xref: /freebsd/sys/vm/swap_pager.c (revision fcb560670601b2a4d87bb31d7531c8dcc37ee71b)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/sysctl.h>
94 #include <sys/sysproto.h>
95 #include <sys/blist.h>
96 #include <sys/lock.h>
97 #include <sys/sx.h>
98 #include <sys/vmmeter.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/vm.h>
103 #include <vm/pmap.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_param.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114 
115 #include <geom/geom.h>
116 
117 /*
118  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
119  * or 32 pages per allocation.
120  * The 32-page limit is due to the radix code (kern/subr_blist.c).
121  */
122 #ifndef MAX_PAGEOUT_CLUSTER
123 #define MAX_PAGEOUT_CLUSTER 16
124 #endif
125 
126 #if !defined(SWB_NPAGES)
127 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
128 #endif
129 
130 /*
131  * The swblock structure maps an object and a small, fixed-size range
132  * of page indices to disk addresses within a swap area.
133  * The collection of these mappings is implemented as a hash table.
134  * Unused disk addresses within a swap area are allocated and managed
135  * using a blist.
136  */
137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
139 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140 
141 struct swblock {
142 	struct swblock	*swb_hnext;
143 	vm_object_t	swb_object;
144 	vm_pindex_t	swb_index;
145 	int		swb_count;
146 	daddr_t		swb_pages[SWAP_META_PAGES];
147 };
148 
149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
156 
157 static vm_ooffset_t swap_total;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159     "Total amount of available swap storage.");
160 static vm_ooffset_t swap_reserved;
161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162     "Amount of swap storage needed to back all allocated anonymous memory.");
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165     "Configure virtual memory overcommit behavior. See tuning(7) "
166     "for details.");
167 static unsigned long swzone;
168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
169     "Actual size of swap metadata zone");
170 static unsigned long swap_maxpages;
171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
172     "Maximum amount of swap supported");
173 
174 /* bits from overcommit */
175 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
176 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
177 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
178 
179 int
180 swap_reserve(vm_ooffset_t incr)
181 {
182 
183 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
184 }
185 
186 int
187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
188 {
189 	vm_ooffset_t r, s;
190 	int res, error;
191 	static int curfail;
192 	static struct timeval lastfail;
193 	struct uidinfo *uip;
194 
195 	uip = cred->cr_ruidinfo;
196 
197 	if (incr & PAGE_MASK)
198 		panic("swap_reserve: & PAGE_MASK");
199 
200 #ifdef RACCT
201 	PROC_LOCK(curproc);
202 	error = racct_add(curproc, RACCT_SWAP, incr);
203 	PROC_UNLOCK(curproc);
204 	if (error != 0)
205 		return (0);
206 #endif
207 
208 	res = 0;
209 	mtx_lock(&sw_dev_mtx);
210 	r = swap_reserved + incr;
211 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
212 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
213 		s *= PAGE_SIZE;
214 	} else
215 		s = 0;
216 	s += swap_total;
217 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
218 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
219 		res = 1;
220 		swap_reserved = r;
221 	}
222 	mtx_unlock(&sw_dev_mtx);
223 
224 	if (res) {
225 		PROC_LOCK(curproc);
226 		UIDINFO_VMSIZE_LOCK(uip);
227 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
228 		    uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
229 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
230 			res = 0;
231 		else
232 			uip->ui_vmsize += incr;
233 		UIDINFO_VMSIZE_UNLOCK(uip);
234 		PROC_UNLOCK(curproc);
235 		if (!res) {
236 			mtx_lock(&sw_dev_mtx);
237 			swap_reserved -= incr;
238 			mtx_unlock(&sw_dev_mtx);
239 		}
240 	}
241 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
242 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
243 		    uip->ui_uid, curproc->p_pid, incr);
244 	}
245 
246 #ifdef RACCT
247 	if (!res) {
248 		PROC_LOCK(curproc);
249 		racct_sub(curproc, RACCT_SWAP, incr);
250 		PROC_UNLOCK(curproc);
251 	}
252 #endif
253 
254 	return (res);
255 }
256 
257 void
258 swap_reserve_force(vm_ooffset_t incr)
259 {
260 	struct uidinfo *uip;
261 
262 	mtx_lock(&sw_dev_mtx);
263 	swap_reserved += incr;
264 	mtx_unlock(&sw_dev_mtx);
265 
266 #ifdef RACCT
267 	PROC_LOCK(curproc);
268 	racct_add_force(curproc, RACCT_SWAP, incr);
269 	PROC_UNLOCK(curproc);
270 #endif
271 
272 	uip = curthread->td_ucred->cr_ruidinfo;
273 	PROC_LOCK(curproc);
274 	UIDINFO_VMSIZE_LOCK(uip);
275 	uip->ui_vmsize += incr;
276 	UIDINFO_VMSIZE_UNLOCK(uip);
277 	PROC_UNLOCK(curproc);
278 }
279 
280 void
281 swap_release(vm_ooffset_t decr)
282 {
283 	struct ucred *cred;
284 
285 	PROC_LOCK(curproc);
286 	cred = curthread->td_ucred;
287 	swap_release_by_cred(decr, cred);
288 	PROC_UNLOCK(curproc);
289 }
290 
291 void
292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
293 {
294  	struct uidinfo *uip;
295 
296 	uip = cred->cr_ruidinfo;
297 
298 	if (decr & PAGE_MASK)
299 		panic("swap_release: & PAGE_MASK");
300 
301 	mtx_lock(&sw_dev_mtx);
302 	if (swap_reserved < decr)
