab, &freeslabs, us_link)
1680 			UMA_HASH_REMOVE(&keg->uk_hash, slab);
1681 	}
1682 	dom->ud_free_items -= stofree * keg->uk_ipers;
1683 	dom->ud_free_slabs -= stofree;
1684 	dom->ud_pages -= stofree * keg->uk_ppera;
1685 	KEG_UNLOCK(keg, domain);
1686 
1687 	LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp)
1688 		keg_free_slab(keg, slab, keg->uk_ipers);
1689 }
1690 
1691 /*
1692  * Frees pages from a keg back to the system.  This is done on demand from
1693  * the pageout daemon.
1694  *
1695  * Returns nothing.
1696  */
1697 static void
1698 keg_drain(uma_keg_t keg, int domain)
1699 {
1700 	int i;
1701 
1702 	if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0)
1703 		return;
1704 	if (domain != UMA_ANYDOMAIN) {
1705 		keg_drain_domain(keg, domain);
1706 	} else {
1707 		for (i = 0; i < vm_ndomains; i++)
1708 			keg_drain_domain(keg, i);
1709 	}
1710 }
1711 
1712 static void
1713 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain)
1714 {
1715 	/*
1716 	 * Count active reclaim operations in order to interlock with
1717 	 * zone_dtor(), which removes the zone from global lists before
1718 	 * attempting to reclaim items itself.
1719 	 *
1720 	 * The zone may be destroyed while sleeping, so only zone_dtor() should
1721 	 * specify M_WAITOK.
1722 	 */
1723 	ZONE_LOCK(zone);
1724 	if (waitok == M_WAITOK) {
1725 		while (zone->uz_reclaimers > 0)
1726 			msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1);
1727 	}
1728 	zone->uz_reclaimers++;
1729 	ZONE_UNLOCK(zone);
1730 	bucket_cache_reclaim(zone, drain, domain);
1731 
1732 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1733 		keg_drain(zone->uz_keg, domain);
1734 	ZONE_LOCK(zone);
1735 	zone->uz_reclaimers--;
1736 	if (zone->uz_reclaimers == 0)
1737 		wakeup(zone);
1738 	ZONE_UNLOCK(zone);
1739 }
1740 
1741 /*
1742  * Allocate a new slab for a keg and inserts it into the partial slab list.
1743  * The keg should be unlocked on entry.  If the allocation succeeds it will
1744  * be locked on return.
1745  *
1746  * Arguments:
1747  *	flags   Wait flags for the item initialization routine
1748  *	aflags  Wait flags for the slab allocation
1749  *
1750  * Returns:
1751  *	The slab that was allocated or NULL if there is no memory and the
1752  *	caller specified M_NOWAIT.
1753  */
1754 static uma_slab_t
1755 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags,
1756     int aflags)
1757 {
1758 	uma_domain_t dom;
1759 	uma_slab_t slab;
1760 	unsigned long size;
1761 	uint8_t *mem;
1762 	uint8_t sflags;
1763 	int i;
1764 
1765 	KASSERT(domain >= 0 && domain < vm_ndomains,
1766 	    ("keg_alloc_slab: domain %d out of range", domain));
1767 
1768 	slab = NULL;
1769 	mem = NULL;
1770 	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1771 		uma_hash_slab_t hslab;
1772 		hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL,
1773 		    domain, aflags);
1774 		if (hslab == NULL)
1775 			goto fail;
1776 		slab = &hslab->uhs_slab;
1777 	}
1778 
1779 	/*
1780 	 * This reproduces the old vm_zone behavior of zero filling pages the
1781 	 * first time they are added to a zone.
1782 	 *
1783 	 * Malloced items are zeroed in uma_zalloc.
1784 	 */
1785 
1786 	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1787 		aflags |= M_ZERO;
1788 	else
1789 		aflags &= ~M_ZERO;
1790 
1791 	if (keg->uk_flags & UMA_ZONE_NODUMP)
1792 		aflags |= M_NODUMP;
1793 
1794 	/* zone is passed for legacy reasons. */
1795 	size = keg->uk_ppera * PAGE_SIZE;
1796 	mem = keg->uk_allocf(zone, size, domain, &sflags, aflags);
1797 	if (mem == NULL) {
1798 		if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1799 			zone_free_item(slabzone(keg->uk_ipers),
1800 			    slab_tohashslab(slab), NULL, SKIP_NONE);
1801 		goto fail;
1802 	}
1803 	uma_total_inc(size);
1804 
1805 	/* For HASH zones all pages go to the same uma_domain. */
1806 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
1807 		domain = 0;
1808 
1809 	kmsan_mark(mem, size,
1810 	    (aflags & M_ZERO) != 0 ? KMSAN_STATE_INITED : KMSAN_STATE_UNINIT);
1811 
1812 	/* Point the slab into the allocated memory */
1813 	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE))
1814 		slab = (uma_slab_t)(mem + keg->uk_pgoff);
1815 	else
1816 		slab_tohashslab(slab)->uhs_data = mem;
1817 
1818 	if (keg->uk_flags & UMA_ZFLAG_VTOSLAB)
1819 		for (i = 0; i < keg->uk_ppera; i++)
1820 			vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE),
1821 			    zone, slab);
1822 
1823 	slab->us_freecount = keg->uk_ipers;
1824 	slab->us_flags = sflags;
1825 	slab->us_domain = domain;
1826 
1827 	BIT_FILL(keg->uk_ipers, &slab->us_free);
1828 #ifdef INVARIANTS
1829 	BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg));
1830 #endif
1831 
1832 	if (keg->uk_init != NULL) {
1833 		for (i = 0; i < keg->uk_ipers; i++)
1834 			if (keg->uk_init(slab_item(slab, keg, i),
1835 			    keg->uk_size, flags) != 0)
1836 				break;
1837 		if (i != keg->uk_ipers) {
1838 			keg_free_slab(keg, slab, i);
1839 			goto fail;
1840 		}
1841 	}
1842 	kasan_mark_slab_invalid(keg, mem);
1843 	KEG_LOCK(keg, domain);
1844 
1845 	CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
1846 	    slab, keg->uk_name, keg);
1847 
1848 	if (keg->uk_flags & UMA_ZFLAG_HASH)
1849 		UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1850 
1851 	/*
1852 	 * If we got a slab here it's safe to mark it partially used
1853 	 * and return.  We assume that the caller is going to remove
1854 	 * at least one item.
1855 	 */
1856 	dom = &keg->uk_domain[domain];
1857 	LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
1858 	dom->ud_pages += keg->uk_ppera;
1859 	dom->ud_free_items += keg->uk_ipers;
1860 
1861 	return (slab);
1862 
1863 fail:
1864 	return (NULL);
1865 }
1866 
1867 /*
1868  * This function is intended to be used early on in place of page_alloc().  It
1869  * performs contiguous physical memory allocations and uses a bump allocator for
1870  * KVA, so is usable before the kernel map is initialized.
1871  */
1872 static void *
1873 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1874     int wait)
1875 {
1876 	vm_paddr_t pa;
1877 	vm_page_t m;
1878 	int i, pages;
1879 
1880 	pages = howmany(bytes, PAGE_SIZE);
1881 	KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
1882 
1883 	*pflag = UMA_SLAB_BOOT;
1884 	m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) |
1885 	    VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0,
1886 	    VM_MEMATTR_DEFAULT);
1887 	if (m == NULL)
1888 		return (NULL);
1889 
1890 	pa = VM_PAGE_TO_PHYS(m);
1891 	for (i = 0; i < pages; i++, pa += PAGE_SIZE) {
1892 #if defined(__aarch64__) || defined(__amd64__) || \
1893     defined(__riscv) || defined(__powerpc64__)
1894 		if ((wait & M_NODUMP) == 0)
1895 			dump_add_page(pa);
1896 #endif
1897 	}
1898 
1899 	/* Allocate KVA and indirectly advance bootmem. */
1900 	return ((void *)pmap_map(&bootmem, m->phys_addr,
1901 	    m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE));
1902 }
1903 
1904 static void
1905 startup_free(void *mem, vm_size_t bytes)
1906 {
1907 	vm_offset_t va;
1908 	vm_page_t m;
1909 
1910 	va = (vm_offset_t)mem;
1911 	m = PHYS_TO_VM_PAGE(pmap_kextract(va));
1912 
1913 	/*
1914 	 * startup_alloc() returns direct-mapped slabs on some platforms.  Avoid
1915 	 * unmapping ranges of the direct map.
1916 	 */
1917 	if (va >= bootstart && va + bytes <= bootmem)
1918 		pmap_remove(kernel_pmap, va, va + bytes);
1919 	for (; bytes != 0; bytes -= PAGE_SIZE, m++) {
1920 #if defined(__aarch64__) || defined(__amd64__) || \
1921     defined(__riscv) || defined(__powerpc64__)
1922 		dump_drop_page(VM_PAGE_TO_PHYS(m));
1923 #endif
1924 		vm_page_unwire_noq(m);
1925 		vm_page_free(m);
1926 	}
1927 }
1928 
1929 /*
1930  * Allocates a number of pages from the system
1931  *
1932  * Arguments:
1933  *	bytes  The number of bytes requested
1934  *	wait  Shall we wait?
1935  *
1936  * Returns:
1937  *	A pointer to the alloced memory or possibly
1938  *	NULL if M_NOWAIT is set.
1939  */
1940 static void *
1941 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1942     int wait)
1943 {
1944 	void *p;	/* Returned page */
1945 
1946 	*pflag = UMA_SLAB_KERNEL;
1947 	p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);
1948 
1949 	return (p);
1950 }
1951 
1952 static void *
1953 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1954     int wait)
1955 {
1956 	struct pglist alloctail;
1957 	vm_offset_t addr, zkva;
1958 	int cpu, flags;
1959 	vm_page_t p, p_next;
1960 #ifdef NUMA
1961 	struct pcpu *pc;
1962 #endif
1963 
1964 	MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
1965 
1966 	TAILQ_INIT(&alloctail);
1967 	flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait);
1968 	*pflag = UMA_SLAB_KERNEL;
1969 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
1970 		if (CPU_ABSENT(cpu)) {
1971 			p = vm_page_alloc_noobj(flags);
1972 		} else {
1973 #ifndef NUMA
1974 			p = vm_page_alloc_noobj(flags);
1975 #else
1976 			pc = pcpu_find(cpu);
1977 			if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain)))
1978 				p = NULL;
1979 			else
1980 				p = vm_page_alloc_noobj_domain(pc->pc_domain,
1981 				    flags);
1982 			if (__predict_false(p == NULL))
1983 				p = vm_page_alloc_noobj(flags);
1984 #endif
1985 		}
1986 		if (__predict_false(p == NULL))
1987 			goto fail;
1988 		TAILQ_INSERT_TAIL(&alloctail, p, listq);
1989 	}
1990 	if ((addr = kva_alloc(bytes)) == 0)
1991 		goto fail;
1992 	zkva = addr;
1993 	TAILQ_FOREACH(p, &alloctail, listq) {
1994 		pmap_qenter(zkva, &p, 1);
1995 		zkva += PAGE_SIZE;
1996 	}
1997 	return ((void*)addr);
1998 fail:
1999 	TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
2000 		vm_page_unwire_noq(p);
2001 		vm_page_free(p);
2002 	}
2003 	return (NULL);
2004 }
2005 
2006 /*
2007  * Allocates a number of pages not belonging to a VM object
2008  *
2009  * Arguments:
2010  *	bytes  The number of bytes requested
2011  *	wait   Shall we wait?
2012  *
2013  * Returns:
2014  *	A pointer to the alloced memory or possibly
2015  *	NULL if M_NOWAIT is set.
2016  */
2017 static void *
2018 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
2019     int wait)
2020 {
2021 	TAILQ_HEAD(, vm_page) alloctail;
2022 	u_long npages;
2023 	vm_offset_t retkva, zkva;
2024 	vm_page_t p, p_next;
2025 	uma_keg_t keg;
2026 	int req;
2027 
2028 	TAILQ_INIT(&alloctail);
2029 	keg = zone->uz_keg;
2030 	req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
2031 	if ((wait & M_WAITOK) != 0)
2032 		req |= VM_ALLOC_WAITOK;
2033 
2034 	npages = howmany(bytes, PAGE_SIZE);
2035 	while (npages > 0) {
2036 		p = vm_page_alloc_noobj_domain(domain, req);
2037 		if (p != NULL) {
2038 			/*
2039 			 * Since the page does not belong to an object, its
2040 			 * listq is unused.
2041 			 */
2042 			TAILQ_INSERT_TAIL(&alloctail, p, listq);
2043 			npages--;
2044 			continue;
2045 		}
2046 		/*
2047 		 * Page allocation failed, free intermediate pages and
2048 		 * exit.
2049 		 */
2050 		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
2051 			vm_page_unwire_noq(p);
2052 			vm_page_free(p);
2053 		}
2054 		return (NULL);
2055 	}
2056 	*flags = UMA_SLAB_PRIV;
2057 	zkva = keg->uk_kva +
2058 	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
2059 	retkva = zkva;
2060 	TAILQ_FOREACH(p, &alloctail, listq) {
2061 		pmap_qenter(zkva, &p, 1);
2062 		zkva += PAGE_SIZE;
2063 	}
2064 
2065 	return ((void *)retkva);
2066 }
2067 
2068 /*
2069  * Allocate physically contiguous pages.
2070  */
2071 static void *
2072 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
2073     int wait)
2074 {
2075 
2076 	*pflag = UMA_SLAB_KERNEL;
2077 	return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
2078 	    bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT));
2079 }
2080 
2081 /*
2082  * Frees a number of pages to the system
2083  *
2084  * Arguments:
2085  *	mem   A pointer to the memory to be freed
2086  *	size  The size of the memory being freed
2087  *	flags The original p->us_flags field
2088  *
2089  * Returns:
2090  *	Nothing
2091  */
2092 static void
2093 page_free(void *mem, vm_size_t size, uint8_t flags)
2094 {
2095 
2096 	if ((flags & UMA_SLAB_BOOT) != 0) {
2097 		startup_free(mem, size);
2098 		return;
2099 	}
2100 
2101 	KASSERT((flags & UMA_SLAB_KERNEL) != 0,
2102 	    ("UMA: page_free used with invalid flags %x", flags));
2103 
2104 	kmem_free((vm_offset_t)mem, size);
2105 }
2106 
2107 /*
2108  * Frees pcpu zone allocations
2109  *
2110  * Arguments:
2111  *	mem   A pointer to the memory to be freed
2112  *	size  The size of the memory being freed
2113  *	flags The original p->us_flags field
2114  *
2115  * Returns:
2116  *	Nothing
2117  */
2118 static void
2119 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
2120 {
2121 	vm_offset_t sva, curva;
2122 	vm_paddr_t paddr;
2123 	vm_page_t m;
2124 
2125 	MPASS(size == (mp_maxid+1)*PAGE_SIZE);
2126 
2127 	if ((flags & UMA_SLAB_BOOT) != 0) {
2128 		startup_free(mem, size);
2129 		return;
2130 	}
2131 
2132 	sva = (vm_offset_t)mem;
2133 	for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
2134 		paddr = pmap_kextract(curva);
2135 		m = PHYS_TO_VM_PAGE(paddr);
2136 		vm_page_unwire_noq(m);
2137 		vm_page_free(m);
2138 	}
2139 	pmap_qremove(sva, size >> PAGE_SHIFT);
2140 	kva_free(sva, size);
2141 }
2142 
2143 /*
2144  * Zero fill initializer
2145  *
2146  * Arguments/Returns follow uma_init specifications
2147  */
2148 static int
2149 zero_init(void *mem, int size, int flags)
2150 {
2151 	bzero(mem, size);
2152 	return (0);
2153 }
2154 
2155 #ifdef INVARIANTS
2156 static struct noslabbits *
2157 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg)
2158 {
2159 
2160 	return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers)));
2161 }
2162 #endif
2163 
2164 /*
2165  * Actual size of embedded struct slab (!OFFPAGE).
2166  */
2167 static size_t
2168 slab_sizeof(int nitems)
2169 {
2170 	size_t s;
2171 
2172 	s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS;
2173 	return (roundup(s, UMA_ALIGN_PTR + 1));
2174 }
2175 
2176 #define	UMA_FIXPT_SHIFT	31
2177 #define	UMA_FRAC_FIXPT(n, d)						\
2178 	((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d)))
2179 #define	UMA_FIXPT_PCT(f)						\
2180 	((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT))
2181 #define	UMA_PCT_FIXPT(pct)	UMA_FRAC_FIXPT((pct), 100)
2182 #define	UMA_MIN_EFF	UMA_PCT_FIXPT(100 - UMA_MAX_WASTE)
2183 
2184 /*
2185  * Compute the number of items that will fit in a slab.  If hdr is true, the
2186  * item count may be limited to provide space in the slab for an inline slab
2187  * header.  Otherwise, all slab space will be provided for item storage.
2188  */
2189 static u_int
2190 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr)
2191 {
2192 	u_int ipers;
2193 	u_int padpi;
2194 
2195 	/* The padding between items is not needed after the last item. */
2196 	padpi = rsize - size;
2197 
2198 	if (hdr) {
2199 		/*
2200 		 * Start with the maximum item count and remove items until
2201 		 * the slab header first alongside the allocatable memory.
