xref: /freebsd/sys/vm/uma_core.c (revision 064f00ec274fbfdcab19ed8150afb187468a0c4f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6  * Copyright (c) 2004-2006 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 /*
32  * uma_core.c  Implementation of the Universal Memory allocator
33  *
34  * This allocator is intended to replace the multitude of similar object caches
35  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
36  * efficient.  A primary design goal is to return unused memory to the rest of
37  * the system.  This will make the system as a whole more flexible due to the
38  * ability to move memory to subsystems which most need it instead of leaving
39  * pools of reserved memory unused.
40  *
41  * The basic ideas stem from similar slab/zone based allocators whose algorithms
42  * are well known.
43  *
44  */
45 
46 /*
47  * TODO:
48  *	- Improve memory usage for large allocations
49  *	- Investigate cache size adjustments
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include "opt_ddb.h"
56 #include "opt_param.h"
57 #include "opt_vm.h"
58 
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/asan.h>
62 #include <sys/bitset.h>
63 #include <sys/domainset.h>
64 #include <sys/eventhandler.h>
65 #include <sys/kernel.h>
66 #include <sys/types.h>
67 #include <sys/limits.h>
68 #include <sys/queue.h>
69 #include <sys/malloc.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/msan.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/random.h>
76 #include <sys/rwlock.h>
77 #include <sys/sbuf.h>
78 #include <sys/sched.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/smp.h>
81 #include <sys/smr.h>
82 #include <sys/sysctl.h>
83 #include <sys/taskqueue.h>
84 #include <sys/vmmeter.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/vm_domainset.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_phys.h>
93 #include <vm/vm_pagequeue.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_dumpset.h>
98 #include <vm/uma.h>
99 #include <vm/uma_int.h>
100 #include <vm/uma_dbg.h>
101 
102 #include <ddb/ddb.h>
103 
104 #ifdef DEBUG_MEMGUARD
105 #include <vm/memguard.h>
106 #endif
107 
108 #include <machine/md_var.h>
109 
110 #ifdef INVARIANTS
111 #define	UMA_ALWAYS_CTORDTOR	1
112 #else
113 #define	UMA_ALWAYS_CTORDTOR	0
114 #endif
115 
116 /*
117  * This is the zone and keg from which all zones are spawned.
118  */
119 static uma_zone_t kegs;
120 static uma_zone_t zones;
121 
122 /*
123  * On INVARIANTS builds, the slab contains a second bitset of the same size,
124  * "dbg_bits", which is laid out immediately after us_free.
125  */
126 #ifdef INVARIANTS
127 #define	SLAB_BITSETS	2
128 #else
129 #define	SLAB_BITSETS	1
130 #endif
131 
132 /*
133  * These are the two zones from which all offpage uma_slab_ts are allocated.
134  *
135  * One zone is for slab headers that can represent a larger number of items,
136  * making the slabs themselves more efficient, and the other zone is for
137  * headers that are smaller and represent fewer items, making the headers more
138  * efficient.
139  */
140 #define	SLABZONE_SIZE(setsize)					\
141     (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS)
142 #define	SLABZONE0_SETSIZE	(PAGE_SIZE / 16)
143 #define	SLABZONE1_SETSIZE	SLAB_MAX_SETSIZE
144 #define	SLABZONE0_SIZE	SLABZONE_SIZE(SLABZONE0_SETSIZE)
145 #define	SLABZONE1_SIZE	SLABZONE_SIZE(SLABZONE1_SETSIZE)
146 static uma_zone_t slabzones[2];
147 
148 /*
149  * The initial hash tables come out of this zone so they can be allocated
150  * prior to malloc coming up.
151  */
152 static uma_zone_t hashzone;
153 
154 /* The boot-time adjusted value for cache line alignment. */
155 int uma_align_cache = 64 - 1;
156 
157 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
158 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc");
159 
160 /*
161  * Are we allowed to allocate buckets?
162  */
163 static int bucketdisable = 1;
164 
165 /* Linked list of all kegs in the system */
166 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
167 
168 /* Linked list of all cache-only zones in the system */
169 static LIST_HEAD(,uma_zone) uma_cachezones =
170     LIST_HEAD_INITIALIZER(uma_cachezones);
171 
172 /*
173  * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of
174  * zones.
175  */
176 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
177 
178 static struct sx uma_reclaim_lock;
179 
180 /*
181  * First available virual address for boot time allocations.
182  */
183 static vm_offset_t bootstart;
184 static vm_offset_t bootmem;
185 
186 /*
187  * kmem soft limit, initialized by uma_set_limit().  Ensure that early
188  * allocations don't trigger a wakeup of the reclaim thread.
189  */
190 unsigned long uma_kmem_limit = LONG_MAX;
191 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0,
192     "UMA kernel memory soft limit");
193 unsigned long uma_kmem_total;
194 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0,
195     "UMA kernel memory usage");
196 
197 /* Is the VM done starting up? */
198 static enum {
199 	BOOT_COLD,
200 	BOOT_KVA,
201 	BOOT_PCPU,
202 	BOOT_RUNNING,
203 	BOOT_SHUTDOWN,
204 } booted = BOOT_COLD;
205 
206 /*
207  * This is the handle used to schedule events that need to happen
208  * outside of the allocation fast path.
209  */
210 static struct callout uma_callout;
211 #define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
212 
213 /*
214  * This structure is passed as the zone ctor arg so that I don't have to create
215  * a special allocation function just for zones.
216  */
217 struct uma_zctor_args {
218 	const char *name;
219 	size_t size;
220 	uma_ctor ctor;
221 	uma_dtor dtor;
222 	uma_init uminit;
223 	uma_fini fini;
224 	uma_import import;
225 	uma_release release;
226 	void *arg;
227 	uma_keg_t keg;
228 	int align;
229 	uint32_t flags;
230 };
231 
232 struct uma_kctor_args {
233 	uma_zone_t zone;
234 	size_t size;
235 	uma_init uminit;
236 	uma_fini fini;
237 	int align;
238 	uint32_t flags;
239 };
240 
241 struct uma_bucket_zone {
242 	uma_zone_t	ubz_zone;
243 	const char	*ubz_name;
244 	int		ubz_entries;	/* Number of items it can hold. */
245 	int		ubz_maxsize;	/* Maximum allocation size per-item. */
246 };
247 
248 /*
249  * Compute the actual number of bucket entries to pack them in power
250  * of two sizes for more efficient space utilization.
251  */
252 #define	BUCKET_SIZE(n)						\
253     (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
254 
255 #define	BUCKET_MAX	BUCKET_SIZE(256)
256 
257 struct uma_bucket_zone bucket_zones[] = {
258 	/* Literal bucket sizes. */
259 	{ NULL, "2 Bucket", 2, 4096 },
260 	{ NULL, "4 Bucket", 4, 3072 },
261 	{ NULL, "8 Bucket", 8, 2048 },
262 	{ NULL, "16 Bucket", 16, 1024 },
263 	/* Rounded down power of 2 sizes for efficiency. */
264 	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
265 	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
266 	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
267 	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
268 	{ NULL, NULL, 0}
269 };
270 
271 /*
272  * Flags and enumerations to be passed to internal functions.
273  */
274 enum zfreeskip {
275 	SKIP_NONE =	0,
276 	SKIP_CNT =	0x00000001,
277 	SKIP_DTOR =	0x00010000,
278 	SKIP_FINI =	0x00020000,
279 };
280 
281 /* Prototypes.. */
282 
283 void	uma_startup1(vm_offset_t);
284 void	uma_startup2(void);
285 
286 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
287 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
288 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
289 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
290 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
291 static void page_free(void *, vm_size_t, uint8_t);
292 static void pcpu_page_free(void *, vm_size_t, uint8_t);
293 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int);
294 static void cache_drain(uma_zone_t);
295 static void bucket_drain(uma_zone_t, uma_bucket_t);
296 static void bucket_cache_reclaim(uma_zone_t zone, bool, int);
297 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int);
298 static int keg_ctor(void *, int, void *, int);
299 static void keg_dtor(void *, int, void *);
300 static void keg_drain(uma_keg_t keg, int domain);
301 static int zone_ctor(void *, int, void *, int);
302 static void zone_dtor(void *, int, void *);
303 static inline void item_dtor(uma_zone_t zone, void *item, int size,
304     void *udata, enum zfreeskip skip);
305 static int zero_init(void *, int, int);
306 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
307     int itemdomain, bool ws);
308 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *);
309 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *);
310 static void zone_timeout(uma_zone_t zone, void *);
311 static int hash_alloc(struct uma_hash *, u_int);
312 static int hash_expand(struct uma_hash *, struct uma_hash *);
313 static void hash_free(struct uma_hash *hash);
314 static void uma_timeout(void *);
315 static void uma_shutdown(void);
316 static void *zone_alloc_item(uma_zone_t, void *, int, int);
317 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
318 static int zone_alloc_limit(uma_zone_t zone, int count, int flags);
319 static void zone_free_limit(uma_zone_t zone, int count);
320 static void bucket_enable(void);
321 static void bucket_init(void);
322 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
323 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
324 static void bucket_zone_drain(int domain);
325 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
326 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
327 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item);
328 static size_t slab_sizeof(int nitems);
329 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
330     uma_fini fini, int align, uint32_t flags);
331 static int zone_import(void *, void **, int, int, int);
332 static void zone_release(void *, void **, int);
333 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int);
334 static bool cache_free(uma_zone_t, uma_cache_t, void *, int);
335 
336 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
337 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
338 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS);
339 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS);
340 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS);
341 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS);
342 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS);
343 
344 static uint64_t uma_zone_get_allocs(uma_zone_t zone);
345 
346 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
347     "Memory allocation debugging");
348 
349 #ifdef INVARIANTS
350 static uint64_t uma_keg_get_allocs(uma_keg_t zone);
351 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg);
352 
353 static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
354 static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
355 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
356 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
357 
358 static u_int dbg_divisor = 1;
359 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
360     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
361     "Debug & thrash every this item in memory allocator");
362 
363 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
364 static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
365 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
366     &uma_dbg_cnt, "memory items debugged");
367 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
368     &uma_skip_cnt, "memory items skipped, not debugged");
369 #endif
370 
371 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
372     "Universal Memory Allocator");
373 
374 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT,
375     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
376 
377 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT,
378     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
379 
380 static int zone_warnings = 1;
381 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
382     "Warn when UMA zones becomes full");
383 
384 static int multipage_slabs = 1;
385 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs);
386 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs,
387     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0,
388     "UMA may choose larger slab sizes for better efficiency");
389 
390 /*
391  * Select the slab zone for an offpage slab with the given maximum item count.
392  */
393 static inline uma_zone_t
394 slabzone(int ipers)
395 {
396 
397 	return (slabzones[ipers > SLABZONE0_SETSIZE]);
398 }
399 
400 /*
401  * This routine checks to see whether or not it's safe to enable buckets.
402  */
403 static void
404 bucket_enable(void)
405 {
406 
407 	KASSERT(booted >= BOOT_KVA, ("Bucket enable before init"));
408 	bucketdisable = vm_page_count_min();
409 }
410 
411 /*
412  * Initialize bucket_zones, the array of zones of buckets of various sizes.
413  *
414  * For each zone, calculate the memory required for each bucket, consisting
415  * of the header and an array of pointers.
416  */
417 static void
418 bucket_init(void)
419 {
420 	struct uma_bucket_zone *ubz;
421 	int size;
422 
423 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
424 		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
425 		size += sizeof(void *) * ubz->ubz_entries;
426 		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
427 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
428 		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET |
429 		    UMA_ZONE_FIRSTTOUCH);
430 	}
431 }
432 
433 /*
434  * Given a desired number of entries for a bucket, return the zone from which
435  * to allocate the bucket.
436  */
437 static struct uma_bucket_zone *
438 bucket_zone_lookup(int entries)
439 {
440 	struct uma_bucket_zone *ubz;
441 
442 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
443 		if (ubz->ubz_entries >= entries)
444 			return (ubz);
445 	ubz--;
446 	return (ubz);
447 }
448 
449 static int
450 bucket_select(int size)
451 {
452 	struct uma_bucket_zone *ubz;
453 
454 	ubz = &bucket_zones[0];
455 	if (size > ubz->ubz_maxsize)
456 		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
457 
458 	for (; ubz->ubz_entries != 0; ubz++)
459 		if (ubz->ubz_maxsize < size)
460 			break;
461 	ubz--;
462 	return (ubz->ubz_entries);
463 }
464 
465 static uma_bucket_t
466 bucket_alloc(uma_zone_t zone, void *udata, int flags)
467 {
468 	struct uma_bucket_zone *ubz;
469 	uma_bucket_t bucket;
470 
471 	/*
472 	 * Don't allocate buckets early in boot.
473 	 */
474 	if (__predict_false(booted < BOOT_KVA))
475 		return (NULL);
476 
477 	/*
478 	 * To limit bucket recursion we store the original zone flags
479 	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
480 	 * NOVM flag to persist even through deep recursions.  We also
481 	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
482 	 * a bucket for a bucket zone so we do not allow infinite bucket
483 	 * recursion.  This cookie will even persist to frees of unused
484 	 * buckets via the allocation path or bucket allocations in the
485 	 * free path.
486 	 */
487 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
488 		udata = (void *)(uintptr_t)zone->uz_flags;
489 	else {
490 		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
491 			return (NULL);
492 		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
493 	}
494 	if (((uintptr_t)udata & UMA_ZONE_VM) != 0)
495 		flags |= M_NOVM;
496 	ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size));
497 	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
498 		ubz++;
499 	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
500 	if (bucket) {
501 #ifdef INVARIANTS
502 		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
503 #endif
504 		bucket->ub_cnt = 0;
505 		bucket->ub_entries = min(ubz->ubz_entries,
506 		    zone->uz_bucket_size_max);
507 		bucket->ub_seq = SMR_SEQ_INVALID;
508 		CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p",
509 		    zone->uz_name, zone, bucket);
510 	}
511 
512 	return (bucket);
513 }
514 
515 static void
516 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
517 {
518 	struct uma_bucket_zone *ubz;
519 
520 	if (bucket->ub_cnt != 0)
521 		bucket_drain(zone, bucket);
522 
523 	KASSERT(bucket->ub_cnt == 0,
524 	    ("bucket_free: Freeing a non free bucket."));
525 	KASSERT(bucket->ub_seq == SMR_SEQ_INVALID,
526 	    ("bucket_free: Freeing an SMR bucket."));
527 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
528 		udata = (void *)(uintptr_t)zone->uz_flags;
529 	ubz = bucket_zone_lookup(bucket->ub_entries);
530 	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
531 }
532 
533 static void
534 bucket_zone_drain(int domain)
535 {
536 	struct uma_bucket_zone *ubz;
537 
538 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
539 		uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN,
540 		    domain);
541 }
542 
543 #ifdef KASAN
544 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0,
545     "Base UMA allocation size not a multiple of the KASAN scale factor");
546 
547 static void
548 kasan_mark_item_valid(uma_zone_t zone, void *item)
549 {
550 	void *pcpu_item;
551 	size_t sz, rsz;
552 	int i;
553 
554 	if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
555 		return;
556 
557 	sz = zone->uz_size;
558 	rsz = roundup2(sz, KASAN_SHADOW_SCALE);
559 	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
560 		kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE);
561 	} else {
562 		pcpu_item = zpcpu_base_to_offset(item);
563 		for (i = 0; i <= mp_maxid; i++)
564 			kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz,
565 			    KASAN_GENERIC_REDZONE);
566 	}
567 }
568 
569 static void
570 kasan_mark_item_invalid(uma_zone_t zone, void *item)
571 {
572 	void *pcpu_item;
573 	size_t sz;
574 	int i;
575 
576 	if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
577 		return;
578 
579 	sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE);
580 	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
581 		kasan_mark(item, 0, sz, KASAN_UMA_FREED);
582 	} else {
583 		pcpu_item = zpcpu_base_to_offset(item);
584 		for (i = 0; i <= mp_maxid; i++)
585 			kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz,
586 			    KASAN_UMA_FREED);
587 	}
588 }
589 
590 static void
591 kasan_mark_slab_valid(uma_keg_t keg, void *mem)
592 {
593 	size_t sz;
594 
595 	if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
596 		sz = keg->uk_ppera * PAGE_SIZE;
597 		kasan_mark(mem, sz, sz, 0);
598 	}
599 }
600 
601 static void
602 kasan_mark_slab_invalid(uma_keg_t keg, void *mem)
603 {
604 	size_t sz;
605 
606 	if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
607 		if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
608 			sz = keg->uk_ppera * PAGE_SIZE;
609 		else
610 			sz = keg->uk_pgoff;
611 		kasan_mark(mem, 0, sz, KASAN_UMA_FREED);
612 	}
613 }
614 #else /* !KASAN */
615 static void
616 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused)
617 {
618 }
619 
620 static void
621 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused)
622 {
623 }
624 
625 static void
626 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused)
627 {
628 }
629 
630 static void
631 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused)
632 {
633 }
634 #endif /* KASAN */
635 
636 #ifdef KMSAN
637 static inline void
638 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item)
639 {
640 	void *pcpu_item;
641 	size_t sz;
642 	int i;
643 
644 	if ((zone->uz_flags &
645 	    (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) {
646 		/*
647 		 * Cache zones should not be instrumented by default, as UMA
648 		 * does not have enough information to do so correctly.
649 		 * Consumers can mark items themselves if it makes sense to do
650 		 * so.
651 		 *
652 		 * Items from secondary zones are initialized by the parent
653 		 * zone and thus cannot safely be marked by UMA.
654 		 *
655 		 * malloc zones are handled directly by malloc(9) and friends,
656 		 * since they can provide more precise origin tracking.
657 		 */
658 		return;
659 	}
660 	if (zone->uz_keg->uk_init != NULL) {
661 		/*
662 		 * By definition, initialized items cannot be marked.  The
663 		 * best we can do is mark items from these zones after they
664 		 * are freed to the keg.
665 		 */
666 		return;
667 	}
668 
669 	sz = zone->uz_size;
670 	if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
671 		kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
672 		kmsan_mark(item, sz, KMSAN_STATE_UNINIT);
673 	} else {
674 		pcpu_item = zpcpu_base_to_offset(item);
675 		for (i = 0; i <= mp_maxid; i++) {
676 			kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz,
677 			    KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
678 			kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz,
679 			    KMSAN_STATE_INITED);
680 		}
681 	}
682 }
683 #else /* !KMSAN */
684 static inline void
685 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused)
686 {
687 }
688 #endif /* KMSAN */
689 
690 /*
691  * Acquire the domain lock and record contention.
692  */
693 static uma_zone_domain_t
694 zone_domain_lock(uma_zone_t zone, int domain)
695 {
696 	uma_zone_domain_t zdom;
697 	bool lockfail;
698 
699 	zdom = ZDOM_GET(zone, domain);
700 	lockfail = false;
701 	if (ZDOM_OWNED(zdom))
702 		lockfail = true;
703 	ZDOM_LOCK(zdom);
704 	/* This is unsynchronized.  The counter does not need to be precise. */
705 	if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max)
706 		zone->uz_bucket_size++;
707 	return (zdom);
708 }
709 
710 /*
711  * Search for the domain with the least cached items and return it if it
712  * is out of balance with the preferred domain.
713  */
714 static __noinline int
715 zone_domain_lowest(uma_zone_t zone, int pref)
716 {
717 	long least, nitems, prefitems;
718 	int domain;
719 	int i;
720 
721 	prefitems = least = LONG_MAX;
722 	domain = 0;
723 	for (i = 0; i < vm_ndomains; i++) {
724 		nitems = ZDOM_GET(zone, i)->uzd_nitems;
725 		if (nitems < least) {
726 			domain = i;
727 			least = nitems;
728 		}
729 		if (domain == pref)
730 			prefitems = nitems;
731 	}
732 	if (prefitems < least * 2)
733 		return (pref);
734 
735 	return (domain);
736 }
737 
738 /*
739  * Search for the domain with the most cached items and return it or the
740  * preferred domain if it has enough to proceed.
741  */
742 static __noinline int
743 zone_domain_highest(uma_zone_t zone, int pref)
744 {
745 	long most, nitems;
746 	int domain;
747 	int i;
748 
749 	if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX)
750 		return (pref);
751 
752 	most = 0;
753 	domain = 0;
754 	for (i = 0; i < vm_ndomains; i++) {
755 		nitems = ZDOM_GET(zone, i)->uzd_nitems;
756 		if (nitems > most) {
757 			domain = i;
758 			most = nitems;
759 		}
760 	}
761 
762 	return (domain);
763 }
764 
765 /*
766  * Set the maximum imax value.
767  */
768 static void
769 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems)
770 {
771 	long old;
772 
773 	old = zdom->uzd_imax;
774 	do {
775 		if (old >= nitems)
776 			return;
777 	} while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0);
778 
779 	/*
780 	 * We are at new maximum, so do the last WSS update for the old
781 	 * bimin and prepare to measure next allocation batch.
782 	 */
783 	if (zdom->uzd_wss < old - zdom->uzd_bimin)
784 		zdom->uzd_wss = old - zdom->uzd_bimin;
785 	zdom->uzd_bimin = nitems;
786 }
787 
788 /*
789  * Attempt to satisfy an allocation by retrieving a full bucket from one of the
790  * zone's caches.  If a bucket is found the zone is not locked on return.
791  */
792 static uma_bucket_t
793 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim)
794 {
795 	uma_bucket_t bucket;
796 	long cnt;
797 	int i;
798 	bool dtor = false;
799 
800 	ZDOM_LOCK_ASSERT(zdom);
801 
802 	if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL)
803 		return (NULL);
804 
805 	/* SMR Buckets can not be re-used until readers expire. */
806 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
807 	    bucket->ub_seq != SMR_SEQ_INVALID) {
808 		if (!smr_poll(zone->uz_smr, bucket->ub_seq, false))
809 			return (NULL);
810 		bucket->ub_seq = SMR_SEQ_INVALID;
811 		dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR;
812 		if (STAILQ_NEXT(bucket, ub_link) != NULL)
813 			zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq;
814 	}
815 	STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link);
816 
817 	KASSERT(zdom->uzd_nitems >= bucket->ub_cnt,
818 	    ("%s: item count underflow (%ld, %d)",
819 	    __func__, zdom->uzd_nitems, bucket->ub_cnt));
820 	KASSERT(bucket->ub_cnt > 0,
821 	    ("%s: empty bucket in bucket cache", __func__));
822 	zdom->uzd_nitems -= bucket->ub_cnt;
823 
824 	if (reclaim) {
825 		/*
826 		 * Shift the bounds of the current WSS interval to avoid
827 		 * perturbing the estimates.
828 		 */
829 		cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt);
830 		atomic_subtract_long(&zdom->uzd_imax, cnt);
831 		zdom->uzd_bimin -= cnt;
832 		zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt);
833 		if (zdom->uzd_limin >= bucket->ub_cnt) {
834 			zdom->uzd_limin -= bucket->ub_cnt;
835 		} else {
836 			zdom->uzd_limin = 0;
837 			zdom->uzd_timin = 0;
838 		}
839 	} else if (zdom->uzd_bimin > zdom->uzd_nitems) {
840 		zdom->uzd_bimin = zdom->uzd_nitems;
841 		if (zdom->uzd_imin > zdom->uzd_nitems)
842 			zdom->uzd_imin = zdom->uzd_nitems;
843 	}
844 
845 	ZDOM_UNLOCK(zdom);
846 	if (dtor)
847 		for (i = 0; i < bucket->ub_cnt; i++)
848 			item_dtor(zone, bucket->ub_bucket[i], zone->uz_size,
849 			    NULL, SKIP_NONE);
850 
851 	return (bucket);
852 }
853 
854 /*
855  * Insert a full bucket into the specified cache.  The "ws" parameter indicates
856  * whether the bucket's contents should be counted as part of the zone's working
857  * set.  The bucket may be freed if it exceeds the bucket limit.
858  */
859 static void
860 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata,
861     const bool ws)
862 {
863 	uma_zone_domain_t zdom;
864 
865 	/* We don't cache empty buckets.  This can happen after a reclaim. */
866 	if (bucket->ub_cnt == 0)
867 		goto out;
868 	zdom = zone_domain_lock(zone, domain);
869 
870 	/*
871 	 * Conditionally set the maximum number of items.