303 		panic("swap_reserved < decr");
304 	swap_reserved -= decr;
305 	mtx_unlock(&sw_dev_mtx);
306 
307 	UIDINFO_VMSIZE_LOCK(uip);
308 	if (uip->ui_vmsize < decr)
309 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
310 	uip->ui_vmsize -= decr;
311 	UIDINFO_VMSIZE_UNLOCK(uip);
312 
313 	racct_sub_cred(cred, RACCT_SWAP, decr);
314 }
315 
316 static void swapdev_strategy(struct buf *, struct swdevt *sw);
317 
318 #define SWM_FREE	0x02	/* free, period			*/
319 #define SWM_POP		0x04	/* pop out			*/
320 
321 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
322 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
323 static int nsw_rcount;		/* free read buffers			*/
324 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
325 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
326 static int nsw_wcount_async_max;/* assigned maximum			*/
327 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
328 
329 static struct swblock **swhash;
330 static int swhash_mask;
331 static struct mtx swhash_mtx;
332 
333 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
334 static struct sx sw_alloc_sx;
335 
336 
337 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
338 	CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
339 
340 /*
341  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
342  * of searching a named list by hashing it just a little.
343  */
344 
345 #define NOBJLISTS		8
346 
347 #define NOBJLIST(handle)	\
348 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
349 
350 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
351 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
352 static uma_zone_t	swap_zone;
353 
354 /*
355  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
356  * calls hooked from other parts of the VM system and do not appear here.
357  * (see vm/swap_pager.h).
358  */
359 static vm_object_t
360 		swap_pager_alloc(void *handle, vm_ooffset_t size,
361 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
362 static void	swap_pager_dealloc(vm_object_t object);
363 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
364 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int,
365     pgo_getpages_iodone_t, void *);
366 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
367 static boolean_t
368 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
369 static void	swap_pager_init(void);
370 static void	swap_pager_unswapped(vm_page_t);
371 static void	swap_pager_swapoff(struct swdevt *sp);
372 
373 struct pagerops swappagerops = {
374 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
375 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
376 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
377 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
378 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
379 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
380 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
381 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
382 };
383 
384 /*
385  * dmmax is in page-sized chunks with the new swap system.  It was
386  * dev-bsized chunks in the old.  dmmax is always a power of 2.
387  *
388  * swap_*() routines are externally accessible.  swp_*() routines are
389  * internal.
390  */
391 static int dmmax;
392 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
393 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
394 
395 SYSCTL_INT(_vm, OID_AUTO, dmmax,
396 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
397 
398 static void	swp_sizecheck(void);
399 static void	swp_pager_async_iodone(struct buf *bp);
400 static int	swapongeom(struct thread *, struct vnode *);
401 static int	swaponvp(struct thread *, struct vnode *, u_long);
402 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
403 
404 /*
405  * Swap bitmap functions
406  */
407 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
408 static daddr_t	swp_pager_getswapspace(int npages);
409 
410 /*
411  * Metadata functions
412  */
413 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
414 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
415 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
416 static void swp_pager_meta_free_all(vm_object_t);
417 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
418 
419 static void
420 swp_pager_free_nrpage(vm_page_t m)
421 {
422 
423 	vm_page_lock(m);
424 	if (m->wire_count == 0)
425 		vm_page_free(m);
426 	vm_page_unlock(m);
427 }
428 
429 /*
430  * SWP_SIZECHECK() -	update swap_pager_full indication
431  *
432  *	update the swap_pager_almost_full indication and warn when we are
433  *	about to run out of swap space, using lowat/hiwat hysteresis.
434  *
435  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
436  *
437  *	No restrictions on call
438  *	This routine may not block.
439  */
440 static void
441 swp_sizecheck(void)
442 {
443 
444 	if (swap_pager_avail < nswap_lowat) {
445 		if (swap_pager_almost_full == 0) {
446 			printf("swap_pager: out of swap space\n");
447 			swap_pager_almost_full = 1;
448 		}
449 	} else {
450 		swap_pager_full = 0;
451 		if (swap_pager_avail > nswap_hiwat)
452 			swap_pager_almost_full = 0;
453 	}
454 }
455 
456 /*
457  * SWP_PAGER_HASH() -	hash swap meta data
458  *
459  *	This is an helper function which hashes the swapblk given
460  *	the object and page index.  It returns a pointer to a pointer
461  *	to the object, or a pointer to a NULL pointer if it could not
462  *	find a swapblk.
