1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/asan.h> 62 #include <sys/bitset.h> 63 #include <sys/domainset.h> 64 #include <sys/eventhandler.h> 65 #include <sys/kernel.h> 66 #include <sys/types.h> 67 #include <sys/limits.h> 68 #include <sys/queue.h> 69 #include <sys/malloc.h> 70 #include <sys/ktr.h> 71 #include <sys/lock.h> 72 #include <sys/msan.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/random.h> 76 #include <sys/rwlock.h> 77 #include <sys/sbuf.h> 78 #include <sys/sched.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/smp.h> 81 #include <sys/smr.h> 82 #include <sys/sysctl.h> 83 #include <sys/taskqueue.h> 84 #include <sys/vmmeter.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_domainset.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_phys.h> 93 #include <vm/vm_pagequeue.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vm_dumpset.h> 98 #include <vm/uma.h> 99 #include <vm/uma_int.h> 100 #include <vm/uma_dbg.h> 101 102 #include <ddb/ddb.h> 103 104 #ifdef DEBUG_MEMGUARD 105 #include <vm/memguard.h> 106 #endif 107 108 #include <machine/md_var.h> 109 110 #ifdef INVARIANTS 111 #define UMA_ALWAYS_CTORDTOR 1 112 #else 113 #define UMA_ALWAYS_CTORDTOR 0 114 #endif 115 116 /* 117 * This is the zone and keg from which all zones are spawned. 118 */ 119 static uma_zone_t kegs; 120 static uma_zone_t zones; 121 122 /* 123 * On INVARIANTS builds, the slab contains a second bitset of the same size, 124 * "dbg_bits", which is laid out immediately after us_free. 125 */ 126 #ifdef INVARIANTS 127 #define SLAB_BITSETS 2 128 #else 129 #define SLAB_BITSETS 1 130 #endif 131 132 /* 133 * These are the two zones from which all offpage uma_slab_ts are allocated. 134 * 135 * One zone is for slab headers that can represent a larger number of items, 136 * making the slabs themselves more efficient, and the other zone is for 137 * headers that are smaller and represent fewer items, making the headers more 138 * efficient. 139 */ 140 #define SLABZONE_SIZE(setsize) \ 141 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 142 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 143 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 144 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 145 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 146 static uma_zone_t slabzones[2]; 147 148 /* 149 * The initial hash tables come out of this zone so they can be allocated 150 * prior to malloc coming up. 151 */ 152 static uma_zone_t hashzone; 153 154 /* The boot-time adjusted value for cache line alignment. */ 155 int uma_align_cache = 64 - 1; 156 157 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 158 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 159 160 /* 161 * Are we allowed to allocate buckets? 162 */ 163 static int bucketdisable = 1; 164 165 /* Linked list of all kegs in the system */ 166 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 167 168 /* Linked list of all cache-only zones in the system */ 169 static LIST_HEAD(,uma_zone) uma_cachezones = 170 LIST_HEAD_INITIALIZER(uma_cachezones); 171 172 /* 173 * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of 174 * zones. 175 */ 176 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 177 178 static struct sx uma_reclaim_lock; 179 180 /* 181 * First available virual address for boot time allocations. 182 */ 183 static vm_offset_t bootstart; 184 static vm_offset_t bootmem; 185 186 /* 187 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 188 * allocations don't trigger a wakeup of the reclaim thread. 189 */ 190 unsigned long uma_kmem_limit = LONG_MAX; 191 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 192 "UMA kernel memory soft limit"); 193 unsigned long uma_kmem_total; 194 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 195 "UMA kernel memory usage"); 196 197 /* Is the VM done starting up? */ 198 static enum { 199 BOOT_COLD, 200 BOOT_KVA, 201 BOOT_PCPU, 202 BOOT_RUNNING, 203 BOOT_SHUTDOWN, 204 } booted = BOOT_COLD; 205 206 /* 207 * This is the handle used to schedule events that need to happen 208 * outside of the allocation fast path. 209 */ 210 static struct callout uma_callout; 211 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 212 213 /* 214 * This structure is passed as the zone ctor arg so that I don't have to create 215 * a special allocation function just for zones. 216 */ 217 struct uma_zctor_args { 218 const char *name; 219 size_t size; 220 uma_ctor ctor; 221 uma_dtor dtor; 222 uma_init uminit; 223 uma_fini fini; 224 uma_import import; 225 uma_release release; 226 void *arg; 227 uma_keg_t keg; 228 int align; 229 uint32_t flags; 230 }; 231 232 struct uma_kctor_args { 233 uma_zone_t zone; 234 size_t size; 235 uma_init uminit; 236 uma_fini fini; 237 int align; 238 uint32_t flags; 239 }; 240 241 struct uma_bucket_zone { 242 uma_zone_t ubz_zone; 243 const char *ubz_name; 244 int ubz_entries; /* Number of items it can hold. */ 245 int ubz_maxsize; /* Maximum allocation size per-item. */ 246 }; 247 248 /* 249 * Compute the actual number of bucket entries to pack them in power 250 * of two sizes for more efficient space utilization. 251 */ 252 #define BUCKET_SIZE(n) \ 253 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 254 255 #define BUCKET_MAX BUCKET_SIZE(256) 256 257 struct uma_bucket_zone bucket_zones[] = { 258 /* Literal bucket sizes. */ 259 { NULL, "2 Bucket", 2, 4096 }, 260 { NULL, "4 Bucket", 4, 3072 }, 261 { NULL, "8 Bucket", 8, 2048 }, 262 { NULL, "16 Bucket", 16, 1024 }, 263 /* Rounded down power of 2 sizes for efficiency. */ 264 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 265 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 266 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 267 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 268 { NULL, NULL, 0} 269 }; 270 271 /* 272 * Flags and enumerations to be passed to internal functions. 273 */ 274 enum zfreeskip { 275 SKIP_NONE = 0, 276 SKIP_CNT = 0x00000001, 277 SKIP_DTOR = 0x00010000, 278 SKIP_FINI = 0x00020000, 279 }; 280 281 /* Prototypes.. */ 282 283 void uma_startup1(vm_offset_t); 284 void uma_startup2(void); 285 286 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 287 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 288 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 289 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 290 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 291 static void page_free(void *, vm_size_t, uint8_t); 292 static void pcpu_page_free(void *, vm_size_t, uint8_t); 293 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 294 static void cache_drain(uma_zone_t); 295 static void bucket_drain(uma_zone_t, uma_bucket_t); 296 static void bucket_cache_reclaim(uma_zone_t zone, bool, int); 297 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int); 298 static int keg_ctor(void *, int, void *, int); 299 static void keg_dtor(void *, int, void *); 300 static void keg_drain(uma_keg_t keg, int domain); 301 static int zone_ctor(void *, int, void *, int); 302 static void zone_dtor(void *, int, void *); 303 static inline void item_dtor(uma_zone_t zone, void *item, int size, 304 void *udata, enum zfreeskip skip); 305 static int zero_init(void *, int, int); 306 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 307 int itemdomain, bool ws); 308 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 309 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 310 static void zone_timeout(uma_zone_t zone, void *); 311 static int hash_alloc(struct uma_hash *, u_int); 312 static int hash_expand(struct uma_hash *, struct uma_hash *); 313 static void hash_free(struct uma_hash *hash); 314 static void uma_timeout(void *); 315 static void uma_shutdown(void); 316 static void *zone_alloc_item(uma_zone_t, void *, int, int); 317 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 318 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 319 static void zone_free_limit(uma_zone_t zone, int count); 320 static void bucket_enable(void); 321 static void bucket_init(void); 322 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 323 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 324 static void bucket_zone_drain(int domain); 325 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 326 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 327 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 328 static size_t slab_sizeof(int nitems); 329 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 330 uma_fini fini, int align, uint32_t flags); 331 static int zone_import(void *, void **, int, int, int); 332 static void zone_release(void *, void **, int); 333 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 334 static bool cache_free(uma_zone_t, uma_cache_t, void *, int); 335 336 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 337 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 338 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 339 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 340 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 341 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 342 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 343 344 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 345 346 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 347 "Memory allocation debugging"); 348 349 #ifdef INVARIANTS 350 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 351 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 352 353 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 354 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 355 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 356 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 357 358 static u_int dbg_divisor = 1; 359 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 360 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 361 "Debug & thrash every this item in memory allocator"); 362 363 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 364 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 365 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 366 &uma_dbg_cnt, "memory items debugged"); 367 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 368 &uma_skip_cnt, "memory items skipped, not debugged"); 369 #endif 370 371 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 372 "Universal Memory Allocator"); 373 374 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 375 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 376 377 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 378 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 379 380 static int zone_warnings = 1; 381 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 382 "Warn when UMA zones becomes full"); 383 384 static int multipage_slabs = 1; 385 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 386 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 387 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 388 "UMA may choose larger slab sizes for better efficiency"); 389 390 /* 391 * Select the slab zone for an offpage slab with the given maximum item count. 392 */ 393 static inline uma_zone_t 394 slabzone(int ipers) 395 { 396 397 return (slabzones[ipers > SLABZONE0_SETSIZE]); 398 } 399 400 /* 401 * This routine checks to see whether or not it's safe to enable buckets. 402 */ 403 static void 404 bucket_enable(void) 405 { 406 407 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 408 bucketdisable = vm_page_count_min(); 409 } 410 411 /* 412 * Initialize bucket_zones, the array of zones of buckets of various sizes. 413 * 414 * For each zone, calculate the memory required for each bucket, consisting 415 * of the header and an array of pointers. 416 */ 417 static void 418 bucket_init(void) 419 { 420 struct uma_bucket_zone *ubz; 421 int size; 422 423 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 424 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 425 size += sizeof(void *) * ubz->ubz_entries; 426 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 427 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 428 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 429 UMA_ZONE_FIRSTTOUCH); 430 } 431 } 432 433 /* 434 * Given a desired number of entries for a bucket, return the zone from which 435 * to allocate the bucket. 436 */ 437 static struct uma_bucket_zone * 438 bucket_zone_lookup(int entries) 439 { 440 struct uma_bucket_zone *ubz; 441 442 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 443 if (ubz->ubz_entries >= entries) 444 return (ubz); 445 ubz--; 446 return (ubz); 447 } 448 449 static int 450 bucket_select(int size) 451 { 452 struct uma_bucket_zone *ubz; 453 454 ubz = &bucket_zones[0]; 455 if (size > ubz->ubz_maxsize) 456 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 457 458 for (; ubz->ubz_entries != 0; ubz++) 459 if (ubz->ubz_maxsize < size) 460 break; 461 ubz--; 462 return (ubz->ubz_entries); 463 } 464 465 static uma_bucket_t 466 bucket_alloc(uma_zone_t zone, void *udata, int flags) 467 { 468 struct uma_bucket_zone *ubz; 469 uma_bucket_t bucket; 470 471 /* 472 * Don't allocate buckets early in boot. 473 */ 474 if (__predict_false(booted < BOOT_KVA)) 475 return (NULL); 476 477 /* 478 * To limit bucket recursion we store the original zone flags 479 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 480 * NOVM flag to persist even through deep recursions. We also 481 * store ZFLAG_BUCKET once we have recursed attempting to allocate 482 * a bucket for a bucket zone so we do not allow infinite bucket 483 * recursion. This cookie will even persist to frees of unused 484 * buckets via the allocation path or bucket allocations in the 485 * free path. 486 */ 487 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 488 udata = (void *)(uintptr_t)zone->uz_flags; 489 else { 490 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 491 return (NULL); 492 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 493 } 494 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 495 flags |= M_NOVM; 496 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size)); 497 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 498 ubz++; 499 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 500 if (bucket) { 501 #ifdef INVARIANTS 502 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 503 #endif 504 bucket->ub_cnt = 0; 505 bucket->ub_entries = min(ubz->ubz_entries, 506 zone->uz_bucket_size_max); 507 bucket->ub_seq = SMR_SEQ_INVALID; 508 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 509 zone->uz_name, zone, bucket); 510 } 511 512 return (bucket); 513 } 514 515 static void 516 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 517 { 518 struct uma_bucket_zone *ubz; 519 520 if (bucket->ub_cnt != 0) 521 bucket_drain(zone, bucket); 522 523 KASSERT(bucket->ub_cnt == 0, 524 ("bucket_free: Freeing a non free bucket.")); 525 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 526 ("bucket_free: Freeing an SMR bucket.")); 527 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 528 udata = (void *)(uintptr_t)zone->uz_flags; 529 ubz = bucket_zone_lookup(bucket->ub_entries); 530 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 531 } 532 533 static void 534 bucket_zone_drain(int domain) 535 { 536 struct uma_bucket_zone *ubz; 537 538 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 539 uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN, 540 domain); 541 } 542 543 #ifdef KASAN 544 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0, 545 "Base UMA allocation size not a multiple of the KASAN scale factor"); 546 547 static void 548 kasan_mark_item_valid(uma_zone_t zone, void *item) 549 { 550 void *pcpu_item; 551 size_t sz, rsz; 552 int i; 553 554 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 555 return; 556 557 sz = zone->uz_size; 558 rsz = roundup2(sz, KASAN_SHADOW_SCALE); 559 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 560 kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE); 561 } else { 562 pcpu_item = zpcpu_base_to_offset(item); 563 for (i = 0; i <= mp_maxid; i++) 564 kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz, 565 KASAN_GENERIC_REDZONE); 566 } 567 } 568 569 static void 570 kasan_mark_item_invalid(uma_zone_t zone, void *item) 571 { 572 void *pcpu_item; 573 size_t sz; 574 int i; 575 576 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 577 return; 578 579 sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE); 580 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 581 kasan_mark(item, 0, sz, KASAN_UMA_FREED); 582 } else { 583 pcpu_item = zpcpu_base_to_offset(item); 584 for (i = 0; i <= mp_maxid; i++) 585 kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz, 586 KASAN_UMA_FREED); 587 } 588 } 589 590 static void 591 kasan_mark_slab_valid(uma_keg_t keg, void *mem) 592 { 593 size_t sz; 594 595 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 596 sz = keg->uk_ppera * PAGE_SIZE; 597 kasan_mark(mem, sz, sz, 0); 598 } 599 } 600 601 static void 602 kasan_mark_slab_invalid(uma_keg_t keg, void *mem) 603 { 604 size_t sz; 605 606 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 607 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 608 sz = keg->uk_ppera * PAGE_SIZE; 609 else 610 sz = keg->uk_pgoff; 611 kasan_mark(mem, 0, sz, KASAN_UMA_FREED); 612 } 613 } 614 #else /* !KASAN */ 615 static void 616 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused) 617 { 618 } 619 620 static void 621 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused) 622 { 623 } 624 625 static void 626 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused) 627 { 628 } 629 630 static void 631 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused) 632 { 633 } 634 #endif /* KASAN */ 635 636 #ifdef KMSAN 637 static inline void 638 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item) 639 { 640 void *pcpu_item; 641 size_t sz; 642 int i; 643 644 if ((zone->uz_flags & 645 (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) { 646 /* 647 * Cache zones should not be instrumented by default, as UMA 648 * does not have enough information to do so correctly. 649 * Consumers can mark items themselves if it makes sense to do 650 * so. 651 * 652 * Items from secondary zones are initialized by the parent 653 * zone and thus cannot safely be marked by UMA. 654 * 655 * malloc zones are handled directly by malloc(9) and friends, 656 * since they can provide more precise origin tracking. 657 */ 658 return; 659 } 660 if (zone->uz_keg->uk_init != NULL) { 661 /* 662 * By definition, initialized items cannot be marked. The 663 * best we can do is mark items from these zones after they 664 * are freed to the keg. 665 */ 666 return; 667 } 668 669 sz = zone->uz_size; 670 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 671 kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 672 kmsan_mark(item, sz, KMSAN_STATE_UNINIT); 673 } else { 674 pcpu_item = zpcpu_base_to_offset(item); 675 for (i = 0; i <= mp_maxid; i++) { 676 kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz, 677 KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 678 kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz, 679 KMSAN_STATE_INITED); 680 } 681 } 682 } 683 #else /* !KMSAN */ 684 static inline void 685 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused) 686 { 687 } 688 #endif /* KMSAN */ 689 690 /* 691 * Acquire the domain lock and record contention. 692 */ 693 static uma_zone_domain_t 694 zone_domain_lock(uma_zone_t zone, int domain) 695 { 696 uma_zone_domain_t zdom; 697 bool lockfail; 698 699 zdom = ZDOM_GET(zone, domain); 700 lockfail = false; 701 if (ZDOM_OWNED(zdom)) 702 lockfail = true; 703 ZDOM_LOCK(zdom); 704 /* This is unsynchronized. The counter does not need to be precise. */ 705 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 706 zone->uz_bucket_size++; 707 return (zdom); 708 } 709 710 /* 711 * Search for the domain with the least cached items and return it if it 712 * is out of balance with the preferred domain. 713 */ 714 static __noinline int 715 zone_domain_lowest(uma_zone_t zone, int pref) 716 { 717 long least, nitems, prefitems; 718 int domain; 719 int i; 720 721 prefitems = least = LONG_MAX; 722 domain = 0; 723 for (i = 0; i < vm_ndomains; i++) { 724 nitems = ZDOM_GET(zone, i)->uzd_nitems; 725 if (nitems < least) { 726 domain = i; 727 least = nitems; 728 } 729 if (domain == pref) 730 prefitems = nitems; 731 } 732 if (prefitems < least * 2) 733 return (pref); 734 735 return (domain); 736 } 737 738 /* 739 * Search for the domain with the most cached items and return it or the 740 * preferred domain if it has enough to proceed. 741 */ 742 static __noinline int 743 zone_domain_highest(uma_zone_t zone, int pref) 744 { 745 long most, nitems; 746 int domain; 747 int i; 748 749 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 750 return (pref); 751 752 most = 0; 753 domain = 0; 754 for (i = 0; i < vm_ndomains; i++) { 755 nitems = ZDOM_GET(zone, i)->uzd_nitems; 756 if (nitems > most) { 757 domain = i; 758 most = nitems; 759 } 760 } 761 762 return (domain); 763 } 764 765 /* 766 * Set the maximum imax value. 767 */ 768 static void 769 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 770 { 771 long old; 772 773 old = zdom->uzd_imax; 774 do { 775 if (old >= nitems) 776 return; 777 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 778 779 /* 780 * We are at new maximum, so do the last WSS update for the old 781 * bimin and prepare to measure next allocation batch. 