1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/bitset.h> 67 #include <sys/kernel.h> 68 #include <sys/types.h> 69 #include <sys/queue.h> 70 #include <sys/malloc.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/sysctl.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/smp.h> 79 #include <sys/vmmeter.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_kern.h> 88 #include <vm/vm_extern.h> 89 #include <vm/uma.h> 90 #include <vm/uma_int.h> 91 #include <vm/uma_dbg.h> 92 93 #include <ddb/ddb.h> 94 95 #ifdef DEBUG_MEMGUARD 96 #include <vm/memguard.h> 97 #endif 98 99 /* 100 * This is the zone and keg from which all zones are spawned. The idea is that 101 * even the zone & keg heads are allocated from the allocator, so we use the 102 * bss section to bootstrap us. 103 */ 104 static struct uma_keg masterkeg; 105 static struct uma_zone masterzone_k; 106 static struct uma_zone masterzone_z; 107 static uma_zone_t kegs = &masterzone_k; 108 static uma_zone_t zones = &masterzone_z; 109 110 /* This is the zone from which all of uma_slab_t's are allocated. */ 111 static uma_zone_t slabzone; 112 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 113 114 /* 115 * The initial hash tables come out of this zone so they can be allocated 116 * prior to malloc coming up. 117 */ 118 static uma_zone_t hashzone; 119 120 /* The boot-time adjusted value for cache line alignment. */ 121 int uma_align_cache = 64 - 1; 122 123 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 124 125 /* 126 * Are we allowed to allocate buckets? 127 */ 128 static int bucketdisable = 1; 129 130 /* Linked list of all kegs in the system */ 131 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 132 133 /* This mutex protects the keg list */ 134 static struct mtx_padalign uma_mtx; 135 136 /* Linked list of boot time pages */ 137 static LIST_HEAD(,uma_slab) uma_boot_pages = 138 LIST_HEAD_INITIALIZER(uma_boot_pages); 139 140 /* This mutex protects the boot time pages list */ 141 static struct mtx_padalign uma_boot_pages_mtx; 142 143 /* Is the VM done starting up? */ 144 static int booted = 0; 145 #define UMA_STARTUP 1 146 #define UMA_STARTUP2 2 147 148 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */ 149 static const u_int uma_max_ipers = SLAB_SETSIZE; 150 151 /* 152 * Only mbuf clusters use ref zones. Just provide enough references 153 * to support the one user. New code should not use the ref facility. 154 */ 155 static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES; 156 157 /* 158 * This is the handle used to schedule events that need to happen 159 * outside of the allocation fast path. 160 */ 161 static struct callout uma_callout; 162 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 163 164 /* 165 * This structure is passed as the zone ctor arg so that I don't have to create 166 * a special allocation function just for zones. 167 */ 168 struct uma_zctor_args { 169 const char *name; 170 size_t size; 171 uma_ctor ctor; 172 uma_dtor dtor; 173 uma_init uminit; 174 uma_fini fini; 175 uma_import import; 176 uma_release release; 177 void *arg; 178 uma_keg_t keg; 179 int align; 180 uint32_t flags; 181 }; 182 183 struct uma_kctor_args { 184 uma_zone_t zone; 185 size_t size; 186 uma_init uminit; 187 uma_fini fini; 188 int align; 189 uint32_t flags; 190 }; 191 192 struct uma_bucket_zone { 193 uma_zone_t ubz_zone; 194 char *ubz_name; 195 int ubz_entries; /* Number of items it can hold. */ 196 int ubz_maxsize; /* Maximum allocation size per-item. */ 197 }; 198 199 /* 200 * Compute the actual number of bucket entries to pack them in power 201 * of two sizes for more efficient space utilization. 202 */ 203 #define BUCKET_SIZE(n) \ 204 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 205 206 #define BUCKET_MAX BUCKET_SIZE(128) 207 208 struct uma_bucket_zone bucket_zones[] = { 209 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 210 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 211 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 212 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 213 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 214 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 215 { NULL, NULL, 0} 216 }; 217 218 /* 219 * Flags and enumerations to be passed to internal functions. 220 */ 221 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 222 223 /* Prototypes.. */ 224 225 static void *noobj_alloc(uma_zone_t, int, uint8_t *, int); 226 static void *page_alloc(uma_zone_t, int, uint8_t *, int); 227 static void *startup_alloc(uma_zone_t, int, uint8_t *, int); 228 static void page_free(void *, int, uint8_t); 229 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 230 static void cache_drain(uma_zone_t); 231 static void bucket_drain(uma_zone_t, uma_bucket_t); 232 static void bucket_cache_drain(uma_zone_t zone); 233 static int keg_ctor(void *, int, void *, int); 234 static void keg_dtor(void *, int, void *); 235 static int zone_ctor(void *, int, void *, int); 236 static void zone_dtor(void *, int, void *); 237 static int zero_init(void *, int, int); 238 static void keg_small_init(uma_keg_t keg); 239 static void keg_large_init(uma_keg_t keg); 240 static void zone_foreach(void (*zfunc)(uma_zone_t)); 241 static void zone_timeout(uma_zone_t zone); 242 static int hash_alloc(struct uma_hash *); 243 static int hash_expand(struct uma_hash *, struct uma_hash *); 244 static void hash_free(struct uma_hash *hash); 245 static void uma_timeout(void *); 246 static void uma_startup3(void); 247 static void *zone_alloc_item(uma_zone_t, void *, int); 248 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 249 static void bucket_enable(void); 250 static void bucket_init(void); 251 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 252 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 253 static void bucket_zone_drain(void); 254 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 255 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 256 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 257 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 258 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 259 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 260 uma_fini fini, int align, uint32_t flags); 261 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 262 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 263 264 void uma_print_zone(uma_zone_t); 265 void uma_print_stats(void); 266 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 267 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 268 269 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 270 271 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 272 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 273 274 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 275 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 276 277 static int zone_warnings = 1; 278 TUNABLE_INT("vm.zone_warnings", &zone_warnings); 279 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0, 280 "Warn when UMA zones becomes full"); 281 282 /* 283 * This routine checks to see whether or not it's safe to enable buckets. 284 */ 285 static void 286 bucket_enable(void) 287 { 288 bucketdisable = vm_page_count_min(); 289 } 290 291 /* 292 * Initialize bucket_zones, the array of zones of buckets of various sizes. 293 * 294 * For each zone, calculate the memory required for each bucket, consisting 295 * of the header and an array of pointers. 296 */ 297 static void 298 bucket_init(void) 299 { 300 struct uma_bucket_zone *ubz; 301 int size; 302 int i; 303 304 for (i = 0, ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 305 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 306 size += sizeof(void *) * ubz->ubz_entries; 307 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 308 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 309 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 310 } 311 } 312 313 /* 314 * Given a desired number of entries for a bucket, return the zone from which 315 * to allocate the bucket. 316 */ 317 static struct uma_bucket_zone * 318 bucket_zone_lookup(int entries) 319 { 320 struct uma_bucket_zone *ubz; 321 322 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 323 if (ubz->ubz_entries >= entries) 324 return (ubz); 325 ubz--; 326 return (ubz); 327 } 328 329 static int 330 bucket_select(int size) 331 { 332 struct uma_bucket_zone *ubz; 333 334 ubz = &bucket_zones[0]; 335 if (size > ubz->ubz_maxsize) 336 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 337 338 for (; ubz->ubz_entries != 0; ubz++) 339 if (ubz->ubz_maxsize < size) 340 break; 341 ubz--; 342 return (ubz->ubz_entries); 343 } 344 345 static uma_bucket_t 346 bucket_alloc(uma_zone_t zone, void *udata, int flags) 347 { 348 struct uma_bucket_zone *ubz; 349 uma_bucket_t bucket; 350 351 /* 352 * This is to stop us from allocating per cpu buckets while we're 353 * running out of vm.boot_pages. Otherwise, we would exhaust the 354 * boot pages. This also prevents us from allocating buckets in 355 * low memory situations. 356 */ 357 if (bucketdisable) 358 return (NULL); 359 /* 360 * To limit bucket recursion we store the original zone flags 361 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 362 * NOVM flag to persist even through deep recursions. We also 363 * store ZFLAG_BUCKET once we have recursed attempting to allocate 364 * a bucket for a bucket zone so we do not allow infinite bucket 365 * recursion. This cookie will even persist to frees of unused 366 * buckets via the allocation path or bucket allocations in the 367 * free path. 368 */ 369 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 370 return (NULL); 371 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 372 udata = (void *)(uintptr_t)zone->uz_flags; 373 else 374 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 375 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 376 flags |= M_NOVM; 377 ubz = bucket_zone_lookup(zone->uz_count); 378 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 379 if (bucket) { 380 #ifdef INVARIANTS 381 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 382 #endif 383 bucket->ub_cnt = 0; 384 bucket->ub_entries = ubz->ubz_entries; 385 } 386 387 return (bucket); 388 } 389 390 static void 391 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 392 { 393 struct uma_bucket_zone *ubz; 394 395 KASSERT(bucket->ub_cnt == 0, 396 ("bucket_free: Freeing a non free bucket.")); 397 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 398 udata = (void *)(uintptr_t)zone->uz_flags; 399 ubz = bucket_zone_lookup(bucket->ub_entries); 400 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 401 } 402 403 static void 404 bucket_zone_drain(void) 405 { 406 struct uma_bucket_zone *ubz; 407 408 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 409 zone_drain(ubz->ubz_zone); 410 } 411 412 static void 413 zone_log_warning(uma_zone_t zone) 414 { 415 static const struct timeval warninterval = { 300, 0 }; 416 417 if (!zone_warnings || zone->uz_warning == NULL) 418 return; 419 420 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 421 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 422 } 423 424 static void 425 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 426 { 427 uma_klink_t klink; 428 429 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 430 kegfn(klink->kl_keg); 431 } 432 433 /* 434 * Routine called by timeout which is used to fire off some time interval 435 * based calculations. (stats, hash size, etc.) 436 * 437 * Arguments: 438 * arg Unused 439 * 440 * Returns: 441 * Nothing 442 */ 443 static void 444 uma_timeout(void *unused) 445 { 446 bucket_enable(); 447 zone_foreach(zone_timeout); 448 449 /* Reschedule this event */ 450 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 451 } 452 453 /* 454 * Routine to perform timeout driven calculations. This expands the 455 * hashes and does per cpu statistics aggregation. 