872 	 */
873 	zdom->uzd_nitems += bucket->ub_cnt;
874 	if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) {
875 		if (ws) {
876 			zone_domain_imax_set(zdom, zdom->uzd_nitems);
877 		} else {
878 			/*
879 			 * Shift the bounds of the current WSS interval to
880 			 * avoid perturbing the estimates.
881 			 */
882 			atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt);
883 			zdom->uzd_imin += bucket->ub_cnt;
884 			zdom->uzd_bimin += bucket->ub_cnt;
885 			zdom->uzd_limin += bucket->ub_cnt;
886 		}
887 		if (STAILQ_EMPTY(&zdom->uzd_buckets))
888 			zdom->uzd_seq = bucket->ub_seq;
889 
890 		/*
891 		 * Try to promote reuse of recently used items.  For items
892 		 * protected by SMR, try to defer reuse to minimize polling.
893 		 */
894 		if (bucket->ub_seq == SMR_SEQ_INVALID)
895 			STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
896 		else
897 			STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link);
898 		ZDOM_UNLOCK(zdom);
899 		return;
900 	}
901 	zdom->uzd_nitems -= bucket->ub_cnt;
902 	ZDOM_UNLOCK(zdom);
903 out:
904 	bucket_free(zone, bucket, udata);
905 }
906 
907 /* Pops an item out of a per-cpu cache bucket. */
908 static inline void *
909 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket)
910 {
911 	void *item;
912 
913 	CRITICAL_ASSERT(curthread);
914 
915 	bucket->ucb_cnt--;
916 	item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt];
917 #ifdef INVARIANTS
918 	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL;
919 	KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
920 #endif
921 	cache->uc_allocs++;
922 
923 	return (item);
924 }
925 
926 /* Pushes an item into a per-cpu cache bucket. */
927 static inline void
928 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item)
929 {
930 
931 	CRITICAL_ASSERT(curthread);
932 	KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL,
933 	    ("uma_zfree: Freeing to non free bucket index."));
934 
935 	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item;
936 	bucket->ucb_cnt++;
937 	cache->uc_frees++;
938 }
939 
940 /*
941  * Unload a UMA bucket from a per-cpu cache.
942  */
943 static inline uma_bucket_t
944 cache_bucket_unload(uma_cache_bucket_t bucket)
945 {
946 	uma_bucket_t b;
947 
948 	b = bucket->ucb_bucket;
949 	if (b != NULL) {
950 		MPASS(b->ub_entries == bucket->ucb_entries);
951 		b->ub_cnt = bucket->ucb_cnt;
952 		bucket->ucb_bucket = NULL;
953 		bucket->ucb_entries = bucket->ucb_cnt = 0;
954 	}
955 
956 	return (b);
957 }
958 
959 static inline uma_bucket_t
960 cache_bucket_unload_alloc(uma_cache_t cache)
961 {
962 
963 	return (cache_bucket_unload(&cache->uc_allocbucket));
964 }
965 
966 static inline uma_bucket_t
967 cache_bucket_unload_free(uma_cache_t cache)
968 {
969 
970 	return (cache_bucket_unload(&cache->uc_freebucket));
971 }
972 
973 static inline uma_bucket_t
974 cache_bucket_unload_cross(uma_cache_t cache)
975 {
976 
977 	return (cache_bucket_unload(&cache->uc_crossbucket));
978 }
979 
980 /*
981  * Load a bucket into a per-cpu cache bucket.
982  */
983 static inline void
984 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b)
985 {
986 
987 	CRITICAL_ASSERT(curthread);
988 	MPASS(bucket->ucb_bucket == NULL);
989 	MPASS(b->ub_seq == SMR_SEQ_INVALID);
990 
991 	bucket->ucb_bucket = b;
992 	bucket->ucb_cnt = b->ub_cnt;
993 	bucket->ucb_entries = b->ub_entries;
994 }
995 
996 static inline void
997 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b)
998 {
999 
1000 	cache_bucket_load(&cache->uc_allocbucket, b);
1001 }
1002 
1003 static inline void
1004 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b)
1005 {
1006 
1007 	cache_bucket_load(&cache->uc_freebucket, b);
1008 }
1009 
1010 #ifdef NUMA
1011 static inline void
1012 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b)
1013 {
1014 
1015 	cache_bucket_load(&cache->uc_crossbucket, b);
1016 }
1017 #endif
1018 
1019 /*
1020  * Copy and preserve ucb_spare.
1021  */
1022 static inline void
1023 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1024 {
1025 
1026 	b1->ucb_bucket = b2->ucb_bucket;
1027 	b1->ucb_entries = b2->ucb_entries;
1028 	b1->ucb_cnt = b2->ucb_cnt;
1029 }
1030 
1031 /*
1032  * Swap two cache buckets.
1033  */
1034 static inline void
1035 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
1036 {
1037 	struct uma_cache_bucket b3;
1038 
1039 	CRITICAL_ASSERT(curthread);
1040 
1041 	cache_bucket_copy(&b3, b1);
1042 	cache_bucket_copy(b1, b2);
1043 	cache_bucket_copy(b2, &b3);
1044 }
1045 
1046 /*
1047  * Attempt to fetch a bucket from a zone on behalf of the current cpu cache.
1048  */
1049 static uma_bucket_t
1050 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain)
1051 {
1052 	uma_zone_domain_t zdom;
1053 	uma_bucket_t bucket;
1054 	smr_seq_t seq;
1055 
1056 	/*
1057 	 * Avoid the lock if possible.
1058 	 */
1059 	zdom = ZDOM_GET(zone, domain);
1060 	if (zdom->uzd_nitems == 0)
1061 		return (NULL);
1062 
1063 	if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 &&
1064 	    (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID &&
1065 	    !smr_poll(zone->uz_smr, seq, false))
1066 		return (NULL);
1067 
1068 	/*
1069 	 * Check the zone's cache of buckets.
1070 	 */
1071 	zdom = zone_domain_lock(zone, domain);
1072 	if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL)
1073 		return (bucket);
1074 	ZDOM_UNLOCK(zdom);
1075 
1076 	return (NULL);
1077 }
1078 
1079 static void
1080 zone_log_warning(uma_zone_t zone)
1081 {
1082 	static const struct timeval warninterval = { 300, 0 };
1083 
1084 	if (!zone_warnings || zone->uz_warning == NULL)
1085 		return;
1086 
1087 	if (ratecheck(&zone->uz_ratecheck, &warninterval))
1088 		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
1089 }
1090 
1091 static inline void
1092 zone_maxaction(uma_zone_t zone)
1093 {
1094 
1095 	if (zone->uz_maxaction.ta_func != NULL)
1096 		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
1097 }
1098 
1099 /*
1100  * Routine called by timeout which is used to fire off some time interval
1101  * based calculations.  (stats, hash size, etc.)
1102  *
1103  * Arguments:
1104  *	arg   Unused
1105  *
1106  * Returns:
1107  *	Nothing
1108  */
1109 static void
1110 uma_timeout(void *unused)
1111 {
1112 	bucket_enable();
1113 	zone_foreach(zone_timeout, NULL);
1114 
1115 	/* Reschedule this event */
1116 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1117 }
1118 
1119 /*
1120  * Update the working set size estimates for the zone's bucket cache.
1121  * The constants chosen here are somewhat arbitrary.
1122  */
1123 static void
1124 zone_domain_update_wss(uma_zone_domain_t zdom)
1125 {
1126 	long m;
1127 
1128 	ZDOM_LOCK_ASSERT(zdom);
1129 	MPASS(zdom->uzd_imax >= zdom->uzd_nitems);
1130 	MPASS(zdom->uzd_nitems >= zdom->uzd_bimin);
1131 	MPASS(zdom->uzd_bimin >= zdom->uzd_imin);
1132 
1133 	/*
1134 	 * Estimate WSS as modified moving average of biggest allocation
1135 	 * batches for each period over few minutes (UMA_TIMEOUT of 20s).
1136 	 */
1137 	zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4,
1138 	    zdom->uzd_imax - zdom->uzd_bimin);
1139 
1140 	/*
1141 	 * Estimate longtime minimum item count as a combination of recent
1142 	 * minimum item count, adjusted by WSS for safety, and the modified
1143 	 * moving average over the last several hours (UMA_TIMEOUT of 20s).
1144 	 * timin measures time since limin tried to go negative, that means
1145 	 * we were dangerously close to or got out of cache.
1146 	 */
1147 	m = zdom->uzd_imin - zdom->uzd_wss;
1148 	if (m >= 0) {
1149 		if (zdom->uzd_limin >= m)
1150 			zdom->uzd_limin = m;
1151 		else
1152 			zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256;
1153 		zdom->uzd_timin++;
1154 	} else {
1155 		zdom->uzd_limin = 0;
1156 		zdom->uzd_timin = 0;
1157 	}
1158 
1159 	/* To reduce period edge effects on WSS keep half of the imax. */
1160 	atomic_subtract_long(&zdom->uzd_imax,
1161 	    (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2);
1162 	zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems;
1163 }
1164 
1165 /*
1166  * Routine to perform timeout driven calculations.  This expands the
1167  * hashes and does per cpu statistics aggregation.
1168  *
1169  *  Returns nothing.
1170  */
1171 static void
1172 zone_timeout(uma_zone_t zone, void *unused)
1173 {
1174 	uma_keg_t keg;
1175 	u_int slabs, pages;
1176 
1177 	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
1178 		goto trim;
1179 
1180 	keg = zone->uz_keg;
1181 
1182 	/*
1183 	 * Hash zones are non-numa by definition so the first domain
1184 	 * is the only one present.
1185 	 */
1186 	KEG_LOCK(keg, 0);
1187 	pages = keg->uk_domain[0].ud_pages;
1188 
1189 	/*
1190 	 * Expand the keg hash table.
1191 	 *
1192 	 * This is done if the number of slabs is larger than the hash size.
1193 	 * What I'm trying to do here is completely reduce collisions.  This
1194 	 * may be a little aggressive.  Should I allow for two collisions max?
1195 	 */
1196 	if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) {
1197 		struct uma_hash newhash;
1198 		struct uma_hash oldhash;
1199 		int ret;
1200 
1201 		/*
1202 		 * This is so involved because allocating and freeing
1203 		 * while the keg lock is held will lead to deadlock.
1204 		 * I have to do everything in stages and check for
1205 		 * races.
1206 		 */
1207 		KEG_UNLOCK(keg, 0);
1208 		ret = hash_alloc(&newhash, 1 << fls(slabs));
1209 		KEG_LOCK(keg, 0);
1210 		if (ret) {
1211 			if (hash_expand(&keg->uk_hash, &newhash)) {
1212 				oldhash = keg->uk_hash;
1213 				keg->uk_hash = newhash;
1214 			} else
1215 				oldhash = newhash;
1216 
1217 			KEG_UNLOCK(keg, 0);
1218 			hash_free(&oldhash);
1219 			goto trim;
1220 		}
1221 	}
1222 	KEG_UNLOCK(keg, 0);
1223 
1224 trim:
1225 	/* Trim caches not used for a long time. */
1226 	if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) {
1227 		for (int i = 0; i < vm_ndomains; i++) {
1228 			if (bucket_cache_reclaim_domain(zone, false, false, i) &&
1229 			    (zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1230 				keg_drain(zone->uz_keg, i);
1231 		}
1232 	}
1233 }
1234 
1235 /*
1236  * Allocate and zero fill the next sized hash table from the appropriate
1237  * backing store.
1238  *
1239  * Arguments:
1240  *	hash  A new hash structure with the old hash size in uh_hashsize
1241  *
1242  * Returns:
1243  *	1 on success and 0 on failure.
1244  */
1245 static int
1246 hash_alloc(struct uma_hash *hash, u_int size)
1247 {
1248 	size_t alloc;
1249 
1250 	KASSERT(powerof2(size), ("hash size must be power of 2"));
1251 	if (size > UMA_HASH_SIZE_INIT)  {
1252 		hash->uh_hashsize = size;
1253 		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
1254 		hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT);
1255 	} else {
1256 		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
1257 		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
1258 		    UMA_ANYDOMAIN, M_WAITOK);
1259 		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
1260 	}
1261 	if (hash->uh_slab_hash) {
1262 		bzero(hash->uh_slab_hash, alloc);
1263 		hash->uh_hashmask = hash->uh_hashsize - 1;
1264 		return (1);
1265 	}
1266 
1267 	return (0);
1268 }
1269 
1270 /*
1271  * Expands the hash table for HASH zones.  This is done from zone_timeout
1272  * to reduce collisions.  This must not be done in the regular allocation
1273  * path, otherwise, we can recurse on the vm while allocating pages.
1274  *
1275  * Arguments:
1276  *	oldhash  The hash you want to expand
1277  *	newhash  The hash structure for the new table
1278  *
1279  * Returns:
1280  *	Nothing
1281  *
1282  * Discussion:
1283  */
1284 static int
1285 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
1286 {
1287 	uma_hash_slab_t slab;
1288 	u_int hval;
1289 	u_int idx;
1290 
1291 	if (!newhash->uh_slab_hash)
1292 		return (0);
1293 
1294 	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
1295 		return (0);
1296 
1297 	/*
1298 	 * I need to investigate hash algorithms for resizing without a
1299 	 * full rehash.
1300 	 */
1301 
1302 	for (idx = 0; idx < oldhash->uh_hashsize; idx++)
1303 		while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
1304 			slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]);
1305 			LIST_REMOVE(slab, uhs_hlink);
1306 			hval = UMA_HASH(newhash, slab->uhs_data);
1307 			LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
1308 			    slab, uhs_hlink);
1309 		}
1310 
1311 	return (1);
1312 }
1313 
1314 /*
1315  * Free the hash bucket to the appropriate backing store.
1316  *
1317  * Arguments:
1318  *	slab_hash  The hash bucket we're freeing
1319  *	hashsize   The number of entries in that hash bucket
1320  *
1321  * Returns:
1322  *	Nothing
1323  */
1324 static void
1325 hash_free(struct uma_hash *hash)
1326 {
1327 	if (hash->uh_slab_hash == NULL)
1328 		return;
1329 	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
1330 		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
1331 	else
1332 		free(hash->uh_slab_hash, M_UMAHASH);
1333 }
1334 
1335 /*
1336  * Frees all outstanding items in a bucket
1337  *
1338  * Arguments:
1339  *	zone   The zone to free to, must be unlocked.
1340  *	bucket The free/alloc bucket with items.
1341  *
1342  * Returns:
1343  *	Nothing
1344  */
1345 static void
1346 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
1347 {
1348 	int i;
1349 
1350 	if (bucket->ub_cnt == 0)
1351 		return;
1352 
1353 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
1354 	    bucket->ub_seq != SMR_SEQ_INVALID) {
1355 		smr_wait(zone->uz_smr, bucket->ub_seq);
1356 		bucket->ub_seq = SMR_SEQ_INVALID;
1357 		for (i = 0; i < bucket->ub_cnt; i++)
1358 			item_dtor(zone, bucket->ub_bucket[i],
1359 			    zone->uz_size, NULL, SKIP_NONE);
1360 	}
1361 	if (zone->uz_fini)
1362 		for (i = 0; i < bucket->ub_cnt; i++) {
1363 			kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
1364 			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
1365 			kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
1366 		}
1367 	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
1368 	if (zone->uz_max_items > 0)
1369 		zone_free_limit(zone, bucket->ub_cnt);
1370 #ifdef INVARIANTS
1371 	bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt);
1372 #endif
1373 	bucket->ub_cnt = 0;
1374 }
1375 
1376 /*
1377  * Drains the per cpu caches for a zone.
1378  *
1379  * NOTE: This may only be called while the zone is being torn down, and not
1380  * during normal operation.  This is necessary in order that we do not have
1381  * to migrate CPUs to drain the per-CPU caches.
1382  *
1383  * Arguments:
1384  *	zone     The zone to drain, must be unlocked.
1385  *
1386  * Returns:
1387  *	Nothing
1388  */
1389 static void
1390 cache_drain(uma_zone_t zone)
1391 {
1392 	uma_cache_t cache;
1393 	uma_bucket_t bucket;
1394 	smr_seq_t seq;
1395 	int cpu;
1396 
1397 	/*
1398 	 * XXX: It is safe to not lock the per-CPU caches, because we're
1399 	 * tearing down the zone anyway.  I.e., there will be no further use
1400 	 * of the caches at this point.
1401 	 *
1402 	 * XXX: It would good to be able to assert that the zone is being
1403 	 * torn down to prevent improper use of cache_drain().
1404 	 */
1405 	seq = SMR_SEQ_INVALID;
1406 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
1407 		seq = smr_advance(zone->uz_smr);
1408 	CPU_FOREACH(cpu) {
1409 		cache = &zone->uz_cpu[cpu];
1410 		bucket = cache_bucket_unload_alloc(cache);
1411 		if (bucket != NULL)
1412 			bucket_free(zone, bucket, NULL);
1413 		bucket = cache_bucket_unload_free(cache);
1414 		if (bucket != NULL) {
1415 			bucket->ub_seq = seq;
1416 			bucket_free(zone, bucket, NULL);
1417 		}
1418 		bucket = cache_bucket_unload_cross(cache);
1419 		if (bucket != NULL) {
1420 			bucket->ub_seq = seq;
1421 			bucket_free(zone, bucket, NULL);
1422 		}
1423 	}
1424 	bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN);
1425 }
1426 
1427 static void
1428 cache_shrink(uma_zone_t zone, void *unused)
1429 {
1430 
1431 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1432 		return;
1433 
1434 	ZONE_LOCK(zone);
1435 	zone->uz_bucket_size =
1436 	    (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2;
1437 	ZONE_UNLOCK(zone);
1438 }
1439 
1440 static void
1441 cache_drain_safe_cpu(uma_zone_t zone, void *unused)
1442 {
1443 	uma_cache_t cache;
1444 	uma_bucket_t b1, b2, b3;
1445 	int domain;
1446 
1447 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1448 		return;
1449 
1450 	b1 = b2 = b3 = NULL;
1451 	critical_enter();
1452 	cache = &zone->uz_cpu[curcpu];
1453 	domain = PCPU_GET(domain);
1454 	b1 = cache_bucket_unload_alloc(cache);
1455 
1456 	/*
1457 	 * Don't flush SMR zone buckets.  This leaves the zone without a
1458 	 * bucket and forces every free to synchronize().
1459 	 */
1460 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0) {
1461 		b2 = cache_bucket_unload_free(cache);
1462 		b3 = cache_bucket_unload_cross(cache);
1463 	}
1464 	critical_exit();
1465 
1466 	if (b1 != NULL)
1467 		zone_free_bucket(zone, b1, NULL, domain, false);
1468 	if (b2 != NULL)
1469 		zone_free_bucket(zone, b2, NULL, domain, false);
1470 	if (b3 != NULL) {
1471 		/* Adjust the domain so it goes to zone_free_cross. */
1472 		domain = (domain + 1) % vm_ndomains;
1473 		zone_free_bucket(zone, b3, NULL, domain, false);
1474 	}
1475 }
1476 
1477 /*
1478  * Safely drain per-CPU caches of a zone(s) to alloc bucket.
1479  * This is an expensive call because it needs to bind to all CPUs
1480  * one by one and enter a critical section on each of them in order
1481  * to safely access their cache buckets.
1482  * Zone lock must not be held on call this function.
1483  */
1484 static void
1485 pcpu_cache_drain_safe(uma_zone_t zone)
1486 {
1487 	int cpu;
1488 
1489 	/*
1490 	 * Polite bucket sizes shrinking was not enough, shrink aggressively.
1491 	 */
1492 	if (zone)
1493 		cache_shrink(zone, NULL);
1494 	else
1495 		zone_foreach(cache_shrink, NULL);
1496 
1497 	CPU_FOREACH(cpu) {
1498 		thread_lock(curthread);
1499 		sched_bind(curthread, cpu);
1500 		thread_unlock(curthread);
1501 
1502 		if (zone)
1503 			cache_drain_safe_cpu(zone, NULL);
1504 		else
1505 			zone_foreach(cache_drain_safe_cpu, NULL);
1506 	}
1507 	thread_lock(curthread);
1508 	sched_unbind(curthread);
1509 	thread_unlock(curthread);
1510 }
1511 
1512 /*
1513  * Reclaim cached buckets from a zone.  All buckets are reclaimed if the caller
1514  * requested a drain, otherwise the per-domain caches are trimmed to either
1515  * estimated working set size.
1516  */
1517 static bool
1518 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain)
1519 {
1520 	uma_zone_domain_t zdom;
1521 	uma_bucket_t bucket;
1522 	long target;
1523 	bool done = false;
1524 
1525 	/*
1526 	 * The cross bucket is partially filled and not part of
1527 	 * the item count.  Reclaim it individually here.
1528 	 */
1529 	zdom = ZDOM_GET(zone, domain);
1530 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) {
1531 		ZONE_CROSS_LOCK(zone);
1532 		bucket = zdom->uzd_cross;
1533 		zdom->uzd_cross = NULL;
1534 		ZONE_CROSS_UNLOCK(zone);
1535 		if (bucket != NULL)
1536 			bucket_free(zone, bucket, NULL);
1537 	}
1538 
1539 	/*
1540 	 * If we were asked to drain the zone, we are done only once
1541 	 * this bucket cache is empty.  If trim, we reclaim items in
1542 	 * excess of the zone's estimated working set size.  Multiple
1543 	 * consecutive calls will shrink the WSS and so reclaim more.
1544 	 * If neither drain nor trim, then voluntarily reclaim 1/4
1545 	 * (to reduce first spike) of items not used for a long time.
1546 	 */
1547 	ZDOM_LOCK(zdom);
1548 	zone_domain_update_wss(zdom);
1549 	if (drain)
1550 		target = 0;
1551 	else if (trim)
1552 		target = zdom->uzd_wss;
1553 	else if (zdom->uzd_timin > 900 / UMA_TIMEOUT)
1554 		target = zdom->uzd_nitems - zdom->uzd_limin / 4;
1555 	else {
1556 		ZDOM_UNLOCK(zdom);
1557 		return (done);
1558 	}
1559 	while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL &&
1560 	    zdom->uzd_nitems >= target + bucket->ub_cnt) {
1561 		bucket = zone_fetch_bucket(zone, zdom, true);
1562 		if (bucket == NULL)
1563 			break;
1564 		bucket_free(zone, bucket, NULL);
1565 		done = true;
1566 		ZDOM_LOCK(zdom);
1567 	}
1568 	ZDOM_UNLOCK(zdom);
1569 	return (done);
1570 }
1571 
1572 static void
1573 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain)
1574 {
1575 	int i;
1576 
1577 	/*
1578 	 * Shrink the zone bucket size to ensure that the per-CPU caches
1579 	 * don't grow too large.
1580 	 */
1581 	if (zone->uz_bucket_size > zone->uz_bucket_size_min)
1582 		zone->uz_bucket_size--;
1583 
1584 	if (domain != UMA_ANYDOMAIN &&
1585 	    (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) {
1586 		bucket_cache_reclaim_domain(zone, drain, true, domain);
1587 	} else {
1588 		for (i = 0; i < vm_ndomains; i++)
1589 			bucket_cache_reclaim_domain(zone, drain, true, i);
1590 	}
1591 }
1592 
1593 static void
1594 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
1595 {
1596 	uint8_t *mem;
1597 	size_t size;
1598 	int i;
1599 	uint8_t flags;
1600 
1601 	CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
1602 	    keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
1603 
1604 	mem = slab_data(slab, keg);
1605 	size = PAGE_SIZE * keg->uk_ppera;
1606 
1607 	kasan_mark_slab_valid(keg, mem);
1608 	if (keg->uk_fini != NULL) {
1609 		for (i = start - 1; i > -1; i--)
1610 #ifdef INVARIANTS
1611 		/*
1612 		 * trash_fini implies that dtor was trash_dtor. trash_fini
1613 		 * would check that memory hasn't been modified since free,
1614 		 * which executed trash_dtor.
1615 		 * That's why we need to run uma_dbg_kskip() check here,
1616 		 * albeit we don't make skip check for other init/fini
1617 		 * invocations.
