1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/smp.h> 79 #include <sys/taskqueue.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_domainset.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_phys.h> 89 #include <vm/vm_pagequeue.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 #include <vm/uma_int.h> 95 #include <vm/uma_dbg.h> 96 97 #include <ddb/ddb.h> 98 99 #ifdef DEBUG_MEMGUARD 100 #include <vm/memguard.h> 101 #endif 102 103 /* 104 * This is the zone and keg from which all zones are spawned. 105 */ 106 static uma_zone_t kegs; 107 static uma_zone_t zones; 108 109 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 110 static uma_zone_t slabzone; 111 112 /* 113 * The initial hash tables come out of this zone so they can be allocated 114 * prior to malloc coming up. 115 */ 116 static uma_zone_t hashzone; 117 118 /* The boot-time adjusted value for cache line alignment. */ 119 int uma_align_cache = 64 - 1; 120 121 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 122 123 /* 124 * Are we allowed to allocate buckets? 125 */ 126 static int bucketdisable = 1; 127 128 /* Linked list of all kegs in the system */ 129 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 130 131 /* Linked list of all cache-only zones in the system */ 132 static LIST_HEAD(,uma_zone) uma_cachezones = 133 LIST_HEAD_INITIALIZER(uma_cachezones); 134 135 /* This RW lock protects the keg list */ 136 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 137 138 /* 139 * Pointer and counter to pool of pages, that is preallocated at 140 * startup to bootstrap UMA. 141 */ 142 static char *bootmem; 143 static int boot_pages; 144 145 static struct sx uma_drain_lock; 146 147 /* kmem soft limit. */ 148 static unsigned long uma_kmem_limit = LONG_MAX; 149 static volatile unsigned long uma_kmem_total; 150 151 /* Is the VM done starting up? */ 152 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 153 BOOT_RUNNING } booted = BOOT_COLD; 154 155 /* 156 * This is the handle used to schedule events that need to happen 157 * outside of the allocation fast path. 158 */ 159 static struct callout uma_callout; 160 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 161 162 /* 163 * This structure is passed as the zone ctor arg so that I don't have to create 164 * a special allocation function just for zones. 165 */ 166 struct uma_zctor_args { 167 const char *name; 168 size_t size; 169 uma_ctor ctor; 170 uma_dtor dtor; 171 uma_init uminit; 172 uma_fini fini; 173 uma_import import; 174 uma_release release; 175 void *arg; 176 uma_keg_t keg; 177 int align; 178 uint32_t flags; 179 }; 180 181 struct uma_kctor_args { 182 uma_zone_t zone; 183 size_t size; 184 uma_init uminit; 185 uma_fini fini; 186 int align; 187 uint32_t flags; 188 }; 189 190 struct uma_bucket_zone { 191 uma_zone_t ubz_zone; 192 char *ubz_name; 193 int ubz_entries; /* Number of items it can hold. */ 194 int ubz_maxsize; /* Maximum allocation size per-item. */ 195 }; 196 197 /* 198 * Compute the actual number of bucket entries to pack them in power 199 * of two sizes for more efficient space utilization. 200 */ 201 #define BUCKET_SIZE(n) \ 202 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 203 204 #define BUCKET_MAX BUCKET_SIZE(256) 205 206 struct uma_bucket_zone bucket_zones[] = { 207 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 208 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 209 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 210 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 211 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 212 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 213 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 214 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 215 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 216 { NULL, NULL, 0} 217 }; 218 219 /* 220 * Flags and enumerations to be passed to internal functions. 221 */ 222 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 223 224 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ 225 226 /* Prototypes.. */ 227 228 int uma_startup_count(int); 229 void uma_startup(void *, int); 230 void uma_startup1(void); 231 void uma_startup2(void); 232 233 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 234 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 235 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 236 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 237 static void page_free(void *, vm_size_t, uint8_t); 238 static void pcpu_page_free(void *, vm_size_t, uint8_t); 239 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int); 240 static void cache_drain(uma_zone_t); 241 static void bucket_drain(uma_zone_t, uma_bucket_t); 242 static void bucket_cache_drain(uma_zone_t zone); 243 static int keg_ctor(void *, int, void *, int); 244 static void keg_dtor(void *, int, void *); 245 static int zone_ctor(void *, int, void *, int); 246 static void zone_dtor(void *, int, void *); 247 static int zero_init(void *, int, int); 248 static void keg_small_init(uma_keg_t keg); 249 static void keg_large_init(uma_keg_t keg); 250 static void zone_foreach(void (*zfunc)(uma_zone_t)); 251 static void zone_timeout(uma_zone_t zone); 252 static int hash_alloc(struct uma_hash *); 253 static int hash_expand(struct uma_hash *, struct uma_hash *); 254 static void hash_free(struct uma_hash *hash); 255 static void uma_timeout(void *); 256 static void uma_startup3(void); 257 static void *zone_alloc_item(uma_zone_t, void *, int, int); 258 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 259 static void bucket_enable(void); 260 static void bucket_init(void); 261 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 262 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 263 static void bucket_zone_drain(void); 264 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 265 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 266 static uma_slab_t zone_fetch_slab_multi(uma_zone_t, uma_keg_t, int, int); 267 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 268 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 269 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 270 uma_fini fini, int align, uint32_t flags); 271 static int zone_import(uma_zone_t, void **, int, int, int); 272 static void zone_release(uma_zone_t, void **, int); 273 static void uma_zero_item(void *, uma_zone_t); 274 275 void uma_print_zone(uma_zone_t); 276 void uma_print_stats(void); 277 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 278 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 279 280 #ifdef INVARIANTS 281 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 282 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 283 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 284 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 285 286 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 287 "Memory allocation debugging"); 288 289 static u_int dbg_divisor = 1; 290 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 291 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 292 "Debug & thrash every this item in memory allocator"); 293 294 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 295 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 296 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 297 &uma_dbg_cnt, "memory items debugged"); 298 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 299 &uma_skip_cnt, "memory items skipped, not debugged"); 300 #endif 301 302 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 303 304 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 305 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 306 307 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 308 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 309 310 static int zone_warnings = 1; 311 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 312 "Warn when UMA zones becomes full"); 313 314 /* Adjust bytes under management by UMA. */ 315 static inline void 316 uma_total_dec(unsigned long size) 317 { 318 319 atomic_subtract_long(&uma_kmem_total, size); 320 } 321 322 static inline void 323 uma_total_inc(unsigned long size) 324 { 325 326 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 327 uma_reclaim_wakeup(); 328 } 329 330 /* 331 * This routine checks to see whether or not it's safe to enable buckets. 332 */ 333 static void 334 bucket_enable(void) 335 { 336 bucketdisable = vm_page_count_min(); 337 } 338 339 /* 340 * Initialize bucket_zones, the array of zones of buckets of various sizes. 341 * 342 * For each zone, calculate the memory required for each bucket, consisting 343 * of the header and an array of pointers. 344 */ 345 static void 346 bucket_init(void) 347 { 348 struct uma_bucket_zone *ubz; 349 int size; 350 351 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 352 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 353 size += sizeof(void *) * ubz->ubz_entries; 354 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 355 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 356 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 357 } 358 } 359 360 /* 361 * Given a desired number of entries for a bucket, return the zone from which 362 * to allocate the bucket. 363 */ 364 static struct uma_bucket_zone * 365 bucket_zone_lookup(int entries) 366 { 367 struct uma_bucket_zone *ubz; 368 369 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 370 if (ubz->ubz_entries >= entries) 371 return (ubz); 372 ubz--; 373 return (ubz); 374 } 375 376 static int 377 bucket_select(int size) 378 { 379 struct uma_bucket_zone *ubz; 380 381 ubz = &bucket_zones[0]; 382 if (size > ubz->ubz_maxsize) 383 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 384 385 for (; ubz->ubz_entries != 0; ubz++) 386 if (ubz->ubz_maxsize < size) 387 break; 388 ubz--; 389 return (ubz->ubz_entries); 390 } 391 392 static uma_bucket_t 393 bucket_alloc(uma_zone_t zone, void *udata, int flags) 394 { 395 struct uma_bucket_zone *ubz; 396 uma_bucket_t bucket; 397 398 /* 399 * This is to stop us from allocating per cpu buckets while we're 400 * running out of vm.boot_pages. Otherwise, we would exhaust the 401 * boot pages. This also prevents us from allocating buckets in 402 * low memory situations. 403 */ 404 if (bucketdisable) 405 return (NULL); 406 /* 407 * To limit bucket recursion we store the original zone flags 408 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 409 * NOVM flag to persist even through deep recursions. We also 410 * store ZFLAG_BUCKET once we have recursed attempting to allocate 411 * a bucket for a bucket zone so we do not allow infinite bucket 412 * recursion. This cookie will even persist to frees of unused 413 * buckets via the allocation path or bucket allocations in the 414 * free path. 415 */ 416 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 417 udata = (void *)(uintptr_t)zone->uz_flags; 418 else { 419 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 420 return (NULL); 421 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 422 } 423 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 424 flags |= M_NOVM; 425 ubz = bucket_zone_lookup(zone->uz_count); 426 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 427 ubz++; 428 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 429 if (bucket) { 430 #ifdef INVARIANTS 431 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 432 #endif 433 bucket->ub_cnt = 0; 434 bucket->ub_entries = ubz->ubz_entries; 435 } 436 437 return (bucket); 438 } 439 440 static void 441 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 442 { 443 struct uma_bucket_zone *ubz; 444 445 KASSERT(bucket->ub_cnt == 0, 446 ("bucket_free: Freeing a non free bucket.")); 447 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 448 udata = (void *)(uintptr_t)zone->uz_flags; 449 ubz = bucket_zone_lookup(bucket->ub_entries); 450 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 451 } 452 453 static void 454 bucket_zone_drain(void) 455 { 456 struct uma_bucket_zone *ubz; 457 458 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 459 zone_drain(ubz->ubz_zone); 460 } 461 462 static uma_bucket_t 463 zone_try_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, const bool ws) 464 { 465 uma_bucket_t bucket; 466 467 ZONE_LOCK_ASSERT(zone); 468 469 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 470 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 471 LIST_REMOVE(bucket, ub_link); 472 zdom->uzd_nitems -= bucket->ub_cnt; 473 if (ws && zdom->uzd_imin > zdom->uzd_nitems) 474 zdom->uzd_imin = zdom->uzd_nitems; 475 } 476 return (bucket); 477 } 478 479 static void 480 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 481 const bool ws) 482 { 483 484 ZONE_LOCK_ASSERT(zone); 485 486 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 487 zdom->uzd_nitems += bucket->ub_cnt; 488 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 489 zdom->uzd_imax = zdom->uzd_nitems; 490 } 491 492 static void 493 zone_log_warning(uma_zone_t zone) 494 { 495 static const struct timeval warninterval = { 300, 0 }; 496 497 if (!zone_warnings || zone->uz_warning == NULL) 498 return; 499 500 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 501 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 502 } 503 504 static inline void 505 zone_maxaction(uma_zone_t zone) 506 { 507 508 if (zone->uz_maxaction.ta_func != NULL) 509 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 510 } 511 512 static void 513 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 514 { 515 uma_klink_t klink; 516 517 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 518 kegfn(klink->kl_keg); 519 } 520 521 /* 522 * Routine called by timeout which is used to fire off some time interval 523 * based calculations. (stats, hash size, etc.) 524 * 525 * Arguments: 526 * arg Unused 527 * 528 * Returns: 529 * Nothing 530 */ 531 static void 532 uma_timeout(void *unused) 533 { 534 bucket_enable(); 535 zone_foreach(zone_timeout); 536 537 /* Reschedule this event */ 538 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 539 } 540 541 /* 542 * Update the working set size estimate for the zone's bucket cache. 543 * The constants chosen here are somewhat arbitrary. With an update period of 544 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 545 * last 100s. 546 */ 547 static void 548 zone_domain_update_wss(uma_zone_domain_t zdom) 549 { 550 long wss; 551 552 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 553 wss = zdom->uzd_imax - zdom->uzd_imin; 554 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 555 zdom->uzd_wss = (3 * wss + 2 * zdom->uzd_wss) / 5; 556 } 557 558 /* 559 * Routine to perform timeout driven calculations. This expands the 560 * hashes and does per cpu statistics aggregation. 