2202 		 */
2203 		for (ipers = MIN(SLAB_MAX_SETSIZE,
2204 		    (slabsize + padpi - slab_sizeof(1)) / rsize);
2205 		    ipers > 0 &&
2206 		    ipers * rsize - padpi + slab_sizeof(ipers) > slabsize;
2207 		    ipers--)
2208 			continue;
2209 	} else {
2210 		ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE);
2211 	}
2212 
2213 	return (ipers);
2214 }
2215 
2216 struct keg_layout_result {
2217 	u_int format;
2218 	u_int slabsize;
2219 	u_int ipers;
2220 	u_int eff;
2221 };
2222 
2223 static void
2224 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt,
2225     struct keg_layout_result *kl)
2226 {
2227 	u_int total;
2228 
2229 	kl->format = fmt;
2230 	kl->slabsize = slabsize;
2231 
2232 	/* Handle INTERNAL as inline with an extra page. */
2233 	if ((fmt & UMA_ZFLAG_INTERNAL) != 0) {
2234 		kl->format &= ~UMA_ZFLAG_INTERNAL;
2235 		kl->slabsize += PAGE_SIZE;
2236 	}
2237 
2238 	kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize,
2239 	    (fmt & UMA_ZFLAG_OFFPAGE) == 0);
2240 
2241 	/* Account for memory used by an offpage slab header. */
2242 	total = kl->slabsize;
2243 	if ((fmt & UMA_ZFLAG_OFFPAGE) != 0)
2244 		total += slabzone(kl->ipers)->uz_keg->uk_rsize;
2245 
2246 	kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total);
2247 }
2248 
2249 /*
2250  * Determine the format of a uma keg.  This determines where the slab header
2251  * will be placed (inline or offpage) and calculates ipers, rsize, and ppera.
2252  *
2253  * Arguments
2254  *	keg  The zone we should initialize
2255  *
2256  * Returns
2257  *	Nothing
2258  */
2259 static void
2260 keg_layout(uma_keg_t keg)
2261 {
2262 	struct keg_layout_result kl = {}, kl_tmp;
2263 	u_int fmts[2];
2264 	u_int alignsize;
2265 	u_int nfmt;
2266 	u_int pages;
2267 	u_int rsize;
2268 	u_int slabsize;
2269 	u_int i, j;
2270 
2271 	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
2272 	    (keg->uk_size <= UMA_PCPU_ALLOC_SIZE &&
2273 	     (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0),
2274 	    ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b",
2275 	     __func__, keg->uk_name, keg->uk_size, keg->uk_flags,
2276 	     PRINT_UMA_ZFLAGS));
2277 	KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 ||
2278 	    (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0,
2279 	    ("%s: incompatible flags 0x%b", __func__, keg->uk_flags,
2280 	     PRINT_UMA_ZFLAGS));
2281 
2282 	alignsize = keg->uk_align + 1;
2283 #ifdef KASAN
2284 	/*
2285 	 * ASAN requires that each allocation be aligned to the shadow map
2286 	 * scale factor.
2287 	 */
2288 	if (alignsize < KASAN_SHADOW_SCALE)
2289 		alignsize = KASAN_SHADOW_SCALE;
2290 #endif
2291 
2292 	/*
2293 	 * Calculate the size of each allocation (rsize) according to
2294 	 * alignment.  If the requested size is smaller than we have
2295 	 * allocation bits for we round it up.
2296 	 */
2297 	rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT);
2298 	rsize = roundup2(rsize, alignsize);
2299 
2300 	if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) {
2301 		/*
2302 		 * We want one item to start on every align boundary in a page.
2303 		 * To do this we will span pages.  We will also extend the item
2304 		 * by the size of align if it is an even multiple of align.
2305 		 * Otherwise, it would fall on the same boundary every time.
2306 		 */
2307 		if ((rsize & alignsize) == 0)
2308 			rsize += alignsize;
2309 		slabsize = rsize * (PAGE_SIZE / alignsize);
2310 		slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE);
2311 		slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE);
2312 		slabsize = round_page(slabsize);
2313 	} else {
2314 		/*
2315 		 * Start with a slab size of as many pages as it takes to
2316 		 * represent a single item.  We will try to fit as many
2317 		 * additional items into the slab as possible.
2318 		 */
2319 		slabsize = round_page(keg->uk_size);
2320 	}
2321 
2322 	/* Build a list of all of the available formats for this keg. */
2323 	nfmt = 0;
2324 
2325 	/* Evaluate an inline slab layout. */
2326 	if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0)
2327 		fmts[nfmt++] = 0;
2328 
2329 	/* TODO: vm_page-embedded slab. */
2330 
2331 	/*
2332 	 * We can't do OFFPAGE if we're internal or if we've been
2333 	 * asked to not go to the VM for buckets.  If we do this we
2334 	 * may end up going to the VM for slabs which we do not want
2335 	 * to do if we're UMA_ZONE_VM, which clearly forbids it.
2336 	 * In those cases, evaluate a pseudo-format called INTERNAL
2337 	 * which has an inline slab header and one extra page to
2338 	 * guarantee that it fits.
2339 	 *
2340 	 * Otherwise, see if using an OFFPAGE slab will improve our
2341 	 * efficiency.
2342 	 */
2343 	if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0)
2344 		fmts[nfmt++] = UMA_ZFLAG_INTERNAL;
2345 	else
2346 		fmts[nfmt++] = UMA_ZFLAG_OFFPAGE;
2347 
2348 	/*
2349 	 * Choose a slab size and format which satisfy the minimum efficiency.
2350 	 * Prefer the smallest slab size that meets the constraints.
2351 	 *
2352 	 * Start with a minimum slab size, to accommodate CACHESPREAD.  Then,
2353 	 * for small items (up to PAGE_SIZE), the iteration increment is one
2354 	 * page; and for large items, the increment is one item.
2355 	 */
2356 	i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize);
2357 	KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u",
2358 	    keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize,
2359 	    rsize, i));
2360 	for ( ; ; i++) {
2361 		slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) :
2362 		    round_page(rsize * (i - 1) + keg->uk_size);
2363 
2364 		for (j = 0; j < nfmt; j++) {
2365 			/* Only if we have no viable format yet. */
2366 			if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 &&
2367 			    kl.ipers > 0)
2368 				continue;
2369 
2370 			keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp);
2371 			if (kl_tmp.eff <= kl.eff)
2372 				continue;
2373 
2374 			kl = kl_tmp;
2375 
2376 			CTR6(KTR_UMA, "keg %s layout: format %#x "
2377 			    "(ipers %u * rsize %u) / slabsize %#x = %u%% eff",
2378 			    keg->uk_name, kl.format, kl.ipers, rsize,
2379 			    kl.slabsize, UMA_FIXPT_PCT(kl.eff));
2380 
2381 			/* Stop when we reach the minimum efficiency. */
2382 			if (kl.eff >= UMA_MIN_EFF)
2383 				break;
2384 		}
2385 
2386 		if (kl.eff >= UMA_MIN_EFF || !multipage_slabs ||
2387 		    slabsize >= SLAB_MAX_SETSIZE * rsize ||
2388 		    (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0)
2389 			break;
2390 	}
2391 
2392 	pages = atop(kl.slabsize);
2393 	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
2394 		pages *= mp_maxid + 1;
2395 
2396 	keg->uk_rsize = rsize;
2397 	keg->uk_ipers = kl.ipers;
2398 	keg->uk_ppera = pages;
2399 	keg->uk_flags |= kl.format;
2400 
2401 	/*
2402 	 * How do we find the slab header if it is offpage or if not all item
2403 	 * start addresses are in the same page?  We could solve the latter
2404 	 * case with vaddr alignment, but we don't.
2405 	 */
2406 	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 ||
2407 	    (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) {
2408 		if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0)
2409 			keg->uk_flags |= UMA_ZFLAG_HASH;
2410 		else
2411 			keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2412 	}
2413 
2414 	CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u",
2415 	    __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers,
2416 	    pages);
2417 	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE,
2418 	    ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__,
2419 	     keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize,
2420 	     keg->uk_ipers, pages));
2421 }
2422 
2423 /*
2424  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
2425  * the keg onto the global keg list.
2426  *
2427  * Arguments/Returns follow uma_ctor specifications
2428  *	udata  Actually uma_kctor_args
2429  */
2430 static int
2431 keg_ctor(void *mem, int size, void *udata, int flags)
2432 {
2433 	struct uma_kctor_args *arg = udata;
2434 	uma_keg_t keg = mem;
2435 	uma_zone_t zone;
2436 	int i;
2437 
2438 	bzero(keg, size);
2439 	keg->uk_size = arg->size;
2440 	keg->uk_init = arg->uminit;
2441 	keg->uk_fini = arg->fini;
2442 	keg->uk_align = arg->align;
2443 	keg->uk_reserve = 0;
2444 	keg->uk_flags = arg->flags;
2445 
2446 	/*
2447 	 * We use a global round-robin policy by default.  Zones with
2448 	 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which
2449 	 * case the iterator is never run.
2450 	 */
2451 	keg->uk_dr.dr_policy = DOMAINSET_RR();
2452 	keg->uk_dr.dr_iter = 0;
2453 
2454 	/*
2455 	 * The primary zone is passed to us at keg-creation time.
2456 	 */
2457 	zone = arg->zone;
2458 	keg->uk_name = zone->uz_name;
2459 
2460 	if (arg->flags & UMA_ZONE_ZINIT)
2461 		keg->uk_init = zero_init;
2462 
2463 	if (arg->flags & UMA_ZONE_MALLOC)
2464 		keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2465 
2466 #ifndef SMP
2467 	keg->uk_flags &= ~UMA_ZONE_PCPU;
2468 #endif
2469 
2470 	keg_layout(keg);
2471 
2472 	/*
2473 	 * Use a first-touch NUMA policy for kegs that pmap_extract() will
2474 	 * work on.  Use round-robin for everything else.
2475 	 *
2476 	 * Zones may override the default by specifying either.
2477 	 */
2478 #ifdef NUMA
2479 	if ((keg->uk_flags &
2480 	    (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0)
2481 		keg->uk_flags |= UMA_ZONE_FIRSTTOUCH;
2482 	else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2483 		keg->uk_flags |= UMA_ZONE_ROUNDROBIN;
2484 #endif
2485 
2486 	/*
2487 	 * If we haven't booted yet we need allocations to go through the
2488 	 * startup cache until the vm is ready.
2489 	 */
2490 #ifdef UMA_MD_SMALL_ALLOC
2491 	if (keg->uk_ppera == 1)
2492 		keg->uk_allocf = uma_small_alloc;
2493 	else
2494 #endif
2495 	if (booted < BOOT_KVA)
2496 		keg->uk_allocf = startup_alloc;
2497 	else if (keg->uk_flags & UMA_ZONE_PCPU)
2498 		keg->uk_allocf = pcpu_page_alloc;
2499 	else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1)
2500 		keg->uk_allocf = contig_alloc;
2501 	else
2502 		keg->uk_allocf = page_alloc;
2503 #ifdef UMA_MD_SMALL_ALLOC
2504 	if (keg->uk_ppera == 1)
2505 		keg->uk_freef = uma_small_free;
2506 	else
2507 #endif
2508 	if (keg->uk_flags & UMA_ZONE_PCPU)
2509 		keg->uk_freef = pcpu_page_free;
2510 	else
2511 		keg->uk_freef = page_free;
2512 
2513 	/*
2514 	 * Initialize keg's locks.
2515 	 */
2516 	for (i = 0; i < vm_ndomains; i++)
2517 		KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS));
2518 
2519 	/*
2520 	 * If we're putting the slab header in the actual page we need to
2521 	 * figure out where in each page it goes.  See slab_sizeof
2522 	 * definition.
2523 	 */
2524 	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) {
2525 		size_t shsize;
2526 
2527 		shsize = slab_sizeof(keg->uk_ipers);
2528 		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize;
2529 		/*
2530 		 * The only way the following is possible is if with our
2531 		 * UMA_ALIGN_PTR adjustments we are now bigger than
2532 		 * UMA_SLAB_SIZE.  I haven't checked whether this is
2533 		 * mathematically possible for all cases, so we make
2534 		 * sure here anyway.
2535 		 */
2536 		KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera,
2537 		    ("zone %s ipers %d rsize %d size %d slab won't fit",
2538 		    zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size));
2539 	}
2540 
2541 	if (keg->uk_flags & UMA_ZFLAG_HASH)
2542 		hash_alloc(&keg->uk_hash, 0);
2543 
2544 	CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone);
2545 
2546 	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
2547 
2548 	rw_wlock(&uma_rwlock);
2549 	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
2550 	rw_wunlock(&uma_rwlock);
2551 	return (0);
2552 }
2553 
2554 static void
2555 zone_kva_available(uma_zone_t zone, void *unused)
2556 {
2557 	uma_keg_t keg;
2558 
2559 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
2560 		return;
2561 	KEG_GET(zone, keg);
2562 
2563 	if (keg->uk_allocf == startup_alloc) {
2564 		/* Switch to the real allocator. */
2565 		if (keg->uk_flags & UMA_ZONE_PCPU)
2566 			keg->uk_allocf = pcpu_page_alloc;
2567 		else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 &&
2568 		    keg->uk_ppera > 1)
2569 			keg->uk_allocf = contig_alloc;
2570 		else
2571 			keg->uk_allocf = page_alloc;
2572 	}
2573 }
2574 
2575 static void
2576 zone_alloc_counters(uma_zone_t zone, void *unused)
2577 {
2578 
2579 	zone->uz_allocs = counter_u64_alloc(M_WAITOK);
2580 	zone->uz_frees = counter_u64_alloc(M_WAITOK);
2581 	zone->uz_fails = counter_u64_alloc(M_WAITOK);
2582 	zone->uz_xdomain = counter_u64_alloc(M_WAITOK);
2583 }
2584 
2585 static void
2586 zone_alloc_sysctl(uma_zone_t zone, void *unused)
2587 {
2588 	uma_zone_domain_t zdom;
2589 	uma_domain_t dom;
2590 	uma_keg_t keg;
2591 	struct sysctl_oid *oid, *domainoid;
2592 	int domains, i, cnt;
2593 	static const char *nokeg = "cache zone";
2594 	char *c;
2595 
2596 	/*
2597 	 * Make a sysctl safe copy of the zone name by removing
2598 	 * any special characters and handling dups by appending
2599 	 * an index.
2600 	 */
2601 	if (zone->uz_namecnt != 0) {
2602 		/* Count the number of decimal digits and '_' separator. */
2603 		for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++)
2604 			cnt /= 10;
2605 		zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1,
2606 		    M_UMA, M_WAITOK);
2607 		sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name,
2608 		    zone->uz_namecnt);
2609 	} else
2610 		zone->uz_ctlname = strdup(zone->uz_name, M_UMA);
2611 	for (c = zone->uz_ctlname; *c != '\0'; c++)
2612 		if (strchr("./\\ -", *c) != NULL)
2613 			*c = '_';
2614 
2615 	/*
2616 	 * Basic parameters at the root.
2617 	 */
2618 	zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma),
2619 	    OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2620 	oid = zone->uz_oid;
2621 	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2622 	    "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size");
2623 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2624 	    "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE,
2625 	    zone, 0, sysctl_handle_uma_zone_flags, "A",
2626 	    "Allocator configuration flags");
2627 	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2628 	    "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0,
2629 	    "Desired per-cpu cache size");
2630 	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2631 	    "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0,
2632 	    "Maximum allowed per-cpu cache size");
2633 
2634 	/*
2635 	 * keg if present.
2636 	 */
2637 	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
2638 		domains = vm_ndomains;
2639 	else
2640 		domains = 1;
2641 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2642 	    "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2643 	keg = zone->uz_keg;
2644 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) {
2645 		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2646 		    "name", CTLFLAG_RD, keg->uk_name, "Keg name");
2647 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2648 		    "rsize", CTLFLAG_RD, &keg->uk_rsize, 0,
2649 		    "Real object size with alignment");
2650 		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2651 		    "ppera", CTLFLAG_RD, &keg->uk_ppera, 0,
2652 		    "pages per-slab allocation");
2653 		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2654 		    "ipers", CTLFLAG_RD, &keg->uk_ipers, 0,
2655 		    "items available per-slab");
2656 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2657 		    "align", CTLFLAG_RD, &keg->uk_align, 0,
2658 		    "item alignment mask");
2659 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2660 		    "reserve", CTLFLAG_RD, &keg->uk_reserve, 0,
2661 		    "number of reserved items");
2662 		SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2663 		    "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2664 		    keg, 0, sysctl_handle_uma_slab_efficiency, "I",
2665 		    "Slab utilization (100 - internal fragmentation %)");
2666 		domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid),
2667 		    OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2668 		for (i = 0; i < domains; i++) {
2669 			dom = &keg->uk_domain[i];
2670 			oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2671 			    OID_AUTO, VM_DOMAIN(i)->vmd_name,
2672 			    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2673 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2674 			    "pages", CTLFLAG_RD, &dom->ud_pages, 0,
2675 			    "Total pages currently allocated from VM");
2676 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2677 			    "free_items", CTLFLAG_RD, &dom->ud_free_items, 0,
2678 			    "Items free in the slab layer");
2679 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2680 			    "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0,
2681 			    "Unused slabs");
2682 		}
2683 	} else
2684 		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2685 		    "name", CTLFLAG_RD, nokeg, "Keg name");
2686 
2687 	/*
2688 	 * Information about zone limits.
2689 	 */
2690 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2691 	    "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2692 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2693 	    "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2694 	    zone, 0, sysctl_handle_uma_zone_items, "QU",
2695 	    "Current number of allocated items if limit is set");
2696 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2697 	    "max_items", CTLFLAG_RD, &zone->uz_max_items, 0,
2698 	    "Maximum number of allocated and cached items");
2699 	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2700 	    "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0,
2701 	    "Number of threads sleeping at limit");
2702 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2703 	    "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0,
2704 	    "Total zone limit sleeps");
2705 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2706 	    "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0,
2707 	    "Maximum number of items in each domain's bucket cache");
2708 
2709 	/*
2710 	 * Per-domain zone information.
2711 	 */
2712 	domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid),
2713 	    OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2714 	for (i = 0; i < domains; i++) {
2715 		zdom = ZDOM_GET(zone, i);
2716 		oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2717 		    OID_AUTO, VM_DOMAIN(i)->vmd_name,
2718 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2719 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2720 		    "nitems", CTLFLAG_RD, &zdom->uzd_nitems,
2721 		    "number of items in this domain");
2722 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2723 		    "imax", CTLFLAG_RD, &zdom->uzd_imax,
2724 		    "maximum item count in this period");
2725 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2726 		    "imin", CTLFLAG_RD, &zdom->uzd_imin,
2727 		    "minimum item count in this period");
2728 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2729 		    "bimin", CTLFLAG_RD, &zdom->uzd_bimin,
2730 		    "Minimum item count in this batch");
2731 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2732 		    "wss", CTLFLAG_RD, &zdom->uzd_wss,
2733 		    "Working set size");
2734 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2735 		    "limin", CTLFLAG_RD, &zdom->uzd_limin,
2736 		    "Long time minimum item count");
2737 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2738 		    "timin", CTLFLAG_RD, &zdom->uzd_timin, 0,
2739 		    "Time since zero long time minimum item count");
2740 	}
2741 
2742 	/*
2743 	 * General statistics.