782 */ 783 if (zdom->uzd_wss < old - zdom->uzd_bimin) 784 zdom->uzd_wss = old - zdom->uzd_bimin; 785 zdom->uzd_bimin = nitems; 786 } 787 788 /* 789 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 790 * zone's caches. If a bucket is found the zone is not locked on return. 791 */ 792 static uma_bucket_t 793 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 794 { 795 uma_bucket_t bucket; 796 long cnt; 797 int i; 798 bool dtor = false; 799 800 ZDOM_LOCK_ASSERT(zdom); 801 802 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 803 return (NULL); 804 805 /* SMR Buckets can not be re-used until readers expire. */ 806 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 807 bucket->ub_seq != SMR_SEQ_INVALID) { 808 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 809 return (NULL); 810 bucket->ub_seq = SMR_SEQ_INVALID; 811 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 812 if (STAILQ_NEXT(bucket, ub_link) != NULL) 813 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 814 } 815 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 816 817 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt, 818 ("%s: item count underflow (%ld, %d)", 819 __func__, zdom->uzd_nitems, bucket->ub_cnt)); 820 KASSERT(bucket->ub_cnt > 0, 821 ("%s: empty bucket in bucket cache", __func__)); 822 zdom->uzd_nitems -= bucket->ub_cnt; 823 824 if (reclaim) { 825 /* 826 * Shift the bounds of the current WSS interval to avoid 827 * perturbing the estimates. 828 */ 829 cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt); 830 atomic_subtract_long(&zdom->uzd_imax, cnt); 831 zdom->uzd_bimin -= cnt; 832 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 833 if (zdom->uzd_limin >= bucket->ub_cnt) { 834 zdom->uzd_limin -= bucket->ub_cnt; 835 } else { 836 zdom->uzd_limin = 0; 837 zdom->uzd_timin = 0; 838 } 839 } else if (zdom->uzd_bimin > zdom->uzd_nitems) { 840 zdom->uzd_bimin = zdom->uzd_nitems; 841 if (zdom->uzd_imin > zdom->uzd_nitems) 842 zdom->uzd_imin = zdom->uzd_nitems; 843 } 844 845 ZDOM_UNLOCK(zdom); 846 if (dtor) 847 for (i = 0; i < bucket->ub_cnt; i++) 848 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 849 NULL, SKIP_NONE); 850 851 return (bucket); 852 } 853 854 /* 855 * Insert a full bucket into the specified cache. The "ws" parameter indicates 856 * whether the bucket's contents should be counted as part of the zone's working 857 * set. The bucket may be freed if it exceeds the bucket limit. 858 */ 859 static void 860 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 861 const bool ws) 862 { 863 uma_zone_domain_t zdom; 864 865 /* We don't cache empty buckets. This can happen after a reclaim. */ 866 if (bucket->ub_cnt == 0) 867 goto out; 868 zdom = zone_domain_lock(zone, domain); 869 870 /* 871 * Conditionally set the maximum number of items. 872 */ 873 zdom->uzd_nitems += bucket->ub_cnt; 874 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 875 if (ws) { 876 zone_domain_imax_set(zdom, zdom->uzd_nitems); 877 } else { 878 /* 879 * Shift the bounds of the current WSS interval to 880 * avoid perturbing the estimates. 881 */ 882 atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt); 883 zdom->uzd_imin += bucket->ub_cnt; 884 zdom->uzd_bimin += bucket->ub_cnt; 885 zdom->uzd_limin += bucket->ub_cnt; 886 } 887 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 888 zdom->uzd_seq = bucket->ub_seq; 889 890 /* 891 * Try to promote reuse of recently used items. For items 892 * protected by SMR, try to defer reuse to minimize polling. 893 */ 894 if (bucket->ub_seq == SMR_SEQ_INVALID) 895 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 896 else 897 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 898 ZDOM_UNLOCK(zdom); 899 return; 900 } 901 zdom->uzd_nitems -= bucket->ub_cnt; 902 ZDOM_UNLOCK(zdom); 903 out: 904 bucket_free(zone, bucket, udata); 905 } 906 907 /* Pops an item out of a per-cpu cache bucket. */ 908 static inline void * 909 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 910 { 911 void *item; 912 913 CRITICAL_ASSERT(curthread); 914 915 bucket->ucb_cnt--; 916 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 917 #ifdef INVARIANTS 918 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 919 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 920 #endif 921 cache->uc_allocs++; 922 923 return (item); 924 } 925 926 /* Pushes an item into a per-cpu cache bucket. */ 927 static inline void 928 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 929 { 930 931 CRITICAL_ASSERT(curthread); 932 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 933 ("uma_zfree: Freeing to non free bucket index.")); 934 935 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 936 bucket->ucb_cnt++; 937 cache->uc_frees++; 938 } 939 940 /* 941 * Unload a UMA bucket from a per-cpu cache. 942 */ 943 static inline uma_bucket_t 944 cache_bucket_unload(uma_cache_bucket_t bucket) 945 { 946 uma_bucket_t b; 947 948 b = bucket->ucb_bucket; 949 if (b != NULL) { 950 MPASS(b->ub_entries == bucket->ucb_entries); 951 b->ub_cnt = bucket->ucb_cnt; 952 bucket->ucb_bucket = NULL; 953 bucket->ucb_entries = bucket->ucb_cnt = 0; 954 } 955 956 return (b); 957 } 958 959 static inline uma_bucket_t 960 cache_bucket_unload_alloc(uma_cache_t cache) 961 { 962 963 return (cache_bucket_unload(&cache->uc_allocbucket)); 964 } 965 966 static inline uma_bucket_t 967 cache_bucket_unload_free(uma_cache_t cache) 968 { 969 970 return (cache_bucket_unload(&cache->uc_freebucket)); 971 } 972 973 static inline uma_bucket_t 974 cache_bucket_unload_cross(uma_cache_t cache) 975 { 976 977 return (cache_bucket_unload(&cache->uc_crossbucket)); 978 } 979 980 /* 981 * Load a bucket into a per-cpu cache bucket. 982 */ 983 static inline void 984 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 985 { 986 987 CRITICAL_ASSERT(curthread); 988 MPASS(bucket->ucb_bucket == NULL); 989 MPASS(b->ub_seq == SMR_SEQ_INVALID); 990 991 bucket->ucb_bucket = b; 992 bucket->ucb_cnt = b->ub_cnt; 993 bucket->ucb_entries = b->ub_entries; 994 } 995 996 static inline void 997 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 998 { 999 1000 cache_bucket_load(&cache->uc_allocbucket, b); 1001 } 1002 1003 static inline void 1004 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 1005 { 1006 1007 cache_bucket_load(&cache->uc_freebucket, b); 1008 } 1009 1010 #ifdef NUMA 1011 static inline void 1012 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 1013 { 1014 1015 cache_bucket_load(&cache->uc_crossbucket, b); 1016 } 1017 #endif 1018 1019 /* 1020 * Copy and preserve ucb_spare. 1021 */ 1022 static inline void 1023 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1024 { 1025 1026 b1->ucb_bucket = b2->ucb_bucket; 1027 b1->ucb_entries = b2->ucb_entries; 1028 b1->ucb_cnt = b2->ucb_cnt; 1029 } 1030 1031 /* 1032 * Swap two cache buckets. 1033 */ 1034 static inline void 1035 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1036 { 1037 struct uma_cache_bucket b3; 1038 1039 CRITICAL_ASSERT(curthread); 1040 1041 cache_bucket_copy(&b3, b1); 1042 cache_bucket_copy(b1, b2); 1043 cache_bucket_copy(b2, &b3); 1044 } 1045 1046 /* 1047 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 1048 */ 1049 static uma_bucket_t 1050 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 1051 { 1052 uma_zone_domain_t zdom; 1053 uma_bucket_t bucket; 1054 smr_seq_t seq; 1055 1056 /* 1057 * Avoid the lock if possible. 1058 */ 1059 zdom = ZDOM_GET(zone, domain); 1060 if (zdom->uzd_nitems == 0) 1061 return (NULL); 1062 1063 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 1064 (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID && 1065 !smr_poll(zone->uz_smr, seq, false)) 1066 return (NULL); 1067 1068 /* 1069 * Check the zone's cache of buckets. 1070 */ 1071 zdom = zone_domain_lock(zone, domain); 1072 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) 1073 return (bucket); 1074 ZDOM_UNLOCK(zdom); 1075 1076 return (NULL); 1077 } 1078 1079 static void 1080 zone_log_warning(uma_zone_t zone) 1081 { 1082 static const struct timeval warninterval = { 300, 0 }; 1083 1084 if (!zone_warnings || zone->uz_warning == NULL) 1085 return; 1086 1087 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 1088 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 1089 } 1090 1091 static inline void 1092 zone_maxaction(uma_zone_t zone) 1093 { 1094 1095 if (zone->uz_maxaction.ta_func != NULL) 1096 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 1097 } 1098 1099 /* 1100 * Routine called by timeout which is used to fire off some time interval 1101 * based calculations. (stats, hash size, etc.) 1102 * 1103 * Arguments: 1104 * arg Unused 1105 * 1106 * Returns: 1107 * Nothing 1108 */ 1109 static void 1110 uma_timeout(void *unused) 1111 { 1112 bucket_enable(); 1113 zone_foreach(zone_timeout, NULL); 1114 1115 /* Reschedule this event */ 1116 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1117 } 1118 1119 /* 1120 * Update the working set size estimates for the zone's bucket cache. 1121 * The constants chosen here are somewhat arbitrary. 1122 */ 1123 static void 1124 zone_domain_update_wss(uma_zone_domain_t zdom) 1125 { 1126 long m; 1127 1128 ZDOM_LOCK_ASSERT(zdom); 1129 MPASS(zdom->uzd_imax >= zdom->uzd_nitems); 1130 MPASS(zdom->uzd_nitems >= zdom->uzd_bimin); 1131 MPASS(zdom->uzd_bimin >= zdom->uzd_imin); 1132 1133 /* 1134 * Estimate WSS as modified moving average of biggest allocation 1135 * batches for each period over few minutes (UMA_TIMEOUT of 20s). 1136 */ 1137 zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4, 1138 zdom->uzd_imax - zdom->uzd_bimin); 1139 1140 /* 1141 * Estimate longtime minimum item count as a combination of recent 1142 * minimum item count, adjusted by WSS for safety, and the modified 1143 * moving average over the last several hours (UMA_TIMEOUT of 20s). 1144 * timin measures time since limin tried to go negative, that means 1145 * we were dangerously close to or got out of cache. 1146 */ 1147 m = zdom->uzd_imin - zdom->uzd_wss; 1148 if (m >= 0) { 1149 if (zdom->uzd_limin >= m) 1150 zdom->uzd_limin = m; 1151 else 1152 zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256; 1153 zdom->uzd_timin++; 1154 } else { 1155 zdom->uzd_limin = 0; 1156 zdom->uzd_timin = 0; 1157 } 1158 1159 /* To reduce period edge effects on WSS keep half of the imax. */ 1160 atomic_subtract_long(&zdom->uzd_imax, 1161 (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2); 1162 zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems; 1163 } 1164 1165 /* 1166 * Routine to perform timeout driven calculations. This expands the 1167 * hashes and does per cpu statistics aggregation. 1168 * 1169 * Returns nothing. 1170 */ 1171 static void 1172 zone_timeout(uma_zone_t zone, void *unused) 1173 { 1174 uma_keg_t keg; 1175 u_int slabs, pages; 1176 1177 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 1178 goto trim; 1179 1180 keg = zone->uz_keg; 1181 1182 /* 1183 * Hash zones are non-numa by definition so the first domain 1184 * is the only one present. 1185 */ 1186 KEG_LOCK(keg, 0); 1187 pages = keg->uk_domain[0].ud_pages; 1188 1189 /* 1190 * Expand the keg hash table. 1191 * 1192 * This is done if the number of slabs is larger than the hash size. 1193 * What I'm trying to do here is completely reduce collisions. This 1194 * may be a little aggressive. Should I allow for two collisions max? 1195 */ 1196 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1197 struct uma_hash newhash; 1198 struct uma_hash oldhash; 1199 int ret; 1200 1201 /* 1202 * This is so involved because allocating and freeing 1203 * while the keg lock is held will lead to deadlock. 1204 * I have to do everything in stages and check for 1205 * races. 1206 */ 1207 KEG_UNLOCK(keg, 0); 1208 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1209 KEG_LOCK(keg, 0); 1210 if (ret) { 1211 if (hash_expand(&keg->uk_hash, &newhash)) { 1212 oldhash = keg->uk_hash; 1213 keg->uk_hash = newhash; 1214 } else 1215 oldhash = newhash; 1216 1217 KEG_UNLOCK(keg, 0); 1218 hash_free(&oldhash); 1219 goto trim; 1220 } 1221 } 1222 KEG_UNLOCK(keg, 0); 1223 1224 trim: 1225 /* Trim caches not used for a long time. */ 1226 if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) { 1227 for (int i = 0; i < vm_ndomains; i++) { 1228 if (bucket_cache_reclaim_domain(zone, false, false, i) && 1229 (zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1230 keg_drain(zone->uz_keg, i); 1231 } 1232 } 1233 } 1234 1235 /* 1236 * Allocate and zero fill the next sized hash table from the appropriate 1237 * backing store. 1238 * 1239 * Arguments: 1240 * hash A new hash structure with the old hash size in uh_hashsize 1241 * 1242 * Returns: 1243 * 1 on success and 0 on failure. 1244 */ 1245 static int 1246 hash_alloc(struct uma_hash *hash, u_int size) 1247 { 1248 size_t alloc; 1249 1250 KASSERT(powerof2(size), ("hash size must be power of 2")); 1251 if (size > UMA_HASH_SIZE_INIT) { 1252 hash->uh_hashsize = size; 1253 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1254 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1255 } else { 1256 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1257 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1258 UMA_ANYDOMAIN, M_WAITOK); 1259 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1260 } 1261 if (hash->uh_slab_hash) { 1262 bzero(hash->uh_slab_hash, alloc); 1263 hash->uh_hashmask = hash->uh_hashsize - 1; 1264 return (1); 1265 } 1266 1267 return (0); 1268 } 1269 1270 /* 1271 * Expands the hash table for HASH zones. This is done from zone_timeout 1272 * to reduce collisions. This must not be done in the regular allocation 1273 * path, otherwise, we can recurse on the vm while allocating pages. 1274 * 1275 * Arguments: 1276 * oldhash The hash you want to expand 1277 * newhash The hash structure for the new table 1278 * 1279 * Returns: 1280 * Nothing 1281 * 1282 * Discussion: 1283 */ 1284 static int 1285 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1286 { 1287 uma_hash_slab_t slab; 1288 u_int hval; 1289 u_int idx; 1290 1291 if (!newhash->uh_slab_hash) 1292 return (0); 1293 1294 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1295 return (0); 1296 1297 /* 1298 * I need to investigate hash algorithms for resizing without a 1299 * full rehash. 1300 */ 1301 1302 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1303 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1304 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1305 LIST_REMOVE(slab, uhs_hlink); 1306 hval = UMA_HASH(newhash, slab->uhs_data); 1307 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1308 slab, uhs_hlink); 1309 } 1310 1311 return (1); 1312 } 1313 1314 /* 1315 * Free the hash bucket to the appropriate backing store. 1316 * 1317 * Arguments: 1318 * slab_hash The hash bucket we're freeing 1319 * hashsize The number of entries in that hash bucket 1320 * 1321 * Returns: 1322 * Nothing 1323 */ 1324 static void 1325 hash_free(struct uma_hash *hash) 1326 { 1327 if (hash->uh_slab_hash == NULL) 1328 return; 1329 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1330 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1331 else 1332 free(hash->uh_slab_hash, M_UMAHASH); 1333 } 1334 1335 /* 1336 * Frees all outstanding items in a bucket 1337 * 1338 * Arguments: 1339 * zone The zone to free to, must be unlocked. 1340 * bucket The free/alloc bucket with items. 1341 * 1342 * Returns: 1343 * Nothing 1344 */ 1345 static void 1346 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1347 { 1348 int i; 1349 1350 if (bucket->ub_cnt == 0) 1351 return; 1352 1353 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1354 bucket->ub_seq != SMR_SEQ_INVALID) { 1355 smr_wait(zone->uz_smr, bucket->ub_seq); 1356 bucket->ub_seq = SMR_SEQ_INVALID; 1357 for (i = 0; i < bucket->ub_cnt; i++) 1358 item_dtor(zone, bucket->ub_bucket[i], 1359 zone->uz_size, NULL, SKIP_NONE); 1360 } 1361 if (zone->uz_fini) 1362 for (i = 0; i < bucket->ub_cnt; i++) { 1363 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 1364 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1365 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 1366 } 1367 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1368 if (zone->uz_max_items > 0) 1369 zone_free_limit(zone, bucket->ub_cnt); 1370 #ifdef INVARIANTS 1371 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1372 #endif 1373 bucket->ub_cnt = 0; 1374 } 1375 1376 /* 1377 * Drains the per cpu caches for a zone. 1378 * 1379 * NOTE: This may only be called while the zone is being torn down, and not 1380 * during normal operation. This is necessary in order that we do not have 1381 * to migrate CPUs to drain the per-CPU caches. 1382 * 1383 * Arguments: 1384 * zone The zone to drain, must be unlocked. 1385 * 1386 * Returns: 1387 * Nothing 1388 */ 1389 static void 1390 cache_drain(uma_zone_t zone) 1391 { 1392 uma_cache_t cache; 1393 uma_bucket_t bucket; 1394 smr_seq_t seq; 1395 int cpu; 1396 1397 /* 1398 * XXX: It is safe to not lock the per-CPU caches, because we're 1399 * tearing down the zone anyway. I.e., there will be no further use 1400 * of the caches at this point. 1401 * 1402 * XXX: It would good to be able to assert that the zone is being 1403 * torn down to prevent improper use of cache_drain(). 1404 */ 1405 seq = SMR_SEQ_INVALID; 1406 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1407 seq = smr_advance(zone->uz_smr); 1408 CPU_FOREACH(cpu) { 1409 cache = &zone->uz_cpu[cpu]; 1410 bucket = cache_bucket_unload_alloc(cache); 1411 if (bucket != NULL) 1412 bucket_free(zone, bucket, NULL); 1413 bucket = cache_bucket_unload_free(cache); 1414 if (bucket != NULL) { 1415 bucket->ub_seq = seq; 1416 bucket_free(zone, bucket, NULL); 1417 } 1418 bucket = cache_bucket_unload_cross(cache); 1419 if (bucket != NULL) { 1420 bucket->ub_seq = seq; 1421 bucket_free(zone, bucket, NULL); 1422 } 1423 } 1424 bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN); 1425 } 1426 1427 static void 1428 cache_shrink(uma_zone_t zone, void *unused) 1429 { 1430 1431 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1432 return; 1433 1434 ZONE_LOCK(zone); 1435 zone->uz_bucket_size = 1436 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1437 ZONE_UNLOCK(zone); 1438 } 1439 1440 static void 1441 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1442 { 1443 uma_cache_t cache; 1444 uma_bucket_t b1, b2, b3; 1445 int domain; 1446 1447 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1448 return; 1449 1450 b1 = b2 = b3 = NULL; 1451 critical_enter(); 1452 cache = &zone->uz_cpu[curcpu]; 1453 domain = PCPU_GET(domain); 1454 b1 = cache_bucket_unload_alloc(cache); 1455 1456 /* 1457 * Don't flush SMR zone buckets. This leaves the zone without a 1458 * bucket and forces every free to synchronize(). 1459 */ 1460 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1461 b2 = cache_bucket_unload_free(cache); 1462 b3 = cache_bucket_unload_cross(cache); 1463 } 1464 critical_exit(); 1465 1466 if (b1 != NULL) 1467 zone_free_bucket(zone, b1, NULL, domain, false); 1468 if (b2 != NULL) 1469 zone_free_bucket(zone, b2, NULL, domain, false); 1470 if (b3 != NULL) { 1471 /* Adjust the domain so it goes to zone_free_cross. */ 1472 domain = (domain + 1) % vm_ndomains; 1473 zone_free_bucket(zone, b3, NULL, domain, false); 1474 } 1475 } 1476 1477 /* 1478 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1479 * This is an expensive call because it needs to bind to all CPUs 1480 * one by one and enter a critical section on each of them in order 1481 * to safely access their cache buckets. 1482 * Zone lock must not be held on call this function. 1483 */ 1484 static void 1485 pcpu_cache_drain_safe(uma_zone_t zone) 1486 { 1487 int cpu; 1488 1489 /* 1490 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1491 */ 1492 if (zone) 1493 cache_shrink(zone, NULL); 1494 else 1495 zone_foreach(cache_shrink, NULL); 1496 1497 CPU_FOREACH(cpu) { 1498 thread_lock(curthread); 1499 sched_bind(curthread, cpu); 1500 thread_unlock(curthread); 1501 1502 if (zone) 1503 cache_drain_safe_cpu(zone, NULL); 1504 else 1505 zone_foreach(cache_drain_safe_cpu, NULL); 1506 } 1507 thread_lock(curthread); 1508 sched_unbind(curthread); 1509 thread_unlock(curthread); 1510 } 1511 1512 /* 1513 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1514 * requested a drain, otherwise the per-domain caches are trimmed to either 1515 * estimated working set size. 1516 */ 1517 static bool 1518 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain) 1519 { 1520 uma_zone_domain_t zdom; 1521 uma_bucket_t bucket; 1522 long target; 1523 bool done = false; 1524 1525 /* 1526 * The cross bucket is partially filled and not part of 1527 * the item count. Reclaim it individually here. 1528 */ 1529 zdom = ZDOM_GET(zone, domain); 1530 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1531 ZONE_CROSS_LOCK(zone); 1532 bucket = zdom->uzd_cross; 1533 zdom->uzd_cross = NULL; 1534 ZONE_CROSS_UNLOCK(zone); 1535 if (bucket != NULL) 1536 bucket_free(zone, bucket, NULL); 1537 } 1538 1539 /* 1540 * If we were asked to drain the zone, we are done only once 1541 * this bucket cache is empty. If trim, we reclaim items in 1542 * excess of the zone's estimated working set size. Multiple 1543 * consecutive calls will shrink the WSS and so reclaim more. 1544 * If neither drain nor trim, then voluntarily reclaim 1/4 1545 * (to reduce first spike) of items not used for a long time. 1546 */ 1547 ZDOM_LOCK(zdom); 1548 zone_domain_update_wss(zdom); 1549 if (drain) 1550 target = 0; 1551 else if (trim) 1552 target = zdom->uzd_wss; 1553 else if (zdom->uzd_timin > 900 / UMA_TIMEOUT) 1554 target = zdom->uzd_nitems - zdom->uzd_limin / 4; 1555 else { 1556 ZDOM_UNLOCK(zdom); 1557 return (done); 1558 } 1559 while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL && 1560 zdom->uzd_nitems >= target + bucket->ub_cnt) { 1561 bucket = zone_fetch_bucket(zone, zdom, true); 1562 if (bucket == NULL) 1563 break; 1564 bucket_free(zone, bucket, NULL); 1565 done = true; 1566 ZDOM_LOCK(zdom); 1567 } 1568 ZDOM_UNLOCK(zdom); 1569 return (done); 1570 } 1571 1572 static void 1573 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain) 1574 { 1575 int i; 1576 1577 /* 1578 * Shrink the zone bucket size to ensure that the per-CPU caches 1579 * don't grow too large. 