561 * 562 * Returns nothing. 563 */ 564 static void 565 keg_timeout(uma_keg_t keg) 566 { 567 568 KEG_LOCK(keg); 569 /* 570 * Expand the keg hash table. 571 * 572 * This is done if the number of slabs is larger than the hash size. 573 * What I'm trying to do here is completely reduce collisions. This 574 * may be a little aggressive. Should I allow for two collisions max? 575 */ 576 if (keg->uk_flags & UMA_ZONE_HASH && 577 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 578 struct uma_hash newhash; 579 struct uma_hash oldhash; 580 int ret; 581 582 /* 583 * This is so involved because allocating and freeing 584 * while the keg lock is held will lead to deadlock. 585 * I have to do everything in stages and check for 586 * races. 587 */ 588 newhash = keg->uk_hash; 589 KEG_UNLOCK(keg); 590 ret = hash_alloc(&newhash); 591 KEG_LOCK(keg); 592 if (ret) { 593 if (hash_expand(&keg->uk_hash, &newhash)) { 594 oldhash = keg->uk_hash; 595 keg->uk_hash = newhash; 596 } else 597 oldhash = newhash; 598 599 KEG_UNLOCK(keg); 600 hash_free(&oldhash); 601 return; 602 } 603 } 604 KEG_UNLOCK(keg); 605 } 606 607 static void 608 zone_timeout(uma_zone_t zone) 609 { 610 int i; 611 612 zone_foreach_keg(zone, &keg_timeout); 613 614 ZONE_LOCK(zone); 615 for (i = 0; i < vm_ndomains; i++) 616 zone_domain_update_wss(&zone->uz_domain[i]); 617 ZONE_UNLOCK(zone); 618 } 619 620 /* 621 * Allocate and zero fill the next sized hash table from the appropriate 622 * backing store. 623 * 624 * Arguments: 625 * hash A new hash structure with the old hash size in uh_hashsize 626 * 627 * Returns: 628 * 1 on success and 0 on failure. 629 */ 630 static int 631 hash_alloc(struct uma_hash *hash) 632 { 633 int oldsize; 634 int alloc; 635 636 oldsize = hash->uh_hashsize; 637 638 /* We're just going to go to a power of two greater */ 639 if (oldsize) { 640 hash->uh_hashsize = oldsize * 2; 641 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 642 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 643 M_UMAHASH, M_NOWAIT); 644 } else { 645 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 646 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 647 UMA_ANYDOMAIN, M_WAITOK); 648 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 649 } 650 if (hash->uh_slab_hash) { 651 bzero(hash->uh_slab_hash, alloc); 652 hash->uh_hashmask = hash->uh_hashsize - 1; 653 return (1); 654 } 655 656 return (0); 657 } 658 659 /* 660 * Expands the hash table for HASH zones. This is done from zone_timeout 661 * to reduce collisions. This must not be done in the regular allocation 662 * path, otherwise, we can recurse on the vm while allocating pages. 663 * 664 * Arguments: 665 * oldhash The hash you want to expand 666 * newhash The hash structure for the new table 667 * 668 * Returns: 669 * Nothing 670 * 671 * Discussion: 672 */ 673 static int 674 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 675 { 676 uma_slab_t slab; 677 int hval; 678 int i; 679 680 if (!newhash->uh_slab_hash) 681 return (0); 682 683 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 684 return (0); 685 686 /* 687 * I need to investigate hash algorithms for resizing without a 688 * full rehash. 689 */ 690 691 for (i = 0; i < oldhash->uh_hashsize; i++) 692 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 693 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 694 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 695 hval = UMA_HASH(newhash, slab->us_data); 696 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 697 slab, us_hlink); 698 } 699 700 return (1); 701 } 702 703 /* 704 * Free the hash bucket to the appropriate backing store. 705 * 706 * Arguments: 707 * slab_hash The hash bucket we're freeing 708 * hashsize The number of entries in that hash bucket 709 * 710 * Returns: 711 * Nothing 712 */ 713 static void 714 hash_free(struct uma_hash *hash) 715 { 716 if (hash->uh_slab_hash == NULL) 717 return; 718 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 719 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 720 else 721 free(hash->uh_slab_hash, M_UMAHASH); 722 } 723 724 /* 725 * Frees all outstanding items in a bucket 726 * 727 * Arguments: 728 * zone The zone to free to, must be unlocked. 729 * bucket The free/alloc bucket with items, cpu queue must be locked. 730 * 731 * Returns: 732 * Nothing 733 */ 734 735 static void 736 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 737 { 738 int i; 739 740 if (bucket == NULL) 741 return; 742 743 if (zone->uz_fini) 744 for (i = 0; i < bucket->ub_cnt; i++) 745 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 746 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 747 bucket->ub_cnt = 0; 748 } 749 750 /* 751 * Drains the per cpu caches for a zone. 752 * 753 * NOTE: This may only be called while the zone is being turn down, and not 754 * during normal operation. This is necessary in order that we do not have 755 * to migrate CPUs to drain the per-CPU caches. 756 * 757 * Arguments: 758 * zone The zone to drain, must be unlocked. 759 * 760 * Returns: 761 * Nothing 762 */ 763 static void 764 cache_drain(uma_zone_t zone) 765 { 766 uma_cache_t cache; 767 int cpu; 768 769 /* 770 * XXX: It is safe to not lock the per-CPU caches, because we're 771 * tearing down the zone anyway. I.e., there will be no further use 772 * of the caches at this point. 773 * 774 * XXX: It would good to be able to assert that the zone is being 775 * torn down to prevent improper use of cache_drain(). 776 * 777 * XXX: We lock the zone before passing into bucket_cache_drain() as 778 * it is used elsewhere. Should the tear-down path be made special 779 * there in some form? 780 */ 781 CPU_FOREACH(cpu) { 782 cache = &zone->uz_cpu[cpu]; 783 bucket_drain(zone, cache->uc_allocbucket); 784 bucket_drain(zone, cache->uc_freebucket); 785 if (cache->uc_allocbucket != NULL) 786 bucket_free(zone, cache->uc_allocbucket, NULL); 787 if (cache->uc_freebucket != NULL) 788 bucket_free(zone, cache->uc_freebucket, NULL); 789 cache->uc_allocbucket = cache->uc_freebucket = NULL; 790 } 791 ZONE_LOCK(zone); 792 bucket_cache_drain(zone); 793 ZONE_UNLOCK(zone); 794 } 795 796 static void 797 cache_shrink(uma_zone_t zone) 798 { 799 800 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 801 return; 802 803 ZONE_LOCK(zone); 804 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 805 ZONE_UNLOCK(zone); 806 } 807 808 static void 809 cache_drain_safe_cpu(uma_zone_t zone) 810 { 811 uma_cache_t cache; 812 uma_bucket_t b1, b2; 813 int domain; 814 815 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 816 return; 817 818 b1 = b2 = NULL; 819 ZONE_LOCK(zone); 820 critical_enter(); 821 if (zone->uz_flags & UMA_ZONE_NUMA) 822 domain = PCPU_GET(domain); 823 else 824 domain = 0; 825 cache = &zone->uz_cpu[curcpu]; 826 if (cache->uc_allocbucket) { 827 if (cache->uc_allocbucket->ub_cnt != 0) 828 zone_put_bucket(zone, &zone->uz_domain[domain], 829 cache->uc_allocbucket, false); 830 else 831 b1 = cache->uc_allocbucket; 832 cache->uc_allocbucket = NULL; 833 } 834 if (cache->uc_freebucket) { 835 if (cache->uc_freebucket->ub_cnt != 0) 836 zone_put_bucket(zone, &zone->uz_domain[domain], 837 cache->uc_freebucket, false); 838 else 839 b2 = cache->uc_freebucket; 840 cache->uc_freebucket = NULL; 841 } 842 critical_exit(); 843 ZONE_UNLOCK(zone); 844 if (b1) 845 bucket_free(zone, b1, NULL); 846 if (b2) 847 bucket_free(zone, b2, NULL); 848 } 849 850 /* 851 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 852 * This is an expensive call because it needs to bind to all CPUs 853 * one by one and enter a critical section on each of them in order 854 * to safely access their cache buckets. 855 * Zone lock must not be held on call this function. 856 */ 857 static void 858 cache_drain_safe(uma_zone_t zone) 859 { 860 int cpu; 861 862 /* 863 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 864 */ 865 if (zone) 866 cache_shrink(zone); 867 else 868 zone_foreach(cache_shrink); 869 870 CPU_FOREACH(cpu) { 871 thread_lock(curthread); 872 sched_bind(curthread, cpu); 873 thread_unlock(curthread); 874 875 if (zone) 876 cache_drain_safe_cpu(zone); 877 else 878 zone_foreach(cache_drain_safe_cpu); 879 } 880 thread_lock(curthread); 881 sched_unbind(curthread); 882 thread_unlock(curthread); 883 } 884 885 /* 886 * Drain the cached buckets from a zone. Expects a locked zone on entry. 887 */ 888 static void 889 bucket_cache_drain(uma_zone_t zone) 890 { 891 uma_zone_domain_t zdom; 892 uma_bucket_t bucket; 893 int i; 894 895 /* 896 * Drain the bucket queues and free the buckets. 897 */ 898 for (i = 0; i < vm_ndomains; i++) { 899 zdom = &zone->uz_domain[i]; 900 while ((bucket = zone_try_fetch_bucket(zone, zdom, false)) != 901 NULL) { 902 ZONE_UNLOCK(zone); 903 bucket_drain(zone, bucket); 904 bucket_free(zone, bucket, NULL); 905 ZONE_LOCK(zone); 906 } 907 } 908 909 /* 910 * Shrink further bucket sizes. Price of single zone lock collision 911 * is probably lower then price of global cache drain. 912 */ 913 if (zone->uz_count > zone->uz_count_min) 914 zone->uz_count--; 915 } 916 917 static void 918 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 919 { 920 uint8_t *mem; 921 int i; 922 uint8_t flags; 923 924 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 925 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 926 927 mem = slab->us_data; 928 flags = slab->us_flags; 929 i = start; 930 if (keg->uk_fini != NULL) { 931 for (i--; i > -1; i--) 932 #ifdef INVARIANTS 933 /* 934 * trash_fini implies that dtor was trash_dtor. trash_fini 935 * would check that memory hasn't been modified since free, 936 * which executed trash_dtor. 937 * That's why we need to run uma_dbg_kskip() check here, 938 * albeit we don't make skip check for other init/fini 939 * invocations. 940 */ 941 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) || 942 keg->uk_fini != trash_fini) 943 #endif 944 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 945 keg->uk_size); 946 } 947 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 948 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 949 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 950 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 951 } 952 953 /* 954 * Frees pages from a keg back to the system. This is done on demand from 955 * the pageout daemon. 956 * 957 * Returns nothing. 958 */ 959 static void 960 keg_drain(uma_keg_t keg) 961 { 962 struct slabhead freeslabs = { 0 }; 963 uma_domain_t dom; 964 uma_slab_t slab, tmp; 965 int i; 966 967 /* 968 * We don't want to take pages from statically allocated kegs at this 969 * time 970 */ 971 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 972 return; 973 974 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 975 keg->uk_name, keg, keg->uk_free); 976 KEG_LOCK(keg); 977 if (keg->uk_free == 0) 978 goto finished; 979 980 for (i = 0; i < vm_ndomains; i++) { 981 dom = &keg->uk_domain[i]; 982 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 983 /* We have nowhere to free these to. */ 984 if (slab->us_flags & UMA_SLAB_BOOT) 985 continue; 986 987 LIST_REMOVE(slab, us_link); 988 keg->uk_pages -= keg->uk_ppera; 989 keg->uk_free -= keg->uk_ipers; 990 991 if (keg->uk_flags & UMA_ZONE_HASH) 992 UMA_HASH_REMOVE(&keg->uk_hash, slab, 993 slab->us_data); 994 995 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 996 } 997 } 998 999 finished: 1000 KEG_UNLOCK(keg); 1001 1002 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 1003 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 1004 keg_free_slab(keg, slab, keg->uk_ipers); 1005 } 1006 } 1007 1008 static void 1009 zone_drain_wait(uma_zone_t zone, int waitok) 1010 { 1011 1012 /* 1013 * Set draining to interlock with zone_dtor() so we can release our 1014 * locks as we go. Only dtor() should do a WAITOK call since it 1015 * is the only call that knows the structure will still be available 1016 * when it wakes up. 1017 */ 1018 ZONE_LOCK(zone); 1019 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 1020 if (waitok == M_NOWAIT) 1021 goto out; 1022 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 1023 } 1024 zone->uz_flags |= UMA_ZFLAG_DRAINING; 1025 bucket_cache_drain(zone); 1026 ZONE_UNLOCK(zone); 1027 /* 1028 * The DRAINING flag protects us from being freed while 1029 * we're running. Normally the uma_rwlock would protect us but we 1030 * must be able to release and acquire the right lock for each keg. 1031 */ 1032 zone_foreach_keg(zone, &keg_drain); 1033 ZONE_LOCK(zone); 1034 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 1035 wakeup(zone); 1036 out: 1037 ZONE_UNLOCK(zone); 1038 } 1039 1040 void 1041 zone_drain(uma_zone_t zone) 1042 { 1043 1044 zone_drain_wait(zone, M_NOWAIT); 1045 } 1046 1047 /* 1048 * Allocate a new slab for a keg. This does not insert the slab onto a list. 1049 * If the allocation was successful, the keg lock will be held upon return, 1050 * otherwise the keg will be left unlocked. 1051 * 1052 * Arguments: 1053 * wait Shall we wait? 1054 * 1055 * Returns: 1056 * The slab that was allocated or NULL if there is no memory and the 1057 * caller specified M_NOWAIT. 1058 */ 1059 static uma_slab_t 1060 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int wait) 1061 { 1062 uma_alloc allocf; 1063 uma_slab_t slab; 1064 unsigned long size; 1065 uint8_t *mem; 1066 uint8_t flags; 1067 int i; 1068 1069 KASSERT(domain >= 0 && domain < vm_ndomains, 1070 ("keg_alloc_slab: domain %d out of range", domain)); 1071 mtx_assert(&keg->uk_lock, MA_OWNED); 1072 1073 allocf = keg->uk_allocf; 1074 KEG_UNLOCK(keg); 1075 1076 slab = NULL; 1077 mem = NULL; 1078 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1079 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, wait); 1080 if (slab == NULL) 1081 goto out; 1082 } 1083 1084 /* 1085 * This reproduces the old vm_zone behavior of zero filling pages the 1086 * first time they are added to a zone. 1087 * 1088 * Malloced items are zeroed in uma_zalloc. 