2744 	 */
2745 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2746 	    "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2747 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2748 	    "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2749 	    zone, 1, sysctl_handle_uma_zone_cur, "I",
2750 	    "Current number of allocated items");
2751 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2752 	    "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2753 	    zone, 0, sysctl_handle_uma_zone_allocs, "QU",
2754 	    "Total allocation calls");
2755 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2756 	    "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2757 	    zone, 0, sysctl_handle_uma_zone_frees, "QU",
2758 	    "Total free calls");
2759 	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2760 	    "fails", CTLFLAG_RD, &zone->uz_fails,
2761 	    "Number of allocation failures");
2762 	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2763 	    "xdomain", CTLFLAG_RD, &zone->uz_xdomain,
2764 	    "Free calls from the wrong domain");
2765 }
2766 
2767 struct uma_zone_count {
2768 	const char	*name;
2769 	int		count;
2770 };
2771 
2772 static void
2773 zone_count(uma_zone_t zone, void *arg)
2774 {
2775 	struct uma_zone_count *cnt;
2776 
2777 	cnt = arg;
2778 	/*
2779 	 * Some zones are rapidly created with identical names and
2780 	 * destroyed out of order.  This can lead to gaps in the count.
2781 	 * Use one greater than the maximum observed for this name.
2782 	 */
2783 	if (strcmp(zone->uz_name, cnt->name) == 0)
2784 		cnt->count = MAX(cnt->count,
2785 		    zone->uz_namecnt + 1);
2786 }
2787 
2788 static void
2789 zone_update_caches(uma_zone_t zone)
2790 {
2791 	int i;
2792 
2793 	for (i = 0; i <= mp_maxid; i++) {
2794 		cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size);
2795 		cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags);
2796 	}
2797 }
2798 
2799 /*
2800  * Zone header ctor.  This initializes all fields, locks, etc.
2801  *
2802  * Arguments/Returns follow uma_ctor specifications
2803  *	udata  Actually uma_zctor_args
2804  */
2805 static int
2806 zone_ctor(void *mem, int size, void *udata, int flags)
2807 {
2808 	struct uma_zone_count cnt;
2809 	struct uma_zctor_args *arg = udata;
2810 	uma_zone_domain_t zdom;
2811 	uma_zone_t zone = mem;
2812 	uma_zone_t z;
2813 	uma_keg_t keg;
2814 	int i;
2815 
2816 	bzero(zone, size);
2817 	zone->uz_name = arg->name;
2818 	zone->uz_ctor = arg->ctor;
2819 	zone->uz_dtor = arg->dtor;
2820 	zone->uz_init = NULL;
2821 	zone->uz_fini = NULL;
2822 	zone->uz_sleeps = 0;
2823 	zone->uz_bucket_size = 0;
2824 	zone->uz_bucket_size_min = 0;
2825 	zone->uz_bucket_size_max = BUCKET_MAX;
2826 	zone->uz_flags = (arg->flags & UMA_ZONE_SMR);
2827 	zone->uz_warning = NULL;
2828 	/* The domain structures follow the cpu structures. */
2829 	zone->uz_bucket_max = ULONG_MAX;
2830 	timevalclear(&zone->uz_ratecheck);
2831 
2832 	/* Count the number of duplicate names. */
2833 	cnt.name = arg->name;
2834 	cnt.count = 0;
2835 	zone_foreach(zone_count, &cnt);
2836 	zone->uz_namecnt = cnt.count;
2837 	ZONE_CROSS_LOCK_INIT(zone);
2838 
2839 	for (i = 0; i < vm_ndomains; i++) {
2840 		zdom = ZDOM_GET(zone, i);
2841 		ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS));
2842 		STAILQ_INIT(&zdom->uzd_buckets);
2843 	}
2844 
2845 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
2846 	if (arg->uminit == trash_init && arg->fini == trash_fini)
2847 		zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR;
2848 #elif defined(KASAN)
2849 	if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0)
2850 		arg->flags |= UMA_ZONE_NOKASAN;
2851 #endif
2852 
2853 	/*
2854 	 * This is a pure cache zone, no kegs.
2855 	 */
2856 	if (arg->import) {
2857 		KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0,
2858 		    ("zone_ctor: Import specified for non-cache zone."));
2859 		zone->uz_flags = arg->flags;
2860 		zone->uz_size = arg->size;
2861 		zone->uz_import = arg->import;
2862 		zone->uz_release = arg->release;
2863 		zone->uz_arg = arg->arg;
2864 #ifdef NUMA
2865 		/*
2866 		 * Cache zones are round-robin unless a policy is
2867 		 * specified because they may have incompatible
2868 		 * constraints.
2869 		 */
2870 		if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2871 			zone->uz_flags |= UMA_ZONE_ROUNDROBIN;
2872 #endif
2873 		rw_wlock(&uma_rwlock);
2874 		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
2875 		rw_wunlock(&uma_rwlock);
2876 		goto out;
2877 	}
2878 
2879 	/*
2880 	 * Use the regular zone/keg/slab allocator.
2881 	 */
2882 	zone->uz_import = zone_import;
2883 	zone->uz_release = zone_release;
2884 	zone->uz_arg = zone;
2885 	keg = arg->keg;
2886 
2887 	if (arg->flags & UMA_ZONE_SECONDARY) {
2888 		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
2889 		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
2890 		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
2891 		zone->uz_init = arg->uminit;
2892 		zone->uz_fini = arg->fini;
2893 		zone->uz_flags |= UMA_ZONE_SECONDARY;
2894 		rw_wlock(&uma_rwlock);
2895 		ZONE_LOCK(zone);
2896 		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
2897 			if (LIST_NEXT(z, uz_link) == NULL) {
2898 				LIST_INSERT_AFTER(z, zone, uz_link);
2899 				break;
2900 			}
2901 		}
2902 		ZONE_UNLOCK(zone);
2903 		rw_wunlock(&uma_rwlock);
2904 	} else if (keg == NULL) {
2905 		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
2906 		    arg->align, arg->flags)) == NULL)
2907 			return (ENOMEM);
2908 	} else {
2909 		struct uma_kctor_args karg;
2910 		int error;
2911 
2912 		/* We should only be here from uma_startup() */
2913 		karg.size = arg->size;
2914 		karg.uminit = arg->uminit;
2915 		karg.fini = arg->fini;
2916 		karg.align = arg->align;
2917 		karg.flags = (arg->flags & ~UMA_ZONE_SMR);
2918 		karg.zone = zone;
2919 		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
2920 		    flags);
2921 		if (error)
2922 			return (error);
2923 	}
2924 
2925 	/* Inherit properties from the keg. */
2926 	zone->uz_keg = keg;
2927 	zone->uz_size = keg->uk_size;
2928 	zone->uz_flags |= (keg->uk_flags &
2929 	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
2930 
2931 out:
2932 	if (booted >= BOOT_PCPU) {
2933 		zone_alloc_counters(zone, NULL);
2934 		if (booted >= BOOT_RUNNING)
2935 			zone_alloc_sysctl(zone, NULL);
2936 	} else {
2937 		zone->uz_allocs = EARLY_COUNTER;
2938 		zone->uz_frees = EARLY_COUNTER;
2939 		zone->uz_fails = EARLY_COUNTER;
2940 	}
2941 
2942 	/* Caller requests a private SMR context. */
2943 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
2944 		zone->uz_smr = smr_create(zone->uz_name, 0, 0);
2945 
2946 	KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
2947 	    (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
2948 	    ("Invalid zone flag combination"));
2949 	if (arg->flags & UMA_ZFLAG_INTERNAL)
2950 		zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
2951 	if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
2952 		zone->uz_bucket_size = BUCKET_MAX;
2953 	else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
2954 		zone->uz_bucket_size = 0;
2955 	else
2956 		zone->uz_bucket_size = bucket_select(zone->uz_size);
2957 	zone->uz_bucket_size_min = zone->uz_bucket_size;
2958 	if (zone->uz_dtor != NULL || zone->uz_ctor != NULL)
2959 		zone->uz_flags |= UMA_ZFLAG_CTORDTOR;
2960 	zone_update_caches(zone);
2961 
2962 	return (0);
2963 }
2964 
2965 /*
2966  * Keg header dtor.  This frees all data, destroys locks, frees the hash
2967  * table and removes the keg from the global list.
2968  *
2969  * Arguments/Returns follow uma_dtor specifications
2970  *	udata  unused
2971  */
2972 static void
2973 keg_dtor(void *arg, int size, void *udata)
2974 {
2975 	uma_keg_t keg;
2976 	uint32_t free, pages;
2977 	int i;
2978 
2979 	keg = (uma_keg_t)arg;
2980 	free = pages = 0;
2981 	for (i = 0; i < vm_ndomains; i++) {
2982 		free += keg->uk_domain[i].ud_free_items;
2983 		pages += keg->uk_domain[i].ud_pages;
2984 		KEG_LOCK_FINI(keg, i);
2985 	}
2986 	if (pages != 0)
2987 		printf("Freed UMA keg (%s) was not empty (%u items). "
2988 		    " Lost %u pages of memory.\n",
2989 		    keg->uk_name ? keg->uk_name : "",
2990 		    pages / keg->uk_ppera * keg->uk_ipers - free, pages);
2991 
2992 	hash_free(&keg->uk_hash);
2993 }
2994 
2995 /*
2996  * Zone header dtor.
2997  *
2998  * Arguments/Returns follow uma_dtor specifications
2999  *	udata  unused
3000  */
3001 static void
3002 zone_dtor(void *arg, int size, void *udata)
3003 {
3004 	uma_zone_t zone;
3005 	uma_keg_t keg;
3006 	int i;
3007 
3008 	zone = (uma_zone_t)arg;
3009 
3010 	sysctl_remove_oid(zone->uz_oid, 1, 1);
3011 
3012 	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
3013 		cache_drain(zone);
3014 
3015 	rw_wlock(&uma_rwlock);
3016 	LIST_REMOVE(zone, uz_link);
3017 	rw_wunlock(&uma_rwlock);
3018 	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3019 		keg = zone->uz_keg;
3020 		keg->uk_reserve = 0;
3021 	}
3022 	zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true);
3023 
3024 	/*
3025 	 * We only destroy kegs from non secondary/non cache zones.
3026 	 */
3027 	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3028 		keg = zone->uz_keg;
3029 		rw_wlock(&uma_rwlock);
3030 		LIST_REMOVE(keg, uk_link);
3031 		rw_wunlock(&uma_rwlock);
3032 		zone_free_item(kegs, keg, NULL, SKIP_NONE);
3033 	}
3034 	counter_u64_free(zone->uz_allocs);
3035 	counter_u64_free(zone->uz_frees);
3036 	counter_u64_free(zone->uz_fails);
3037 	counter_u64_free(zone->uz_xdomain);
3038 	free(zone->uz_ctlname, M_UMA);
3039 	for (i = 0; i < vm_ndomains; i++)
3040 		ZDOM_LOCK_FINI(ZDOM_GET(zone, i));
3041 	ZONE_CROSS_LOCK_FINI(zone);
3042 }
3043 
3044 static void
3045 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3046 {
3047 	uma_keg_t keg;
3048 	uma_zone_t zone;
3049 
3050 	LIST_FOREACH(keg, &uma_kegs, uk_link) {
3051 		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
3052 			zfunc(zone, arg);
3053 	}
3054 	LIST_FOREACH(zone, &uma_cachezones, uz_link)
3055 		zfunc(zone, arg);
3056 }
3057 
3058 /*
3059  * Traverses every zone in the system and calls a callback
3060  *
3061  * Arguments:
3062  *	zfunc  A pointer to a function which accepts a zone
3063  *		as an argument.
3064  *
3065  * Returns:
3066  *	Nothing
3067  */
3068 static void
3069 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3070 {
3071 
3072 	rw_rlock(&uma_rwlock);
3073 	zone_foreach_unlocked(zfunc, arg);
3074 	rw_runlock(&uma_rwlock);
3075 }
3076 
3077 /*
3078  * Initialize the kernel memory allocator.  This is done after pages can be
3079  * allocated but before general KVA is available.
3080  */
3081 void
3082 uma_startup1(vm_offset_t virtual_avail)
3083 {
3084 	struct uma_zctor_args args;
3085 	size_t ksize, zsize, size;
3086 	uma_keg_t primarykeg;
3087 	uintptr_t m;
3088 	int domain;
3089 	uint8_t pflag;
3090 
3091 	bootstart = bootmem = virtual_avail;
3092 
3093 	rw_init(&uma_rwlock, "UMA lock");
3094 	sx_init(&uma_reclaim_lock, "umareclaim");
3095 
3096 	ksize = sizeof(struct uma_keg) +
3097 	    (sizeof(struct uma_domain) * vm_ndomains);
3098 	ksize = roundup(ksize, UMA_SUPER_ALIGN);
3099 	zsize = sizeof(struct uma_zone) +
3100 	    (sizeof(struct uma_cache) * (mp_maxid + 1)) +
3101 	    (sizeof(struct uma_zone_domain) * vm_ndomains);
3102 	zsize = roundup(zsize, UMA_SUPER_ALIGN);
3103 
3104 	/* Allocate the zone of zones, zone of kegs, and zone of zones keg. */
3105 	size = (zsize * 2) + ksize;
3106 	for (domain = 0; domain < vm_ndomains; domain++) {
3107 		m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag,
3108 		    M_NOWAIT | M_ZERO);
3109 		if (m != 0)
3110 			break;
3111 	}
3112 	zones = (uma_zone_t)m;
3113 	m += zsize;
3114 	kegs = (uma_zone_t)m;
3115 	m += zsize;
3116 	primarykeg = (uma_keg_t)m;
3117 
3118 	/* "manually" create the initial zone */
3119 	memset(&args, 0, sizeof(args));
3120 	args.name = "UMA Kegs";
3121 	args.size = ksize;
3122 	args.ctor = keg_ctor;
3123 	args.dtor = keg_dtor;
3124 	args.uminit = zero_init;
3125 	args.fini = NULL;
3126 	args.keg = primarykeg;
3127 	args.align = UMA_SUPER_ALIGN - 1;
3128 	args.flags = UMA_ZFLAG_INTERNAL;
3129 	zone_ctor(kegs, zsize, &args, M_WAITOK);
3130 
3131 	args.name = "UMA Zones";
3132 	args.size = zsize;
3133 	args.ctor = zone_ctor;
3134 	args.dtor = zone_dtor;
3135 	args.uminit = zero_init;
3136 	args.fini = NULL;
3137 	args.keg = NULL;
3138 	args.align = UMA_SUPER_ALIGN - 1;
3139 	args.flags = UMA_ZFLAG_INTERNAL;
3140 	zone_ctor(zones, zsize, &args, M_WAITOK);
3141 
3142 	/* Now make zones for slab headers */
3143 	slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE,
3144 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3145 	slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE,
3146 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3147 
3148 	hashzone = uma_zcreate("UMA Hash",
3149 	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
3150 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3151 
3152 	bucket_init();
3153 	smr_init();
3154 }
3155 
3156 #ifndef UMA_MD_SMALL_ALLOC
3157 extern void vm_radix_reserve_kva(void);
3158 #endif
3159 
3160 /*
3161  * Advertise the availability of normal kva allocations and switch to
3162  * the default back-end allocator.  Marks the KVA we consumed on startup
3163  * as used in the map.
3164  */
3165 void
3166 uma_startup2(void)
3167 {
3168 
3169 	if (bootstart != bootmem) {
3170 		vm_map_lock(kernel_map);
3171 		(void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem,
3172 		    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
3173 		vm_map_unlock(kernel_map);
3174 	}
3175 
3176 #ifndef UMA_MD_SMALL_ALLOC
3177 	/* Set up radix zone to use noobj_alloc. */
3178 	vm_radix_reserve_kva();
3179 #endif
3180 
3181 	booted = BOOT_KVA;
3182 	zone_foreach_unlocked(zone_kva_available, NULL);
3183 	bucket_enable();
3184 }
3185 
3186 /*
3187  * Allocate counters as early as possible so that boot-time allocations are
3188  * accounted more precisely.
3189  */
3190 static void
3191 uma_startup_pcpu(void *arg __unused)
3192 {
3193 
3194 	zone_foreach_unlocked(zone_alloc_counters, NULL);
3195 	booted = BOOT_PCPU;
3196 }
3197 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL);
3198 
3199 /*
3200  * Finish our initialization steps.