1618 		 */
1619 		if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) ||
1620 		    keg->uk_fini != trash_fini)
1621 #endif
1622 			keg->uk_fini(slab_item(slab, keg, i), keg->uk_size);
1623 	}
1624 	flags = slab->us_flags;
1625 	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1626 		zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab),
1627 		    NULL, SKIP_NONE);
1628 	}
1629 	keg->uk_freef(mem, size, flags);
1630 	uma_total_dec(size);
1631 }
1632 
1633 static void
1634 keg_drain_domain(uma_keg_t keg, int domain)
1635 {
1636 	struct slabhead freeslabs;
1637 	uma_domain_t dom;
1638 	uma_slab_t slab, tmp;
1639 	uint32_t i, stofree, stokeep, partial;
1640 
1641 	dom = &keg->uk_domain[domain];
1642 	LIST_INIT(&freeslabs);
1643 
1644 	CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u",
1645 	    keg->uk_name, keg, domain, dom->ud_free_items);
1646 
1647 	KEG_LOCK(keg, domain);
1648 
1649 	/*
1650 	 * Are the free items in partially allocated slabs sufficient to meet
1651 	 * the reserve? If not, compute the number of fully free slabs that must
1652 	 * be kept.
1653 	 */
1654 	partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers;
1655 	if (partial < keg->uk_reserve) {
1656 		stokeep = min(dom->ud_free_slabs,
1657 		    howmany(keg->uk_reserve - partial, keg->uk_ipers));
1658 	} else {
1659 		stokeep = 0;
1660 	}
1661 	stofree = dom->ud_free_slabs - stokeep;
1662 
1663 	/*
1664 	 * Partition the free slabs into two sets: those that must be kept in
1665 	 * order to maintain the reserve, and those that may be released back to
1666 	 * the system.  Since one set may be much larger than the other,
1667 	 * populate the smaller of the two sets and swap them if necessary.
1668 	 */
1669 	for (i = min(stofree, stokeep); i > 0; i--) {
1670 		slab = LIST_FIRST(&dom->ud_free_slab);
1671 		LIST_REMOVE(slab, us_link);
1672 		LIST_INSERT_HEAD(&freeslabs, slab, us_link);
1673 	}
1674 	if (stofree > stokeep)
1675 		LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link);
1676 
1677 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) {
1678 		LIST_FOREACH(slab, &freeslabs, us_link)
1679 			UMA_HASH_REMOVE(&keg->uk_hash, slab);
1680 	}
1681 	dom->ud_free_items -= stofree * keg->uk_ipers;
1682 	dom->ud_free_slabs -= stofree;
1683 	dom->ud_pages -= stofree * keg->uk_ppera;
1684 	KEG_UNLOCK(keg, domain);
1685 
1686 	LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp)
1687 		keg_free_slab(keg, slab, keg->uk_ipers);
1688 }
1689 
1690 /*
1691  * Frees pages from a keg back to the system.  This is done on demand from
1692  * the pageout daemon.
1693  *
1694  * Returns nothing.
1695  */
1696 static void
1697 keg_drain(uma_keg_t keg, int domain)
1698 {
1699 	int i;
1700 
1701 	if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0)
1702 		return;
1703 	if (domain != UMA_ANYDOMAIN) {
1704 		keg_drain_domain(keg, domain);
1705 	} else {
1706 		for (i = 0; i < vm_ndomains; i++)
1707 			keg_drain_domain(keg, i);
1708 	}
1709 }
1710 
1711 static void
1712 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain)
1713 {
1714 	/*
1715 	 * Count active reclaim operations in order to interlock with
1716 	 * zone_dtor(), which removes the zone from global lists before
1717 	 * attempting to reclaim items itself.
1718 	 *
1719 	 * The zone may be destroyed while sleeping, so only zone_dtor() should
1720 	 * specify M_WAITOK.
1721 	 */
1722 	ZONE_LOCK(zone);
1723 	if (waitok == M_WAITOK) {
1724 		while (zone->uz_reclaimers > 0)
1725 			msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1);
1726 	}
1727 	zone->uz_reclaimers++;
1728 	ZONE_UNLOCK(zone);
1729 	bucket_cache_reclaim(zone, drain, domain);
1730 
1731 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1732 		keg_drain(zone->uz_keg, domain);
1733 	ZONE_LOCK(zone);
1734 	zone->uz_reclaimers--;
1735 	if (zone->uz_reclaimers == 0)
1736 		wakeup(zone);
1737 	ZONE_UNLOCK(zone);
1738 }
1739 
1740 /*
1741  * Allocate a new slab for a keg and inserts it into the partial slab list.
1742  * The keg should be unlocked on entry.  If the allocation succeeds it will
1743  * be locked on return.
1744  *
1745  * Arguments:
1746  *	flags   Wait flags for the item initialization routine
1747  *	aflags  Wait flags for the slab allocation
1748  *
1749  * Returns:
1750  *	The slab that was allocated or NULL if there is no memory and the
1751  *	caller specified M_NOWAIT.
1752  */
1753 static uma_slab_t
1754 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags,
1755     int aflags)
1756 {
1757 	uma_domain_t dom;
1758 	uma_slab_t slab;
1759 	unsigned long size;
1760 	uint8_t *mem;
1761 	uint8_t sflags;
1762 	int i;
1763 
1764 	KASSERT(domain >= 0 && domain < vm_ndomains,
1765 	    ("keg_alloc_slab: domain %d out of range", domain));
1766 
1767 	slab = NULL;
1768 	mem = NULL;
1769 	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1770 		uma_hash_slab_t hslab;
1771 		hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL,
1772 		    domain, aflags);
1773 		if (hslab == NULL)
1774 			goto fail;
1775 		slab = &hslab->uhs_slab;
1776 	}
1777 
1778 	/*
1779 	 * This reproduces the old vm_zone behavior of zero filling pages the
1780 	 * first time they are added to a zone.
1781 	 *
1782 	 * Malloced items are zeroed in uma_zalloc.
1783 	 */
1784 
1785 	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1786 		aflags |= M_ZERO;
1787 	else
1788 		aflags &= ~M_ZERO;
1789 
1790 	if (keg->uk_flags & UMA_ZONE_NODUMP)
1791 		aflags |= M_NODUMP;
1792 
1793 	/* zone is passed for legacy reasons. */
1794 	size = keg->uk_ppera * PAGE_SIZE;
1795 	mem = keg->uk_allocf(zone, size, domain, &sflags, aflags);
1796 	if (mem == NULL) {
1797 		if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1798 			zone_free_item(slabzone(keg->uk_ipers),
1799 			    slab_tohashslab(slab), NULL, SKIP_NONE);
1800 		goto fail;
1801 	}
1802 	uma_total_inc(size);
1803 
1804 	/* For HASH zones all pages go to the same uma_domain. */
1805 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
1806 		domain = 0;
1807 
1808 	kmsan_mark(mem, size,
1809 	    (aflags & M_ZERO) != 0 ? KMSAN_STATE_INITED : KMSAN_STATE_UNINIT);
1810 
1811 	/* Point the slab into the allocated memory */
1812 	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE))
1813 		slab = (uma_slab_t)(mem + keg->uk_pgoff);
1814 	else
1815 		slab_tohashslab(slab)->uhs_data = mem;
1816 
1817 	if (keg->uk_flags & UMA_ZFLAG_VTOSLAB)
1818 		for (i = 0; i < keg->uk_ppera; i++)
1819 			vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE),
1820 			    zone, slab);
1821 
1822 	slab->us_freecount = keg->uk_ipers;
1823 	slab->us_flags = sflags;
1824 	slab->us_domain = domain;
1825 
1826 	BIT_FILL(keg->uk_ipers, &slab->us_free);
1827 #ifdef INVARIANTS
1828 	BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg));
1829 #endif
1830 
1831 	if (keg->uk_init != NULL) {
1832 		for (i = 0; i < keg->uk_ipers; i++)
1833 			if (keg->uk_init(slab_item(slab, keg, i),
1834 			    keg->uk_size, flags) != 0)
1835 				break;
1836 		if (i != keg->uk_ipers) {
1837 			keg_free_slab(keg, slab, i);
1838 			goto fail;
1839 		}
1840 	}
1841 	kasan_mark_slab_invalid(keg, mem);
1842 	KEG_LOCK(keg, domain);
1843 
1844 	CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
1845 	    slab, keg->uk_name, keg);
1846 
1847 	if (keg->uk_flags & UMA_ZFLAG_HASH)
1848 		UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1849 
1850 	/*
1851 	 * If we got a slab here it's safe to mark it partially used
1852 	 * and return.  We assume that the caller is going to remove
1853 	 * at least one item.
1854 	 */
1855 	dom = &keg->uk_domain[domain];
1856 	LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
1857 	dom->ud_pages += keg->uk_ppera;
1858 	dom->ud_free_items += keg->uk_ipers;
1859 
1860 	return (slab);
1861 
1862 fail:
1863 	return (NULL);
1864 }
1865 
1866 /*
1867  * This function is intended to be used early on in place of page_alloc().  It
1868  * performs contiguous physical memory allocations and uses a bump allocator for
1869  * KVA, so is usable before the kernel map is initialized.
1870  */
1871 static void *
1872 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1873     int wait)
1874 {
1875 	vm_paddr_t pa;
1876 	vm_page_t m;
1877 	int i, pages;
1878 
1879 	pages = howmany(bytes, PAGE_SIZE);
1880 	KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
1881 
1882 	*pflag = UMA_SLAB_BOOT;
1883 	m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) |
1884 	    VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0,
1885 	    VM_MEMATTR_DEFAULT);
1886 	if (m == NULL)
1887 		return (NULL);
1888 
1889 	pa = VM_PAGE_TO_PHYS(m);
1890 	for (i = 0; i < pages; i++, pa += PAGE_SIZE) {
1891 #if defined(__aarch64__) || defined(__amd64__) || \
1892     defined(__riscv) || defined(__powerpc64__)
1893 		if ((wait & M_NODUMP) == 0)
1894 			dump_add_page(pa);
1895 #endif
1896 	}
1897 
1898 	/* Allocate KVA and indirectly advance bootmem. */
1899 	return ((void *)pmap_map(&bootmem, m->phys_addr,
1900 	    m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE));
1901 }
1902 
1903 static void
1904 startup_free(void *mem, vm_size_t bytes)
1905 {
1906 	vm_offset_t va;
1907 	vm_page_t m;
1908 
1909 	va = (vm_offset_t)mem;
1910 	m = PHYS_TO_VM_PAGE(pmap_kextract(va));
1911 
1912 	/*
1913 	 * startup_alloc() returns direct-mapped slabs on some platforms.  Avoid
1914 	 * unmapping ranges of the direct map.
1915 	 */
1916 	if (va >= bootstart && va + bytes <= bootmem)
1917 		pmap_remove(kernel_pmap, va, va + bytes);
1918 	for (; bytes != 0; bytes -= PAGE_SIZE, m++) {
1919 #if defined(__aarch64__) || defined(__amd64__) || \
1920     defined(__riscv) || defined(__powerpc64__)
1921 		dump_drop_page(VM_PAGE_TO_PHYS(m));
1922 #endif
1923 		vm_page_unwire_noq(m);
1924 		vm_page_free(m);
1925 	}
1926 }
1927 
1928 /*
1929  * Allocates a number of pages from the system
1930  *
1931  * Arguments:
1932  *	bytes  The number of bytes requested
1933  *	wait  Shall we wait?
1934  *
1935  * Returns:
1936  *	A pointer to the alloced memory or possibly
1937  *	NULL if M_NOWAIT is set.
1938  */
1939 static void *
1940 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1941     int wait)
1942 {
1943 	void *p;	/* Returned page */
1944 
1945 	*pflag = UMA_SLAB_KERNEL;
1946 	p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);
1947 
1948 	return (p);
1949 }
1950 
1951 static void *
1952 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1953     int wait)
1954 {
1955 	struct pglist alloctail;
1956 	vm_offset_t addr, zkva;
1957 	int cpu, flags;
1958 	vm_page_t p, p_next;
1959 #ifdef NUMA
1960 	struct pcpu *pc;
1961 #endif
1962 
1963 	MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
1964 
1965 	TAILQ_INIT(&alloctail);
1966 	flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait);
1967 	*pflag = UMA_SLAB_KERNEL;
1968 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
1969 		if (CPU_ABSENT(cpu)) {
1970 			p = vm_page_alloc_noobj(flags);
1971 		} else {
1972 #ifndef NUMA
1973 			p = vm_page_alloc_noobj(flags);
1974 #else
1975 			pc = pcpu_find(cpu);
1976 			if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain)))
1977 				p = NULL;
1978 			else
1979 				p = vm_page_alloc_noobj_domain(pc->pc_domain,
1980 				    flags);
1981 			if (__predict_false(p == NULL))
1982 				p = vm_page_alloc_noobj(flags);
1983 #endif
1984 		}
1985 		if (__predict_false(p == NULL))
1986 			goto fail;
1987 		TAILQ_INSERT_TAIL(&alloctail, p, listq);
1988 	}
1989 	if ((addr = kva_alloc(bytes)) == 0)
1990 		goto fail;
1991 	zkva = addr;
1992 	TAILQ_FOREACH(p, &alloctail, listq) {
1993 		pmap_qenter(zkva, &p, 1);
1994 		zkva += PAGE_SIZE;
1995 	}
1996 	return ((void*)addr);
1997 fail:
1998 	TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1999 		vm_page_unwire_noq(p);
2000 		vm_page_free(p);
2001 	}
2002 	return (NULL);
2003 }
2004 
2005 /*
2006  * Allocates a number of pages not belonging to a VM object
2007  *
2008  * Arguments:
2009  *	bytes  The number of bytes requested
2010  *	wait   Shall we wait?
2011  *
2012  * Returns:
2013  *	A pointer to the alloced memory or possibly
2014  *	NULL if M_NOWAIT is set.
2015  */
2016 static void *
2017 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
2018     int wait)
2019 {
2020 	TAILQ_HEAD(, vm_page) alloctail;
2021 	u_long npages;
2022 	vm_offset_t retkva, zkva;
2023 	vm_page_t p, p_next;
2024 	uma_keg_t keg;
2025 	int req;
2026 
2027 	TAILQ_INIT(&alloctail);
2028 	keg = zone->uz_keg;
2029 	req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
2030 	if ((wait & M_WAITOK) != 0)
2031 		req |= VM_ALLOC_WAITOK;
2032 
2033 	npages = howmany(bytes, PAGE_SIZE);
2034 	while (npages > 0) {
2035 		p = vm_page_alloc_noobj_domain(domain, req);
2036 		if (p != NULL) {
2037 			/*
2038 			 * Since the page does not belong to an object, its
2039 			 * listq is unused.
2040 			 */
2041 			TAILQ_INSERT_TAIL(&alloctail, p, listq);
2042 			npages--;
2043 			continue;
2044 		}
2045 		/*
2046 		 * Page allocation failed, free intermediate pages and
2047 		 * exit.
2048 		 */
2049 		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
2050 			vm_page_unwire_noq(p);
2051 			vm_page_free(p);
2052 		}
2053 		return (NULL);
2054 	}
2055 	*flags = UMA_SLAB_PRIV;
2056 	zkva = keg->uk_kva +
2057 	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
2058 	retkva = zkva;
2059 	TAILQ_FOREACH(p, &alloctail, listq) {
2060 		pmap_qenter(zkva, &p, 1);
2061 		zkva += PAGE_SIZE;
2062 	}
2063 
2064 	return ((void *)retkva);
2065 }
2066 
2067 /*
2068  * Allocate physically contiguous pages.
2069  */
2070 static void *
2071 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
2072     int wait)
2073 {
2074 
2075 	*pflag = UMA_SLAB_KERNEL;
2076 	return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
2077 	    bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT));
2078 }
2079 
2080 /*
2081  * Frees a number of pages to the system
2082  *
2083  * Arguments:
2084  *	mem   A pointer to the memory to be freed
2085  *	size  The size of the memory being freed
2086  *	flags The original p->us_flags field
2087  *
2088  * Returns:
2089  *	Nothing
2090  */
2091 static void
2092 page_free(void *mem, vm_size_t size, uint8_t flags)
2093 {
2094 
2095 	if ((flags & UMA_SLAB_BOOT) != 0) {
2096 		startup_free(mem, size);
2097 		return;
2098 	}
2099 
2100 	KASSERT((flags & UMA_SLAB_KERNEL) != 0,
2101 	    ("UMA: page_free used with invalid flags %x", flags));
2102 
2103 	kmem_free((vm_offset_t)mem, size);
2104 }
2105 
2106 /*
2107  * Frees pcpu zone allocations
2108  *
2109  * Arguments:
2110  *	mem   A pointer to the memory to be freed
2111  *	size  The size of the memory being freed
2112  *	flags The original p->us_flags field
2113  *
2114  * Returns:
2115  *	Nothing
2116  */
2117 static void
2118 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
2119 {
2120 	vm_offset_t sva, curva;
2121 	vm_paddr_t paddr;
2122 	vm_page_t m;
2123 
2124 	MPASS(size == (mp_maxid+1)*PAGE_SIZE);
2125 
2126 	if ((flags & UMA_SLAB_BOOT) != 0) {
2127 		startup_free(mem, size);
2128 		return;
2129 	}
2130 
2131 	sva = (vm_offset_t)mem;
2132 	for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
2133 		paddr = pmap_kextract(curva);
2134 		m = PHYS_TO_VM_PAGE(paddr);
2135 		vm_page_unwire_noq(m);
2136 		vm_page_free(m);
2137 	}
2138 	pmap_qremove(sva, size >> PAGE_SHIFT);
2139 	kva_free(sva, size);
2140 }
2141 
2142 /*
2143  * Zero fill initializer
2144  *
2145  * Arguments/Returns follow uma_init specifications
2146  */
2147 static int
2148 zero_init(void *mem, int size, int flags)
2149 {
2150 	bzero(mem, size);
2151 	return (0);
2152 }
2153 
2154 #ifdef INVARIANTS
2155 static struct noslabbits *
2156 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg)
2157 {
2158 
2159 	return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers)));
2160 }
2161 #endif
2162 
2163 /*
2164  * Actual size of embedded struct slab (!OFFPAGE).
2165  */
2166 static size_t
2167 slab_sizeof(int nitems)
2168 {
2169 	size_t s;
2170 
2171 	s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS;
2172 	return (roundup(s, UMA_ALIGN_PTR + 1));
2173 }
2174 
2175 #define	UMA_FIXPT_SHIFT	31
2176 #define	UMA_FRAC_FIXPT(n, d)						\
2177 	((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d)))
2178 #define	UMA_FIXPT_PCT(f)						\
2179 	((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT))
2180 #define	UMA_PCT_FIXPT(pct)	UMA_FRAC_FIXPT((pct), 100)
2181 #define	UMA_MIN_EFF	UMA_PCT_FIXPT(100 - UMA_MAX_WASTE)
2182 
2183 /*
2184  * Compute the number of items that will fit in a slab.  If hdr is true, the
2185  * item count may be limited to provide space in the slab for an inline slab
2186  * header.  Otherwise, all slab space will be provided for item storage.
2187  */
2188 static u_int
2189 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr)
2190 {
2191 	u_int ipers;
2192 	u_int padpi;
2193 
2194 	/* The padding between items is not needed after the last item. */
2195 	padpi = rsize - size;
2196 
2197 	if (hdr) {
2198 		/*
2199 		 * Start with the maximum item count and remove items until
2200 		 * the slab header first alongside the allocatable memory.
2201 		 */
2202 		for (ipers = MIN(SLAB_MAX_SETSIZE,
2203 		    (slabsize + padpi - slab_sizeof(1)) / rsize);
2204 		    ipers > 0 &&
2205 		    ipers * rsize - padpi + slab_sizeof(ipers) > slabsize;
2206 		    ipers--)
2207 			continue;
2208 	} else {
2209 		ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE);
2210 	}
2211 
2212 	return (ipers);
2213 }
2214 
2215 struct keg_layout_result {
2216 	u_int format;
2217 	u_int slabsize;
2218 	u_int ipers;
2219 	u_int eff;
2220 };
2221 
2222 static void
2223 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt,
2224     struct keg_layout_result *kl)
2225 {
2226 	u_int total;
2227 
2228 	kl->format = fmt;
2229 	kl->slabsize = slabsize;
2230 
2231 	/* Handle INTERNAL as inline with an extra page. */
2232 	if ((fmt & UMA_ZFLAG_INTERNAL) != 0) {
2233 		kl->format &= ~UMA_ZFLAG_INTERNAL;
2234 		kl->slabsize += PAGE_SIZE;
2235 	}
2236 
2237 	kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize,
2238 	    (fmt & UMA_ZFLAG_OFFPAGE) == 0);
2239 
2240 	/* Account for memory used by an offpage slab header. */
2241 	total = kl->slabsize;
2242 	if ((fmt & UMA_ZFLAG_OFFPAGE) != 0)
2243 		total += slabzone(kl->ipers)->uz_keg->uk_rsize;
2244 
2245 	kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total);
2246 }
2247 
2248 /*
2249  * Determine the format of a uma keg.  This determines where the slab header
2250  * will be placed (inline or offpage) and calculates ipers, rsize, and ppera.
2251  *
2252  * Arguments
2253  *	keg  The zone we should initialize
2254  *
2255  * Returns
2256  *	Nothing
2257  */
2258 static void
2259 keg_layout(uma_keg_t keg)
2260 {
2261 	struct keg_layout_result kl = {}, kl_tmp;
2262 	u_int fmts[2];
2263 	u_int alignsize;
2264 	u_int nfmt;
2265 	u_int pages;
2266 	u_int rsize;
2267 	u_int slabsize;
2268 	u_int i, j;
2269 
2270 	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
2271 	    (keg->uk_size <= UMA_PCPU_ALLOC_SIZE &&
2272 	     (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0),
2273 	    ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b",
2274 	     __func__, keg->uk_name, keg->uk_size, keg->uk_flags,
2275 	     PRINT_UMA_ZFLAGS));
2276 	KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 ||
2277 	    (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0,
2278 	    ("%s: incompatible flags 0x%b", __func__, keg->uk_flags,
2279 	     PRINT_UMA_ZFLAGS));
2280 
2281 	alignsize = keg->uk_align + 1;
2282 #ifdef KASAN
2283 	/*
2284 	 * ASAN requires that each allocation be aligned to the shadow map
2285 	 * scale factor.
2286 	 */
2287 	if (alignsize < KASAN_SHADOW_SCALE)
2288 		alignsize = KASAN_SHADOW_SCALE;
2289 #endif
2290 
2291 	/*
2292 	 * Calculate the size of each allocation (rsize) according to
2293 	 * alignment.  If the requested size is smaller than we have
2294 	 * allocation bits for we round it up.
2295 	 */
2296 	rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT);
2297 	rsize = roundup2(rsize, alignsize);
2298 
2299 	if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) {
2300 		/*
2301 		 * We want one item to start on every align boundary in a page.
2302 		 * To do this we will span pages.  We will also extend the item
2303 		 * by the size of align if it is an even multiple of align.
2304 		 * Otherwise, it would fall on the same boundary every time.
2305 		 */
2306 		if ((rsize & alignsize) == 0)
2307 			rsize += alignsize;
2308 		slabsize = rsize * (PAGE_SIZE / alignsize);
2309 		slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE);
2310 		slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE);
2311 		slabsize = round_page(slabsize);
2312 	} else {
2313 		/*
2314 		 * Start with a slab size of as many pages as it takes to
2315 		 * represent a single item.  We will try to fit as many
2316 		 * additional items into the slab as possible.
2317 		 */
2318 		slabsize = round_page(keg->uk_size);
2319 	}
2320 
2321 	/* Build a list of all of the available formats for this keg. */
2322 	nfmt = 0;
2323 
2324 	/* Evaluate an inline slab layout. */
2325 	if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0)
2326 		fmts[nfmt++] = 0;
2327 
2328 	/* TODO: vm_page-embedded slab. */
2329 
2330 	/*
2331 	 * We can't do OFFPAGE if we're internal or if we've been
2332 	 * asked to not go to the VM for buckets.  If we do this we
2333 	 * may end up going to the VM for slabs which we do not want
2334 	 * to do if we're UMA_ZONE_VM, which clearly forbids it.