1580 */ 1581 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1582 zone->uz_bucket_size--; 1583 1584 if (domain != UMA_ANYDOMAIN && 1585 (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) { 1586 bucket_cache_reclaim_domain(zone, drain, true, domain); 1587 } else { 1588 for (i = 0; i < vm_ndomains; i++) 1589 bucket_cache_reclaim_domain(zone, drain, true, i); 1590 } 1591 } 1592 1593 static void 1594 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1595 { 1596 uint8_t *mem; 1597 size_t size; 1598 int i; 1599 uint8_t flags; 1600 1601 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1602 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1603 1604 mem = slab_data(slab, keg); 1605 size = PAGE_SIZE * keg->uk_ppera; 1606 1607 kasan_mark_slab_valid(keg, mem); 1608 if (keg->uk_fini != NULL) { 1609 for (i = start - 1; i > -1; i--) 1610 #ifdef INVARIANTS 1611 /* 1612 * trash_fini implies that dtor was trash_dtor. trash_fini 1613 * would check that memory hasn't been modified since free, 1614 * which executed trash_dtor. 1615 * That's why we need to run uma_dbg_kskip() check here, 1616 * albeit we don't make skip check for other init/fini 1617 * invocations. 1618 */ 1619 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1620 keg->uk_fini != trash_fini) 1621 #endif 1622 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1623 } 1624 flags = slab->us_flags; 1625 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1626 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1627 NULL, SKIP_NONE); 1628 } 1629 keg->uk_freef(mem, size, flags); 1630 uma_total_dec(size); 1631 } 1632 1633 static void 1634 keg_drain_domain(uma_keg_t keg, int domain) 1635 { 1636 struct slabhead freeslabs; 1637 uma_domain_t dom; 1638 uma_slab_t slab, tmp; 1639 uint32_t i, stofree, stokeep, partial; 1640 1641 dom = &keg->uk_domain[domain]; 1642 LIST_INIT(&freeslabs); 1643 1644 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1645 keg->uk_name, keg, domain, dom->ud_free_items); 1646 1647 KEG_LOCK(keg, domain); 1648 1649 /* 1650 * Are the free items in partially allocated slabs sufficient to meet 1651 * the reserve? If not, compute the number of fully free slabs that must 1652 * be kept. 1653 */ 1654 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers; 1655 if (partial < keg->uk_reserve) { 1656 stokeep = min(dom->ud_free_slabs, 1657 howmany(keg->uk_reserve - partial, keg->uk_ipers)); 1658 } else { 1659 stokeep = 0; 1660 } 1661 stofree = dom->ud_free_slabs - stokeep; 1662 1663 /* 1664 * Partition the free slabs into two sets: those that must be kept in 1665 * order to maintain the reserve, and those that may be released back to 1666 * the system. Since one set may be much larger than the other, 1667 * populate the smaller of the two sets and swap them if necessary. 1668 */ 1669 for (i = min(stofree, stokeep); i > 0; i--) { 1670 slab = LIST_FIRST(&dom->ud_free_slab); 1671 LIST_REMOVE(slab, us_link); 1672 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1673 } 1674 if (stofree > stokeep) 1675 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1676 1677 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1678 LIST_FOREACH(slab, &freeslabs, us_link) 1679 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1680 } 1681 dom->ud_free_items -= stofree * keg->uk_ipers; 1682 dom->ud_free_slabs -= stofree; 1683 dom->ud_pages -= stofree * keg->uk_ppera; 1684 KEG_UNLOCK(keg, domain); 1685 1686 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1687 keg_free_slab(keg, slab, keg->uk_ipers); 1688 } 1689 1690 /* 1691 * Frees pages from a keg back to the system. This is done on demand from 1692 * the pageout daemon. 1693 * 1694 * Returns nothing. 1695 */ 1696 static void 1697 keg_drain(uma_keg_t keg, int domain) 1698 { 1699 int i; 1700 1701 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0) 1702 return; 1703 if (domain != UMA_ANYDOMAIN) { 1704 keg_drain_domain(keg, domain); 1705 } else { 1706 for (i = 0; i < vm_ndomains; i++) 1707 keg_drain_domain(keg, i); 1708 } 1709 } 1710 1711 static void 1712 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain) 1713 { 1714 /* 1715 * Count active reclaim operations in order to interlock with 1716 * zone_dtor(), which removes the zone from global lists before 1717 * attempting to reclaim items itself. 1718 * 1719 * The zone may be destroyed while sleeping, so only zone_dtor() should 1720 * specify M_WAITOK. 1721 */ 1722 ZONE_LOCK(zone); 1723 if (waitok == M_WAITOK) { 1724 while (zone->uz_reclaimers > 0) 1725 msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1); 1726 } 1727 zone->uz_reclaimers++; 1728 ZONE_UNLOCK(zone); 1729 bucket_cache_reclaim(zone, drain, domain); 1730 1731 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1732 keg_drain(zone->uz_keg, domain); 1733 ZONE_LOCK(zone); 1734 zone->uz_reclaimers--; 1735 if (zone->uz_reclaimers == 0) 1736 wakeup(zone); 1737 ZONE_UNLOCK(zone); 1738 } 1739 1740 /* 1741 * Allocate a new slab for a keg and inserts it into the partial slab list. 1742 * The keg should be unlocked on entry. If the allocation succeeds it will 1743 * be locked on return. 1744 * 1745 * Arguments: 1746 * flags Wait flags for the item initialization routine 1747 * aflags Wait flags for the slab allocation 1748 * 1749 * Returns: 1750 * The slab that was allocated or NULL if there is no memory and the 1751 * caller specified M_NOWAIT. 1752 */ 1753 static uma_slab_t 1754 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1755 int aflags) 1756 { 1757 uma_domain_t dom; 1758 uma_slab_t slab; 1759 unsigned long size; 1760 uint8_t *mem; 1761 uint8_t sflags; 1762 int i; 1763 1764 KASSERT(domain >= 0 && domain < vm_ndomains, 1765 ("keg_alloc_slab: domain %d out of range", domain)); 1766 1767 slab = NULL; 1768 mem = NULL; 1769 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1770 uma_hash_slab_t hslab; 1771 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1772 domain, aflags); 1773 if (hslab == NULL) 1774 goto fail; 1775 slab = &hslab->uhs_slab; 1776 } 1777 1778 /* 1779 * This reproduces the old vm_zone behavior of zero filling pages the 1780 * first time they are added to a zone. 1781 * 1782 * Malloced items are zeroed in uma_zalloc. 1783 */ 1784 1785 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1786 aflags |= M_ZERO; 1787 else 1788 aflags &= ~M_ZERO; 1789 1790 if (keg->uk_flags & UMA_ZONE_NODUMP) 1791 aflags |= M_NODUMP; 1792 1793 /* zone is passed for legacy reasons. */ 1794 size = keg->uk_ppera * PAGE_SIZE; 1795 mem = keg->uk_allocf(zone, size, domain, &sflags, aflags); 1796 if (mem == NULL) { 1797 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1798 zone_free_item(slabzone(keg->uk_ipers), 1799 slab_tohashslab(slab), NULL, SKIP_NONE); 1800 goto fail; 1801 } 1802 uma_total_inc(size); 1803 1804 /* For HASH zones all pages go to the same uma_domain. */ 1805 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1806 domain = 0; 1807 1808 kmsan_mark(mem, size, 1809 (aflags & M_ZERO) != 0 ? KMSAN_STATE_INITED : KMSAN_STATE_UNINIT); 1810 1811 /* Point the slab into the allocated memory */ 1812 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1813 slab = (uma_slab_t)(mem + keg->uk_pgoff); 1814 else 1815 slab_tohashslab(slab)->uhs_data = mem; 1816 1817 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1818 for (i = 0; i < keg->uk_ppera; i++) 1819 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1820 zone, slab); 1821 1822 slab->us_freecount = keg->uk_ipers; 1823 slab->us_flags = sflags; 1824 slab->us_domain = domain; 1825 1826 BIT_FILL(keg->uk_ipers, &slab->us_free); 1827 #ifdef INVARIANTS 1828 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1829 #endif 1830 1831 if (keg->uk_init != NULL) { 1832 for (i = 0; i < keg->uk_ipers; i++) 1833 if (keg->uk_init(slab_item(slab, keg, i), 1834 keg->uk_size, flags) != 0) 1835 break; 1836 if (i != keg->uk_ipers) { 1837 keg_free_slab(keg, slab, i); 1838 goto fail; 1839 } 1840 } 1841 kasan_mark_slab_invalid(keg, mem); 1842 KEG_LOCK(keg, domain); 1843 1844 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1845 slab, keg->uk_name, keg); 1846 1847 if (keg->uk_flags & UMA_ZFLAG_HASH) 1848 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1849 1850 /* 1851 * If we got a slab here it's safe to mark it partially used 1852 * and return. We assume that the caller is going to remove 1853 * at least one item. 1854 */ 1855 dom = &keg->uk_domain[domain]; 1856 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1857 dom->ud_pages += keg->uk_ppera; 1858 dom->ud_free_items += keg->uk_ipers; 1859 1860 return (slab); 1861 1862 fail: 1863 return (NULL); 1864 } 1865 1866 /* 1867 * This function is intended to be used early on in place of page_alloc(). It 1868 * performs contiguous physical memory allocations and uses a bump allocator for 1869 * KVA, so is usable before the kernel map is initialized. 1870 */ 1871 static void * 1872 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1873 int wait) 1874 { 1875 vm_paddr_t pa; 1876 vm_page_t m; 1877 int i, pages; 1878 1879 pages = howmany(bytes, PAGE_SIZE); 1880 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1881 1882 *pflag = UMA_SLAB_BOOT; 1883 m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) | 1884 VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, 1885 VM_MEMATTR_DEFAULT); 1886 if (m == NULL) 1887 return (NULL); 1888 1889 pa = VM_PAGE_TO_PHYS(m); 1890 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1891 #if defined(__aarch64__) || defined(__amd64__) || \ 1892 defined(__riscv) || defined(__powerpc64__) 1893 if ((wait & M_NODUMP) == 0) 1894 dump_add_page(pa); 1895 #endif 1896 } 1897 1898 /* Allocate KVA and indirectly advance bootmem. */ 1899 return ((void *)pmap_map(&bootmem, m->phys_addr, 1900 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE)); 1901 } 1902 1903 static void 1904 startup_free(void *mem, vm_size_t bytes) 1905 { 1906 vm_offset_t va; 1907 vm_page_t m; 1908 1909 va = (vm_offset_t)mem; 1910 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1911 1912 /* 1913 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid 1914 * unmapping ranges of the direct map. 1915 */ 1916 if (va >= bootstart && va + bytes <= bootmem) 1917 pmap_remove(kernel_pmap, va, va + bytes); 1918 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1919 #if defined(__aarch64__) || defined(__amd64__) || \ 1920 defined(__riscv) || defined(__powerpc64__) 1921 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1922 #endif 1923 vm_page_unwire_noq(m); 1924 vm_page_free(m); 1925 } 1926 } 1927 1928 /* 1929 * Allocates a number of pages from the system 1930 * 1931 * Arguments: 1932 * bytes The number of bytes requested 1933 * wait Shall we wait? 1934 * 1935 * Returns: 1936 * A pointer to the alloced memory or possibly 1937 * NULL if M_NOWAIT is set. 1938 */ 1939 static void * 1940 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1941 int wait) 1942 { 1943 void *p; /* Returned page */ 1944 1945 *pflag = UMA_SLAB_KERNEL; 1946 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1947 1948 return (p); 1949 } 1950 1951 static void * 1952 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1953 int wait) 1954 { 1955 struct pglist alloctail; 1956 vm_offset_t addr, zkva; 1957 int cpu, flags; 1958 vm_page_t p, p_next; 1959 #ifdef NUMA 1960 struct pcpu *pc; 1961 #endif 1962 1963 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1964 1965 TAILQ_INIT(&alloctail); 1966 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait); 1967 *pflag = UMA_SLAB_KERNEL; 1968 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1969 if (CPU_ABSENT(cpu)) { 1970 p = vm_page_alloc_noobj(flags); 1971 } else { 1972 #ifndef NUMA 1973 p = vm_page_alloc_noobj(flags); 1974 #else 1975 pc = pcpu_find(cpu); 1976 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1977 p = NULL; 1978 else 1979 p = vm_page_alloc_noobj_domain(pc->pc_domain, 1980 flags); 1981 if (__predict_false(p == NULL)) 1982 p = vm_page_alloc_noobj(flags); 1983 #endif 1984 } 1985 if (__predict_false(p == NULL)) 1986 goto fail; 1987 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1988 } 1989 if ((addr = kva_alloc(bytes)) == 0) 1990 goto fail; 1991 zkva = addr; 1992 TAILQ_FOREACH(p, &alloctail, listq) { 1993 pmap_qenter(zkva, &p, 1); 1994 zkva += PAGE_SIZE; 1995 } 1996 return ((void*)addr); 1997 fail: 1998 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1999 vm_page_unwire_noq(p); 2000 vm_page_free(p); 2001 } 2002 return (NULL); 2003 } 2004 2005 /* 2006 * Allocates a number of pages not belonging to a VM object 2007 * 2008 * Arguments: 2009 * bytes The number of bytes requested 2010 * wait Shall we wait? 2011 * 2012 * Returns: 2013 * A pointer to the alloced memory or possibly 2014 * NULL if M_NOWAIT is set. 2015 */ 2016 static void * 2017 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 2018 int wait) 2019 { 2020 TAILQ_HEAD(, vm_page) alloctail; 2021 u_long npages; 2022 vm_offset_t retkva, zkva; 2023 vm_page_t p, p_next; 2024 uma_keg_t keg; 2025 int req; 2026 2027 TAILQ_INIT(&alloctail); 2028 keg = zone->uz_keg; 2029 req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 2030 if ((wait & M_WAITOK) != 0) 2031 req |= VM_ALLOC_WAITOK; 2032 2033 npages = howmany(bytes, PAGE_SIZE); 2034 while (npages > 0) { 2035 p = vm_page_alloc_noobj_domain(domain, req); 2036 if (p != NULL) { 2037 /* 2038 * Since the page does not belong to an object, its 2039 * listq is unused. 2040 */ 2041 TAILQ_INSERT_TAIL(&alloctail, p, listq); 2042 npages--; 2043 continue; 2044 } 2045 /* 2046 * Page allocation failed, free intermediate pages and 2047 * exit. 2048 */ 2049 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 2050 vm_page_unwire_noq(p); 2051 vm_page_free(p); 2052 } 2053 return (NULL); 2054 } 2055 *flags = UMA_SLAB_PRIV; 2056 zkva = keg->uk_kva + 2057 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 2058 retkva = zkva; 2059 TAILQ_FOREACH(p, &alloctail, listq) { 2060 pmap_qenter(zkva, &p, 1); 2061 zkva += PAGE_SIZE; 2062 } 2063 2064 return ((void *)retkva); 2065 } 2066 2067 /* 2068 * Allocate physically contiguous pages. 2069 */ 2070 static void * 2071 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 2072 int wait) 2073 { 2074 2075 *pflag = UMA_SLAB_KERNEL; 2076 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 2077 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 2078 } 2079 2080 /* 2081 * Frees a number of pages to the system 2082 * 2083 * Arguments: 2084 * mem A pointer to the memory to be freed 2085 * size The size of the memory being freed 2086 * flags The original p->us_flags field 2087 * 2088 * Returns: 2089 * Nothing 2090 */ 2091 static void 2092 page_free(void *mem, vm_size_t size, uint8_t flags) 2093 { 2094 2095 if ((flags & UMA_SLAB_BOOT) != 0) { 2096 startup_free(mem, size); 2097 return; 2098 } 2099 2100 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 2101 ("UMA: page_free used with invalid flags %x", flags)); 2102 2103 kmem_free((vm_offset_t)mem, size); 2104 } 2105 2106 /* 2107 * Frees pcpu zone allocations 2108 * 2109 * Arguments: 2110 * mem A pointer to the memory to be freed 2111 * size The size of the memory being freed 2112 * flags The original p->us_flags field 2113 * 2114 * Returns: 2115 * Nothing 2116 */ 2117 static void 2118 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 2119 { 2120 vm_offset_t sva, curva; 2121 vm_paddr_t paddr; 2122 vm_page_t m; 2123 2124 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 2125 2126 if ((flags & UMA_SLAB_BOOT) != 0) { 2127 startup_free(mem, size); 2128 return; 2129 } 2130 2131 sva = (vm_offset_t)mem; 2132 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 2133 paddr = pmap_kextract(curva); 2134 m = PHYS_TO_VM_PAGE(paddr); 2135 vm_page_unwire_noq(m); 2136 vm_page_free(m); 2137 } 2138 pmap_qremove(sva, size >> PAGE_SHIFT); 2139 kva_free(sva, size); 2140 } 2141 2142 /* 2143 * Zero fill initializer 2144 * 2145 * Arguments/Returns follow uma_init specifications 2146 */ 2147 static int 2148 zero_init(void *mem, int size, int flags) 2149 { 2150 bzero(mem, size); 2151 return (0); 2152 } 2153 2154 #ifdef INVARIANTS 2155 static struct noslabbits * 2156 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 2157 { 2158 2159 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 2160 } 2161 #endif 2162 2163 /* 2164 * Actual size of embedded struct slab (!OFFPAGE). 2165 */ 2166 static size_t 2167 slab_sizeof(int nitems) 2168 { 2169 size_t s; 2170 2171 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 2172 return (roundup(s, UMA_ALIGN_PTR + 1)); 2173 } 2174 2175 #define UMA_FIXPT_SHIFT 31 2176 #define UMA_FRAC_FIXPT(n, d) \ 2177 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 2178 #define UMA_FIXPT_PCT(f) \ 2179 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 2180 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 2181 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 2182 2183 /* 2184 * Compute the number of items that will fit in a slab. If hdr is true, the 2185 * item count may be limited to provide space in the slab for an inline slab 2186 * header. Otherwise, all slab space will be provided for item storage. 2187 */ 2188 static u_int 2189 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 2190 { 2191 u_int ipers; 2192 u_int padpi; 2193 2194 /* The padding between items is not needed after the last item. */ 2195 padpi = rsize - size; 2196 2197 if (hdr) { 2198 /* 2199 * Start with the maximum item count and remove items until 2200 * the slab header first alongside the allocatable memory. 2201 */ 2202 for (ipers = MIN(SLAB_MAX_SETSIZE, 2203 (slabsize + padpi - slab_sizeof(1)) / rsize); 2204 ipers > 0 && 2205 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 2206 ipers--) 2207 continue; 2208 } else { 2209 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 2210 } 2211 2212 return (ipers); 2213 } 2214 2215 struct keg_layout_result { 2216 u_int format; 2217 u_int slabsize; 2218 u_int ipers; 2219 u_int eff; 2220 }; 2221 2222 static void 2223 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 2224 struct keg_layout_result *kl) 2225 { 2226 u_int total; 2227 2228 kl->format = fmt; 2229 kl->slabsize = slabsize; 2230 2231 /* Handle INTERNAL as inline with an extra page. */ 2232 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 2233 kl->format &= ~UMA_ZFLAG_INTERNAL; 2234 kl->slabsize += PAGE_SIZE; 2235 } 2236 2237 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2238 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2239 2240 /* Account for memory used by an offpage slab header. */ 2241 total = kl->slabsize; 2242 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2243 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2244 2245 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2246 } 2247 2248 /* 2249 * Determine the format of a uma keg. This determines where the slab header 2250 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2251 * 2252 * Arguments 2253 * keg The zone we should initialize 2254 * 2255 * Returns 2256 * Nothing 2257 */ 2258 static void 2259 keg_layout(uma_keg_t keg) 2260 { 2261 struct keg_layout_result kl = {}, kl_tmp; 2262 u_int fmts[2]; 2263 u_int alignsize; 2264 u_int nfmt; 2265 u_int pages; 2266 u_int rsize; 2267 u_int slabsize; 2268 u_int i, j; 2269 2270 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2271 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2272 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2273 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2274 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2275 PRINT_UMA_ZFLAGS)); 2276 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2277 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2278 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2279 PRINT_UMA_ZFLAGS)); 2280 2281 alignsize = keg->uk_align + 1; 2282 #ifdef KASAN 2283 /* 2284 * ASAN requires that each allocation be aligned to the shadow map 2285 * scale factor. 2286 */ 2287 if (alignsize < KASAN_SHADOW_SCALE) 2288 alignsize = KASAN_SHADOW_SCALE; 2289 #endif 2290 2291 /* 2292 * Calculate the size of each allocation (rsize) according to 2293 * alignment. If the requested size is smaller than we have 2294 * allocation bits for we round it up. 2295 */ 2296 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2297 rsize = roundup2(rsize, alignsize); 2298 2299 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2300 /* 2301 * We want one item to start on every align boundary in a page. 2302 * To do this we will span pages. We will also extend the item 2303 * by the size of align if it is an even multiple of align. 