3201  */
3202 static void
3203 uma_startup3(void *arg __unused)
3204 {
3205 
3206 #ifdef INVARIANTS
3207 	TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
3208 	uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
3209 	uma_skip_cnt = counter_u64_alloc(M_WAITOK);
3210 #endif
3211 	zone_foreach_unlocked(zone_alloc_sysctl, NULL);
3212 	booted = BOOT_RUNNING;
3213 
3214 	EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
3215 	    EVENTHANDLER_PRI_FIRST);
3216 }
3217 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
3218 
3219 static void
3220 uma_startup4(void *arg __unused)
3221 {
3222 	TIMEOUT_TASK_INIT(taskqueue_thread, &uma_timeout_task, 0, uma_timeout,
3223 	    NULL);
3224 	taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
3225 	    UMA_TIMEOUT * hz);
3226 }
3227 SYSINIT(uma_startup4, SI_SUB_TASKQ, SI_ORDER_ANY, uma_startup4, NULL);
3228 
3229 static void
3230 uma_shutdown(void)
3231 {
3232 
3233 	booted = BOOT_SHUTDOWN;
3234 }
3235 
3236 static uma_keg_t
3237 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
3238 		int align, uint32_t flags)
3239 {
3240 	struct uma_kctor_args args;
3241 
3242 	args.size = size;
3243 	args.uminit = uminit;
3244 	args.fini = fini;
3245 	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
3246 	args.flags = flags;
3247 	args.zone = zone;
3248 	return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
3249 }
3250 
3251 /* Public functions */
3252 /* See uma.h */
3253 void
3254 uma_set_align(int align)
3255 {
3256 
3257 	if (align != UMA_ALIGN_CACHE)
3258 		uma_align_cache = align;
3259 }
3260 
3261 /* See uma.h */
3262 uma_zone_t
3263 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
3264 		uma_init uminit, uma_fini fini, int align, uint32_t flags)
3265 
3266 {
3267 	struct uma_zctor_args args;
3268 	uma_zone_t res;
3269 
3270 	KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
3271 	    align, name));
3272 
3273 	/* This stuff is essential for the zone ctor */
3274 	memset(&args, 0, sizeof(args));
3275 	args.name = name;
3276 	args.size = size;
3277 	args.ctor = ctor;
3278 	args.dtor = dtor;
3279 	args.uminit = uminit;
3280 	args.fini = fini;
3281 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
3282 	/*
3283 	 * Inject procedures which check for memory use after free if we are
3284 	 * allowed to scramble the memory while it is not allocated.  This
3285 	 * requires that: UMA is actually able to access the memory, no init
3286 	 * or fini procedures, no dependency on the initial value of the
3287 	 * memory, and no (legitimate) use of the memory after free.  Note,
3288 	 * the ctor and dtor do not need to be empty.
3289 	 */
3290 	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH |
3291 	    UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) {
3292 		args.uminit = trash_init;
3293 		args.fini = trash_fini;
3294 	}
3295 #endif
3296 	args.align = align;
3297 	args.flags = flags;
3298 	args.keg = NULL;
3299 
3300 	sx_xlock(&uma_reclaim_lock);
3301 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3302 	sx_xunlock(&uma_reclaim_lock);
3303 
3304 	return (res);
3305 }
3306 
3307 /* See uma.h */
3308 uma_zone_t
3309 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor,
3310     uma_init zinit, uma_fini zfini, uma_zone_t primary)
3311 {
3312 	struct uma_zctor_args args;
3313 	uma_keg_t keg;
3314 	uma_zone_t res;
3315 
3316 	keg = primary->uz_keg;
3317 	memset(&args, 0, sizeof(args));
3318 	args.name = name;
3319 	args.size = keg->uk_size;
3320 	args.ctor = ctor;
3321 	args.dtor = dtor;
3322 	args.uminit = zinit;
3323 	args.fini = zfini;
3324 	args.align = keg->uk_align;
3325 	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
3326 	args.keg = keg;
3327 
3328 	sx_xlock(&uma_reclaim_lock);
3329 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3330 	sx_xunlock(&uma_reclaim_lock);
3331 
3332 	return (res);
3333 }
3334 
3335 /* See uma.h */
3336 uma_zone_t
3337 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor,
3338     uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease,
3339     void *arg, int flags)
3340 {
3341 	struct uma_zctor_args args;
3342 
3343 	memset(&args, 0, sizeof(args));
3344 	args.name = name;
3345 	args.size = size;
3346 	args.ctor = ctor;
3347 	args.dtor = dtor;
3348 	args.uminit = zinit;
3349 	args.fini = zfini;
3350 	args.import = zimport;
3351 	args.release = zrelease;
3352 	args.arg = arg;
3353 	args.align = 0;
3354 	args.flags = flags | UMA_ZFLAG_CACHE;
3355 
3356 	return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
3357 }
3358 
3359 /* See uma.h */
3360 void
3361 uma_zdestroy(uma_zone_t zone)
3362 {
3363 
3364 	/*
3365 	 * Large slabs are expensive to reclaim, so don't bother doing
3366 	 * unnecessary work if we're shutting down.
3367 	 */
3368 	if (booted == BOOT_SHUTDOWN &&
3369 	    zone->uz_fini == NULL && zone->uz_release == zone_release)
3370 		return;
3371 	sx_xlock(&uma_reclaim_lock);
3372 	zone_free_item(zones, zone, NULL, SKIP_NONE);
3373 	sx_xunlock(&uma_reclaim_lock);
3374 }
3375 
3376 void
3377 uma_zwait(uma_zone_t zone)
3378 {
3379 
3380 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
3381 		uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK));
3382 	else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0)
3383 		uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK));
3384 	else
3385 		uma_zfree(zone, uma_zalloc(zone, M_WAITOK));
3386 }
3387 
3388 void *
3389 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
3390 {
3391 	void *item, *pcpu_item;
3392 #ifdef SMP
3393 	int i;
3394 
3395 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3396 #endif
3397 	item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
3398 	if (item == NULL)
3399 		return (NULL);
3400 	pcpu_item = zpcpu_base_to_offset(item);
3401 	if (flags & M_ZERO) {
3402 #ifdef SMP
3403 		for (i = 0; i <= mp_maxid; i++)
3404 			bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size);
3405 #else
3406 		bzero(item, zone->uz_size);
3407 #endif
3408 	}
3409 	return (pcpu_item);
3410 }
3411 
3412 /*
3413  * A stub while both regular and pcpu cases are identical.
3414  */
3415 void
3416 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata)
3417 {
3418 	void *item;
3419 
3420 #ifdef SMP
3421 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3422 #endif
3423 
3424         /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */
3425         if (pcpu_item == NULL)
3426                 return;
3427 
3428 	item = zpcpu_offset_to_base(pcpu_item);
3429 	uma_zfree_arg(zone, item, udata);
3430 }
3431 
3432 static inline void *
3433 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags,
3434     void *item)
3435 {
3436 #ifdef INVARIANTS
3437 	bool skipdbg;
3438 #endif
3439 
3440 	kasan_mark_item_valid(zone, item);
3441 	kmsan_mark_item_uninitialized(zone, item);
3442 
3443 #ifdef INVARIANTS
3444 	skipdbg = uma_dbg_zskip(zone, item);
3445 	if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3446 	    zone->uz_ctor != trash_ctor)
3447 		trash_ctor(item, size, udata, flags);
3448 #endif
3449 
3450 	/* Check flags before loading ctor pointer. */
3451 	if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) &&
3452 	    __predict_false(zone->uz_ctor != NULL) &&
3453 	    zone->uz_ctor(item, size, udata, flags) != 0) {
3454 		counter_u64_add(zone->uz_fails, 1);
3455 		zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT);
3456 		return (NULL);
3457 	}
3458 #ifdef INVARIANTS
3459 	if (!skipdbg)
3460 		uma_dbg_alloc(zone, NULL, item);
3461 #endif
3462 	if (__predict_false(flags & M_ZERO))
3463 		return (memset(item, 0, size));
3464 
3465 	return (item);
3466 }
3467 
3468 static inline void
3469 item_dtor(uma_zone_t zone, void *item, int size, void *udata,
3470     enum zfreeskip skip)
3471 {
3472 #ifdef INVARIANTS
3473 	bool skipdbg;
3474 
3475 	skipdbg = uma_dbg_zskip(zone, item);
3476 	if (skip == SKIP_NONE && !skipdbg) {
3477 		if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0)
3478 			uma_dbg_free(zone, udata, item);
3479 		else
3480 			uma_dbg_free(zone, NULL, item);
3481 	}
3482 #endif
3483 	if (__predict_true(skip < SKIP_DTOR)) {
3484 		if (zone->uz_dtor != NULL)
3485 			zone->uz_dtor(item, size, udata);
3486 #ifdef INVARIANTS
3487 		if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3488 		    zone->uz_dtor != trash_dtor)
3489 			trash_dtor(item, size, udata);
3490 #endif
3491 	}
3492 	kasan_mark_item_invalid(zone, item);
3493 }
3494 
3495 #ifdef NUMA
3496 static int
3497 item_domain(void *item)
3498 {
3499 	int domain;
3500 
3501 	domain = vm_phys_domain(vtophys(item));
3502 	KASSERT(domain >= 0 && domain < vm_ndomains,
3503 	    ("%s: unknown domain for item %p", __func__, item));
3504 	return (domain);
3505 }
3506 #endif
3507 
3508 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS)
3509 #if defined(INVARIANTS) && (defined(DDB) || defined(STACK))
3510 #include <sys/stack.h>
3511 #endif
3512 #define	UMA_ZALLOC_DEBUG
3513 static int
3514 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags)
3515 {
3516 	int error;
3517 
3518 	error = 0;
3519 #ifdef WITNESS
3520 	if (flags & M_WAITOK) {
3521 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3522 		    "uma_zalloc_debug: zone \"%s\"", zone->uz_name);
3523 	}
3524 #endif
3525 
3526 #ifdef INVARIANTS
3527 	KASSERT((flags & M_EXEC) == 0,
3528 	    ("uma_zalloc_debug: called with M_EXEC"));
3529 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3530 	    ("uma_zalloc_debug: called within spinlock or critical section"));
3531 	KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0,
3532 	    ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO"));
3533 
3534 	_Static_assert(M_NOWAIT != 0 && M_WAITOK != 0,
3535 	    "M_NOWAIT and M_WAITOK must be non-zero for this assertion:");
3536 #if 0
3537 	/*
3538 	 * Give the #elif clause time to find problems, then remove it
3539 	 * and enable this.  (Remove <sys/stack.h> above, too.)
3540 	 */
3541 	KASSERT((flags & (M_NOWAIT|M_WAITOK)) == M_NOWAIT ||
3542 	    (flags & (M_NOWAIT|M_WAITOK)) == M_WAITOK,
3543 	    ("uma_zalloc_debug: must pass one of M_NOWAIT or M_WAITOK"));
3544 #elif defined(DDB) || defined(STACK)
3545 	if (__predict_false((flags & (M_NOWAIT|M_WAITOK)) != M_NOWAIT &&
3546 	    (flags & (M_NOWAIT|M_WAITOK)) != M_WAITOK)) {
3547 		static int stack_count;
3548 		struct stack st;
3549 
3550 		if (stack_count < 10) {
3551 			++stack_count;
3552 			printf("uma_zalloc* called with bad WAIT flags:\n");
3553 			stack_save(&st);
3554 			stack_print(&st);
3555 		}
3556 	}
3557 #endif
3558 #endif
3559 
3560 #ifdef DEBUG_MEMGUARD
3561 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) {
3562 		void *item;
3563 		item = memguard_alloc(zone->uz_size, flags);
3564 		if (item != NULL) {
3565 			error = EJUSTRETURN;
3566 			if (zone->uz_init != NULL &&
3567 			    zone->uz_init(item, zone->uz_size, flags) != 0) {
3568 				*itemp = NULL;
3569 				return (error);
3570 			}
3571 			if (zone->uz_ctor != NULL &&
3572 			    zone->uz_ctor(item, zone->uz_size, udata,
3573 			    flags) != 0) {
3574 				counter_u64_add(zone->uz_fails, 1);
3575 				if (zone->uz_fini != NULL)
3576 					zone->uz_fini(item, zone->uz_size);
3577 				*itemp = NULL;
3578 				return (error);
3579 			}
3580 			*itemp = item;
3581 			return (error);
3582 		}
3583 		/* This is unfortunate but should not be fatal. */
3584 	}
3585 #endif
3586 	return (error);
3587 }
3588 
3589 static int
3590 uma_zfree_debug(uma_zone_t zone, void *item, void *udata)
3591 {
3592 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3593 	    ("uma_zfree_debug: called with spinlock or critical section held"));
3594 
3595 #ifdef DEBUG_MEMGUARD
3596 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) {
3597 		if (zone->uz_dtor != NULL)
3598 			zone->uz_dtor(item, zone->uz_size, udata);
3599 		if (zone->uz_fini != NULL)
3600 			zone->uz_fini(item, zone->uz_size);
3601 		memguard_free(item);
3602 		return (EJUSTRETURN);
3603 	}
3604 #endif
3605 	return (0);
3606 }
3607 #endif
3608 
3609 static inline void *
3610 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket,
3611     void *udata, int flags)
3612 {
3613 	void *item;
3614 	int size, uz_flags;
3615 
3616 	item = cache_bucket_pop(cache, bucket);
3617 	size = cache_uz_size(cache);
3618 	uz_flags = cache_uz_flags(cache);
3619 	critical_exit();
3620 	return (item_ctor(zone, uz_flags, size, udata, flags, item));
3621 }
3622 
3623 static __noinline void *
3624 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3625 {
3626 	uma_cache_bucket_t bucket;
3627 	int domain;
3628 
3629 	while (cache_alloc(zone, cache, udata, flags)) {
3630 		cache = &zone->uz_cpu[curcpu];
3631 		bucket = &cache->uc_allocbucket;
3632 		if (__predict_false(bucket->ucb_cnt == 0))
3633 			continue;
3634 		return (cache_alloc_item(zone, cache, bucket, udata, flags));
3635 	}
3636 	critical_exit();
3637 
3638 	/*
3639 	 * We can not get a bucket so try to return a single item.
3640 	 */
3641 	if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
3642 		domain = PCPU_GET(domain);
3643 	else
3644 		domain = UMA_ANYDOMAIN;
3645 	return (zone_alloc_item(zone, udata, domain, flags));
3646 }
3647 
3648 /* See uma.h */
3649 void *
3650 uma_zalloc_smr(uma_zone_t zone, int flags)
3651 {
3652 	uma_cache_bucket_t bucket;
3653 	uma_cache_t cache;
3654 
3655 	CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name,
3656 	    zone, flags);
3657 
3658 #ifdef UMA_ZALLOC_DEBUG
3659 	void *item;
3660 
3661 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
3662 	    ("uma_zalloc_arg: called with non-SMR zone."));
3663 	if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN)
3664 		return (item);
3665 #endif
3666 
3667 	critical_enter();
3668 	cache = &zone->uz_cpu[curcpu];
3669 	bucket = &cache->uc_allocbucket;
3670 	if (__predict_false(bucket->ucb_cnt == 0))
3671 		return (cache_alloc_retry(zone, cache, NULL, flags));
3672 	return (cache_alloc_item(zone, cache, bucket, NULL, flags));
3673 }
3674 
3675 /* See uma.h */
3676 void *
3677 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
3678 {
3679 	uma_cache_bucket_t bucket;
3680 	uma_cache_t cache;
3681 
3682 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3683 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3684 
3685 	/* This is the fast path allocation */
3686 	CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name,
3687 	    zone, flags);
3688 
3689 #ifdef UMA_ZALLOC_DEBUG
3690 	void *item;
3691 
3692 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3693 	    ("uma_zalloc_arg: called with SMR zone."));
3694 	if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3695 		return (item);
3696 #endif
3697 
3698 	/*
3699 	 * If possible, allocate from the per-CPU cache.  There are two
3700 	 * requirements for safe access to the per-CPU cache: (1) the thread
3701 	 * accessing the cache must not be preempted or yield during access,
3702 	 * and (2) the thread must not migrate CPUs without switching which
3703 	 * cache it accesses.  We rely on a critical section to prevent
3704 	 * preemption and migration.  We release the critical section in
3705 	 * order to acquire the zone mutex if we are unable to allocate from
3706 	 * the current cache; when we re-acquire the critical section, we
3707 	 * must detect and handle migration if it has occurred.
3708 	 */
3709 	critical_enter();
3710 	cache = &zone->uz_cpu[curcpu];
3711 	bucket = &cache->uc_allocbucket;
3712 	if (__predict_false(bucket->ucb_cnt == 0))
3713 		return (cache_alloc_retry(zone, cache, udata, flags));
3714 	return (cache_alloc_item(zone, cache, bucket, udata, flags));
3715 }
3716 
3717 /*
3718  * Replenish an alloc bucket and possibly restore an old one.  Called in
3719  * a critical section.  Returns in a critical section.
3720  *
3721  * A false return value indicates an allocation failure.
3722  * A true return value indicates success and the caller should retry.
3723  */
3724 static __noinline bool
3725 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3726 {
3727 	uma_bucket_t bucket;
3728 	int curdomain, domain;
3729 	bool new;
3730 
3731 	CRITICAL_ASSERT(curthread);
3732 
3733 	/*
3734 	 * If we have run out of items in our alloc bucket see
3735 	 * if we can switch with the free bucket.
3736 	 *
3737 	 * SMR Zones can't re-use the free bucket until the sequence has
3738 	 * expired.
3739 	 */
3740 	if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 &&
3741 	    cache->uc_freebucket.ucb_cnt != 0) {
3742 		cache_bucket_swap(&cache->uc_freebucket,
3743 		    &cache->uc_allocbucket);
3744 		return (true);
3745 	}
3746 
3747 	/*
3748 	 * Discard any empty allocation bucket while we hold no locks.
3749 	 */
3750 	bucket = cache_bucket_unload_alloc(cache);
3751 	critical_exit();
3752 
3753 	if (bucket != NULL) {
3754 		KASSERT(bucket->ub_cnt == 0,
3755 		    ("cache_alloc: Entered with non-empty alloc bucket."));
3756 		bucket_free(zone, bucket, udata);
3757 	}
3758 
3759 	/*
3760 	 * Attempt to retrieve the item from the per-CPU cache has failed, so
3761 	 * we must go back to the zone.  This requires the zdom lock, so we
3762 	 * must drop the critical section, then re-acquire it when we go back
3763 	 * to the cache.  Since the critical section is released, we may be
3764 	 * preempted or migrate.  As such, make sure not to maintain any
3765 	 * thread-local state specific to the cache from prior to releasing
3766 	 * the critical section.