456 * 457 * Returns nothing. 458 */ 459 static void 460 keg_timeout(uma_keg_t keg) 461 { 462 463 KEG_LOCK(keg); 464 /* 465 * Expand the keg hash table. 466 * 467 * This is done if the number of slabs is larger than the hash size. 468 * What I'm trying to do here is completely reduce collisions. This 469 * may be a little aggressive. Should I allow for two collisions max? 470 */ 471 if (keg->uk_flags & UMA_ZONE_HASH && 472 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 473 struct uma_hash newhash; 474 struct uma_hash oldhash; 475 int ret; 476 477 /* 478 * This is so involved because allocating and freeing 479 * while the keg lock is held will lead to deadlock. 480 * I have to do everything in stages and check for 481 * races. 482 */ 483 newhash = keg->uk_hash; 484 KEG_UNLOCK(keg); 485 ret = hash_alloc(&newhash); 486 KEG_LOCK(keg); 487 if (ret) { 488 if (hash_expand(&keg->uk_hash, &newhash)) { 489 oldhash = keg->uk_hash; 490 keg->uk_hash = newhash; 491 } else 492 oldhash = newhash; 493 494 KEG_UNLOCK(keg); 495 hash_free(&oldhash); 496 return; 497 } 498 } 499 KEG_UNLOCK(keg); 500 } 501 502 static void 503 zone_timeout(uma_zone_t zone) 504 { 505 506 zone_foreach_keg(zone, &keg_timeout); 507 } 508 509 /* 510 * Allocate and zero fill the next sized hash table from the appropriate 511 * backing store. 512 * 513 * Arguments: 514 * hash A new hash structure with the old hash size in uh_hashsize 515 * 516 * Returns: 517 * 1 on sucess and 0 on failure. 518 */ 519 static int 520 hash_alloc(struct uma_hash *hash) 521 { 522 int oldsize; 523 int alloc; 524 525 oldsize = hash->uh_hashsize; 526 527 /* We're just going to go to a power of two greater */ 528 if (oldsize) { 529 hash->uh_hashsize = oldsize * 2; 530 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 531 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 532 M_UMAHASH, M_NOWAIT); 533 } else { 534 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 535 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 536 M_WAITOK); 537 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 538 } 539 if (hash->uh_slab_hash) { 540 bzero(hash->uh_slab_hash, alloc); 541 hash->uh_hashmask = hash->uh_hashsize - 1; 542 return (1); 543 } 544 545 return (0); 546 } 547 548 /* 549 * Expands the hash table for HASH zones. This is done from zone_timeout 550 * to reduce collisions. This must not be done in the regular allocation 551 * path, otherwise, we can recurse on the vm while allocating pages. 552 * 553 * Arguments: 554 * oldhash The hash you want to expand 555 * newhash The hash structure for the new table 556 * 557 * Returns: 558 * Nothing 559 * 560 * Discussion: 561 */ 562 static int 563 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 564 { 565 uma_slab_t slab; 566 int hval; 567 int i; 568 569 if (!newhash->uh_slab_hash) 570 return (0); 571 572 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 573 return (0); 574 575 /* 576 * I need to investigate hash algorithms for resizing without a 577 * full rehash. 578 */ 579 580 for (i = 0; i < oldhash->uh_hashsize; i++) 581 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 582 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 583 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 584 hval = UMA_HASH(newhash, slab->us_data); 585 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 586 slab, us_hlink); 587 } 588 589 return (1); 590 } 591 592 /* 593 * Free the hash bucket to the appropriate backing store. 594 * 595 * Arguments: 596 * slab_hash The hash bucket we're freeing 597 * hashsize The number of entries in that hash bucket 598 * 599 * Returns: 600 * Nothing 601 */ 602 static void 603 hash_free(struct uma_hash *hash) 604 { 605 if (hash->uh_slab_hash == NULL) 606 return; 607 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 608 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 609 else 610 free(hash->uh_slab_hash, M_UMAHASH); 611 } 612 613 /* 614 * Frees all outstanding items in a bucket 615 * 616 * Arguments: 617 * zone The zone to free to, must be unlocked. 618 * bucket The free/alloc bucket with items, cpu queue must be locked. 619 * 620 * Returns: 621 * Nothing 622 */ 623 624 static void 625 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 626 { 627 int i; 628 629 if (bucket == NULL) 630 return; 631 632 if (zone->uz_fini) 633 for (i = 0; i < bucket->ub_cnt; i++) 634 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 635 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 636 bucket->ub_cnt = 0; 637 } 638 639 /* 640 * Drains the per cpu caches for a zone. 641 * 642 * NOTE: This may only be called while the zone is being turn down, and not 643 * during normal operation. This is necessary in order that we do not have 644 * to migrate CPUs to drain the per-CPU caches. 645 * 646 * Arguments: 647 * zone The zone to drain, must be unlocked. 648 * 649 * Returns: 650 * Nothing 651 */ 652 static void 653 cache_drain(uma_zone_t zone) 654 { 655 uma_cache_t cache; 656 int cpu; 657 658 /* 659 * XXX: It is safe to not lock the per-CPU caches, because we're 660 * tearing down the zone anyway. I.e., there will be no further use 661 * of the caches at this point. 662 * 663 * XXX: It would good to be able to assert that the zone is being 664 * torn down to prevent improper use of cache_drain(). 665 * 666 * XXX: We lock the zone before passing into bucket_cache_drain() as 667 * it is used elsewhere. Should the tear-down path be made special 668 * there in some form? 669 */ 670 CPU_FOREACH(cpu) { 671 cache = &zone->uz_cpu[cpu]; 672 bucket_drain(zone, cache->uc_allocbucket); 673 bucket_drain(zone, cache->uc_freebucket); 674 if (cache->uc_allocbucket != NULL) 675 bucket_free(zone, cache->uc_allocbucket, NULL); 676 if (cache->uc_freebucket != NULL) 677 bucket_free(zone, cache->uc_freebucket, NULL); 678 cache->uc_allocbucket = cache->uc_freebucket = NULL; 679 } 680 ZONE_LOCK(zone); 681 bucket_cache_drain(zone); 682 ZONE_UNLOCK(zone); 683 } 684 685 /* 686 * Drain the cached buckets from a zone. Expects a locked zone on entry. 687 */ 688 static void 689 bucket_cache_drain(uma_zone_t zone) 690 { 691 uma_bucket_t bucket; 692 693 /* 694 * Drain the bucket queues and free the buckets, we just keep two per 695 * cpu (alloc/free). 696 */ 697 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 698 LIST_REMOVE(bucket, ub_link); 699 ZONE_UNLOCK(zone); 700 bucket_drain(zone, bucket); 701 bucket_free(zone, bucket, NULL); 702 ZONE_LOCK(zone); 703 } 704 } 705 706 static void 707 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 708 { 709 uint8_t *mem; 710 int i; 711 uint8_t flags; 712 713 mem = slab->us_data; 714 flags = slab->us_flags; 715 i = start; 716 if (keg->uk_fini != NULL) { 717 for (i--; i > -1; i--) 718 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 719 keg->uk_size); 720 } 721 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 722 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 723 #ifdef UMA_DEBUG 724 printf("%s: Returning %d bytes.\n", keg->uk_name, 725 PAGE_SIZE * keg->uk_ppera); 726 #endif 727 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 728 } 729 730 /* 731 * Frees pages from a keg back to the system. This is done on demand from 732 * the pageout daemon. 733 * 734 * Returns nothing. 735 */ 736 static void 737 keg_drain(uma_keg_t keg) 738 { 739 struct slabhead freeslabs = { 0 }; 740 uma_slab_t slab; 741 uma_slab_t n; 742 743 /* 744 * We don't want to take pages from statically allocated kegs at this 745 * time 746 */ 747 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 748 return; 749 750 #ifdef UMA_DEBUG 751 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 752 #endif 753 KEG_LOCK(keg); 754 if (keg->uk_free == 0) 755 goto finished; 756 757 slab = LIST_FIRST(&keg->uk_free_slab); 758 while (slab) { 759 n = LIST_NEXT(slab, us_link); 760 761 /* We have no where to free these to */ 762 if (slab->us_flags & UMA_SLAB_BOOT) { 763 slab = n; 764 continue; 765 } 766 767 LIST_REMOVE(slab, us_link); 768 keg->uk_pages -= keg->uk_ppera; 769 keg->uk_free -= keg->uk_ipers; 770 771 if (keg->uk_flags & UMA_ZONE_HASH) 772 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 773 774 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 775 776 slab = n; 777 } 778 finished: 779 KEG_UNLOCK(keg); 780 781 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 782 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 783 keg_free_slab(keg, slab, keg->uk_ipers); 784 } 785 } 786 787 static void 788 zone_drain_wait(uma_zone_t zone, int waitok) 789 { 790 791 /* 792 * Set draining to interlock with zone_dtor() so we can release our 793 * locks as we go. Only dtor() should do a WAITOK call since it 794 * is the only call that knows the structure will still be available 795 * when it wakes up. 796 */ 797 ZONE_LOCK(zone); 798 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 799 if (waitok == M_NOWAIT) 800 goto out; 801 mtx_unlock(&uma_mtx); 802 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 803 mtx_lock(&uma_mtx); 804 } 805 zone->uz_flags |= UMA_ZFLAG_DRAINING; 806 bucket_cache_drain(zone); 807 ZONE_UNLOCK(zone); 808 /* 809 * The DRAINING flag protects us from being freed while 810 * we're running. Normally the uma_mtx would protect us but we 811 * must be able to release and acquire the right lock for each keg. 812 */ 813 zone_foreach_keg(zone, &keg_drain); 814 ZONE_LOCK(zone); 815 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 816 wakeup(zone); 817 out: 818 ZONE_UNLOCK(zone); 819 } 820 821 void 822 zone_drain(uma_zone_t zone) 823 { 824 825 zone_drain_wait(zone, M_NOWAIT); 826 } 827 828 /* 829 * Allocate a new slab for a keg. This does not insert the slab onto a list. 830 * 831 * Arguments: 832 * wait Shall we wait? 833 * 834 * Returns: 835 * The slab that was allocated or NULL if there is no memory and the 836 * caller specified M_NOWAIT. 837 */ 838 static uma_slab_t 839 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 840 { 841 uma_slabrefcnt_t slabref; 842 uma_alloc allocf; 843 uma_slab_t slab; 844 uint8_t *mem; 845 uint8_t flags; 846 int i; 847 848 mtx_assert(&keg->uk_lock, MA_OWNED); 849 slab = NULL; 850 mem = NULL; 851 852 #ifdef UMA_DEBUG 853 printf("alloc_slab: Allocating a new slab for %s\n", keg->uk_name); 854 #endif 855 allocf = keg->uk_allocf; 856 KEG_UNLOCK(keg); 857 858 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 859 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 860 if (slab == NULL) 861 goto out; 862 } 863 864 /* 865 * This reproduces the old vm_zone behavior of zero filling pages the 866 * first time they are added to a zone. 867 * 868 * Malloced items are zeroed in uma_zalloc. 