1089 */ 1090 1091 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1092 wait |= M_ZERO; 1093 else 1094 wait &= ~M_ZERO; 1095 1096 if (keg->uk_flags & UMA_ZONE_NODUMP) 1097 wait |= M_NODUMP; 1098 1099 /* zone is passed for legacy reasons. */ 1100 size = keg->uk_ppera * PAGE_SIZE; 1101 mem = allocf(zone, size, domain, &flags, wait); 1102 if (mem == NULL) { 1103 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1104 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1105 slab = NULL; 1106 goto out; 1107 } 1108 uma_total_inc(size); 1109 1110 /* Point the slab into the allocated memory */ 1111 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1112 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1113 1114 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1115 for (i = 0; i < keg->uk_ppera; i++) 1116 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1117 1118 slab->us_keg = keg; 1119 slab->us_data = mem; 1120 slab->us_freecount = keg->uk_ipers; 1121 slab->us_flags = flags; 1122 slab->us_domain = domain; 1123 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1124 #ifdef INVARIANTS 1125 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1126 #endif 1127 1128 if (keg->uk_init != NULL) { 1129 for (i = 0; i < keg->uk_ipers; i++) 1130 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1131 keg->uk_size, wait) != 0) 1132 break; 1133 if (i != keg->uk_ipers) { 1134 keg_free_slab(keg, slab, i); 1135 slab = NULL; 1136 goto out; 1137 } 1138 } 1139 KEG_LOCK(keg); 1140 1141 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1142 slab, keg->uk_name, keg); 1143 1144 if (keg->uk_flags & UMA_ZONE_HASH) 1145 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1146 1147 keg->uk_pages += keg->uk_ppera; 1148 keg->uk_free += keg->uk_ipers; 1149 1150 out: 1151 return (slab); 1152 } 1153 1154 /* 1155 * This function is intended to be used early on in place of page_alloc() so 1156 * that we may use the boot time page cache to satisfy allocations before 1157 * the VM is ready. 1158 */ 1159 static void * 1160 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1161 int wait) 1162 { 1163 uma_keg_t keg; 1164 void *mem; 1165 int pages; 1166 1167 keg = zone_first_keg(zone); 1168 1169 /* 1170 * If we are in BOOT_BUCKETS or higher, than switch to real 1171 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1172 */ 1173 switch (booted) { 1174 case BOOT_COLD: 1175 case BOOT_STRAPPED: 1176 break; 1177 case BOOT_PAGEALLOC: 1178 if (keg->uk_ppera > 1) 1179 break; 1180 case BOOT_BUCKETS: 1181 case BOOT_RUNNING: 1182 #ifdef UMA_MD_SMALL_ALLOC 1183 keg->uk_allocf = (keg->uk_ppera > 1) ? 1184 page_alloc : uma_small_alloc; 1185 #else 1186 keg->uk_allocf = page_alloc; 1187 #endif 1188 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1189 } 1190 1191 /* 1192 * Check our small startup cache to see if it has pages remaining. 1193 */ 1194 pages = howmany(bytes, PAGE_SIZE); 1195 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1196 if (pages > boot_pages) 1197 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1198 #ifdef DIAGNOSTIC 1199 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1200 boot_pages); 1201 #endif 1202 mem = bootmem; 1203 boot_pages -= pages; 1204 bootmem += pages * PAGE_SIZE; 1205 *pflag = UMA_SLAB_BOOT; 1206 1207 return (mem); 1208 } 1209 1210 /* 1211 * Allocates a number of pages from the system 1212 * 1213 * Arguments: 1214 * bytes The number of bytes requested 1215 * wait Shall we wait? 1216 * 1217 * Returns: 1218 * A pointer to the alloced memory or possibly 1219 * NULL if M_NOWAIT is set. 1220 */ 1221 static void * 1222 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1223 int wait) 1224 { 1225 void *p; /* Returned page */ 1226 1227 *pflag = UMA_SLAB_KERNEL; 1228 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1229 1230 return (p); 1231 } 1232 1233 static void * 1234 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1235 int wait) 1236 { 1237 struct pglist alloctail; 1238 vm_offset_t addr, zkva; 1239 int cpu, flags; 1240 vm_page_t p, p_next; 1241 #ifdef NUMA 1242 struct pcpu *pc; 1243 #endif 1244 1245 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1246 1247 TAILQ_INIT(&alloctail); 1248 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1249 malloc2vm_flags(wait); 1250 *pflag = UMA_SLAB_KERNEL; 1251 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1252 if (CPU_ABSENT(cpu)) { 1253 p = vm_page_alloc(NULL, 0, flags); 1254 } else { 1255 #ifndef NUMA 1256 p = vm_page_alloc(NULL, 0, flags); 1257 #else 1258 pc = pcpu_find(cpu); 1259 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); 1260 if (__predict_false(p == NULL)) 1261 p = vm_page_alloc(NULL, 0, flags); 1262 #endif 1263 } 1264 if (__predict_false(p == NULL)) 1265 goto fail; 1266 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1267 } 1268 if ((addr = kva_alloc(bytes)) == 0) 1269 goto fail; 1270 zkva = addr; 1271 TAILQ_FOREACH(p, &alloctail, listq) { 1272 pmap_qenter(zkva, &p, 1); 1273 zkva += PAGE_SIZE; 1274 } 1275 return ((void*)addr); 1276 fail: 1277 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1278 vm_page_unwire(p, PQ_NONE); 1279 vm_page_free(p); 1280 } 1281 return (NULL); 1282 } 1283 1284 /* 1285 * Allocates a number of pages from within an object 1286 * 1287 * Arguments: 1288 * bytes The number of bytes requested 1289 * wait Shall we wait? 1290 * 1291 * Returns: 1292 * A pointer to the alloced memory or possibly 1293 * NULL if M_NOWAIT is set. 1294 */ 1295 static void * 1296 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1297 int wait) 1298 { 1299 TAILQ_HEAD(, vm_page) alloctail; 1300 u_long npages; 1301 vm_offset_t retkva, zkva; 1302 vm_page_t p, p_next; 1303 uma_keg_t keg; 1304 1305 TAILQ_INIT(&alloctail); 1306 keg = zone_first_keg(zone); 1307 1308 npages = howmany(bytes, PAGE_SIZE); 1309 while (npages > 0) { 1310 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1311 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1312 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1313 VM_ALLOC_NOWAIT)); 1314 if (p != NULL) { 1315 /* 1316 * Since the page does not belong to an object, its 1317 * listq is unused. 1318 */ 1319 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1320 npages--; 1321 continue; 1322 } 1323 /* 1324 * Page allocation failed, free intermediate pages and 1325 * exit. 1326 */ 1327 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1328 vm_page_unwire(p, PQ_NONE); 1329 vm_page_free(p); 1330 } 1331 return (NULL); 1332 } 1333 *flags = UMA_SLAB_PRIV; 1334 zkva = keg->uk_kva + 1335 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1336 retkva = zkva; 1337 TAILQ_FOREACH(p, &alloctail, listq) { 1338 pmap_qenter(zkva, &p, 1); 1339 zkva += PAGE_SIZE; 1340 } 1341 1342 return ((void *)retkva); 1343 } 1344 1345 /* 1346 * Frees a number of pages to the system 1347 * 1348 * Arguments: 1349 * mem A pointer to the memory to be freed 1350 * size The size of the memory being freed 1351 * flags The original p->us_flags field 1352 * 1353 * Returns: 1354 * Nothing 1355 */ 1356 static void 1357 page_free(void *mem, vm_size_t size, uint8_t flags) 1358 { 1359 1360 if ((flags & UMA_SLAB_KERNEL) == 0) 1361 panic("UMA: page_free used with invalid flags %x", flags); 1362 1363 kmem_free((vm_offset_t)mem, size); 1364 } 1365 1366 /* 1367 * Frees pcpu zone allocations 1368 * 1369 * Arguments: 1370 * mem A pointer to the memory to be freed 1371 * size The size of the memory being freed 1372 * flags The original p->us_flags field 1373 * 1374 * Returns: 1375 * Nothing 1376 */ 1377 static void 1378 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1379 { 1380 vm_offset_t sva, curva; 1381 vm_paddr_t paddr; 1382 vm_page_t m; 1383 1384 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1385 sva = (vm_offset_t)mem; 1386 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1387 paddr = pmap_kextract(curva); 1388 m = PHYS_TO_VM_PAGE(paddr); 1389 vm_page_unwire(m, PQ_NONE); 1390 vm_page_free(m); 1391 } 1392 pmap_qremove(sva, size >> PAGE_SHIFT); 1393 kva_free(sva, size); 1394 } 1395 1396 1397 /* 1398 * Zero fill initializer 1399 * 1400 * Arguments/Returns follow uma_init specifications 1401 */ 1402 static int 1403 zero_init(void *mem, int size, int flags) 1404 { 1405 bzero(mem, size); 1406 return (0); 1407 } 1408 1409 /* 1410 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1411 * 1412 * Arguments 1413 * keg The zone we should initialize 1414 * 1415 * Returns 1416 * Nothing 1417 */ 1418 static void 1419 keg_small_init(uma_keg_t keg) 1420 { 1421 u_int rsize; 1422 u_int memused; 1423 u_int wastedspace; 1424 u_int shsize; 1425 u_int slabsize; 1426 1427 if (keg->uk_flags & UMA_ZONE_PCPU) { 1428 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1429 1430 slabsize = UMA_PCPU_ALLOC_SIZE; 1431 keg->uk_ppera = ncpus; 1432 } else { 1433 slabsize = UMA_SLAB_SIZE; 1434 keg->uk_ppera = 1; 1435 } 1436 1437 /* 1438 * Calculate the size of each allocation (rsize) according to 1439 * alignment. If the requested size is smaller than we have 1440 * allocation bits for we round it up. 1441 */ 1442 rsize = keg->uk_size; 1443 if (rsize < slabsize / SLAB_SETSIZE) 1444 rsize = slabsize / SLAB_SETSIZE; 1445 if (rsize & keg->uk_align) 1446 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1447 keg->uk_rsize = rsize; 1448 1449 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1450 keg->uk_rsize < UMA_PCPU_ALLOC_SIZE, 1451 ("%s: size %u too large", __func__, keg->uk_rsize)); 1452 1453 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1454 shsize = 0; 1455 else 1456 shsize = SIZEOF_UMA_SLAB; 1457 1458 if (rsize <= slabsize - shsize) 1459 keg->uk_ipers = (slabsize - shsize) / rsize; 1460 else { 1461 /* Handle special case when we have 1 item per slab, so 1462 * alignment requirement can be relaxed. */ 1463 KASSERT(keg->uk_size <= slabsize - shsize, 1464 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1465 keg->uk_ipers = 1; 1466 } 1467 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1468 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1469 1470 memused = keg->uk_ipers * rsize + shsize; 1471 wastedspace = slabsize - memused; 1472 1473 /* 1474 * We can't do OFFPAGE if we're internal or if we've been 1475 * asked to not go to the VM for buckets. If we do this we 1476 * may end up going to the VM for slabs which we do not 1477 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1478 * of UMA_ZONE_VM, which clearly forbids it. 1479 */ 1480 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1481 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1482 return; 1483 1484 /* 1485 * See if using an OFFPAGE slab will limit our waste. Only do 1486 * this if it permits more items per-slab. 1487 * 1488 * XXX We could try growing slabsize to limit max waste as well. 1489 * Historically this was not done because the VM could not 1490 * efficiently handle contiguous allocations. 1491 */ 1492 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1493 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1494 keg->uk_ipers = slabsize / keg->uk_rsize; 1495 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1496 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1497 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1498 "keg: %s(%p), calculated wastedspace = %d, " 1499 "maximum wasted space allowed = %d, " 1500 "calculated ipers = %d, " 1501 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1502 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1503 slabsize - keg->uk_ipers * keg->uk_rsize); 1504 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1505 } 1506 1507 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1508 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1509 keg->uk_flags |= UMA_ZONE_HASH; 1510 } 1511 1512 /* 1513 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1514 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1515 * more complicated. 1516 * 1517 * Arguments 1518 * keg The keg we should initialize 1519 * 1520 * Returns 1521 * Nothing 1522 */ 1523 static void 1524 keg_large_init(uma_keg_t keg) 1525 { 1526 1527 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1528 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1529 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1530 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1531 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1532 1533 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1534 keg->uk_ipers = 1; 1535 keg->uk_rsize = keg->uk_size; 1536 1537 /* Check whether we have enough space to not do OFFPAGE. */ 1538 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0 && 1539 PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < SIZEOF_UMA_SLAB) { 1540 /* 1541 * We can't do OFFPAGE if we're internal, in which case 1542 * we need an extra page per allocation to contain the 1543 * slab header. 1544 */ 1545 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1546 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1547 else 1548 keg->uk_ppera++; 1549 } 1550 1551 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1552 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1553 keg->uk_flags |= UMA_ZONE_HASH; 1554 } 1555 1556 static void 1557 keg_cachespread_init(uma_keg_t keg) 1558 { 1559 int alignsize; 1560 int trailer; 1561 int pages; 1562 int rsize; 1563 1564 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1565 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1566 1567 alignsize = keg->uk_align + 1; 1568 rsize = keg->uk_size; 1569 /* 1570 * We want one item to start on every align boundary in a page. To 1571 * do this we will span pages. We will also extend the item by the 1572 * size of align if it is an even multiple of align. Otherwise, it 1573 * would fall on the same boundary every time. 1574 */ 1575 if (rsize & keg->uk_align) 1576 rsize = (rsize & ~keg->uk_align) + alignsize; 1577 if ((rsize & alignsize) == 0) 1578 rsize += alignsize; 1579 trailer = rsize - keg->uk_size; 1580 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1581 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1582 keg->uk_rsize = rsize; 1583 keg->uk_ppera = pages; 1584 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1585 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1586 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1587 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1588 keg->uk_ipers)); 1589 } 1590 1591 /* 1592 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1593 * the keg onto the global keg list. 1594 * 1595 * Arguments/Returns follow uma_ctor specifications 1596 * udata Actually uma_kctor_args 1597 */ 1598 static int 1599 keg_ctor(void *mem, int size, void *udata, int flags) 1600 { 1601 struct uma_kctor_args *arg = udata; 1602 uma_keg_t keg = mem; 1603 uma_zone_t zone; 1604 1605 bzero(keg, size); 1606 keg->uk_size = arg->size; 1607 keg->uk_init = arg->uminit; 1608 keg->uk_fini = arg->fini; 1609 keg->uk_align = arg->align; 1610 keg->uk_free = 0; 1611 keg->uk_reserve = 0; 1612 keg->uk_pages = 0; 1613 keg->uk_flags = arg->flags; 1614 keg->uk_slabzone = NULL; 1615 1616 /* 1617 * We use a global round-robin policy by default. Zones with 1618 * UMA_ZONE_NUMA set will use first-touch instead, in which case the 1619 * iterator is never run. 1620 */ 1621 keg->uk_dr.dr_policy = DOMAINSET_RR(); 1622 keg->uk_dr.dr_iter = 0; 1623 1624 /* 1625 * The master zone is passed to us at keg-creation time. 1626 */ 1627 zone = arg->zone; 1628 keg->uk_name = zone->uz_name; 1629 1630 if (arg->flags & UMA_ZONE_VM) 1631 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1632 1633 if (arg->flags & UMA_ZONE_ZINIT) 1634 keg->uk_init = zero_init; 1635 1636 if (arg->flags & UMA_ZONE_MALLOC) 1637 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1638 1639 if (arg->flags & UMA_ZONE_PCPU) 1640 #ifdef SMP 1641 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1642 #else 1643 keg->uk_flags &= ~UMA_ZONE_PCPU; 1644 #endif 1645 1646 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1647 keg_cachespread_init(keg); 1648 } else { 1649 if (keg->uk_size > UMA_SLAB_SPACE) 1650 keg_large_init(keg); 1651 else 1652 keg_small_init(keg); 1653 } 1654 1655 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1656 keg->uk_slabzone = slabzone; 1657 1658 /* 1659 * If we haven't booted yet we need allocations to go through the 1660 * startup cache until the vm is ready. 