2304 * Otherwise, it would fall on the same boundary every time. 2305 */ 2306 if ((rsize & alignsize) == 0) 2307 rsize += alignsize; 2308 slabsize = rsize * (PAGE_SIZE / alignsize); 2309 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2310 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2311 slabsize = round_page(slabsize); 2312 } else { 2313 /* 2314 * Start with a slab size of as many pages as it takes to 2315 * represent a single item. We will try to fit as many 2316 * additional items into the slab as possible. 2317 */ 2318 slabsize = round_page(keg->uk_size); 2319 } 2320 2321 /* Build a list of all of the available formats for this keg. */ 2322 nfmt = 0; 2323 2324 /* Evaluate an inline slab layout. */ 2325 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2326 fmts[nfmt++] = 0; 2327 2328 /* TODO: vm_page-embedded slab. */ 2329 2330 /* 2331 * We can't do OFFPAGE if we're internal or if we've been 2332 * asked to not go to the VM for buckets. If we do this we 2333 * may end up going to the VM for slabs which we do not want 2334 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2335 * In those cases, evaluate a pseudo-format called INTERNAL 2336 * which has an inline slab header and one extra page to 2337 * guarantee that it fits. 2338 * 2339 * Otherwise, see if using an OFFPAGE slab will improve our 2340 * efficiency. 2341 */ 2342 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2343 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2344 else 2345 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2346 2347 /* 2348 * Choose a slab size and format which satisfy the minimum efficiency. 2349 * Prefer the smallest slab size that meets the constraints. 2350 * 2351 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2352 * for small items (up to PAGE_SIZE), the iteration increment is one 2353 * page; and for large items, the increment is one item. 2354 */ 2355 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2356 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2357 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2358 rsize, i)); 2359 for ( ; ; i++) { 2360 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2361 round_page(rsize * (i - 1) + keg->uk_size); 2362 2363 for (j = 0; j < nfmt; j++) { 2364 /* Only if we have no viable format yet. */ 2365 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2366 kl.ipers > 0) 2367 continue; 2368 2369 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2370 if (kl_tmp.eff <= kl.eff) 2371 continue; 2372 2373 kl = kl_tmp; 2374 2375 CTR6(KTR_UMA, "keg %s layout: format %#x " 2376 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2377 keg->uk_name, kl.format, kl.ipers, rsize, 2378 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2379 2380 /* Stop when we reach the minimum efficiency. */ 2381 if (kl.eff >= UMA_MIN_EFF) 2382 break; 2383 } 2384 2385 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2386 slabsize >= SLAB_MAX_SETSIZE * rsize || 2387 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2388 break; 2389 } 2390 2391 pages = atop(kl.slabsize); 2392 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2393 pages *= mp_maxid + 1; 2394 2395 keg->uk_rsize = rsize; 2396 keg->uk_ipers = kl.ipers; 2397 keg->uk_ppera = pages; 2398 keg->uk_flags |= kl.format; 2399 2400 /* 2401 * How do we find the slab header if it is offpage or if not all item 2402 * start addresses are in the same page? We could solve the latter 2403 * case with vaddr alignment, but we don't. 2404 */ 2405 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2406 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2407 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2408 keg->uk_flags |= UMA_ZFLAG_HASH; 2409 else 2410 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2411 } 2412 2413 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2414 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2415 pages); 2416 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2417 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2418 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2419 keg->uk_ipers, pages)); 2420 } 2421 2422 /* 2423 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2424 * the keg onto the global keg list. 2425 * 2426 * Arguments/Returns follow uma_ctor specifications 2427 * udata Actually uma_kctor_args 2428 */ 2429 static int 2430 keg_ctor(void *mem, int size, void *udata, int flags) 2431 { 2432 struct uma_kctor_args *arg = udata; 2433 uma_keg_t keg = mem; 2434 uma_zone_t zone; 2435 int i; 2436 2437 bzero(keg, size); 2438 keg->uk_size = arg->size; 2439 keg->uk_init = arg->uminit; 2440 keg->uk_fini = arg->fini; 2441 keg->uk_align = arg->align; 2442 keg->uk_reserve = 0; 2443 keg->uk_flags = arg->flags; 2444 2445 /* 2446 * We use a global round-robin policy by default. Zones with 2447 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2448 * case the iterator is never run. 2449 */ 2450 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2451 keg->uk_dr.dr_iter = 0; 2452 2453 /* 2454 * The primary zone is passed to us at keg-creation time. 2455 */ 2456 zone = arg->zone; 2457 keg->uk_name = zone->uz_name; 2458 2459 if (arg->flags & UMA_ZONE_ZINIT) 2460 keg->uk_init = zero_init; 2461 2462 if (arg->flags & UMA_ZONE_MALLOC) 2463 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2464 2465 #ifndef SMP 2466 keg->uk_flags &= ~UMA_ZONE_PCPU; 2467 #endif 2468 2469 keg_layout(keg); 2470 2471 /* 2472 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2473 * work on. Use round-robin for everything else. 2474 * 2475 * Zones may override the default by specifying either. 2476 */ 2477 #ifdef NUMA 2478 if ((keg->uk_flags & 2479 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2480 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2481 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2482 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2483 #endif 2484 2485 /* 2486 * If we haven't booted yet we need allocations to go through the 2487 * startup cache until the vm is ready. 2488 */ 2489 #ifdef UMA_MD_SMALL_ALLOC 2490 if (keg->uk_ppera == 1) 2491 keg->uk_allocf = uma_small_alloc; 2492 else 2493 #endif 2494 if (booted < BOOT_KVA) 2495 keg->uk_allocf = startup_alloc; 2496 else if (keg->uk_flags & UMA_ZONE_PCPU) 2497 keg->uk_allocf = pcpu_page_alloc; 2498 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2499 keg->uk_allocf = contig_alloc; 2500 else 2501 keg->uk_allocf = page_alloc; 2502 #ifdef UMA_MD_SMALL_ALLOC 2503 if (keg->uk_ppera == 1) 2504 keg->uk_freef = uma_small_free; 2505 else 2506 #endif 2507 if (keg->uk_flags & UMA_ZONE_PCPU) 2508 keg->uk_freef = pcpu_page_free; 2509 else 2510 keg->uk_freef = page_free; 2511 2512 /* 2513 * Initialize keg's locks. 2514 */ 2515 for (i = 0; i < vm_ndomains; i++) 2516 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2517 2518 /* 2519 * If we're putting the slab header in the actual page we need to 2520 * figure out where in each page it goes. See slab_sizeof 2521 * definition. 2522 */ 2523 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2524 size_t shsize; 2525 2526 shsize = slab_sizeof(keg->uk_ipers); 2527 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2528 /* 2529 * The only way the following is possible is if with our 2530 * UMA_ALIGN_PTR adjustments we are now bigger than 2531 * UMA_SLAB_SIZE. I haven't checked whether this is 2532 * mathematically possible for all cases, so we make 2533 * sure here anyway. 2534 */ 2535 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2536 ("zone %s ipers %d rsize %d size %d slab won't fit", 2537 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2538 } 2539 2540 if (keg->uk_flags & UMA_ZFLAG_HASH) 2541 hash_alloc(&keg->uk_hash, 0); 2542 2543 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2544 2545 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2546 2547 rw_wlock(&uma_rwlock); 2548 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2549 rw_wunlock(&uma_rwlock); 2550 return (0); 2551 } 2552 2553 static void 2554 zone_kva_available(uma_zone_t zone, void *unused) 2555 { 2556 uma_keg_t keg; 2557 2558 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2559 return; 2560 KEG_GET(zone, keg); 2561 2562 if (keg->uk_allocf == startup_alloc) { 2563 /* Switch to the real allocator. */ 2564 if (keg->uk_flags & UMA_ZONE_PCPU) 2565 keg->uk_allocf = pcpu_page_alloc; 2566 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2567 keg->uk_ppera > 1) 2568 keg->uk_allocf = contig_alloc; 2569 else 2570 keg->uk_allocf = page_alloc; 2571 } 2572 } 2573 2574 static void 2575 zone_alloc_counters(uma_zone_t zone, void *unused) 2576 { 2577 2578 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2579 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2580 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2581 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2582 } 2583 2584 static void 2585 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2586 { 2587 uma_zone_domain_t zdom; 2588 uma_domain_t dom; 2589 uma_keg_t keg; 2590 struct sysctl_oid *oid, *domainoid; 2591 int domains, i, cnt; 2592 static const char *nokeg = "cache zone"; 2593 char *c; 2594 2595 /* 2596 * Make a sysctl safe copy of the zone name by removing 2597 * any special characters and handling dups by appending 2598 * an index. 2599 */ 2600 if (zone->uz_namecnt != 0) { 2601 /* Count the number of decimal digits and '_' separator. */ 2602 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2603 cnt /= 10; 2604 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2605 M_UMA, M_WAITOK); 2606 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2607 zone->uz_namecnt); 2608 } else 2609 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2610 for (c = zone->uz_ctlname; *c != '\0'; c++) 2611 if (strchr("./\\ -", *c) != NULL) 2612 *c = '_'; 2613 2614 /* 2615 * Basic parameters at the root. 2616 */ 2617 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2618 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2619 oid = zone->uz_oid; 2620 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2621 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2622 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2623 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2624 zone, 0, sysctl_handle_uma_zone_flags, "A", 2625 "Allocator configuration flags"); 2626 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2627 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2628 "Desired per-cpu cache size"); 2629 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2630 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2631 "Maximum allowed per-cpu cache size"); 2632 2633 /* 2634 * keg if present. 2635 */ 2636 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2637 domains = vm_ndomains; 2638 else 2639 domains = 1; 2640 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2641 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2642 keg = zone->uz_keg; 2643 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2644 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2645 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2646 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2647 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2648 "Real object size with alignment"); 2649 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2650 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2651 "pages per-slab allocation"); 2652 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2653 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2654 "items available per-slab"); 2655 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2656 "align", CTLFLAG_RD, &keg->uk_align, 0, 2657 "item alignment mask"); 2658 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2659 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0, 2660 "number of reserved items"); 2661 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2662 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2663 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2664 "Slab utilization (100 - internal fragmentation %)"); 2665 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2666 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2667 for (i = 0; i < domains; i++) { 2668 dom = &keg->uk_domain[i]; 2669 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2670 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2671 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2672 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2673 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2674 "Total pages currently allocated from VM"); 2675 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2676 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2677 "Items free in the slab layer"); 2678 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2679 "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0, 2680 "Unused slabs"); 2681 } 2682 } else 2683 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2684 "name", CTLFLAG_RD, nokeg, "Keg name"); 2685 2686 /* 2687 * Information about zone limits. 2688 */ 2689 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2690 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2691 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2692 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2693 zone, 0, sysctl_handle_uma_zone_items, "QU", 2694 "Current number of allocated items if limit is set"); 2695 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2696 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2697 "Maximum number of allocated and cached items"); 2698 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2699 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2700 "Number of threads sleeping at limit"); 2701 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2702 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2703 "Total zone limit sleeps"); 2704 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2705 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2706 "Maximum number of items in each domain's bucket cache"); 2707 2708 /* 2709 * Per-domain zone information. 2710 */ 2711 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2712 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2713 for (i = 0; i < domains; i++) { 2714 zdom = ZDOM_GET(zone, i); 2715 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2716 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2717 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2718 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2719 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2720 "number of items in this domain"); 2721 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2722 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2723 "maximum item count in this period"); 2724 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2725 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2726 "minimum item count in this period"); 2727 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2728 "bimin", CTLFLAG_RD, &zdom->uzd_bimin, 2729 "Minimum item count in this batch"); 2730 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2731 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2732 "Working set size"); 2733 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2734 "limin", CTLFLAG_RD, &zdom->uzd_limin, 2735 "Long time minimum item count"); 2736 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2737 "timin", CTLFLAG_RD, &zdom->uzd_timin, 0, 2738 "Time since zero long time minimum item count"); 2739 } 2740 2741 /* 2742 * General statistics. 2743 */ 2744 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2745 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2746 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2747 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2748 zone, 1, sysctl_handle_uma_zone_cur, "I", 2749 "Current number of allocated items"); 2750 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2751 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2752 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2753 "Total allocation calls"); 2754 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2755 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2756 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2757 "Total free calls"); 2758 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2759 "fails", CTLFLAG_RD, &zone->uz_fails, 2760 "Number of allocation failures"); 2761 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2762 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2763 "Free calls from the wrong domain"); 2764 } 2765 2766 struct uma_zone_count { 2767 const char *name; 2768 int count; 2769 }; 2770 2771 static void 2772 zone_count(uma_zone_t zone, void *arg) 2773 { 2774 struct uma_zone_count *cnt; 2775 2776 cnt = arg; 2777 /* 2778 * Some zones are rapidly created with identical names and 2779 * destroyed out of order. This can lead to gaps in the count. 2780 * Use one greater than the maximum observed for this name. 2781 */ 2782 if (strcmp(zone->uz_name, cnt->name) == 0) 2783 cnt->count = MAX(cnt->count, 2784 zone->uz_namecnt + 1); 2785 } 2786 2787 static void 2788 zone_update_caches(uma_zone_t zone) 2789 { 2790 int i; 2791 2792 for (i = 0; i <= mp_maxid; i++) { 2793 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2794 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2795 } 2796 } 2797 2798 /* 2799 * Zone header ctor. This initializes all fields, locks, etc. 2800 * 2801 * Arguments/Returns follow uma_ctor specifications 2802 * udata Actually uma_zctor_args 2803 */ 2804 static int 2805 zone_ctor(void *mem, int size, void *udata, int flags) 2806 { 2807 struct uma_zone_count cnt; 2808 struct uma_zctor_args *arg = udata; 2809 uma_zone_domain_t zdom; 2810 uma_zone_t zone = mem; 2811 uma_zone_t z; 2812 uma_keg_t keg; 2813 int i; 2814 2815 bzero(zone, size); 2816 zone->uz_name = arg->name; 2817 zone->uz_ctor = arg->ctor; 2818 zone->uz_dtor = arg->dtor; 2819 zone->uz_init = NULL; 2820 zone->uz_fini = NULL; 2821 zone->uz_sleeps = 0; 2822 zone->uz_bucket_size = 0; 2823 zone->uz_bucket_size_min = 0; 2824 zone->uz_bucket_size_max = BUCKET_MAX; 2825 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2826 zone->uz_warning = NULL; 2827 /* The domain structures follow the cpu structures. */ 2828 zone->uz_bucket_max = ULONG_MAX; 2829 timevalclear(&zone->uz_ratecheck); 2830 2831 /* Count the number of duplicate names. */ 2832 cnt.name = arg->name; 2833 cnt.count = 0; 2834 zone_foreach(zone_count, &cnt); 2835 zone->uz_namecnt = cnt.count; 2836 ZONE_CROSS_LOCK_INIT(zone); 2837 2838 for (i = 0; i < vm_ndomains; i++) { 2839 zdom = ZDOM_GET(zone, i); 2840 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2841 STAILQ_INIT(&zdom->uzd_buckets); 2842 } 2843 2844 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 2845 if (arg->uminit == trash_init && arg->fini == trash_fini) 2846 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2847 #elif defined(KASAN) 2848 if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0) 2849 arg->flags |= UMA_ZONE_NOKASAN; 2850 #endif 2851 2852 /* 2853 * This is a pure cache zone, no kegs. 2854 */ 2855 if (arg->import) { 2856 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2857 ("zone_ctor: Import specified for non-cache zone.")); 2858 zone->uz_flags = arg->flags; 2859 zone->uz_size = arg->size; 2860 zone->uz_import = arg->import; 2861 zone->uz_release = arg->release; 2862 zone->uz_arg = arg->arg; 2863 #ifdef NUMA 2864 /* 2865 * Cache zones are round-robin unless a policy is 2866 * specified because they may have incompatible 2867 * constraints. 2868 */ 2869 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2870 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2871 #endif 2872 rw_wlock(&uma_rwlock); 2873 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2874 rw_wunlock(&uma_rwlock); 2875 goto out; 2876 } 2877 2878 /* 2879 * Use the regular zone/keg/slab allocator. 