869 */ 870 871 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 872 wait |= M_ZERO; 873 else 874 wait &= ~M_ZERO; 875 876 if (keg->uk_flags & UMA_ZONE_NODUMP) 877 wait |= M_NODUMP; 878 879 /* zone is passed for legacy reasons. */ 880 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 881 if (mem == NULL) { 882 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 883 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 884 slab = NULL; 885 goto out; 886 } 887 888 /* Point the slab into the allocated memory */ 889 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 890 slab = (uma_slab_t )(mem + keg->uk_pgoff); 891 892 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 893 for (i = 0; i < keg->uk_ppera; i++) 894 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 895 896 slab->us_keg = keg; 897 slab->us_data = mem; 898 slab->us_freecount = keg->uk_ipers; 899 slab->us_flags = flags; 900 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 901 #ifdef INVARIANTS 902 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 903 #endif 904 if (keg->uk_flags & UMA_ZONE_REFCNT) { 905 slabref = (uma_slabrefcnt_t)slab; 906 for (i = 0; i < keg->uk_ipers; i++) 907 slabref->us_refcnt[i] = 0; 908 } 909 910 if (keg->uk_init != NULL) { 911 for (i = 0; i < keg->uk_ipers; i++) 912 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 913 keg->uk_size, wait) != 0) 914 break; 915 if (i != keg->uk_ipers) { 916 keg_free_slab(keg, slab, i); 917 slab = NULL; 918 goto out; 919 } 920 } 921 out: 922 KEG_LOCK(keg); 923 924 if (slab != NULL) { 925 if (keg->uk_flags & UMA_ZONE_HASH) 926 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 927 928 keg->uk_pages += keg->uk_ppera; 929 keg->uk_free += keg->uk_ipers; 930 } 931 932 return (slab); 933 } 934 935 /* 936 * This function is intended to be used early on in place of page_alloc() so 937 * that we may use the boot time page cache to satisfy allocations before 938 * the VM is ready. 939 */ 940 static void * 941 startup_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 942 { 943 uma_keg_t keg; 944 uma_slab_t tmps; 945 int pages, check_pages; 946 947 keg = zone_first_keg(zone); 948 pages = howmany(bytes, PAGE_SIZE); 949 check_pages = pages - 1; 950 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 951 952 /* 953 * Check our small startup cache to see if it has pages remaining. 954 */ 955 mtx_lock(&uma_boot_pages_mtx); 956 957 /* First check if we have enough room. */ 958 tmps = LIST_FIRST(&uma_boot_pages); 959 while (tmps != NULL && check_pages-- > 0) 960 tmps = LIST_NEXT(tmps, us_link); 961 if (tmps != NULL) { 962 /* 963 * It's ok to lose tmps references. The last one will 964 * have tmps->us_data pointing to the start address of 965 * "pages" contiguous pages of memory. 966 */ 967 while (pages-- > 0) { 968 tmps = LIST_FIRST(&uma_boot_pages); 969 LIST_REMOVE(tmps, us_link); 970 } 971 mtx_unlock(&uma_boot_pages_mtx); 972 *pflag = tmps->us_flags; 973 return (tmps->us_data); 974 } 975 mtx_unlock(&uma_boot_pages_mtx); 976 if (booted < UMA_STARTUP2) 977 panic("UMA: Increase vm.boot_pages"); 978 /* 979 * Now that we've booted reset these users to their real allocator. 980 */ 981 #ifdef UMA_MD_SMALL_ALLOC 982 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 983 #else 984 keg->uk_allocf = page_alloc; 985 #endif 986 return keg->uk_allocf(zone, bytes, pflag, wait); 987 } 988 989 /* 990 * Allocates a number of pages from the system 991 * 992 * Arguments: 993 * bytes The number of bytes requested 994 * wait Shall we wait? 995 * 996 * Returns: 997 * A pointer to the alloced memory or possibly 998 * NULL if M_NOWAIT is set. 999 */ 1000 static void * 1001 page_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait) 1002 { 1003 void *p; /* Returned page */ 1004 1005 *pflag = UMA_SLAB_KMEM; 1006 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1007 1008 return (p); 1009 } 1010 1011 /* 1012 * Allocates a number of pages from within an object 1013 * 1014 * Arguments: 1015 * bytes The number of bytes requested 1016 * wait Shall we wait? 1017 * 1018 * Returns: 1019 * A pointer to the alloced memory or possibly 1020 * NULL if M_NOWAIT is set. 1021 */ 1022 static void * 1023 noobj_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait) 1024 { 1025 TAILQ_HEAD(, vm_page) alloctail; 1026 u_long npages; 1027 vm_offset_t retkva, zkva; 1028 vm_page_t p, p_next; 1029 uma_keg_t keg; 1030 1031 TAILQ_INIT(&alloctail); 1032 keg = zone_first_keg(zone); 1033 1034 npages = howmany(bytes, PAGE_SIZE); 1035 while (npages > 0) { 1036 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1037 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); 1038 if (p != NULL) { 1039 /* 1040 * Since the page does not belong to an object, its 1041 * listq is unused. 1042 */ 1043 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1044 npages--; 1045 continue; 1046 } 1047 if (wait & M_WAITOK) { 1048 VM_WAIT; 1049 continue; 1050 } 1051 1052 /* 1053 * Page allocation failed, free intermediate pages and 1054 * exit. 1055 */ 1056 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1057 vm_page_unwire(p, 0); 1058 vm_page_free(p); 1059 } 1060 return (NULL); 1061 } 1062 *flags = UMA_SLAB_PRIV; 1063 zkva = keg->uk_kva + 1064 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1065 retkva = zkva; 1066 TAILQ_FOREACH(p, &alloctail, listq) { 1067 pmap_qenter(zkva, &p, 1); 1068 zkva += PAGE_SIZE; 1069 } 1070 1071 return ((void *)retkva); 1072 } 1073 1074 /* 1075 * Frees a number of pages to the system 1076 * 1077 * Arguments: 1078 * mem A pointer to the memory to be freed 1079 * size The size of the memory being freed 1080 * flags The original p->us_flags field 1081 * 1082 * Returns: 1083 * Nothing 1084 */ 1085 static void 1086 page_free(void *mem, int size, uint8_t flags) 1087 { 1088 struct vmem *vmem; 1089 1090 if (flags & UMA_SLAB_KMEM) 1091 vmem = kmem_arena; 1092 else if (flags & UMA_SLAB_KERNEL) 1093 vmem = kernel_arena; 1094 else 1095 panic("UMA: page_free used with invalid flags %d", flags); 1096 1097 kmem_free(vmem, (vm_offset_t)mem, size); 1098 } 1099 1100 /* 1101 * Zero fill initializer 1102 * 1103 * Arguments/Returns follow uma_init specifications 1104 */ 1105 static int 1106 zero_init(void *mem, int size, int flags) 1107 { 1108 bzero(mem, size); 1109 return (0); 1110 } 1111 1112 /* 1113 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1114 * 1115 * Arguments 1116 * keg The zone we should initialize 1117 * 1118 * Returns 1119 * Nothing 1120 */ 1121 static void 1122 keg_small_init(uma_keg_t keg) 1123 { 1124 u_int rsize; 1125 u_int memused; 1126 u_int wastedspace; 1127 u_int shsize; 1128 1129 if (keg->uk_flags & UMA_ZONE_PCPU) { 1130 u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1131 1132 keg->uk_slabsize = sizeof(struct pcpu); 1133 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1134 PAGE_SIZE); 1135 } else { 1136 keg->uk_slabsize = UMA_SLAB_SIZE; 1137 keg->uk_ppera = 1; 1138 } 1139 1140 /* 1141 * Calculate the size of each allocation (rsize) according to 1142 * alignment. If the requested size is smaller than we have 1143 * allocation bits for we round it up. 1144 */ 1145 rsize = keg->uk_size; 1146 if (rsize < keg->uk_slabsize / SLAB_SETSIZE) 1147 rsize = keg->uk_slabsize / SLAB_SETSIZE; 1148 if (rsize & keg->uk_align) 1149 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1150 keg->uk_rsize = rsize; 1151 1152 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1153 keg->uk_rsize < sizeof(struct pcpu), 1154 ("%s: size %u too large", __func__, keg->uk_rsize)); 1155 1156 if (keg->uk_flags & UMA_ZONE_REFCNT) 1157 rsize += sizeof(uint32_t); 1158 1159 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1160 shsize = 0; 1161 else 1162 shsize = sizeof(struct uma_slab); 1163 1164 keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize; 1165 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1166 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1167 1168 memused = keg->uk_ipers * rsize + shsize; 1169 wastedspace = keg->uk_slabsize - memused; 1170 1171 /* 1172 * We can't do OFFPAGE if we're internal or if we've been 1173 * asked to not go to the VM for buckets. If we do this we 1174 * may end up going to the VM for slabs which we do not 1175 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1176 * of UMA_ZONE_VM, which clearly forbids it. 1177 */ 1178 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1179 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1180 return; 1181 1182 /* 1183 * See if using an OFFPAGE slab will limit our waste. Only do 1184 * this if it permits more items per-slab. 1185 * 1186 * XXX We could try growing slabsize to limit max waste as well. 1187 * Historically this was not done because the VM could not 1188 * efficiently handle contiguous allocations. 1189 */ 1190 if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) && 1191 (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) { 1192 keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize; 1193 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1194 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1195 #ifdef UMA_DEBUG 1196 printf("UMA decided we need offpage slab headers for " 1197 "keg: %s, calculated wastedspace = %d, " 1198 "maximum wasted space allowed = %d, " 1199 "calculated ipers = %d, " 1200 "new wasted space = %d\n", keg->uk_name, wastedspace, 1201 keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1202 keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize); 1203 #endif 1204 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1205 } 1206 1207 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1208 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1209 keg->uk_flags |= UMA_ZONE_HASH; 1210 } 1211 1212 /* 1213 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1214 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1215 * more complicated. 1216 * 1217 * Arguments 1218 * keg The keg we should initialize 1219 * 1220 * Returns 1221 * Nothing 1222 */ 1223 static void 1224 keg_large_init(uma_keg_t keg) 1225 { 1226 1227 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1228 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1229 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1230 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1231 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1232 1233 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1234 keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE; 1235 keg->uk_ipers = 1; 1236 keg->uk_rsize = keg->uk_size; 1237 1238 /* We can't do OFFPAGE if we're internal, bail out here. */ 1239 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1240 return; 1241 1242 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1243 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1244 keg->uk_flags |= UMA_ZONE_HASH; 1245 } 1246 1247 static void 1248 keg_cachespread_init(uma_keg_t keg) 1249 { 1250 int alignsize; 1251 int trailer; 1252 int pages; 1253 int rsize; 1254 1255 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1256 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1257 1258 alignsize = keg->uk_align + 1; 1259 rsize = keg->uk_size; 1260 /* 1261 * We want one item to start on every align boundary in a page. To 1262 * do this we will span pages. We will also extend the item by the 1263 * size of align if it is an even multiple of align. Otherwise, it 1264 * would fall on the same boundary every time. 1265 */ 1266 if (rsize & keg->uk_align) 1267 rsize = (rsize & ~keg->uk_align) + alignsize; 1268 if ((rsize & alignsize) == 0) 1269 rsize += alignsize; 1270 trailer = rsize - keg->uk_size; 1271 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1272 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1273 keg->uk_rsize = rsize; 1274 keg->uk_ppera = pages; 1275 keg->uk_slabsize = UMA_SLAB_SIZE; 1276 