2335 	 * In those cases, evaluate a pseudo-format called INTERNAL
2336 	 * which has an inline slab header and one extra page to
2337 	 * guarantee that it fits.
2338 	 *
2339 	 * Otherwise, see if using an OFFPAGE slab will improve our
2340 	 * efficiency.
2341 	 */
2342 	if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0)
2343 		fmts[nfmt++] = UMA_ZFLAG_INTERNAL;
2344 	else
2345 		fmts[nfmt++] = UMA_ZFLAG_OFFPAGE;
2346 
2347 	/*
2348 	 * Choose a slab size and format which satisfy the minimum efficiency.
2349 	 * Prefer the smallest slab size that meets the constraints.
2350 	 *
2351 	 * Start with a minimum slab size, to accommodate CACHESPREAD.  Then,
2352 	 * for small items (up to PAGE_SIZE), the iteration increment is one
2353 	 * page; and for large items, the increment is one item.
2354 	 */
2355 	i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize);
2356 	KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u",
2357 	    keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize,
2358 	    rsize, i));
2359 	for ( ; ; i++) {
2360 		slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) :
2361 		    round_page(rsize * (i - 1) + keg->uk_size);
2362 
2363 		for (j = 0; j < nfmt; j++) {
2364 			/* Only if we have no viable format yet. */
2365 			if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 &&
2366 			    kl.ipers > 0)
2367 				continue;
2368 
2369 			keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp);
2370 			if (kl_tmp.eff <= kl.eff)
2371 				continue;
2372 
2373 			kl = kl_tmp;
2374 
2375 			CTR6(KTR_UMA, "keg %s layout: format %#x "
2376 			    "(ipers %u * rsize %u) / slabsize %#x = %u%% eff",
2377 			    keg->uk_name, kl.format, kl.ipers, rsize,
2378 			    kl.slabsize, UMA_FIXPT_PCT(kl.eff));
2379 
2380 			/* Stop when we reach the minimum efficiency. */
2381 			if (kl.eff >= UMA_MIN_EFF)
2382 				break;
2383 		}
2384 
2385 		if (kl.eff >= UMA_MIN_EFF || !multipage_slabs ||
2386 		    slabsize >= SLAB_MAX_SETSIZE * rsize ||
2387 		    (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0)
2388 			break;
2389 	}
2390 
2391 	pages = atop(kl.slabsize);
2392 	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
2393 		pages *= mp_maxid + 1;
2394 
2395 	keg->uk_rsize = rsize;
2396 	keg->uk_ipers = kl.ipers;
2397 	keg->uk_ppera = pages;
2398 	keg->uk_flags |= kl.format;
2399 
2400 	/*
2401 	 * How do we find the slab header if it is offpage or if not all item
2402 	 * start addresses are in the same page?  We could solve the latter
2403 	 * case with vaddr alignment, but we don't.
2404 	 */
2405 	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 ||
2406 	    (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) {
2407 		if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0)
2408 			keg->uk_flags |= UMA_ZFLAG_HASH;
2409 		else
2410 			keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2411 	}
2412 
2413 	CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u",
2414 	    __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers,
2415 	    pages);
2416 	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE,
2417 	    ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__,
2418 	     keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize,
2419 	     keg->uk_ipers, pages));
2420 }
2421 
2422 /*
2423  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
2424  * the keg onto the global keg list.
2425  *
2426  * Arguments/Returns follow uma_ctor specifications
2427  *	udata  Actually uma_kctor_args
2428  */
2429 static int
2430 keg_ctor(void *mem, int size, void *udata, int flags)
2431 {
2432 	struct uma_kctor_args *arg = udata;
2433 	uma_keg_t keg = mem;
2434 	uma_zone_t zone;
2435 	int i;
2436 
2437 	bzero(keg, size);
2438 	keg->uk_size = arg->size;
2439 	keg->uk_init = arg->uminit;
2440 	keg->uk_fini = arg->fini;
2441 	keg->uk_align = arg->align;
2442 	keg->uk_reserve = 0;
2443 	keg->uk_flags = arg->flags;
2444 
2445 	/*
2446 	 * We use a global round-robin policy by default.  Zones with
2447 	 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which
2448 	 * case the iterator is never run.
2449 	 */
2450 	keg->uk_dr.dr_policy = DOMAINSET_RR();
2451 	keg->uk_dr.dr_iter = 0;
2452 
2453 	/*
2454 	 * The primary zone is passed to us at keg-creation time.
2455 	 */
2456 	zone = arg->zone;
2457 	keg->uk_name = zone->uz_name;
2458 
2459 	if (arg->flags & UMA_ZONE_ZINIT)
2460 		keg->uk_init = zero_init;
2461 
2462 	if (arg->flags & UMA_ZONE_MALLOC)
2463 		keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2464 
2465 #ifndef SMP
2466 	keg->uk_flags &= ~UMA_ZONE_PCPU;
2467 #endif
2468 
2469 	keg_layout(keg);
2470 
2471 	/*
2472 	 * Use a first-touch NUMA policy for kegs that pmap_extract() will
2473 	 * work on.  Use round-robin for everything else.
2474 	 *
2475 	 * Zones may override the default by specifying either.
2476 	 */
2477 #ifdef NUMA
2478 	if ((keg->uk_flags &
2479 	    (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0)
2480 		keg->uk_flags |= UMA_ZONE_FIRSTTOUCH;
2481 	else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2482 		keg->uk_flags |= UMA_ZONE_ROUNDROBIN;
2483 #endif
2484 
2485 	/*
2486 	 * If we haven't booted yet we need allocations to go through the
2487 	 * startup cache until the vm is ready.
2488 	 */
2489 #ifdef UMA_MD_SMALL_ALLOC
2490 	if (keg->uk_ppera == 1)
2491 		keg->uk_allocf = uma_small_alloc;
2492 	else
2493 #endif
2494 	if (booted < BOOT_KVA)
2495 		keg->uk_allocf = startup_alloc;
2496 	else if (keg->uk_flags & UMA_ZONE_PCPU)
2497 		keg->uk_allocf = pcpu_page_alloc;
2498 	else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1)
2499 		keg->uk_allocf = contig_alloc;
2500 	else
2501 		keg->uk_allocf = page_alloc;
2502 #ifdef UMA_MD_SMALL_ALLOC
2503 	if (keg->uk_ppera == 1)
2504 		keg->uk_freef = uma_small_free;
2505 	else
2506 #endif
2507 	if (keg->uk_flags & UMA_ZONE_PCPU)
2508 		keg->uk_freef = pcpu_page_free;
2509 	else
2510 		keg->uk_freef = page_free;
2511 
2512 	/*
2513 	 * Initialize keg's locks.
2514 	 */
2515 	for (i = 0; i < vm_ndomains; i++)
2516 		KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS));
2517 
2518 	/*
2519 	 * If we're putting the slab header in the actual page we need to
2520 	 * figure out where in each page it goes.  See slab_sizeof
2521 	 * definition.
2522 	 */
2523 	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) {
2524 		size_t shsize;
2525 
2526 		shsize = slab_sizeof(keg->uk_ipers);
2527 		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize;
2528 		/*
2529 		 * The only way the following is possible is if with our
2530 		 * UMA_ALIGN_PTR adjustments we are now bigger than
2531 		 * UMA_SLAB_SIZE.  I haven't checked whether this is
2532 		 * mathematically possible for all cases, so we make
2533 		 * sure here anyway.
2534 		 */
2535 		KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera,
2536 		    ("zone %s ipers %d rsize %d size %d slab won't fit",
2537 		    zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size));
2538 	}
2539 
2540 	if (keg->uk_flags & UMA_ZFLAG_HASH)
2541 		hash_alloc(&keg->uk_hash, 0);
2542 
2543 	CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone);
2544 
2545 	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
2546 
2547 	rw_wlock(&uma_rwlock);
2548 	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
2549 	rw_wunlock(&uma_rwlock);
2550 	return (0);
2551 }
2552 
2553 static void
2554 zone_kva_available(uma_zone_t zone, void *unused)
2555 {
2556 	uma_keg_t keg;
2557 
2558 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
2559 		return;
2560 	KEG_GET(zone, keg);
2561 
2562 	if (keg->uk_allocf == startup_alloc) {
2563 		/* Switch to the real allocator. */
2564 		if (keg->uk_flags & UMA_ZONE_PCPU)
2565 			keg->uk_allocf = pcpu_page_alloc;
2566 		else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 &&
2567 		    keg->uk_ppera > 1)
2568 			keg->uk_allocf = contig_alloc;
2569 		else
2570 			keg->uk_allocf = page_alloc;
2571 	}
2572 }
2573 
2574 static void
2575 zone_alloc_counters(uma_zone_t zone, void *unused)
2576 {
2577 
2578 	zone->uz_allocs = counter_u64_alloc(M_WAITOK);
2579 	zone->uz_frees = counter_u64_alloc(M_WAITOK);
2580 	zone->uz_fails = counter_u64_alloc(M_WAITOK);
2581 	zone->uz_xdomain = counter_u64_alloc(M_WAITOK);
2582 }
2583 
2584 static void
2585 zone_alloc_sysctl(uma_zone_t zone, void *unused)
2586 {
2587 	uma_zone_domain_t zdom;
2588 	uma_domain_t dom;
2589 	uma_keg_t keg;
2590 	struct sysctl_oid *oid, *domainoid;
2591 	int domains, i, cnt;
2592 	static const char *nokeg = "cache zone";
2593 	char *c;
2594 
2595 	/*
2596 	 * Make a sysctl safe copy of the zone name by removing
2597 	 * any special characters and handling dups by appending
2598 	 * an index.
2599 	 */
2600 	if (zone->uz_namecnt != 0) {
2601 		/* Count the number of decimal digits and '_' separator. */
2602 		for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++)
2603 			cnt /= 10;
2604 		zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1,
2605 		    M_UMA, M_WAITOK);
2606 		sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name,
2607 		    zone->uz_namecnt);
2608 	} else
2609 		zone->uz_ctlname = strdup(zone->uz_name, M_UMA);
2610 	for (c = zone->uz_ctlname; *c != '\0'; c++)
2611 		if (strchr("./\\ -", *c) != NULL)
2612 			*c = '_';
2613 
2614 	/*
2615 	 * Basic parameters at the root.
2616 	 */
2617 	zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma),
2618 	    OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2619 	oid = zone->uz_oid;
2620 	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2621 	    "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size");
2622 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2623 	    "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE,
2624 	    zone, 0, sysctl_handle_uma_zone_flags, "A",
2625 	    "Allocator configuration flags");
2626 	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2627 	    "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0,
2628 	    "Desired per-cpu cache size");
2629 	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2630 	    "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0,
2631 	    "Maximum allowed per-cpu cache size");
2632 
2633 	/*
2634 	 * keg if present.
2635 	 */
2636 	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
2637 		domains = vm_ndomains;
2638 	else
2639 		domains = 1;
2640 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2641 	    "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2642 	keg = zone->uz_keg;
2643 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) {
2644 		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2645 		    "name", CTLFLAG_RD, keg->uk_name, "Keg name");
2646 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2647 		    "rsize", CTLFLAG_RD, &keg->uk_rsize, 0,
2648 		    "Real object size with alignment");
2649 		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2650 		    "ppera", CTLFLAG_RD, &keg->uk_ppera, 0,
2651 		    "pages per-slab allocation");
2652 		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2653 		    "ipers", CTLFLAG_RD, &keg->uk_ipers, 0,
2654 		    "items available per-slab");
2655 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2656 		    "align", CTLFLAG_RD, &keg->uk_align, 0,
2657 		    "item alignment mask");
2658 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2659 		    "reserve", CTLFLAG_RD, &keg->uk_reserve, 0,
2660 		    "number of reserved items");
2661 		SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2662 		    "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2663 		    keg, 0, sysctl_handle_uma_slab_efficiency, "I",
2664 		    "Slab utilization (100 - internal fragmentation %)");
2665 		domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid),
2666 		    OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2667 		for (i = 0; i < domains; i++) {
2668 			dom = &keg->uk_domain[i];
2669 			oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2670 			    OID_AUTO, VM_DOMAIN(i)->vmd_name,
2671 			    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2672 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2673 			    "pages", CTLFLAG_RD, &dom->ud_pages, 0,
2674 			    "Total pages currently allocated from VM");
2675 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2676 			    "free_items", CTLFLAG_RD, &dom->ud_free_items, 0,
2677 			    "Items free in the slab layer");
2678 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2679 			    "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0,
2680 			    "Unused slabs");
2681 		}
2682 	} else
2683 		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2684 		    "name", CTLFLAG_RD, nokeg, "Keg name");
2685 
2686 	/*
2687 	 * Information about zone limits.
2688 	 */
2689 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2690 	    "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2691 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2692 	    "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2693 	    zone, 0, sysctl_handle_uma_zone_items, "QU",
2694 	    "Current number of allocated items if limit is set");
2695 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2696 	    "max_items", CTLFLAG_RD, &zone->uz_max_items, 0,
2697 	    "Maximum number of allocated and cached items");
2698 	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2699 	    "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0,
2700 	    "Number of threads sleeping at limit");
2701 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2702 	    "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0,
2703 	    "Total zone limit sleeps");
2704 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2705 	    "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0,
2706 	    "Maximum number of items in each domain's bucket cache");
2707 
2708 	/*
2709 	 * Per-domain zone information.
2710 	 */
2711 	domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid),
2712 	    OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2713 	for (i = 0; i < domains; i++) {
2714 		zdom = ZDOM_GET(zone, i);
2715 		oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2716 		    OID_AUTO, VM_DOMAIN(i)->vmd_name,
2717 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2718 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2719 		    "nitems", CTLFLAG_RD, &zdom->uzd_nitems,
2720 		    "number of items in this domain");
2721 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2722 		    "imax", CTLFLAG_RD, &zdom->uzd_imax,
2723 		    "maximum item count in this period");
2724 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2725 		    "imin", CTLFLAG_RD, &zdom->uzd_imin,
2726 		    "minimum item count in this period");
2727 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2728 		    "bimin", CTLFLAG_RD, &zdom->uzd_bimin,
2729 		    "Minimum item count in this batch");
2730 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2731 		    "wss", CTLFLAG_RD, &zdom->uzd_wss,
2732 		    "Working set size");
2733 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2734 		    "limin", CTLFLAG_RD, &zdom->uzd_limin,
2735 		    "Long time minimum item count");
2736 		SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2737 		    "timin", CTLFLAG_RD, &zdom->uzd_timin, 0,
2738 		    "Time since zero long time minimum item count");
2739 	}
2740 
2741 	/*
2742 	 * General statistics.
2743 	 */
2744 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2745 	    "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2746 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2747 	    "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2748 	    zone, 1, sysctl_handle_uma_zone_cur, "I",
2749 	    "Current number of allocated items");
2750 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2751 	    "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2752 	    zone, 0, sysctl_handle_uma_zone_allocs, "QU",
2753 	    "Total allocation calls");
2754 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2755 	    "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2756 	    zone, 0, sysctl_handle_uma_zone_frees, "QU",
2757 	    "Total free calls");
2758 	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2759 	    "fails", CTLFLAG_RD, &zone->uz_fails,
2760 	    "Number of allocation failures");
2761 	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2762 	    "xdomain", CTLFLAG_RD, &zone->uz_xdomain,
2763 	    "Free calls from the wrong domain");
2764 }
2765 
2766 struct uma_zone_count {
2767 	const char	*name;
2768 	int		count;
2769 };
2770 
2771 static void
2772 zone_count(uma_zone_t zone, void *arg)
2773 {
2774 	struct uma_zone_count *cnt;
2775 
2776 	cnt = arg;
2777 	/*
2778 	 * Some zones are rapidly created with identical names and
2779 	 * destroyed out of order.  This can lead to gaps in the count.
2780 	 * Use one greater than the maximum observed for this name.
2781 	 */
2782 	if (strcmp(zone->uz_name, cnt->name) == 0)
2783 		cnt->count = MAX(cnt->count,
2784 		    zone->uz_namecnt + 1);
2785 }
2786 
2787 static void
2788 zone_update_caches(uma_zone_t zone)
2789 {
2790 	int i;
2791 
2792 	for (i = 0; i <= mp_maxid; i++) {
2793 		cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size);
2794 		cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags);
2795 	}
2796 }
2797 
2798 /*
2799  * Zone header ctor.  This initializes all fields, locks, etc.
2800  *
2801  * Arguments/Returns follow uma_ctor specifications
2802  *	udata  Actually uma_zctor_args
2803  */
2804 static int
2805 zone_ctor(void *mem, int size, void *udata, int flags)
2806 {
2807 	struct uma_zone_count cnt;
2808 	struct uma_zctor_args *arg = udata;
2809 	uma_zone_domain_t zdom;
2810 	uma_zone_t zone = mem;
2811 	uma_zone_t z;
2812 	uma_keg_t keg;
2813 	int i;
2814 
2815 	bzero(zone, size);
2816 	zone->uz_name = arg->name;
2817 	zone->uz_ctor = arg->ctor;
2818 	zone->uz_dtor = arg->dtor;
2819 	zone->uz_init = NULL;
2820 	zone->uz_fini = NULL;
2821 	zone->uz_sleeps = 0;
2822 	zone->uz_bucket_size = 0;
2823 	zone->uz_bucket_size_min = 0;
2824 	zone->uz_bucket_size_max = BUCKET_MAX;
2825 	zone->uz_flags = (arg->flags & UMA_ZONE_SMR);
2826 	zone->uz_warning = NULL;
2827 	/* The domain structures follow the cpu structures. */
2828 	zone->uz_bucket_max = ULONG_MAX;
2829 	timevalclear(&zone->uz_ratecheck);
2830 
2831 	/* Count the number of duplicate names. */
2832 	cnt.name = arg->name;
2833 	cnt.count = 0;
2834 	zone_foreach(zone_count, &cnt);
2835 	zone->uz_namecnt = cnt.count;
2836 	ZONE_CROSS_LOCK_INIT(zone);
2837 
2838 	for (i = 0; i < vm_ndomains; i++) {
2839 		zdom = ZDOM_GET(zone, i);
2840 		ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS));
2841 		STAILQ_INIT(&zdom->uzd_buckets);
2842 	}
2843 
2844 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
2845 	if (arg->uminit == trash_init && arg->fini == trash_fini)
2846 		zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR;
2847 #elif defined(KASAN)
2848 	if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0)
2849 		arg->flags |= UMA_ZONE_NOKASAN;
2850 #endif
2851 
2852 	/*
2853 	 * This is a pure cache zone, no kegs.
2854 	 */
2855 	if (arg->import) {
2856 		KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0,
2857 		    ("zone_ctor: Import specified for non-cache zone."));
2858 		zone->uz_flags = arg->flags;
2859 		zone->uz_size = arg->size;
2860 		zone->uz_import = arg->import;
2861 		zone->uz_release = arg->release;
2862 		zone->uz_arg = arg->arg;
2863 #ifdef NUMA
2864 		/*
2865 		 * Cache zones are round-robin unless a policy is
2866 		 * specified because they may have incompatible
2867 		 * constraints.
2868 		 */
2869 		if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2870 			zone->uz_flags |= UMA_ZONE_ROUNDROBIN;
2871 #endif
2872 		rw_wlock(&uma_rwlock);
2873 		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
2874 		rw_wunlock(&uma_rwlock);
2875 		goto out;
2876 	}
2877 
2878 	/*
2879 	 * Use the regular zone/keg/slab allocator.
2880 	 */
2881 	zone->uz_import = zone_import;
2882 	zone->uz_release = zone_release;
2883 	zone->uz_arg = zone;
2884 	keg = arg->keg;
2885 
2886 	if (arg->flags & UMA_ZONE_SECONDARY) {
2887 		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
2888 		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
2889 		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
2890 		zone->uz_init = arg->uminit;
2891 		zone->uz_fini = arg->fini;
2892 		zone->uz_flags |= UMA_ZONE_SECONDARY;
2893 		rw_wlock(&uma_rwlock);
2894 		ZONE_LOCK(zone);
2895 		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
2896 			if (LIST_NEXT(z, uz_link) == NULL) {
2897 				LIST_INSERT_AFTER(z, zone, uz_link);
2898 				break;
2899 			}
2900 		}
2901 		ZONE_UNLOCK(zone);
2902 		rw_wunlock(&uma_rwlock);
2903 	} else if (keg == NULL) {
2904 		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
2905 		    arg->align, arg->flags)) == NULL)
2906 			return (ENOMEM);
2907 	} else {
2908 		struct uma_kctor_args karg;
2909 		int error;
2910 
2911 		/* We should only be here from uma_startup() */
2912 		karg.size = arg->size;
2913 		karg.uminit = arg->uminit;
2914 		karg.fini = arg->fini;
2915 		karg.align = arg->align;
2916 		karg.flags = (arg->flags & ~UMA_ZONE_SMR);
2917 		karg.zone = zone;
2918 		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
2919 		    flags);
2920 		if (error)
2921 			return (error);
2922 	}
2923 
2924 	/* Inherit properties from the keg. */
2925 	zone->uz_keg = keg;
2926 	zone->uz_size = keg->uk_size;
2927 	zone->uz_flags |= (keg->uk_flags &
2928 	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
2929 
2930 out:
2931 	if (booted >= BOOT_PCPU) {
2932 		zone_alloc_counters(zone, NULL);
2933 		if (booted >= BOOT_RUNNING)
2934 			zone_alloc_sysctl(zone, NULL);
2935 	} else {
2936 		zone->uz_allocs = EARLY_COUNTER;
2937 		zone->uz_frees = EARLY_COUNTER;
2938 		zone->uz_fails = EARLY_COUNTER;
2939 	}
2940 
2941 	/* Caller requests a private SMR context. */
2942 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
2943 		zone->uz_smr = smr_create(zone->uz_name, 0, 0);
2944 
2945 	KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
2946 	    (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
2947 	    ("Invalid zone flag combination"));
2948 	if (arg->flags & UMA_ZFLAG_INTERNAL)
2949 		zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
2950 	if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
2951 		zone->uz_bucket_size = BUCKET_MAX;
2952 	else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
2953 		zone->uz_bucket_size = 0;
2954 	else
2955 		zone->uz_bucket_size = bucket_select(zone->uz_size);
2956 	zone->uz_bucket_size_min = zone->uz_bucket_size;
2957 	if (zone->uz_dtor != NULL || zone->uz_ctor != NULL)
2958 		zone->uz_flags |= UMA_ZFLAG_CTORDTOR;
2959 	zone_update_caches(zone);
2960 
2961 	return (0);
2962 }
2963 
2964 /*
2965  * Keg header dtor.  This frees all data, destroys locks, frees the hash
2966  * table and removes the keg from the global list.
2967  *
2968  * Arguments/Returns follow uma_dtor specifications
2969  *	udata  unused
2970  */
2971 static void
2972 keg_dtor(void *arg, int size, void *udata)
2973 {
2974 	uma_keg_t keg;
2975 	uint32_t free, pages;
2976 	int i;
2977 
2978 	keg = (uma_keg_t)arg;
2979 	free = pages = 0;
2980 	for (i = 0; i < vm_ndomains; i++) {
2981 		free += keg->uk_domain[i].ud_free_items;
2982 		pages += keg->uk_domain[i].ud_pages;
2983 		KEG_LOCK_FINI(keg, i);
2984 	}
2985 	if (pages != 0)
2986 		printf("Freed UMA keg (%s) was not empty (%u items). "
2987 		    " Lost %u pages of memory.\n",
2988 		    keg->uk_name ? keg->uk_name : "",
2989 		    pages / keg->uk_ppera * keg->uk_ipers - free, pages);
2990 
2991 	hash_free(&keg->uk_hash);
2992 }
2993 
2994 /*
2995  * Zone header dtor.
2996  *
2997  * Arguments/Returns follow uma_dtor specifications
2998  *	udata  unused
2999  */
3000 static void
3001 zone_dtor(void *arg, int size, void *udata)
3002 {
3003 	uma_zone_t zone;
3004 	uma_keg_t keg;
3005 	int i;
3006 
3007 	zone = (uma_zone_t)arg;
3008 
3009 	sysctl_remove_oid(zone->uz_oid, 1, 1);
3010 
3011 	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
3012 		cache_drain(zone);
3013 
3014 	rw_wlock(&uma_rwlock);
3015 	LIST_REMOVE(zone, uz_link);
3016 	rw_wunlock(&uma_rwlock);
3017 	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3018 		keg = zone->uz_keg;
3019 		keg->uk_reserve = 0;
3020 	}
3021 	zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true);
3022 
3023 	/*
3024 	 * We only destroy kegs from non secondary/non cache zones.