3767 	 */
3768 	domain = PCPU_GET(domain);
3769 	if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 ||
3770 	    VM_DOMAIN_EMPTY(domain))
3771 		domain = zone_domain_highest(zone, domain);
3772 	bucket = cache_fetch_bucket(zone, cache, domain);
3773 	if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) {
3774 		bucket = zone_alloc_bucket(zone, udata, domain, flags);
3775 		new = true;
3776 	} else {
3777 		new = false;
3778 	}
3779 
3780 	CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
3781 	    zone->uz_name, zone, bucket);
3782 	if (bucket == NULL) {
3783 		critical_enter();
3784 		return (false);
3785 	}
3786 
3787 	/*
3788 	 * See if we lost the race or were migrated.  Cache the
3789 	 * initialized bucket to make this less likely or claim
3790 	 * the memory directly.
3791 	 */
3792 	critical_enter();
3793 	cache = &zone->uz_cpu[curcpu];
3794 	if (cache->uc_allocbucket.ucb_bucket == NULL &&
3795 	    ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 ||
3796 	    (curdomain = PCPU_GET(domain)) == domain ||
3797 	    VM_DOMAIN_EMPTY(curdomain))) {
3798 		if (new)
3799 			atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax,
3800 			    bucket->ub_cnt);
3801 		cache_bucket_load_alloc(cache, bucket);
3802 		return (true);
3803 	}
3804 
3805 	/*
3806 	 * We lost the race, release this bucket and start over.
3807 	 */
3808 	critical_exit();
3809 	zone_put_bucket(zone, domain, bucket, udata, !new);
3810 	critical_enter();
3811 
3812 	return (true);
3813 }
3814 
3815 void *
3816 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
3817 {
3818 #ifdef NUMA
3819 	uma_bucket_t bucket;
3820 	uma_zone_domain_t zdom;
3821 	void *item;
3822 #endif
3823 
3824 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3825 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3826 
3827 	/* This is the fast path allocation */
3828 	CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d",
3829 	    zone->uz_name, zone, domain, flags);
3830 
3831 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3832 	    ("uma_zalloc_domain: called with SMR zone."));
3833 #ifdef NUMA
3834 	KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0,
3835 	    ("uma_zalloc_domain: called with non-FIRSTTOUCH zone."));
3836 
3837 	if (vm_ndomains == 1)
3838 		return (uma_zalloc_arg(zone, udata, flags));
3839 
3840 #ifdef UMA_ZALLOC_DEBUG
3841 	if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3842 		return (item);
3843 #endif
3844 
3845 	/*
3846 	 * Try to allocate from the bucket cache before falling back to the keg.
3847 	 * We could try harder and attempt to allocate from per-CPU caches or
3848 	 * the per-domain cross-domain buckets, but the complexity is probably
3849 	 * not worth it.  It is more important that frees of previous
3850 	 * cross-domain allocations do not blow up the cache.
3851 	 */
3852 	zdom = zone_domain_lock(zone, domain);
3853 	if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) {
3854 		item = bucket->ub_bucket[bucket->ub_cnt - 1];
3855 #ifdef INVARIANTS
3856 		bucket->ub_bucket[bucket->ub_cnt - 1] = NULL;
3857 #endif
3858 		bucket->ub_cnt--;
3859 		zone_put_bucket(zone, domain, bucket, udata, true);
3860 		item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata,
3861 		    flags, item);
3862 		if (item != NULL) {
3863 			KASSERT(item_domain(item) == domain,
3864 			    ("%s: bucket cache item %p from wrong domain",
3865 			    __func__, item));
3866 			counter_u64_add(zone->uz_allocs, 1);
3867 		}
3868 		return (item);
3869 	}
3870 	ZDOM_UNLOCK(zdom);
3871 	return (zone_alloc_item(zone, udata, domain, flags));
3872 #else
3873 	return (uma_zalloc_arg(zone, udata, flags));
3874 #endif
3875 }
3876 
3877 /*
3878  * Find a slab with some space.  Prefer slabs that are partially used over those
3879  * that are totally full.  This helps to reduce fragmentation.
3880  *
3881  * If 'rr' is 1, search all domains starting from 'domain'.  Otherwise check
3882  * only 'domain'.
3883  */
3884 static uma_slab_t
3885 keg_first_slab(uma_keg_t keg, int domain, bool rr)
3886 {
3887 	uma_domain_t dom;
3888 	uma_slab_t slab;
3889 	int start;
3890 
3891 	KASSERT(domain >= 0 && domain < vm_ndomains,
3892 	    ("keg_first_slab: domain %d out of range", domain));
3893 	KEG_LOCK_ASSERT(keg, domain);
3894 
3895 	slab = NULL;
3896 	start = domain;
3897 	do {
3898 		dom = &keg->uk_domain[domain];
3899 		if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL)
3900 			return (slab);
3901 		if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) {
3902 			LIST_REMOVE(slab, us_link);
3903 			dom->ud_free_slabs--;
3904 			LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
3905 			return (slab);
3906 		}
3907 		if (rr)
3908 			domain = (domain + 1) % vm_ndomains;
3909 	} while (domain != start);
3910 
3911 	return (NULL);
3912 }
3913 
3914 /*
3915  * Fetch an existing slab from a free or partial list.  Returns with the
3916  * keg domain lock held if a slab was found or unlocked if not.
3917  */
3918 static uma_slab_t
3919 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
3920 {
3921 	uma_slab_t slab;
3922 	uint32_t reserve;
3923 
3924 	/* HASH has a single free list. */
3925 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
3926 		domain = 0;
3927 
3928 	KEG_LOCK(keg, domain);
3929 	reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
3930 	if (keg->uk_domain[domain].ud_free_items <= reserve ||
3931 	    (slab = keg_first_slab(keg, domain, rr)) == NULL) {
3932 		KEG_UNLOCK(keg, domain);
3933 		return (NULL);
3934 	}
3935 	return (slab);
3936 }
3937 
3938 static uma_slab_t
3939 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
3940 {
3941 	struct vm_domainset_iter di;
3942 	uma_slab_t slab;
3943 	int aflags, domain;
3944 	bool rr;
3945 
3946 	KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM),
3947 	    ("%s: invalid flags %#x", __func__, flags));
3948 
3949 restart:
3950 	/*
3951 	 * Use the keg's policy if upper layers haven't already specified a
3952 	 * domain (as happens with first-touch zones).
3953 	 *
3954 	 * To avoid races we run the iterator with the keg lock held, but that
3955 	 * means that we cannot allow the vm_domainset layer to sleep.  Thus,
3956 	 * clear M_WAITOK and handle low memory conditions locally.
3957 	 */
3958 	rr = rdomain == UMA_ANYDOMAIN;
3959 	if (rr) {
3960 		aflags = (flags & ~M_WAITOK) | M_NOWAIT;
3961 		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
3962 		    &aflags);
3963 	} else {
3964 		aflags = flags;
3965 		domain = rdomain;
3966 	}
3967 
3968 	for (;;) {
3969 		slab = keg_fetch_free_slab(keg, domain, rr, flags);
3970 		if (slab != NULL)
3971 			return (slab);
3972 
3973 		/*
3974 		 * M_NOVM is used to break the recursion that can otherwise
3975 		 * occur if low-level memory management routines use UMA.
3976 		 */
3977 		if ((flags & M_NOVM) == 0) {
3978 			slab = keg_alloc_slab(keg, zone, domain, flags, aflags);
3979 			if (slab != NULL)
3980 				return (slab);
3981 		}
3982 
3983 		if (!rr) {
3984 			if ((flags & M_USE_RESERVE) != 0) {
3985 				/*
3986 				 * Drain reserves from other domains before
3987 				 * giving up or sleeping.  It may be useful to
3988 				 * support per-domain reserves eventually.
3989 				 */
3990 				rdomain = UMA_ANYDOMAIN;
3991 				goto restart;
3992 			}
3993 			if ((flags & M_WAITOK) == 0)
3994 				break;
3995 			vm_wait_domain(domain);
3996 		} else if (vm_domainset_iter_policy(&di, &domain) != 0) {
3997 			if ((flags & M_WAITOK) != 0) {
3998 				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
3999 				goto restart;
4000 			}
4001 			break;
4002 		}
4003 	}
4004 
4005 	/*
4006 	 * We might not have been able to get a slab but another cpu
4007 	 * could have while we were unlocked.  Check again before we
4008 	 * fail.
4009 	 */
4010 	if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL)
4011 		return (slab);
4012 
4013 	return (NULL);
4014 }
4015 
4016 static void *
4017 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
4018 {
4019 	uma_domain_t dom;
4020 	void *item;
4021 	int freei;
4022 
4023 	KEG_LOCK_ASSERT(keg, slab->us_domain);
4024 
4025 	dom = &keg->uk_domain[slab->us_domain];
4026 	freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1;
4027 	BIT_CLR(keg->uk_ipers, freei, &slab->us_free);
4028 	item = slab_item(slab, keg, freei);
4029 	slab->us_freecount--;
4030 	dom->ud_free_items--;
4031 
4032 	/*
4033 	 * Move this slab to the full list.  It must be on the partial list, so
4034 	 * we do not need to update the free slab count.  In particular,
4035 	 * keg_fetch_slab() always returns slabs on the partial list.
4036 	 */
4037 	if (slab->us_freecount == 0) {
4038 		LIST_REMOVE(slab, us_link);
4039 		LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
4040 	}
4041 
4042 	return (item);
4043 }
4044 
4045 static int
4046 zone_import(void *arg, void **bucket, int max, int domain, int flags)
4047 {
4048 	uma_domain_t dom;
4049 	uma_zone_t zone;
4050 	uma_slab_t slab;
4051 	uma_keg_t keg;
4052 #ifdef NUMA
4053 	int stripe;
4054 #endif
4055 	int i;
4056 
4057 	zone = arg;
4058 	slab = NULL;
4059 	keg = zone->uz_keg;
4060 	/* Try to keep the buckets totally full */
4061 	for (i = 0; i < max; ) {
4062 		if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL)
4063 			break;
4064 #ifdef NUMA
4065 		stripe = howmany(max, vm_ndomains);
4066 #endif
4067 		dom = &keg->uk_domain[slab->us_domain];
4068 		do {
4069 			bucket[i++] = slab_alloc_item(keg, slab);
4070 			if (keg->uk_reserve > 0 &&
4071 			    dom->ud_free_items <= keg->uk_reserve) {
4072 				/*
4073 				 * Avoid depleting the reserve after a
4074 				 * successful item allocation, even if
4075 				 * M_USE_RESERVE is specified.
4076 				 */
4077 				KEG_UNLOCK(keg, slab->us_domain);
4078 				goto out;
4079 			}
4080 #ifdef NUMA
4081 			/*
4082 			 * If the zone is striped we pick a new slab for every
4083 			 * N allocations.  Eliminating this conditional will
4084 			 * instead pick a new domain for each bucket rather
4085 			 * than stripe within each bucket.  The current option
4086 			 * produces more fragmentation and requires more cpu
4087 			 * time but yields better distribution.
4088 			 */
4089 			if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 &&
4090 			    vm_ndomains > 1 && --stripe == 0)
4091 				break;
4092 #endif
4093 		} while (slab->us_freecount != 0 && i < max);
4094 		KEG_UNLOCK(keg, slab->us_domain);
4095 
4096 		/* Don't block if we allocated any successfully. */
4097 		flags &= ~M_WAITOK;
4098 		flags |= M_NOWAIT;
4099 	}
4100 out:
4101 	return i;
4102 }
4103 
4104 static int
4105 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags)
4106 {
4107 	uint64_t old, new, total, max;
4108 
4109 	/*
4110 	 * The hard case.  We're going to sleep because there were existing
4111 	 * sleepers or because we ran out of items.  This routine enforces
4112 	 * fairness by keeping fifo order.
4113 	 *
4114 	 * First release our ill gotten gains and make some noise.
4115 	 */
4116 	for (;;) {
4117 		zone_free_limit(zone, count);
4118 		zone_log_warning(zone);
4119 		zone_maxaction(zone);
4120 		if (flags & M_NOWAIT)
4121 			return (0);
4122 
4123 		/*
4124 		 * We need to allocate an item or set ourself as a sleeper
4125 		 * while the sleepq lock is held to avoid wakeup races.  This
4126 		 * is essentially a home rolled semaphore.
4127 		 */
4128 		sleepq_lock(&zone->uz_max_items);
4129 		old = zone->uz_items;
4130 		do {
4131 			MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX);
4132 			/* Cache the max since we will evaluate twice. */
4133 			max = zone->uz_max_items;
4134 			if (UZ_ITEMS_SLEEPERS(old) != 0 ||
4135 			    UZ_ITEMS_COUNT(old) >= max)
4136 				new = old + UZ_ITEMS_SLEEPER;
4137 			else
4138 				new = old + MIN(count, max - old);
4139 		} while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0);
4140 
4141 		/* We may have successfully allocated under the sleepq lock. */
4142 		if (UZ_ITEMS_SLEEPERS(new) == 0) {
4143 			sleepq_release(&zone->uz_max_items);
4144 			return (new - old);
4145 		}
4146 
4147 		/*
4148 		 * This is in a different cacheline from uz_items so that we
4149 		 * don't constantly invalidate the fastpath cacheline when we
4150 		 * adjust item counts.  This could be limited to toggling on
4151 		 * transitions.
4152 		 */
4153 		atomic_add_32(&zone->uz_sleepers, 1);
4154 		atomic_add_64(&zone->uz_sleeps, 1);
4155 
4156 		/*
4157 		 * We have added ourselves as a sleeper.  The sleepq lock
4158 		 * protects us from wakeup races.  Sleep now and then retry.
4159 		 */
4160 		sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0);
4161 		sleepq_wait(&zone->uz_max_items, PVM);
4162 
4163 		/*
4164 		 * After wakeup, remove ourselves as a sleeper and try
4165 		 * again.  We no longer have the sleepq lock for protection.
4166 		 *
4167 		 * Subract ourselves as a sleeper while attempting to add
4168 		 * our count.
4169 		 */
4170 		atomic_subtract_32(&zone->uz_sleepers, 1);
4171 		old = atomic_fetchadd_64(&zone->uz_items,
4172 		    -(UZ_ITEMS_SLEEPER - count));
4173 		/* We're no longer a sleeper. */
4174 		old -= UZ_ITEMS_SLEEPER;
4175 
4176 		/*
4177 		 * If we're still at the limit, restart.  Notably do not
4178 		 * block on other sleepers.  Cache the max value to protect
4179 		 * against changes via sysctl.
4180 		 */
4181 		total = UZ_ITEMS_COUNT(old);
4182 		max = zone->uz_max_items;
4183 		if (total >= max)
4184 			continue;
4185 		/* Truncate if necessary, otherwise wake other sleepers. */
4186 		if (total + count > max) {
4187 			zone_free_limit(zone, total + count - max);
4188 			count = max - total;
4189 		} else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0)
4190 			wakeup_one(&zone->uz_max_items);
4191 
4192 		return (count);
4193 	}
4194 }
4195 
4196 /*
4197  * Allocate 'count' items from our max_items limit.  Returns the number
4198  * available.  If M_NOWAIT is not specified it will sleep until at least
4199  * one item can be allocated.
4200  */
4201 static int
4202 zone_alloc_limit(uma_zone_t zone, int count, int flags)
4203 {
4204 	uint64_t old;
4205 	uint64_t max;
4206 
4207 	max = zone->uz_max_items;
4208 	MPASS(max > 0);
4209 
4210 	/*
4211 	 * We expect normal allocations to succeed with a simple
4212 	 * fetchadd.
4213 	 */
4214 	old = atomic_fetchadd_64(&zone->uz_items, count);
4215 	if (__predict_true(old + count <= max))
4216 		return (count);
4217 
4218 	/*
4219 	 * If we had some items and no sleepers just return the
4220 	 * truncated value.  We have to release the excess space
4221 	 * though because that may wake sleepers who weren't woken
4222 	 * because we were temporarily over the limit.
4223 	 */
4224 	if (old < max) {
4225 		zone_free_limit(zone, (old + count) - max);
4226 		return (max - old);
4227 	}
4228 	return (zone_alloc_limit_hard(zone, count, flags));
4229 }
4230 
4231 /*
4232  * Free a number of items back to the limit.
4233  */
4234 static void
4235 zone_free_limit(uma_zone_t zone, int count)
4236 {
4237 	uint64_t old;
4238 
4239 	MPASS(count > 0);
4240 
4241 	/*
4242 	 * In the common case we either have no sleepers or
4243 	 * are still over the limit and can just return.
4244 	 */
4245 	old = atomic_fetchadd_64(&zone->uz_items, -count);
4246 	if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 ||
4247 	   UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items))
4248 		return;
4249 
4250 	/*
4251 	 * Moderate the rate of wakeups.  Sleepers will continue
4252 	 * to generate wakeups if necessary.
4253 	 */
4254 	wakeup_one(&zone->uz_max_items);
4255 }
4256 
4257 static uma_bucket_t
4258 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
4259 {
4260 	uma_bucket_t bucket;
4261 	int error, maxbucket, cnt;
4262 
4263 	CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name,
4264 	    zone, domain);
4265 
4266 	/* Avoid allocs targeting empty domains. */
4267 	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4268 		domain = UMA_ANYDOMAIN;
4269 	else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4270 		domain = UMA_ANYDOMAIN;
4271 
4272 	if (zone->uz_max_items > 0)
4273 		maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size,
4274 		    M_NOWAIT);
4275 	else
4276 		maxbucket = zone->uz_bucket_size;
4277 	if (maxbucket == 0)
4278 		return (NULL);
4279 
4280 	/* Don't wait for buckets, preserve caller's NOVM setting. */
4281 	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
4282 	if (bucket == NULL) {
4283 		cnt = 0;
4284 		goto out;
4285 	}
4286 
4287 	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
4288 	    MIN(maxbucket, bucket->ub_entries), domain, flags);
4289 
4290 	/*
4291 	 * Initialize the memory if necessary.
4292 	 */
4293 	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
4294 		int i;
4295 
4296 		for (i = 0; i < bucket->ub_cnt; i++) {
4297 			kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
4298 			error = zone->uz_init(bucket->ub_bucket[i],
4299 			    zone->uz_size, flags);
4300 			kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
4301 			if (error != 0)
4302 				break;
4303 		}
4304 
4305 		/*
4306 		 * If we couldn't initialize the whole bucket, put the
4307 		 * rest back onto the freelist.