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1277 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1278 KASSERT(keg->uk_ipers <= uma_max_ipers, 1279 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1280 keg->uk_ipers)); 1281 } 1282 1283 /* 1284 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1285 * the keg onto the global keg list. 1286 * 1287 * Arguments/Returns follow uma_ctor specifications 1288 * udata Actually uma_kctor_args 1289 */ 1290 static int 1291 keg_ctor(void *mem, int size, void *udata, int flags) 1292 { 1293 struct uma_kctor_args *arg = udata; 1294 uma_keg_t keg = mem; 1295 uma_zone_t zone; 1296 1297 bzero(keg, size); 1298 keg->uk_size = arg->size; 1299 keg->uk_init = arg->uminit; 1300 keg->uk_fini = arg->fini; 1301 keg->uk_align = arg->align; 1302 keg->uk_free = 0; 1303 keg->uk_reserve = 0; 1304 keg->uk_pages = 0; 1305 keg->uk_flags = arg->flags; 1306 keg->uk_allocf = page_alloc; 1307 keg->uk_freef = page_free; 1308 keg->uk_slabzone = NULL; 1309 1310 /* 1311 * The master zone is passed to us at keg-creation time. 1312 */ 1313 zone = arg->zone; 1314 keg->uk_name = zone->uz_name; 1315 1316 if (arg->flags & UMA_ZONE_VM) 1317 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1318 1319 if (arg->flags & UMA_ZONE_ZINIT) 1320 keg->uk_init = zero_init; 1321 1322 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC) 1323 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1324 1325 if (arg->flags & UMA_ZONE_PCPU) 1326 #ifdef SMP 1327 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1328 #else 1329 keg->uk_flags &= ~UMA_ZONE_PCPU; 1330 #endif 1331 1332 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1333 keg_cachespread_init(keg); 1334 } else if (keg->uk_flags & UMA_ZONE_REFCNT) { 1335 if (keg->uk_size > 1336 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - 1337 sizeof(uint32_t))) 1338 keg_large_init(keg); 1339 else 1340 keg_small_init(keg); 1341 } else { 1342 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1343 keg_large_init(keg); 1344 else 1345 keg_small_init(keg); 1346 } 1347 1348 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1349 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1350 if (keg->uk_ipers > uma_max_ipers_ref) 1351 panic("Too many ref items per zone: %d > %d\n", 1352 keg->uk_ipers, uma_max_ipers_ref); 1353 keg->uk_slabzone = slabrefzone; 1354 } else 1355 keg->uk_slabzone = slabzone; 1356 } 1357 1358 /* 1359 * If we haven't booted yet we need allocations to go through the 1360 * startup cache until the vm is ready. 1361 */ 1362 if (keg->uk_ppera == 1) { 1363 #ifdef UMA_MD_SMALL_ALLOC 1364 keg->uk_allocf = uma_small_alloc; 1365 keg->uk_freef = uma_small_free; 1366 1367 if (booted < UMA_STARTUP) 1368 keg->uk_allocf = startup_alloc; 1369 #else 1370 if (booted < UMA_STARTUP2) 1371 keg->uk_allocf = startup_alloc; 1372 #endif 1373 } else if (booted < UMA_STARTUP2 && 1374 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1375 keg->uk_allocf = startup_alloc; 1376 1377 /* 1378 * Initialize keg's lock 1379 */ 1380 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1381 1382 /* 1383 * If we're putting the slab header in the actual page we need to 1384 * figure out where in each page it goes. This calculates a right 1385 * justified offset into the memory on an ALIGN_PTR boundary. 1386 */ 1387 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1388 u_int totsize; 1389 1390 /* Size of the slab struct and free list */ 1391 totsize = sizeof(struct uma_slab); 1392 1393 /* Size of the reference counts. */ 1394 if (keg->uk_flags & UMA_ZONE_REFCNT) 1395 totsize += keg->uk_ipers * sizeof(uint32_t); 1396 1397 if (totsize & UMA_ALIGN_PTR) 1398 totsize = (totsize & ~UMA_ALIGN_PTR) + 1399 (UMA_ALIGN_PTR + 1); 1400 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1401 1402 /* 1403 * The only way the following is possible is if with our 1404 * UMA_ALIGN_PTR adjustments we are now bigger than 1405 * UMA_SLAB_SIZE. I haven't checked whether this is 1406 * mathematically possible for all cases, so we make 1407 * sure here anyway. 1408 */ 1409 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1410 if (keg->uk_flags & UMA_ZONE_REFCNT) 1411 totsize += keg->uk_ipers * sizeof(uint32_t); 1412 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1413 printf("zone %s ipers %d rsize %d size %d\n", 1414 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1415 keg->uk_size); 1416 panic("UMA slab won't fit."); 1417 } 1418 } 1419 1420 if (keg->uk_flags & UMA_ZONE_HASH) 1421 hash_alloc(&keg->uk_hash); 1422 1423 #ifdef UMA_DEBUG 1424 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n", 1425 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1426 keg->uk_ipers, keg->uk_ppera, 1427 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1428 #endif 1429 1430 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1431 1432 mtx_lock(&uma_mtx); 1433 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1434 mtx_unlock(&uma_mtx); 1435 return (0); 1436 } 1437 1438 /* 1439 * Zone header ctor. This initializes all fields, locks, etc. 1440 * 1441 * Arguments/Returns follow uma_ctor specifications 1442 * udata Actually uma_zctor_args 1443 */ 1444 static int 1445 zone_ctor(void *mem, int size, void *udata, int flags) 1446 { 1447 struct uma_zctor_args *arg = udata; 1448 uma_zone_t zone = mem; 1449 uma_zone_t z; 1450 uma_keg_t keg; 1451 1452 bzero(zone, size); 1453 zone->uz_name = arg->name; 1454 zone->uz_ctor = arg->ctor; 1455 zone->uz_dtor = arg->dtor; 1456 zone->uz_slab = zone_fetch_slab; 1457 zone->uz_init = NULL; 1458 zone->uz_fini = NULL; 1459 zone->uz_allocs = 0; 1460 zone->uz_frees = 0; 1461 zone->uz_fails = 0; 1462 zone->uz_sleeps = 0; 1463 zone->uz_count = 0; 1464 zone->uz_flags = 0; 1465 zone->uz_warning = NULL; 1466 timevalclear(&zone->uz_ratecheck); 1467 keg = arg->keg; 1468 1469 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1470 1471 /* 1472 * This is a pure cache zone, no kegs. 1473 */ 1474 if (arg->import) { 1475 if (arg->flags & UMA_ZONE_VM) 1476 arg->flags |= UMA_ZFLAG_CACHEONLY; 1477 zone->uz_flags = arg->flags; 1478 zone->uz_size = arg->size; 1479 zone->uz_import = arg->import; 1480 zone->uz_release = arg->release; 1481 zone->uz_arg = arg->arg; 1482 zone->uz_lockptr = &zone->uz_lock; 1483 goto out; 1484 } 1485 1486 /* 1487 * Use the regular zone/keg/slab allocator. 1488 */ 1489 zone->uz_import = (uma_import)zone_import; 1490 zone->uz_release = (uma_release)zone_release; 1491 zone->uz_arg = zone; 1492 1493 if (arg->flags & UMA_ZONE_SECONDARY) { 1494 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1495 zone->uz_init = arg->uminit; 1496 zone->uz_fini = arg->fini; 1497 zone->uz_lockptr = &keg->uk_lock; 1498 zone->uz_flags |= UMA_ZONE_SECONDARY; 1499 mtx_lock(&uma_mtx); 1500 ZONE_LOCK(zone); 1501 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1502 if (LIST_NEXT(z, uz_link) == NULL) { 1503 LIST_INSERT_AFTER(z, zone, uz_link); 1504 break; 1505 } 1506 } 1507 ZONE_UNLOCK(zone); 1508 mtx_unlock(&uma_mtx); 1509 } else if (keg == NULL) { 1510 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1511 arg->align, arg->flags)) == NULL) 1512 return (ENOMEM); 1513 } else { 1514 struct uma_kctor_args karg; 1515 int error; 1516 1517 /* We should only be here from uma_startup() */ 1518 karg.size = arg->size; 1519 karg.uminit = arg->uminit; 1520 karg.fini = arg->fini; 1521 karg.align = arg->align; 1522 karg.flags = arg->flags; 1523 karg.zone = zone; 1524 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1525 flags); 1526 if (error) 1527 return (error); 1528 } 1529 1530 /* 1531 * Link in the first keg. 1532 */ 1533 zone->uz_klink.kl_keg = keg; 1534 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1535 zone->uz_lockptr = &keg->uk_lock; 1536 zone->uz_size = keg->uk_size; 1537 zone->uz_flags |= (keg->uk_flags & 1538 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1539 1540 /* 1541 * Some internal zones don't have room allocated for the per cpu 1542 * caches. If we're internal, bail out here. 1543 */ 1544 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1545 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1546 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1547 return (0); 1548 } 1549 1550 out: 1551 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1552 zone->uz_count = bucket_select(zone->uz_size); 1553 else 1554 zone->uz_count = BUCKET_MAX; 1555 1556 return (0); 1557 } 1558 1559 /* 1560 * Keg header dtor. This frees all data, destroys locks, frees the hash 1561 * table and removes the keg from the global list. 1562 * 1563 * Arguments/Returns follow uma_dtor specifications 1564 * udata unused 1565 */ 1566 static void 1567 keg_dtor(void *arg, int size, void *udata) 1568 { 1569 uma_keg_t keg; 1570 1571 keg = (uma_keg_t)arg; 1572 KEG_LOCK(keg); 1573 if (keg->uk_free != 0) { 1574 printf("Freed UMA keg was not empty (%d items). " 1575 " Lost %d pages of memory.\n", 1576 keg->uk_free, keg->uk_pages); 1577 } 1578 KEG_UNLOCK(keg); 1579 1580 hash_free(&keg->uk_hash); 1581 1582 KEG_LOCK_FINI(keg); 1583 } 1584 1585 /* 1586 * Zone header dtor. 1587 * 1588 * Arguments/Returns follow uma_dtor specifications 1589 * udata unused 1590 */ 1591 static void 1592 zone_dtor(void *arg, int size, void *udata) 1593 { 1594 uma_klink_t klink; 1595 uma_zone_t zone; 1596 uma_keg_t keg; 1597 1598 zone = (uma_zone_t)arg; 1599 keg = zone_first_keg(zone); 1600 1601 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1602 cache_drain(zone); 1603 1604 mtx_lock(&uma_mtx); 1605 LIST_REMOVE(zone, uz_link); 1606 mtx_unlock(&uma_mtx); 1607 /* 1608 * XXX there are some races here where 1609 * the zone can be drained but zone lock 1610 * released and then refilled before we 1611 * remove it... we dont care for now 1612 */ 1613 zone_drain_wait(zone, M_WAITOK); 1614 /* 1615 * Unlink all of our kegs. 1616 */ 1617 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1618 klink->kl_keg = NULL; 1619 LIST_REMOVE(klink, kl_link); 1620 if (klink == &zone->uz_klink) 1621 continue; 1622 free(klink, M_TEMP); 1623 } 1624 /* 1625 * We only destroy kegs from non secondary zones. 1626 */ 1627 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1628 mtx_lock(&uma_mtx); 1629 LIST_REMOVE(keg, uk_link); 1630 mtx_unlock(&uma_mtx); 1631 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1632 } 1633 ZONE_LOCK_FINI(zone); 1634 } 1635 1636 /* 1637 * Traverses every zone in the system and calls a callback 1638 * 1639 * Arguments: 1640 * zfunc A pointer to a function which accepts a zone 1641 * as an argument. 1642 * 1643 * Returns: 1644 * Nothing 1645 */ 1646 static void 1647 zone_foreach(void (*zfunc)(uma_zone_t)) 1648 { 1649 uma_keg_t keg; 1650 uma_zone_t zone; 1651 1652 mtx_lock(&uma_mtx); 1653 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1654 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1655 zfunc(zone); 1656 } 1657 mtx_unlock(&uma_mtx); 1658 } 1659 1660 /* Public functions */ 1661 /* See uma.h */ 1662 void 1663 uma_startup(void *bootmem, int boot_pages) 1664 { 1665 struct uma_zctor_args args; 1666 uma_slab_t slab; 1667 u_int slabsize; 1668 int i; 1669 1670 #ifdef UMA_DEBUG 1671 printf("Creating uma keg headers zone and keg.\n"); 1672 #endif 1673 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1674 1675 /* "manually" create the initial zone */ 1676 memset(&args, 0, sizeof(args)); 1677 args.name = "UMA Kegs"; 1678 args.size = sizeof(struct uma_keg); 1679 args.ctor = keg_ctor; 1680 args.dtor = keg_dtor; 1681 args.uminit = zero_init; 1682 args.fini = NULL; 1683 args.keg = &masterkeg; 1684 args.align = 32 - 1; 1685 args.flags = UMA_ZFLAG_INTERNAL; 1686 /* The initial zone has no Per cpu queues so it's smaller */ 1687 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1688 1689 #ifdef UMA_DEBUG 1690 printf("Filling boot free list.