3025 	 */
3026 	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
3027 		keg = zone->uz_keg;
3028 		rw_wlock(&uma_rwlock);
3029 		LIST_REMOVE(keg, uk_link);
3030 		rw_wunlock(&uma_rwlock);
3031 		zone_free_item(kegs, keg, NULL, SKIP_NONE);
3032 	}
3033 	counter_u64_free(zone->uz_allocs);
3034 	counter_u64_free(zone->uz_frees);
3035 	counter_u64_free(zone->uz_fails);
3036 	counter_u64_free(zone->uz_xdomain);
3037 	free(zone->uz_ctlname, M_UMA);
3038 	for (i = 0; i < vm_ndomains; i++)
3039 		ZDOM_LOCK_FINI(ZDOM_GET(zone, i));
3040 	ZONE_CROSS_LOCK_FINI(zone);
3041 }
3042 
3043 static void
3044 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3045 {
3046 	uma_keg_t keg;
3047 	uma_zone_t zone;
3048 
3049 	LIST_FOREACH(keg, &uma_kegs, uk_link) {
3050 		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
3051 			zfunc(zone, arg);
3052 	}
3053 	LIST_FOREACH(zone, &uma_cachezones, uz_link)
3054 		zfunc(zone, arg);
3055 }
3056 
3057 /*
3058  * Traverses every zone in the system and calls a callback
3059  *
3060  * Arguments:
3061  *	zfunc  A pointer to a function which accepts a zone
3062  *		as an argument.
3063  *
3064  * Returns:
3065  *	Nothing
3066  */
3067 static void
3068 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg)
3069 {
3070 
3071 	rw_rlock(&uma_rwlock);
3072 	zone_foreach_unlocked(zfunc, arg);
3073 	rw_runlock(&uma_rwlock);
3074 }
3075 
3076 /*
3077  * Initialize the kernel memory allocator.  This is done after pages can be
3078  * allocated but before general KVA is available.
3079  */
3080 void
3081 uma_startup1(vm_offset_t virtual_avail)
3082 {
3083 	struct uma_zctor_args args;
3084 	size_t ksize, zsize, size;
3085 	uma_keg_t primarykeg;
3086 	uintptr_t m;
3087 	int domain;
3088 	uint8_t pflag;
3089 
3090 	bootstart = bootmem = virtual_avail;
3091 
3092 	rw_init(&uma_rwlock, "UMA lock");
3093 	sx_init(&uma_reclaim_lock, "umareclaim");
3094 
3095 	ksize = sizeof(struct uma_keg) +
3096 	    (sizeof(struct uma_domain) * vm_ndomains);
3097 	ksize = roundup(ksize, UMA_SUPER_ALIGN);
3098 	zsize = sizeof(struct uma_zone) +
3099 	    (sizeof(struct uma_cache) * (mp_maxid + 1)) +
3100 	    (sizeof(struct uma_zone_domain) * vm_ndomains);
3101 	zsize = roundup(zsize, UMA_SUPER_ALIGN);
3102 
3103 	/* Allocate the zone of zones, zone of kegs, and zone of zones keg. */
3104 	size = (zsize * 2) + ksize;
3105 	for (domain = 0; domain < vm_ndomains; domain++) {
3106 		m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag,
3107 		    M_NOWAIT | M_ZERO);
3108 		if (m != 0)
3109 			break;
3110 	}
3111 	zones = (uma_zone_t)m;
3112 	m += zsize;
3113 	kegs = (uma_zone_t)m;
3114 	m += zsize;
3115 	primarykeg = (uma_keg_t)m;
3116 
3117 	/* "manually" create the initial zone */
3118 	memset(&args, 0, sizeof(args));
3119 	args.name = "UMA Kegs";
3120 	args.size = ksize;
3121 	args.ctor = keg_ctor;
3122 	args.dtor = keg_dtor;
3123 	args.uminit = zero_init;
3124 	args.fini = NULL;
3125 	args.keg = primarykeg;
3126 	args.align = UMA_SUPER_ALIGN - 1;
3127 	args.flags = UMA_ZFLAG_INTERNAL;
3128 	zone_ctor(kegs, zsize, &args, M_WAITOK);
3129 
3130 	args.name = "UMA Zones";
3131 	args.size = zsize;
3132 	args.ctor = zone_ctor;
3133 	args.dtor = zone_dtor;
3134 	args.uminit = zero_init;
3135 	args.fini = NULL;
3136 	args.keg = NULL;
3137 	args.align = UMA_SUPER_ALIGN - 1;
3138 	args.flags = UMA_ZFLAG_INTERNAL;
3139 	zone_ctor(zones, zsize, &args, M_WAITOK);
3140 
3141 	/* Now make zones for slab headers */
3142 	slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE,
3143 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3144 	slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE,
3145 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3146 
3147 	hashzone = uma_zcreate("UMA Hash",
3148 	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
3149 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
3150 
3151 	bucket_init();
3152 	smr_init();
3153 }
3154 
3155 #ifndef UMA_MD_SMALL_ALLOC
3156 extern void vm_radix_reserve_kva(void);
3157 #endif
3158 
3159 /*
3160  * Advertise the availability of normal kva allocations and switch to
3161  * the default back-end allocator.  Marks the KVA we consumed on startup
3162  * as used in the map.
3163  */
3164 void
3165 uma_startup2(void)
3166 {
3167 
3168 	if (bootstart != bootmem) {
3169 		vm_map_lock(kernel_map);
3170 		(void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem,
3171 		    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
3172 		vm_map_unlock(kernel_map);
3173 	}
3174 
3175 #ifndef UMA_MD_SMALL_ALLOC
3176 	/* Set up radix zone to use noobj_alloc. */
3177 	vm_radix_reserve_kva();
3178 #endif
3179 
3180 	booted = BOOT_KVA;
3181 	zone_foreach_unlocked(zone_kva_available, NULL);
3182 	bucket_enable();
3183 }
3184 
3185 /*
3186  * Allocate counters as early as possible so that boot-time allocations are
3187  * accounted more precisely.
3188  */
3189 static void
3190 uma_startup_pcpu(void *arg __unused)
3191 {
3192 
3193 	zone_foreach_unlocked(zone_alloc_counters, NULL);
3194 	booted = BOOT_PCPU;
3195 }
3196 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL);
3197 
3198 /*
3199  * Finish our initialization steps.
3200  */
3201 static void
3202 uma_startup3(void *arg __unused)
3203 {
3204 
3205 #ifdef INVARIANTS
3206 	TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
3207 	uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
3208 	uma_skip_cnt = counter_u64_alloc(M_WAITOK);
3209 #endif
3210 	zone_foreach_unlocked(zone_alloc_sysctl, NULL);
3211 	callout_init(&uma_callout, 1);
3212 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
3213 	booted = BOOT_RUNNING;
3214 
3215 	EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
3216 	    EVENTHANDLER_PRI_FIRST);
3217 }
3218 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
3219 
3220 static void
3221 uma_shutdown(void)
3222 {
3223 
3224 	booted = BOOT_SHUTDOWN;
3225 }
3226 
3227 static uma_keg_t
3228 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
3229 		int align, uint32_t flags)
3230 {
3231 	struct uma_kctor_args args;
3232 
3233 	args.size = size;
3234 	args.uminit = uminit;
3235 	args.fini = fini;
3236 	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
3237 	args.flags = flags;
3238 	args.zone = zone;
3239 	return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
3240 }
3241 
3242 /* Public functions */
3243 /* See uma.h */
3244 void
3245 uma_set_align(int align)
3246 {
3247 
3248 	if (align != UMA_ALIGN_CACHE)
3249 		uma_align_cache = align;
3250 }
3251 
3252 /* See uma.h */
3253 uma_zone_t
3254 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
3255 		uma_init uminit, uma_fini fini, int align, uint32_t flags)
3256 
3257 {
3258 	struct uma_zctor_args args;
3259 	uma_zone_t res;
3260 
3261 	KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
3262 	    align, name));
3263 
3264 	/* This stuff is essential for the zone ctor */
3265 	memset(&args, 0, sizeof(args));
3266 	args.name = name;
3267 	args.size = size;
3268 	args.ctor = ctor;
3269 	args.dtor = dtor;
3270 	args.uminit = uminit;
3271 	args.fini = fini;
3272 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
3273 	/*
3274 	 * Inject procedures which check for memory use after free if we are
3275 	 * allowed to scramble the memory while it is not allocated.  This
3276 	 * requires that: UMA is actually able to access the memory, no init
3277 	 * or fini procedures, no dependency on the initial value of the
3278 	 * memory, and no (legitimate) use of the memory after free.  Note,
3279 	 * the ctor and dtor do not need to be empty.
3280 	 */
3281 	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH |
3282 	    UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) {
3283 		args.uminit = trash_init;
3284 		args.fini = trash_fini;
3285 	}
3286 #endif
3287 	args.align = align;
3288 	args.flags = flags;
3289 	args.keg = NULL;
3290 
3291 	sx_xlock(&uma_reclaim_lock);
3292 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3293 	sx_xunlock(&uma_reclaim_lock);
3294 
3295 	return (res);
3296 }
3297 
3298 /* See uma.h */
3299 uma_zone_t
3300 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor,
3301     uma_init zinit, uma_fini zfini, uma_zone_t primary)
3302 {
3303 	struct uma_zctor_args args;
3304 	uma_keg_t keg;
3305 	uma_zone_t res;
3306 
3307 	keg = primary->uz_keg;
3308 	memset(&args, 0, sizeof(args));
3309 	args.name = name;
3310 	args.size = keg->uk_size;
3311 	args.ctor = ctor;
3312 	args.dtor = dtor;
3313 	args.uminit = zinit;
3314 	args.fini = zfini;
3315 	args.align = keg->uk_align;
3316 	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
3317 	args.keg = keg;
3318 
3319 	sx_xlock(&uma_reclaim_lock);
3320 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3321 	sx_xunlock(&uma_reclaim_lock);
3322 
3323 	return (res);
3324 }
3325 
3326 /* See uma.h */
3327 uma_zone_t
3328 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor,
3329     uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease,
3330     void *arg, int flags)
3331 {
3332 	struct uma_zctor_args args;
3333 
3334 	memset(&args, 0, sizeof(args));
3335 	args.name = name;
3336 	args.size = size;
3337 	args.ctor = ctor;
3338 	args.dtor = dtor;
3339 	args.uminit = zinit;
3340 	args.fini = zfini;
3341 	args.import = zimport;
3342 	args.release = zrelease;
3343 	args.arg = arg;
3344 	args.align = 0;
3345 	args.flags = flags | UMA_ZFLAG_CACHE;
3346 
3347 	return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
3348 }
3349 
3350 /* See uma.h */
3351 void
3352 uma_zdestroy(uma_zone_t zone)
3353 {
3354 
3355 	/*
3356 	 * Large slabs are expensive to reclaim, so don't bother doing
3357 	 * unnecessary work if we're shutting down.
3358 	 */
3359 	if (booted == BOOT_SHUTDOWN &&
3360 	    zone->uz_fini == NULL && zone->uz_release == zone_release)
3361 		return;
3362 	sx_xlock(&uma_reclaim_lock);
3363 	zone_free_item(zones, zone, NULL, SKIP_NONE);
3364 	sx_xunlock(&uma_reclaim_lock);
3365 }
3366 
3367 void
3368 uma_zwait(uma_zone_t zone)
3369 {
3370 
3371 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
3372 		uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK));
3373 	else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0)
3374 		uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK));
3375 	else
3376 		uma_zfree(zone, uma_zalloc(zone, M_WAITOK));
3377 }
3378 
3379 void *
3380 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
3381 {
3382 	void *item, *pcpu_item;
3383 #ifdef SMP
3384 	int i;
3385 
3386 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3387 #endif
3388 	item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
3389 	if (item == NULL)
3390 		return (NULL);
3391 	pcpu_item = zpcpu_base_to_offset(item);
3392 	if (flags & M_ZERO) {
3393 #ifdef SMP
3394 		for (i = 0; i <= mp_maxid; i++)
3395 			bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size);
3396 #else
3397 		bzero(item, zone->uz_size);
3398 #endif
3399 	}
3400 	return (pcpu_item);
3401 }
3402 
3403 /*
3404  * A stub while both regular and pcpu cases are identical.
3405  */
3406 void
3407 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata)
3408 {
3409 	void *item;
3410 
3411 #ifdef SMP
3412 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3413 #endif
3414 
3415         /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */
3416         if (pcpu_item == NULL)
3417                 return;
3418 
3419 	item = zpcpu_offset_to_base(pcpu_item);
3420 	uma_zfree_arg(zone, item, udata);
3421 }
3422 
3423 static inline void *
3424 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags,
3425     void *item)
3426 {
3427 #ifdef INVARIANTS
3428 	bool skipdbg;
3429 #endif
3430 
3431 	kasan_mark_item_valid(zone, item);
3432 	kmsan_mark_item_uninitialized(zone, item);
3433 
3434 #ifdef INVARIANTS
3435 	skipdbg = uma_dbg_zskip(zone, item);
3436 	if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3437 	    zone->uz_ctor != trash_ctor)
3438 		trash_ctor(item, size, udata, flags);
3439 #endif
3440 
3441 	/* Check flags before loading ctor pointer. */
3442 	if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) &&
3443 	    __predict_false(zone->uz_ctor != NULL) &&
3444 	    zone->uz_ctor(item, size, udata, flags) != 0) {
3445 		counter_u64_add(zone->uz_fails, 1);
3446 		zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT);
3447 		return (NULL);
3448 	}
3449 #ifdef INVARIANTS
3450 	if (!skipdbg)
3451 		uma_dbg_alloc(zone, NULL, item);
3452 #endif
3453 	if (__predict_false(flags & M_ZERO))
3454 		return (memset(item, 0, size));
3455 
3456 	return (item);
3457 }
3458 
3459 static inline void
3460 item_dtor(uma_zone_t zone, void *item, int size, void *udata,
3461     enum zfreeskip skip)
3462 {
3463 #ifdef INVARIANTS
3464 	bool skipdbg;
3465 
3466 	skipdbg = uma_dbg_zskip(zone, item);
3467 	if (skip == SKIP_NONE && !skipdbg) {
3468 		if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0)
3469 			uma_dbg_free(zone, udata, item);
3470 		else
3471 			uma_dbg_free(zone, NULL, item);
3472 	}
3473 #endif
3474 	if (__predict_true(skip < SKIP_DTOR)) {
3475 		if (zone->uz_dtor != NULL)
3476 			zone->uz_dtor(item, size, udata);
3477 #ifdef INVARIANTS
3478 		if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3479 		    zone->uz_dtor != trash_dtor)
3480 			trash_dtor(item, size, udata);
3481 #endif
3482 	}
3483 	kasan_mark_item_invalid(zone, item);
3484 }
3485 
3486 #ifdef NUMA
3487 static int
3488 item_domain(void *item)
3489 {
3490 	int domain;
3491 
3492 	domain = vm_phys_domain(vtophys(item));
3493 	KASSERT(domain >= 0 && domain < vm_ndomains,
3494 	    ("%s: unknown domain for item %p", __func__, item));
3495 	return (domain);
3496 }
3497 #endif
3498 
3499 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS)
3500 #if defined(INVARIANTS) && (defined(DDB) || defined(STACK))
3501 #include <sys/stack.h>
3502 #endif
3503 #define	UMA_ZALLOC_DEBUG
3504 static int
3505 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags)
3506 {
3507 	int error;
3508 
3509 	error = 0;
3510 #ifdef WITNESS
3511 	if (flags & M_WAITOK) {
3512 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3513 		    "uma_zalloc_debug: zone \"%s\"", zone->uz_name);
3514 	}
3515 #endif
3516 
3517 #ifdef INVARIANTS
3518 	KASSERT((flags & M_EXEC) == 0,
3519 	    ("uma_zalloc_debug: called with M_EXEC"));
3520 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3521 	    ("uma_zalloc_debug: called within spinlock or critical section"));
3522 	KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0,
3523 	    ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO"));
3524 
3525 	_Static_assert(M_NOWAIT != 0 && M_WAITOK != 0,
3526 	    "M_NOWAIT and M_WAITOK must be non-zero for this assertion:");
3527 #if 0
3528 	/*
3529 	 * Give the #elif clause time to find problems, then remove it
3530 	 * and enable this.  (Remove <sys/stack.h> above, too.)
3531 	 */
3532 	KASSERT((flags & (M_NOWAIT|M_WAITOK)) == M_NOWAIT ||
3533 	    (flags & (M_NOWAIT|M_WAITOK)) == M_WAITOK,
3534 	    ("uma_zalloc_debug: must pass one of M_NOWAIT or M_WAITOK"));
3535 #elif defined(DDB) || defined(STACK)
3536 	if (__predict_false((flags & (M_NOWAIT|M_WAITOK)) != M_NOWAIT &&
3537 	    (flags & (M_NOWAIT|M_WAITOK)) != M_WAITOK)) {
3538 		static int stack_count;
3539 		struct stack st;
3540 
3541 		if (stack_count < 10) {
3542 			++stack_count;
3543 			printf("uma_zalloc* called with bad WAIT flags:\n");
3544 			stack_save(&st);
3545 			stack_print(&st);
3546 		}
3547 	}
3548 #endif
3549 #endif
3550 
3551 #ifdef DEBUG_MEMGUARD
3552 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) {
3553 		void *item;
3554 		item = memguard_alloc(zone->uz_size, flags);
3555 		if (item != NULL) {
3556 			error = EJUSTRETURN;
3557 			if (zone->uz_init != NULL &&
3558 			    zone->uz_init(item, zone->uz_size, flags) != 0) {
3559 				*itemp = NULL;
3560 				return (error);
3561 			}
3562 			if (zone->uz_ctor != NULL &&
3563 			    zone->uz_ctor(item, zone->uz_size, udata,
3564 			    flags) != 0) {
3565 				counter_u64_add(zone->uz_fails, 1);
3566 				if (zone->uz_fini != NULL)
3567 					zone->uz_fini(item, zone->uz_size);
3568 				*itemp = NULL;
3569 				return (error);
3570 			}
3571 			*itemp = item;
3572 			return (error);
3573 		}
3574 		/* This is unfortunate but should not be fatal. */
3575 	}
3576 #endif
3577 	return (error);
3578 }
3579 
3580 static int
3581 uma_zfree_debug(uma_zone_t zone, void *item, void *udata)
3582 {
3583 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3584 	    ("uma_zfree_debug: called with spinlock or critical section held"));
3585 
3586 #ifdef DEBUG_MEMGUARD
3587 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) {
3588 		if (zone->uz_dtor != NULL)
3589 			zone->uz_dtor(item, zone->uz_size, udata);
3590 		if (zone->uz_fini != NULL)
3591 			zone->uz_fini(item, zone->uz_size);
3592 		memguard_free(item);
3593 		return (EJUSTRETURN);
3594 	}
3595 #endif
3596 	return (0);
3597 }
3598 #endif
3599 
3600 static inline void *
3601 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket,
3602     void *udata, int flags)
3603 {
3604 	void *item;
3605 	int size, uz_flags;
3606 
3607 	item = cache_bucket_pop(cache, bucket);
3608 	size = cache_uz_size(cache);
3609 	uz_flags = cache_uz_flags(cache);
3610 	critical_exit();
3611 	return (item_ctor(zone, uz_flags, size, udata, flags, item));
3612 }
3613 
3614 static __noinline void *
3615 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3616 {
3617 	uma_cache_bucket_t bucket;
3618 	int domain;
3619 
3620 	while (cache_alloc(zone, cache, udata, flags)) {
3621 		cache = &zone->uz_cpu[curcpu];
3622 		bucket = &cache->uc_allocbucket;
3623 		if (__predict_false(bucket->ucb_cnt == 0))
3624 			continue;
3625 		return (cache_alloc_item(zone, cache, bucket, udata, flags));
3626 	}
3627 	critical_exit();
3628 
3629 	/*
3630 	 * We can not get a bucket so try to return a single item.
3631 	 */
3632 	if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
3633 		domain = PCPU_GET(domain);
3634 	else
3635 		domain = UMA_ANYDOMAIN;
3636 	return (zone_alloc_item(zone, udata, domain, flags));
3637 }
3638 
3639 /* See uma.h */
3640 void *
3641 uma_zalloc_smr(uma_zone_t zone, int flags)
3642 {
3643 	uma_cache_bucket_t bucket;
3644 	uma_cache_t cache;
3645 
3646 	CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name,
3647 	    zone, flags);
3648 
3649 #ifdef UMA_ZALLOC_DEBUG
3650 	void *item;
3651 
3652 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
3653 	    ("uma_zalloc_arg: called with non-SMR zone."));
3654 	if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN)
3655 		return (item);
3656 #endif
3657 
3658 	critical_enter();
3659 	cache = &zone->uz_cpu[curcpu];
3660 	bucket = &cache->uc_allocbucket;
3661 	if (__predict_false(bucket->ucb_cnt == 0))
3662 		return (cache_alloc_retry(zone, cache, NULL, flags));
3663 	return (cache_alloc_item(zone, cache, bucket, NULL, flags));
3664 }
3665 
3666 /* See uma.h */
3667 void *
3668 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
3669 {
3670 	uma_cache_bucket_t bucket;
3671 	uma_cache_t cache;
3672 
3673 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3674 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3675 
3676 	/* This is the fast path allocation */
3677 	CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name,
3678 	    zone, flags);
3679 
3680 #ifdef UMA_ZALLOC_DEBUG
3681 	void *item;
3682 
3683 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3684 	    ("uma_zalloc_arg: called with SMR zone."));
3685 	if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3686 		return (item);
3687 #endif
3688 
3689 	/*
3690 	 * If possible, allocate from the per-CPU cache.  There are two
3691 	 * requirements for safe access to the per-CPU cache: (1) the thread
3692 	 * accessing the cache must not be preempted or yield during access,
3693 	 * and (2) the thread must not migrate CPUs without switching which
3694 	 * cache it accesses.  We rely on a critical section to prevent
3695 	 * preemption and migration.  We release the critical section in
3696 	 * order to acquire the zone mutex if we are unable to allocate from
3697 	 * the current cache; when we re-acquire the critical section, we
3698 	 * must detect and handle migration if it has occurred.
3699 	 */
3700 	critical_enter();
3701 	cache = &zone->uz_cpu[curcpu];
3702 	bucket = &cache->uc_allocbucket;
3703 	if (__predict_false(bucket->ucb_cnt == 0))
3704 		return (cache_alloc_retry(zone, cache, udata, flags));
3705 	return (cache_alloc_item(zone, cache, bucket, udata, flags));
3706 }
3707 
3708 /*
3709  * Replenish an alloc bucket and possibly restore an old one.  Called in
3710  * a critical section.  Returns in a critical section.
3711  *
3712  * A false return value indicates an allocation failure.
3713  * A true return value indicates success and the caller should retry.
3714  */
3715 static __noinline bool
3716 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3717 {
3718 	uma_bucket_t bucket;
3719 	int curdomain, domain;
3720 	bool new;
3721 
3722 	CRITICAL_ASSERT(curthread);
3723 
3724 	/*
3725 	 * If we have run out of items in our alloc bucket see
3726 	 * if we can switch with the free bucket.
3727 	 *
3728 	 * SMR Zones can't re-use the free bucket until the sequence has
3729 	 * expired.
3730 	 */
3731 	if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 &&
3732 	    cache->uc_freebucket.ucb_cnt != 0) {
3733 		cache_bucket_swap(&cache->uc_freebucket,
3734 		    &cache->uc_allocbucket);
3735 		return (true);
3736 	}
3737 
3738 	/*
3739 	 * Discard any empty allocation bucket while we hold no locks.