4308 		 */
4309 		if (i != bucket->ub_cnt) {
4310 			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
4311 			    bucket->ub_cnt - i);
4312 #ifdef INVARIANTS
4313 			bzero(&bucket->ub_bucket[i],
4314 			    sizeof(void *) * (bucket->ub_cnt - i));
4315 #endif
4316 			bucket->ub_cnt = i;
4317 		}
4318 	}
4319 
4320 	cnt = bucket->ub_cnt;
4321 	if (bucket->ub_cnt == 0) {
4322 		bucket_free(zone, bucket, udata);
4323 		counter_u64_add(zone->uz_fails, 1);
4324 		bucket = NULL;
4325 	}
4326 out:
4327 	if (zone->uz_max_items > 0 && cnt < maxbucket)
4328 		zone_free_limit(zone, maxbucket - cnt);
4329 
4330 	return (bucket);
4331 }
4332 
4333 /*
4334  * Allocates a single item from a zone.
4335  *
4336  * Arguments
4337  *	zone   The zone to alloc for.
4338  *	udata  The data to be passed to the constructor.
4339  *	domain The domain to allocate from or UMA_ANYDOMAIN.
4340  *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
4341  *
4342  * Returns
4343  *	NULL if there is no memory and M_NOWAIT is set
4344  *	An item if successful
4345  */
4346 
4347 static void *
4348 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
4349 {
4350 	void *item;
4351 
4352 	if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) {
4353 		counter_u64_add(zone->uz_fails, 1);
4354 		return (NULL);
4355 	}
4356 
4357 	/* Avoid allocs targeting empty domains. */
4358 	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4359 		domain = UMA_ANYDOMAIN;
4360 
4361 	if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
4362 		goto fail_cnt;
4363 
4364 	/*
4365 	 * We have to call both the zone's init (not the keg's init)
4366 	 * and the zone's ctor.  This is because the item is going from
4367 	 * a keg slab directly to the user, and the user is expecting it
4368 	 * to be both zone-init'd as well as zone-ctor'd.
4369 	 */
4370 	if (zone->uz_init != NULL) {
4371 		int error;
4372 
4373 		kasan_mark_item_valid(zone, item);
4374 		error = zone->uz_init(item, zone->uz_size, flags);
4375 		kasan_mark_item_invalid(zone, item);
4376 		if (error != 0) {
4377 			zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT);
4378 			goto fail_cnt;
4379 		}
4380 	}
4381 	item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags,
4382 	    item);
4383 	if (item == NULL)
4384 		goto fail;
4385 
4386 	counter_u64_add(zone->uz_allocs, 1);
4387 	CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
4388 	    zone->uz_name, zone);
4389 
4390 	return (item);
4391 
4392 fail_cnt:
4393 	counter_u64_add(zone->uz_fails, 1);
4394 fail:
4395 	if (zone->uz_max_items > 0)
4396 		zone_free_limit(zone, 1);
4397 	CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
4398 	    zone->uz_name, zone);
4399 
4400 	return (NULL);
4401 }
4402 
4403 /* See uma.h */
4404 void
4405 uma_zfree_smr(uma_zone_t zone, void *item)
4406 {
4407 	uma_cache_t cache;
4408 	uma_cache_bucket_t bucket;
4409 	int itemdomain;
4410 #ifdef NUMA
4411 	int uz_flags;
4412 #endif
4413 
4414 	CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p",
4415 	    zone->uz_name, zone, item);
4416 
4417 #ifdef UMA_ZALLOC_DEBUG
4418 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
4419 	    ("uma_zfree_smr: called with non-SMR zone."));
4420 	KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer."));
4421 	SMR_ASSERT_NOT_ENTERED(zone->uz_smr);
4422 	if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN)
4423 		return;
4424 #endif
4425 	cache = &zone->uz_cpu[curcpu];
4426 	itemdomain = 0;
4427 #ifdef NUMA
4428 	uz_flags = cache_uz_flags(cache);
4429 	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4430 		itemdomain = item_domain(item);
4431 #endif
4432 	critical_enter();
4433 	do {
4434 		cache = &zone->uz_cpu[curcpu];
4435 		/* SMR Zones must free to the free bucket. */
4436 		bucket = &cache->uc_freebucket;
4437 #ifdef NUMA
4438 		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4439 		    PCPU_GET(domain) != itemdomain) {
4440 			bucket = &cache->uc_crossbucket;
4441 		}
4442 #endif
4443 		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4444 			cache_bucket_push(cache, bucket, item);
4445 			critical_exit();
4446 			return;
4447 		}
4448 	} while (cache_free(zone, cache, NULL, itemdomain));
4449 	critical_exit();
4450 
4451 	/*
4452 	 * If nothing else caught this, we'll just do an internal free.
4453 	 */
4454 	zone_free_item(zone, item, NULL, SKIP_NONE);
4455 }
4456 
4457 /* See uma.h */
4458 void
4459 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
4460 {
4461 	uma_cache_t cache;
4462 	uma_cache_bucket_t bucket;
4463 	int itemdomain, uz_flags;
4464 
4465 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
4466 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
4467 
4468 	CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p",
4469 	    zone->uz_name, zone, item);
4470 
4471 #ifdef UMA_ZALLOC_DEBUG
4472 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
4473 	    ("uma_zfree_arg: called with SMR zone."));
4474 	if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN)
4475 		return;
4476 #endif
4477         /* uma_zfree(..., NULL) does nothing, to match free(9). */
4478         if (item == NULL)
4479                 return;
4480 
4481 	/*
4482 	 * We are accessing the per-cpu cache without a critical section to
4483 	 * fetch size and flags.  This is acceptable, if we are preempted we
4484 	 * will simply read another cpu's line.
4485 	 */
4486 	cache = &zone->uz_cpu[curcpu];
4487 	uz_flags = cache_uz_flags(cache);
4488 	if (UMA_ALWAYS_CTORDTOR ||
4489 	    __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0))
4490 		item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE);
4491 
4492 	/*
4493 	 * The race here is acceptable.  If we miss it we'll just have to wait
4494 	 * a little longer for the limits to be reset.
4495 	 */
4496 	if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) {
4497 		if (atomic_load_32(&zone->uz_sleepers) > 0)
4498 			goto zfree_item;
4499 	}
4500 
4501 	/*
4502 	 * If possible, free to the per-CPU cache.  There are two
4503 	 * requirements for safe access to the per-CPU cache: (1) the thread
4504 	 * accessing the cache must not be preempted or yield during access,
4505 	 * and (2) the thread must not migrate CPUs without switching which
4506 	 * cache it accesses.  We rely on a critical section to prevent
4507 	 * preemption and migration.  We release the critical section in
4508 	 * order to acquire the zone mutex if we are unable to free to the
4509 	 * current cache; when we re-acquire the critical section, we must
4510 	 * detect and handle migration if it has occurred.
4511 	 */
4512 	itemdomain = 0;
4513 #ifdef NUMA
4514 	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4515 		itemdomain = item_domain(item);
4516 #endif
4517 	critical_enter();
4518 	do {
4519 		cache = &zone->uz_cpu[curcpu];
4520 		/*
4521 		 * Try to free into the allocbucket first to give LIFO
4522 		 * ordering for cache-hot datastructures.  Spill over
4523 		 * into the freebucket if necessary.  Alloc will swap
4524 		 * them if one runs dry.
4525 		 */
4526 		bucket = &cache->uc_allocbucket;
4527 #ifdef NUMA
4528 		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4529 		    PCPU_GET(domain) != itemdomain) {
4530 			bucket = &cache->uc_crossbucket;
4531 		} else
4532 #endif
4533 		if (bucket->ucb_cnt == bucket->ucb_entries &&
4534 		   cache->uc_freebucket.ucb_cnt <
4535 		   cache->uc_freebucket.ucb_entries)
4536 			cache_bucket_swap(&cache->uc_freebucket,
4537 			    &cache->uc_allocbucket);
4538 		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4539 			cache_bucket_push(cache, bucket, item);
4540 			critical_exit();
4541 			return;
4542 		}
4543 	} while (cache_free(zone, cache, udata, itemdomain));
4544 	critical_exit();
4545 
4546 	/*
4547 	 * If nothing else caught this, we'll just do an internal free.
4548 	 */
4549 zfree_item:
4550 	zone_free_item(zone, item, udata, SKIP_DTOR);
4551 }
4552 
4553 #ifdef NUMA
4554 /*
4555  * sort crossdomain free buckets to domain correct buckets and cache
4556  * them.
4557  */
4558 static void
4559 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata)
4560 {
4561 	struct uma_bucketlist emptybuckets, fullbuckets;
4562 	uma_zone_domain_t zdom;
4563 	uma_bucket_t b;
4564 	smr_seq_t seq;
4565 	void *item;
4566 	int domain;
4567 
4568 	CTR3(KTR_UMA,
4569 	    "uma_zfree: zone %s(%p) draining cross bucket %p",
4570 	    zone->uz_name, zone, bucket);
4571 
4572 	/*
4573 	 * It is possible for buckets to arrive here out of order so we fetch
4574 	 * the current smr seq rather than accepting the bucket's.
4575 	 */
4576 	seq = SMR_SEQ_INVALID;
4577 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
4578 		seq = smr_advance(zone->uz_smr);
4579 
4580 	/*
4581 	 * To avoid having ndomain * ndomain buckets for sorting we have a
4582 	 * lock on the current crossfree bucket.  A full matrix with
4583 	 * per-domain locking could be used if necessary.
4584 	 */
4585 	STAILQ_INIT(&emptybuckets);
4586 	STAILQ_INIT(&fullbuckets);
4587 	ZONE_CROSS_LOCK(zone);
4588 	for (; bucket->ub_cnt > 0; bucket->ub_cnt--) {
4589 		item = bucket->ub_bucket[bucket->ub_cnt - 1];
4590 		domain = item_domain(item);
4591 		zdom = ZDOM_GET(zone, domain);
4592 		if (zdom->uzd_cross == NULL) {
4593 			if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4594 				STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4595 				zdom->uzd_cross = b;
4596 			} else {
4597 				/*
4598 				 * Avoid allocating a bucket with the cross lock
4599 				 * held, since allocation can trigger a
4600 				 * cross-domain free and bucket zones may
4601 				 * allocate from each other.
4602 				 */
4603 				ZONE_CROSS_UNLOCK(zone);
4604 				b = bucket_alloc(zone, udata, M_NOWAIT);
4605 				if (b == NULL)
4606 					goto out;
4607 				ZONE_CROSS_LOCK(zone);
4608 				if (zdom->uzd_cross != NULL) {
4609 					STAILQ_INSERT_HEAD(&emptybuckets, b,
4610 					    ub_link);
4611 				} else {
4612 					zdom->uzd_cross = b;
4613 				}
4614 			}
4615 		}
4616 		b = zdom->uzd_cross;
4617 		b->ub_bucket[b->ub_cnt++] = item;
4618 		b->ub_seq = seq;
4619 		if (b->ub_cnt == b->ub_entries) {
4620 			STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link);
4621 			if ((b = STAILQ_FIRST(&emptybuckets)) != NULL)
4622 				STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4623 			zdom->uzd_cross = b;
4624 		}
4625 	}
4626 	ZONE_CROSS_UNLOCK(zone);
4627 out:
4628 	if (bucket->ub_cnt == 0)
4629 		bucket->ub_seq = SMR_SEQ_INVALID;
4630 	bucket_free(zone, bucket, udata);
4631 
4632 	while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4633 		STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4634 		bucket_free(zone, b, udata);
4635 	}
4636 	while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) {
4637 		STAILQ_REMOVE_HEAD(&fullbuckets, ub_link);
4638 		domain = item_domain(b->ub_bucket[0]);
4639 		zone_put_bucket(zone, domain, b, udata, true);
4640 	}
4641 }
4642 #endif
4643 
4644 static void
4645 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
4646     int itemdomain, bool ws)
4647 {
4648 
4649 #ifdef NUMA
4650 	/*
4651 	 * Buckets coming from the wrong domain will be entirely for the
4652 	 * only other domain on two domain systems.  In this case we can
4653 	 * simply cache them.  Otherwise we need to sort them back to
4654 	 * correct domains.
4655 	 */
4656 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4657 	    vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) {
4658 		zone_free_cross(zone, bucket, udata);
4659 		return;
4660 	}
4661 #endif
4662 
4663 	/*
4664 	 * Attempt to save the bucket in the zone's domain bucket cache.
4665 	 */
4666 	CTR3(KTR_UMA,
4667 	    "uma_zfree: zone %s(%p) putting bucket %p on free list",
4668 	    zone->uz_name, zone, bucket);
4669 	/* ub_cnt is pointing to the last free item */
4670 	if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4671 		itemdomain = zone_domain_lowest(zone, itemdomain);
4672 	zone_put_bucket(zone, itemdomain, bucket, udata, ws);
4673 }
4674 
4675 /*
4676  * Populate a free or cross bucket for the current cpu cache.  Free any
4677  * existing full bucket either to the zone cache or back to the slab layer.
4678  *
4679  * Enters and returns in a critical section.  false return indicates that
4680  * we can not satisfy this free in the cache layer.  true indicates that
4681  * the caller should retry.
4682  */
4683 static __noinline bool
4684 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain)
4685 {
4686 	uma_cache_bucket_t cbucket;
4687 	uma_bucket_t newbucket, bucket;
4688 
4689 	CRITICAL_ASSERT(curthread);
4690 
4691 	if (zone->uz_bucket_size == 0)
4692 		return false;
4693 
4694 	cache = &zone->uz_cpu[curcpu];
4695 	newbucket = NULL;
4696 
4697 	/*
4698 	 * FIRSTTOUCH domains need to free to the correct zdom.  When
4699 	 * enabled this is the zdom of the item.   The bucket is the
4700 	 * cross bucket if the current domain and itemdomain do not match.
4701 	 */
4702 	cbucket = &cache->uc_freebucket;
4703 #ifdef NUMA
4704 	if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4705 		if (PCPU_GET(domain) != itemdomain) {
4706 			cbucket = &cache->uc_crossbucket;
4707 			if (cbucket->ucb_cnt != 0)
4708 				counter_u64_add(zone->uz_xdomain,
4709 				    cbucket->ucb_cnt);
4710 		}
4711 	}
4712 #endif
4713 	bucket = cache_bucket_unload(cbucket);
4714 	KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries,
4715 	    ("cache_free: Entered with non-full free bucket."));
4716 
4717 	/* We are no longer associated with this CPU. */
4718 	critical_exit();
4719 
4720 	/*
4721 	 * Don't let SMR zones operate without a free bucket.  Force
4722 	 * a synchronize and re-use this one.  We will only degrade
4723 	 * to a synchronize every bucket_size items rather than every
4724 	 * item if we fail to allocate a bucket.
4725 	 */
4726 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0) {
4727 		if (bucket != NULL)
4728 			bucket->ub_seq = smr_advance(zone->uz_smr);
4729 		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4730 		if (newbucket == NULL && bucket != NULL) {
4731 			bucket_drain(zone, bucket);
4732 			newbucket = bucket;
4733 			bucket = NULL;
4734 		}
4735 	} else if (!bucketdisable)
4736 		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4737 
4738 	if (bucket != NULL)
4739 		zone_free_bucket(zone, bucket, udata, itemdomain, true);
4740 
4741 	critical_enter();
4742 	if ((bucket = newbucket) == NULL)
4743 		return (false);
4744 	cache = &zone->uz_cpu[curcpu];
4745 #ifdef NUMA
4746 	/*
4747 	 * Check to see if we should be populating the cross bucket.  If it
4748 	 * is already populated we will fall through and attempt to populate
4749 	 * the free bucket.
4750 	 */
4751 	if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4752 		if (PCPU_GET(domain) != itemdomain &&
4753 		    cache->uc_crossbucket.ucb_bucket == NULL) {
4754 			cache_bucket_load_cross(cache, bucket);
4755 			return (true);
4756 		}
4757 	}
4758 #endif
4759 	/*
4760 	 * We may have lost the race to fill the bucket or switched CPUs.
4761 	 */
4762 	if (cache->uc_freebucket.ucb_bucket != NULL) {
4763 		critical_exit();
4764 		bucket_free(zone, bucket, udata);
4765 		critical_enter();
4766 	} else
4767 		cache_bucket_load_free(cache, bucket);
4768 
4769 	return (true);
4770 }
4771 
4772 static void
4773 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item)
4774 {
4775 	uma_keg_t keg;
4776 	uma_domain_t dom;
4777 	int freei;
4778 
4779 	keg = zone->uz_keg;
4780 	KEG_LOCK_ASSERT(keg, slab->us_domain);
4781 
4782 	/* Do we need to remove from any lists? */
4783 	dom = &keg->uk_domain[slab->us_domain];
4784 	if (slab->us_freecount + 1 == keg->uk_ipers) {
4785 		LIST_REMOVE(slab, us_link);
4786 		LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
4787 		dom->ud_free_slabs++;
4788 	} else if (slab->us_freecount == 0) {
4789 		LIST_REMOVE(slab, us_link);
4790 		LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
4791 	}
4792 
4793 	/* Slab management. */
4794 	freei = slab_item_index(slab, keg, item);
4795 	BIT_SET(keg->uk_ipers, freei, &slab->us_free);
4796 	slab->us_freecount++;
4797 
4798 	/* Keg statistics. */
4799 	dom->ud_free_items++;
4800 }
4801 
4802 static void
4803 zone_release(void *arg, void **bucket, int cnt)
4804 {
4805 	struct mtx *lock;
4806 	uma_zone_t zone;
4807 	uma_slab_t slab;
4808 	uma_keg_t keg;
4809 	uint8_t *mem;
4810 	void *item;
4811 	int i;
4812 
4813 	zone = arg;
4814 	keg = zone->uz_keg;
4815 	lock = NULL;
4816 	if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0))
4817 		lock = KEG_LOCK(keg, 0);
4818 	for (i = 0; i < cnt; i++) {
4819 		item = bucket[i];
4820 		if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) {
4821 			slab = vtoslab((vm_offset_t)item);
4822 		} else {
4823 			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
4824 			if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0)
4825 				slab = hash_sfind(&keg->uk_hash, mem);
4826 			else
4827 				slab = (uma_slab_t)(mem + keg->uk_pgoff);
4828 		}
4829 		if (lock != KEG_LOCKPTR(keg, slab->us_domain)) {
4830 			if (lock != NULL)
4831 				mtx_unlock(lock);
4832 			lock = KEG_LOCK(keg, slab->us_domain);
4833 		}
4834 		slab_free_item(zone, slab, item);
4835 	}
4836 	if (lock != NULL)
4837 		mtx_unlock(lock);
4838 }
4839 
4840 /*
4841  * Frees a single item to any zone.