\n"); 1691 #endif 1692 for (i = 0; i < boot_pages; i++) { 1693 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1694 slab->us_data = (uint8_t *)slab; 1695 slab->us_flags = UMA_SLAB_BOOT; 1696 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1697 } 1698 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1699 1700 #ifdef UMA_DEBUG 1701 printf("Creating uma zone headers zone and keg.\n"); 1702 #endif 1703 args.name = "UMA Zones"; 1704 args.size = sizeof(struct uma_zone) + 1705 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1706 args.ctor = zone_ctor; 1707 args.dtor = zone_dtor; 1708 args.uminit = zero_init; 1709 args.fini = NULL; 1710 args.keg = NULL; 1711 args.align = 32 - 1; 1712 args.flags = UMA_ZFLAG_INTERNAL; 1713 /* The initial zone has no Per cpu queues so it's smaller */ 1714 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1715 1716 #ifdef UMA_DEBUG 1717 printf("Initializing pcpu cache locks.\n"); 1718 #endif 1719 #ifdef UMA_DEBUG 1720 printf("Creating slab and hash zones.\n"); 1721 #endif 1722 1723 /* Now make a zone for slab headers */ 1724 slabzone = uma_zcreate("UMA Slabs", 1725 sizeof(struct uma_slab), 1726 NULL, NULL, NULL, NULL, 1727 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1728 1729 /* 1730 * We also create a zone for the bigger slabs with reference 1731 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1732 */ 1733 slabsize = sizeof(struct uma_slab_refcnt); 1734 slabsize += uma_max_ipers_ref * sizeof(uint32_t); 1735 slabrefzone = uma_zcreate("UMA RCntSlabs", 1736 slabsize, 1737 NULL, NULL, NULL, NULL, 1738 UMA_ALIGN_PTR, 1739 UMA_ZFLAG_INTERNAL); 1740 1741 hashzone = uma_zcreate("UMA Hash", 1742 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1743 NULL, NULL, NULL, NULL, 1744 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1745 1746 bucket_init(); 1747 1748 booted = UMA_STARTUP; 1749 1750 #ifdef UMA_DEBUG 1751 printf("UMA startup complete.\n"); 1752 #endif 1753 } 1754 1755 /* see uma.h */ 1756 void 1757 uma_startup2(void) 1758 { 1759 booted = UMA_STARTUP2; 1760 bucket_enable(); 1761 #ifdef UMA_DEBUG 1762 printf("UMA startup2 complete.\n"); 1763 #endif 1764 } 1765 1766 /* 1767 * Initialize our callout handle 1768 * 1769 */ 1770 1771 static void 1772 uma_startup3(void) 1773 { 1774 #ifdef UMA_DEBUG 1775 printf("Starting callout.\n"); 1776 #endif 1777 callout_init(&uma_callout, CALLOUT_MPSAFE); 1778 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1779 #ifdef UMA_DEBUG 1780 printf("UMA startup3 complete.\n"); 1781 #endif 1782 } 1783 1784 static uma_keg_t 1785 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1786 int align, uint32_t flags) 1787 { 1788 struct uma_kctor_args args; 1789 1790 args.size = size; 1791 args.uminit = uminit; 1792 args.fini = fini; 1793 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1794 args.flags = flags; 1795 args.zone = zone; 1796 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1797 } 1798 1799 /* See uma.h */ 1800 void 1801 uma_set_align(int align) 1802 { 1803 1804 if (align != UMA_ALIGN_CACHE) 1805 uma_align_cache = align; 1806 } 1807 1808 /* See uma.h */ 1809 uma_zone_t 1810 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1811 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1812 1813 { 1814 struct uma_zctor_args args; 1815 1816 /* This stuff is essential for the zone ctor */ 1817 memset(&args, 0, sizeof(args)); 1818 args.name = name; 1819 args.size = size; 1820 args.ctor = ctor; 1821 args.dtor = dtor; 1822 args.uminit = uminit; 1823 args.fini = fini; 1824 args.align = align; 1825 args.flags = flags; 1826 args.keg = NULL; 1827 1828 return (zone_alloc_item(zones, &args, M_WAITOK)); 1829 } 1830 1831 /* See uma.h */ 1832 uma_zone_t 1833 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1834 uma_init zinit, uma_fini zfini, uma_zone_t master) 1835 { 1836 struct uma_zctor_args args; 1837 uma_keg_t keg; 1838 1839 keg = zone_first_keg(master); 1840 memset(&args, 0, sizeof(args)); 1841 args.name = name; 1842 args.size = keg->uk_size; 1843 args.ctor = ctor; 1844 args.dtor = dtor; 1845 args.uminit = zinit; 1846 args.fini = zfini; 1847 args.align = keg->uk_align; 1848 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1849 args.keg = keg; 1850 1851 /* XXX Attaches only one keg of potentially many. */ 1852 return (zone_alloc_item(zones, &args, M_WAITOK)); 1853 } 1854 1855 /* See uma.h */ 1856 uma_zone_t 1857 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 1858 uma_init zinit, uma_fini zfini, uma_import zimport, 1859 uma_release zrelease, void *arg, int flags) 1860 { 1861 struct uma_zctor_args args; 1862 1863 memset(&args, 0, sizeof(args)); 1864 args.name = name; 1865 args.size = size; 1866 args.ctor = ctor; 1867 args.dtor = dtor; 1868 args.uminit = zinit; 1869 args.fini = zfini; 1870 args.import = zimport; 1871 args.release = zrelease; 1872 args.arg = arg; 1873 args.align = 0; 1874 args.flags = flags; 1875 1876 return (zone_alloc_item(zones, &args, M_WAITOK)); 1877 } 1878 1879 static void 1880 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1881 { 1882 if (a < b) { 1883 ZONE_LOCK(a); 1884 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 1885 } else { 1886 ZONE_LOCK(b); 1887 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 1888 } 1889 } 1890 1891 static void 1892 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 1893 { 1894 1895 ZONE_UNLOCK(a); 1896 ZONE_UNLOCK(b); 1897 } 1898 1899 int 1900 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 1901 { 1902 uma_klink_t klink; 1903 uma_klink_t kl; 1904 int error; 1905 1906 error = 0; 1907 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 1908 1909 zone_lock_pair(zone, master); 1910 /* 1911 * zone must use vtoslab() to resolve objects and must already be 1912 * a secondary. 1913 */ 1914 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 1915 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 1916 error = EINVAL; 1917 goto out; 1918 } 1919 /* 1920 * The new master must also use vtoslab(). 1921 */ 1922 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 1923 error = EINVAL; 1924 goto out; 1925 } 1926 /* 1927 * Both must either be refcnt, or not be refcnt. 1928 */ 1929 if ((zone->uz_flags & UMA_ZONE_REFCNT) != 1930 (master->uz_flags & UMA_ZONE_REFCNT)) { 1931 error = EINVAL; 1932 goto out; 1933 } 1934 /* 1935 * The underlying object must be the same size. rsize 1936 * may be different. 1937 */ 1938 if (master->uz_size != zone->uz_size) { 1939 error = E2BIG; 1940 goto out; 1941 } 1942 /* 1943 * Put it at the end of the list. 1944 */ 1945 klink->kl_keg = zone_first_keg(master); 1946 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 1947 if (LIST_NEXT(kl, kl_link) == NULL) { 1948 LIST_INSERT_AFTER(kl, klink, kl_link); 1949 break; 1950 } 1951 } 1952 klink = NULL; 1953 zone->uz_flags |= UMA_ZFLAG_MULTI; 1954 zone->uz_slab = zone_fetch_slab_multi; 1955 1956 out: 1957 zone_unlock_pair(zone, master); 1958 if (klink != NULL) 1959 free(klink, M_TEMP); 1960 1961 return (error); 1962 } 1963 1964 1965 /* See uma.h */ 1966 void 1967 uma_zdestroy(uma_zone_t zone) 1968 { 1969 1970 zone_free_item(zones, zone, NULL, SKIP_NONE); 1971 } 1972 1973 /* See uma.h */ 1974 void * 1975 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 1976 { 1977 void *item; 1978 uma_cache_t cache; 1979 uma_bucket_t bucket; 1980 int lockfail; 1981 int cpu; 1982 1983 /* This is the fast path allocation */ 1984 #ifdef UMA_DEBUG_ALLOC_1 1985 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 1986 #endif 1987 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 1988 zone->uz_name, flags); 1989 1990 if (flags & M_WAITOK) { 1991 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1992 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 1993 } 1994 #ifdef DEBUG_MEMGUARD 1995 if (memguard_cmp_zone(zone)) { 1996 item = memguard_alloc(zone->uz_size, flags); 1997 if (item != NULL) { 1998 /* 1999 * Avoid conflict with the use-after-free 2000 * protecting infrastructure from INVARIANTS. 2001 */ 2002 if (zone->uz_init != NULL && 2003 zone->uz_init != mtrash_init && 2004 zone->uz_init(item, zone->uz_size, flags) != 0) 2005 return (NULL); 2006 if (zone->uz_ctor != NULL && 2007 zone->uz_ctor != mtrash_ctor && 2008 zone->uz_ctor(item, zone->uz_size, udata, 2009 flags) != 0) { 2010 zone->uz_fini(item, zone->uz_size); 2011 return (NULL); 2012 } 2013 return (item); 2014 } 2015 /* This is unfortunate but should not be fatal. */ 2016 } 2017 #endif 2018 /* 2019 * If possible, allocate from the per-CPU cache. There are two 2020 * requirements for safe access to the per-CPU cache: (1) the thread 2021 * accessing the cache must not be preempted or yield during access, 2022 * and (2) the thread must not migrate CPUs without switching which 2023 * cache it accesses. We rely on a critical section to prevent 2024 * preemption and migration. We release the critical section in 2025 * order to acquire the zone mutex if we are unable to allocate from 2026 * the current cache; when we re-acquire the critical section, we 2027 * must detect and handle migration if it has occurred. 2028 */ 2029 critical_enter(); 2030 cpu = curcpu; 2031 cache = &zone->uz_cpu[cpu]; 2032 2033 zalloc_start: 2034 bucket = cache->uc_allocbucket; 2035 if (bucket != NULL && bucket->ub_cnt > 0) { 2036 bucket->ub_cnt--; 2037 item = bucket->ub_bucket[bucket->ub_cnt]; 2038 #ifdef INVARIANTS 2039 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2040 #endif 2041 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2042 cache->uc_allocs++; 2043 critical_exit(); 2044 if (zone->uz_ctor != NULL && 2045 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2046 atomic_add_long(&zone->uz_fails, 1); 2047 zone_free_item(zone, item, udata, SKIP_DTOR); 2048 return (NULL); 2049 } 2050 #ifdef INVARIANTS 2051 uma_dbg_alloc(zone, NULL, item); 2052 #endif 2053 if (flags & M_ZERO) 2054 bzero(item, zone->uz_size); 2055 return (item); 2056 } 2057 2058 /* 2059 * We have run out of items in our alloc bucket. 2060 * See if we can switch with our free bucket. 2061 */ 2062 bucket = cache->uc_freebucket; 2063 if (bucket != NULL && bucket->ub_cnt > 0) { 2064 #ifdef UMA_DEBUG_ALLOC 2065 printf("uma_zalloc: Swapping empty with alloc.\n"); 2066 #endif 2067 cache->uc_freebucket = cache->uc_allocbucket; 2068 cache->uc_allocbucket = bucket; 2069 goto zalloc_start; 2070 } 2071 2072 /* 2073 * Discard any empty allocation bucket while we hold no locks. 2074 */ 2075 bucket = cache->uc_allocbucket; 2076 cache->uc_allocbucket = NULL; 2077 critical_exit(); 2078 if (bucket != NULL) 2079 bucket_free(zone, bucket, udata); 2080 2081 /* Short-circuit for zones without buckets and low memory. */ 2082 if (zone->uz_count == 0 || bucketdisable) 2083 goto zalloc_item; 2084 2085 /* 2086 * Attempt to retrieve the item from the per-CPU cache has failed, so 2087 * we must go back to the zone. This requires the zone lock, so we 2088 * must drop the critical section, then re-acquire it when we go back 2089 * to the cache. Since the critical section is released, we may be 2090 * preempted or migrate. As such, make sure not to maintain any 2091 * thread-local state specific to the cache from prior to releasing 2092 * the critical section. 