3740 	 */
3741 	bucket = cache_bucket_unload_alloc(cache);
3742 	critical_exit();
3743 
3744 	if (bucket != NULL) {
3745 		KASSERT(bucket->ub_cnt == 0,
3746 		    ("cache_alloc: Entered with non-empty alloc bucket."));
3747 		bucket_free(zone, bucket, udata);
3748 	}
3749 
3750 	/*
3751 	 * Attempt to retrieve the item from the per-CPU cache has failed, so
3752 	 * we must go back to the zone.  This requires the zdom lock, so we
3753 	 * must drop the critical section, then re-acquire it when we go back
3754 	 * to the cache.  Since the critical section is released, we may be
3755 	 * preempted or migrate.  As such, make sure not to maintain any
3756 	 * thread-local state specific to the cache from prior to releasing
3757 	 * the critical section.
3758 	 */
3759 	domain = PCPU_GET(domain);
3760 	if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 ||
3761 	    VM_DOMAIN_EMPTY(domain))
3762 		domain = zone_domain_highest(zone, domain);
3763 	bucket = cache_fetch_bucket(zone, cache, domain);
3764 	if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) {
3765 		bucket = zone_alloc_bucket(zone, udata, domain, flags);
3766 		new = true;
3767 	} else {
3768 		new = false;
3769 	}
3770 
3771 	CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
3772 	    zone->uz_name, zone, bucket);
3773 	if (bucket == NULL) {
3774 		critical_enter();
3775 		return (false);
3776 	}
3777 
3778 	/*
3779 	 * See if we lost the race or were migrated.  Cache the
3780 	 * initialized bucket to make this less likely or claim
3781 	 * the memory directly.
3782 	 */
3783 	critical_enter();
3784 	cache = &zone->uz_cpu[curcpu];
3785 	if (cache->uc_allocbucket.ucb_bucket == NULL &&
3786 	    ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 ||
3787 	    (curdomain = PCPU_GET(domain)) == domain ||
3788 	    VM_DOMAIN_EMPTY(curdomain))) {
3789 		if (new)
3790 			atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax,
3791 			    bucket->ub_cnt);
3792 		cache_bucket_load_alloc(cache, bucket);
3793 		return (true);
3794 	}
3795 
3796 	/*
3797 	 * We lost the race, release this bucket and start over.
3798 	 */
3799 	critical_exit();
3800 	zone_put_bucket(zone, domain, bucket, udata, !new);
3801 	critical_enter();
3802 
3803 	return (true);
3804 }
3805 
3806 void *
3807 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
3808 {
3809 #ifdef NUMA
3810 	uma_bucket_t bucket;
3811 	uma_zone_domain_t zdom;
3812 	void *item;
3813 #endif
3814 
3815 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3816 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3817 
3818 	/* This is the fast path allocation */
3819 	CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d",
3820 	    zone->uz_name, zone, domain, flags);
3821 
3822 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3823 	    ("uma_zalloc_domain: called with SMR zone."));
3824 #ifdef NUMA
3825 	KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0,
3826 	    ("uma_zalloc_domain: called with non-FIRSTTOUCH zone."));
3827 
3828 	if (vm_ndomains == 1)
3829 		return (uma_zalloc_arg(zone, udata, flags));
3830 
3831 #ifdef UMA_ZALLOC_DEBUG
3832 	if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3833 		return (item);
3834 #endif
3835 
3836 	/*
3837 	 * Try to allocate from the bucket cache before falling back to the keg.
3838 	 * We could try harder and attempt to allocate from per-CPU caches or
3839 	 * the per-domain cross-domain buckets, but the complexity is probably
3840 	 * not worth it.  It is more important that frees of previous
3841 	 * cross-domain allocations do not blow up the cache.
3842 	 */
3843 	zdom = zone_domain_lock(zone, domain);
3844 	if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) {
3845 		item = bucket->ub_bucket[bucket->ub_cnt - 1];
3846 #ifdef INVARIANTS
3847 		bucket->ub_bucket[bucket->ub_cnt - 1] = NULL;
3848 #endif
3849 		bucket->ub_cnt--;
3850 		zone_put_bucket(zone, domain, bucket, udata, true);
3851 		item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata,
3852 		    flags, item);
3853 		if (item != NULL) {
3854 			KASSERT(item_domain(item) == domain,
3855 			    ("%s: bucket cache item %p from wrong domain",
3856 			    __func__, item));
3857 			counter_u64_add(zone->uz_allocs, 1);
3858 		}
3859 		return (item);
3860 	}
3861 	ZDOM_UNLOCK(zdom);
3862 	return (zone_alloc_item(zone, udata, domain, flags));
3863 #else
3864 	return (uma_zalloc_arg(zone, udata, flags));
3865 #endif
3866 }
3867 
3868 /*
3869  * Find a slab with some space.  Prefer slabs that are partially used over those
3870  * that are totally full.  This helps to reduce fragmentation.
3871  *
3872  * If 'rr' is 1, search all domains starting from 'domain'.  Otherwise check
3873  * only 'domain'.
3874  */
3875 static uma_slab_t
3876 keg_first_slab(uma_keg_t keg, int domain, bool rr)
3877 {
3878 	uma_domain_t dom;
3879 	uma_slab_t slab;
3880 	int start;
3881 
3882 	KASSERT(domain >= 0 && domain < vm_ndomains,
3883 	    ("keg_first_slab: domain %d out of range", domain));
3884 	KEG_LOCK_ASSERT(keg, domain);
3885 
3886 	slab = NULL;
3887 	start = domain;
3888 	do {
3889 		dom = &keg->uk_domain[domain];
3890 		if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL)
3891 			return (slab);
3892 		if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) {
3893 			LIST_REMOVE(slab, us_link);
3894 			dom->ud_free_slabs--;
3895 			LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
3896 			return (slab);
3897 		}
3898 		if (rr)
3899 			domain = (domain + 1) % vm_ndomains;
3900 	} while (domain != start);
3901 
3902 	return (NULL);
3903 }
3904 
3905 /*
3906  * Fetch an existing slab from a free or partial list.  Returns with the
3907  * keg domain lock held if a slab was found or unlocked if not.
3908  */
3909 static uma_slab_t
3910 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
3911 {
3912 	uma_slab_t slab;
3913 	uint32_t reserve;
3914 
3915 	/* HASH has a single free list. */
3916 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
3917 		domain = 0;
3918 
3919 	KEG_LOCK(keg, domain);
3920 	reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
3921 	if (keg->uk_domain[domain].ud_free_items <= reserve ||
3922 	    (slab = keg_first_slab(keg, domain, rr)) == NULL) {
3923 		KEG_UNLOCK(keg, domain);
3924 		return (NULL);
3925 	}
3926 	return (slab);
3927 }
3928 
3929 static uma_slab_t
3930 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
3931 {
3932 	struct vm_domainset_iter di;
3933 	uma_slab_t slab;
3934 	int aflags, domain;
3935 	bool rr;
3936 
3937 	KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM),
3938 	    ("%s: invalid flags %#x", __func__, flags));
3939 
3940 restart:
3941 	/*
3942 	 * Use the keg's policy if upper layers haven't already specified a
3943 	 * domain (as happens with first-touch zones).
3944 	 *
3945 	 * To avoid races we run the iterator with the keg lock held, but that
3946 	 * means that we cannot allow the vm_domainset layer to sleep.  Thus,
3947 	 * clear M_WAITOK and handle low memory conditions locally.
3948 	 */
3949 	rr = rdomain == UMA_ANYDOMAIN;
3950 	if (rr) {
3951 		aflags = (flags & ~M_WAITOK) | M_NOWAIT;
3952 		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
3953 		    &aflags);
3954 	} else {
3955 		aflags = flags;
3956 		domain = rdomain;
3957 	}
3958 
3959 	for (;;) {
3960 		slab = keg_fetch_free_slab(keg, domain, rr, flags);
3961 		if (slab != NULL)
3962 			return (slab);
3963 
3964 		/*
3965 		 * M_NOVM is used to break the recursion that can otherwise
3966 		 * occur if low-level memory management routines use UMA.
3967 		 */
3968 		if ((flags & M_NOVM) == 0) {
3969 			slab = keg_alloc_slab(keg, zone, domain, flags, aflags);
3970 			if (slab != NULL)
3971 				return (slab);
3972 		}
3973 
3974 		if (!rr) {
3975 			if ((flags & M_USE_RESERVE) != 0) {
3976 				/*
3977 				 * Drain reserves from other domains before
3978 				 * giving up or sleeping.  It may be useful to
3979 				 * support per-domain reserves eventually.
3980 				 */
3981 				rdomain = UMA_ANYDOMAIN;
3982 				goto restart;
3983 			}
3984 			if ((flags & M_WAITOK) == 0)
3985 				break;
3986 			vm_wait_domain(domain);
3987 		} else if (vm_domainset_iter_policy(&di, &domain) != 0) {
3988 			if ((flags & M_WAITOK) != 0) {
3989 				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
3990 				goto restart;
3991 			}
3992 			break;
3993 		}
3994 	}
3995 
3996 	/*
3997 	 * We might not have been able to get a slab but another cpu
3998 	 * could have while we were unlocked.  Check again before we
3999 	 * fail.
4000 	 */
4001 	if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL)
4002 		return (slab);
4003 
4004 	return (NULL);
4005 }
4006 
4007 static void *
4008 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
4009 {
4010 	uma_domain_t dom;
4011 	void *item;
4012 	int freei;
4013 
4014 	KEG_LOCK_ASSERT(keg, slab->us_domain);
4015 
4016 	dom = &keg->uk_domain[slab->us_domain];
4017 	freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1;
4018 	BIT_CLR(keg->uk_ipers, freei, &slab->us_free);
4019 	item = slab_item(slab, keg, freei);
4020 	slab->us_freecount--;
4021 	dom->ud_free_items--;
4022 
4023 	/*
4024 	 * Move this slab to the full list.  It must be on the partial list, so
4025 	 * we do not need to update the free slab count.  In particular,
4026 	 * keg_fetch_slab() always returns slabs on the partial list.
4027 	 */
4028 	if (slab->us_freecount == 0) {
4029 		LIST_REMOVE(slab, us_link);
4030 		LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
4031 	}
4032 
4033 	return (item);
4034 }
4035 
4036 static int
4037 zone_import(void *arg, void **bucket, int max, int domain, int flags)
4038 {
4039 	uma_domain_t dom;
4040 	uma_zone_t zone;
4041 	uma_slab_t slab;
4042 	uma_keg_t keg;
4043 #ifdef NUMA
4044 	int stripe;
4045 #endif
4046 	int i;
4047 
4048 	zone = arg;
4049 	slab = NULL;
4050 	keg = zone->uz_keg;
4051 	/* Try to keep the buckets totally full */
4052 	for (i = 0; i < max; ) {
4053 		if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL)
4054 			break;
4055 #ifdef NUMA
4056 		stripe = howmany(max, vm_ndomains);
4057 #endif
4058 		dom = &keg->uk_domain[slab->us_domain];
4059 		do {
4060 			bucket[i++] = slab_alloc_item(keg, slab);
4061 			if (keg->uk_reserve > 0 &&
4062 			    dom->ud_free_items <= keg->uk_reserve) {
4063 				/*
4064 				 * Avoid depleting the reserve after a
4065 				 * successful item allocation, even if
4066 				 * M_USE_RESERVE is specified.
4067 				 */
4068 				KEG_UNLOCK(keg, slab->us_domain);
4069 				goto out;
4070 			}
4071 #ifdef NUMA
4072 			/*
4073 			 * If the zone is striped we pick a new slab for every
4074 			 * N allocations.  Eliminating this conditional will
4075 			 * instead pick a new domain for each bucket rather
4076 			 * than stripe within each bucket.  The current option
4077 			 * produces more fragmentation and requires more cpu
4078 			 * time but yields better distribution.
4079 			 */
4080 			if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 &&
4081 			    vm_ndomains > 1 && --stripe == 0)
4082 				break;
4083 #endif
4084 		} while (slab->us_freecount != 0 && i < max);
4085 		KEG_UNLOCK(keg, slab->us_domain);
4086 
4087 		/* Don't block if we allocated any successfully. */
4088 		flags &= ~M_WAITOK;
4089 		flags |= M_NOWAIT;
4090 	}
4091 out:
4092 	return i;
4093 }
4094 
4095 static int
4096 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags)
4097 {
4098 	uint64_t old, new, total, max;
4099 
4100 	/*
4101 	 * The hard case.  We're going to sleep because there were existing
4102 	 * sleepers or because we ran out of items.  This routine enforces
4103 	 * fairness by keeping fifo order.
4104 	 *
4105 	 * First release our ill gotten gains and make some noise.
4106 	 */
4107 	for (;;) {
4108 		zone_free_limit(zone, count);
4109 		zone_log_warning(zone);
4110 		zone_maxaction(zone);
4111 		if (flags & M_NOWAIT)
4112 			return (0);
4113 
4114 		/*
4115 		 * We need to allocate an item or set ourself as a sleeper
4116 		 * while the sleepq lock is held to avoid wakeup races.  This
4117 		 * is essentially a home rolled semaphore.
4118 		 */
4119 		sleepq_lock(&zone->uz_max_items);
4120 		old = zone->uz_items;
4121 		do {
4122 			MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX);
4123 			/* Cache the max since we will evaluate twice. */
4124 			max = zone->uz_max_items;
4125 			if (UZ_ITEMS_SLEEPERS(old) != 0 ||
4126 			    UZ_ITEMS_COUNT(old) >= max)
4127 				new = old + UZ_ITEMS_SLEEPER;
4128 			else
4129 				new = old + MIN(count, max - old);
4130 		} while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0);
4131 
4132 		/* We may have successfully allocated under the sleepq lock. */
4133 		if (UZ_ITEMS_SLEEPERS(new) == 0) {
4134 			sleepq_release(&zone->uz_max_items);
4135 			return (new - old);
4136 		}
4137 
4138 		/*
4139 		 * This is in a different cacheline from uz_items so that we
4140 		 * don't constantly invalidate the fastpath cacheline when we
4141 		 * adjust item counts.  This could be limited to toggling on
4142 		 * transitions.
4143 		 */
4144 		atomic_add_32(&zone->uz_sleepers, 1);
4145 		atomic_add_64(&zone->uz_sleeps, 1);
4146 
4147 		/*
4148 		 * We have added ourselves as a sleeper.  The sleepq lock
4149 		 * protects us from wakeup races.  Sleep now and then retry.
4150 		 */
4151 		sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0);
4152 		sleepq_wait(&zone->uz_max_items, PVM);
4153 
4154 		/*
4155 		 * After wakeup, remove ourselves as a sleeper and try
4156 		 * again.  We no longer have the sleepq lock for protection.
4157 		 *
4158 		 * Subract ourselves as a sleeper while attempting to add
4159 		 * our count.
4160 		 */
4161 		atomic_subtract_32(&zone->uz_sleepers, 1);
4162 		old = atomic_fetchadd_64(&zone->uz_items,
4163 		    -(UZ_ITEMS_SLEEPER - count));
4164 		/* We're no longer a sleeper. */
4165 		old -= UZ_ITEMS_SLEEPER;
4166 
4167 		/*
4168 		 * If we're still at the limit, restart.  Notably do not
4169 		 * block on other sleepers.  Cache the max value to protect
4170 		 * against changes via sysctl.
4171 		 */
4172 		total = UZ_ITEMS_COUNT(old);
4173 		max = zone->uz_max_items;
4174 		if (total >= max)
4175 			continue;
4176 		/* Truncate if necessary, otherwise wake other sleepers. */
4177 		if (total + count > max) {
4178 			zone_free_limit(zone, total + count - max);
4179 			count = max - total;
4180 		} else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0)
4181 			wakeup_one(&zone->uz_max_items);
4182 
4183 		return (count);
4184 	}
4185 }
4186 
4187 /*
4188  * Allocate 'count' items from our max_items limit.  Returns the number
4189  * available.  If M_NOWAIT is not specified it will sleep until at least
4190  * one item can be allocated.
4191  */
4192 static int
4193 zone_alloc_limit(uma_zone_t zone, int count, int flags)
4194 {
4195 	uint64_t old;
4196 	uint64_t max;
4197 
4198 	max = zone->uz_max_items;
4199 	MPASS(max > 0);
4200 
4201 	/*
4202 	 * We expect normal allocations to succeed with a simple
4203 	 * fetchadd.
4204 	 */
4205 	old = atomic_fetchadd_64(&zone->uz_items, count);
4206 	if (__predict_true(old + count <= max))
4207 		return (count);
4208 
4209 	/*
4210 	 * If we had some items and no sleepers just return the
4211 	 * truncated value.  We have to release the excess space
4212 	 * though because that may wake sleepers who weren't woken
4213 	 * because we were temporarily over the limit.
4214 	 */
4215 	if (old < max) {
4216 		zone_free_limit(zone, (old + count) - max);
4217 		return (max - old);
4218 	}
4219 	return (zone_alloc_limit_hard(zone, count, flags));
4220 }
4221 
4222 /*
4223  * Free a number of items back to the limit.
4224  */
4225 static void
4226 zone_free_limit(uma_zone_t zone, int count)
4227 {
4228 	uint64_t old;
4229 
4230 	MPASS(count > 0);
4231 
4232 	/*
4233 	 * In the common case we either have no sleepers or
4234 	 * are still over the limit and can just return.
4235 	 */
4236 	old = atomic_fetchadd_64(&zone->uz_items, -count);
4237 	if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 ||
4238 	   UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items))
4239 		return;
4240 
4241 	/*
4242 	 * Moderate the rate of wakeups.  Sleepers will continue
4243 	 * to generate wakeups if necessary.
4244 	 */
4245 	wakeup_one(&zone->uz_max_items);
4246 }
4247 
4248 static uma_bucket_t
4249 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
4250 {
4251 	uma_bucket_t bucket;
4252 	int error, maxbucket, cnt;
4253 
4254 	CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name,
4255 	    zone, domain);
4256 
4257 	/* Avoid allocs targeting empty domains. */
4258 	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4259 		domain = UMA_ANYDOMAIN;
4260 	else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4261 		domain = UMA_ANYDOMAIN;
4262 
4263 	if (zone->uz_max_items > 0)
4264 		maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size,
4265 		    M_NOWAIT);
4266 	else
4267 		maxbucket = zone->uz_bucket_size;
4268 	if (maxbucket == 0)
4269 		return (NULL);
4270 
4271 	/* Don't wait for buckets, preserve caller's NOVM setting. */
4272 	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
4273 	if (bucket == NULL) {
4274 		cnt = 0;
4275 		goto out;
4276 	}
4277 
4278 	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
4279 	    MIN(maxbucket, bucket->ub_entries), domain, flags);
4280 
4281 	/*
4282 	 * Initialize the memory if necessary.
4283 	 */
4284 	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
4285 		int i;
4286 
4287 		for (i = 0; i < bucket->ub_cnt; i++) {
4288 			kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
4289 			error = zone->uz_init(bucket->ub_bucket[i],
4290 			    zone->uz_size, flags);
4291 			kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
4292 			if (error != 0)
4293 				break;
4294 		}
4295 
4296 		/*
4297 		 * If we couldn't initialize the whole bucket, put the
4298 		 * rest back onto the freelist.
4299 		 */
4300 		if (i != bucket->ub_cnt) {
4301 			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
4302 			    bucket->ub_cnt - i);
4303 #ifdef INVARIANTS
4304 			bzero(&bucket->ub_bucket[i],
4305 			    sizeof(void *) * (bucket->ub_cnt - i));
4306 #endif
4307 			bucket->ub_cnt = i;
4308 		}
4309 	}
4310 
4311 	cnt = bucket->ub_cnt;
4312 	if (bucket->ub_cnt == 0) {
4313 		bucket_free(zone, bucket, udata);
4314 		counter_u64_add(zone->uz_fails, 1);
4315 		bucket = NULL;
4316 	}
4317 out:
4318 	if (zone->uz_max_items > 0 && cnt < maxbucket)
4319 		zone_free_limit(zone, maxbucket - cnt);
4320 
4321 	return (bucket);
4322 }
4323 
4324 /*
4325  * Allocates a single item from a zone.
4326  *
4327  * Arguments
4328  *	zone   The zone to alloc for.
4329  *	udata  The data to be passed to the constructor.
4330  *	domain The domain to allocate from or UMA_ANYDOMAIN.
4331  *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
4332  *
4333  * Returns
4334  *	NULL if there is no memory and M_NOWAIT is set
4335  *	An item if successful
4336  */
4337 
4338 static void *
4339 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
4340 {
4341 	void *item;
4342 
4343 	if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) {
4344 		counter_u64_add(zone->uz_fails, 1);
4345 		return (NULL);
4346 	}
4347 
4348 	/* Avoid allocs targeting empty domains. */
4349 	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4350 		domain = UMA_ANYDOMAIN;
4351 
4352 	if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
4353 		goto fail_cnt;
4354 
4355 	/*
4356 	 * We have to call both the zone's init (not the keg's init)
4357 	 * and the zone's ctor.  This is because the item is going from
4358 	 * a keg slab directly to the user, and the user is expecting it
4359 	 * to be both zone-init'd as well as zone-ctor'd.
4360 	 */
4361 	if (zone->uz_init != NULL) {
4362 		int error;
4363 
4364 		kasan_mark_item_valid(zone, item);
4365 		error = zone->uz_init(item, zone->uz_size, flags);
4366 		kasan_mark_item_invalid(zone, item);
4367 		if (error != 0) {
4368 			zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT);
4369 			goto fail_cnt;
4370 		}
4371 	}
4372 	item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags,
4373 	    item);
4374 	if (item == NULL)
4375 		goto fail;
4376 
4377 	counter_u64_add(zone->uz_allocs, 1);
4378 	CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
4379 	    zone->uz_name, zone);
4380 
4381 	return (item);
4382 
4383 fail_cnt:
4384 	counter_u64_add(zone->uz_fails, 1);
4385 fail:
4386 	if (zone->uz_max_items > 0)
4387 		zone_free_limit(zone, 1);
4388 	CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
4389 	    zone->uz_name, zone);
4390 
4391 	return (NULL);
4392 }
4393 
4394 /* See uma.h */
4395 void
4396 uma_zfree_smr(uma_zone_t zone, void *item)
4397 {
4398 	uma_cache_t cache;
4399 	uma_cache_bucket_t bucket;
4400 	int itemdomain;
4401 #ifdef NUMA
4402 	int uz_flags;
4403 #endif
4404 
4405 	CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p",
4406 	    zone->uz_name, zone, item);
4407 
4408 #ifdef UMA_ZALLOC_DEBUG
4409 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
4410 	    ("uma_zfree_smr: called with non-SMR zone."));
4411 	KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer."));
4412 	SMR_ASSERT_NOT_ENTERED(zone->uz_smr);
4413 	if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN)
4414 		return;
4415 #endif
4416 	cache = &zone->uz_cpu[curcpu];
4417 	itemdomain = 0;
4418 #ifdef NUMA
4419 	uz_flags = cache_uz_flags(cache);
4420 	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4421 		itemdomain = item_domain(item);
4422 #endif
4423 	critical_enter();
4424 	do {
4425 		cache = &zone->uz_cpu[curcpu];
4426 		/* SMR Zones must free to the free bucket. */
4427 		bucket = &cache->uc_freebucket;
4428 #ifdef NUMA
4429 		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4430 		    PCPU_GET(domain) != itemdomain) {
4431 			bucket = &cache->uc_crossbucket;
4432 		}
4433 #endif
4434 		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4435 			cache_bucket_push(cache, bucket, item);
4436 			critical_exit();
4437 			return;
4438 		}
4439 	} while (cache_free(zone, cache, NULL, itemdomain));
4440 	critical_exit();
4441 
4442 	/*
4443 	 * If nothing else caught this, we'll just do an internal free.
4444 	 */
4445 	zone_free_item(zone, item, NULL, SKIP_NONE);
4446 }
4447 
4448 /* See uma.h */
4449 void
4450 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
4451 {
4452 	uma_cache_t cache;
4453 	uma_cache_bucket_t bucket;
4454 	int itemdomain, uz_flags;
4455 
4456 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
4457 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
4458 
4459 	CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p",
4460 	    zone->uz_name, zone, item);
4461 
4462 #ifdef UMA_ZALLOC_DEBUG
4463 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
4464 	    ("uma_zfree_arg: called with SMR zone."));
4465 	if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN)
4466 		return;
4467 #endif
4468         /* uma_zfree(..., NULL) does nothing, to match free(9). */
4469         if (item == NULL)
4470                 return;
4471 
4472 	/*
4473 	 * We are accessing the per-cpu cache without a critical section to
4474 	 * fetch size and flags.  This is acceptable, if we are preempted we
4475 	 * will simply read another cpu's line.