463  */
464 static struct swblock **
465 swp_pager_hash(vm_object_t object, vm_pindex_t index)
466 {
467 	struct swblock **pswap;
468 	struct swblock *swap;
469 
470 	index &= ~(vm_pindex_t)SWAP_META_MASK;
471 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
472 	while ((swap = *pswap) != NULL) {
473 		if (swap->swb_object == object &&
474 		    swap->swb_index == index
475 		) {
476 			break;
477 		}
478 		pswap = &swap->swb_hnext;
479 	}
480 	return (pswap);
481 }
482 
483 /*
484  * SWAP_PAGER_INIT() -	initialize the swap pager!
485  *
486  *	Expected to be started from system init.  NOTE:  This code is run
487  *	before much else so be careful what you depend on.  Most of the VM
488  *	system has yet to be initialized at this point.
489  */
490 static void
491 swap_pager_init(void)
492 {
493 	/*
494 	 * Initialize object lists
495 	 */
496 	int i;
497 
498 	for (i = 0; i < NOBJLISTS; ++i)
499 		TAILQ_INIT(&swap_pager_object_list[i]);
500 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
501 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
502 
503 	/*
504 	 * Device Stripe, in PAGE_SIZE'd blocks
505 	 */
506 	dmmax = SWB_NPAGES * 2;
507 }
508 
509 /*
510  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
511  *
512  *	Expected to be started from pageout process once, prior to entering
513  *	its main loop.
514  */
515 void
516 swap_pager_swap_init(void)
517 {
518 	unsigned long n, n2;
519 
520 	/*
521 	 * Number of in-transit swap bp operations.  Don't
522 	 * exhaust the pbufs completely.  Make sure we
523 	 * initialize workable values (0 will work for hysteresis
524 	 * but it isn't very efficient).
525 	 *
526 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
527 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
528 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
529 	 * constrained by the swap device interleave stripe size.
530 	 *
531 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
532 	 * designed to prevent other I/O from having high latencies due to
533 	 * our pageout I/O.  The value 4 works well for one or two active swap
534 	 * devices but is probably a little low if you have more.  Even so,
535 	 * a higher value would probably generate only a limited improvement
536 	 * with three or four active swap devices since the system does not
537 	 * typically have to pageout at extreme bandwidths.   We will want
538 	 * at least 2 per swap devices, and 4 is a pretty good value if you
539 	 * have one NFS swap device due to the command/ack latency over NFS.
540 	 * So it all works out pretty well.
541 	 */
542 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
543 
544 	mtx_lock(&pbuf_mtx);
545 	nsw_rcount = (nswbuf + 1) / 2;
546 	nsw_wcount_sync = (nswbuf + 3) / 4;
547 	nsw_wcount_async = 4;
548 	nsw_wcount_async_max = nsw_wcount_async;
549 	mtx_unlock(&pbuf_mtx);
550 
551 	/*
552 	 * Initialize our zone.  Right now I'm just guessing on the number
553 	 * we need based on the number of pages in the system.  Each swblock
554 	 * can hold 32 pages, so this is probably overkill.  This reservation
555 	 * is typically limited to around 32MB by default.
556 	 */
557 	n = vm_cnt.v_page_count / 2;
558 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
559 		n = maxswzone / sizeof(struct swblock);
560 	n2 = n;
561 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
562 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
563 	if (swap_zone == NULL)
564 		panic("failed to create swap_zone.");
565 	do {
566 		if (uma_zone_reserve_kva(swap_zone, n))
567 			break;
568 		/*
569 		 * if the allocation failed, try a zone two thirds the
570 		 * size of the previous attempt.
571 		 */
572 		n -= ((n + 2) / 3);
573 	} while (n > 0);
574 	if (n2 != n)
575 		printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
576 	swap_maxpages = n * SWAP_META_PAGES;
577 	swzone = n * sizeof(struct swblock);
578 	n2 = n;
579 
580 	/*
581 	 * Initialize our meta-data hash table.  The swapper does not need to
582 	 * be quite as efficient as the VM system, so we do not use an
583 	 * oversized hash table.
584 	 *
585 	 * 	n: 		size of hash table, must be power of 2
586 	 *	swhash_mask:	hash table index mask
587 	 */
588 	for (n = 1; n < n2 / 8; n *= 2)
589 		;
590 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
591 	swhash_mask = n - 1;
592 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
593 }
594 
595 /*
596  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
597  *			its metadata structures.
598  *
599  *	This routine is called from the mmap and fork code to create a new
600  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
601  *	and then converting it with swp_pager_meta_build().
602  *
603  *	This routine may block in vm_object_allocate() and create a named
604  *	object lookup race, so we must interlock.