1661 */ 1662 if (booted < BOOT_PAGEALLOC) 1663 keg->uk_allocf = startup_alloc; 1664 #ifdef UMA_MD_SMALL_ALLOC 1665 else if (keg->uk_ppera == 1) 1666 keg->uk_allocf = uma_small_alloc; 1667 #endif 1668 else if (keg->uk_flags & UMA_ZONE_PCPU) 1669 keg->uk_allocf = pcpu_page_alloc; 1670 else 1671 keg->uk_allocf = page_alloc; 1672 #ifdef UMA_MD_SMALL_ALLOC 1673 if (keg->uk_ppera == 1) 1674 keg->uk_freef = uma_small_free; 1675 else 1676 #endif 1677 if (keg->uk_flags & UMA_ZONE_PCPU) 1678 keg->uk_freef = pcpu_page_free; 1679 else 1680 keg->uk_freef = page_free; 1681 1682 /* 1683 * Initialize keg's lock 1684 */ 1685 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1686 1687 /* 1688 * If we're putting the slab header in the actual page we need to 1689 * figure out where in each page it goes. See SIZEOF_UMA_SLAB 1690 * macro definition. 1691 */ 1692 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1693 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - SIZEOF_UMA_SLAB; 1694 /* 1695 * The only way the following is possible is if with our 1696 * UMA_ALIGN_PTR adjustments we are now bigger than 1697 * UMA_SLAB_SIZE. I haven't checked whether this is 1698 * mathematically possible for all cases, so we make 1699 * sure here anyway. 1700 */ 1701 KASSERT(keg->uk_pgoff + sizeof(struct uma_slab) <= 1702 PAGE_SIZE * keg->uk_ppera, 1703 ("zone %s ipers %d rsize %d size %d slab won't fit", 1704 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 1705 } 1706 1707 if (keg->uk_flags & UMA_ZONE_HASH) 1708 hash_alloc(&keg->uk_hash); 1709 1710 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1711 keg, zone->uz_name, zone, 1712 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1713 keg->uk_free); 1714 1715 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1716 1717 rw_wlock(&uma_rwlock); 1718 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1719 rw_wunlock(&uma_rwlock); 1720 return (0); 1721 } 1722 1723 /* 1724 * Zone header ctor. This initializes all fields, locks, etc. 1725 * 1726 * Arguments/Returns follow uma_ctor specifications 1727 * udata Actually uma_zctor_args 1728 */ 1729 static int 1730 zone_ctor(void *mem, int size, void *udata, int flags) 1731 { 1732 struct uma_zctor_args *arg = udata; 1733 uma_zone_t zone = mem; 1734 uma_zone_t z; 1735 uma_keg_t keg; 1736 1737 bzero(zone, size); 1738 zone->uz_name = arg->name; 1739 zone->uz_ctor = arg->ctor; 1740 zone->uz_dtor = arg->dtor; 1741 zone->uz_slab = zone_fetch_slab; 1742 zone->uz_init = NULL; 1743 zone->uz_fini = NULL; 1744 zone->uz_allocs = 0; 1745 zone->uz_frees = 0; 1746 zone->uz_fails = 0; 1747 zone->uz_sleeps = 0; 1748 zone->uz_count = 0; 1749 zone->uz_count_min = 0; 1750 zone->uz_flags = 0; 1751 zone->uz_warning = NULL; 1752 /* The domain structures follow the cpu structures. */ 1753 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1754 timevalclear(&zone->uz_ratecheck); 1755 keg = arg->keg; 1756 1757 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1758 1759 /* 1760 * This is a pure cache zone, no kegs. 1761 */ 1762 if (arg->import) { 1763 if (arg->flags & UMA_ZONE_VM) 1764 arg->flags |= UMA_ZFLAG_CACHEONLY; 1765 zone->uz_flags = arg->flags; 1766 zone->uz_size = arg->size; 1767 zone->uz_import = arg->import; 1768 zone->uz_release = arg->release; 1769 zone->uz_arg = arg->arg; 1770 zone->uz_lockptr = &zone->uz_lock; 1771 rw_wlock(&uma_rwlock); 1772 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1773 rw_wunlock(&uma_rwlock); 1774 goto out; 1775 } 1776 1777 /* 1778 * Use the regular zone/keg/slab allocator. 1779 */ 1780 zone->uz_import = (uma_import)zone_import; 1781 zone->uz_release = (uma_release)zone_release; 1782 zone->uz_arg = zone; 1783 1784 if (arg->flags & UMA_ZONE_SECONDARY) { 1785 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1786 zone->uz_init = arg->uminit; 1787 zone->uz_fini = arg->fini; 1788 zone->uz_lockptr = &keg->uk_lock; 1789 zone->uz_flags |= UMA_ZONE_SECONDARY; 1790 rw_wlock(&uma_rwlock); 1791 ZONE_LOCK(zone); 1792 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1793 if (LIST_NEXT(z, uz_link) == NULL) { 1794 LIST_INSERT_AFTER(z, zone, uz_link); 1795 break; 1796 } 1797 } 1798 ZONE_UNLOCK(zone); 1799 rw_wunlock(&uma_rwlock); 1800 } else if (keg == NULL) { 1801 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1802 arg->align, arg->flags)) == NULL) 1803 return (ENOMEM); 1804 } else { 1805 struct uma_kctor_args karg; 1806 int error; 1807 1808 /* We should only be here from uma_startup() */ 1809 karg.size = arg->size; 1810 karg.uminit = arg->uminit; 1811 karg.fini = arg->fini; 1812 karg.align = arg->align; 1813 karg.flags = arg->flags; 1814 karg.zone = zone; 1815 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1816 flags); 1817 if (error) 1818 return (error); 1819 } 1820 1821 /* 1822 * Link in the first keg. 1823 */ 1824 zone->uz_klink.kl_keg = keg; 1825 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1826 zone->uz_lockptr = &keg->uk_lock; 1827 zone->uz_size = keg->uk_size; 1828 zone->uz_flags |= (keg->uk_flags & 1829 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1830 1831 /* 1832 * Some internal zones don't have room allocated for the per cpu 1833 * caches. If we're internal, bail out here. 1834 */ 1835 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1836 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1837 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1838 return (0); 1839 } 1840 1841 out: 1842 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 1843 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 1844 ("Invalid zone flag combination")); 1845 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 1846 zone->uz_count = BUCKET_MAX; 1847 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 1848 zone->uz_count = 0; 1849 else 1850 zone->uz_count = bucket_select(zone->uz_size); 1851 zone->uz_count_min = zone->uz_count; 1852 1853 return (0); 1854 } 1855 1856 /* 1857 * Keg header dtor. This frees all data, destroys locks, frees the hash 1858 * table and removes the keg from the global list. 1859 * 1860 * Arguments/Returns follow uma_dtor specifications 1861 * udata unused 1862 */ 1863 static void 1864 keg_dtor(void *arg, int size, void *udata) 1865 { 1866 uma_keg_t keg; 1867 1868 keg = (uma_keg_t)arg; 1869 KEG_LOCK(keg); 1870 if (keg->uk_free != 0) { 1871 printf("Freed UMA keg (%s) was not empty (%d items). " 1872 " Lost %d pages of memory.\n", 1873 keg->uk_name ? keg->uk_name : "", 1874 keg->uk_free, keg->uk_pages); 1875 } 1876 KEG_UNLOCK(keg); 1877 1878 hash_free(&keg->uk_hash); 1879 1880 KEG_LOCK_FINI(keg); 1881 } 1882 1883 /* 1884 * Zone header dtor. 1885 * 1886 * Arguments/Returns follow uma_dtor specifications 1887 * udata unused 1888 */ 1889 static void 1890 zone_dtor(void *arg, int size, void *udata) 1891 { 1892 uma_klink_t klink; 1893 uma_zone_t zone; 1894 uma_keg_t keg; 1895 1896 zone = (uma_zone_t)arg; 1897 keg = zone_first_keg(zone); 1898 1899 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1900 cache_drain(zone); 1901 1902 rw_wlock(&uma_rwlock); 1903 LIST_REMOVE(zone, uz_link); 1904 rw_wunlock(&uma_rwlock); 1905 /* 1906 * XXX there are some races here where 1907 * the zone can be drained but zone lock 1908 * released and then refilled before we 1909 * remove it... we dont care for now 1910 */ 1911 zone_drain_wait(zone, M_WAITOK); 1912 /* 1913 * Unlink all of our kegs. 1914 */ 1915 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1916 klink->kl_keg = NULL; 1917 LIST_REMOVE(klink, kl_link); 1918 if (klink == &zone->uz_klink) 1919 continue; 1920 free(klink, M_TEMP); 1921 } 1922 /* 1923 * We only destroy kegs from non secondary zones. 1924 */ 1925 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1926 rw_wlock(&uma_rwlock); 1927 LIST_REMOVE(keg, uk_link); 1928 rw_wunlock(&uma_rwlock); 1929 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1930 } 1931 ZONE_LOCK_FINI(zone); 1932 } 1933 1934 /* 1935 * Traverses every zone in the system and calls a callback 1936 * 1937 * Arguments: 1938 * zfunc A pointer to a function which accepts a zone 1939 * as an argument. 1940 * 1941 * Returns: 1942 * Nothing 1943 */ 1944 static void 1945 zone_foreach(void (*zfunc)(uma_zone_t)) 1946 { 1947 uma_keg_t keg; 1948 uma_zone_t zone; 1949 1950 rw_rlock(&uma_rwlock); 1951 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1952 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1953 zfunc(zone); 1954 } 1955 rw_runlock(&uma_rwlock); 1956 } 1957 1958 /* 1959 * Count how many pages do we need to bootstrap. VM supplies 1960 * its need in early zones in the argument, we add up our zones, 1961 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 1962 * zone of zones and zone of kegs are accounted separately. 1963 */ 1964 #define UMA_BOOT_ZONES 11 1965 /* Zone of zones and zone of kegs have arbitrary alignment. */ 1966 #define UMA_BOOT_ALIGN 32 1967 static int zsize, ksize; 1968 int 1969 uma_startup_count(int vm_zones) 1970 { 1971 int zones, pages; 1972 1973 ksize = sizeof(struct uma_keg) + 1974 (sizeof(struct uma_domain) * vm_ndomains); 1975 zsize = sizeof(struct uma_zone) + 1976 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 1977 (sizeof(struct uma_zone_domain) * vm_ndomains); 1978 1979 /* 1980 * Memory for the zone of kegs and its keg, 1981 * and for zone of zones. 1982 */ 1983 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 1984 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 1985 1986 #ifdef UMA_MD_SMALL_ALLOC 1987 zones = UMA_BOOT_ZONES; 1988 #else 1989 zones = UMA_BOOT_ZONES + vm_zones; 1990 vm_zones = 0; 1991 #endif 1992 1993 /* Memory for the rest of startup zones, UMA and VM, ... */ 1994 if (zsize > UMA_SLAB_SPACE) { 1995 /* See keg_large_init(). */ 1996 u_int ppera; 1997 1998 ppera = howmany(roundup2(zsize, UMA_BOOT_ALIGN), PAGE_SIZE); 1999 if (PAGE_SIZE * ppera - roundup2(zsize, UMA_BOOT_ALIGN) < 2000 SIZEOF_UMA_SLAB) 2001 ppera++; 2002 pages += (zones + vm_zones) * ppera; 2003 } else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 2004 /* See keg_small_init() special case for uk_ppera = 1. */ 2005 pages += zones; 2006 else 2007 pages += howmany(zones, 2008 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 2009 2010 /* ... and their kegs. Note that zone of zones allocates a keg! */ 2011 pages += howmany(zones + 1, 2012 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 2013 2014 /* 2015 * Most of startup zones are not going to be offpages, that's 2016 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 2017 * calculations. Some large bucket zones will be offpage, and 2018 * thus will allocate hashes. We take conservative approach 2019 * and assume that all zones may allocate hash. This may give 2020 * us some positive inaccuracy, usually an extra single page. 2021 */ 2022 pages += howmany(zones, UMA_SLAB_SPACE / 2023 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 2024 2025 return (pages); 2026 } 2027 2028 void 2029 uma_startup(void *mem, int npages) 2030 { 2031 struct uma_zctor_args args; 2032 uma_keg_t masterkeg; 2033 uintptr_t m; 2034 2035 #ifdef DIAGNOSTIC 2036 printf("Entering %s with %d boot pages configured\n", __func__, npages); 2037 #endif 2038 2039 rw_init(&uma_rwlock, "UMA lock"); 2040 2041 /* Use bootpages memory for the zone of zones and zone of kegs. */ 2042 m = (uintptr_t)mem; 2043 zones = (uma_zone_t)m; 2044 m += roundup(zsize, CACHE_LINE_SIZE); 2045 kegs = (uma_zone_t)m; 2046 m += roundup(zsize, CACHE_LINE_SIZE); 2047 masterkeg = (uma_keg_t)m; 2048 m += roundup(ksize, CACHE_LINE_SIZE); 2049 m = roundup(m, PAGE_SIZE); 2050 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 2051 mem = (void *)m; 2052 2053 /* "manually" create the initial zone */ 2054 memset(&args, 0, sizeof(args)); 2055 args.name = "UMA Kegs"; 2056 args.size = ksize; 2057 args.ctor = keg_ctor; 2058 args.dtor = keg_dtor; 2059 args.uminit = zero_init; 2060 args.fini = NULL; 2061 args.keg = masterkeg; 2062 args.align = UMA_BOOT_ALIGN - 1; 2063 args.flags = UMA_ZFLAG_INTERNAL; 2064 zone_ctor(kegs, zsize, &args, M_WAITOK); 2065 2066 bootmem = mem; 2067 boot_pages = npages; 2068 2069 args.name = "UMA Zones"; 2070 args.size = zsize; 2071 args.ctor = zone_ctor; 2072 args.dtor = zone_dtor; 2073 args.uminit = zero_init; 2074 args.fini = NULL; 2075 args.keg = NULL; 2076 args.align = UMA_BOOT_ALIGN - 1; 2077 args.flags = UMA_ZFLAG_INTERNAL; 2078 zone_ctor(zones, zsize, &args, M_WAITOK); 2079 2080 /* Now make a zone for slab headers */ 2081 slabzone = uma_zcreate("UMA Slabs", 2082 sizeof(struct uma_slab), 2083 NULL, NULL, NULL, NULL, 2084 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2085 2086 hashzone = uma_zcreate("UMA Hash", 2087 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2088 NULL, NULL, NULL, NULL, 2089 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2090 2091 bucket_init(); 2092 2093 booted = BOOT_STRAPPED; 2094 } 2095 2096 void 2097 uma_startup1(void) 2098 { 2099 2100 #ifdef DIAGNOSTIC 2101 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2102 #endif 2103 booted = BOOT_PAGEALLOC; 2104 } 2105 2106 void 2107 uma_startup2(void) 2108 { 2109 2110 #ifdef DIAGNOSTIC 2111 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2112 #endif 2113 booted = BOOT_BUCKETS; 2114 sx_init(&uma_drain_lock, "umadrain"); 2115 bucket_enable(); 2116 } 2117 2118 /* 2119 * Initialize our callout handle 2120 * 2121 */ 2122 static void 2123 uma_startup3(void) 2124 { 2125 2126 #ifdef INVARIANTS 2127 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2128 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2129 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2130 #endif 2131 callout_init(&uma_callout, 1); 2132 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2133 booted = BOOT_RUNNING; 2134 } 2135 2136 static uma_keg_t 2137 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2138 