4476 	 */
4477 	cache = &zone->uz_cpu[curcpu];
4478 	uz_flags = cache_uz_flags(cache);
4479 	if (UMA_ALWAYS_CTORDTOR ||
4480 	    __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0))
4481 		item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE);
4482 
4483 	/*
4484 	 * The race here is acceptable.  If we miss it we'll just have to wait
4485 	 * a little longer for the limits to be reset.
4486 	 */
4487 	if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) {
4488 		if (atomic_load_32(&zone->uz_sleepers) > 0)
4489 			goto zfree_item;
4490 	}
4491 
4492 	/*
4493 	 * If possible, free to the per-CPU cache.  There are two
4494 	 * requirements for safe access to the per-CPU cache: (1) the thread
4495 	 * accessing the cache must not be preempted or yield during access,
4496 	 * and (2) the thread must not migrate CPUs without switching which
4497 	 * cache it accesses.  We rely on a critical section to prevent
4498 	 * preemption and migration.  We release the critical section in
4499 	 * order to acquire the zone mutex if we are unable to free to the
4500 	 * current cache; when we re-acquire the critical section, we must
4501 	 * detect and handle migration if it has occurred.
4502 	 */
4503 	itemdomain = 0;
4504 #ifdef NUMA
4505 	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4506 		itemdomain = item_domain(item);
4507 #endif
4508 	critical_enter();
4509 	do {
4510 		cache = &zone->uz_cpu[curcpu];
4511 		/*
4512 		 * Try to free into the allocbucket first to give LIFO
4513 		 * ordering for cache-hot datastructures.  Spill over
4514 		 * into the freebucket if necessary.  Alloc will swap
4515 		 * them if one runs dry.
4516 		 */
4517 		bucket = &cache->uc_allocbucket;
4518 #ifdef NUMA
4519 		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4520 		    PCPU_GET(domain) != itemdomain) {
4521 			bucket = &cache->uc_crossbucket;
4522 		} else
4523 #endif
4524 		if (bucket->ucb_cnt == bucket->ucb_entries &&
4525 		   cache->uc_freebucket.ucb_cnt <
4526 		   cache->uc_freebucket.ucb_entries)
4527 			cache_bucket_swap(&cache->uc_freebucket,
4528 			    &cache->uc_allocbucket);
4529 		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4530 			cache_bucket_push(cache, bucket, item);
4531 			critical_exit();
4532 			return;
4533 		}
4534 	} while (cache_free(zone, cache, udata, itemdomain));
4535 	critical_exit();
4536 
4537 	/*
4538 	 * If nothing else caught this, we'll just do an internal free.
4539 	 */
4540 zfree_item:
4541 	zone_free_item(zone, item, udata, SKIP_DTOR);
4542 }
4543 
4544 #ifdef NUMA
4545 /*
4546  * sort crossdomain free buckets to domain correct buckets and cache
4547  * them.
4548  */
4549 static void
4550 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata)
4551 {
4552 	struct uma_bucketlist emptybuckets, fullbuckets;
4553 	uma_zone_domain_t zdom;
4554 	uma_bucket_t b;
4555 	smr_seq_t seq;
4556 	void *item;
4557 	int domain;
4558 
4559 	CTR3(KTR_UMA,
4560 	    "uma_zfree: zone %s(%p) draining cross bucket %p",
4561 	    zone->uz_name, zone, bucket);
4562 
4563 	/*
4564 	 * It is possible for buckets to arrive here out of order so we fetch
4565 	 * the current smr seq rather than accepting the bucket's.
4566 	 */
4567 	seq = SMR_SEQ_INVALID;
4568 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
4569 		seq = smr_advance(zone->uz_smr);
4570 
4571 	/*
4572 	 * To avoid having ndomain * ndomain buckets for sorting we have a
4573 	 * lock on the current crossfree bucket.  A full matrix with
4574 	 * per-domain locking could be used if necessary.
4575 	 */
4576 	STAILQ_INIT(&emptybuckets);
4577 	STAILQ_INIT(&fullbuckets);
4578 	ZONE_CROSS_LOCK(zone);
4579 	for (; bucket->ub_cnt > 0; bucket->ub_cnt--) {
4580 		item = bucket->ub_bucket[bucket->ub_cnt - 1];
4581 		domain = item_domain(item);
4582 		zdom = ZDOM_GET(zone, domain);
4583 		if (zdom->uzd_cross == NULL) {
4584 			if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4585 				STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4586 				zdom->uzd_cross = b;
4587 			} else {
4588 				/*
4589 				 * Avoid allocating a bucket with the cross lock
4590 				 * held, since allocation can trigger a
4591 				 * cross-domain free and bucket zones may
4592 				 * allocate from each other.
4593 				 */
4594 				ZONE_CROSS_UNLOCK(zone);
4595 				b = bucket_alloc(zone, udata, M_NOWAIT);
4596 				if (b == NULL)
4597 					goto out;
4598 				ZONE_CROSS_LOCK(zone);
4599 				if (zdom->uzd_cross != NULL) {
4600 					STAILQ_INSERT_HEAD(&emptybuckets, b,
4601 					    ub_link);
4602 				} else {
4603 					zdom->uzd_cross = b;
4604 				}
4605 			}
4606 		}
4607 		b = zdom->uzd_cross;
4608 		b->ub_bucket[b->ub_cnt++] = item;
4609 		b->ub_seq = seq;
4610 		if (b->ub_cnt == b->ub_entries) {
4611 			STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link);
4612 			if ((b = STAILQ_FIRST(&emptybuckets)) != NULL)
4613 				STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4614 			zdom->uzd_cross = b;
4615 		}
4616 	}
4617 	ZONE_CROSS_UNLOCK(zone);
4618 out:
4619 	if (bucket->ub_cnt == 0)
4620 		bucket->ub_seq = SMR_SEQ_INVALID;
4621 	bucket_free(zone, bucket, udata);
4622 
4623 	while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4624 		STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4625 		bucket_free(zone, b, udata);
4626 	}
4627 	while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) {
4628 		STAILQ_REMOVE_HEAD(&fullbuckets, ub_link);
4629 		domain = item_domain(b->ub_bucket[0]);
4630 		zone_put_bucket(zone, domain, b, udata, true);
4631 	}
4632 }
4633 #endif
4634 
4635 static void
4636 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
4637     int itemdomain, bool ws)
4638 {
4639 
4640 #ifdef NUMA
4641 	/*
4642 	 * Buckets coming from the wrong domain will be entirely for the
4643 	 * only other domain on two domain systems.  In this case we can
4644 	 * simply cache them.  Otherwise we need to sort them back to
4645 	 * correct domains.
4646 	 */
4647 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4648 	    vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) {
4649 		zone_free_cross(zone, bucket, udata);
4650 		return;
4651 	}
4652 #endif
4653 
4654 	/*
4655 	 * Attempt to save the bucket in the zone's domain bucket cache.
4656 	 */
4657 	CTR3(KTR_UMA,
4658 	    "uma_zfree: zone %s(%p) putting bucket %p on free list",
4659 	    zone->uz_name, zone, bucket);
4660 	/* ub_cnt is pointing to the last free item */
4661 	if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4662 		itemdomain = zone_domain_lowest(zone, itemdomain);
4663 	zone_put_bucket(zone, itemdomain, bucket, udata, ws);
4664 }
4665 
4666 /*
4667  * Populate a free or cross bucket for the current cpu cache.  Free any
4668  * existing full bucket either to the zone cache or back to the slab layer.
4669  *
4670  * Enters and returns in a critical section.  false return indicates that
4671  * we can not satisfy this free in the cache layer.  true indicates that
4672  * the caller should retry.
4673  */
4674 static __noinline bool
4675 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain)
4676 {
4677 	uma_cache_bucket_t cbucket;
4678 	uma_bucket_t newbucket, bucket;
4679 
4680 	CRITICAL_ASSERT(curthread);
4681 
4682 	if (zone->uz_bucket_size == 0)
4683 		return false;
4684 
4685 	cache = &zone->uz_cpu[curcpu];
4686 	newbucket = NULL;
4687 
4688 	/*
4689 	 * FIRSTTOUCH domains need to free to the correct zdom.  When
4690 	 * enabled this is the zdom of the item.   The bucket is the
4691 	 * cross bucket if the current domain and itemdomain do not match.
4692 	 */
4693 	cbucket = &cache->uc_freebucket;
4694 #ifdef NUMA
4695 	if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4696 		if (PCPU_GET(domain) != itemdomain) {
4697 			cbucket = &cache->uc_crossbucket;
4698 			if (cbucket->ucb_cnt != 0)
4699 				counter_u64_add(zone->uz_xdomain,
4700 				    cbucket->ucb_cnt);
4701 		}
4702 	}
4703 #endif
4704 	bucket = cache_bucket_unload(cbucket);
4705 	KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries,
4706 	    ("cache_free: Entered with non-full free bucket."));
4707 
4708 	/* We are no longer associated with this CPU. */
4709 	critical_exit();
4710 
4711 	/*
4712 	 * Don't let SMR zones operate without a free bucket.  Force
4713 	 * a synchronize and re-use this one.  We will only degrade
4714 	 * to a synchronize every bucket_size items rather than every
4715 	 * item if we fail to allocate a bucket.
4716 	 */
4717 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0) {
4718 		if (bucket != NULL)
4719 			bucket->ub_seq = smr_advance(zone->uz_smr);
4720 		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4721 		if (newbucket == NULL && bucket != NULL) {
4722 			bucket_drain(zone, bucket);
4723 			newbucket = bucket;
4724 			bucket = NULL;
4725 		}
4726 	} else if (!bucketdisable)
4727 		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4728 
4729 	if (bucket != NULL)
4730 		zone_free_bucket(zone, bucket, udata, itemdomain, true);
4731 
4732 	critical_enter();
4733 	if ((bucket = newbucket) == NULL)
4734 		return (false);
4735 	cache = &zone->uz_cpu[curcpu];
4736 #ifdef NUMA
4737 	/*
4738 	 * Check to see if we should be populating the cross bucket.  If it
4739 	 * is already populated we will fall through and attempt to populate
4740 	 * the free bucket.
4741 	 */
4742 	if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4743 		if (PCPU_GET(domain) != itemdomain &&
4744 		    cache->uc_crossbucket.ucb_bucket == NULL) {
4745 			cache_bucket_load_cross(cache, bucket);
4746 			return (true);
4747 		}
4748 	}
4749 #endif
4750 	/*
4751 	 * We may have lost the race to fill the bucket or switched CPUs.
4752 	 */
4753 	if (cache->uc_freebucket.ucb_bucket != NULL) {
4754 		critical_exit();
4755 		bucket_free(zone, bucket, udata);
4756 		critical_enter();
4757 	} else
4758 		cache_bucket_load_free(cache, bucket);
4759 
4760 	return (true);
4761 }
4762 
4763 static void
4764 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item)
4765 {
4766 	uma_keg_t keg;
4767 	uma_domain_t dom;
4768 	int freei;
4769 
4770 	keg = zone->uz_keg;
4771 	KEG_LOCK_ASSERT(keg, slab->us_domain);
4772 
4773 	/* Do we need to remove from any lists? */
4774 	dom = &keg->uk_domain[slab->us_domain];
4775 	if (slab->us_freecount + 1 == keg->uk_ipers) {
4776 		LIST_REMOVE(slab, us_link);
4777 		LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
4778 		dom->ud_free_slabs++;
4779 	} else if (slab->us_freecount == 0) {
4780 		LIST_REMOVE(slab, us_link);
4781 		LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
4782 	}
4783 
4784 	/* Slab management. */
4785 	freei = slab_item_index(slab, keg, item);
4786 	BIT_SET(keg->uk_ipers, freei, &slab->us_free);
4787 	slab->us_freecount++;
4788 
4789 	/* Keg statistics. */
4790 	dom->ud_free_items++;
4791 }
4792 
4793 static void
4794 zone_release(void *arg, void **bucket, int cnt)
4795 {
4796 	struct mtx *lock;
4797 	uma_zone_t zone;
4798 	uma_slab_t slab;
4799 	uma_keg_t keg;
4800 	uint8_t *mem;
4801 	void *item;
4802 	int i;
4803 
4804 	zone = arg;
4805 	keg = zone->uz_keg;
4806 	lock = NULL;
4807 	if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0))
4808 		lock = KEG_LOCK(keg, 0);
4809 	for (i = 0; i < cnt; i++) {
4810 		item = bucket[i];
4811 		if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) {
4812 			slab = vtoslab((vm_offset_t)item);
4813 		} else {
4814 			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
4815 			if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0)
4816 				slab = hash_sfind(&keg->uk_hash, mem);
4817 			else
4818 				slab = (uma_slab_t)(mem + keg->uk_pgoff);
4819 		}
4820 		if (lock != KEG_LOCKPTR(keg, slab->us_domain)) {
4821 			if (lock != NULL)
4822 				mtx_unlock(lock);
4823 			lock = KEG_LOCK(keg, slab->us_domain);
4824 		}
4825 		slab_free_item(zone, slab, item);
4826 	}
4827 	if (lock != NULL)
4828 		mtx_unlock(lock);
4829 }
4830 
4831 /*
4832  * Frees a single item to any zone.
4833  *
4834  * Arguments:
4835  *	zone   The zone to free to
4836  *	item   The item we're freeing
4837  *	udata  User supplied data for the dtor
4838  *	skip   Skip dtors and finis
4839  */
4840 static __noinline void
4841 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
4842 {
4843 
4844 	/*
4845 	 * If a free is sent directly to an SMR zone we have to
4846 	 * synchronize immediately because the item can instantly
4847 	 * be reallocated. This should only happen in degenerate
4848 	 * cases when no memory is available for per-cpu caches.
4849 	 */
4850 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE)
4851 		smr_synchronize(zone->uz_smr);
4852 
4853 	item_dtor(zone, item, zone->uz_size, udata, skip);
4854 
4855 	if (skip < SKIP_FINI && zone->uz_fini) {
4856 		kasan_mark_item_valid(zone, item);
4857 		zone->uz_fini(item, zone->uz_size);
4858 		kasan_mark_item_invalid(zone, item);
4859 	}
4860 
4861 	zone->uz_release(zone->uz_arg, &item, 1);
4862 
4863 	if (skip & SKIP_CNT)
4864 		return;
4865 
4866 	counter_u64_add(zone->uz_frees, 1);
4867 
4868 	if (zone->uz_max_items > 0)
4869 		zone_free_limit(zone, 1);
4870 }
4871 
4872 /* See uma.h */
4873 int
4874 uma_zone_set_max(uma_zone_t zone, int nitems)
4875 {
4876 
4877 	/*
4878 	 * If the limit is small, we may need to constrain the maximum per-CPU
4879 	 * cache size, or disable caching entirely.
4880 	 */
4881 	uma_zone_set_maxcache(zone, nitems);
4882 
4883 	/*
4884 	 * XXX This can misbehave if the zone has any allocations with
4885 	 * no limit and a limit is imposed.  There is currently no
4886 	 * way to clear a limit.
4887 	 */
4888 	ZONE_LOCK(zone);
4889 	if (zone->uz_max_items == 0)
4890 		ZONE_ASSERT_COLD(zone);
4891 	zone->uz_max_items = nitems;
4892 	zone->uz_flags |= UMA_ZFLAG_LIMIT;
4893 	zone_update_caches(zone);
4894 	/* We may need to wake waiters. */
4895 	wakeup(&zone->uz_max_items);
4896 	ZONE_UNLOCK(zone);
4897 
4898 	return (nitems);
4899 }
4900 
4901 /* See uma.h */
4902 void
4903 uma_zone_set_maxcache(uma_zone_t zone, int nitems)
4904 {
4905 	int bpcpu, bpdom, bsize, nb;
4906 
4907 	ZONE_LOCK(zone);
4908 
4909 	/*
4910 	 * Compute a lower bound on the number of items that may be cached in
4911 	 * the zone.  Each CPU gets at least two buckets, and for cross-domain
4912 	 * frees we use an additional bucket per CPU and per domain.  Select the
4913 	 * largest bucket size that does not exceed half of the requested limit,
4914 	 * with the left over space given to the full bucket cache.
4915 	 */
4916 	bpdom = 0;
4917 	bpcpu = 2;
4918 #ifdef NUMA
4919 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) {
4920 		bpcpu++;
4921 		bpdom++;
4922 	}
4923 #endif
4924 	nb = bpcpu * mp_ncpus + bpdom * vm_ndomains;
4925 	bsize = nitems / nb / 2;
4926 	if (bsize > BUCKET_MAX)
4927 		bsize = BUCKET_MAX;
4928 	else if (bsize == 0 && nitems / nb > 0)
4929 		bsize = 1;
4930 	zone->uz_bucket_size_max = zone->uz_bucket_size = bsize;
4931 	if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
4932 		zone->uz_bucket_size_min = zone->uz_bucket_size_max;
4933 	zone->uz_bucket_max = nitems - nb * bsize;
4934 	ZONE_UNLOCK(zone);
4935 }
4936 
4937 /* See uma.h */
4938 int
4939 uma_zone_get_max(uma_zone_t zone)
4940 {
4941 	int nitems;
4942 
4943 	nitems = atomic_load_64(&zone->uz_max_items);
4944 
4945 	return (nitems);
4946 }
4947 
4948 /* See uma.h */
4949 void
4950 uma_zone_set_warning(uma_zone_t zone, const char *warning)
4951 {
4952 
4953 	ZONE_ASSERT_COLD(zone);
4954 	zone->uz_warning = warning;
4955 }
4956 
4957 /* See uma.h */
4958 void
4959 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
4960 {
4961 
4962 	ZONE_ASSERT_COLD(zone);
4963 	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
4964 }
4965 
4966 /* See uma.h */
4967 int
4968 uma_zone_get_cur(uma_zone_t zone)
4969 {
4970 	int64_t nitems;
4971 	u_int i;
4972 
4973 	nitems = 0;
4974 	if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER)
4975 		nitems = counter_u64_fetch(zone->uz_allocs) -
4976 		    counter_u64_fetch(zone->uz_frees);
4977 	CPU_FOREACH(i)
4978 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) -
4979 		    atomic_load_64(&zone->uz_cpu[i].uc_frees);
4980 
4981 	return (nitems < 0 ? 0 : nitems);
4982 }
4983 
4984 static uint64_t
4985 uma_zone_get_allocs(uma_zone_t zone)
4986 {
4987 	uint64_t nitems;
4988 	u_int i;
4989 
4990 	nitems = 0;
4991 	if (zone->uz_allocs != EARLY_COUNTER)
4992 		nitems = counter_u64_fetch(zone->uz_allocs);
4993 	CPU_FOREACH(i)
4994 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs);
4995 
4996 	return (nitems);
4997 }
4998 
4999 static uint64_t
5000 uma_zone_get_frees(uma_zone_t zone)
5001 {
5002 	uint64_t nitems;
5003 	u_int i;
5004 
5005 	nitems = 0;
5006 	if (zone->uz_frees != EARLY_COUNTER)
5007 		nitems = counter_u64_fetch(zone->uz_frees);
5008 	CPU_FOREACH(i)
5009 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees);
5010 
5011 	return (nitems);
5012 }
5013 
5014 #ifdef INVARIANTS
5015 /* Used only for KEG_ASSERT_COLD(). */
5016 static uint64_t
5017 uma_keg_get_allocs(uma_keg_t keg)
5018 {
5019 	uma_zone_t z;
5020 	uint64_t nitems;
5021 
5022 	nitems = 0;
5023 	LIST_FOREACH(z, &keg->uk_zones, uz_link)
5024 		nitems += uma_zone_get_allocs(z);
5025 
5026 	return (nitems);
5027 }
5028 #endif
5029 
5030 /* See uma.h */
5031 void
5032 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
5033 {
5034 	uma_keg_t keg;
5035 
5036 	KEG_GET(zone, keg);
5037 	KEG_ASSERT_COLD(keg);
5038 	keg->uk_init = uminit;
5039 }
5040 
5041 /* See uma.h */
5042 void
5043 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
5044 {
5045 	uma_keg_t keg;
5046 
5047 	KEG_GET(zone, keg);
5048 	KEG_ASSERT_COLD(keg);
5049 	keg->uk_fini = fini;
5050 }
5051 
5052 /* See uma.h */
5053 void
5054 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
5055 {
5056 
5057 	ZONE_ASSERT_COLD(zone);
5058 	zone->uz_init = zinit;
5059 }
5060 
5061 /* See uma.h */
5062 void
5063 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
5064 {
5065 
5066 	ZONE_ASSERT_COLD(zone);
5067 	zone->uz_fini = zfini;
5068 }
5069 
5070 /* See uma.h */
5071 void
5072 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
5073 {
5074 	uma_keg_t keg;
5075 
5076 	KEG_GET(zone, keg);
5077 	KEG_ASSERT_COLD(keg);
5078 	keg->uk_freef = freef;
5079 }
5080 
5081 /* See uma.h */
5082 void
5083 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
5084 {
5085 	uma_keg_t keg;
5086 
5087 	KEG_GET(zone, keg);
5088 	KEG_ASSERT_COLD(keg);
5089 	keg->uk_allocf = allocf;
5090 }
5091 
5092 /* See uma.h */
5093 void
5094 uma_zone_set_smr(uma_zone_t zone, smr_t smr)
5095 {
5096 
5097 	ZONE_ASSERT_COLD(zone);
5098 
5099 	KASSERT(smr != NULL, ("Got NULL smr"));
5100 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
5101 	    ("zone %p (%s) already uses SMR", zone, zone->uz_name));
5102 	zone->uz_flags |= UMA_ZONE_SMR;
5103 	zone->uz_smr = smr;
5104 	zone_update_caches(zone);
5105 }
5106 
5107 smr_t
5108 uma_zone_get_smr(uma_zone_t zone)
5109 {
5110 
5111 	return (zone->uz_smr);
5112 }
5113 
5114 /* See uma.h */
5115 void
5116 uma_zone_reserve(uma_zone_t zone, int items)
5117 {
5118 	uma_keg_t keg;
5119 
5120 	KEG_GET(zone, keg);
5121 	KEG_ASSERT_COLD(keg);
5122 	keg->uk_reserve = items;
5123 }
5124 
5125 /* See uma.h */
5126 int
5127 uma_zone_reserve_kva(uma_zone_t zone, int count)
5128 {
5129 	uma_keg_t keg;
5130 	vm_offset_t kva;
5131 	u_int pages;
5132 
5133 	KEG_GET(zone, keg);
5134 	KEG_ASSERT_COLD(keg);
5135 	ZONE_ASSERT_COLD(zone);
5136 
5137 	pages = howmany(count, keg->uk_ipers) * keg->uk_ppera;
5138 
5139 #ifdef UMA_MD_SMALL_ALLOC
5140 	if (keg->uk_ppera > 1) {
5141 #else
5142 	if (1) {
5143 #endif
5144 		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
5145 		if (kva == 0)
5146 			return (0);
5147 	} else
5148 		kva = 0;
5149 
5150 	MPASS(keg->uk_kva == 0);
5151 	keg->uk_kva = kva;
5152 	keg->uk_offset = 0;
5153 	zone->uz_max_items = pages * keg->uk_ipers;
5154 #ifdef UMA_MD_SMALL_ALLOC
5155 	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
5156 #else
5157 	keg->uk_allocf = noobj_alloc;
5158 #endif
5159 	keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5160 	zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
5161 	zone_update_caches(zone);
5162 
5163 	return (1);
5164 }
5165 
5166 /* See uma.h */
5167 void
5168 uma_prealloc(uma_zone_t zone, int items)
5169 {
5170 	struct vm_domainset_iter di;
5171 	uma_domain_t dom;
5172 	uma_slab_t slab;
5173 	uma_keg_t keg;
5174 	int aflags, domain, slabs;
5175 
5176 	KEG_GET(zone, keg);
5177 	slabs = howmany(items, keg->uk_ipers);
5178 	while (slabs-- > 0) {
5179 		aflags = M_NOWAIT;
5180 		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
5181 		    &aflags);
5182 		for (;;) {
5183 			slab = keg_alloc_slab(keg, zone, domain, M_WAITOK,
5184 			    aflags);
5185 			if (slab != NULL) {
5186 				dom = &keg->uk_domain[slab->us_domain];
5187 				/*
5188 				 * keg_alloc_slab() always returns a slab on the
5189 				 * partial list.