4842  *
4843  * Arguments:
4844  *	zone   The zone to free to
4845  *	item   The item we're freeing
4846  *	udata  User supplied data for the dtor
4847  *	skip   Skip dtors and finis
4848  */
4849 static __noinline void
4850 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
4851 {
4852 
4853 	/*
4854 	 * If a free is sent directly to an SMR zone we have to
4855 	 * synchronize immediately because the item can instantly
4856 	 * be reallocated. This should only happen in degenerate
4857 	 * cases when no memory is available for per-cpu caches.
4858 	 */
4859 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE)
4860 		smr_synchronize(zone->uz_smr);
4861 
4862 	item_dtor(zone, item, zone->uz_size, udata, skip);
4863 
4864 	if (skip < SKIP_FINI && zone->uz_fini) {
4865 		kasan_mark_item_valid(zone, item);
4866 		zone->uz_fini(item, zone->uz_size);
4867 		kasan_mark_item_invalid(zone, item);
4868 	}
4869 
4870 	zone->uz_release(zone->uz_arg, &item, 1);
4871 
4872 	if (skip & SKIP_CNT)
4873 		return;
4874 
4875 	counter_u64_add(zone->uz_frees, 1);
4876 
4877 	if (zone->uz_max_items > 0)
4878 		zone_free_limit(zone, 1);
4879 }
4880 
4881 /* See uma.h */
4882 int
4883 uma_zone_set_max(uma_zone_t zone, int nitems)
4884 {
4885 
4886 	/*
4887 	 * If the limit is small, we may need to constrain the maximum per-CPU
4888 	 * cache size, or disable caching entirely.
4889 	 */
4890 	uma_zone_set_maxcache(zone, nitems);
4891 
4892 	/*
4893 	 * XXX This can misbehave if the zone has any allocations with
4894 	 * no limit and a limit is imposed.  There is currently no
4895 	 * way to clear a limit.
4896 	 */
4897 	ZONE_LOCK(zone);
4898 	if (zone->uz_max_items == 0)
4899 		ZONE_ASSERT_COLD(zone);
4900 	zone->uz_max_items = nitems;
4901 	zone->uz_flags |= UMA_ZFLAG_LIMIT;
4902 	zone_update_caches(zone);
4903 	/* We may need to wake waiters. */
4904 	wakeup(&zone->uz_max_items);
4905 	ZONE_UNLOCK(zone);
4906 
4907 	return (nitems);
4908 }
4909 
4910 /* See uma.h */
4911 void
4912 uma_zone_set_maxcache(uma_zone_t zone, int nitems)
4913 {
4914 	int bpcpu, bpdom, bsize, nb;
4915 
4916 	ZONE_LOCK(zone);
4917 
4918 	/*
4919 	 * Compute a lower bound on the number of items that may be cached in
4920 	 * the zone.  Each CPU gets at least two buckets, and for cross-domain
4921 	 * frees we use an additional bucket per CPU and per domain.  Select the
4922 	 * largest bucket size that does not exceed half of the requested limit,
4923 	 * with the left over space given to the full bucket cache.
4924 	 */
4925 	bpdom = 0;
4926 	bpcpu = 2;
4927 #ifdef NUMA
4928 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) {
4929 		bpcpu++;
4930 		bpdom++;
4931 	}
4932 #endif
4933 	nb = bpcpu * mp_ncpus + bpdom * vm_ndomains;
4934 	bsize = nitems / nb / 2;
4935 	if (bsize > BUCKET_MAX)
4936 		bsize = BUCKET_MAX;
4937 	else if (bsize == 0 && nitems / nb > 0)
4938 		bsize = 1;
4939 	zone->uz_bucket_size_max = zone->uz_bucket_size = bsize;
4940 	if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
4941 		zone->uz_bucket_size_min = zone->uz_bucket_size_max;
4942 	zone->uz_bucket_max = nitems - nb * bsize;
4943 	ZONE_UNLOCK(zone);
4944 }
4945 
4946 /* See uma.h */
4947 int
4948 uma_zone_get_max(uma_zone_t zone)
4949 {
4950 	int nitems;
4951 
4952 	nitems = atomic_load_64(&zone->uz_max_items);
4953 
4954 	return (nitems);
4955 }
4956 
4957 /* See uma.h */
4958 void
4959 uma_zone_set_warning(uma_zone_t zone, const char *warning)
4960 {
4961 
4962 	ZONE_ASSERT_COLD(zone);
4963 	zone->uz_warning = warning;
4964 }
4965 
4966 /* See uma.h */
4967 void
4968 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
4969 {
4970 
4971 	ZONE_ASSERT_COLD(zone);
4972 	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
4973 }
4974 
4975 /* See uma.h */
4976 int
4977 uma_zone_get_cur(uma_zone_t zone)
4978 {
4979 	int64_t nitems;
4980 	u_int i;
4981 
4982 	nitems = 0;
4983 	if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER)
4984 		nitems = counter_u64_fetch(zone->uz_allocs) -
4985 		    counter_u64_fetch(zone->uz_frees);
4986 	CPU_FOREACH(i)
4987 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) -
4988 		    atomic_load_64(&zone->uz_cpu[i].uc_frees);
4989 
4990 	return (nitems < 0 ? 0 : nitems);
4991 }
4992 
4993 static uint64_t
4994 uma_zone_get_allocs(uma_zone_t zone)
4995 {
4996 	uint64_t nitems;
4997 	u_int i;
4998 
4999 	nitems = 0;
5000 	if (zone->uz_allocs != EARLY_COUNTER)
5001 		nitems = counter_u64_fetch(zone->uz_allocs);
5002 	CPU_FOREACH(i)
5003 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs);
5004 
5005 	return (nitems);
5006 }
5007 
5008 static uint64_t
5009 uma_zone_get_frees(uma_zone_t zone)
5010 {
5011 	uint64_t nitems;
5012 	u_int i;
5013 
5014 	nitems = 0;
5015 	if (zone->uz_frees != EARLY_COUNTER)
5016 		nitems = counter_u64_fetch(zone->uz_frees);
5017 	CPU_FOREACH(i)
5018 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees);
5019 
5020 	return (nitems);
5021 }
5022 
5023 #ifdef INVARIANTS
5024 /* Used only for KEG_ASSERT_COLD(). */
5025 static uint64_t
5026 uma_keg_get_allocs(uma_keg_t keg)
5027 {
5028 	uma_zone_t z;
5029 	uint64_t nitems;
5030 
5031 	nitems = 0;
5032 	LIST_FOREACH(z, &keg->uk_zones, uz_link)
5033 		nitems += uma_zone_get_allocs(z);
5034 
5035 	return (nitems);
5036 }
5037 #endif
5038 
5039 /* See uma.h */
5040 void
5041 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
5042 {
5043 	uma_keg_t keg;
5044 
5045 	KEG_GET(zone, keg);
5046 	KEG_ASSERT_COLD(keg);
5047 	keg->uk_init = uminit;
5048 }
5049 
5050 /* See uma.h */
5051 void
5052 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
5053 {
5054 	uma_keg_t keg;
5055 
5056 	KEG_GET(zone, keg);
5057 	KEG_ASSERT_COLD(keg);
5058 	keg->uk_fini = fini;
5059 }
5060 
5061 /* See uma.h */
5062 void
5063 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
5064 {
5065 
5066 	ZONE_ASSERT_COLD(zone);
5067 	zone->uz_init = zinit;
5068 }
5069 
5070 /* See uma.h */
5071 void
5072 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
5073 {
5074 
5075 	ZONE_ASSERT_COLD(zone);
5076 	zone->uz_fini = zfini;
5077 }
5078 
5079 /* See uma.h */
5080 void
5081 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
5082 {
5083 	uma_keg_t keg;
5084 
5085 	KEG_GET(zone, keg);
5086 	KEG_ASSERT_COLD(keg);
5087 	keg->uk_freef = freef;
5088 }
5089 
5090 /* See uma.h */
5091 void
5092 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
5093 {
5094 	uma_keg_t keg;
5095 
5096 	KEG_GET(zone, keg);
5097 	KEG_ASSERT_COLD(keg);
5098 	keg->uk_allocf = allocf;
5099 }
5100 
5101 /* See uma.h */
5102 void
5103 uma_zone_set_smr(uma_zone_t zone, smr_t smr)
5104 {
5105 
5106 	ZONE_ASSERT_COLD(zone);
5107 
5108 	KASSERT(smr != NULL, ("Got NULL smr"));
5109 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
5110 	    ("zone %p (%s) already uses SMR", zone, zone->uz_name));
5111 	zone->uz_flags |= UMA_ZONE_SMR;
5112 	zone->uz_smr = smr;
5113 	zone_update_caches(zone);
5114 }
5115 
5116 smr_t
5117 uma_zone_get_smr(uma_zone_t zone)
5118 {
5119 
5120 	return (zone->uz_smr);
5121 }
5122 
5123 /* See uma.h */
5124 void
5125 uma_zone_reserve(uma_zone_t zone, int items)
5126 {
5127 	uma_keg_t keg;
5128 
5129 	KEG_GET(zone, keg);
5130 	KEG_ASSERT_COLD(keg);
5131 	keg->uk_reserve = items;
5132 }
5133 
5134 /* See uma.h */
5135 int
5136 uma_zone_reserve_kva(uma_zone_t zone, int count)
5137 {
5138 	uma_keg_t keg;
5139 	vm_offset_t kva;
5140 	u_int pages;
5141 
5142 	KEG_GET(zone, keg);
5143 	KEG_ASSERT_COLD(keg);
5144 	ZONE_ASSERT_COLD(zone);
5145 
5146 	pages = howmany(count, keg->uk_ipers) * keg->uk_ppera;
5147 
5148 #ifdef UMA_MD_SMALL_ALLOC
5149 	if (keg->uk_ppera > 1) {
5150 #else
5151 	if (1) {
5152 #endif
5153 		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
5154 		if (kva == 0)
5155 			return (0);
5156 	} else
5157 		kva = 0;
5158 
5159 	MPASS(keg->uk_kva == 0);
5160 	keg->uk_kva = kva;
5161 	keg->uk_offset = 0;
5162 	zone->uz_max_items = pages * keg->uk_ipers;
5163 #ifdef UMA_MD_SMALL_ALLOC
5164 	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
5165 #else
5166 	keg->uk_allocf = noobj_alloc;
5167 #endif
5168 	keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5169 	zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5170 	zone_update_caches(zone);
5171 
5172 	return (1);
5173 }
5174 
5175 /* See uma.h */
5176 void
5177 uma_prealloc(uma_zone_t zone, int items)
5178 {
5179 	struct vm_domainset_iter di;
5180 	uma_domain_t dom;
5181 	uma_slab_t slab;
5182 	uma_keg_t keg;
5183 	int aflags, domain, slabs;
5184 
5185 	KEG_GET(zone, keg);
5186 	slabs = howmany(items, keg->uk_ipers);
5187 	while (slabs-- > 0) {
5188 		aflags = M_NOWAIT;
5189 		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
5190 		    &aflags);
5191 		for (;;) {
5192 			slab = keg_alloc_slab(keg, zone, domain, M_WAITOK,
5193 			    aflags);
5194 			if (slab != NULL) {
5195 				dom = &keg->uk_domain[slab->us_domain];
5196 				/*
5197 				 * keg_alloc_slab() always returns a slab on the
5198 				 * partial list.
5199 				 */
5200 				LIST_REMOVE(slab, us_link);
5201 				LIST_INSERT_HEAD(&dom->ud_free_slab, slab,
5202 				    us_link);
5203 				dom->ud_free_slabs++;
5204 				KEG_UNLOCK(keg, slab->us_domain);
5205 				break;
5206 			}
5207 			if (vm_domainset_iter_policy(&di, &domain) != 0)
5208 				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
5209 		}
5210 	}
5211 }
5212 
5213 /*
5214  * Returns a snapshot of memory consumption in bytes.
5215  */
5216 size_t
5217 uma_zone_memory(uma_zone_t zone)
5218 {
5219 	size_t sz;
5220 	int i;
5221 
5222 	sz = 0;
5223 	if (zone->uz_flags & UMA_ZFLAG_CACHE) {
5224 		for (i = 0; i < vm_ndomains; i++)
5225 			sz += ZDOM_GET(zone, i)->uzd_nitems;
5226 		return (sz * zone->uz_size);
5227 	}
5228 	for (i = 0; i < vm_ndomains; i++)
5229 		sz += zone->uz_keg->uk_domain[i].ud_pages;
5230 
5231 	return (sz * PAGE_SIZE);
5232 }
5233 
5234 struct uma_reclaim_args {
5235 	int	domain;
5236 	int	req;
5237 };
5238 
5239 static void
5240 uma_reclaim_domain_cb(uma_zone_t zone, void *arg)
5241 {
5242 	struct uma_reclaim_args *args;
5243 
5244 	args = arg;
5245 	if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0)
5246 		uma_zone_reclaim_domain(zone, args->req, args->domain);
5247 }
5248 
5249 /* See uma.h */
5250 void
5251 uma_reclaim(int req)
5252 {
5253 	uma_reclaim_domain(req, UMA_ANYDOMAIN);
5254 }
5255 
5256 void
5257 uma_reclaim_domain(int req, int domain)
5258 {
5259 	struct uma_reclaim_args args;
5260 
5261 	bucket_enable();
5262 
5263 	args.domain = domain;
5264 	args.req = req;
5265 
5266 	sx_slock(&uma_reclaim_lock);
5267 	switch (req) {
5268 	case UMA_RECLAIM_TRIM:
5269 	case UMA_RECLAIM_DRAIN:
5270 		zone_foreach(uma_reclaim_domain_cb, &args);
5271 		break;
5272 	case UMA_RECLAIM_DRAIN_CPU:
5273 		zone_foreach(uma_reclaim_domain_cb, &args);
5274 		pcpu_cache_drain_safe(NULL);
5275 		zone_foreach(uma_reclaim_domain_cb, &args);
5276 		break;
5277 	default:
5278 		panic("unhandled reclamation request %d", req);
5279 	}
5280 
5281 	/*
5282 	 * Some slabs may have been freed but this zone will be visited early
5283 	 * we visit again so that we can free pages that are empty once other
5284 	 * zones are drained.  We have to do the same for buckets.
5285 	 */
5286 	uma_zone_reclaim_domain(slabzones[0], UMA_RECLAIM_DRAIN, domain);
5287 	uma_zone_reclaim_domain(slabzones[1], UMA_RECLAIM_DRAIN, domain);
5288 	bucket_zone_drain(domain);
5289 	sx_sunlock(&uma_reclaim_lock);
5290 }
5291 
5292 static volatile int uma_reclaim_needed;
5293 
5294 void
5295 uma_reclaim_wakeup(void)
5296 {
5297 
5298 	if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
5299 		wakeup(uma_reclaim);
5300 }
5301 
5302 void
5303 uma_reclaim_worker(void *arg __unused)
5304 {
5305 
5306 	for (;;) {
5307 		sx_xlock(&uma_reclaim_lock);
5308 		while (atomic_load_int(&uma_reclaim_needed) == 0)
5309 			sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl",
5310 			    hz);
5311 		sx_xunlock(&uma_reclaim_lock);
5312 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
5313 		uma_reclaim(UMA_RECLAIM_DRAIN_CPU);
5314 		atomic_store_int(&uma_reclaim_needed, 0);
5315 		/* Don't fire more than once per-second. */
5316 		pause("umarclslp", hz);
5317 	}
5318 }
5319 
5320 /* See uma.h */
5321 void
5322 uma_zone_reclaim(uma_zone_t zone, int req)
5323 {
5324 	uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN);
5325 }
5326 
5327 void
5328 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain)
5329 {
5330 	switch (req) {
5331 	case UMA_RECLAIM_TRIM:
5332 		zone_reclaim(zone, domain, M_NOWAIT, false);
5333 		break;
5334 	case UMA_RECLAIM_DRAIN:
5335 		zone_reclaim(zone, domain, M_NOWAIT, true);
5336 		break;
5337 	case UMA_RECLAIM_DRAIN_CPU:
5338 		pcpu_cache_drain_safe(zone);
5339 		zone_reclaim(zone, domain, M_NOWAIT, true);
5340 		break;
5341 	default:
5342 		panic("unhandled reclamation request %d", req);
5343 	}
5344 }
5345 
5346 /* See uma.h */
5347 int
5348 uma_zone_exhausted(uma_zone_t zone)
5349 {
5350 
5351 	return (atomic_load_32(&zone->uz_sleepers) > 0);
5352 }
5353 
5354 unsigned long
5355 uma_limit(void)
5356 {
5357 
5358 	return (uma_kmem_limit);
5359 }
5360 
5361 void
5362 uma_set_limit(unsigned long limit)
5363 {
5364 
5365 	uma_kmem_limit = limit;
5366 }
5367 
5368 unsigned long
5369 uma_size(void)
5370 {
5371 
5372 	return (atomic_load_long(&uma_kmem_total));
5373 }
5374 
5375 long
5376 uma_avail(void)
5377 {
5378 
5379 	return (uma_kmem_limit - uma_size());
5380 }
5381 
5382 #ifdef DDB
5383 /*
5384  * Generate statistics across both the zone and its per-cpu cache's.  Return
5385  * desired statistics if the pointer is non-NULL for that statistic.