int align, uint32_t flags) 2139 { 2140 struct uma_kctor_args args; 2141 2142 args.size = size; 2143 args.uminit = uminit; 2144 args.fini = fini; 2145 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2146 args.flags = flags; 2147 args.zone = zone; 2148 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2149 } 2150 2151 /* Public functions */ 2152 /* See uma.h */ 2153 void 2154 uma_set_align(int align) 2155 { 2156 2157 if (align != UMA_ALIGN_CACHE) 2158 uma_align_cache = align; 2159 } 2160 2161 /* See uma.h */ 2162 uma_zone_t 2163 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2164 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2165 2166 { 2167 struct uma_zctor_args args; 2168 uma_zone_t res; 2169 bool locked; 2170 2171 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2172 align, name)); 2173 2174 /* This stuff is essential for the zone ctor */ 2175 memset(&args, 0, sizeof(args)); 2176 args.name = name; 2177 args.size = size; 2178 args.ctor = ctor; 2179 args.dtor = dtor; 2180 args.uminit = uminit; 2181 args.fini = fini; 2182 #ifdef INVARIANTS 2183 /* 2184 * If a zone is being created with an empty constructor and 2185 * destructor, pass UMA constructor/destructor which checks for 2186 * memory use after free. 2187 */ 2188 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2189 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2190 args.ctor = trash_ctor; 2191 args.dtor = trash_dtor; 2192 args.uminit = trash_init; 2193 args.fini = trash_fini; 2194 } 2195 #endif 2196 args.align = align; 2197 args.flags = flags; 2198 args.keg = NULL; 2199 2200 if (booted < BOOT_BUCKETS) { 2201 locked = false; 2202 } else { 2203 sx_slock(&uma_drain_lock); 2204 locked = true; 2205 } 2206 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2207 if (locked) 2208 sx_sunlock(&uma_drain_lock); 2209 return (res); 2210 } 2211 2212 /* See uma.h */ 2213 uma_zone_t 2214 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2215 uma_init zinit, uma_fini zfini, uma_zone_t master) 2216 { 2217 struct uma_zctor_args args; 2218 uma_keg_t keg; 2219 uma_zone_t res; 2220 bool locked; 2221 2222 keg = zone_first_keg(master); 2223 memset(&args, 0, sizeof(args)); 2224 args.name = name; 2225 args.size = keg->uk_size; 2226 args.ctor = ctor; 2227 args.dtor = dtor; 2228 args.uminit = zinit; 2229 args.fini = zfini; 2230 args.align = keg->uk_align; 2231 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2232 args.keg = keg; 2233 2234 if (booted < BOOT_BUCKETS) { 2235 locked = false; 2236 } else { 2237 sx_slock(&uma_drain_lock); 2238 locked = true; 2239 } 2240 /* XXX Attaches only one keg of potentially many. */ 2241 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2242 if (locked) 2243 sx_sunlock(&uma_drain_lock); 2244 return (res); 2245 } 2246 2247 /* See uma.h */ 2248 uma_zone_t 2249 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2250 uma_init zinit, uma_fini zfini, uma_import zimport, 2251 uma_release zrelease, void *arg, int flags) 2252 { 2253 struct uma_zctor_args args; 2254 2255 memset(&args, 0, sizeof(args)); 2256 args.name = name; 2257 args.size = size; 2258 args.ctor = ctor; 2259 args.dtor = dtor; 2260 args.uminit = zinit; 2261 args.fini = zfini; 2262 args.import = zimport; 2263 args.release = zrelease; 2264 args.arg = arg; 2265 args.align = 0; 2266 args.flags = flags; 2267 2268 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2269 } 2270 2271 static void 2272 zone_lock_pair(uma_zone_t a, uma_zone_t b) 2273 { 2274 if (a < b) { 2275 ZONE_LOCK(a); 2276 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2277 } else { 2278 ZONE_LOCK(b); 2279 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2280 } 2281 } 2282 2283 static void 2284 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2285 { 2286 2287 ZONE_UNLOCK(a); 2288 ZONE_UNLOCK(b); 2289 } 2290 2291 int 2292 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2293 { 2294 uma_klink_t klink; 2295 uma_klink_t kl; 2296 int error; 2297 2298 error = 0; 2299 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2300 2301 zone_lock_pair(zone, master); 2302 /* 2303 * zone must use vtoslab() to resolve objects and must already be 2304 * a secondary. 2305 */ 2306 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2307 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2308 error = EINVAL; 2309 goto out; 2310 } 2311 /* 2312 * The new master must also use vtoslab(). 2313 */ 2314 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2315 error = EINVAL; 2316 goto out; 2317 } 2318 2319 /* 2320 * The underlying object must be the same size. rsize 2321 * may be different. 2322 */ 2323 if (master->uz_size != zone->uz_size) { 2324 error = E2BIG; 2325 goto out; 2326 } 2327 /* 2328 * Put it at the end of the list. 2329 */ 2330 klink->kl_keg = zone_first_keg(master); 2331 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2332 if (LIST_NEXT(kl, kl_link) == NULL) { 2333 LIST_INSERT_AFTER(kl, klink, kl_link); 2334 break; 2335 } 2336 } 2337 klink = NULL; 2338 zone->uz_flags |= UMA_ZFLAG_MULTI; 2339 zone->uz_slab = zone_fetch_slab_multi; 2340 2341 out: 2342 zone_unlock_pair(zone, master); 2343 if (klink != NULL) 2344 free(klink, M_TEMP); 2345 2346 return (error); 2347 } 2348 2349 2350 /* See uma.h */ 2351 void 2352 uma_zdestroy(uma_zone_t zone) 2353 { 2354 2355 sx_slock(&uma_drain_lock); 2356 zone_free_item(zones, zone, NULL, SKIP_NONE); 2357 sx_sunlock(&uma_drain_lock); 2358 } 2359 2360 void 2361 uma_zwait(uma_zone_t zone) 2362 { 2363 void *item; 2364 2365 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2366 uma_zfree(zone, item); 2367 } 2368 2369 void * 2370 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2371 { 2372 void *item; 2373 #ifdef SMP 2374 int i; 2375 2376 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2377 #endif 2378 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2379 if (item != NULL && (flags & M_ZERO)) { 2380 #ifdef SMP 2381 for (i = 0; i <= mp_maxid; i++) 2382 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2383 #else 2384 bzero(item, zone->uz_size); 2385 #endif 2386 } 2387 return (item); 2388 } 2389 2390 /* 2391 * A stub while both regular and pcpu cases are identical. 2392 */ 2393 void 2394 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2395 { 2396 2397 #ifdef SMP 2398 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2399 #endif 2400 uma_zfree_arg(zone, item, udata); 2401 } 2402 2403 /* See uma.h */ 2404 void * 2405 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2406 { 2407 uma_zone_domain_t zdom; 2408 uma_bucket_t bucket; 2409 uma_cache_t cache; 2410 void *item; 2411 int cpu, domain, lockfail; 2412 #ifdef INVARIANTS 2413 bool skipdbg; 2414 #endif 2415 2416 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2417 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2418 2419 /* This is the fast path allocation */ 2420 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2421 curthread, zone->uz_name, zone, flags); 2422 2423 if (flags & M_WAITOK) { 2424 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2425 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2426 } 2427 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2428 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2429 ("uma_zalloc_arg: called with spinlock or critical section held")); 2430 if (zone->uz_flags & UMA_ZONE_PCPU) 2431 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2432 "with M_ZERO passed")); 2433 2434 #ifdef DEBUG_MEMGUARD 2435 if (memguard_cmp_zone(zone)) { 2436 item = memguard_alloc(zone->uz_size, flags); 2437 if (item != NULL) { 2438 if (zone->uz_init != NULL && 2439 zone->uz_init(item, zone->uz_size, flags) != 0) 2440 return (NULL); 2441 if (zone->uz_ctor != NULL && 2442 zone->uz_ctor(item, zone->uz_size, udata, 2443 flags) != 0) { 2444 zone->uz_fini(item, zone->uz_size); 2445 return (NULL); 2446 } 2447 return (item); 2448 } 2449 /* This is unfortunate but should not be fatal. */ 2450 } 2451 #endif 2452 /* 2453 * If possible, allocate from the per-CPU cache. There are two 2454 * requirements for safe access to the per-CPU cache: (1) the thread 2455 * accessing the cache must not be preempted or yield during access, 2456 * and (2) the thread must not migrate CPUs without switching which 2457 * cache it accesses. We rely on a critical section to prevent 2458 * preemption and migration. We release the critical section in 2459 * order to acquire the zone mutex if we are unable to allocate from 2460 * the current cache; when we re-acquire the critical section, we 2461 * must detect and handle migration if it has occurred. 2462 */ 2463 zalloc_restart: 2464 critical_enter(); 2465 cpu = curcpu; 2466 cache = &zone->uz_cpu[cpu]; 2467 2468 zalloc_start: 2469 bucket = cache->uc_allocbucket; 2470 if (bucket != NULL && bucket->ub_cnt > 0) { 2471 bucket->ub_cnt--; 2472 item = bucket->ub_bucket[bucket->ub_cnt]; 2473 #ifdef INVARIANTS 2474 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2475 #endif 2476 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2477 cache->uc_allocs++; 2478 critical_exit(); 2479 #ifdef INVARIANTS 2480 skipdbg = uma_dbg_zskip(zone, item); 2481 #endif 2482 if (zone->uz_ctor != NULL && 2483 #ifdef INVARIANTS 2484 (!skipdbg || zone->uz_ctor != trash_ctor || 2485 zone->uz_dtor != trash_dtor) && 2486 #endif 2487 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2488 atomic_add_long(&zone->uz_fails, 1); 2489 zone_free_item(zone, item, udata, SKIP_DTOR); 2490 return (NULL); 2491 } 2492 #ifdef INVARIANTS 2493 if (!skipdbg) 2494 uma_dbg_alloc(zone, NULL, item); 2495 #endif 2496 if (flags & M_ZERO) 2497 uma_zero_item(item, zone); 2498 return (item); 2499 } 2500 2501 /* 2502 * We have run out of items in our alloc bucket. 2503 * See if we can switch with our free bucket. 2504 */ 2505 bucket = cache->uc_freebucket; 2506 if (bucket != NULL && bucket->ub_cnt > 0) { 2507 CTR2(KTR_UMA, 2508 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2509 zone->uz_name, zone); 2510 cache->uc_freebucket = cache->uc_allocbucket; 2511 cache->uc_allocbucket = bucket; 2512 goto zalloc_start; 2513 } 2514 2515 /* 2516 * Discard any empty allocation bucket while we hold no locks. 2517 */ 2518 bucket = cache->uc_allocbucket; 2519 cache->uc_allocbucket = NULL; 2520 critical_exit(); 2521 if (bucket != NULL) 2522 bucket_free(zone, bucket, udata); 2523 2524 if (zone->uz_flags & UMA_ZONE_NUMA) { 2525 domain = PCPU_GET(domain); 2526 if (VM_DOMAIN_EMPTY(domain)) 2527 domain = UMA_ANYDOMAIN; 2528 } else 2529 domain = UMA_ANYDOMAIN; 2530 2531 /* Short-circuit for zones without buckets and low memory. */ 2532 if (zone->uz_count == 0 || bucketdisable) 2533 goto zalloc_item; 2534 2535 /* 2536 * Attempt to retrieve the item from the per-CPU cache has failed, so 2537 * we must go back to the zone. This requires the zone lock, so we 2538 * must drop the critical section, then re-acquire it when we go back 2539 * to the cache. Since the critical section is released, we may be 2540 * preempted or migrate. As such, make sure not to maintain any 2541 * thread-local state specific to the cache from prior to releasing 2542 * the critical section. 2543 */ 2544 lockfail = 0; 2545 if (ZONE_TRYLOCK(zone) == 0) { 2546 /* Record contention to size the buckets. */ 2547 ZONE_LOCK(zone); 2548 lockfail = 1; 2549 } 2550 critical_enter(); 2551 cpu = curcpu; 2552 cache = &zone->uz_cpu[cpu]; 2553 2554 /* See if we lost the race to fill the cache. */ 2555 if (cache->uc_allocbucket != NULL) { 2556 ZONE_UNLOCK(zone); 2557 goto zalloc_start; 2558 } 2559 2560 /* 2561 * Check the zone's cache of buckets. 2562 */ 2563 if (domain == UMA_ANYDOMAIN) 2564 zdom = &zone->uz_domain[0]; 2565 else 2566 zdom = &zone->uz_domain[domain]; 2567 if ((bucket = zone_try_fetch_bucket(zone, zdom, true)) != NULL) { 2568 KASSERT(bucket->ub_cnt != 0, 2569 ("uma_zalloc_arg: Returning an empty bucket.")); 2570 cache->uc_allocbucket = bucket; 2571 ZONE_UNLOCK(zone); 2572 goto zalloc_start; 2573 } 2574 /* We are no longer associated with this CPU. */ 2575 critical_exit(); 2576 2577 /* 2578 * We bump the uz count when the cache size is insufficient to 2579 * handle the working set. 2580 */ 2581 if (lockfail && zone->uz_count < BUCKET_MAX) 2582 zone->uz_count++; 2583 ZONE_UNLOCK(zone); 2584 2585 /* 2586 * Now lets just fill a bucket and put it on the free list. If that 2587 * works we'll restart the allocation from the beginning and it 2588 * will use the just filled bucket. 2589 */ 2590 bucket = zone_alloc_bucket(zone, udata, domain, flags); 2591 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2592 zone->uz_name, zone, bucket); 2593 if (bucket != NULL) { 2594 ZONE_LOCK(zone); 2595 critical_enter(); 2596 cpu = curcpu; 2597 cache = &zone->uz_cpu[cpu]; 2598 2599 /* 2600 * See if we lost the race or were migrated. Cache the 2601 * initialized bucket to make this less likely or claim 2602 * the memory directly. 2603 */ 2604 if (cache->uc_allocbucket == NULL && 2605 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 2606 domain == PCPU_GET(domain))) { 2607 cache->uc_allocbucket = bucket; 2608 zdom->uzd_imax += bucket->ub_cnt; 2609 } else if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) { 2610 critical_exit(); 2611 ZONE_UNLOCK(zone); 2612 bucket_drain(zone, bucket); 2613 bucket_free(zone, bucket, udata); 2614 goto zalloc_restart; 2615 } else 2616 zone_put_bucket(zone, zdom, bucket, false); 2617 ZONE_UNLOCK(zone); 2618 goto zalloc_start; 2619 } 2620 2621 /* 2622 * We may not be able to get a bucket so return an actual item. 2623 */ 2624 zalloc_item: 2625 item = zone_alloc_item(zone, udata, domain, flags); 2626 2627 return (item); 2628 } 2629 2630 void * 2631 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2632 { 2633 2634 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2635 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2636 2637 /* This is the fast path allocation */ 2638 CTR5(KTR_UMA, 2639 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2640 curthread, zone->uz_name, zone, domain, flags); 2641 2642 if (flags & M_WAITOK) { 2643 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2644 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2645 } 2646 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2647 ("uma_zalloc_domain: called with spinlock or critical section held")); 2648 2649 return (zone_alloc_item(zone, udata, domain, flags)); 2650 } 2651 2652 /* 2653 * Find a slab with some space. Prefer slabs that are partially used over those 2654 * that are totally full. This helps to reduce fragmentation. 2655 * 2656 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2657 * only 'domain'. 