5190 				 */
5191 				LIST_REMOVE(slab, us_link);
5192 				LIST_INSERT_HEAD(&dom->ud_free_slab, slab,
5193 				    us_link);
5194 				dom->ud_free_slabs++;
5195 				KEG_UNLOCK(keg, slab->us_domain);
5196 				break;
5197 			}
5198 			if (vm_domainset_iter_policy(&di, &domain) != 0)
5199 				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
5200 		}
5201 	}
5202 }
5203 
5204 /*
5205  * Returns a snapshot of memory consumption in bytes.
5206  */
5207 size_t
5208 uma_zone_memory(uma_zone_t zone)
5209 {
5210 	size_t sz;
5211 	int i;
5212 
5213 	sz = 0;
5214 	if (zone->uz_flags & UMA_ZFLAG_CACHE) {
5215 		for (i = 0; i < vm_ndomains; i++)
5216 			sz += ZDOM_GET(zone, i)->uzd_nitems;
5217 		return (sz * zone->uz_size);
5218 	}
5219 	for (i = 0; i < vm_ndomains; i++)
5220 		sz += zone->uz_keg->uk_domain[i].ud_pages;
5221 
5222 	return (sz * PAGE_SIZE);
5223 }
5224 
5225 struct uma_reclaim_args {
5226 	int	domain;
5227 	int	req;
5228 };
5229 
5230 static void
5231 uma_reclaim_domain_cb(uma_zone_t zone, void *arg)
5232 {
5233 	struct uma_reclaim_args *args;
5234 
5235 	args = arg;
5236 	if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0)
5237 		uma_zone_reclaim_domain(zone, args->req, args->domain);
5238 }
5239 
5240 /* See uma.h */
5241 void
5242 uma_reclaim(int req)
5243 {
5244 	uma_reclaim_domain(req, UMA_ANYDOMAIN);
5245 }
5246 
5247 void
5248 uma_reclaim_domain(int req, int domain)
5249 {
5250 	struct uma_reclaim_args args;
5251 
5252 	bucket_enable();
5253 
5254 	args.domain = domain;
5255 	args.req = req;
5256 
5257 	sx_slock(&uma_reclaim_lock);
5258 	switch (req) {
5259 	case UMA_RECLAIM_TRIM:
5260 	case UMA_RECLAIM_DRAIN:
5261 		zone_foreach(uma_reclaim_domain_cb, &args);
5262 		break;
5263 	case UMA_RECLAIM_DRAIN_CPU:
5264 		zone_foreach(uma_reclaim_domain_cb, &args);
5265 		pcpu_cache_drain_safe(NULL);
5266 		zone_foreach(uma_reclaim_domain_cb, &args);
5267 		break;
5268 	default:
5269 		panic("unhandled reclamation request %d", req);
5270 	}
5271 
5272 	/*
5273 	 * Some slabs may have been freed but this zone will be visited early
5274 	 * we visit again so that we can free pages that are empty once other
5275 	 * zones are drained.  We have to do the same for buckets.
5276 	 */
5277 	uma_zone_reclaim_domain(slabzones[0], UMA_RECLAIM_DRAIN, domain);
5278 	uma_zone_reclaim_domain(slabzones[1], UMA_RECLAIM_DRAIN, domain);
5279 	bucket_zone_drain(domain);
5280 	sx_sunlock(&uma_reclaim_lock);
5281 }
5282 
5283 static volatile int uma_reclaim_needed;
5284 
5285 void
5286 uma_reclaim_wakeup(void)
5287 {
5288 
5289 	if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
5290 		wakeup(uma_reclaim);
5291 }
5292 
5293 void
5294 uma_reclaim_worker(void *arg __unused)
5295 {
5296 
5297 	for (;;) {
5298 		sx_xlock(&uma_reclaim_lock);
5299 		while (atomic_load_int(&uma_reclaim_needed) == 0)
5300 			sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl",
5301 			    hz);
5302 		sx_xunlock(&uma_reclaim_lock);
5303 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
5304 		uma_reclaim(UMA_RECLAIM_DRAIN_CPU);
5305 		atomic_store_int(&uma_reclaim_needed, 0);
5306 		/* Don't fire more than once per-second. */
5307 		pause("umarclslp", hz);
5308 	}
5309 }
5310 
5311 /* See uma.h */
5312 void
5313 uma_zone_reclaim(uma_zone_t zone, int req)
5314 {
5315 	uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN);
5316 }
5317 
5318 void
5319 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain)
5320 {
5321 	switch (req) {
5322 	case UMA_RECLAIM_TRIM:
5323 		zone_reclaim(zone, domain, M_NOWAIT, false);
5324 		break;
5325 	case UMA_RECLAIM_DRAIN:
5326 		zone_reclaim(zone, domain, M_NOWAIT, true);
5327 		break;
5328 	case UMA_RECLAIM_DRAIN_CPU:
5329 		pcpu_cache_drain_safe(zone);
5330 		zone_reclaim(zone, domain, M_NOWAIT, true);
5331 		break;
5332 	default:
5333 		panic("unhandled reclamation request %d", req);
5334 	}
5335 }
5336 
5337 /* See uma.h */
5338 int
5339 uma_zone_exhausted(uma_zone_t zone)
5340 {
5341 
5342 	return (atomic_load_32(&zone->uz_sleepers) > 0);
5343 }
5344 
5345 unsigned long
5346 uma_limit(void)
5347 {
5348 
5349 	return (uma_kmem_limit);
5350 }
5351 
5352 void
5353 uma_set_limit(unsigned long limit)
5354 {
5355 
5356 	uma_kmem_limit = limit;
5357 }
5358 
5359 unsigned long
5360 uma_size(void)
5361 {
5362 
5363 	return (atomic_load_long(&uma_kmem_total));
5364 }
5365 
5366 long
5367 uma_avail(void)
5368 {
5369 
5370 	return (uma_kmem_limit - uma_size());
5371 }
5372 
5373 #ifdef DDB
5374 /*
5375  * Generate statistics across both the zone and its per-cpu cache's.  Return
5376  * desired statistics if the pointer is non-NULL for that statistic.
5377  *
5378  * Note: does not update the zone statistics, as it can't safely clear the
5379  * per-CPU cache statistic.
5380  *
5381  */
5382 static void
5383 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp,
5384     uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp)
5385 {
5386 	uma_cache_t cache;
5387 	uint64_t allocs, frees, sleeps, xdomain;
5388 	int cachefree, cpu;
5389 
5390 	allocs = frees = sleeps = xdomain = 0;
5391 	cachefree = 0;
5392 	CPU_FOREACH(cpu) {
5393 		cache = &z->uz_cpu[cpu];
5394 		cachefree += cache->uc_allocbucket.ucb_cnt;
5395 		cachefree += cache->uc_freebucket.ucb_cnt;
5396 		xdomain += cache->uc_crossbucket.ucb_cnt;
5397 		cachefree += cache->uc_crossbucket.ucb_cnt;
5398 		allocs += cache->uc_allocs;
5399 		frees += cache->uc_frees;
5400 	}
5401 	allocs += counter_u64_fetch(z->uz_allocs);
5402 	frees += counter_u64_fetch(z->uz_frees);
5403 	xdomain += counter_u64_fetch(z->uz_xdomain);
5404 	sleeps += z->uz_sleeps;
5405 	if (cachefreep != NULL)
5406 		*cachefreep = cachefree;
5407 	if (allocsp != NULL)
5408 		*allocsp = allocs;
5409 	if (freesp != NULL)
5410 		*freesp = frees;
5411 	if (sleepsp != NULL)
5412 		*sleepsp = sleeps;
5413 	if (xdomainp != NULL)
5414 		*xdomainp = xdomain;
5415 }
5416 #endif /* DDB */
5417 
5418 static int
5419 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
5420 {
5421 	uma_keg_t kz;
5422 	uma_zone_t z;
5423 	int count;
5424 
5425 	count = 0;
5426 	rw_rlock(&uma_rwlock);
5427 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5428 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
5429 			count++;
5430 	}
5431 	LIST_FOREACH(z, &uma_cachezones, uz_link)
5432 		count++;
5433 
5434 	rw_runlock(&uma_rwlock);
5435 	return (sysctl_handle_int(oidp, &count, 0, req));
5436 }
5437 
5438 static void
5439 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf,
5440     struct uma_percpu_stat *ups, bool internal)
5441 {
5442 	uma_zone_domain_t zdom;
5443 	uma_cache_t cache;
5444 	int i;
5445 
5446 	for (i = 0; i < vm_ndomains; i++) {
5447 		zdom = ZDOM_GET(z, i);
5448 		uth->uth_zone_free += zdom->uzd_nitems;
5449 	}
5450 	uth->uth_allocs = counter_u64_fetch(z->uz_allocs);
5451 	uth->uth_frees = counter_u64_fetch(z->uz_frees);
5452 	uth->uth_fails = counter_u64_fetch(z->uz_fails);
5453 	uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain);
5454 	uth->uth_sleeps = z->uz_sleeps;
5455 
5456 	for (i = 0; i < mp_maxid + 1; i++) {
5457 		bzero(&ups[i], sizeof(*ups));
5458 		if (internal || CPU_ABSENT(i))
5459 			continue;
5460 		cache = &z->uz_cpu[i];
5461 		ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt;
5462 		ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt;
5463 		ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt;
5464 		ups[i].ups_allocs = cache->uc_allocs;
5465 		ups[i].ups_frees = cache->uc_frees;
5466 	}
5467 }
5468 
5469 static int
5470 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
5471 {
5472 	struct uma_stream_header ush;
5473 	struct uma_type_header uth;
5474 	struct uma_percpu_stat *ups;
5475 	struct sbuf sbuf;
5476 	uma_keg_t kz;
5477 	uma_zone_t z;
5478 	uint64_t items;
5479 	uint32_t kfree, pages;
5480 	int count, error, i;
5481 
5482 	error = sysctl_wire_old_buffer(req, 0);
5483 	if (error != 0)
5484 		return (error);
5485 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
5486 	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
5487 	ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
5488 
5489 	count = 0;
5490 	rw_rlock(&uma_rwlock);
5491 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5492 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
5493 			count++;
5494 	}
5495 
5496 	LIST_FOREACH(z, &uma_cachezones, uz_link)
5497 		count++;
5498 
5499 	/*
5500 	 * Insert stream header.
5501 	 */
5502 	bzero(&ush, sizeof(ush));
5503 	ush.ush_version = UMA_STREAM_VERSION;
5504 	ush.ush_maxcpus = (mp_maxid + 1);
5505 	ush.ush_count = count;
5506 	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
5507 
5508 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
5509 		kfree = pages = 0;
5510 		for (i = 0; i < vm_ndomains; i++) {
5511 			kfree += kz->uk_domain[i].ud_free_items;
5512 			pages += kz->uk_domain[i].ud_pages;
5513 		}
5514 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5515 			bzero(&uth, sizeof(uth));
5516 			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5517 			uth.uth_align = kz->uk_align;
5518 			uth.uth_size = kz->uk_size;
5519 			uth.uth_rsize = kz->uk_rsize;
5520 			if (z->uz_max_items > 0) {
5521 				items = UZ_ITEMS_COUNT(z->uz_items);
5522 				uth.uth_pages = (items / kz->uk_ipers) *
5523 					kz->uk_ppera;
5524 			} else
5525 				uth.uth_pages = pages;
5526 			uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) *
5527 			    kz->uk_ppera;
5528 			uth.uth_limit = z->uz_max_items;
5529 			uth.uth_keg_free = kfree;
5530 
5531 			/*
5532 			 * A zone is secondary is it is not the first entry
5533 			 * on the keg's zone list.
5534 			 */
5535 			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
5536 			    (LIST_FIRST(&kz->uk_zones) != z))
5537 				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
5538 			uma_vm_zone_stats(&uth, z, &sbuf, ups,
5539 			    kz->uk_flags & UMA_ZFLAG_INTERNAL);
5540 			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5541 			for (i = 0; i < mp_maxid + 1; i++)
5542 				(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5543 		}
5544 	}
5545 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
5546 		bzero(&uth, sizeof(uth));
5547 		strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5548 		uth.uth_size = z->uz_size;
5549 		uma_vm_zone_stats(&uth, z, &sbuf, ups, false);
5550 		(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5551 		for (i = 0; i < mp_maxid + 1; i++)
5552 			(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5553 	}
5554 
5555 	rw_runlock(&uma_rwlock);
5556 	error = sbuf_finish(&sbuf);
5557 	sbuf_delete(&sbuf);
5558 	free(ups, M_TEMP);
5559 	return (error);
5560 }
5561 
5562 int
5563 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
5564 {
5565 	uma_zone_t zone = *(uma_zone_t *)arg1;
5566 	int error, max;
5567 
5568 	max = uma_zone_get_max(zone);
5569 	error = sysctl_handle_int(oidp, &max, 0, req);
5570 	if (error || !req->newptr)
5571 		return (error);
5572 
5573 	uma_zone_set_max(zone, max);
5574 
5575 	return (0);
5576 }
5577 
5578 int
5579 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
5580 {
5581 	uma_zone_t zone;
5582 	int cur;
5583 
5584 	/*
5585 	 * Some callers want to add sysctls for global zones that
5586 	 * may not yet exist so they pass a pointer to a pointer.
5587 	 */
5588 	if (arg2 == 0)
5589 		zone = *(uma_zone_t *)arg1;
5590 	else
5591 		zone = arg1;
5592 	cur = uma_zone_get_cur(zone);
5593 	return (sysctl_handle_int(oidp, &cur, 0, req));
5594 }
5595 
5596 static int
5597 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS)
5598 {
5599 	uma_zone_t zone = arg1;
5600 	uint64_t cur;
5601 
5602 	cur = uma_zone_get_allocs(zone);
5603 	return (sysctl_handle_64(oidp, &cur, 0, req));
5604 }
5605 
5606 static int
5607 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS)
5608 {
5609 	uma_zone_t zone = arg1;
5610 	uint64_t cur;
5611 
5612 	cur = uma_zone_get_frees(zone);
5613 	return (sysctl_handle_64(oidp, &cur, 0, req));
5614 }
5615 
5616 static int
5617 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS)
5618 {
5619 	struct sbuf sbuf;
5620 	uma_zone_t zone = arg1;
5621 	int error;
5622 
5623 	sbuf_new_for_sysctl(&sbuf, NULL, 0, req);
5624 	if (zone->uz_flags != 0)
5625 		sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS);
5626 	else
5627 		sbuf_printf(&sbuf, "0");
5628 	error = sbuf_finish(&sbuf);
5629 	sbuf_delete(&sbuf);
5630 
5631 	return (error);
5632 }
5633 
5634 static int
5635 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS)
5636 {
5637 	uma_keg_t keg = arg1;
5638 	int avail, effpct, total;
5639 
5640 	total = keg->uk_ppera * PAGE_SIZE;
5641 	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
5642 		total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize;
5643 	/*
5644 	 * We consider the client's requested size and alignment here, not the
5645 	 * real size determination uk_rsize, because we also adjust the real
5646 	 * size for internal implementation reasons (max bitset size).
5647 	 */
5648 	avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1);
5649 	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
5650 		avail *= mp_maxid + 1;
5651 	effpct = 100 * avail / total;
5652 	return (sysctl_handle_int(oidp, &effpct, 0, req));
5653 }
5654 
5655 static int
5656 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS)
5657 {
5658 	uma_zone_t zone = arg1;
5659 	uint64_t cur;
5660 
5661 	cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items));
5662 	return (sysctl_handle_64(oidp, &cur, 0, req));
5663 }
5664 
5665 #ifdef INVARIANTS
5666 static uma_slab_t
5667 uma_dbg_getslab(uma_zone_t zone, void *item)
5668 {
5669 	uma_slab_t slab;
5670 	uma_keg_t keg;
5671 	uint8_t *mem;
5672 
5673 	/*
5674 	 * It is safe to return the slab here even though the
5675 	 * zone is unlocked because the item's allocation state
5676 	 * essentially holds a reference.
5677 	 */
5678 	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
5679 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5680 		return (NULL);
5681 	if (zone->uz_flags & UMA_ZFLAG_VTOSLAB)
5682 		return (vtoslab((vm_offset_t)mem));
5683 	keg = zone->uz_keg;
5684 	if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0)
5685 		return ((uma_slab_t)(mem + keg->uk_pgoff));
5686 	KEG_LOCK(keg, 0);
5687 	slab = hash_sfind(&keg->uk_hash, mem);
5688 	KEG_UNLOCK(keg, 0);
5689 
5690 	return (slab);
5691 }
5692 
5693 static bool
5694 uma_dbg_zskip(uma_zone_t zone, void *mem)
5695 {
5696 
5697 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5698 		return (true);
5699 
5700 	return (uma_dbg_kskip(zone->uz_keg, mem));
5701 }
5702 
5703 static bool
5704 uma_dbg_kskip(uma_keg_t keg, void *mem)
5705 {
5706 	uintptr_t idx;
5707 
5708 	if (dbg_divisor == 0)
5709 		return (true);
5710 
5711 	if (dbg_divisor == 1)
5712 		return (false);
5713 
5714 	idx = (uintptr_t)mem >> PAGE_SHIFT;
5715 	if (keg->uk_ipers > 1) {
5716 		idx *= keg->uk_ipers;
5717 		idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
5718 	}
5719 
5720 	if ((idx / dbg_divisor) * dbg_divisor != idx) {
5721 		counter_u64_add(uma_skip_cnt, 1);
5722 		return (true);
5723 	}
5724 	counter_u64_add(uma_dbg_cnt, 1);
5725 
5726 	return (false);
5727 }
5728 
5729 /*
5730  * Set up the slab's freei data such that uma_dbg_free can function.
5731  *
5732  */
5733 static void
5734 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
5735 {
5736 	uma_keg_t keg;
5737 	int freei;
5738 
5739 	if (slab == NULL) {
5740 		slab = uma_dbg_getslab(zone, item);
5741 		if (slab == NULL)
5742 			panic("uma: item %p did not belong to zone %s",
5743 			    item, zone->uz_name);
5744 	}
5745 	keg = zone->uz_keg;
5746 	freei = slab_item_index(slab, keg, item);
5747 
5748 	if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei,
5749 	    slab_dbg_bits(slab, keg)))
5750 		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)",
5751 		    item, zone, zone->uz_name, slab, freei);
5752 }
5753 
5754 /*
5755  * Verifies freed addresses.  Checks for alignment, valid slab membership
5756  * and duplicate frees.
5757  *
5758  */
5759 static void
5760 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
5761 {
5762 	uma_keg_t keg;
5763 	int freei;
5764 
5765 	if (slab == NULL) {
5766 		slab = uma_dbg_getslab(zone, item);
5767 		if (slab == NULL)
5768 			panic("uma: Freed item %p did not belong to zone %s",
5769 			    item, zone->uz_name);
5770 	}
5771 	keg = zone->uz_keg;
5772 	freei = slab_item_index(slab, keg, item);
5773 
5774 	if (freei >= keg->uk_ipers)
5775 		panic("Invalid free of %p from zone %p(%s) slab %p(%d)",
5776 		    item, zone, zone->uz_name, slab, freei);
5777 
5778 	if (slab_item(slab, keg, freei) != item)
5779 		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)",
5780 		    item, zone, zone->uz_name, slab, freei);
5781 
5782 	if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei,
5783 	    slab_dbg_bits(slab, keg)))
5784 		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)",
5785 		    item, zone, zone->uz_name, slab, freei);
5786 }
5787 #endif /* INVARIANTS */
5788 
5789 #ifdef DDB
5790 static int64_t
5791 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used,
5792     uint64_t *sleeps, long *cachefree, uint64_t *xdomain)
5793 {
5794 	uint64_t frees;
5795 	int i;
5796 
5797 	if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
5798 		*allocs = counter_u64_fetch(z->uz_allocs);
5799 		frees = counter_u64_fetch(z->uz_frees);
5800 		*sleeps = z->uz_sleeps;
5801 		*cachefree = 0;
5802 		*xdomain = 0;
5803 	} else
5804 		uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps,
5805 		    xdomain);
5806 	for (i = 0; i < vm_ndomains; i++) {
5807 		*cachefree += ZDOM_GET(z, i)->uzd_nitems;
5808 		if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
5809 		    (LIST_FIRST(&kz->uk_zones) != z)))
5810 			*cachefree += kz->uk_domain[i].ud_free_items;
5811 	}
5812 	*used = *allocs - frees;
5813 	return (((int64_t)*used + *cachefree) * kz->uk_size);
5814 }
5815 
5816 DB_SHOW_COMMAND(uma, db_show_uma)
5817 {
5818 	const char *fmt_hdr, *fmt_entry;
5819 	uma_keg_t kz;
5820 	uma_zone_t z;
5821 	uint64_t allocs, used, sleeps, xdomain;
5822 	long cachefree;
5823 	/* variables for sorting */
5824 	uma_keg_t cur_keg;
5825 	uma_zone_t cur_zone, last_zone;
5826 	int64_t cur_size, last_size, size;
5827 	int ties;
5828 
5829 	/* /i option produces machine-parseable CSV output */
5830 	if (modif[0] == 'i') {
5831 		fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n";
5832 		fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n";
5833 	} else {
5834 		fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n";
5835 		fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n";
5836 	}
5837 
5838 	db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests",
5839 	    "Sleeps", "Bucket", "Total Mem", "XFree");
5840 
5841 	/* Sort the zones with largest size first. */
5842 	last_zone = NULL;
5843 	last_size = INT64_MAX;
5844 	for (;;) {
5845 		cur_zone = NULL;
5846 		cur_size = -1;
5847 		ties = 0;
5848 		LIST_FOREACH(kz, &uma_kegs, uk_link) {
5849 			LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5850 				/*
5851 				 * In the case of size ties, print out zones
5852 				 * in the order they are encountered.  That is,
5853 				 * when we encounter the most recently output
5854 				 * zone, we have already printed all preceding
5855 				 * ties, and we must print all following ties.
5856 				 */
5857 				if (z == last_zone) {
5858 					ties = 1;
5859 					continue;
5860 				}
5861 				size = get_uma_stats(kz, z, &allocs, &used,
5862 				    &sleeps, &cachefree, &xdomain);
5863 				if (size > cur_size && size < last_size + ties)
5864 				{
5865 					cur_size = size;
5866 					cur_zone = z;
5867 					cur_keg = kz;
5868 				}
5869 			}
5870 		}
5871 		if (cur_zone == NULL)
5872 			break;
5873 
5874 		size = get_uma_stats(cur_keg, cur_zone, &allocs, &used,
5875 		    &sleeps, &cachefree, &xdomain);
5876 		db_printf(fmt_entry, cur_zone->uz_name,
5877 		    (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree,
5878 		    (uintmax_t)allocs, (uintmax_t)sleeps,
5879 		    (unsigned)cur_zone->uz_bucket_size, (intmax_t)size,
5880 		    xdomain);
5881 
5882 		if (db_pager_quit)
5883 			return;
5884 		last_zone = cur_zone;
5885 		last_size = cur_size;
5886 	}
5887 }
5888 
5889 DB_SHOW_COMMAND(umacache, db_show_umacache)
5890 {
5891 	uma_zone_t z;
5892 	uint64_t allocs, frees;
5893 	long cachefree;
5894 	int i;
5895 
5896 	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
5897 	    "Requests", "Bucket");
5898 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
5899 		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL);
5900 		for (i = 0; i < vm_ndomains; i++)
5901 			cachefree += ZDOM_GET(z, i)->uzd_nitems;
5902 		db_printf("%18s %8ju %8jd %8ld %12ju %8u\n",
5903 		    z->uz_name, (uintmax_t)z->uz_size,
5904 		    (intmax_t)(allocs - frees), cachefree,
5905 		    (uintmax_t)allocs, z->uz_bucket_size);
5906 		if (db_pager_quit)
5907 			return;
5908 	}
5909 }
5910 #endif	/* DDB */
5911