2880 */ 2881 zone->uz_import = zone_import; 2882 zone->uz_release = zone_release; 2883 zone->uz_arg = zone; 2884 keg = arg->keg; 2885 2886 if (arg->flags & UMA_ZONE_SECONDARY) { 2887 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2888 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2889 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2890 zone->uz_init = arg->uminit; 2891 zone->uz_fini = arg->fini; 2892 zone->uz_flags |= UMA_ZONE_SECONDARY; 2893 rw_wlock(&uma_rwlock); 2894 ZONE_LOCK(zone); 2895 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2896 if (LIST_NEXT(z, uz_link) == NULL) { 2897 LIST_INSERT_AFTER(z, zone, uz_link); 2898 break; 2899 } 2900 } 2901 ZONE_UNLOCK(zone); 2902 rw_wunlock(&uma_rwlock); 2903 } else if (keg == NULL) { 2904 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2905 arg->align, arg->flags)) == NULL) 2906 return (ENOMEM); 2907 } else { 2908 struct uma_kctor_args karg; 2909 int error; 2910 2911 /* We should only be here from uma_startup() */ 2912 karg.size = arg->size; 2913 karg.uminit = arg->uminit; 2914 karg.fini = arg->fini; 2915 karg.align = arg->align; 2916 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2917 karg.zone = zone; 2918 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2919 flags); 2920 if (error) 2921 return (error); 2922 } 2923 2924 /* Inherit properties from the keg. */ 2925 zone->uz_keg = keg; 2926 zone->uz_size = keg->uk_size; 2927 zone->uz_flags |= (keg->uk_flags & 2928 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2929 2930 out: 2931 if (booted >= BOOT_PCPU) { 2932 zone_alloc_counters(zone, NULL); 2933 if (booted >= BOOT_RUNNING) 2934 zone_alloc_sysctl(zone, NULL); 2935 } else { 2936 zone->uz_allocs = EARLY_COUNTER; 2937 zone->uz_frees = EARLY_COUNTER; 2938 zone->uz_fails = EARLY_COUNTER; 2939 } 2940 2941 /* Caller requests a private SMR context. */ 2942 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2943 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2944 2945 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2946 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2947 ("Invalid zone flag combination")); 2948 if (arg->flags & UMA_ZFLAG_INTERNAL) 2949 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2950 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2951 zone->uz_bucket_size = BUCKET_MAX; 2952 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2953 zone->uz_bucket_size = 0; 2954 else 2955 zone->uz_bucket_size = bucket_select(zone->uz_size); 2956 zone->uz_bucket_size_min = zone->uz_bucket_size; 2957 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2958 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2959 zone_update_caches(zone); 2960 2961 return (0); 2962 } 2963 2964 /* 2965 * Keg header dtor. This frees all data, destroys locks, frees the hash 2966 * table and removes the keg from the global list. 2967 * 2968 * Arguments/Returns follow uma_dtor specifications 2969 * udata unused 2970 */ 2971 static void 2972 keg_dtor(void *arg, int size, void *udata) 2973 { 2974 uma_keg_t keg; 2975 uint32_t free, pages; 2976 int i; 2977 2978 keg = (uma_keg_t)arg; 2979 free = pages = 0; 2980 for (i = 0; i < vm_ndomains; i++) { 2981 free += keg->uk_domain[i].ud_free_items; 2982 pages += keg->uk_domain[i].ud_pages; 2983 KEG_LOCK_FINI(keg, i); 2984 } 2985 if (pages != 0) 2986 printf("Freed UMA keg (%s) was not empty (%u items). " 2987 " Lost %u pages of memory.\n", 2988 keg->uk_name ? keg->uk_name : "", 2989 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2990 2991 hash_free(&keg->uk_hash); 2992 } 2993 2994 /* 2995 * Zone header dtor. 2996 * 2997 * Arguments/Returns follow uma_dtor specifications 2998 * udata unused 2999 */ 3000 static void 3001 zone_dtor(void *arg, int size, void *udata) 3002 { 3003 uma_zone_t zone; 3004 uma_keg_t keg; 3005 int i; 3006 3007 zone = (uma_zone_t)arg; 3008 3009 sysctl_remove_oid(zone->uz_oid, 1, 1); 3010 3011 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 3012 cache_drain(zone); 3013 3014 rw_wlock(&uma_rwlock); 3015 LIST_REMOVE(zone, uz_link); 3016 rw_wunlock(&uma_rwlock); 3017 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3018 keg = zone->uz_keg; 3019 keg->uk_reserve = 0; 3020 } 3021 zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true); 3022 3023 /* 3024 * We only destroy kegs from non secondary/non cache zones. 3025 */ 3026 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3027 keg = zone->uz_keg; 3028 rw_wlock(&uma_rwlock); 3029 LIST_REMOVE(keg, uk_link); 3030 rw_wunlock(&uma_rwlock); 3031 zone_free_item(kegs, keg, NULL, SKIP_NONE); 3032 } 3033 counter_u64_free(zone->uz_allocs); 3034 counter_u64_free(zone->uz_frees); 3035 counter_u64_free(zone->uz_fails); 3036 counter_u64_free(zone->uz_xdomain); 3037 free(zone->uz_ctlname, M_UMA); 3038 for (i = 0; i < vm_ndomains; i++) 3039 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 3040 ZONE_CROSS_LOCK_FINI(zone); 3041 } 3042 3043 static void 3044 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3045 { 3046 uma_keg_t keg; 3047 uma_zone_t zone; 3048 3049 LIST_FOREACH(keg, &uma_kegs, uk_link) { 3050 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 3051 zfunc(zone, arg); 3052 } 3053 LIST_FOREACH(zone, &uma_cachezones, uz_link) 3054 zfunc(zone, arg); 3055 } 3056 3057 /* 3058 * Traverses every zone in the system and calls a callback 3059 * 3060 * Arguments: 3061 * zfunc A pointer to a function which accepts a zone 3062 * as an argument. 3063 * 3064 * Returns: 3065 * Nothing 3066 */ 3067 static void 3068 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3069 { 3070 3071 rw_rlock(&uma_rwlock); 3072 zone_foreach_unlocked(zfunc, arg); 3073 rw_runlock(&uma_rwlock); 3074 } 3075 3076 /* 3077 * Initialize the kernel memory allocator. This is done after pages can be 3078 * allocated but before general KVA is available. 3079 */ 3080 void 3081 uma_startup1(vm_offset_t virtual_avail) 3082 { 3083 struct uma_zctor_args args; 3084 size_t ksize, zsize, size; 3085 uma_keg_t primarykeg; 3086 uintptr_t m; 3087 int domain; 3088 uint8_t pflag; 3089 3090 bootstart = bootmem = virtual_avail; 3091 3092 rw_init(&uma_rwlock, "UMA lock"); 3093 sx_init(&uma_reclaim_lock, "umareclaim"); 3094 3095 ksize = sizeof(struct uma_keg) + 3096 (sizeof(struct uma_domain) * vm_ndomains); 3097 ksize = roundup(ksize, UMA_SUPER_ALIGN); 3098 zsize = sizeof(struct uma_zone) + 3099 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 3100 (sizeof(struct uma_zone_domain) * vm_ndomains); 3101 zsize = roundup(zsize, UMA_SUPER_ALIGN); 3102 3103 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 3104 size = (zsize * 2) + ksize; 3105 for (domain = 0; domain < vm_ndomains; domain++) { 3106 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 3107 M_NOWAIT | M_ZERO); 3108 if (m != 0) 3109 break; 3110 } 3111 zones = (uma_zone_t)m; 3112 m += zsize; 3113 kegs = (uma_zone_t)m; 3114 m += zsize; 3115 primarykeg = (uma_keg_t)m; 3116 3117 /* "manually" create the initial zone */ 3118 memset(&args, 0, sizeof(args)); 3119 args.name = "UMA Kegs"; 3120 args.size = ksize; 3121 args.ctor = keg_ctor; 3122 args.dtor = keg_dtor; 3123 args.uminit = zero_init; 3124 args.fini = NULL; 3125 args.keg = primarykeg; 3126 args.align = UMA_SUPER_ALIGN - 1; 3127 args.flags = UMA_ZFLAG_INTERNAL; 3128 zone_ctor(kegs, zsize, &args, M_WAITOK); 3129 3130 args.name = "UMA Zones"; 3131 args.size = zsize; 3132 args.ctor = zone_ctor; 3133 args.dtor = zone_dtor; 3134 args.uminit = zero_init; 3135 args.fini = NULL; 3136 args.keg = NULL; 3137 args.align = UMA_SUPER_ALIGN - 1; 3138 args.flags = UMA_ZFLAG_INTERNAL; 3139 zone_ctor(zones, zsize, &args, M_WAITOK); 3140 3141 /* Now make zones for slab headers */ 3142 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 3143 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3144 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 3145 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3146 3147 hashzone = uma_zcreate("UMA Hash", 3148 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 3149 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3150 3151 bucket_init(); 3152 smr_init(); 3153 } 3154 3155 #ifndef UMA_MD_SMALL_ALLOC 3156 extern void vm_radix_reserve_kva(void); 3157 #endif 3158 3159 /* 3160 * Advertise the availability of normal kva allocations and switch to 3161 * the default back-end allocator. Marks the KVA we consumed on startup 3162 * as used in the map. 3163 */ 3164 void 3165 uma_startup2(void) 3166 { 3167 3168 if (bootstart != bootmem) { 3169 vm_map_lock(kernel_map); 3170 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 3171 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 3172 vm_map_unlock(kernel_map); 3173 } 3174 3175 #ifndef UMA_MD_SMALL_ALLOC 3176 /* Set up radix zone to use noobj_alloc. */ 3177 vm_radix_reserve_kva(); 3178 #endif 3179 3180 booted = BOOT_KVA; 3181 zone_foreach_unlocked(zone_kva_available, NULL); 3182 bucket_enable(); 3183 } 3184 3185 /* 3186 * Allocate counters as early as possible so that boot-time allocations are 3187 * accounted more precisely. 3188 */ 3189 static void 3190 uma_startup_pcpu(void *arg __unused) 3191 { 3192 3193 zone_foreach_unlocked(zone_alloc_counters, NULL); 3194 booted = BOOT_PCPU; 3195 } 3196 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 3197 3198 /* 3199 * Finish our initialization steps. 3200 */ 3201 static void 3202 uma_startup3(void *arg __unused) 3203 { 3204 3205 #ifdef INVARIANTS 3206 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 3207 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 3208 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 3209 #endif 3210 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 3211 callout_init(&uma_callout, 1); 3212 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 3213 booted = BOOT_RUNNING; 3214 3215 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 3216 EVENTHANDLER_PRI_FIRST); 3217 } 3218 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 3219 3220 static void 3221 uma_shutdown(void) 3222 { 3223 3224 booted = BOOT_SHUTDOWN; 3225 } 3226 3227 static uma_keg_t 3228 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 3229 int align, uint32_t flags) 3230 { 3231 struct uma_kctor_args args; 3232 3233 args.size = size; 3234 args.uminit = uminit; 3235 args.fini = fini; 3236 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 3237 args.flags = flags; 3238 args.zone = zone; 3239 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 3240 } 3241 3242 /* Public functions */ 3243 /* See uma.h */ 3244 void 3245 uma_set_align(int align) 3246 { 3247 3248 if (align != UMA_ALIGN_CACHE) 3249 uma_align_cache = align; 3250 } 3251 3252 /* See uma.h */ 3253 uma_zone_t 3254 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 3255 uma_init uminit, uma_fini fini, int align, uint32_t flags) 3256 3257 { 3258 struct uma_zctor_args args; 3259 uma_zone_t res; 3260 3261 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 3262 align, name)); 3263 3264 /* This stuff is essential for the zone ctor */ 3265 memset(&args, 0, sizeof(args)); 3266 args.name = name; 3267 args.size = size; 3268 args.ctor = ctor; 3269 args.dtor = dtor; 3270 args.uminit = uminit; 3271 args.fini = fini; 3272 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 3273 /* 3274 * Inject procedures which check for memory use after free if we are 3275 * allowed to scramble the memory while it is not allocated. This 3276 * requires that: UMA is actually able to access the memory, no init 3277 * or fini procedures, no dependency on the initial value of the 3278 * memory, and no (legitimate) use of the memory after free. Note, 3279 * the ctor and dtor do not need to be empty. 3280 */ 3281 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3282 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3283 args.uminit = trash_init; 3284 args.fini = trash_fini; 3285 } 3286 #endif 3287 args.align = align; 3288 args.flags = flags; 3289 args.keg = NULL; 3290 3291 sx_xlock(&uma_reclaim_lock); 3292 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3293 sx_xunlock(&uma_reclaim_lock); 3294 3295 return (res); 3296 } 3297 3298 /* See uma.h */ 3299 uma_zone_t 3300 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3301 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3302 { 3303 struct uma_zctor_args args; 3304 uma_keg_t keg; 3305 uma_zone_t res; 3306 3307 keg = primary->uz_keg; 3308 memset(&args, 0, sizeof(args)); 3309 args.name = name; 3310 args.size = keg->uk_size; 3311 args.ctor = ctor; 3312 args.dtor = dtor; 3313 args.uminit = zinit; 3314 args.fini = zfini; 3315 args.align = keg->uk_align; 3316 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3317 args.keg = keg; 3318 3319 sx_xlock(&uma_reclaim_lock); 3320 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3321 sx_xunlock(&uma_reclaim_lock); 3322 3323 return (res); 3324 } 3325 3326 /* See uma.h */ 3327 uma_zone_t 3328 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3329 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3330 void *arg, int flags) 3331 { 3332 struct uma_zctor_args args; 3333 3334 memset(&args, 0, sizeof(args)); 3335 args.name = name; 3336 args.size = size; 3337 args.ctor = ctor; 3338 args.dtor = dtor; 3339 args.uminit = zinit; 3340 args.fini = zfini; 3341 args.import = zimport; 3342 args.release = zrelease; 3343 args.arg = arg; 3344 args.align = 0; 3345 args.flags = flags | UMA_ZFLAG_CACHE; 3346 3347 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3348 } 3349 3350 /* See uma.h */ 3351 void 3352 uma_zdestroy(uma_zone_t zone) 3353 { 3354 3355 /* 3356 * Large slabs are expensive to reclaim, so don't bother doing 3357 * unnecessary work if we're shutting down. 3358 */ 3359 if (booted == BOOT_SHUTDOWN && 3360 zone->uz_fini == NULL && zone->uz_release == zone_release) 3361 return; 3362 sx_xlock(&uma_reclaim_lock); 3363 zone_free_item(zones, zone, NULL, SKIP_NONE); 3364 sx_xunlock(&uma_reclaim_lock); 3365 } 3366 3367 void 3368 uma_zwait(uma_zone_t zone) 3369 { 3370 3371 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3372 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3373 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3374 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3375 else 3376 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3377 } 3378 3379 void * 3380 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3381 { 3382 void *item, *pcpu_item; 3383 #ifdef SMP 3384 int i; 3385 3386 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3387 #endif 3388 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3389 if (item == NULL) 3390 return (NULL); 3391 pcpu_item = zpcpu_base_to_offset(item); 3392 if (flags & M_ZERO) { 3393 #ifdef SMP 3394 for (i = 0; i <= mp_maxid; i++) 3395 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3396 #else 3397 bzero(item, zone->uz_size); 3398 #endif 3399 } 3400 return (pcpu_item); 3401 } 3402 3403 /* 3404 * A stub while both regular and pcpu cases are identical. 3405 */ 3406 void 3407 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3408 { 3409 void *item; 3410 3411 #ifdef SMP 3412 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3413 #endif 3414 3415 /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */ 3416 if (pcpu_item == NULL) 3417 return; 3418 3419 item = zpcpu_offset_to_base(pcpu_item); 3420 uma_zfree_arg(zone, item, udata); 3421 } 3422 3423 static inline void * 3424 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3425 void *item) 3426 { 3427 #ifdef INVARIANTS 3428 bool skipdbg; 3429 #endif 3430 3431 kasan_mark_item_valid(zone, item); 3432 kmsan_mark_item_uninitialized(zone, item); 3433 3434 #ifdef INVARIANTS 3435 skipdbg = uma_dbg_zskip(zone, item); 3436 if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 && 3437 zone->uz_ctor != trash_ctor) 3438 trash_ctor(item, size, udata, flags); 3439 #endif 3440 3441 /* Check flags before loading ctor pointer. */ 3442 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3443 __predict_false(zone->uz_ctor != NULL) && 3444 zone->uz_ctor(item, size, udata, flags) != 0) { 3445 counter_u64_add(zone->uz_fails, 1); 3446 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3447 return (NULL); 3448 } 3449 #ifdef INVARIANTS 3450 if (!skipdbg) 3451 uma_dbg_alloc(zone, NULL, item); 3452 #endif 3453 if (__predict_false(flags & M_ZERO)) 3454 return (memset(item, 0, size)); 3455 3456 return (item); 3457 } 3458 3459 static inline void 3460 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3461 enum zfreeskip skip) 3462 { 3463 #ifdef INVARIANTS 3464 bool skipdbg; 3465 3466 skipdbg = uma_dbg_zskip(zone, item); 3467 if (skip == SKIP_NONE && !skipdbg) { 3468 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3469 uma_dbg_free(zone, udata, item); 3470 else 3471 uma_dbg_free(zone, NULL, item); 3472 } 3473 #endif 3474 if (__predict_true(skip < SKIP_DTOR)) { 3475 if (zone->uz_dtor != NULL) 3476 zone->uz_dtor(item, size, udata); 3477 #ifdef INVARIANTS 3478 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3479 zone->uz_dtor != trash_dtor) 3480 trash_dtor(item, size, udata); 3481 #endif 3482 } 3483 kasan_mark_item_invalid(zone, item); 3484 } 3485 3486 #ifdef NUMA 3487 static int 3488 item_domain(void *item) 3489 { 3490 int domain; 3491 3492 domain = vm_phys_domain(vtophys(item)); 3493 KASSERT(domain >= 0 && domain < vm_ndomains, 3494 ("%s: unknown domain for item %p", __func__, item)); 3495 return (domain); 3496 } 3497 #endif 3498 3499 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3500 #if defined(INVARIANTS) && (defined(DDB) || defined(STACK)) 3501 #include <sys/stack.h> 3502 #endif 3503 #define UMA_ZALLOC_DEBUG 3504 static int 3505 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3506 { 3507 int error; 3508 3509 error = 0; 3510 #ifdef WITNESS 3511 if (flags & M_WAITOK) { 3512 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3513 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3514 } 3515 #endif 3516 3517 #ifdef INVARIANTS 3518 KASSERT((flags & M_EXEC) == 0, 3519 ("uma_zalloc_debug: called with M_EXEC")); 3520 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3521 ("uma_zalloc_debug: called within spinlock or critical section")); 3522 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3523 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3524 3525 _Static_assert(M_NOWAIT != 0 && M_WAITOK != 0, 3526 "M_NOWAIT and M_WAITOK must be non-zero for this assertion:"); 3527 #if 0 3528 /* 3529 * Give the #elif clause time to find problems, then remove it 3530 * and enable this. (Remove <sys/stack.h> above, too.) 3531 */ 3532 KASSERT((flags & (M_NOWAIT|M_WAITOK)) == M_NOWAIT || 3533 (flags & (M_NOWAIT|M_WAITOK)) == M_WAITOK, 3534 ("uma_zalloc_debug: must pass one of M_NOWAIT or M_WAITOK")); 3535 #elif defined(DDB) || defined(STACK) 3536 if (__predict_false((flags & (M_NOWAIT|M_WAITOK)) != M_NOWAIT && 3537 (flags & (M_NOWAIT|M_WAITOK)) != M_WAITOK)) { 3538 static int stack_count; 3539 struct stack st; 3540 3541 if (stack_count < 10) { 3542 ++stack_count; 3543 printf("uma_zalloc* called with bad WAIT flags:\n"); 3544 stack_save(&st); 3545 stack_print(&st); 3546 } 3547 } 3548 #endif 3549 #endif 3550 3551 #ifdef DEBUG_MEMGUARD 3552 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3553 void *item; 3554 item = memguard_alloc(zone->uz_size, flags); 3555 if (item != NULL) { 3556 error = EJUSTRETURN; 3557 if (zone->uz_init != NULL && 3558 zone->uz_init(item, zone->uz_size, flags) != 0) { 3559 *itemp = NULL; 3560 return (error); 3561 } 3562 if (zone->uz_ctor != NULL && 3563 zone->uz_ctor(item, zone->uz_size, udata, 3564 flags) != 0) { 3565 counter_u64_add(zone->uz_fails, 1); 3566 if (zone->uz_fini != NULL) 3567 zone->uz_fini(item, zone->uz_size); 3568 *itemp = NULL; 3569 return (error); 3570 } 3571 *itemp = item; 3572 return (error); 3573 } 3574 /* This is unfortunate but should not be fatal. */ 3575 } 3576 #endif 3577 return (error); 3578 } 3579 3580 static int 3581 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3582 { 3583 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3584 ("uma_zfree_debug: called with spinlock or critical section held")); 3585 3586 #ifdef DEBUG_MEMGUARD 3587 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3588 if (zone->uz_dtor != NULL) 3589 zone->uz_dtor(item, zone->uz_size, udata); 3590 if (zone->uz_fini != NULL) 3591 zone->uz_fini(item, zone->uz_size); 3592 memguard_free(item); 3593 return (EJUSTRETURN); 3594 } 3595 #endif 3596 return (0); 3597 } 3598 #endif 3599 3600 static inline void * 3601 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3602 void *udata, int flags) 3603 { 3604 void *item; 3605 int size, uz_flags; 3606 3607 item = cache_bucket_pop(cache, bucket); 3608 size = cache_uz_size(cache); 3609 uz_flags = cache_uz_flags(cache); 3610 critical_exit(); 3611 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3612 } 3613 3614 static __noinline void * 3615 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3616 { 3617 uma_cache_bucket_t bucket; 3618 int domain; 3619 3620 while (cache_alloc(zone, cache, udata, flags)) { 3621 cache = &zone->uz_cpu[curcpu]; 3622 bucket = &cache->uc_allocbucket; 3623 if (__predict_false(bucket->ucb_cnt == 0)) 3624 continue; 3625 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3626 } 3627 critical_exit(); 3628 3629 /* 3630 * We can not get a bucket so try to return a single item. 3631 */ 3632 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3633 domain = PCPU_GET(domain); 3634 else 3635 domain = UMA_ANYDOMAIN; 3636 return (zone_alloc_item(zone, udata, domain, flags)); 3637 } 3638 3639 /* See uma.h */ 3640 void * 3641 uma_zalloc_smr(uma_zone_t zone, int flags) 3642 { 3643 uma_cache_bucket_t bucket; 3644 uma_cache_t cache; 3645 3646 CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name, 3647 zone, flags); 3648 3649 #ifdef UMA_ZALLOC_DEBUG 3650 void *item; 3651 3652 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3653 ("uma_zalloc_arg: called with non-SMR zone.")); 3654 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3655 return (item); 3656 #endif 3657 3658 critical_enter(); 3659 cache = &zone->uz_cpu[curcpu]; 3660 bucket = &cache->uc_allocbucket; 3661 if (__predict_false(bucket->ucb_cnt == 0)) 3662 return (cache_alloc_retry(zone, cache, NULL, flags)); 3663 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3664 } 3665 3666 /* See uma.h */ 3667 void * 3668 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3669 { 3670 uma_cache_bucket_t bucket; 3671 uma_cache_t cache; 3672 3673 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3674 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3675 3676 /* This is the fast path allocation */ 3677 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3678 zone, flags); 3679 3680 #ifdef UMA_ZALLOC_DEBUG 3681 void *item; 3682 3683 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3684 ("uma_zalloc_arg: called with SMR zone.")); 3685 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3686 return (item); 3687 #endif 3688 3689 /* 3690 * If possible, allocate from the per-CPU cache. There are two 3691 * requirements for safe access to the per-CPU cache: (1) the thread 3692 * accessing the cache must not be preempted or yield during access, 3693 * and (2) the thread must not migrate CPUs without switching which 3694 * cache it accesses. We rely on a critical section to prevent 3695 * preemption and migration. We release the critical section in 3696 * order to acquire the zone mutex if we are unable to allocate from 3697 * the current cache; when we re-acquire the critical section, we 3698 * must detect and handle migration if it has occurred. 