2658 */ 2659 static uma_slab_t 2660 keg_first_slab(uma_keg_t keg, int domain, bool rr) 2661 { 2662 uma_domain_t dom; 2663 uma_slab_t slab; 2664 int start; 2665 2666 KASSERT(domain >= 0 && domain < vm_ndomains, 2667 ("keg_first_slab: domain %d out of range", domain)); 2668 2669 slab = NULL; 2670 start = domain; 2671 do { 2672 dom = &keg->uk_domain[domain]; 2673 if (!LIST_EMPTY(&dom->ud_part_slab)) 2674 return (LIST_FIRST(&dom->ud_part_slab)); 2675 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2676 slab = LIST_FIRST(&dom->ud_free_slab); 2677 LIST_REMOVE(slab, us_link); 2678 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2679 return (slab); 2680 } 2681 if (rr) 2682 domain = (domain + 1) % vm_ndomains; 2683 } while (domain != start); 2684 2685 return (NULL); 2686 } 2687 2688 static uma_slab_t 2689 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 2690 { 2691 uint32_t reserve; 2692 2693 mtx_assert(&keg->uk_lock, MA_OWNED); 2694 2695 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 2696 if (keg->uk_free <= reserve) 2697 return (NULL); 2698 return (keg_first_slab(keg, domain, rr)); 2699 } 2700 2701 static uma_slab_t 2702 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 2703 { 2704 struct vm_domainset_iter di; 2705 uma_domain_t dom; 2706 uma_slab_t slab; 2707 int aflags, domain; 2708 bool rr; 2709 2710 restart: 2711 mtx_assert(&keg->uk_lock, MA_OWNED); 2712 2713 /* 2714 * Use the keg's policy if upper layers haven't already specified a 2715 * domain (as happens with first-touch zones). 2716 * 2717 * To avoid races we run the iterator with the keg lock held, but that 2718 * means that we cannot allow the vm_domainset layer to sleep. Thus, 2719 * clear M_WAITOK and handle low memory conditions locally. 2720 */ 2721 rr = rdomain == UMA_ANYDOMAIN; 2722 if (rr) { 2723 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 2724 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 2725 &aflags); 2726 } else { 2727 aflags = flags; 2728 domain = rdomain; 2729 } 2730 2731 for (;;) { 2732 slab = keg_fetch_free_slab(keg, domain, rr, flags); 2733 if (slab != NULL) { 2734 MPASS(slab->us_keg == keg); 2735 return (slab); 2736 } 2737 2738 /* 2739 * M_NOVM means don't ask at all! 2740 */ 2741 if (flags & M_NOVM) 2742 break; 2743 2744 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2745 keg->uk_flags |= UMA_ZFLAG_FULL; 2746 /* 2747 * If this is not a multi-zone, set the FULL bit. 2748 * Otherwise slab_multi() takes care of it. 2749 */ 2750 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2751 zone->uz_flags |= UMA_ZFLAG_FULL; 2752 zone_log_warning(zone); 2753 zone_maxaction(zone); 2754 } 2755 if (flags & M_NOWAIT) 2756 return (NULL); 2757 zone->uz_sleeps++; 2758 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2759 continue; 2760 } 2761 slab = keg_alloc_slab(keg, zone, domain, aflags); 2762 /* 2763 * If we got a slab here it's safe to mark it partially used 2764 * and return. We assume that the caller is going to remove 2765 * at least one item. 2766 */ 2767 if (slab) { 2768 MPASS(slab->us_keg == keg); 2769 dom = &keg->uk_domain[slab->us_domain]; 2770 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2771 return (slab); 2772 } 2773 KEG_LOCK(keg); 2774 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 2775 if ((flags & M_WAITOK) != 0) { 2776 KEG_UNLOCK(keg); 2777 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 2778 KEG_LOCK(keg); 2779 goto restart; 2780 } 2781 break; 2782 } 2783 } 2784 2785 /* 2786 * We might not have been able to get a slab but another cpu 2787 * could have while we were unlocked. Check again before we 2788 * fail. 2789 */ 2790 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) { 2791 MPASS(slab->us_keg == keg); 2792 return (slab); 2793 } 2794 return (NULL); 2795 } 2796 2797 static uma_slab_t 2798 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2799 { 2800 uma_slab_t slab; 2801 2802 if (keg == NULL) { 2803 keg = zone_first_keg(zone); 2804 KEG_LOCK(keg); 2805 } 2806 2807 for (;;) { 2808 slab = keg_fetch_slab(keg, zone, domain, flags); 2809 if (slab) 2810 return (slab); 2811 if (flags & (M_NOWAIT | M_NOVM)) 2812 break; 2813 } 2814 KEG_UNLOCK(keg); 2815 return (NULL); 2816 } 2817 2818 /* 2819 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2820 * with the keg locked. On NULL no lock is held. 2821 * 2822 * The last pointer is used to seed the search. It is not required. 2823 */ 2824 static uma_slab_t 2825 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int domain, int rflags) 2826 { 2827 uma_klink_t klink; 2828 uma_slab_t slab; 2829 uma_keg_t keg; 2830 int flags; 2831 int empty; 2832 int full; 2833 2834 /* 2835 * Don't wait on the first pass. This will skip limit tests 2836 * as well. We don't want to block if we can find a provider 2837 * without blocking. 2838 */ 2839 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2840 /* 2841 * Use the last slab allocated as a hint for where to start 2842 * the search. 2843 */ 2844 if (last != NULL) { 2845 slab = keg_fetch_slab(last, zone, domain, flags); 2846 if (slab) 2847 return (slab); 2848 KEG_UNLOCK(last); 2849 } 2850 /* 2851 * Loop until we have a slab incase of transient failures 2852 * while M_WAITOK is specified. I'm not sure this is 100% 2853 * required but we've done it for so long now. 2854 */ 2855 for (;;) { 2856 empty = 0; 2857 full = 0; 2858 /* 2859 * Search the available kegs for slabs. Be careful to hold the 2860 * correct lock while calling into the keg layer. 2861 */ 2862 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2863 keg = klink->kl_keg; 2864 KEG_LOCK(keg); 2865 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2866 slab = keg_fetch_slab(keg, zone, domain, flags); 2867 if (slab) 2868 return (slab); 2869 } 2870 if (keg->uk_flags & UMA_ZFLAG_FULL) 2871 full++; 2872 else 2873 empty++; 2874 KEG_UNLOCK(keg); 2875 } 2876 if (rflags & (M_NOWAIT | M_NOVM)) 2877 break; 2878 flags = rflags; 2879 /* 2880 * All kegs are full. XXX We can't atomically check all kegs 2881 * and sleep so just sleep for a short period and retry. 2882 */ 2883 if (full && !empty) { 2884 ZONE_LOCK(zone); 2885 zone->uz_flags |= UMA_ZFLAG_FULL; 2886 zone->uz_sleeps++; 2887 zone_log_warning(zone); 2888 zone_maxaction(zone); 2889 msleep(zone, zone->uz_lockptr, PVM, 2890 "zonelimit", hz/100); 2891 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2892 ZONE_UNLOCK(zone); 2893 continue; 2894 } 2895 } 2896 return (NULL); 2897 } 2898 2899 static void * 2900 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2901 { 2902 uma_domain_t dom; 2903 void *item; 2904 uint8_t freei; 2905 2906 MPASS(keg == slab->us_keg); 2907 mtx_assert(&keg->uk_lock, MA_OWNED); 2908 2909 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2910 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2911 item = slab->us_data + (keg->uk_rsize * freei); 2912 slab->us_freecount--; 2913 keg->uk_free--; 2914 2915 /* Move this slab to the full list */ 2916 if (slab->us_freecount == 0) { 2917 LIST_REMOVE(slab, us_link); 2918 dom = &keg->uk_domain[slab->us_domain]; 2919 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2920 } 2921 2922 return (item); 2923 } 2924 2925 static int 2926 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2927 { 2928 uma_slab_t slab; 2929 uma_keg_t keg; 2930 #ifdef NUMA 2931 int stripe; 2932 #endif 2933 int i; 2934 2935 slab = NULL; 2936 keg = NULL; 2937 /* Try to keep the buckets totally full */ 2938 for (i = 0; i < max; ) { 2939 if ((slab = zone->uz_slab(zone, keg, domain, flags)) == NULL) 2940 break; 2941 keg = slab->us_keg; 2942 #ifdef NUMA 2943 stripe = howmany(max, vm_ndomains); 2944 #endif 2945 while (slab->us_freecount && i < max) { 2946 bucket[i++] = slab_alloc_item(keg, slab); 2947 if (keg->uk_free <= keg->uk_reserve) 2948 break; 2949 #ifdef NUMA 2950 /* 2951 * If the zone is striped we pick a new slab for every 2952 * N allocations. Eliminating this conditional will 2953 * instead pick a new domain for each bucket rather 2954 * than stripe within each bucket. The current option 2955 * produces more fragmentation and requires more cpu 2956 * time but yields better distribution. 2957 */ 2958 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2959 vm_ndomains > 1 && --stripe == 0) 2960 break; 2961 #endif 2962 } 2963 /* Don't block if we allocated any successfully. */ 2964 flags &= ~M_WAITOK; 2965 flags |= M_NOWAIT; 2966 } 2967 if (slab != NULL) 2968 KEG_UNLOCK(keg); 2969 2970 return i; 2971 } 2972 2973 static uma_bucket_t 2974 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 2975 { 2976 uma_bucket_t bucket; 2977 int max; 2978 2979 CTR1(KTR_UMA, "zone_alloc:_bucket domain %d)", domain); 2980 2981 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2982 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2983 if (bucket == NULL) 2984 return (NULL); 2985 2986 max = MIN(bucket->ub_entries, zone->uz_count); 2987 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2988 max, domain, flags); 2989 2990 /* 2991 * Initialize the memory if necessary. 2992 */ 2993 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2994 int i; 2995 2996 for (i = 0; i < bucket->ub_cnt; i++) 2997 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2998 flags) != 0) 2999 break; 3000 /* 3001 * If we couldn't initialize the whole bucket, put the 3002 * rest back onto the freelist. 3003 */ 3004 if (i != bucket->ub_cnt) { 3005 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3006 bucket->ub_cnt - i); 3007 #ifdef INVARIANTS 3008 bzero(&bucket->ub_bucket[i], 3009 sizeof(void *) * (bucket->ub_cnt - i)); 3010 #endif 3011 bucket->ub_cnt = i; 3012 } 3013 } 3014 3015 if (bucket->ub_cnt == 0) { 3016 bucket_free(zone, bucket, udata); 3017 atomic_add_long(&zone->uz_fails, 1); 3018 return (NULL); 3019 } 3020 3021 return (bucket); 3022 } 3023 3024 /* 3025 * Allocates a single item from a zone. 3026 * 3027 * Arguments 3028 * zone The zone to alloc for. 3029 * udata The data to be passed to the constructor. 3030 * domain The domain to allocate from or UMA_ANYDOMAIN. 3031 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3032 * 3033 * Returns 3034 * NULL if there is no memory and M_NOWAIT is set 3035 * An item if successful 3036 */ 3037 3038 static void * 3039 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3040 { 3041 void *item; 3042 #ifdef INVARIANTS 3043 bool skipdbg; 3044 #endif 3045 3046 item = NULL; 3047 3048 if (domain != UMA_ANYDOMAIN) { 3049 /* avoid allocs targeting empty domains */ 3050 if (VM_DOMAIN_EMPTY(domain)) 3051 domain = UMA_ANYDOMAIN; 3052 } 3053 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3054 goto fail; 3055 atomic_add_long(&zone->uz_allocs, 1); 3056 3057 #ifdef INVARIANTS 3058 skipdbg = uma_dbg_zskip(zone, item); 3059 #endif 3060 /* 3061 * We have to call both the zone's init (not the keg's init) 3062 * and the zone's ctor. This is because the item is going from 3063 * a keg slab directly to the user, and the user is expecting it 3064 * to be both zone-init'd as well as zone-ctor'd. 3065 */ 3066 if (zone->uz_init != NULL) { 3067 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3068 zone_free_item(zone, item, udata, SKIP_FINI); 3069 goto fail; 3070 } 3071 } 3072 if (zone->uz_ctor != NULL && 3073 #ifdef INVARIANTS 3074 (!skipdbg || zone->uz_ctor != trash_ctor || 3075 zone->uz_dtor != trash_dtor) && 3076 #endif 3077 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 3078 zone_free_item(zone, item, udata, SKIP_DTOR); 3079 goto fail; 3080 } 3081 #ifdef INVARIANTS 3082 if (!skipdbg) 3083 uma_dbg_alloc(zone, NULL, item); 3084 #endif 3085 if (flags & M_ZERO) 3086 uma_zero_item(item, zone); 3087 3088 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3089 zone->uz_name, zone); 3090 3091 return (item); 3092 3093 fail: 3094 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3095 zone->uz_name, zone); 3096 atomic_add_long(&zone->uz_fails, 1); 3097 return (NULL); 3098 } 3099 3100 /* See uma.h */ 3101 void 3102 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3103 { 3104 uma_cache_t cache; 3105 uma_bucket_t bucket; 3106 uma_zone_domain_t zdom; 3107 int cpu, domain, lockfail; 3108 #ifdef INVARIANTS 3109 bool skipdbg; 3110 #endif 3111 3112 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3113 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3114 3115 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 3116 zone->uz_name); 3117 3118 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3119 ("uma_zfree_arg: called with spinlock or critical section held")); 3120 3121 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3122 if (item == NULL) 3123 return; 3124 #ifdef DEBUG_MEMGUARD 3125 if (is_memguard_addr(item)) { 3126 if (zone->uz_dtor != NULL) 3127 zone->uz_dtor(item, zone->uz_size, udata); 3128 if (zone->uz_fini != NULL) 3129 zone->uz_fini(item, zone->uz_size); 3130 memguard_free(item); 3131 return; 3132 } 3133 #endif 3134 #ifdef INVARIANTS 3135 skipdbg = uma_dbg_zskip(zone, item); 3136 if (skipdbg == false) { 3137 if (zone->uz_flags & UMA_ZONE_MALLOC) 3138 uma_dbg_free(zone, udata, item); 3139 else 3140 uma_dbg_free(zone, NULL, item); 3141 } 3142 if (zone->uz_dtor != NULL && (!skipdbg || 3143 zone->uz_dtor != trash_dtor || zone->uz_ctor != trash_ctor)) 3144 #else 3145 if (zone->uz_dtor != NULL) 3146 #endif 3147 zone->uz_dtor(item, zone->uz_size, udata); 3148 3149 /* 3150 * The race here is acceptable. If we miss it we'll just have to wait 3151 * a little longer for the limits to be reset. 3152 */ 3153 if (zone->uz_flags & UMA_ZFLAG_FULL) 3154 goto zfree_item; 3155 3156 /* 3157 * If possible, free to the per-CPU cache. There are two 3158 * requirements for safe access to the per-CPU cache: (1) the thread 3159 * accessing the cache must not be preempted or yield during access, 3160 * and (2) the thread must not migrate CPUs without switching which 3161 * cache it accesses. We rely on a critical section to prevent 3162 * preemption and migration. We release the critical section in 3163 * order to acquire the zone mutex if we are unable to free to the 3164 * current cache; when we re-acquire the critical section, we must 3165 * detect and handle migration if it has occurred. 3166 */ 3167 zfree_restart: 3168 critical_enter(); 3169 cpu = curcpu; 3170 cache = &zone->uz_cpu[cpu]; 3171 3172 zfree_start: 3173 /* 3174 * Try to free into the allocbucket first to give LIFO ordering 3175 * for cache-hot datastructures. Spill over into the freebucket 3176 * if necessary. Alloc will swap them if one runs dry. 3177 */ 3178 bucket = cache->uc_allocbucket; 3179 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 3180 bucket = cache->uc_freebucket; 3181 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3182 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 3183 ("uma_zfree: Freeing to non free bucket index.")); 3184 bucket->ub_bucket[bucket->ub_cnt] = item; 3185 bucket->ub_cnt++; 3186 cache->uc_frees++; 3187 critical_exit(); 3188 return; 3189 } 3190 3191 /* 3192 * We must go back the zone, which requires acquiring the zone lock, 3193 * which in turn means we must release and re-acquire the critical 3194 * section. Since the critical section is released, we may be 3195 * preempted or migrate. As such, make sure not to maintain any 3196 * thread-local state specific to the cache from prior to releasing 3197 * the critical section. 