605  *
606  * MPSAFE
607  */
608 static vm_object_t
609 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
610     vm_ooffset_t offset, struct ucred *cred)
611 {
612 	vm_object_t object;
613 	vm_pindex_t pindex;
614 
615 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
616 	if (handle) {
617 		mtx_lock(&Giant);
618 		/*
619 		 * Reference existing named region or allocate new one.  There
620 		 * should not be a race here against swp_pager_meta_build()
621 		 * as called from vm_page_remove() in regards to the lookup
622 		 * of the handle.
623 		 */
624 		sx_xlock(&sw_alloc_sx);
625 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
626 		if (object == NULL) {
627 			if (cred != NULL) {
628 				if (!swap_reserve_by_cred(size, cred)) {
629 					sx_xunlock(&sw_alloc_sx);
630 					mtx_unlock(&Giant);
631 					return (NULL);
632 				}
633 				crhold(cred);
634 			}
635 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
636 			VM_OBJECT_WLOCK(object);
637 			object->handle = handle;
638 			if (cred != NULL) {
639 				object->cred = cred;
640 				object->charge = size;
641 			}
642 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
643 			VM_OBJECT_WUNLOCK(object);
644 		}
645 		sx_xunlock(&sw_alloc_sx);
646 		mtx_unlock(&Giant);
647 	} else {
648 		if (cred != NULL) {
649 			if (!swap_reserve_by_cred(size, cred))
650 				return (NULL);
651 			crhold(cred);
652 		}
653 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
654 		VM_OBJECT_WLOCK(object);
655 		if (cred != NULL) {
656 			object->cred = cred;
657 			object->charge = size;
658 		}
659 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
660 		VM_OBJECT_WUNLOCK(object);
661 	}
662 	return (object);
663 }
664 
665 /*
666  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
667  *
668  *	The swap backing for the object is destroyed.  The code is
669  *	designed such that we can reinstantiate it later, but this
670  *	routine is typically called only when the entire object is
671  *	about to be destroyed.
672  *
673  *	The object must be locked.
674  */
675 static void
676 swap_pager_dealloc(vm_object_t object)
677 {
678 
679 	/*
680 	 * Remove from list right away so lookups will fail if we block for
681 	 * pageout completion.
682 	 */
683 	if (object->handle != NULL) {
684 		mtx_lock(&sw_alloc_mtx);
685 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
686 		mtx_unlock(&sw_alloc_mtx);
687 	}
688 
689 	VM_OBJECT_ASSERT_WLOCKED(object);
690 	vm_object_pip_wait(object, "swpdea");
691 
692 	/*
693 	 * Free all remaining metadata.  We only bother to free it from
694 	 * the swap meta data.  We do not attempt to free swapblk's still
695 	 * associated with vm_page_t's for this object.  We do not care
696 	 * if paging is still in progress on some objects.
697 	 */
698 	swp_pager_meta_free_all(object);
699 }
700 
701 /************************************************************************
702  *			SWAP PAGER BITMAP ROUTINES			*
703  ************************************************************************/
704 
705 /*
706  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
707  *
708  *	Allocate swap for the requested number of pages.  The starting
709  *	swap block number (a page index) is returned or SWAPBLK_NONE
710  *	if the allocation failed.
711  *
712  *	Also has the side effect of advising that somebody made a mistake
713  *	when they configured swap and didn't configure enough.
714  *
715  *	This routine may not sleep.
716  *
717  *	We allocate in round-robin fashion from the configured devices.
718  */
719 static daddr_t
720 swp_pager_getswapspace(int npages)
721 {
722 	daddr_t blk;
723 	struct swdevt *sp;
724 	int i;
725 
726 	blk = SWAPBLK_NONE;
727 	mtx_lock(&sw_dev_mtx);
728 	sp = swdevhd;
729 	for (i = 0; i < nswapdev; i++) {
730 		if (sp == NULL)
731 			sp = TAILQ_FIRST(&swtailq);
732 		if (!(sp->sw_flags & SW_CLOSING)) {
733 			blk = blist_alloc(sp->sw_blist, npages);
734 			if (blk != SWAPBLK_NONE) {
735 				blk += sp->sw_first;
736 				sp->sw_used += npages;
737 				swap_pager_avail -= npages;
738 				swp_sizecheck();
739 				swdevhd = TAILQ_NEXT(sp, sw_list);
740 				goto done;
741 			}
742 		}
743 		sp = TAILQ_NEXT(sp, sw_list);
744 	}
745 	if (swap_pager_full != 2) {
746 		printf("swap_pager_getswapspace(%d): failed\n", npages);
747 		swap_pager_full = 2;
748 		swap_pager_almost_full = 1;
749 	}
750 	swdevhd = NULL;
751 done:
752 	mtx_unlock(&sw_dev_mtx);
753 	return (blk);
754 }
755 
756 static int
757 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
758 {
759 
760 	return (blk >= sp->sw_first && blk < sp->sw_end);
761 }
762 
763 static void
764 swp_pager_strategy(struct buf *bp)
765 {
766 	struct swdevt *sp;
767 
768 	mtx_lock(&sw_dev_mtx);
769 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
770 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
771 			mtx_unlock(&sw_dev_mtx);
772 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
773 			    unmapped_buf_allowed) {
774 				bp->b_kvaalloc = bp->b_data;
775 				bp->b_data = unmapped_buf;
776 				bp->b_kvabase = unmapped_buf;
777 				bp->b_offset = 0;
778 				bp->b_flags |= B_UNMAPPED;
779 			} else {
780 				pmap_qenter((vm_offset_t)bp->b_data,
781 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
782 			}
783 			sp->sw_strategy(bp, sp);
784 			return;
785 		}
786 	}
787 	panic("Swapdev not found");
788 }
789 
790 
791 /*
792  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
793  *
794  *	This routine returns the specified swap blocks back to the bitmap.