3699 */ 3700 critical_enter(); 3701 cache = &zone->uz_cpu[curcpu]; 3702 bucket = &cache->uc_allocbucket; 3703 if (__predict_false(bucket->ucb_cnt == 0)) 3704 return (cache_alloc_retry(zone, cache, udata, flags)); 3705 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3706 } 3707 3708 /* 3709 * Replenish an alloc bucket and possibly restore an old one. Called in 3710 * a critical section. Returns in a critical section. 3711 * 3712 * A false return value indicates an allocation failure. 3713 * A true return value indicates success and the caller should retry. 3714 */ 3715 static __noinline bool 3716 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3717 { 3718 uma_bucket_t bucket; 3719 int curdomain, domain; 3720 bool new; 3721 3722 CRITICAL_ASSERT(curthread); 3723 3724 /* 3725 * If we have run out of items in our alloc bucket see 3726 * if we can switch with the free bucket. 3727 * 3728 * SMR Zones can't re-use the free bucket until the sequence has 3729 * expired. 3730 */ 3731 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3732 cache->uc_freebucket.ucb_cnt != 0) { 3733 cache_bucket_swap(&cache->uc_freebucket, 3734 &cache->uc_allocbucket); 3735 return (true); 3736 } 3737 3738 /* 3739 * Discard any empty allocation bucket while we hold no locks. 3740 */ 3741 bucket = cache_bucket_unload_alloc(cache); 3742 critical_exit(); 3743 3744 if (bucket != NULL) { 3745 KASSERT(bucket->ub_cnt == 0, 3746 ("cache_alloc: Entered with non-empty alloc bucket.")); 3747 bucket_free(zone, bucket, udata); 3748 } 3749 3750 /* 3751 * Attempt to retrieve the item from the per-CPU cache has failed, so 3752 * we must go back to the zone. This requires the zdom lock, so we 3753 * must drop the critical section, then re-acquire it when we go back 3754 * to the cache. Since the critical section is released, we may be 3755 * preempted or migrate. As such, make sure not to maintain any 3756 * thread-local state specific to the cache from prior to releasing 3757 * the critical section. 3758 */ 3759 domain = PCPU_GET(domain); 3760 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3761 VM_DOMAIN_EMPTY(domain)) 3762 domain = zone_domain_highest(zone, domain); 3763 bucket = cache_fetch_bucket(zone, cache, domain); 3764 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { 3765 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3766 new = true; 3767 } else { 3768 new = false; 3769 } 3770 3771 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3772 zone->uz_name, zone, bucket); 3773 if (bucket == NULL) { 3774 critical_enter(); 3775 return (false); 3776 } 3777 3778 /* 3779 * See if we lost the race or were migrated. Cache the 3780 * initialized bucket to make this less likely or claim 3781 * the memory directly. 3782 */ 3783 critical_enter(); 3784 cache = &zone->uz_cpu[curcpu]; 3785 if (cache->uc_allocbucket.ucb_bucket == NULL && 3786 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3787 (curdomain = PCPU_GET(domain)) == domain || 3788 VM_DOMAIN_EMPTY(curdomain))) { 3789 if (new) 3790 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3791 bucket->ub_cnt); 3792 cache_bucket_load_alloc(cache, bucket); 3793 return (true); 3794 } 3795 3796 /* 3797 * We lost the race, release this bucket and start over. 3798 */ 3799 critical_exit(); 3800 zone_put_bucket(zone, domain, bucket, udata, !new); 3801 critical_enter(); 3802 3803 return (true); 3804 } 3805 3806 void * 3807 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3808 { 3809 #ifdef NUMA 3810 uma_bucket_t bucket; 3811 uma_zone_domain_t zdom; 3812 void *item; 3813 #endif 3814 3815 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3816 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3817 3818 /* This is the fast path allocation */ 3819 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3820 zone->uz_name, zone, domain, flags); 3821 3822 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3823 ("uma_zalloc_domain: called with SMR zone.")); 3824 #ifdef NUMA 3825 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0, 3826 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone.")); 3827 3828 if (vm_ndomains == 1) 3829 return (uma_zalloc_arg(zone, udata, flags)); 3830 3831 #ifdef UMA_ZALLOC_DEBUG 3832 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3833 return (item); 3834 #endif 3835 3836 /* 3837 * Try to allocate from the bucket cache before falling back to the keg. 3838 * We could try harder and attempt to allocate from per-CPU caches or 3839 * the per-domain cross-domain buckets, but the complexity is probably 3840 * not worth it. It is more important that frees of previous 3841 * cross-domain allocations do not blow up the cache. 3842 */ 3843 zdom = zone_domain_lock(zone, domain); 3844 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 3845 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3846 #ifdef INVARIANTS 3847 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL; 3848 #endif 3849 bucket->ub_cnt--; 3850 zone_put_bucket(zone, domain, bucket, udata, true); 3851 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, 3852 flags, item); 3853 if (item != NULL) { 3854 KASSERT(item_domain(item) == domain, 3855 ("%s: bucket cache item %p from wrong domain", 3856 __func__, item)); 3857 counter_u64_add(zone->uz_allocs, 1); 3858 } 3859 return (item); 3860 } 3861 ZDOM_UNLOCK(zdom); 3862 return (zone_alloc_item(zone, udata, domain, flags)); 3863 #else 3864 return (uma_zalloc_arg(zone, udata, flags)); 3865 #endif 3866 } 3867 3868 /* 3869 * Find a slab with some space. Prefer slabs that are partially used over those 3870 * that are totally full. This helps to reduce fragmentation. 3871 * 3872 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3873 * only 'domain'. 3874 */ 3875 static uma_slab_t 3876 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3877 { 3878 uma_domain_t dom; 3879 uma_slab_t slab; 3880 int start; 3881 3882 KASSERT(domain >= 0 && domain < vm_ndomains, 3883 ("keg_first_slab: domain %d out of range", domain)); 3884 KEG_LOCK_ASSERT(keg, domain); 3885 3886 slab = NULL; 3887 start = domain; 3888 do { 3889 dom = &keg->uk_domain[domain]; 3890 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3891 return (slab); 3892 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3893 LIST_REMOVE(slab, us_link); 3894 dom->ud_free_slabs--; 3895 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3896 return (slab); 3897 } 3898 if (rr) 3899 domain = (domain + 1) % vm_ndomains; 3900 } while (domain != start); 3901 3902 return (NULL); 3903 } 3904 3905 /* 3906 * Fetch an existing slab from a free or partial list. Returns with the 3907 * keg domain lock held if a slab was found or unlocked if not. 3908 */ 3909 static uma_slab_t 3910 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3911 { 3912 uma_slab_t slab; 3913 uint32_t reserve; 3914 3915 /* HASH has a single free list. */ 3916 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3917 domain = 0; 3918 3919 KEG_LOCK(keg, domain); 3920 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3921 if (keg->uk_domain[domain].ud_free_items <= reserve || 3922 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3923 KEG_UNLOCK(keg, domain); 3924 return (NULL); 3925 } 3926 return (slab); 3927 } 3928 3929 static uma_slab_t 3930 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3931 { 3932 struct vm_domainset_iter di; 3933 uma_slab_t slab; 3934 int aflags, domain; 3935 bool rr; 3936 3937 KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM), 3938 ("%s: invalid flags %#x", __func__, flags)); 3939 3940 restart: 3941 /* 3942 * Use the keg's policy if upper layers haven't already specified a 3943 * domain (as happens with first-touch zones). 3944 * 3945 * To avoid races we run the iterator with the keg lock held, but that 3946 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3947 * clear M_WAITOK and handle low memory conditions locally. 3948 */ 3949 rr = rdomain == UMA_ANYDOMAIN; 3950 if (rr) { 3951 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3952 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3953 &aflags); 3954 } else { 3955 aflags = flags; 3956 domain = rdomain; 3957 } 3958 3959 for (;;) { 3960 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3961 if (slab != NULL) 3962 return (slab); 3963 3964 /* 3965 * M_NOVM is used to break the recursion that can otherwise 3966 * occur if low-level memory management routines use UMA. 3967 */ 3968 if ((flags & M_NOVM) == 0) { 3969 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3970 if (slab != NULL) 3971 return (slab); 3972 } 3973 3974 if (!rr) { 3975 if ((flags & M_USE_RESERVE) != 0) { 3976 /* 3977 * Drain reserves from other domains before 3978 * giving up or sleeping. It may be useful to 3979 * support per-domain reserves eventually. 3980 */ 3981 rdomain = UMA_ANYDOMAIN; 3982 goto restart; 3983 } 3984 if ((flags & M_WAITOK) == 0) 3985 break; 3986 vm_wait_domain(domain); 3987 } else if (vm_domainset_iter_policy(&di, &domain) != 0) { 3988 if ((flags & M_WAITOK) != 0) { 3989 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 3990 goto restart; 3991 } 3992 break; 3993 } 3994 } 3995 3996 /* 3997 * We might not have been able to get a slab but another cpu 3998 * could have while we were unlocked. Check again before we 3999 * fail. 4000 */ 4001 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 4002 return (slab); 4003 4004 return (NULL); 4005 } 4006 4007 static void * 4008 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 4009 { 4010 uma_domain_t dom; 4011 void *item; 4012 int freei; 4013 4014 KEG_LOCK_ASSERT(keg, slab->us_domain); 4015 4016 dom = &keg->uk_domain[slab->us_domain]; 4017 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 4018 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 4019 item = slab_item(slab, keg, freei); 4020 slab->us_freecount--; 4021 dom->ud_free_items--; 4022 4023 /* 4024 * Move this slab to the full list. It must be on the partial list, so 4025 * we do not need to update the free slab count. In particular, 4026 * keg_fetch_slab() always returns slabs on the partial list. 4027 */ 4028 if (slab->us_freecount == 0) { 4029 LIST_REMOVE(slab, us_link); 4030 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 4031 } 4032 4033 return (item); 4034 } 4035 4036 static int 4037 zone_import(void *arg, void **bucket, int max, int domain, int flags) 4038 { 4039 uma_domain_t dom; 4040 uma_zone_t zone; 4041 uma_slab_t slab; 4042 uma_keg_t keg; 4043 #ifdef NUMA 4044 int stripe; 4045 #endif 4046 int i; 4047 4048 zone = arg; 4049 slab = NULL; 4050 keg = zone->uz_keg; 4051 /* Try to keep the buckets totally full */ 4052 for (i = 0; i < max; ) { 4053 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 4054 break; 4055 #ifdef NUMA 4056 stripe = howmany(max, vm_ndomains); 4057 #endif 4058 dom = &keg->uk_domain[slab->us_domain]; 4059 do { 4060 bucket[i++] = slab_alloc_item(keg, slab); 4061 if (keg->uk_reserve > 0 && 4062 dom->ud_free_items <= keg->uk_reserve) { 4063 /* 4064 * Avoid depleting the reserve after a 4065 * successful item allocation, even if 4066 * M_USE_RESERVE is specified. 4067 */ 4068 KEG_UNLOCK(keg, slab->us_domain); 4069 goto out; 4070 } 4071 #ifdef NUMA 4072 /* 4073 * If the zone is striped we pick a new slab for every 4074 * N allocations. Eliminating this conditional will 4075 * instead pick a new domain for each bucket rather 4076 * than stripe within each bucket. The current option 4077 * produces more fragmentation and requires more cpu 4078 * time but yields better distribution. 4079 */ 4080 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 4081 vm_ndomains > 1 && --stripe == 0) 4082 break; 4083 #endif 4084 } while (slab->us_freecount != 0 && i < max); 4085 KEG_UNLOCK(keg, slab->us_domain); 4086 4087 /* Don't block if we allocated any successfully. */ 4088 flags &= ~M_WAITOK; 4089 flags |= M_NOWAIT; 4090 } 4091 out: 4092 return i; 4093 } 4094 4095 static int 4096 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 4097 { 4098 uint64_t old, new, total, max; 4099 4100 /* 4101 * The hard case. We're going to sleep because there were existing 4102 * sleepers or because we ran out of items. This routine enforces 4103 * fairness by keeping fifo order. 4104 * 4105 * First release our ill gotten gains and make some noise. 4106 */ 4107 for (;;) { 4108 zone_free_limit(zone, count); 4109 zone_log_warning(zone); 4110 zone_maxaction(zone); 4111 if (flags & M_NOWAIT) 4112 return (0); 4113 4114 /* 4115 * We need to allocate an item or set ourself as a sleeper 4116 * while the sleepq lock is held to avoid wakeup races. This 4117 * is essentially a home rolled semaphore. 4118 */ 4119 sleepq_lock(&zone->uz_max_items); 4120 old = zone->uz_items; 4121 do { 4122 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 4123 /* Cache the max since we will evaluate twice. */ 4124 max = zone->uz_max_items; 4125 if (UZ_ITEMS_SLEEPERS(old) != 0 || 4126 UZ_ITEMS_COUNT(old) >= max) 4127 new = old + UZ_ITEMS_SLEEPER; 4128 else 4129 new = old + MIN(count, max - old); 4130 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 4131 4132 /* We may have successfully allocated under the sleepq lock. */ 4133 if (UZ_ITEMS_SLEEPERS(new) == 0) { 4134 sleepq_release(&zone->uz_max_items); 4135 return (new - old); 4136 } 4137 4138 /* 4139 * This is in a different cacheline from uz_items so that we 4140 * don't constantly invalidate the fastpath cacheline when we 4141 * adjust item counts. This could be limited to toggling on 4142 * transitions. 4143 */ 4144 atomic_add_32(&zone->uz_sleepers, 1); 4145 atomic_add_64(&zone->uz_sleeps, 1); 4146 4147 /* 4148 * We have added ourselves as a sleeper. The sleepq lock 4149 * protects us from wakeup races. Sleep now and then retry. 4150 */ 4151 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 4152 sleepq_wait(&zone->uz_max_items, PVM); 4153 4154 /* 4155 * After wakeup, remove ourselves as a sleeper and try 4156 * again. We no longer have the sleepq lock for protection. 4157 * 4158 * Subract ourselves as a sleeper while attempting to add 4159 * our count. 4160 */ 4161 atomic_subtract_32(&zone->uz_sleepers, 1); 4162 old = atomic_fetchadd_64(&zone->uz_items, 4163 -(UZ_ITEMS_SLEEPER - count)); 4164 /* We're no longer a sleeper. */ 4165 old -= UZ_ITEMS_SLEEPER; 4166 4167 /* 4168 * If we're still at the limit, restart. Notably do not 4169 * block on other sleepers. Cache the max value to protect 4170 * against changes via sysctl. 4171 */ 4172 total = UZ_ITEMS_COUNT(old); 4173 max = zone->uz_max_items; 4174 if (total >= max) 4175 continue; 4176 /* Truncate if necessary, otherwise wake other sleepers. */ 4177 if (total + count > max) { 4178 zone_free_limit(zone, total + count - max); 4179 count = max - total; 4180 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 4181 wakeup_one(&zone->uz_max_items); 4182 4183 return (count); 4184 } 4185 } 4186 4187 /* 4188 * Allocate 'count' items from our max_items limit. Returns the number 4189 * available. If M_NOWAIT is not specified it will sleep until at least 4190 * one item can be allocated. 4191 */ 4192 static int 4193 zone_alloc_limit(uma_zone_t zone, int count, int flags) 4194 { 4195 uint64_t old; 4196 uint64_t max; 4197 4198 max = zone->uz_max_items; 4199 MPASS(max > 0); 4200 4201 /* 4202 * We expect normal allocations to succeed with a simple 4203 * fetchadd. 4204 */ 4205 old = atomic_fetchadd_64(&zone->uz_items, count); 4206 if (__predict_true(old + count <= max)) 4207 return (count); 4208 4209 /* 4210 * If we had some items and no sleepers just return the 4211 * truncated value. We have to release the excess space 4212 * though because that may wake sleepers who weren't woken 4213 * because we were temporarily over the limit. 4214 */ 4215 if (old < max) { 4216 zone_free_limit(zone, (old + count) - max); 4217 return (max - old); 4218 } 4219 return (zone_alloc_limit_hard(zone, count, flags)); 4220 } 4221 4222 /* 4223 * Free a number of items back to the limit. 4224 */ 4225 static void 4226 zone_free_limit(uma_zone_t zone, int count) 4227 { 4228 uint64_t old; 4229 4230 MPASS(count > 0); 4231 4232 /* 4233 * In the common case we either have no sleepers or 4234 * are still over the limit and can just return. 4235 */ 4236 old = atomic_fetchadd_64(&zone->uz_items, -count); 4237 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 4238 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 4239 return; 4240 4241 /* 4242 * Moderate the rate of wakeups. Sleepers will continue 4243 * to generate wakeups if necessary. 4244 */ 4245 wakeup_one(&zone->uz_max_items); 4246 } 4247 4248 static uma_bucket_t 4249 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 4250 { 4251 uma_bucket_t bucket; 4252 int error, maxbucket, cnt; 4253 4254 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 4255 zone, domain); 4256 4257 /* Avoid allocs targeting empty domains. */ 4258 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4259 domain = UMA_ANYDOMAIN; 4260 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4261 domain = UMA_ANYDOMAIN; 4262 4263 if (zone->uz_max_items > 0) 4264 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 4265 M_NOWAIT); 4266 else 4267 maxbucket = zone->uz_bucket_size; 4268 if (maxbucket == 0) 4269 return (NULL); 4270 4271 /* Don't wait for buckets, preserve caller's NOVM setting. */ 4272 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 4273 if (bucket == NULL) { 4274 cnt = 0; 4275 goto out; 4276 } 4277 4278 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 4279 MIN(maxbucket, bucket->ub_entries), domain, flags); 4280 4281 /* 4282 * Initialize the memory if necessary. 4283 */ 4284 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 4285 int i; 4286 4287 for (i = 0; i < bucket->ub_cnt; i++) { 4288 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 4289 error = zone->uz_init(bucket->ub_bucket[i], 4290 zone->uz_size, flags); 4291 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 4292 if (error != 0) 4293 break; 4294 } 4295 4296 /* 4297 * If we couldn't initialize the whole bucket, put the 4298 * rest back onto the freelist. 4299 */ 4300 if (i != bucket->ub_cnt) { 4301 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 4302 bucket->ub_cnt - i); 4303 #ifdef INVARIANTS 4304 bzero(&bucket->ub_bucket[i], 4305 sizeof(void *) * (bucket->ub_cnt - i)); 4306 #endif 4307 bucket->ub_cnt = i; 4308 } 4309 } 4310 4311 cnt = bucket->ub_cnt; 4312 if (bucket->ub_cnt == 0) { 4313 bucket_free(zone, bucket, udata); 4314 counter_u64_add(zone->uz_fails, 1); 4315 bucket = NULL; 4316 } 4317 out: 4318 if (zone->uz_max_items > 0 && cnt < maxbucket) 4319 zone_free_limit(zone, maxbucket - cnt); 4320 4321 return (bucket); 4322 } 4323 4324 /* 4325 * Allocates a single item from a zone. 4326 * 4327 * Arguments 4328 * zone The zone to alloc for. 4329 * udata The data to be passed to the constructor. 4330 * domain The domain to allocate from or UMA_ANYDOMAIN. 