3198 */ 3199 critical_exit(); 3200 if (zone->uz_count == 0 || bucketdisable) 3201 goto zfree_item; 3202 3203 lockfail = 0; 3204 if (ZONE_TRYLOCK(zone) == 0) { 3205 /* Record contention to size the buckets. */ 3206 ZONE_LOCK(zone); 3207 lockfail = 1; 3208 } 3209 critical_enter(); 3210 cpu = curcpu; 3211 cache = &zone->uz_cpu[cpu]; 3212 3213 bucket = cache->uc_freebucket; 3214 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3215 ZONE_UNLOCK(zone); 3216 goto zfree_start; 3217 } 3218 cache->uc_freebucket = NULL; 3219 /* We are no longer associated with this CPU. */ 3220 critical_exit(); 3221 3222 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { 3223 domain = PCPU_GET(domain); 3224 if (VM_DOMAIN_EMPTY(domain)) 3225 domain = UMA_ANYDOMAIN; 3226 } else 3227 domain = 0; 3228 zdom = &zone->uz_domain[0]; 3229 3230 /* Can we throw this on the zone full list? */ 3231 if (bucket != NULL) { 3232 CTR3(KTR_UMA, 3233 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3234 zone->uz_name, zone, bucket); 3235 /* ub_cnt is pointing to the last free item */ 3236 KASSERT(bucket->ub_cnt != 0, 3237 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 3238 if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) { 3239 ZONE_UNLOCK(zone); 3240 bucket_drain(zone, bucket); 3241 bucket_free(zone, bucket, udata); 3242 goto zfree_restart; 3243 } else 3244 zone_put_bucket(zone, zdom, bucket, true); 3245 } 3246 3247 /* 3248 * We bump the uz count when the cache size is insufficient to 3249 * handle the working set. 3250 */ 3251 if (lockfail && zone->uz_count < BUCKET_MAX) 3252 zone->uz_count++; 3253 ZONE_UNLOCK(zone); 3254 3255 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3256 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3257 zone->uz_name, zone, bucket); 3258 if (bucket) { 3259 critical_enter(); 3260 cpu = curcpu; 3261 cache = &zone->uz_cpu[cpu]; 3262 if (cache->uc_freebucket == NULL && 3263 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3264 domain == PCPU_GET(domain))) { 3265 cache->uc_freebucket = bucket; 3266 goto zfree_start; 3267 } 3268 /* 3269 * We lost the race, start over. We have to drop our 3270 * critical section to free the bucket. 3271 */ 3272 critical_exit(); 3273 bucket_free(zone, bucket, udata); 3274 goto zfree_restart; 3275 } 3276 3277 /* 3278 * If nothing else caught this, we'll just do an internal free. 3279 */ 3280 zfree_item: 3281 zone_free_item(zone, item, udata, SKIP_DTOR); 3282 3283 return; 3284 } 3285 3286 void 3287 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3288 { 3289 3290 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3291 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3292 3293 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3294 zone->uz_name); 3295 3296 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3297 ("uma_zfree_domain: called with spinlock or critical section held")); 3298 3299 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3300 if (item == NULL) 3301 return; 3302 zone_free_item(zone, item, udata, SKIP_NONE); 3303 } 3304 3305 static void 3306 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 3307 { 3308 uma_domain_t dom; 3309 uint8_t freei; 3310 3311 mtx_assert(&keg->uk_lock, MA_OWNED); 3312 MPASS(keg == slab->us_keg); 3313 3314 dom = &keg->uk_domain[slab->us_domain]; 3315 3316 /* Do we need to remove from any lists? */ 3317 if (slab->us_freecount+1 == keg->uk_ipers) { 3318 LIST_REMOVE(slab, us_link); 3319 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3320 } else if (slab->us_freecount == 0) { 3321 LIST_REMOVE(slab, us_link); 3322 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3323 } 3324 3325 /* Slab management. */ 3326 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3327 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3328 slab->us_freecount++; 3329 3330 /* Keg statistics. */ 3331 keg->uk_free++; 3332 } 3333 3334 static void 3335 zone_release(uma_zone_t zone, void **bucket, int cnt) 3336 { 3337 void *item; 3338 uma_slab_t slab; 3339 uma_keg_t keg; 3340 uint8_t *mem; 3341 int clearfull; 3342 int i; 3343 3344 clearfull = 0; 3345 keg = zone_first_keg(zone); 3346 KEG_LOCK(keg); 3347 for (i = 0; i < cnt; i++) { 3348 item = bucket[i]; 3349 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3350 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3351 if (zone->uz_flags & UMA_ZONE_HASH) { 3352 slab = hash_sfind(&keg->uk_hash, mem); 3353 } else { 3354 mem += keg->uk_pgoff; 3355 slab = (uma_slab_t)mem; 3356 } 3357 } else { 3358 slab = vtoslab((vm_offset_t)item); 3359 if (slab->us_keg != keg) { 3360 KEG_UNLOCK(keg); 3361 keg = slab->us_keg; 3362 KEG_LOCK(keg); 3363 } 3364 } 3365 slab_free_item(keg, slab, item); 3366 if (keg->uk_flags & UMA_ZFLAG_FULL) { 3367 if (keg->uk_pages < keg->uk_maxpages) { 3368 keg->uk_flags &= ~UMA_ZFLAG_FULL; 3369 clearfull = 1; 3370 } 3371 3372 /* 3373 * We can handle one more allocation. Since we're 3374 * clearing ZFLAG_FULL, wake up all procs blocked 3375 * on pages. This should be uncommon, so keeping this 3376 * simple for now (rather than adding count of blocked 3377 * threads etc). 3378 */ 3379 wakeup(keg); 3380 } 3381 } 3382 KEG_UNLOCK(keg); 3383 if (clearfull) { 3384 ZONE_LOCK(zone); 3385 zone->uz_flags &= ~UMA_ZFLAG_FULL; 3386 wakeup(zone); 3387 ZONE_UNLOCK(zone); 3388 } 3389 3390 } 3391 3392 /* 3393 * Frees a single item to any zone. 3394 * 3395 * Arguments: 3396 * zone The zone to free to 3397 * item The item we're freeing 3398 * udata User supplied data for the dtor 3399 * skip Skip dtors and finis 3400 */ 3401 static void 3402 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3403 { 3404 #ifdef INVARIANTS 3405 bool skipdbg; 3406 3407 skipdbg = uma_dbg_zskip(zone, item); 3408 if (skip == SKIP_NONE && !skipdbg) { 3409 if (zone->uz_flags & UMA_ZONE_MALLOC) 3410 uma_dbg_free(zone, udata, item); 3411 else 3412 uma_dbg_free(zone, NULL, item); 3413 } 3414 3415 if (skip < SKIP_DTOR && zone->uz_dtor != NULL && 3416 (!skipdbg || zone->uz_dtor != trash_dtor || 3417 zone->uz_ctor != trash_ctor)) 3418 #else 3419 if (skip < SKIP_DTOR && zone->uz_dtor != NULL) 3420 #endif 3421 zone->uz_dtor(item, zone->uz_size, udata); 3422 3423 if (skip < SKIP_FINI && zone->uz_fini) 3424 zone->uz_fini(item, zone->uz_size); 3425 3426 atomic_add_long(&zone->uz_frees, 1); 3427 zone->uz_release(zone->uz_arg, &item, 1); 3428 } 3429 3430 /* See uma.h */ 3431 int 3432 uma_zone_set_max(uma_zone_t zone, int nitems) 3433 { 3434 uma_keg_t keg; 3435 3436 keg = zone_first_keg(zone); 3437 if (keg == NULL) 3438 return (0); 3439 KEG_LOCK(keg); 3440 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 3441 if (keg->uk_maxpages * keg->uk_ipers < nitems) 3442 keg->uk_maxpages += keg->uk_ppera; 3443 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3444 KEG_UNLOCK(keg); 3445 3446 return (nitems); 3447 } 3448 3449 /* See uma.h */ 3450 int 3451 uma_zone_get_max(uma_zone_t zone) 3452 { 3453 int nitems; 3454 uma_keg_t keg; 3455 3456 keg = zone_first_keg(zone); 3457 if (keg == NULL) 3458 return (0); 3459 KEG_LOCK(keg); 3460 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3461 KEG_UNLOCK(keg); 3462 3463 return (nitems); 3464 } 3465 3466 /* See uma.h */ 3467 void 3468 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3469 { 3470 3471 ZONE_LOCK(zone); 3472 zone->uz_warning = warning; 3473 ZONE_UNLOCK(zone); 3474 } 3475 3476 /* See uma.h */ 3477 void 3478 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3479 { 3480 3481 ZONE_LOCK(zone); 3482 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3483 ZONE_UNLOCK(zone); 3484 } 3485 3486 /* See uma.h */ 3487 int 3488 uma_zone_get_cur(uma_zone_t zone) 3489 { 3490 int64_t nitems; 3491 u_int i; 3492 3493 ZONE_LOCK(zone); 3494 nitems = zone->uz_allocs - zone->uz_frees; 3495 CPU_FOREACH(i) { 3496 /* 3497 * See the comment in sysctl_vm_zone_stats() regarding the 3498 * safety of accessing the per-cpu caches. With the zone lock 3499 * held, it is safe, but can potentially result in stale data. 3500 */ 3501 nitems += zone->uz_cpu[i].uc_allocs - 3502 zone->uz_cpu[i].uc_frees; 3503 } 3504 ZONE_UNLOCK(zone); 3505 3506 return (nitems < 0 ? 0 : nitems); 3507 } 3508 3509 /* See uma.h */ 3510 void 3511 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3512 { 3513 uma_keg_t keg; 3514 3515 keg = zone_first_keg(zone); 3516 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3517 KEG_LOCK(keg); 3518 KASSERT(keg->uk_pages == 0, 3519 ("uma_zone_set_init on non-empty keg")); 3520 keg->uk_init = uminit; 3521 KEG_UNLOCK(keg); 3522 } 3523 3524 /* See uma.h */ 3525 void 3526 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3527 { 3528 uma_keg_t keg; 3529 3530 keg = zone_first_keg(zone); 3531 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3532 KEG_LOCK(keg); 3533 KASSERT(keg->uk_pages == 0, 3534 ("uma_zone_set_fini on non-empty keg")); 3535 keg->uk_fini = fini; 3536 KEG_UNLOCK(keg); 3537 } 3538 3539 /* See uma.h */ 3540 void 3541 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3542 { 3543 3544 ZONE_LOCK(zone); 3545 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3546 ("uma_zone_set_zinit on non-empty keg")); 3547 zone->uz_init = zinit; 3548 ZONE_UNLOCK(zone); 3549 } 3550 3551 /* See uma.h */ 3552 void 3553 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3554 { 3555 3556 ZONE_LOCK(zone); 3557 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3558 ("uma_zone_set_zfini on non-empty keg")); 3559 zone->uz_fini = zfini; 3560 ZONE_UNLOCK(zone); 3561 } 3562 3563 /* See uma.h */ 3564 /* XXX uk_freef is not actually used with the zone locked */ 3565 void 3566 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3567 { 3568 uma_keg_t keg; 3569 3570 keg = zone_first_keg(zone); 3571 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3572 KEG_LOCK(keg); 3573 keg->uk_freef = freef; 3574 KEG_UNLOCK(keg); 3575 } 3576 3577 /* See uma.h */ 3578 /* XXX uk_allocf is not actually used with the zone locked */ 3579 void 3580 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3581 { 3582 uma_keg_t keg; 3583 3584 keg = zone_first_keg(zone); 3585 KEG_LOCK(keg); 3586 keg->uk_allocf = allocf; 3587 KEG_UNLOCK(keg); 3588 } 3589 3590 /* See uma.h */ 3591 void 3592 uma_zone_reserve(uma_zone_t zone, int items) 3593 { 3594 uma_keg_t keg; 3595 3596 keg = zone_first_keg(zone); 3597 if (keg == NULL) 3598 return; 3599 KEG_LOCK(keg); 3600 keg->uk_reserve = items; 3601 KEG_UNLOCK(keg); 3602 3603 return; 3604 } 3605 3606 /* See uma.h */ 3607 int 3608 uma_zone_reserve_kva(uma_zone_t zone, int count) 3609 { 3610 uma_keg_t keg; 3611 vm_offset_t kva; 3612 u_int pages; 3613 3614 keg = zone_first_keg(zone); 3615 if (keg == NULL) 3616 return (0); 3617 pages = count / keg->uk_ipers; 3618 3619 if (pages * keg->uk_ipers < count) 3620 pages++; 3621 pages *= keg->uk_ppera; 3622 3623 #ifdef UMA_MD_SMALL_ALLOC 3624 if (keg->uk_ppera > 1) { 3625 #else 3626 if (1) { 3627 #endif 3628 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3629 if (kva == 0) 3630 return (0); 3631 } else 3632 kva = 0; 3633 KEG_LOCK(keg); 3634 keg->uk_kva = kva; 3635 keg->uk_offset = 0; 3636 keg->uk_maxpages = pages; 3637 #ifdef UMA_MD_SMALL_ALLOC 3638 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3639 #else 3640 keg->uk_allocf = noobj_alloc; 3641 #endif 3642 keg->uk_flags |= UMA_ZONE_NOFREE; 3643 KEG_UNLOCK(keg); 3644 3645 return (1); 3646 } 3647 3648 /* See uma.h */ 3649 void 3650 uma_prealloc(uma_zone_t zone, int items) 3651 { 3652 struct vm_domainset_iter di; 3653 uma_domain_t dom; 3654 uma_slab_t slab; 3655 uma_keg_t keg; 3656 int domain, flags, slabs; 3657 3658 keg = zone_first_keg(zone); 3659 if (keg == NULL) 3660 return; 3661 KEG_LOCK(keg); 3662 slabs = items / keg->uk_ipers; 3663 if (slabs * keg->uk_ipers < items) 3664 slabs++; 3665 flags = M_WAITOK; 3666 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, &flags); 3667 while (slabs-- > 0) { 3668 slab = keg_alloc_slab(keg, zone, domain, flags); 3669 if (slab == NULL) 3670 return; 3671 MPASS(slab->us_keg == keg); 3672 dom = &keg->uk_domain[slab->us_domain]; 3673 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3674 if (vm_domainset_iter_policy(&di, &domain) != 0) 3675 break; 3676 } 3677 KEG_UNLOCK(keg); 3678 } 3679 3680 /* See uma.h */ 3681 static void 3682 uma_reclaim_locked(bool kmem_danger) 3683 { 3684 3685 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3686 sx_assert(&uma_drain_lock, SA_XLOCKED); 3687 bucket_enable(); 3688 zone_foreach(zone_drain); 3689 if (vm_page_count_min() || kmem_danger) { 3690 cache_drain_safe(NULL); 3691 zone_foreach(zone_drain); 3692 } 3693 3694 /* 3695 * Some slabs may have been freed but this zone will be visited early 3696 * we visit again so that we can free pages that are empty once other 3697 * zones are drained. We have to do the same for buckets. 