795  *
796  *	This routine may not sleep.
797  */
798 static void
799 swp_pager_freeswapspace(daddr_t blk, int npages)
800 {
801 	struct swdevt *sp;
802 
803 	mtx_lock(&sw_dev_mtx);
804 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
805 		if (blk >= sp->sw_first && blk < sp->sw_end) {
806 			sp->sw_used -= npages;
807 			/*
808 			 * If we are attempting to stop swapping on
809 			 * this device, we don't want to mark any
810 			 * blocks free lest they be reused.
811 			 */
812 			if ((sp->sw_flags & SW_CLOSING) == 0) {
813 				blist_free(sp->sw_blist, blk - sp->sw_first,
814 				    npages);
815 				swap_pager_avail += npages;
816 				swp_sizecheck();
817 			}
818 			mtx_unlock(&sw_dev_mtx);
819 			return;
820 		}
821 	}
822 	panic("Swapdev not found");
823 }
824 
825 /*
826  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
827  *				range within an object.
828  *
829  *	This is a globally accessible routine.
830  *
831  *	This routine removes swapblk assignments from swap metadata.
832  *
833  *	The external callers of this routine typically have already destroyed
834  *	or renamed vm_page_t's associated with this range in the object so
835  *	we should be ok.
836  *
837  *	The object must be locked.
838  */
839 void
840 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
841 {
842 
843 	swp_pager_meta_free(object, start, size);
844 }
845 
846 /*
847  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
848  *
849  *	Assigns swap blocks to the specified range within the object.  The
850  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
851  *
852  *	Returns 0 on success, -1 on failure.
853  */
854 int
855 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
856 {
857 	int n = 0;
858 	daddr_t blk = SWAPBLK_NONE;
859 	vm_pindex_t beg = start;	/* save start index */
860 
861 	VM_OBJECT_WLOCK(object);
862 	while (size) {
863 		if (n == 0) {
864 			n = BLIST_MAX_ALLOC;
865 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
866 				n >>= 1;
867 				if (n == 0) {
868 					swp_pager_meta_free(object, beg, start - beg);
869 					VM_OBJECT_WUNLOCK(object);
870 					return (-1);
871 				}
872 			}
873 		}
874 		swp_pager_meta_build(object, start, blk);
875 		--size;
876 		++start;
877 		++blk;
878 		--n;
879 	}
880 	swp_pager_meta_free(object, start, n);
881 	VM_OBJECT_WUNLOCK(object);
882 	return (0);
883 }
884 
885 /*
886  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
887  *			and destroy the source.
888  *
889  *	Copy any valid swapblks from the source to the destination.  In
890  *	cases where both the source and destination have a valid swapblk,
891  *	we keep the destination's.
892  *
893  *	This routine is allowed to sleep.  It may sleep allocating metadata
894  *	indirectly through swp_pager_meta_build() or if paging is still in
895  *	progress on the source.
896  *
897  *	The source object contains no vm_page_t's (which is just as well)
898  *
899  *	The source object is of type OBJT_SWAP.
900  *
901  *	The source and destination objects must be locked.
902  *	Both object locks may temporarily be released.
903  */
904 void
905 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
906     vm_pindex_t offset, int destroysource)
907 {
908 	vm_pindex_t i;
909 
910 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
911 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
912 
913 	/*
914 	 * If destroysource is set, we remove the source object from the
915 	 * swap_pager internal queue now.
916 	 */
917 	if (destroysource) {
918 		if (srcobject->handle != NULL) {
919 			mtx_lock(&sw_alloc_mtx);
920 			TAILQ_REMOVE(
921 			    NOBJLIST(srcobject->handle),
922 			    srcobject,
923 			    pager_object_list
924 			);
925 			mtx_unlock(&sw_alloc_mtx);
926 		}
927 	}
928 
929 	/*
930 	 * transfer source to destination.