4331 * flags M_WAITOK, M_NOWAIT, M_ZERO. 4332 * 4333 * Returns 4334 * NULL if there is no memory and M_NOWAIT is set 4335 * An item if successful 4336 */ 4337 4338 static void * 4339 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 4340 { 4341 void *item; 4342 4343 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { 4344 counter_u64_add(zone->uz_fails, 1); 4345 return (NULL); 4346 } 4347 4348 /* Avoid allocs targeting empty domains. */ 4349 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4350 domain = UMA_ANYDOMAIN; 4351 4352 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 4353 goto fail_cnt; 4354 4355 /* 4356 * We have to call both the zone's init (not the keg's init) 4357 * and the zone's ctor. This is because the item is going from 4358 * a keg slab directly to the user, and the user is expecting it 4359 * to be both zone-init'd as well as zone-ctor'd. 4360 */ 4361 if (zone->uz_init != NULL) { 4362 int error; 4363 4364 kasan_mark_item_valid(zone, item); 4365 error = zone->uz_init(item, zone->uz_size, flags); 4366 kasan_mark_item_invalid(zone, item); 4367 if (error != 0) { 4368 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 4369 goto fail_cnt; 4370 } 4371 } 4372 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 4373 item); 4374 if (item == NULL) 4375 goto fail; 4376 4377 counter_u64_add(zone->uz_allocs, 1); 4378 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 4379 zone->uz_name, zone); 4380 4381 return (item); 4382 4383 fail_cnt: 4384 counter_u64_add(zone->uz_fails, 1); 4385 fail: 4386 if (zone->uz_max_items > 0) 4387 zone_free_limit(zone, 1); 4388 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 4389 zone->uz_name, zone); 4390 4391 return (NULL); 4392 } 4393 4394 /* See uma.h */ 4395 void 4396 uma_zfree_smr(uma_zone_t zone, void *item) 4397 { 4398 uma_cache_t cache; 4399 uma_cache_bucket_t bucket; 4400 int itemdomain; 4401 #ifdef NUMA 4402 int uz_flags; 4403 #endif 4404 4405 CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p", 4406 zone->uz_name, zone, item); 4407 4408 #ifdef UMA_ZALLOC_DEBUG 4409 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4410 ("uma_zfree_smr: called with non-SMR zone.")); 4411 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4412 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4413 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4414 return; 4415 #endif 4416 cache = &zone->uz_cpu[curcpu]; 4417 itemdomain = 0; 4418 #ifdef NUMA 4419 uz_flags = cache_uz_flags(cache); 4420 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4421 itemdomain = item_domain(item); 4422 #endif 4423 critical_enter(); 4424 do { 4425 cache = &zone->uz_cpu[curcpu]; 4426 /* SMR Zones must free to the free bucket. */ 4427 bucket = &cache->uc_freebucket; 4428 #ifdef NUMA 4429 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4430 PCPU_GET(domain) != itemdomain) { 4431 bucket = &cache->uc_crossbucket; 4432 } 4433 #endif 4434 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4435 cache_bucket_push(cache, bucket, item); 4436 critical_exit(); 4437 return; 4438 } 4439 } while (cache_free(zone, cache, NULL, itemdomain)); 4440 critical_exit(); 4441 4442 /* 4443 * If nothing else caught this, we'll just do an internal free. 4444 */ 4445 zone_free_item(zone, item, NULL, SKIP_NONE); 4446 } 4447 4448 /* See uma.h */ 4449 void 4450 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4451 { 4452 uma_cache_t cache; 4453 uma_cache_bucket_t bucket; 4454 int itemdomain, uz_flags; 4455 4456 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4457 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4458 4459 CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p", 4460 zone->uz_name, zone, item); 4461 4462 #ifdef UMA_ZALLOC_DEBUG 4463 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4464 ("uma_zfree_arg: called with SMR zone.")); 4465 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4466 return; 4467 #endif 4468 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4469 if (item == NULL) 4470 return; 4471 4472 /* 4473 * We are accessing the per-cpu cache without a critical section to 4474 * fetch size and flags. This is acceptable, if we are preempted we 4475 * will simply read another cpu's line. 4476 */ 4477 cache = &zone->uz_cpu[curcpu]; 4478 uz_flags = cache_uz_flags(cache); 4479 if (UMA_ALWAYS_CTORDTOR || 4480 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4481 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4482 4483 /* 4484 * The race here is acceptable. If we miss it we'll just have to wait 4485 * a little longer for the limits to be reset. 4486 */ 4487 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4488 if (atomic_load_32(&zone->uz_sleepers) > 0) 4489 goto zfree_item; 4490 } 4491 4492 /* 4493 * If possible, free to the per-CPU cache. There are two 4494 * requirements for safe access to the per-CPU cache: (1) the thread 4495 * accessing the cache must not be preempted or yield during access, 4496 * and (2) the thread must not migrate CPUs without switching which 4497 * cache it accesses. We rely on a critical section to prevent 4498 * preemption and migration. We release the critical section in 4499 * order to acquire the zone mutex if we are unable to free to the 4500 * current cache; when we re-acquire the critical section, we must 4501 * detect and handle migration if it has occurred. 4502 */ 4503 itemdomain = 0; 4504 #ifdef NUMA 4505 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4506 itemdomain = item_domain(item); 4507 #endif 4508 critical_enter(); 4509 do { 4510 cache = &zone->uz_cpu[curcpu]; 4511 /* 4512 * Try to free into the allocbucket first to give LIFO 4513 * ordering for cache-hot datastructures. Spill over 4514 * into the freebucket if necessary. Alloc will swap 4515 * them if one runs dry. 4516 */ 4517 bucket = &cache->uc_allocbucket; 4518 #ifdef NUMA 4519 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4520 PCPU_GET(domain) != itemdomain) { 4521 bucket = &cache->uc_crossbucket; 4522 } else 4523 #endif 4524 if (bucket->ucb_cnt == bucket->ucb_entries && 4525 cache->uc_freebucket.ucb_cnt < 4526 cache->uc_freebucket.ucb_entries) 4527 cache_bucket_swap(&cache->uc_freebucket, 4528 &cache->uc_allocbucket); 4529 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4530 cache_bucket_push(cache, bucket, item); 4531 critical_exit(); 4532 return; 4533 } 4534 } while (cache_free(zone, cache, udata, itemdomain)); 4535 critical_exit(); 4536 4537 /* 4538 * If nothing else caught this, we'll just do an internal free. 4539 */ 4540 zfree_item: 4541 zone_free_item(zone, item, udata, SKIP_DTOR); 4542 } 4543 4544 #ifdef NUMA 4545 /* 4546 * sort crossdomain free buckets to domain correct buckets and cache 4547 * them. 4548 */ 4549 static void 4550 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4551 { 4552 struct uma_bucketlist emptybuckets, fullbuckets; 4553 uma_zone_domain_t zdom; 4554 uma_bucket_t b; 4555 smr_seq_t seq; 4556 void *item; 4557 int domain; 4558 4559 CTR3(KTR_UMA, 4560 "uma_zfree: zone %s(%p) draining cross bucket %p", 4561 zone->uz_name, zone, bucket); 4562 4563 /* 4564 * It is possible for buckets to arrive here out of order so we fetch 4565 * the current smr seq rather than accepting the bucket's. 4566 */ 4567 seq = SMR_SEQ_INVALID; 4568 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4569 seq = smr_advance(zone->uz_smr); 4570 4571 /* 4572 * To avoid having ndomain * ndomain buckets for sorting we have a 4573 * lock on the current crossfree bucket. A full matrix with 4574 * per-domain locking could be used if necessary. 4575 */ 4576 STAILQ_INIT(&emptybuckets); 4577 STAILQ_INIT(&fullbuckets); 4578 ZONE_CROSS_LOCK(zone); 4579 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) { 4580 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4581 domain = item_domain(item); 4582 zdom = ZDOM_GET(zone, domain); 4583 if (zdom->uzd_cross == NULL) { 4584 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4585 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4586 zdom->uzd_cross = b; 4587 } else { 4588 /* 4589 * Avoid allocating a bucket with the cross lock 4590 * held, since allocation can trigger a 4591 * cross-domain free and bucket zones may 4592 * allocate from each other. 4593 */ 4594 ZONE_CROSS_UNLOCK(zone); 4595 b = bucket_alloc(zone, udata, M_NOWAIT); 4596 if (b == NULL) 4597 goto out; 4598 ZONE_CROSS_LOCK(zone); 4599 if (zdom->uzd_cross != NULL) { 4600 STAILQ_INSERT_HEAD(&emptybuckets, b, 4601 ub_link); 4602 } else { 4603 zdom->uzd_cross = b; 4604 } 4605 } 4606 } 4607 b = zdom->uzd_cross; 4608 b->ub_bucket[b->ub_cnt++] = item; 4609 b->ub_seq = seq; 4610 if (b->ub_cnt == b->ub_entries) { 4611 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4612 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) 4613 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4614 zdom->uzd_cross = b; 4615 } 4616 } 4617 ZONE_CROSS_UNLOCK(zone); 4618 out: 4619 if (bucket->ub_cnt == 0) 4620 bucket->ub_seq = SMR_SEQ_INVALID; 4621 bucket_free(zone, bucket, udata); 4622 4623 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4624 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4625 bucket_free(zone, b, udata); 4626 } 4627 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4628 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4629 domain = item_domain(b->ub_bucket[0]); 4630 zone_put_bucket(zone, domain, b, udata, true); 4631 } 4632 } 4633 #endif 4634 4635 static void 4636 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4637 int itemdomain, bool ws) 4638 { 4639 4640 #ifdef NUMA 4641 /* 4642 * Buckets coming from the wrong domain will be entirely for the 4643 * only other domain on two domain systems. In this case we can 4644 * simply cache them. Otherwise we need to sort them back to 4645 * correct domains. 4646 */ 4647 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4648 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4649 zone_free_cross(zone, bucket, udata); 4650 return; 4651 } 4652 #endif 4653 4654 /* 4655 * Attempt to save the bucket in the zone's domain bucket cache. 4656 */ 4657 CTR3(KTR_UMA, 4658 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4659 zone->uz_name, zone, bucket); 4660 /* ub_cnt is pointing to the last free item */ 4661 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4662 itemdomain = zone_domain_lowest(zone, itemdomain); 4663 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4664 } 4665 4666 /* 4667 * Populate a free or cross bucket for the current cpu cache. Free any 4668 * existing full bucket either to the zone cache or back to the slab layer. 4669 * 4670 * Enters and returns in a critical section. false return indicates that 4671 * we can not satisfy this free in the cache layer. true indicates that 4672 * the caller should retry. 4673 */ 4674 static __noinline bool 4675 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain) 4676 { 4677 uma_cache_bucket_t cbucket; 4678 uma_bucket_t newbucket, bucket; 4679 4680 CRITICAL_ASSERT(curthread); 4681 4682 if (zone->uz_bucket_size == 0) 4683 return false; 4684 4685 cache = &zone->uz_cpu[curcpu]; 4686 newbucket = NULL; 4687 4688 /* 4689 * FIRSTTOUCH domains need to free to the correct zdom. When 4690 * enabled this is the zdom of the item. The bucket is the 4691 * cross bucket if the current domain and itemdomain do not match. 4692 */ 4693 cbucket = &cache->uc_freebucket; 4694 #ifdef NUMA 4695 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4696 if (PCPU_GET(domain) != itemdomain) { 4697 cbucket = &cache->uc_crossbucket; 4698 if (cbucket->ucb_cnt != 0) 4699 counter_u64_add(zone->uz_xdomain, 4700 cbucket->ucb_cnt); 4701 } 4702 } 4703 #endif 4704 bucket = cache_bucket_unload(cbucket); 4705 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4706 ("cache_free: Entered with non-full free bucket.")); 4707 4708 /* We are no longer associated with this CPU. */ 4709 critical_exit(); 4710 4711 /* 4712 * Don't let SMR zones operate without a free bucket. Force 4713 * a synchronize and re-use this one. We will only degrade 4714 * to a synchronize every bucket_size items rather than every 4715 * item if we fail to allocate a bucket. 4716 */ 4717 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4718 if (bucket != NULL) 4719 bucket->ub_seq = smr_advance(zone->uz_smr); 4720 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4721 if (newbucket == NULL && bucket != NULL) { 4722 bucket_drain(zone, bucket); 4723 newbucket = bucket; 4724 bucket = NULL; 4725 } 4726 } else if (!bucketdisable) 4727 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4728 4729 if (bucket != NULL) 4730 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4731 4732 critical_enter(); 4733 if ((bucket = newbucket) == NULL) 4734 return (false); 4735 cache = &zone->uz_cpu[curcpu]; 4736 #ifdef NUMA 4737 /* 4738 * Check to see if we should be populating the cross bucket. If it 4739 * is already populated we will fall through and attempt to populate 4740 * the free bucket. 4741 */ 4742 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4743 if (PCPU_GET(domain) != itemdomain && 4744 cache->uc_crossbucket.ucb_bucket == NULL) { 4745 cache_bucket_load_cross(cache, bucket); 4746 return (true); 4747 } 4748 } 4749 #endif 4750 /* 4751 * We may have lost the race to fill the bucket or switched CPUs. 4752 */ 4753 if (cache->uc_freebucket.ucb_bucket != NULL) { 4754 critical_exit(); 4755 bucket_free(zone, bucket, udata); 4756 critical_enter(); 4757 } else 4758 cache_bucket_load_free(cache, bucket); 4759 4760 return (true); 4761 } 4762 4763 static void 4764 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4765 { 4766 uma_keg_t keg; 4767 uma_domain_t dom; 4768 int freei; 4769 4770 keg = zone->uz_keg; 4771 KEG_LOCK_ASSERT(keg, slab->us_domain); 4772 4773 /* Do we need to remove from any lists? */ 4774 dom = &keg->uk_domain[slab->us_domain]; 4775 if (slab->us_freecount + 1 == keg->uk_ipers) { 4776 LIST_REMOVE(slab, us_link); 4777 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4778 dom->ud_free_slabs++; 4779 } else if (slab->us_freecount == 0) { 4780 LIST_REMOVE(slab, us_link); 4781 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4782 } 4783 4784 /* Slab management. */ 4785 freei = slab_item_index(slab, keg, item); 4786 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4787 slab->us_freecount++; 4788 4789 /* Keg statistics. */ 4790 dom->ud_free_items++; 4791 } 4792 4793 static void 4794 zone_release(void *arg, void **bucket, int cnt) 4795 { 4796 struct mtx *lock; 4797 uma_zone_t zone; 4798 uma_slab_t slab; 4799 uma_keg_t keg; 4800 uint8_t *mem; 4801 void *item; 4802 int i; 4803 4804 zone = arg; 4805 keg = zone->uz_keg; 4806 lock = NULL; 4807 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4808 lock = KEG_LOCK(keg, 0); 4809 for (i = 0; i < cnt; i++) { 4810 item = bucket[i]; 4811 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4812 slab = vtoslab((vm_offset_t)item); 4813 } else { 4814 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4815 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4816 slab = hash_sfind(&keg->uk_hash, mem); 4817 else 4818 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4819 } 4820 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4821 if (lock != NULL) 4822 mtx_unlock(lock); 4823 lock = KEG_LOCK(keg, slab->us_domain); 4824 } 4825 slab_free_item(zone, slab, item); 4826 } 4827 if (lock != NULL) 4828 mtx_unlock(lock); 4829 } 4830 4831 /* 4832 * Frees a single item to any zone. 4833 * 4834 * Arguments: 4835 * zone The zone to free to 4836 * item The item we're freeing 4837 * udata User supplied data for the dtor 4838 * skip Skip dtors and finis 4839 */ 4840 static __noinline void 4841 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4842 { 4843 4844 /* 4845 * If a free is sent directly to an SMR zone we have to 4846 * synchronize immediately because the item can instantly 4847 * be reallocated. This should only happen in degenerate 4848 * cases when no memory is available for per-cpu caches. 4849 */ 4850 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4851 smr_synchronize(zone->uz_smr); 4852 4853 item_dtor(zone, item, zone->uz_size, udata, skip); 4854 4855 if (skip < SKIP_FINI && zone->uz_fini) { 4856 kasan_mark_item_valid(zone, item); 4857 zone->uz_fini(item, zone->uz_size); 4858 kasan_mark_item_invalid(zone, item); 4859 } 4860 4861 zone->uz_release(zone->uz_arg, &item, 1); 4862 4863 if (skip & SKIP_CNT) 4864 return; 4865 4866 counter_u64_add(zone->uz_frees, 1); 4867 4868 if (zone->uz_max_items > 0) 4869 zone_free_limit(zone, 1); 4870 } 4871 4872 /* See uma.h */ 4873 int 4874 uma_zone_set_max(uma_zone_t zone, int nitems) 4875 { 4876 4877 /* 4878 * If the limit is small, we may need to constrain the maximum per-CPU 4879 * cache size, or disable caching entirely. 4880 */ 4881 uma_zone_set_maxcache(zone, nitems); 4882 4883 /* 4884 * XXX This can misbehave if the zone has any allocations with 4885 * no limit and a limit is imposed. There is currently no 4886 * way to clear a limit. 4887 */ 4888 ZONE_LOCK(zone); 4889 if (zone->uz_max_items == 0) 4890 ZONE_ASSERT_COLD(zone); 4891 zone->uz_max_items = nitems; 4892 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4893 zone_update_caches(zone); 4894 /* We may need to wake waiters. */ 4895 wakeup(&zone->uz_max_items); 4896 ZONE_UNLOCK(zone); 4897 4898 return (nitems); 4899 } 4900 4901 /* See uma.h */ 4902 void 4903 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4904 { 4905 int bpcpu, bpdom, bsize, nb; 4906 4907 ZONE_LOCK(zone); 4908 4909 /* 4910 * Compute a lower bound on the number of items that may be cached in 4911 * the zone. Each CPU gets at least two buckets, and for cross-domain 4912 * frees we use an additional bucket per CPU and per domain. Select the 4913 * largest bucket size that does not exceed half of the requested limit, 4914 * with the left over space given to the full bucket cache. 4915 */ 4916 bpdom = 0; 4917 bpcpu = 2; 4918 #ifdef NUMA 4919 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) { 4920 bpcpu++; 4921 bpdom++; 4922 } 4923 #endif 4924 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains; 4925 bsize = nitems / nb / 2; 4926 if (bsize > BUCKET_MAX) 4927 bsize = BUCKET_MAX; 4928 else if (bsize == 0 && nitems / nb > 0) 4929 bsize = 1; 4930 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize; 4931 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4932 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4933 zone->uz_bucket_max = nitems - nb * bsize; 4934 ZONE_UNLOCK(zone); 4935 } 4936 4937 /* See uma.h */ 4938 int 4939 uma_zone_get_max(uma_zone_t zone) 4940 { 4941 int nitems; 4942 4943 nitems = atomic_load_64(&zone->uz_max_items); 4944 4945 return (nitems); 4946 } 4947 4948 /* See uma.h */ 4949 void 4950 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4951 { 4952 4953 ZONE_ASSERT_COLD(zone); 4954 zone->uz_warning = warning; 4955 } 4956 4957 /* See uma.h */ 4958 void 4959 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4960 { 4961 4962 ZONE_ASSERT_COLD(zone); 4963 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4964 } 4965 4966 /* See uma.h */ 4967 int 4968 uma_zone_get_cur(uma_zone_t zone) 4969 { 4970 int64_t nitems; 4971 u_int i; 4972 4973 nitems = 0; 4974 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4975 nitems = counter_u64_fetch(zone->uz_allocs) - 4976 counter_u64_fetch(zone->uz_frees); 4977 CPU_FOREACH(i) 4978 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4979 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4980 4981 return (nitems < 0 ? 0 : nitems); 4982 } 4983 4984 static uint64_t 4985 uma_zone_get_allocs(uma_zone_t zone) 4986 { 4987 uint64_t nitems; 4988 u_int i; 4989 4990 nitems = 0; 4991 if (zone->uz_allocs != EARLY_COUNTER) 4992 nitems = counter_u64_fetch(zone->uz_allocs); 4993 CPU_FOREACH(i) 4994 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4995 4996 return (nitems); 4997 } 4998 4999 static uint64_t 5000 uma_zone_get_frees(uma_zone_t zone) 5001 { 5002 uint64_t nitems; 5003 u_int i; 5004 5005 nitems = 0; 5006 if (zone->uz_frees != EARLY_COUNTER) 5007 nitems = counter_u64_fetch(zone->uz_frees); 5008 CPU_FOREACH(i) 5009 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 5010 5011 return (nitems); 5012 } 5013 5014 #ifdef INVARIANTS 5015 /* Used only for KEG_ASSERT_COLD(). */ 5016 static uint64_t 5017 uma_keg_get_allocs(uma_keg_t keg) 5018 { 5019 uma_zone_t z; 5020 uint64_t nitems; 5021 5022 nitems = 0; 5023 LIST_FOREACH(z, &keg->uk_zones, uz_link) 5024 nitems += uma_zone_get_allocs(z); 5025 5026 return (nitems); 5027 } 5028 #endif 5029 5030 /* See uma.h */ 5031 void 5032 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 5033 { 5034 uma_keg_t keg; 5035 5036 KEG_GET(zone, keg); 5037 KEG_ASSERT_COLD(keg); 5038 keg->uk_init = uminit; 5039 } 5040 5041 /* See uma.h */ 5042 void 5043 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 5044 { 5045 uma_keg_t keg; 5046 5047 KEG_GET(zone, keg); 5048 KEG_ASSERT_COLD(keg); 5049 keg->uk_fini = fini; 5050 } 5051 5052 /* See uma.h */ 5053 void 5054 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 5055 { 5056 5057 ZONE_ASSERT_COLD(zone); 5058 zone->uz_init = zinit; 5059 } 5060 5061 /* See uma.h */ 5062 void 5063 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 5064 { 5065 5066 ZONE_ASSERT_COLD(zone); 5067 zone->uz_fini = zfini; 5068 } 5069 5070 /* See uma.h */ 5071 void 5072 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 5073 { 5074 uma_keg_t keg; 5075 5076 KEG_GET(zone, keg); 5077 KEG_ASSERT_COLD(keg); 5078 keg->uk_freef = freef; 5079 } 5080 5081 /* See uma.h */ 5082 void 5083 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 5084 { 5085 uma_keg_t keg; 5086 5087 KEG_GET(zone, keg); 5088 KEG_ASSERT_COLD(keg); 5089 keg->uk_allocf = allocf; 5090 } 5091 5092 /* See uma.h */ 5093 void 5094 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 5095 { 5096 5097 ZONE_ASSERT_COLD(zone); 5098 5099 KASSERT(smr != NULL, ("Got NULL smr")); 5100 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 5101 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 5102 zone->uz_flags |= UMA_ZONE_SMR; 5103 zone->uz_smr = smr; 5104 zone_update_caches(zone); 5105 } 5106 5107 smr_t 5108 uma_zone_get_smr(uma_zone_t zone) 5109 { 5110 5111 return (zone->uz_smr); 5112 } 5113 5114 /* See uma.h */ 5115 void 5116 uma_zone_reserve(uma_zone_t zone, int items) 5117 { 5118 uma_keg_t keg; 5119 5120 KEG_GET(zone, keg); 5121 KEG_ASSERT_COLD(keg); 5122 keg->uk_reserve = items; 5123 } 5124 5125 /* See uma.h */ 5126 int 5127 uma_zone_reserve_kva(uma_zone_t zone, int count) 5128 { 5129 uma_keg_t keg; 5130 vm_offset_t kva; 5131 u_int pages; 5132 5133 KEG_GET(zone, keg); 5134 KEG_ASSERT_COLD(keg); 5135 ZONE_ASSERT_COLD(zone); 5136 5137 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 5138 5139 #ifdef UMA_MD_SMALL_ALLOC 5140 if (keg->uk_ppera > 1) { 5141 #else 5142 if (1) { 5143 #endif 5144 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 5145 if (kva == 0) 5146 return (0); 5147 } else 5148 kva = 0; 5149 5150 MPASS(keg->uk_kva == 0); 5151 keg->uk_kva = kva; 5152 keg->uk_offset = 0; 5153 zone->uz_max_items = pages * keg->uk_ipers; 5154 #ifdef UMA_MD_SMALL_ALLOC 5155 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 5156 #else 5157 keg->uk_allocf = noobj_alloc; 5158 #endif 5159 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5160 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5161 zone_update_caches(zone); 5162 5163 return (1); 5164 } 5165 5166 /* See uma.h */ 5167 void 5168 uma_prealloc(uma_zone_t zone, int items) 5169 { 5170 struct vm_domainset_iter di; 5171 uma_domain_t dom; 5172 uma_slab_t slab; 5173 uma_keg_t keg; 5174 int aflags, domain, slabs; 5175 5176 KEG_GET(zone, keg); 5177 slabs = howmany(items, keg->uk_ipers); 5178 while (slabs-- > 0) { 5179 aflags = M_NOWAIT; 5180 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 5181 &aflags); 5182 for (;;) { 5183 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 5184 aflags); 5185 if (slab != NULL) { 5186 dom = &keg->uk_domain[slab->us_domain]; 5187 /* 5188 * keg_alloc_slab() always returns a slab on the 5189 * partial list. 5190 */ 5191 LIST_REMOVE(slab, us_link); 5192 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 5193 us_link); 5194 dom->ud_free_slabs++; 5195 KEG_UNLOCK(keg, slab->us_domain); 5196 break; 5197 } 5198 if (vm_domainset_iter_policy(&di, &domain) != 0) 5199 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 5200 } 5201 } 5202 } 5203 5204 /* 5205 * Returns a snapshot of memory consumption in bytes. 