2093 */ 2094 lockfail = 0; 2095 if (ZONE_TRYLOCK(zone) == 0) { 2096 /* Record contention to size the buckets. */ 2097 ZONE_LOCK(zone); 2098 lockfail = 1; 2099 } 2100 critical_enter(); 2101 cpu = curcpu; 2102 cache = &zone->uz_cpu[cpu]; 2103 2104 /* 2105 * Since we have locked the zone we may as well send back our stats. 2106 */ 2107 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2108 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2109 cache->uc_allocs = 0; 2110 cache->uc_frees = 0; 2111 2112 /* See if we lost the race to fill the cache. */ 2113 if (cache->uc_allocbucket != NULL) { 2114 ZONE_UNLOCK(zone); 2115 goto zalloc_start; 2116 } 2117 2118 /* 2119 * Check the zone's cache of buckets. 2120 */ 2121 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2122 KASSERT(bucket->ub_cnt != 0, 2123 ("uma_zalloc_arg: Returning an empty bucket.")); 2124 2125 LIST_REMOVE(bucket, ub_link); 2126 cache->uc_allocbucket = bucket; 2127 ZONE_UNLOCK(zone); 2128 goto zalloc_start; 2129 } 2130 /* We are no longer associated with this CPU. */ 2131 critical_exit(); 2132 2133 /* 2134 * We bump the uz count when the cache size is insufficient to 2135 * handle the working set. 2136 */ 2137 if (lockfail && zone->uz_count < BUCKET_MAX) 2138 zone->uz_count++; 2139 ZONE_UNLOCK(zone); 2140 2141 /* 2142 * Now lets just fill a bucket and put it on the free list. If that 2143 * works we'll restart the allocation from the begining and it 2144 * will use the just filled bucket. 2145 */ 2146 bucket = zone_alloc_bucket(zone, udata, flags); 2147 if (bucket != NULL) { 2148 ZONE_LOCK(zone); 2149 critical_enter(); 2150 cpu = curcpu; 2151 cache = &zone->uz_cpu[cpu]; 2152 /* 2153 * See if we lost the race or were migrated. Cache the 2154 * initialized bucket to make this less likely or claim 2155 * the memory directly. 2156 */ 2157 if (cache->uc_allocbucket == NULL) 2158 cache->uc_allocbucket = bucket; 2159 else 2160 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2161 ZONE_UNLOCK(zone); 2162 goto zalloc_start; 2163 } 2164 2165 /* 2166 * We may not be able to get a bucket so return an actual item. 2167 */ 2168 #ifdef UMA_DEBUG 2169 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2170 #endif 2171 2172 zalloc_item: 2173 item = zone_alloc_item(zone, udata, flags); 2174 2175 return (item); 2176 } 2177 2178 static uma_slab_t 2179 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2180 { 2181 uma_slab_t slab; 2182 int reserve; 2183 2184 mtx_assert(&keg->uk_lock, MA_OWNED); 2185 slab = NULL; 2186 reserve = 0; 2187 if ((flags & M_USE_RESERVE) == 0) 2188 reserve = keg->uk_reserve; 2189 2190 for (;;) { 2191 /* 2192 * Find a slab with some space. Prefer slabs that are partially 2193 * used over those that are totally full. This helps to reduce 2194 * fragmentation. 2195 */ 2196 if (keg->uk_free > reserve) { 2197 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2198 slab = LIST_FIRST(&keg->uk_part_slab); 2199 } else { 2200 slab = LIST_FIRST(&keg->uk_free_slab); 2201 LIST_REMOVE(slab, us_link); 2202 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2203 us_link); 2204 } 2205 MPASS(slab->us_keg == keg); 2206 return (slab); 2207 } 2208 2209 /* 2210 * M_NOVM means don't ask at all! 2211 */ 2212 if (flags & M_NOVM) 2213 break; 2214 2215 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2216 keg->uk_flags |= UMA_ZFLAG_FULL; 2217 /* 2218 * If this is not a multi-zone, set the FULL bit. 2219 * Otherwise slab_multi() takes care of it. 2220 */ 2221 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2222 zone->uz_flags |= UMA_ZFLAG_FULL; 2223 zone_log_warning(zone); 2224 } 2225 if (flags & M_NOWAIT) 2226 break; 2227 zone->uz_sleeps++; 2228 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2229 continue; 2230 } 2231 slab = keg_alloc_slab(keg, zone, flags); 2232 /* 2233 * If we got a slab here it's safe to mark it partially used 2234 * and return. We assume that the caller is going to remove 2235 * at least one item. 2236 */ 2237 if (slab) { 2238 MPASS(slab->us_keg == keg); 2239 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2240 return (slab); 2241 } 2242 /* 2243 * We might not have been able to get a slab but another cpu 2244 * could have while we were unlocked. Check again before we 2245 * fail. 2246 */ 2247 flags |= M_NOVM; 2248 } 2249 return (slab); 2250 } 2251 2252 static uma_slab_t 2253 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2254 { 2255 uma_slab_t slab; 2256 2257 if (keg == NULL) { 2258 keg = zone_first_keg(zone); 2259 KEG_LOCK(keg); 2260 } 2261 2262 for (;;) { 2263 slab = keg_fetch_slab(keg, zone, flags); 2264 if (slab) 2265 return (slab); 2266 if (flags & (M_NOWAIT | M_NOVM)) 2267 break; 2268 } 2269 KEG_UNLOCK(keg); 2270 return (NULL); 2271 } 2272 2273 /* 2274 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2275 * with the keg locked. On NULL no lock is held. 2276 * 2277 * The last pointer is used to seed the search. It is not required. 2278 */ 2279 static uma_slab_t 2280 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2281 { 2282 uma_klink_t klink; 2283 uma_slab_t slab; 2284 uma_keg_t keg; 2285 int flags; 2286 int empty; 2287 int full; 2288 2289 /* 2290 * Don't wait on the first pass. This will skip limit tests 2291 * as well. We don't want to block if we can find a provider 2292 * without blocking. 2293 */ 2294 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2295 /* 2296 * Use the last slab allocated as a hint for where to start 2297 * the search. 2298 */ 2299 if (last != NULL) { 2300 slab = keg_fetch_slab(last, zone, flags); 2301 if (slab) 2302 return (slab); 2303 KEG_UNLOCK(last); 2304 } 2305 /* 2306 * Loop until we have a slab incase of transient failures 2307 * while M_WAITOK is specified. I'm not sure this is 100% 2308 * required but we've done it for so long now. 2309 */ 2310 for (;;) { 2311 empty = 0; 2312 full = 0; 2313 /* 2314 * Search the available kegs for slabs. Be careful to hold the 2315 * correct lock while calling into the keg layer. 2316 */ 2317 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2318 keg = klink->kl_keg; 2319 KEG_LOCK(keg); 2320 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2321 slab = keg_fetch_slab(keg, zone, flags); 2322 if (slab) 2323 return (slab); 2324 } 2325 if (keg->uk_flags & UMA_ZFLAG_FULL) 2326 full++; 2327 else 2328 empty++; 2329 KEG_UNLOCK(keg); 2330 } 2331 if (rflags & (M_NOWAIT | M_NOVM)) 2332 break; 2333 flags = rflags; 2334 /* 2335 * All kegs are full. XXX We can't atomically check all kegs 2336 * and sleep so just sleep for a short period and retry. 2337 */ 2338 if (full && !empty) { 2339 ZONE_LOCK(zone); 2340 zone->uz_flags |= UMA_ZFLAG_FULL; 2341 zone->uz_sleeps++; 2342 zone_log_warning(zone); 2343 msleep(zone, zone->uz_lockptr, PVM, 2344 "zonelimit", hz/100); 2345 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2346 ZONE_UNLOCK(zone); 2347 continue; 2348 } 2349 } 2350 return (NULL); 2351 } 2352 2353 static void * 2354 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2355 { 2356 void *item; 2357 uint8_t freei; 2358 2359 MPASS(keg == slab->us_keg); 2360 mtx_assert(&keg->uk_lock, MA_OWNED); 2361 2362 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2363 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2364 item = slab->us_data + (keg->uk_rsize * freei); 2365 slab->us_freecount--; 2366 keg->uk_free--; 2367 2368 /* Move this slab to the full list */ 2369 if (slab->us_freecount == 0) { 2370 LIST_REMOVE(slab, us_link); 2371 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2372 } 2373 2374 return (item); 2375 } 2376 2377 static int 2378 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2379 { 2380 uma_slab_t slab; 2381 uma_keg_t keg; 2382 int i; 2383 2384 slab = NULL; 2385 keg = NULL; 2386 /* Try to keep the buckets totally full */ 2387 for (i = 0; i < max; ) { 2388 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2389 break; 2390 keg = slab->us_keg; 2391 while (slab->us_freecount && i < max) { 2392 bucket[i++] = slab_alloc_item(keg, slab); 2393 if (keg->uk_free <= keg->uk_reserve) 2394 break; 2395 } 2396 /* Don't grab more than one slab at a time. */ 2397 flags &= ~M_WAITOK; 2398 flags |= M_NOWAIT; 2399 } 2400 if (slab != NULL) 2401 KEG_UNLOCK(keg); 2402 2403 return i; 2404 } 2405 2406 static uma_bucket_t 2407 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2408 { 2409 uma_bucket_t bucket; 2410 int max; 2411 2412 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2413 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2414 if (bucket == NULL) 2415 goto out; 2416 2417 max = MIN(bucket->ub_entries, zone->uz_count); 2418 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2419 max, flags); 2420 2421 /* 2422 * Initialize the memory if necessary. 2423 */ 2424 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2425 int i; 2426 2427 for (i = 0; i < bucket->ub_cnt; i++) 2428 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2429 flags) != 0) 2430 break; 2431 /* 2432 * If we couldn't initialize the whole bucket, put the 2433 * rest back onto the freelist. 2434 */ 2435 if (i != bucket->ub_cnt) { 2436 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2437 bucket->ub_cnt - i); 2438 #ifdef INVARIANTS 2439 bzero(&bucket->ub_bucket[i], 2440 sizeof(void *) * (bucket->ub_cnt - i)); 2441 #endif 2442 bucket->ub_cnt = i; 2443 } 2444 } 2445 2446 out: 2447 if (bucket == NULL || bucket->ub_cnt == 0) { 2448 if (bucket != NULL) 2449 bucket_free(zone, bucket, udata); 2450 atomic_add_long(&zone->uz_fails, 1); 2451 return (NULL); 2452 } 2453 2454 return (bucket); 2455 } 2456 2457 /* 2458 * Allocates a single item from a zone. 2459 * 2460 * Arguments 2461 * zone The zone to alloc for. 2462 * udata The data to be passed to the constructor. 2463 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2464 * 2465 * Returns 2466 * NULL if there is no memory and M_NOWAIT is set 2467 * An item if successful 2468 */ 2469 2470 static void * 2471 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2472 { 2473 void *item; 2474 2475 item = NULL; 2476 2477 #ifdef UMA_DEBUG_ALLOC 2478 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2479 #endif 2480 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2481 goto fail; 2482 atomic_add_long(&zone->uz_allocs, 1); 2483 2484 /* 2485 * We have to call both the zone's init (not the keg's init) 2486 * and the zone's ctor. This is because the item is going from 2487 * a keg slab directly to the user, and the user is expecting it 2488 * to be both zone-init'd as well as zone-ctor'd. 2489 */ 2490 if (zone->uz_init != NULL) { 2491 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2492 zone_free_item(zone, item, udata, SKIP_FINI); 2493 goto fail; 2494 } 2495 } 2496 if (zone->uz_ctor != NULL) { 2497 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2498 zone_free_item(zone, item, udata, SKIP_DTOR); 2499 goto fail; 2500 } 2501 } 2502 #ifdef INVARIANTS 2503 uma_dbg_alloc(zone, NULL, item); 2504 #endif 2505 if (flags & M_ZERO) 2506 bzero(item, zone->uz_size); 2507 2508 return (item); 2509 2510 fail: 2511 atomic_add_long(&zone->uz_fails, 1); 2512 return (NULL); 2513 } 2514 2515 /* See uma.h */ 2516 void 2517 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2518 { 2519 uma_cache_t cache; 2520 uma_bucket_t bucket; 2521 int cpu; 2522 2523 #ifdef UMA_DEBUG_ALLOC_1 2524 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2525 #endif 2526 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2527 zone->uz_name); 2528 2529 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2530 if (item == NULL) 2531 return; 2532 #ifdef DEBUG_MEMGUARD 2533 if (is_memguard_addr(item)) { 2534 if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor) 2535 zone->uz_dtor(item, zone->uz_size, udata); 2536 if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini) 2537 zone->uz_fini(item, zone->uz_size); 2538 memguard_free(item); 2539 return; 2540 } 2541 #endif 2542 #ifdef INVARIANTS 2543 if (zone->uz_flags & UMA_ZONE_MALLOC) 2544 uma_dbg_free(zone, udata, item); 2545 else 2546 uma_dbg_free(zone, NULL, item); 2547 #endif 2548 if (zone->uz_dtor != NULL) 2549 zone->uz_dtor(item, zone->uz_size, udata); 2550 2551 /* 2552 * The race here is acceptable. If we miss it we'll just have to wait 2553 * a little longer for the limits to be reset. 