931 	 */
932 	for (i = 0; i < dstobject->size; ++i) {
933 		daddr_t dstaddr;
934 
935 		/*
936 		 * Locate (without changing) the swapblk on the destination,
937 		 * unless it is invalid in which case free it silently, or
938 		 * if the destination is a resident page, in which case the
939 		 * source is thrown away.
940 		 */
941 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
942 
943 		if (dstaddr == SWAPBLK_NONE) {
944 			/*
945 			 * Destination has no swapblk and is not resident,
946 			 * copy source.
947 			 */
948 			daddr_t srcaddr;
949 
950 			srcaddr = swp_pager_meta_ctl(
951 			    srcobject,
952 			    i + offset,
953 			    SWM_POP
954 			);
955 
956 			if (srcaddr != SWAPBLK_NONE) {
957 				/*
958 				 * swp_pager_meta_build() can sleep.
959 				 */
960 				vm_object_pip_add(srcobject, 1);
961 				VM_OBJECT_WUNLOCK(srcobject);
962 				vm_object_pip_add(dstobject, 1);
963 				swp_pager_meta_build(dstobject, i, srcaddr);
964 				vm_object_pip_wakeup(dstobject);
965 				VM_OBJECT_WLOCK(srcobject);
966 				vm_object_pip_wakeup(srcobject);
967 			}
968 		} else {
969 			/*
970 			 * Destination has valid swapblk or it is represented
971 			 * by a resident page.  We destroy the sourceblock.
972 			 */
973 
974 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
975 		}
976 	}
977 
978 	/*
979 	 * Free left over swap blocks in source.
980 	 *
981 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
982 	 * double-remove the object from the swap queues.
983 	 */
984 	if (destroysource) {
985 		swp_pager_meta_free_all(srcobject);
986 		/*
987 		 * Reverting the type is not necessary, the caller is going
988 		 * to destroy srcobject directly, but I'm doing it here
989 		 * for consistency since we've removed the object from its
990 		 * queues.
991 		 */
992 		srcobject->type = OBJT_DEFAULT;
993 	}
994 }
995 
996 /*
997  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
998  *				the requested page.
999  *
1000  *	We determine whether good backing store exists for the requested
1001  *	page and return TRUE if it does, FALSE if it doesn't.
1002  *
1003  *	If TRUE, we also try to determine how much valid, contiguous backing
1004  *	store exists before and after the requested page within a reasonable
1005  *	distance.  We do not try to restrict it to the swap device stripe
1006  *	(that is handled in getpages/putpages).  It probably isn't worth
1007  *	doing here.
1008  */
1009 static boolean_t
1010 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
1011 {
1012 	daddr_t blk0;
1013 
1014 	VM_OBJECT_ASSERT_LOCKED(object);
1015 	/*
1016 	 * do we have good backing store at the requested index ?
1017 	 */
1018 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1019 
1020 	if (blk0 == SWAPBLK_NONE) {
1021 		if (before)
1022 			*before = 0;
1023 		if (after)
1024 			*after = 0;
1025 		return (FALSE);
1026 	}
1027 
1028 	/*
1029 	 * find backwards-looking contiguous good backing store
1030 	 */
1031 	if (before != NULL) {
1032 		int i;
1033 
1034 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1035 			daddr_t blk;
1036 
1037 			if (i > pindex)
1038 				break;
1039 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1040 			if (blk != blk0 - i)
1041 				break;
1042 		}
1043 		*before = (i - 1);
1044 	}
1045 
1046 	/*
1047 	 * find forward-looking contiguous good backing store
1048 	 */
1049 	if (after != NULL) {
1050 		int i;
1051 
1052 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1053 			daddr_t blk;
1054 
1055 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1056 			if (blk != blk0 + i)
1057 				break;
1058 		}
1059 		*after = (i - 1);
1060 	}
1061 	return (TRUE);
1062 }
1063 
1064 /*
1065  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1066  *
1067  *	This removes any associated swap backing store, whether valid or
1068  *	not, from the page.
1069  *
1070  *	This routine is typically called when a page is made dirty, at
1071  *	which point any associated swap can be freed.  MADV_FREE also
1072  *	calls us in a special-case situation
1073  *
1074  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1075  *	should make the page dirty before calling this routine.  This routine
1076  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1077  *	depends on it.
1078  *
1079  *	This routine may not sleep.
1080  *
1081  *	The object containing the page must be locked.
1082  */
1083 static void
1084 swap_pager_unswapped(vm_page_t m)
1085 {
1086 
1087 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1088 }
1089 
1090 /*
1091  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1092  *
1093  *	Attempt to retrieve (m, count) pages from backing store, but make
1094  *	sure we retrieve at least m[reqpage].  We try to load in as large
1095  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1096  *	belongs to the same object.
1097  *
1098  *	The code is designed for asynchronous operation and
1099  *	immediate-notification of 'reqpage' but tends not to be
1100  *	used that way.  Please do not optimize-out this algorithmic
1101  *	feature, I intend to improve on it in the future.