5206 */ 5207 size_t 5208 uma_zone_memory(uma_zone_t zone) 5209 { 5210 size_t sz; 5211 int i; 5212 5213 sz = 0; 5214 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 5215 for (i = 0; i < vm_ndomains; i++) 5216 sz += ZDOM_GET(zone, i)->uzd_nitems; 5217 return (sz * zone->uz_size); 5218 } 5219 for (i = 0; i < vm_ndomains; i++) 5220 sz += zone->uz_keg->uk_domain[i].ud_pages; 5221 5222 return (sz * PAGE_SIZE); 5223 } 5224 5225 struct uma_reclaim_args { 5226 int domain; 5227 int req; 5228 }; 5229 5230 static void 5231 uma_reclaim_domain_cb(uma_zone_t zone, void *arg) 5232 { 5233 struct uma_reclaim_args *args; 5234 5235 args = arg; 5236 if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) 5237 uma_zone_reclaim_domain(zone, args->req, args->domain); 5238 } 5239 5240 /* See uma.h */ 5241 void 5242 uma_reclaim(int req) 5243 { 5244 uma_reclaim_domain(req, UMA_ANYDOMAIN); 5245 } 5246 5247 void 5248 uma_reclaim_domain(int req, int domain) 5249 { 5250 struct uma_reclaim_args args; 5251 5252 bucket_enable(); 5253 5254 args.domain = domain; 5255 args.req = req; 5256 5257 sx_slock(&uma_reclaim_lock); 5258 switch (req) { 5259 case UMA_RECLAIM_TRIM: 5260 case UMA_RECLAIM_DRAIN: 5261 zone_foreach(uma_reclaim_domain_cb, &args); 5262 break; 5263 case UMA_RECLAIM_DRAIN_CPU: 5264 zone_foreach(uma_reclaim_domain_cb, &args); 5265 pcpu_cache_drain_safe(NULL); 5266 zone_foreach(uma_reclaim_domain_cb, &args); 5267 break; 5268 default: 5269 panic("unhandled reclamation request %d", req); 5270 } 5271 5272 /* 5273 * Some slabs may have been freed but this zone will be visited early 5274 * we visit again so that we can free pages that are empty once other 5275 * zones are drained. We have to do the same for buckets. 5276 */ 5277 uma_zone_reclaim_domain(slabzones[0], UMA_RECLAIM_DRAIN, domain); 5278 uma_zone_reclaim_domain(slabzones[1], UMA_RECLAIM_DRAIN, domain); 5279 bucket_zone_drain(domain); 5280 sx_sunlock(&uma_reclaim_lock); 5281 } 5282 5283 static volatile int uma_reclaim_needed; 5284 5285 void 5286 uma_reclaim_wakeup(void) 5287 { 5288 5289 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 5290 wakeup(uma_reclaim); 5291 } 5292 5293 void 5294 uma_reclaim_worker(void *arg __unused) 5295 { 5296 5297 for (;;) { 5298 sx_xlock(&uma_reclaim_lock); 5299 while (atomic_load_int(&uma_reclaim_needed) == 0) 5300 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 5301 hz); 5302 sx_xunlock(&uma_reclaim_lock); 5303 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 5304 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 5305 atomic_store_int(&uma_reclaim_needed, 0); 5306 /* Don't fire more than once per-second. */ 5307 pause("umarclslp", hz); 5308 } 5309 } 5310 5311 /* See uma.h */ 5312 void 5313 uma_zone_reclaim(uma_zone_t zone, int req) 5314 { 5315 uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN); 5316 } 5317 5318 void 5319 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain) 5320 { 5321 switch (req) { 5322 case UMA_RECLAIM_TRIM: 5323 zone_reclaim(zone, domain, M_NOWAIT, false); 5324 break; 5325 case UMA_RECLAIM_DRAIN: 5326 zone_reclaim(zone, domain, M_NOWAIT, true); 5327 break; 5328 case UMA_RECLAIM_DRAIN_CPU: 5329 pcpu_cache_drain_safe(zone); 5330 zone_reclaim(zone, domain, M_NOWAIT, true); 5331 break; 5332 default: 5333 panic("unhandled reclamation request %d", req); 5334 } 5335 } 5336 5337 /* See uma.h */ 5338 int 5339 uma_zone_exhausted(uma_zone_t zone) 5340 { 5341 5342 return (atomic_load_32(&zone->uz_sleepers) > 0); 5343 } 5344 5345 unsigned long 5346 uma_limit(void) 5347 { 5348 5349 return (uma_kmem_limit); 5350 } 5351 5352 void 5353 uma_set_limit(unsigned long limit) 5354 { 5355 5356 uma_kmem_limit = limit; 5357 } 5358 5359 unsigned long 5360 uma_size(void) 5361 { 5362 5363 return (atomic_load_long(&uma_kmem_total)); 5364 } 5365 5366 long 5367 uma_avail(void) 5368 { 5369 5370 return (uma_kmem_limit - uma_size()); 5371 } 5372 5373 #ifdef DDB 5374 /* 5375 * Generate statistics across both the zone and its per-cpu cache's. Return 5376 * desired statistics if the pointer is non-NULL for that statistic. 5377 * 5378 * Note: does not update the zone statistics, as it can't safely clear the 5379 * per-CPU cache statistic. 5380 * 5381 */ 5382 static void 5383 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 5384 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 5385 { 5386 uma_cache_t cache; 5387 uint64_t allocs, frees, sleeps, xdomain; 5388 int cachefree, cpu; 5389 5390 allocs = frees = sleeps = xdomain = 0; 5391 cachefree = 0; 5392 CPU_FOREACH(cpu) { 5393 cache = &z->uz_cpu[cpu]; 5394 cachefree += cache->uc_allocbucket.ucb_cnt; 5395 cachefree += cache->uc_freebucket.ucb_cnt; 5396 xdomain += cache->uc_crossbucket.ucb_cnt; 5397 cachefree += cache->uc_crossbucket.ucb_cnt; 5398 allocs += cache->uc_allocs; 5399 frees += cache->uc_frees; 5400 } 5401 allocs += counter_u64_fetch(z->uz_allocs); 5402 frees += counter_u64_fetch(z->uz_frees); 5403 xdomain += counter_u64_fetch(z->uz_xdomain); 5404 sleeps += z->uz_sleeps; 5405 if (cachefreep != NULL) 5406 *cachefreep = cachefree; 5407 if (allocsp != NULL) 5408 *allocsp = allocs; 5409 if (freesp != NULL) 5410 *freesp = frees; 5411 if (sleepsp != NULL) 5412 *sleepsp = sleeps; 5413 if (xdomainp != NULL) 5414 *xdomainp = xdomain; 5415 } 5416 #endif /* DDB */ 5417 5418 static int 5419 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 5420 { 5421 uma_keg_t kz; 5422 uma_zone_t z; 5423 int count; 5424 5425 count = 0; 5426 rw_rlock(&uma_rwlock); 5427 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5428 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5429 count++; 5430 } 5431 LIST_FOREACH(z, &uma_cachezones, uz_link) 5432 count++; 5433 5434 rw_runlock(&uma_rwlock); 5435 return (sysctl_handle_int(oidp, &count, 0, req)); 5436 } 5437 5438 static void 5439 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 5440 struct uma_percpu_stat *ups, bool internal) 5441 { 5442 uma_zone_domain_t zdom; 5443 uma_cache_t cache; 5444 int i; 5445 5446 for (i = 0; i < vm_ndomains; i++) { 5447 zdom = ZDOM_GET(z, i); 5448 uth->uth_zone_free += zdom->uzd_nitems; 5449 } 5450 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 5451 uth->uth_frees = counter_u64_fetch(z->uz_frees); 5452 uth->uth_fails = counter_u64_fetch(z->uz_fails); 5453 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 5454 uth->uth_sleeps = z->uz_sleeps; 5455 5456 for (i = 0; i < mp_maxid + 1; i++) { 5457 bzero(&ups[i], sizeof(*ups)); 5458 if (internal || CPU_ABSENT(i)) 5459 continue; 5460 cache = &z->uz_cpu[i]; 5461 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 5462 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5463 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5464 ups[i].ups_allocs = cache->uc_allocs; 5465 ups[i].ups_frees = cache->uc_frees; 5466 } 5467 } 5468 5469 static int 5470 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5471 { 5472 struct uma_stream_header ush; 5473 struct uma_type_header uth; 5474 struct uma_percpu_stat *ups; 5475 struct sbuf sbuf; 5476 uma_keg_t kz; 5477 uma_zone_t z; 5478 uint64_t items; 5479 uint32_t kfree, pages; 5480 int count, error, i; 5481 5482 error = sysctl_wire_old_buffer(req, 0); 5483 if (error != 0) 5484 return (error); 5485 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5486 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5487 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5488 5489 count = 0; 5490 rw_rlock(&uma_rwlock); 5491 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5492 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5493 count++; 5494 } 5495 5496 LIST_FOREACH(z, &uma_cachezones, uz_link) 5497 count++; 5498 5499 /* 5500 * Insert stream header. 5501 */ 5502 bzero(&ush, sizeof(ush)); 5503 ush.ush_version = UMA_STREAM_VERSION; 5504 ush.ush_maxcpus = (mp_maxid + 1); 5505 ush.ush_count = count; 5506 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5507 5508 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5509 kfree = pages = 0; 5510 for (i = 0; i < vm_ndomains; i++) { 5511 kfree += kz->uk_domain[i].ud_free_items; 5512 pages += kz->uk_domain[i].ud_pages; 5513 } 5514 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5515 bzero(&uth, sizeof(uth)); 5516 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5517 uth.uth_align = kz->uk_align; 5518 uth.uth_size = kz->uk_size; 5519 uth.uth_rsize = kz->uk_rsize; 5520 if (z->uz_max_items > 0) { 5521 items = UZ_ITEMS_COUNT(z->uz_items); 5522 uth.uth_pages = (items / kz->uk_ipers) * 5523 kz->uk_ppera; 5524 } else 5525 uth.uth_pages = pages; 5526 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5527 kz->uk_ppera; 5528 uth.uth_limit = z->uz_max_items; 5529 uth.uth_keg_free = kfree; 5530 5531 /* 5532 * A zone is secondary is it is not the first entry 5533 * on the keg's zone list. 5534 */ 5535 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5536 (LIST_FIRST(&kz->uk_zones) != z)) 5537 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5538 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5539 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5540 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5541 for (i = 0; i < mp_maxid + 1; i++) 5542 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5543 } 5544 } 5545 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5546 bzero(&uth, sizeof(uth)); 5547 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5548 uth.uth_size = z->uz_size; 5549 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5550 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5551 for (i = 0; i < mp_maxid + 1; i++) 5552 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5553 } 5554 5555 rw_runlock(&uma_rwlock); 5556 error = sbuf_finish(&sbuf); 5557 sbuf_delete(&sbuf); 5558 free(ups, M_TEMP); 5559 return (error); 5560 } 5561 5562 int 5563 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5564 { 5565 uma_zone_t zone = *(uma_zone_t *)arg1; 5566 int error, max; 5567 5568 max = uma_zone_get_max(zone); 5569 error = sysctl_handle_int(oidp, &max, 0, req); 5570 if (error || !req->newptr) 5571 return (error); 5572 5573 uma_zone_set_max(zone, max); 5574 5575 return (0); 5576 } 5577 5578 int 5579 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5580 { 5581 uma_zone_t zone; 5582 int cur; 5583 5584 /* 5585 * Some callers want to add sysctls for global zones that 5586 * may not yet exist so they pass a pointer to a pointer. 5587 */ 5588 if (arg2 == 0) 5589 zone = *(uma_zone_t *)arg1; 5590 else 5591 zone = arg1; 5592 cur = uma_zone_get_cur(zone); 5593 return (sysctl_handle_int(oidp, &cur, 0, req)); 5594 } 5595 5596 static int 5597 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5598 { 5599 uma_zone_t zone = arg1; 5600 uint64_t cur; 5601 5602 cur = uma_zone_get_allocs(zone); 5603 return (sysctl_handle_64(oidp, &cur, 0, req)); 5604 } 5605 5606 static int 5607 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5608 { 5609 uma_zone_t zone = arg1; 5610 uint64_t cur; 5611 5612 cur = uma_zone_get_frees(zone); 5613 return (sysctl_handle_64(oidp, &cur, 0, req)); 5614 } 5615 5616 static int 5617 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5618 { 5619 struct sbuf sbuf; 5620 uma_zone_t zone = arg1; 5621 int error; 5622 5623 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5624 if (zone->uz_flags != 0) 5625 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5626 else 5627 sbuf_printf(&sbuf, "0"); 5628 error = sbuf_finish(&sbuf); 5629 sbuf_delete(&sbuf); 5630 5631 return (error); 5632 } 5633 5634 static int 5635 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5636 { 5637 uma_keg_t keg = arg1; 5638 int avail, effpct, total; 5639 5640 total = keg->uk_ppera * PAGE_SIZE; 5641 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5642 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5643 /* 5644 * We consider the client's requested size and alignment here, not the 5645 * real size determination uk_rsize, because we also adjust the real 5646 * size for internal implementation reasons (max bitset size). 5647 */ 5648 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5649 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5650 avail *= mp_maxid + 1; 5651 effpct = 100 * avail / total; 5652 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5653 } 5654 5655 static int 5656 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5657 { 5658 uma_zone_t zone = arg1; 5659 uint64_t cur; 5660 5661 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5662 return (sysctl_handle_64(oidp, &cur, 0, req)); 5663 } 5664 5665 #ifdef INVARIANTS 5666 static uma_slab_t 5667 uma_dbg_getslab(uma_zone_t zone, void *item) 5668 { 5669 uma_slab_t slab; 5670 uma_keg_t keg; 5671 uint8_t *mem; 5672 5673 /* 5674 * It is safe to return the slab here even though the 5675 * zone is unlocked because the item's allocation state 5676 * essentially holds a reference. 5677 */ 5678 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5679 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5680 return (NULL); 5681 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5682 return (vtoslab((vm_offset_t)mem)); 5683 keg = zone->uz_keg; 5684 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5685 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5686 KEG_LOCK(keg, 0); 5687 slab = hash_sfind(&keg->uk_hash, mem); 5688 KEG_UNLOCK(keg, 0); 5689 5690 return (slab); 5691 } 5692 5693 static bool 5694 uma_dbg_zskip(uma_zone_t zone, void *mem) 5695 { 5696 5697 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5698 return (true); 5699 5700 return (uma_dbg_kskip(zone->uz_keg, mem)); 5701 } 5702 5703 static bool 5704 uma_dbg_kskip(uma_keg_t keg, void *mem) 5705 { 5706 uintptr_t idx; 5707 5708 if (dbg_divisor == 0) 5709 return (true); 5710 5711 if (dbg_divisor == 1) 5712 return (false); 5713 5714 idx = (uintptr_t)mem >> PAGE_SHIFT; 5715 if (keg->uk_ipers > 1) { 5716 idx *= keg->uk_ipers; 5717 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5718 } 5719 5720 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5721 counter_u64_add(uma_skip_cnt, 1); 5722 return (true); 5723 } 5724 counter_u64_add(uma_dbg_cnt, 1); 5725 5726 return (false); 5727 } 5728 5729 /* 5730 * Set up the slab's freei data such that uma_dbg_free can function. 5731 * 5732 */ 5733 static void 5734 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5735 { 5736 uma_keg_t keg; 5737 int freei; 5738 5739 if (slab == NULL) { 5740 slab = uma_dbg_getslab(zone, item); 5741 if (slab == NULL) 5742 panic("uma: item %p did not belong to zone %s", 5743 item, zone->uz_name); 5744 } 5745 keg = zone->uz_keg; 5746 freei = slab_item_index(slab, keg, item); 5747 5748 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei, 5749 slab_dbg_bits(slab, keg))) 5750 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)", 5751 item, zone, zone->uz_name, slab, freei); 5752 } 5753 5754 /* 5755 * Verifies freed addresses. Checks for alignment, valid slab membership 5756 * and duplicate frees. 5757 * 5758 */ 5759 static void 5760 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5761 { 5762 uma_keg_t keg; 5763 int freei; 5764 5765 if (slab == NULL) { 5766 slab = uma_dbg_getslab(zone, item); 5767 if (slab == NULL) 5768 panic("uma: Freed item %p did not belong to zone %s", 5769 item, zone->uz_name); 5770 } 5771 keg = zone->uz_keg; 5772 freei = slab_item_index(slab, keg, item); 5773 5774 if (freei >= keg->uk_ipers) 5775 panic("Invalid free of %p from zone %p(%s) slab %p(%d)", 5776 item, zone, zone->uz_name, slab, freei); 5777 5778 if (slab_item(slab, keg, freei) != item) 5779 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)", 5780 item, zone, zone->uz_name, slab, freei); 5781 5782 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei, 5783 slab_dbg_bits(slab, keg))) 5784 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)", 5785 item, zone, zone->uz_name, slab, freei); 5786 } 5787 #endif /* INVARIANTS */ 5788 5789 #ifdef DDB 5790 static int64_t 5791 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5792 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5793 { 5794 uint64_t frees; 5795 int i; 5796 5797 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5798 *allocs = counter_u64_fetch(z->uz_allocs); 5799 frees = counter_u64_fetch(z->uz_frees); 5800 *sleeps = z->uz_sleeps; 5801 *cachefree = 0; 5802 *xdomain = 0; 5803 } else 5804 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5805 xdomain); 5806 for (i = 0; i < vm_ndomains; i++) { 5807 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5808 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5809 (LIST_FIRST(&kz->uk_zones) != z))) 5810 *cachefree += kz->uk_domain[i].ud_free_items; 5811 } 5812 *used = *allocs - frees; 5813 return (((int64_t)*used + *cachefree) * kz->uk_size); 5814 } 5815 5816 DB_SHOW_COMMAND(uma, db_show_uma) 5817 { 5818 const char *fmt_hdr, *fmt_entry; 5819 uma_keg_t kz; 5820 uma_zone_t z; 5821 uint64_t allocs, used, sleeps, xdomain; 5822 long cachefree; 5823 /* variables for sorting */ 5824 uma_keg_t cur_keg; 5825 uma_zone_t cur_zone, last_zone; 5826 int64_t cur_size, last_size, size; 5827 int ties; 5828 5829 /* /i option produces machine-parseable CSV output */ 5830 if (modif[0] == 'i') { 5831 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5832 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5833 } else { 5834 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5835 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5836 } 5837 5838 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5839 "Sleeps", "Bucket", "Total Mem", "XFree"); 5840 5841 /* Sort the zones with largest size first. */ 5842 last_zone = NULL; 5843 last_size = INT64_MAX; 5844 for (;;) { 5845 cur_zone = NULL; 5846 cur_size = -1; 5847 ties = 0; 5848 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5849 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5850 /* 5851 * In the case of size ties, print out zones 5852 * in the order they are encountered. That is, 5853 * when we encounter the most recently output 5854 * zone, we have already printed all preceding 5855 * ties, and we must print all following ties. 5856 */ 5857 if (z == last_zone) { 5858 ties = 1; 5859 continue; 5860 } 5861 size = get_uma_stats(kz, z, &allocs, &used, 5862 &sleeps, &cachefree, &xdomain); 5863 if (size > cur_size && size < last_size + ties) 5864 { 5865 cur_size = size; 5866 cur_zone = z; 5867 cur_keg = kz; 5868 } 5869 } 5870 } 5871 if (cur_zone == NULL) 5872 break; 5873 5874 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5875 &sleeps, &cachefree, &xdomain); 5876 db_printf(fmt_entry, cur_zone->uz_name, 5877 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5878 (uintmax_t)allocs, (uintmax_t)sleeps, 5879 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5880 xdomain); 5881 5882 if (db_pager_quit) 5883 return; 5884 last_zone = cur_zone; 5885 last_size = cur_size; 5886 } 5887 } 5888 5889 DB_SHOW_COMMAND(umacache, db_show_umacache) 5890 { 5891 uma_zone_t z; 5892 uint64_t allocs, frees; 5893 long cachefree; 5894 int i; 5895 5896 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5897 "Requests", "Bucket"); 5898 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5899 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5900 for (i = 0; i < vm_ndomains; i++) 5901 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5902 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5903 z->uz_name, (uintmax_t)z->uz_size, 5904 (intmax_t)(allocs - frees), cachefree, 5905 (uintmax_t)allocs, z->uz_bucket_size); 5906 if (db_pager_quit) 5907 return; 5908 } 5909 } 5910 #endif /* DDB */ 5911