2554 */ 2555 if (zone->uz_flags & UMA_ZFLAG_FULL) 2556 goto zfree_item; 2557 2558 /* 2559 * If possible, free to the per-CPU cache. There are two 2560 * requirements for safe access to the per-CPU cache: (1) the thread 2561 * accessing the cache must not be preempted or yield during access, 2562 * and (2) the thread must not migrate CPUs without switching which 2563 * cache it accesses. We rely on a critical section to prevent 2564 * preemption and migration. We release the critical section in 2565 * order to acquire the zone mutex if we are unable to free to the 2566 * current cache; when we re-acquire the critical section, we must 2567 * detect and handle migration if it has occurred. 2568 */ 2569 zfree_restart: 2570 critical_enter(); 2571 cpu = curcpu; 2572 cache = &zone->uz_cpu[cpu]; 2573 2574 zfree_start: 2575 /* 2576 * Try to free into the allocbucket first to give LIFO ordering 2577 * for cache-hot datastructures. Spill over into the freebucket 2578 * if necessary. Alloc will swap them if one runs dry. 2579 */ 2580 bucket = cache->uc_allocbucket; 2581 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2582 bucket = cache->uc_freebucket; 2583 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2584 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2585 ("uma_zfree: Freeing to non free bucket index.")); 2586 bucket->ub_bucket[bucket->ub_cnt] = item; 2587 bucket->ub_cnt++; 2588 cache->uc_frees++; 2589 critical_exit(); 2590 return; 2591 } 2592 2593 /* 2594 * We must go back the zone, which requires acquiring the zone lock, 2595 * which in turn means we must release and re-acquire the critical 2596 * section. Since the critical section is released, we may be 2597 * preempted or migrate. As such, make sure not to maintain any 2598 * thread-local state specific to the cache from prior to releasing 2599 * the critical section. 2600 */ 2601 critical_exit(); 2602 if (zone->uz_count == 0 || bucketdisable) 2603 goto zfree_item; 2604 2605 ZONE_LOCK(zone); 2606 critical_enter(); 2607 cpu = curcpu; 2608 cache = &zone->uz_cpu[cpu]; 2609 2610 /* 2611 * Since we have locked the zone we may as well send back our stats. 2612 */ 2613 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2614 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2615 cache->uc_allocs = 0; 2616 cache->uc_frees = 0; 2617 2618 bucket = cache->uc_freebucket; 2619 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2620 ZONE_UNLOCK(zone); 2621 goto zfree_start; 2622 } 2623 cache->uc_freebucket = NULL; 2624 2625 /* Can we throw this on the zone full list? */ 2626 if (bucket != NULL) { 2627 #ifdef UMA_DEBUG_ALLOC 2628 printf("uma_zfree: Putting old bucket on the free list.\n"); 2629 #endif 2630 /* ub_cnt is pointing to the last free item */ 2631 KASSERT(bucket->ub_cnt != 0, 2632 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2633 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2634 } 2635 2636 /* We are no longer associated with this CPU. */ 2637 critical_exit(); 2638 2639 /* And the zone.. */ 2640 ZONE_UNLOCK(zone); 2641 2642 #ifdef UMA_DEBUG_ALLOC 2643 printf("uma_zfree: Allocating new free bucket.\n"); 2644 #endif 2645 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2646 if (bucket) { 2647 critical_enter(); 2648 cpu = curcpu; 2649 cache = &zone->uz_cpu[cpu]; 2650 if (cache->uc_freebucket == NULL) { 2651 cache->uc_freebucket = bucket; 2652 goto zfree_start; 2653 } 2654 /* 2655 * We lost the race, start over. We have to drop our 2656 * critical section to free the bucket. 2657 */ 2658 critical_exit(); 2659 bucket_free(zone, bucket, udata); 2660 goto zfree_restart; 2661 } 2662 2663 /* 2664 * If nothing else caught this, we'll just do an internal free. 2665 */ 2666 zfree_item: 2667 zone_free_item(zone, item, udata, SKIP_DTOR); 2668 2669 return; 2670 } 2671 2672 static void 2673 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2674 { 2675 uint8_t freei; 2676 2677 mtx_assert(&keg->uk_lock, MA_OWNED); 2678 MPASS(keg == slab->us_keg); 2679 2680 /* Do we need to remove from any lists? */ 2681 if (slab->us_freecount+1 == keg->uk_ipers) { 2682 LIST_REMOVE(slab, us_link); 2683 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2684 } else if (slab->us_freecount == 0) { 2685 LIST_REMOVE(slab, us_link); 2686 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2687 } 2688 2689 /* Slab management. */ 2690 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2691 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2692 slab->us_freecount++; 2693 2694 /* Keg statistics. */ 2695 keg->uk_free++; 2696 } 2697 2698 static void 2699 zone_release(uma_zone_t zone, void **bucket, int cnt) 2700 { 2701 void *item; 2702 uma_slab_t slab; 2703 uma_keg_t keg; 2704 uint8_t *mem; 2705 int clearfull; 2706 int i; 2707 2708 clearfull = 0; 2709 keg = zone_first_keg(zone); 2710 KEG_LOCK(keg); 2711 for (i = 0; i < cnt; i++) { 2712 item = bucket[i]; 2713 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2714 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2715 if (zone->uz_flags & UMA_ZONE_HASH) { 2716 slab = hash_sfind(&keg->uk_hash, mem); 2717 } else { 2718 mem += keg->uk_pgoff; 2719 slab = (uma_slab_t)mem; 2720 } 2721 } else { 2722 slab = vtoslab((vm_offset_t)item); 2723 if (slab->us_keg != keg) { 2724 KEG_UNLOCK(keg); 2725 keg = slab->us_keg; 2726 KEG_LOCK(keg); 2727 } 2728 } 2729 slab_free_item(keg, slab, item); 2730 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2731 if (keg->uk_pages < keg->uk_maxpages) { 2732 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2733 clearfull = 1; 2734 } 2735 2736 /* 2737 * We can handle one more allocation. Since we're 2738 * clearing ZFLAG_FULL, wake up all procs blocked 2739 * on pages. This should be uncommon, so keeping this 2740 * simple for now (rather than adding count of blocked 2741 * threads etc). 2742 */ 2743 wakeup(keg); 2744 } 2745 } 2746 KEG_UNLOCK(keg); 2747 if (clearfull) { 2748 ZONE_LOCK(zone); 2749 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2750 wakeup(zone); 2751 ZONE_UNLOCK(zone); 2752 } 2753 2754 } 2755 2756 /* 2757 * Frees a single item to any zone. 2758 * 2759 * Arguments: 2760 * zone The zone to free to 2761 * item The item we're freeing 2762 * udata User supplied data for the dtor 2763 * skip Skip dtors and finis 2764 */ 2765 static void 2766 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2767 { 2768 2769 #ifdef INVARIANTS 2770 if (skip == SKIP_NONE) { 2771 if (zone->uz_flags & UMA_ZONE_MALLOC) 2772 uma_dbg_free(zone, udata, item); 2773 else 2774 uma_dbg_free(zone, NULL, item); 2775 } 2776 #endif 2777 if (skip < SKIP_DTOR && zone->uz_dtor) 2778 zone->uz_dtor(item, zone->uz_size, udata); 2779 2780 if (skip < SKIP_FINI && zone->uz_fini) 2781 zone->uz_fini(item, zone->uz_size); 2782 2783 atomic_add_long(&zone->uz_frees, 1); 2784 zone->uz_release(zone->uz_arg, &item, 1); 2785 } 2786 2787 /* See uma.h */ 2788 int 2789 uma_zone_set_max(uma_zone_t zone, int nitems) 2790 { 2791 uma_keg_t keg; 2792 2793 keg = zone_first_keg(zone); 2794 if (keg == NULL) 2795 return (0); 2796 KEG_LOCK(keg); 2797 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2798 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2799 keg->uk_maxpages += keg->uk_ppera; 2800 nitems = keg->uk_maxpages * keg->uk_ipers; 2801 KEG_UNLOCK(keg); 2802 2803 return (nitems); 2804 } 2805 2806 /* See uma.h */ 2807 int 2808 uma_zone_get_max(uma_zone_t zone) 2809 { 2810 int nitems; 2811 uma_keg_t keg; 2812 2813 keg = zone_first_keg(zone); 2814 if (keg == NULL) 2815 return (0); 2816 KEG_LOCK(keg); 2817 nitems = keg->uk_maxpages * keg->uk_ipers; 2818 KEG_UNLOCK(keg); 2819 2820 return (nitems); 2821 } 2822 2823 /* See uma.h */ 2824 void 2825 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2826 { 2827 2828 ZONE_LOCK(zone); 2829 zone->uz_warning = warning; 2830 ZONE_UNLOCK(zone); 2831 } 2832 2833 /* See uma.h */ 2834 int 2835 uma_zone_get_cur(uma_zone_t zone) 2836 { 2837 int64_t nitems; 2838 u_int i; 2839 2840 ZONE_LOCK(zone); 2841 nitems = zone->uz_allocs - zone->uz_frees; 2842 CPU_FOREACH(i) { 2843 /* 2844 * See the comment in sysctl_vm_zone_stats() regarding the 2845 * safety of accessing the per-cpu caches. With the zone lock 2846 * held, it is safe, but can potentially result in stale data. 2847 */ 2848 nitems += zone->uz_cpu[i].uc_allocs - 2849 zone->uz_cpu[i].uc_frees; 2850 } 2851 ZONE_UNLOCK(zone); 2852 2853 return (nitems < 0 ? 0 : nitems); 2854 } 2855 2856 /* See uma.h */ 2857 void 2858 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2859 { 2860 uma_keg_t keg; 2861 2862 keg = zone_first_keg(zone); 2863 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2864 KEG_LOCK(keg); 2865 KASSERT(keg->uk_pages == 0, 2866 ("uma_zone_set_init on non-empty keg")); 2867 keg->uk_init = uminit; 2868 KEG_UNLOCK(keg); 2869 } 2870 2871 /* See uma.h */ 2872 void 2873 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2874 { 2875 uma_keg_t keg; 2876 2877 keg = zone_first_keg(zone); 2878 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2879 KEG_LOCK(keg); 2880 KASSERT(keg->uk_pages == 0, 2881 ("uma_zone_set_fini on non-empty keg")); 2882 keg->uk_fini = fini; 2883 KEG_UNLOCK(keg); 2884 } 2885 2886 /* See uma.h */ 2887 void 2888 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2889 { 2890 2891 ZONE_LOCK(zone); 2892 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2893 ("uma_zone_set_zinit on non-empty keg")); 2894 zone->uz_init = zinit; 2895 ZONE_UNLOCK(zone); 2896 } 2897 2898 /* See uma.h */ 2899 void 2900 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2901 { 2902 2903 ZONE_LOCK(zone); 2904 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2905 ("uma_zone_set_zfini on non-empty keg")); 2906 zone->uz_fini = zfini; 2907 ZONE_UNLOCK(zone); 2908 } 2909 2910 /* See uma.h */ 2911 /* XXX uk_freef is not actually used with the zone locked */ 2912 void 2913 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 2914 { 2915 uma_keg_t keg; 2916 2917 keg = zone_first_keg(zone); 2918 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2919 KEG_LOCK(keg); 2920 keg->uk_freef = freef; 2921 KEG_UNLOCK(keg); 2922 } 2923 2924 /* See uma.h */ 2925 /* XXX uk_allocf is not actually used with the zone locked */ 2926 void 2927 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 2928 { 2929 uma_keg_t keg; 2930 2931 keg = zone_first_keg(zone); 2932 KEG_LOCK(keg); 2933 keg->uk_allocf = allocf; 2934 KEG_UNLOCK(keg); 2935 } 2936 2937 /* See uma.h */ 2938 void 2939 uma_zone_reserve(uma_zone_t zone, int items) 2940 { 2941 uma_keg_t keg; 2942 2943 keg = zone_first_keg(zone); 2944 if (keg == NULL) 2945 return; 2946 KEG_LOCK(keg); 2947 keg->uk_reserve = items; 2948 KEG_UNLOCK(keg); 2949 