5386  *
5387  * Note: does not update the zone statistics, as it can't safely clear the
5388  * per-CPU cache statistic.
5389  *
5390  */
5391 static void
5392 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp,
5393     uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp)
5394 {
5395 	uma_cache_t cache;
5396 	uint64_t allocs, frees, sleeps, xdomain;
5397 	int cachefree, cpu;
5398 
5399 	allocs = frees = sleeps = xdomain = 0;
5400 	cachefree = 0;
5401 	CPU_FOREACH(cpu) {
5402 		cache = &z->uz_cpu[cpu];
5403 		cachefree += cache->uc_allocbucket.ucb_cnt;
5404 		cachefree += cache->uc_freebucket.ucb_cnt;
5405 		xdomain += cache->uc_crossbucket.ucb_cnt;
5406 		cachefree += cache->uc_crossbucket.ucb_cnt;
5407 		allocs += cache->uc_allocs;
5408 		frees += cache->uc_frees;
5409 	}
5410 	allocs += counter_u64_fetch(z->uz_allocs);
5411 	frees += counter_u64_fetch(z->uz_frees);
5412 	xdomain += counter_u64_fetch(z->uz_xdomain);
5413 	sleeps += z->uz_sleeps;
5414 	if (cachefreep != NULL)
5415 		*cachefreep = cachefree;
5416 	if (allocsp != NULL)
5417 		*allocsp = allocs;
5418 	if (freesp != NULL)
5419 		*freesp = frees;
5420 	if (sleepsp != NULL)
5421 		*sleepsp = sleeps;
5422 	if (xdomainp != NULL)
5423 		*xdomainp = xdomain;
5424 }
5425 #endif /* DDB */
5426 
5427 static int
5428 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
5429 {
5430 	uma_keg_t kz;
5431 	uma_zone_t z;
5432 	int count;
5433 
5434 	count = 0;
5435 	rw_rlock(&uma_rwlock);
5436 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5437 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
5438 			count++;
5439 	}
5440 	LIST_FOREACH(z, &uma_cachezones, uz_link)
5441 		count++;
5442 
5443 	rw_runlock(&uma_rwlock);
5444 	return (sysctl_handle_int(oidp, &count, 0, req));
5445 }
5446 
5447 static void
5448 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf,
5449     struct uma_percpu_stat *ups, bool internal)
5450 {
5451 	uma_zone_domain_t zdom;
5452 	uma_cache_t cache;
5453 	int i;
5454 
5455 	for (i = 0; i < vm_ndomains; i++) {
5456 		zdom = ZDOM_GET(z, i);
5457 		uth->uth_zone_free += zdom->uzd_nitems;
5458 	}
5459 	uth->uth_allocs = counter_u64_fetch(z->uz_allocs);
5460 	uth->uth_frees = counter_u64_fetch(z->uz_frees);
5461 	uth->uth_fails = counter_u64_fetch(z->uz_fails);
5462 	uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain);
5463 	uth->uth_sleeps = z->uz_sleeps;
5464 
5465 	for (i = 0; i < mp_maxid + 1; i++) {
5466 		bzero(&ups[i], sizeof(*ups));
5467 		if (internal || CPU_ABSENT(i))
5468 			continue;
5469 		cache = &z->uz_cpu[i];
5470 		ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt;
5471 		ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt;
5472 		ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt;
5473 		ups[i].ups_allocs = cache->uc_allocs;
5474 		ups[i].ups_frees = cache->uc_frees;
5475 	}
5476 }
5477 
5478 static int
5479 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
5480 {
5481 	struct uma_stream_header ush;
5482 	struct uma_type_header uth;
5483 	struct uma_percpu_stat *ups;
5484 	struct sbuf sbuf;
5485 	uma_keg_t kz;
5486 	uma_zone_t z;
5487 	uint64_t items;
5488 	uint32_t kfree, pages;
5489 	int count, error, i;
5490 
5491 	error = sysctl_wire_old_buffer(req, 0);
5492 	if (error != 0)
5493 		return (error);
5494 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
5495 	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
5496 	ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
5497 
5498 	count = 0;
5499 	rw_rlock(&uma_rwlock);
5500 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5501 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
5502 			count++;
5503 	}
5504 
5505 	LIST_FOREACH(z, &uma_cachezones, uz_link)
5506 		count++;
5507 
5508 	/*
5509 	 * Insert stream header.
5510 	 */
5511 	bzero(&ush, sizeof(ush));
5512 	ush.ush_version = UMA_STREAM_VERSION;
5513 	ush.ush_maxcpus = (mp_maxid + 1);
5514 	ush.ush_count = count;
5515 	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
5516 
5517 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5518 		kfree = pages = 0;
5519 		for (i = 0; i < vm_ndomains; i++) {
5520 			kfree += kz->uk_domain[i].ud_free_items;
5521 			pages += kz->uk_domain[i].ud_pages;
5522 		}
5523 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5524 			bzero(&uth, sizeof(uth));
5525 			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5526 			uth.uth_align = kz->uk_align;
5527 			uth.uth_size = kz->uk_size;
5528 			uth.uth_rsize = kz->uk_rsize;
5529 			if (z->uz_max_items > 0) {
5530 				items = UZ_ITEMS_COUNT(z->uz_items);
5531 				uth.uth_pages = (items / kz->uk_ipers) *
5532 					kz->uk_ppera;
5533 			} else
5534 				uth.uth_pages = pages;
5535 			uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) *
5536 			    kz->uk_ppera;
5537 			uth.uth_limit = z->uz_max_items;
5538 			uth.uth_keg_free = kfree;
5539 
5540 			/*
5541 			 * A zone is secondary is it is not the first entry
5542 			 * on the keg's zone list.
5543 			 */
5544 			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
5545 			    (LIST_FIRST(&kz->uk_zones) != z))
5546 				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
5547 			uma_vm_zone_stats(&uth, z, &sbuf, ups,
5548 			    kz->uk_flags & UMA_ZFLAG_INTERNAL);
5549 			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5550 			for (i = 0; i < mp_maxid + 1; i++)
5551 				(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5552 		}
5553 	}
5554 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
5555 		bzero(&uth, sizeof(uth));
5556 		strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5557 		uth.uth_size = z->uz_size;
5558 		uma_vm_zone_stats(&uth, z, &sbuf, ups, false);
5559 		(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5560 		for (i = 0; i < mp_maxid + 1; i++)
5561 			(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5562 	}
5563 
5564 	rw_runlock(&uma_rwlock);
5565 	error = sbuf_finish(&sbuf);
5566 	sbuf_delete(&sbuf);
5567 	free(ups, M_TEMP);
5568 	return (error);
5569 }
5570 
5571 int
5572 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
5573 {
5574 	uma_zone_t zone = *(uma_zone_t *)arg1;
5575 	int error, max;
5576 
5577 	max = uma_zone_get_max(zone);
5578 	error = sysctl_handle_int(oidp, &max, 0, req);
5579 	if (error || !req->newptr)
5580 		return (error);
5581 
5582 	uma_zone_set_max(zone, max);
5583 
5584 	return (0);
5585 }
5586 
5587 int
5588 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
5589 {
5590 	uma_zone_t zone;
5591 	int cur;
5592 
5593 	/*
5594 	 * Some callers want to add sysctls for global zones that
5595 	 * may not yet exist so they pass a pointer to a pointer.
5596 	 */
5597 	if (arg2 == 0)
5598 		zone = *(uma_zone_t *)arg1;
5599 	else
5600 		zone = arg1;
5601 	cur = uma_zone_get_cur(zone);
5602 	return (sysctl_handle_int(oidp, &cur, 0, req));
5603 }
5604 
5605 static int
5606 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS)
5607 {
5608 	uma_zone_t zone = arg1;
5609 	uint64_t cur;
5610 
5611 	cur = uma_zone_get_allocs(zone);
5612 	return (sysctl_handle_64(oidp, &cur, 0, req));
5613 }
5614 
5615 static int
5616 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS)
5617 {
5618 	uma_zone_t zone = arg1;
5619 	uint64_t cur;
5620 
5621 	cur = uma_zone_get_frees(zone);
5622 	return (sysctl_handle_64(oidp, &cur, 0, req));
5623 }
5624 
5625 static int
5626 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS)
5627 {
5628 	struct sbuf sbuf;
5629 	uma_zone_t zone = arg1;
5630 	int error;
5631 
5632 	sbuf_new_for_sysctl(&sbuf, NULL, 0, req);
5633 	if (zone->uz_flags != 0)
5634 		sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS);
5635 	else
5636 		sbuf_printf(&sbuf, "0");
5637 	error = sbuf_finish(&sbuf);
5638 	sbuf_delete(&sbuf);
5639 
5640 	return (error);
5641 }
5642 
5643 static int
5644 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS)
5645 {
5646 	uma_keg_t keg = arg1;
5647 	int avail, effpct, total;
5648 
5649 	total = keg->uk_ppera * PAGE_SIZE;
5650 	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
5651 		total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize;
5652 	/*
5653 	 * We consider the client's requested size and alignment here, not the
5654 	 * real size determination uk_rsize, because we also adjust the real
5655 	 * size for internal implementation reasons (max bitset size).
5656 	 */
5657 	avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1);
5658 	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
5659 		avail *= mp_maxid + 1;
5660 	effpct = 100 * avail / total;
5661 	return (sysctl_handle_int(oidp, &effpct, 0, req));
5662 }
5663 
5664 static int
5665 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS)
5666 {
5667 	uma_zone_t zone = arg1;
5668 	uint64_t cur;
5669 
5670 	cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items));
5671 	return (sysctl_handle_64(oidp, &cur, 0, req));
5672 }
5673 
5674 #ifdef INVARIANTS
5675 static uma_slab_t
5676 uma_dbg_getslab(uma_zone_t zone, void *item)
5677 {
5678 	uma_slab_t slab;
5679 	uma_keg_t keg;
5680 	uint8_t *mem;
5681 
5682 	/*
5683 	 * It is safe to return the slab here even though the
5684 	 * zone is unlocked because the item's allocation state
5685 	 * essentially holds a reference.
5686 	 */
5687 	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
5688 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5689 		return (NULL);
5690 	if (zone->uz_flags & UMA_ZFLAG_VTOSLAB)
5691 		return (vtoslab((vm_offset_t)mem));
5692 	keg = zone->uz_keg;
5693 	if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0)
5694 		return ((uma_slab_t)(mem + keg->uk_pgoff));
5695 	KEG_LOCK(keg, 0);
5696 	slab = hash_sfind(&keg->uk_hash, mem);
5697 	KEG_UNLOCK(keg, 0);
5698 
5699 	return (slab);
5700 }
5701 
5702 static bool
5703 uma_dbg_zskip(uma_zone_t zone, void *mem)
5704 {
5705 
5706 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5707 		return (true);
5708 
5709 	return (uma_dbg_kskip(zone->uz_keg, mem));
5710 }
5711 
5712 static bool
5713 uma_dbg_kskip(uma_keg_t keg, void *mem)
5714 {
5715 	uintptr_t idx;
5716 
5717 	if (dbg_divisor == 0)
5718 		return (true);
5719 
5720 	if (dbg_divisor == 1)
5721 		return (false);
5722 
5723 	idx = (uintptr_t)mem >> PAGE_SHIFT;
5724 	if (keg->uk_ipers > 1) {
5725 		idx *= keg->uk_ipers;
5726 		idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
5727 	}
5728 
5729 	if ((idx / dbg_divisor) * dbg_divisor != idx) {
5730 		counter_u64_add(uma_skip_cnt, 1);
5731 		return (true);
5732 	}
5733 	counter_u64_add(uma_dbg_cnt, 1);
5734 
5735 	return (false);
5736 }
5737 
5738 /*
5739  * Set up the slab's freei data such that uma_dbg_free can function.
5740  *
5741  */
5742 static void
5743 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
5744 {
5745 	uma_keg_t keg;
5746 	int freei;
5747 
5748 	if (slab == NULL) {
5749 		slab = uma_dbg_getslab(zone, item);
5750 		if (slab == NULL)
5751 			panic("uma: item %p did not belong to zone %s",
5752 			    item, zone->uz_name);
5753 	}
5754 	keg = zone->uz_keg;
5755 	freei = slab_item_index(slab, keg, item);
5756 
5757 	if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei,
5758 	    slab_dbg_bits(slab, keg)))
5759 		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)",
5760 		    item, zone, zone->uz_name, slab, freei);
5761 }
5762 
5763 /*
5764  * Verifies freed addresses.  Checks for alignment, valid slab membership
5765  * and duplicate frees.
5766  *
5767  */
5768 static void
5769 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
5770 {
5771 	uma_keg_t keg;
5772 	int freei;
5773 
5774 	if (slab == NULL) {
5775 		slab = uma_dbg_getslab(zone, item);
5776 		if (slab == NULL)
5777 			panic("uma: Freed item %p did not belong to zone %s",
5778 			    item, zone->uz_name);
5779 	}
5780 	keg = zone->uz_keg;
5781 	freei = slab_item_index(slab, keg, item);
5782 
5783 	if (freei >= keg->uk_ipers)
5784 		panic("Invalid free of %p from zone %p(%s) slab %p(%d)",
5785 		    item, zone, zone->uz_name, slab, freei);
5786 
5787 	if (slab_item(slab, keg, freei) != item)
5788 		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)",
5789 		    item, zone, zone->uz_name, slab, freei);
5790 
5791 	if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei,
5792 	    slab_dbg_bits(slab, keg)))
5793 		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)",
5794 		    item, zone, zone->uz_name, slab, freei);
5795 }
5796 #endif /* INVARIANTS */
5797 
5798 #ifdef DDB
5799 static int64_t
5800 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used,
5801     uint64_t *sleeps, long *cachefree, uint64_t *xdomain)
5802 {
5803 	uint64_t frees;
5804 	int i;
5805 
5806 	if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
5807 		*allocs = counter_u64_fetch(z->uz_allocs);
5808 		frees = counter_u64_fetch(z->uz_frees);
5809 		*sleeps = z->uz_sleeps;
5810 		*cachefree = 0;
5811 		*xdomain = 0;
5812 	} else
5813 		uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps,
5814 		    xdomain);
5815 	for (i = 0; i < vm_ndomains; i++) {
5816 		*cachefree += ZDOM_GET(z, i)->uzd_nitems;
5817 		if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
5818 		    (LIST_FIRST(&kz->uk_zones) != z)))
5819 			*cachefree += kz->uk_domain[i].ud_free_items;
5820 	}
5821 	*used = *allocs - frees;
5822 	return (((int64_t)*used + *cachefree) * kz->uk_size);
5823 }
5824 
5825 DB_SHOW_COMMAND_FLAGS(uma, db_show_uma, DB_CMD_MEMSAFE)
5826 {
5827 	const char *fmt_hdr, *fmt_entry;
5828 	uma_keg_t kz;
5829 	uma_zone_t z;
5830 	uint64_t allocs, used, sleeps, xdomain;
5831 	long cachefree;
5832 	/* variables for sorting */
5833 	uma_keg_t cur_keg;
5834 	uma_zone_t cur_zone, last_zone;
5835 	int64_t cur_size, last_size, size;
5836 	int ties;
5837 
5838 	/* /i option produces machine-parseable CSV output */
5839 	if (modif[0] == 'i') {
5840 		fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n";
5841 		fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n";
5842 	} else {
5843 		fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n";
5844 		fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n";
5845 	}
5846 
5847 	db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests",
5848 	    "Sleeps", "Bucket", "Total Mem", "XFree");
5849 
5850 	/* Sort the zones with largest size first. */
5851 	last_zone = NULL;
5852 	last_size = INT64_MAX;
5853 	for (;;) {
5854 		cur_zone = NULL;
5855 		cur_size = -1;
5856 		ties = 0;
5857 		LIST_FOREACH(kz, &uma_kegs, uk_link) {
5858 			LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5859 				/*
5860 				 * In the case of size ties, print out zones
5861 				 * in the order they are encountered.  That is,
5862 				 * when we encounter the most recently output
5863 				 * zone, we have already printed all preceding
5864 				 * ties, and we must print all following ties.
5865 				 */
5866 				if (z == last_zone) {
5867 					ties = 1;
5868 					continue;
5869 				}
5870 				size = get_uma_stats(kz, z, &allocs, &used,
5871 				    &sleeps, &cachefree, &xdomain);
5872 				if (size > cur_size && size < last_size + ties)
5873 				{
5874 					cur_size = size;
5875 					cur_zone = z;
5876 					cur_keg = kz;
5877 				}
5878 			}
5879 		}
5880 		if (cur_zone == NULL)
5881 			break;
5882 
5883 		size = get_uma_stats(cur_keg, cur_zone, &allocs, &used,
5884 		    &sleeps, &cachefree, &xdomain);
5885 		db_printf(fmt_entry, cur_zone->uz_name,
5886 		    (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree,
5887 		    (uintmax_t)allocs, (uintmax_t)sleeps,
5888 		    (unsigned)cur_zone->uz_bucket_size, (intmax_t)size,
5889 		    xdomain);
5890 
5891 		if (db_pager_quit)
5892 			return;
5893 		last_zone = cur_zone;
5894 		last_size = cur_size;
5895 	}
5896 }
5897 
5898 DB_SHOW_COMMAND_FLAGS(umacache, db_show_umacache, DB_CMD_MEMSAFE)
5899 {
5900 	uma_zone_t z;
5901 	uint64_t allocs, frees;
5902 	long cachefree;
5903 	int i;
5904 
5905 	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
5906 	    "Requests", "Bucket");
5907 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
5908 		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL);
5909 		for (i = 0; i < vm_ndomains; i++)
5910 			cachefree += ZDOM_GET(z, i)->uzd_nitems;
5911 		db_printf("%18s %8ju %8jd %8ld %12ju %8u\n",
5912 		    z->uz_name, (uintmax_t)z->uz_size,
5913 		    (intmax_t)(allocs - frees), cachefree,
5914 		    (uintmax_t)allocs, z->uz_bucket_size);
5915 		if (db_pager_quit)
5916 			return;
5917 	}
5918 }
5919 #endif	/* DDB */
5920