1102  *
1103  *	The parent has a single vm_object_pip_add() reference prior to
1104  *	calling us and we should return with the same.
1105  *
1106  *	The parent has BUSY'd the pages.  We should return with 'm'
1107  *	left busy, but the others adjusted.
1108  */
1109 static int
1110 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1111 {
1112 	struct buf *bp;
1113 	vm_page_t mreq;
1114 	int i;
1115 	int j;
1116 	daddr_t blk;
1117 
1118 	mreq = m[reqpage];
1119 
1120 	KASSERT(mreq->object == object,
1121 	    ("swap_pager_getpages: object mismatch %p/%p",
1122 	    object, mreq->object));
1123 
1124 	/*
1125 	 * Calculate range to retrieve.  The pages have already been assigned
1126 	 * their swapblks.  We require a *contiguous* range but we know it to
1127 	 * not span devices.   If we do not supply it, bad things
1128 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1129 	 * loops are set up such that the case(s) are handled implicitly.
1130 	 *
1131 	 * The swp_*() calls must be made with the object locked.
1132 	 */
1133 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1134 
1135 	for (i = reqpage - 1; i >= 0; --i) {
1136 		daddr_t iblk;
1137 
1138 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1139 		if (blk != iblk + (reqpage - i))
1140 			break;
1141 	}
1142 	++i;
1143 
1144 	for (j = reqpage + 1; j < count; ++j) {
1145 		daddr_t jblk;
1146 
1147 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1148 		if (blk != jblk - (j - reqpage))
1149 			break;
1150 	}
1151 
1152 	/*
1153 	 * free pages outside our collection range.   Note: we never free
1154 	 * mreq, it must remain busy throughout.
1155 	 */
1156 	if (0 < i || j < count) {
1157 		int k;
1158 
1159 		for (k = 0; k < i; ++k)
1160 			swp_pager_free_nrpage(m[k]);
1161 		for (k = j; k < count; ++k)
1162 			swp_pager_free_nrpage(m[k]);
1163 	}
1164 
1165 	/*
1166 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1167 	 * still busy, but the others unbusied.
1168 	 */
1169 	if (blk == SWAPBLK_NONE)
1170 		return (VM_PAGER_FAIL);
1171 
1172 	/*
1173 	 * Getpbuf() can sleep.
1174 	 */
1175 	VM_OBJECT_WUNLOCK(object);
1176 	/*
1177 	 * Get a swap buffer header to perform the IO
1178 	 */
1179 	bp = getpbuf(&nsw_rcount);
1180 	bp->b_flags |= B_PAGING;
1181 
1182 	bp->b_iocmd = BIO_READ;
1183 	bp->b_iodone = swp_pager_async_iodone;
1184 	bp->b_rcred = crhold(thread0.td_ucred);
1185 	bp->b_wcred = crhold(thread0.td_ucred);
1186 	bp->b_blkno = blk - (reqpage - i);
1187 	bp->b_bcount = PAGE_SIZE * (j - i);
1188 	bp->b_bufsize = PAGE_SIZE * (j - i);
1189 	bp->b_pager.pg_reqpage = reqpage - i;
1190 
1191 	VM_OBJECT_WLOCK(object);
1192 	{
1193 		int k;
1194 
1195 		for (k = i; k < j; ++k) {
1196 			bp->b_pages[k - i] = m[k];
1197 			m[k]->oflags |= VPO_SWAPINPROG;
1198 		}
1199 	}
1200 	bp->b_npages = j - i;
1201 
1202 	PCPU_INC(cnt.v_swapin);
1203 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1204 
1205 	/*
1206 	 * We still hold the lock on mreq, and our automatic completion routine
1207 	 * does not remove it.
1208 	 */
1209 	vm_object_pip_add(object, bp->b_npages);
1210 	VM_OBJECT_WUNLOCK(object);
1211 
1212 	/*
1213 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1214 	 * this point because we automatically release it on completion.
1215 	 * Instead, we look at the one page we are interested in which we
1216 	 * still hold a lock on even through the I/O completion.
1217 	 *
1218 	 * The other pages in our m[] array are also released on completion,
1219 	 * so we cannot assume they are valid anymore either.
1220 	 *
1221 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1222 	 */
1223 	BUF_KERNPROC(bp);
1224 	swp_pager_strategy(bp);
1225 
1226 	/*
1227 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1228 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1229 	 * is set in the meta-data.
1230 	 */
1231 	VM_OBJECT_WLOCK(object);
1232 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1233 		mreq->oflags |= VPO_SWAPSLEEP;
1234 		PCPU_INC(cnt.v_intrans);
1235 		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1236 		    "swread", hz * 20)) {
1237 			printf(
1238 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1239 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1240 		}
1241 	}
1242 
1243 	/*
1244 	 * mreq is left busied after completion, but all the other pages
1245 	 * are freed.  If we had an unrecoverable read error the page will
1246 	 * not be valid.