2950 return; 2951 } 2952 2953 /* See uma.h */ 2954 int 2955 uma_zone_reserve_kva(uma_zone_t zone, int count) 2956 { 2957 uma_keg_t keg; 2958 vm_offset_t kva; 2959 int pages; 2960 2961 keg = zone_first_keg(zone); 2962 if (keg == NULL) 2963 return (0); 2964 pages = count / keg->uk_ipers; 2965 2966 if (pages * keg->uk_ipers < count) 2967 pages++; 2968 2969 #ifdef UMA_MD_SMALL_ALLOC 2970 if (keg->uk_ppera > 1) { 2971 #else 2972 if (1) { 2973 #endif 2974 kva = kva_alloc(pages * UMA_SLAB_SIZE); 2975 if (kva == 0) 2976 return (0); 2977 } else 2978 kva = 0; 2979 KEG_LOCK(keg); 2980 keg->uk_kva = kva; 2981 keg->uk_offset = 0; 2982 keg->uk_maxpages = pages; 2983 #ifdef UMA_MD_SMALL_ALLOC 2984 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 2985 #else 2986 keg->uk_allocf = noobj_alloc; 2987 #endif 2988 keg->uk_flags |= UMA_ZONE_NOFREE; 2989 KEG_UNLOCK(keg); 2990 2991 return (1); 2992 } 2993 2994 /* See uma.h */ 2995 void 2996 uma_prealloc(uma_zone_t zone, int items) 2997 { 2998 int slabs; 2999 uma_slab_t slab; 3000 uma_keg_t keg; 3001 3002 keg = zone_first_keg(zone); 3003 if (keg == NULL) 3004 return; 3005 KEG_LOCK(keg); 3006 slabs = items / keg->uk_ipers; 3007 if (slabs * keg->uk_ipers < items) 3008 slabs++; 3009 while (slabs > 0) { 3010 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3011 if (slab == NULL) 3012 break; 3013 MPASS(slab->us_keg == keg); 3014 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3015 slabs--; 3016 } 3017 KEG_UNLOCK(keg); 3018 } 3019 3020 /* See uma.h */ 3021 uint32_t * 3022 uma_find_refcnt(uma_zone_t zone, void *item) 3023 { 3024 uma_slabrefcnt_t slabref; 3025 uma_slab_t slab; 3026 uma_keg_t keg; 3027 uint32_t *refcnt; 3028 int idx; 3029 3030 slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK)); 3031 slabref = (uma_slabrefcnt_t)slab; 3032 keg = slab->us_keg; 3033 KASSERT(keg->uk_flags & UMA_ZONE_REFCNT, 3034 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 3035 idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3036 refcnt = &slabref->us_refcnt[idx]; 3037 return refcnt; 3038 } 3039 3040 /* See uma.h */ 3041 void 3042 uma_reclaim(void) 3043 { 3044 #ifdef UMA_DEBUG 3045 printf("UMA: vm asked us to release pages!\n"); 3046 #endif 3047 bucket_enable(); 3048 zone_foreach(zone_drain); 3049 /* 3050 * Some slabs may have been freed but this zone will be visited early 3051 * we visit again so that we can free pages that are empty once other 3052 * zones are drained. We have to do the same for buckets. 3053 */ 3054 zone_drain(slabzone); 3055 zone_drain(slabrefzone); 3056 bucket_zone_drain(); 3057 } 3058 3059 /* See uma.h */ 3060 int 3061 uma_zone_exhausted(uma_zone_t zone) 3062 { 3063 int full; 3064 3065 ZONE_LOCK(zone); 3066 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3067 ZONE_UNLOCK(zone); 3068 return (full); 3069 } 3070 3071 int 3072 uma_zone_exhausted_nolock(uma_zone_t zone) 3073 { 3074 return (zone->uz_flags & UMA_ZFLAG_FULL); 3075 } 3076 3077 void * 3078 uma_large_malloc(int size, int wait) 3079 { 3080 void *mem; 3081 uma_slab_t slab; 3082 uint8_t flags; 3083 3084 slab = zone_alloc_item(slabzone, NULL, wait); 3085 if (slab == NULL) 3086 return (NULL); 3087 mem = page_alloc(NULL, size, &flags, wait); 3088 if (mem) { 3089 vsetslab((vm_offset_t)mem, slab); 3090 slab->us_data = mem; 3091 slab->us_flags = flags | UMA_SLAB_MALLOC; 3092 slab->us_size = size; 3093 } else { 3094 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3095 } 3096 3097 return (mem); 3098 } 3099 3100 void 3101 uma_large_free(uma_slab_t slab) 3102 { 3103 3104 page_free(slab->us_data, slab->us_size, slab->us_flags); 3105 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3106 } 3107 3108 void 3109 uma_print_stats(void) 3110 { 3111 zone_foreach(uma_print_zone); 3112 } 3113 3114 static void 3115 slab_print(uma_slab_t slab) 3116 { 3117 printf("slab: keg %p, data %p, freecount %d\n", 3118 slab->us_keg, slab->us_data, slab->us_freecount); 3119 } 3120 3121 static void 3122 cache_print(uma_cache_t cache) 3123 { 3124 printf("alloc: %p(%d), free: %p(%d)\n", 3125 cache->uc_allocbucket, 3126 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3127 cache->uc_freebucket, 3128 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3129 } 3130 3131 static void 3132 uma_print_keg(uma_keg_t keg) 3133 { 3134 uma_slab_t slab; 3135 3136 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3137 "out %d free %d limit %d\n", 3138 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3139 keg->uk_ipers, keg->uk_ppera, 3140 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3141 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3142 printf("Part slabs:\n"); 3143 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3144 slab_print(slab); 3145 printf("Free slabs:\n"); 3146 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3147 slab_print(slab); 3148 printf("Full slabs:\n"); 3149 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3150 slab_print(slab); 3151 } 3152 3153 void 3154 uma_print_zone(uma_zone_t zone) 3155 { 3156 uma_cache_t cache; 3157 uma_klink_t kl; 3158 int i; 3159 3160 printf("zone: %s(%p) size %d flags %#x\n", 3161 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3162 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3163 uma_print_keg(kl->kl_keg); 3164 CPU_FOREACH(i) { 3165 cache = &zone->uz_cpu[i]; 3166 printf("CPU %d Cache:\n", i); 3167 cache_print(cache); 3168 } 3169 } 3170 3171 #ifdef DDB 3172 /* 3173 * Generate statistics across both the zone and its per-cpu cache's. Return 3174 * desired statistics if the pointer is non-NULL for that statistic. 3175 * 3176 * Note: does not update the zone statistics, as it can't safely clear the 3177 * per-CPU cache statistic. 3178 * 3179 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3180 * safe from off-CPU; we should modify the caches to track this information 3181 * directly so that we don't have to. 3182 */ 3183 static void 3184 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3185 uint64_t *freesp, uint64_t *sleepsp) 3186 { 3187 uma_cache_t cache; 3188 uint64_t allocs, frees, sleeps; 3189 int cachefree, cpu; 3190 3191 allocs = frees = sleeps = 0; 3192 cachefree = 0; 3193 CPU_FOREACH(cpu) { 3194 cache = &z->uz_cpu[cpu]; 3195 if (cache->uc_allocbucket != NULL) 3196 cachefree += cache->uc_allocbucket->ub_cnt; 3197 if (cache->uc_freebucket != NULL) 3198 cachefree += cache->uc_freebucket->ub_cnt; 3199 allocs += cache->uc_allocs; 3200 frees += cache->uc_frees; 3201 } 3202 allocs += z->uz_allocs; 3203 frees += z->uz_frees; 3204 sleeps += z->uz_sleeps; 3205 if (cachefreep != NULL) 3206 *cachefreep = cachefree; 3207 if (allocsp != NULL) 3208 *allocsp = allocs; 3209 if (freesp != NULL) 3210 *freesp = frees; 3211 if (sleepsp != NULL) 3212 *sleepsp = sleeps; 3213 } 3214 #endif /* DDB */ 3215 3216 static int 3217 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3218 { 3219 uma_keg_t kz; 3220 uma_zone_t z; 3221 int count; 3222 3223 count = 0; 3224 mtx_lock(&uma_mtx); 3225 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3226 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3227 count++; 3228 } 3229 mtx_unlock(&uma_mtx); 3230 return (sysctl_handle_int(oidp, &count, 0, req)); 3231 } 3232 3233 static int 3234 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3235 { 3236 struct uma_stream_header ush; 3237 struct uma_type_header uth; 3238 struct uma_percpu_stat ups; 3239 uma_bucket_t bucket; 3240 struct sbuf sbuf; 3241 uma_cache_t cache; 3242 uma_klink_t kl; 3243 uma_keg_t kz; 3244 uma_zone_t z; 3245 uma_keg_t k; 3246 int count, error, i; 3247 3248 error = sysctl_wire_old_buffer(req, 0); 3249 if (error != 0) 3250 return (error); 3251 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3252 3253 count = 0; 3254 mtx_lock(&uma_mtx); 3255 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3256 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3257 count++; 3258 } 3259 3260 /* 3261 * Insert stream header. 3262 */ 3263 bzero(&ush, sizeof(ush)); 3264 ush.ush_version = UMA_STREAM_VERSION; 3265 ush.ush_maxcpus = (mp_maxid + 1); 3266 ush.ush_count = count; 3267 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3268 3269 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3270 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3271 bzero(&uth, sizeof(uth)); 3272 ZONE_LOCK(z); 3273 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3274 uth.uth_align = kz->uk_align; 3275 uth.uth_size = kz->uk_size; 3276 uth.uth_rsize = kz->uk_rsize; 3277 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3278 k = kl->kl_keg; 3279 uth.uth_maxpages += k->uk_maxpages; 3280 uth.uth_pages += k->uk_pages; 3281 uth.uth_keg_free += k->uk_free; 3282 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3283 * k->uk_ipers; 3284 } 3285 3286 /* 3287 * A zone is secondary is it is not the first entry 3288 * on the keg's zone list. 3289 */ 3290 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3291 (LIST_FIRST(&kz->uk_zones) != z)) 3292 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3293 3294 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3295 uth.uth_zone_free += bucket->ub_cnt; 3296 uth.uth_allocs = z->uz_allocs; 3297 uth.uth_frees = z->uz_frees; 3298 uth.uth_fails = z->uz_fails; 3299 uth.uth_sleeps = z->uz_sleeps; 3300 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3301 /* 3302 * While it is not normally safe to access the cache 3303 * bucket pointers while not on the CPU that owns the 3304 * cache, we only allow the pointers to be exchanged 3305 * without the zone lock held, not invalidated, so 3306 * accept the possible race associated with bucket 3307 * exchange during monitoring. 3308 */ 3309 for (i = 0; i < (mp_maxid + 1); i++) { 3310 bzero(&ups, sizeof(ups)); 3311 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3312 goto skip; 3313 if (CPU_ABSENT(i)) 3314 goto skip; 3315 cache = &z->uz_cpu[i]; 3316 if (cache->uc_allocbucket != NULL) 3317 ups.ups_cache_free += 3318 cache->uc_allocbucket->ub_cnt; 3319 if (cache->uc_freebucket != NULL) 3320 ups.ups_cache_free += 3321 cache->uc_freebucket->ub_cnt; 3322 ups.ups_allocs = cache->uc_allocs; 3323 ups.ups_frees = cache->uc_frees; 3324 skip: 3325 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3326 } 3327 ZONE_UNLOCK(z); 3328 } 3329 } 3330 mtx_unlock(&uma_mtx); 3331 error = sbuf_finish(&sbuf); 3332 sbuf_delete(&sbuf); 3333 return (error); 3334 } 3335 3336 #ifdef DDB 3337 DB_SHOW_COMMAND(uma, db_show_uma) 3338 { 3339 uint64_t allocs, frees, sleeps; 3340 uma_bucket_t bucket; 3341 uma_keg_t kz; 3342 uma_zone_t z; 3343 int cachefree; 3344 3345 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3346 "Requests", "Sleeps"); 3347 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3348 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3349 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3350 allocs = z->uz_allocs; 3351 frees = z->uz_frees; 3352 sleeps = z->uz_sleeps; 3353 cachefree = 0; 3354 } else 3355 uma_zone_sumstat(z, &cachefree, &allocs, 3356 &frees, &sleeps); 3357 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3358 (LIST_FIRST(&kz->uk_zones) != z))) 3359 cachefree += kz->uk_free; 3360 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3361 cachefree += bucket->ub_cnt; 3362 db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name, 3363 (uintmax_t)kz->uk_size, 3364 (intmax_t)(allocs - frees), cachefree, 3365 (uintmax_t)allocs, sleeps); 3366 if (db_pager_quit) 3367 return; 3368 } 3369 } 3370 } 3371 #endif 3372