3698 */ 3699 zone_drain(slabzone); 3700 bucket_zone_drain(); 3701 } 3702 3703 void 3704 uma_reclaim(void) 3705 { 3706 3707 sx_xlock(&uma_drain_lock); 3708 uma_reclaim_locked(false); 3709 sx_xunlock(&uma_drain_lock); 3710 } 3711 3712 static volatile int uma_reclaim_needed; 3713 3714 void 3715 uma_reclaim_wakeup(void) 3716 { 3717 3718 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3719 wakeup(uma_reclaim); 3720 } 3721 3722 void 3723 uma_reclaim_worker(void *arg __unused) 3724 { 3725 3726 for (;;) { 3727 sx_xlock(&uma_drain_lock); 3728 while (atomic_load_int(&uma_reclaim_needed) == 0) 3729 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3730 hz); 3731 sx_xunlock(&uma_drain_lock); 3732 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3733 sx_xlock(&uma_drain_lock); 3734 uma_reclaim_locked(true); 3735 atomic_store_int(&uma_reclaim_needed, 0); 3736 sx_xunlock(&uma_drain_lock); 3737 /* Don't fire more than once per-second. */ 3738 pause("umarclslp", hz); 3739 } 3740 } 3741 3742 /* See uma.h */ 3743 int 3744 uma_zone_exhausted(uma_zone_t zone) 3745 { 3746 int full; 3747 3748 ZONE_LOCK(zone); 3749 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3750 ZONE_UNLOCK(zone); 3751 return (full); 3752 } 3753 3754 int 3755 uma_zone_exhausted_nolock(uma_zone_t zone) 3756 { 3757 return (zone->uz_flags & UMA_ZFLAG_FULL); 3758 } 3759 3760 void * 3761 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3762 { 3763 struct domainset *policy; 3764 vm_offset_t addr; 3765 uma_slab_t slab; 3766 3767 if (domain != UMA_ANYDOMAIN) { 3768 /* avoid allocs targeting empty domains */ 3769 if (VM_DOMAIN_EMPTY(domain)) 3770 domain = UMA_ANYDOMAIN; 3771 } 3772 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3773 if (slab == NULL) 3774 return (NULL); 3775 policy = (domain == UMA_ANYDOMAIN) ? DOMAINSET_RR() : 3776 DOMAINSET_FIXED(domain); 3777 addr = kmem_malloc_domainset(policy, size, wait); 3778 if (addr != 0) { 3779 vsetslab(addr, slab); 3780 slab->us_data = (void *)addr; 3781 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3782 slab->us_size = size; 3783 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3784 pmap_kextract(addr))); 3785 uma_total_inc(size); 3786 } else { 3787 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3788 } 3789 3790 return ((void *)addr); 3791 } 3792 3793 void * 3794 uma_large_malloc(vm_size_t size, int wait) 3795 { 3796 3797 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3798 } 3799 3800 void 3801 uma_large_free(uma_slab_t slab) 3802 { 3803 3804 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3805 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3806 kmem_free((vm_offset_t)slab->us_data, slab->us_size); 3807 uma_total_dec(slab->us_size); 3808 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3809 } 3810 3811 static void 3812 uma_zero_item(void *item, uma_zone_t zone) 3813 { 3814 3815 bzero(item, zone->uz_size); 3816 } 3817 3818 unsigned long 3819 uma_limit(void) 3820 { 3821 3822 return (uma_kmem_limit); 3823 } 3824 3825 void 3826 uma_set_limit(unsigned long limit) 3827 { 3828 3829 uma_kmem_limit = limit; 3830 } 3831 3832 unsigned long 3833 uma_size(void) 3834 { 3835 3836 return (uma_kmem_total); 3837 } 3838 3839 long 3840 uma_avail(void) 3841 { 3842 3843 return (uma_kmem_limit - uma_kmem_total); 3844 } 3845 3846 void 3847 uma_print_stats(void) 3848 { 3849 zone_foreach(uma_print_zone); 3850 } 3851 3852 static void 3853 slab_print(uma_slab_t slab) 3854 { 3855 printf("slab: keg %p, data %p, freecount %d\n", 3856 slab->us_keg, slab->us_data, slab->us_freecount); 3857 } 3858 3859 static void 3860 cache_print(uma_cache_t cache) 3861 { 3862 printf("alloc: %p(%d), free: %p(%d)\n", 3863 cache->uc_allocbucket, 3864 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3865 cache->uc_freebucket, 3866 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3867 } 3868 3869 static void 3870 uma_print_keg(uma_keg_t keg) 3871 { 3872 uma_domain_t dom; 3873 uma_slab_t slab; 3874 int i; 3875 3876 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3877 "out %d free %d limit %d\n", 3878 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3879 keg->uk_ipers, keg->uk_ppera, 3880 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3881 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3882 for (i = 0; i < vm_ndomains; i++) { 3883 dom = &keg->uk_domain[i]; 3884 printf("Part slabs:\n"); 3885 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3886 slab_print(slab); 3887 printf("Free slabs:\n"); 3888 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3889 slab_print(slab); 3890 printf("Full slabs:\n"); 3891 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3892 slab_print(slab); 3893 } 3894 } 3895 3896 void 3897 uma_print_zone(uma_zone_t zone) 3898 { 3899 uma_cache_t cache; 3900 uma_klink_t kl; 3901 int i; 3902 3903 printf("zone: %s(%p) size %d flags %#x\n", 3904 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3905 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3906 uma_print_keg(kl->kl_keg); 3907 CPU_FOREACH(i) { 3908 cache = &zone->uz_cpu[i]; 3909 printf("CPU %d Cache:\n", i); 3910 cache_print(cache); 3911 } 3912 } 3913 3914 #ifdef DDB 3915 /* 3916 * Generate statistics across both the zone and its per-cpu cache's. Return 3917 * desired statistics if the pointer is non-NULL for that statistic. 3918 * 3919 * Note: does not update the zone statistics, as it can't safely clear the 3920 * per-CPU cache statistic. 3921 * 3922 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3923 * safe from off-CPU; we should modify the caches to track this information 3924 * directly so that we don't have to. 3925 */ 3926 static void 3927 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 3928 uint64_t *freesp, uint64_t *sleepsp) 3929 { 3930 uma_cache_t cache; 3931 uint64_t allocs, frees, sleeps; 3932 int cachefree, cpu; 3933 3934 allocs = frees = sleeps = 0; 3935 cachefree = 0; 3936 CPU_FOREACH(cpu) { 3937 cache = &z->uz_cpu[cpu]; 3938 if (cache->uc_allocbucket != NULL) 3939 cachefree += cache->uc_allocbucket->ub_cnt; 3940 if (cache->uc_freebucket != NULL) 3941 cachefree += cache->uc_freebucket->ub_cnt; 3942 allocs += cache->uc_allocs; 3943 frees += cache->uc_frees; 3944 } 3945 allocs += z->uz_allocs; 3946 frees += z->uz_frees; 3947 sleeps += z->uz_sleeps; 3948 if (cachefreep != NULL) 3949 *cachefreep = cachefree; 3950 if (allocsp != NULL) 3951 *allocsp = allocs; 3952 if (freesp != NULL) 3953 *freesp = frees; 3954 if (sleepsp != NULL) 3955 *sleepsp = sleeps; 3956 } 3957 #endif /* DDB */ 3958 3959 static int 3960 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3961 { 3962 uma_keg_t kz; 3963 uma_zone_t z; 3964 int count; 3965 3966 count = 0; 3967 rw_rlock(&uma_rwlock); 3968 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3969 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3970 count++; 3971 } 3972 rw_runlock(&uma_rwlock); 3973 return (sysctl_handle_int(oidp, &count, 0, req)); 3974 } 3975 3976 static int 3977 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3978 { 3979 struct uma_stream_header ush; 3980 struct uma_type_header uth; 3981 struct uma_percpu_stat *ups; 3982 uma_zone_domain_t zdom; 3983 struct sbuf sbuf; 3984 uma_cache_t cache; 3985 uma_klink_t kl; 3986 uma_keg_t kz; 3987 uma_zone_t z; 3988 uma_keg_t k; 3989 int count, error, i; 3990 3991 error = sysctl_wire_old_buffer(req, 0); 3992 if (error != 0) 3993 return (error); 3994 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3995 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3996 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 3997 3998 count = 0; 3999 rw_rlock(&uma_rwlock); 4000 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4001 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4002 count++; 4003 } 4004 4005 /* 4006 * Insert stream header. 4007 */ 4008 bzero(&ush, sizeof(ush)); 4009 ush.ush_version = UMA_STREAM_VERSION; 4010 ush.ush_maxcpus = (mp_maxid + 1); 4011 ush.ush_count = count; 4012 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 4013 4014 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4015 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4016 bzero(&uth, sizeof(uth)); 4017 ZONE_LOCK(z); 4018 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4019 uth.uth_align = kz->uk_align; 4020 uth.uth_size = kz->uk_size; 4021 uth.uth_rsize = kz->uk_rsize; 4022 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 4023 k = kl->kl_keg; 4024 uth.uth_maxpages += k->uk_maxpages; 4025 uth.uth_pages += k->uk_pages; 4026 uth.uth_keg_free += k->uk_free; 4027 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 4028 * k->uk_ipers; 4029 } 4030 4031 /* 4032 * A zone is secondary is it is not the first entry 4033 * on the keg's zone list. 4034 */ 4035 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 4036 (LIST_FIRST(&kz->uk_zones) != z)) 4037 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 4038 4039 for (i = 0; i < vm_ndomains; i++) { 4040 zdom = &z->uz_domain[i]; 4041 uth.uth_zone_free += zdom->uzd_nitems; 4042 } 4043 uth.uth_allocs = z->uz_allocs; 4044 uth.uth_frees = z->uz_frees; 4045 uth.uth_fails = z->uz_fails; 4046 uth.uth_sleeps = z->uz_sleeps; 4047 /* 4048 * While it is not normally safe to access the cache 4049 * bucket pointers while not on the CPU that owns the 4050 * cache, we only allow the pointers to be exchanged 4051 * without the zone lock held, not invalidated, so 4052 * accept the possible race associated with bucket 4053 * exchange during monitoring. 4054 */ 4055 for (i = 0; i < mp_maxid + 1; i++) { 4056 bzero(&ups[i], sizeof(*ups)); 4057 if (kz->uk_flags & UMA_ZFLAG_INTERNAL || 4058 CPU_ABSENT(i)) 4059 continue; 4060 cache = &z->uz_cpu[i]; 4061 if (cache->uc_allocbucket != NULL) 4062 ups[i].ups_cache_free += 4063 cache->uc_allocbucket->ub_cnt; 4064 if (cache->uc_freebucket != NULL) 4065 ups[i].ups_cache_free += 4066 cache->uc_freebucket->ub_cnt; 4067 ups[i].ups_allocs = cache->uc_allocs; 4068 ups[i].ups_frees = cache->uc_frees; 4069 } 4070 ZONE_UNLOCK(z); 4071 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4072 for (i = 0; i < mp_maxid + 1; i++) 4073 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4074 } 4075 } 4076 rw_runlock(&uma_rwlock); 4077 error = sbuf_finish(&sbuf); 4078 sbuf_delete(&sbuf); 4079 free(ups, M_TEMP); 4080 return (error); 4081 } 4082 4083 int 4084 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4085 { 4086 uma_zone_t zone = *(uma_zone_t *)arg1; 4087 int error, max; 4088 4089 max = uma_zone_get_max(zone); 4090 error = sysctl_handle_int(oidp, &max, 0, req); 4091 if (error || !req->newptr) 4092 return (error); 4093 4094 uma_zone_set_max(zone, max); 4095 4096 return (0); 4097 } 4098 4099 int 4100 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4101 { 4102 uma_zone_t zone = *(uma_zone_t *)arg1; 4103 int cur; 4104 4105 cur = uma_zone_get_cur(zone); 4106 return (sysctl_handle_int(oidp, &cur, 0, req)); 4107 } 4108 4109 #ifdef INVARIANTS 4110 static uma_slab_t 4111 uma_dbg_getslab(uma_zone_t zone, void *item) 4112 { 4113 uma_slab_t slab; 4114 uma_keg_t keg; 4115 uint8_t *mem; 4116 4117 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4118 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 4119 slab = vtoslab((vm_offset_t)mem); 4120 } else { 4121 /* 4122 * It is safe to return the slab here even though the 4123 * zone is unlocked because the item's allocation state 4124 * essentially holds a reference. 4125 */ 4126 ZONE_LOCK(zone); 4127 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 4128 if (keg->uk_flags & UMA_ZONE_HASH) 4129 slab = hash_sfind(&keg->uk_hash, mem); 4130 else 4131 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4132 ZONE_UNLOCK(zone); 4133 } 4134 4135 return (slab); 4136 } 4137 4138 static bool 4139 uma_dbg_zskip(uma_zone_t zone, void *mem) 4140 { 4141 uma_keg_t keg; 4142 4143 if ((keg = zone_first_keg(zone)) == NULL) 4144 return (true); 4145 4146 return (uma_dbg_kskip(keg, mem)); 4147 } 4148 4149 static bool 4150 uma_dbg_kskip(uma_keg_t keg, void *mem) 4151 { 4152 uintptr_t idx; 4153 4154 if (dbg_divisor == 0) 4155 return (true); 4156 4157 if (dbg_divisor == 1) 4158 return (false); 4159 4160 idx = (uintptr_t)mem >> PAGE_SHIFT; 4161 if (keg->uk_ipers > 1) { 4162 idx *= keg->uk_ipers; 4163 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4164 } 4165 4166 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4167 counter_u64_add(uma_skip_cnt, 1); 4168 return (true); 4169 } 4170 counter_u64_add(uma_dbg_cnt, 1); 4171 4172 return (false); 4173 } 4174 4175 /* 4176 * Set up the slab's freei data such that uma_dbg_free can function. 4177 * 4178 */ 4179 static void 4180 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4181 { 4182 uma_keg_t keg; 4183 int freei; 4184 4185 if (slab == NULL) { 4186 slab = uma_dbg_getslab(zone, item); 4187 if (slab == NULL) 4188 panic("uma: item %p did not belong to zone %s\n", 4189 item, zone->uz_name); 4190 } 4191 keg = slab->us_keg; 4192 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4193 4194 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4195 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4196 item, zone, zone->uz_name, slab, freei); 4197 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4198 4199 return; 4200 } 4201 4202 /* 4203 * Verifies freed addresses. Checks for alignment, valid slab membership 4204 * and duplicate frees. 4205 * 4206 */ 4207 static void 4208 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4209 { 4210 uma_keg_t keg; 4211 int freei; 4212 4213 if (slab == NULL) { 4214 slab = uma_dbg_getslab(zone, item); 4215 if (slab == NULL) 4216 panic("uma: Freed item %p did not belong to zone %s\n", 4217 item, zone->uz_name); 4218 } 4219 keg = slab->us_keg; 4220 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4221 4222 if (freei >= keg->uk_ipers) 4223 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4224 item, zone, zone->uz_name, slab, freei); 4225 4226 if (((freei * keg->uk_rsize) + slab->us_data) != item) 4227 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4228 item, zone, zone->uz_name, slab, freei); 4229 4230 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4231 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4232 item, zone, zone->uz_name, slab, freei); 4233 4234 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4235 } 4236 #endif /* INVARIANTS */ 4237 4238 #ifdef DDB 4239 DB_SHOW_COMMAND(uma, db_show_uma) 4240 { 4241 uma_keg_t kz; 4242 uma_zone_t z; 4243 uint64_t allocs, frees, sleeps; 4244 long cachefree; 4245 int i; 4246 4247 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 4248 "Free", "Requests", "Sleeps", "Bucket"); 4249 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4250 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4251 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4252 allocs = z->uz_allocs; 4253 frees = z->uz_frees; 4254 sleeps = z->uz_sleeps; 4255 cachefree = 0; 4256 } else 4257 uma_zone_sumstat(z, &cachefree, &allocs, 4258 &frees, &sleeps); 4259 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4260 (LIST_FIRST(&kz->uk_zones) != z))) 4261 cachefree += kz->uk_free; 4262 for (i = 0; i < vm_ndomains; i++) 4263 cachefree += z->uz_domain[i].uzd_nitems; 4264 4265 db_printf("%18s %8ju %8jd %8ld %12ju %8ju %8u\n", 4266 z->uz_name, (uintmax_t)kz->uk_size, 4267 (intmax_t)(allocs - frees), cachefree, 4268 (uintmax_t)allocs, sleeps, z->uz_count); 4269 if (db_pager_quit) 4270 return; 4271 } 4272 } 4273 } 4274 4275 DB_SHOW_COMMAND(umacache, db_show_umacache) 4276 { 4277 uma_zone_t z; 4278 uint64_t allocs, frees; 4279 long cachefree; 4280 int i; 4281 4282 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4283 "Requests", "Bucket"); 4284 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4285 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 4286 for (i = 0; i < vm_ndomains; i++) 4287 cachefree += z->uz_domain[i].uzd_nitems; 4288 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 4289 z->uz_name, (uintmax_t)z->uz_size, 4290 (intmax_t)(allocs - frees), cachefree, 4291 (uintmax_t)allocs, z->uz_count); 4292 if (db_pager_quit) 4293 return; 4294 } 4295 } 4296 #endif /* DDB */ 4297