1247 	 */
1248 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1249 		return (VM_PAGER_ERROR);
1250 	} else {
1251 		return (VM_PAGER_OK);
1252 	}
1253 
1254 	/*
1255 	 * A final note: in a low swap situation, we cannot deallocate swap
1256 	 * and mark a page dirty here because the caller is likely to mark
1257 	 * the page clean when we return, causing the page to possibly revert
1258 	 * to all-zero's later.
1259 	 */
1260 }
1261 
1262 /*
1263  * 	swap_pager_getpages_async():
1264  *
1265  *	Right now this is emulation of asynchronous operation on top of
1266  *	swap_pager_getpages().
1267  */
1268 static int
1269 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
1270     int reqpage, pgo_getpages_iodone_t iodone, void *arg)
1271 {
1272 	int r, error;
1273 
1274 	r = swap_pager_getpages(object, m, count, reqpage);
1275 	VM_OBJECT_WUNLOCK(object);
1276 	switch (r) {
1277 	case VM_PAGER_OK:
1278 		error = 0;
1279 		break;
1280 	case VM_PAGER_ERROR:
1281 		error = EIO;
1282 		break;
1283 	case VM_PAGER_FAIL:
1284 		error = EINVAL;
1285 		break;
1286 	default:
1287 		panic("unhandled swap_pager_getpages() error %d", r);
1288 	}
1289 	(iodone)(arg, m, count, error);
1290 	VM_OBJECT_WLOCK(object);
1291 
1292 	return (r);
1293 }
1294 
1295 /*
1296  *	swap_pager_putpages:
1297  *
1298  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1299  *
1300  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1301  *	are automatically converted to SWAP objects.
1302  *
1303  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1304  *	vm_page reservation system coupled with properly written VFS devices
1305  *	should ensure that no low-memory deadlock occurs.  This is an area
1306  *	which needs work.
1307  *
1308  *	The parent has N vm_object_pip_add() references prior to
1309  *	calling us and will remove references for rtvals[] that are
1310  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1311  *	completion.
1312  *
1313  *	The parent has soft-busy'd the pages it passes us and will unbusy
1314  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1315  *	We need to unbusy the rest on I/O completion.
1316  */
1317 void
1318 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1319     int flags, int *rtvals)
1320 {
1321 	int i, n;
1322 	boolean_t sync;
1323 
1324 	if (count && m[0]->object != object) {
1325 		panic("swap_pager_putpages: object mismatch %p/%p",
1326 		    object,
1327 		    m[0]->object
1328 		);
1329 	}
1330 
1331 	/*
1332 	 * Step 1
1333 	 *
1334 	 * Turn object into OBJT_SWAP
1335 	 * check for bogus sysops
1336 	 * force sync if not pageout process
1337 	 */
1338 	if (object->type != OBJT_SWAP)
1339 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1340 	VM_OBJECT_WUNLOCK(object);
1341 
1342 	n = 0;
1343 	if (curproc != pageproc)
1344 		sync = TRUE;
1345 	else
1346 		sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1347 
1348 	/*
1349 	 * Step 2
1350 	 *
1351 	 * Update nsw parameters from swap_async_max sysctl values.
1352 	 * Do not let the sysop crash the machine with bogus numbers.
1353 	 */
1354 	mtx_lock(&pbuf_mtx);
1355 	if (swap_async_max != nsw_wcount_async_max) {
1356 		int n;
1357 
1358 		/*
1359 		 * limit range
1360 		 */
1361 		if ((n = swap_async_max) > nswbuf / 2)
1362 			n = nswbuf / 2;
1363 		if (n < 1)
1364 			n = 1;
1365 		swap_async_max = n;
1366 
1367 		/*
1368 		 * Adjust difference ( if possible ).  If the current async
1369 		 * count is too low, we may not be able to make the adjustment
1370 		 * at this time.
1371 		 */
1372 		n -= nsw_wcount_async_max;
1373 		if (nsw_wcount_async + n >= 0) {
1374 			nsw_wcount_async += n;
1375 			nsw_wcount_async_max += n;
1376 			wakeup(&nsw_wcount_async);
1377 		}
1378 	}
1379 	mtx_unlock(&pbuf_mtx);
1380 
1381 	/*
1382 	 * Step 3
1383 	 *
1384 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1385 	 * The page is left dirty until the pageout operation completes
1386 	 * successfully.
1387 	 */
1388 	for (i = 0; i < count; i += n) {
1389 		int j;
1390 		struct buf *bp;
1391 		daddr_t blk;
1392 
1393 		/*
1394 		 * Maximum I/O size is limited by a number of factors.
1395 		 */
1396 		n = min(BLIST_MAX_ALLOC, count - i);
1397 		n = min(n, nsw_cluster_max);
1398 
1399 		/*
1400 		 * Get biggest block of swap we can.  If we fail, fall
1401 		 * back and try to allocate a smaller block.  Don't go
1402 		 * overboard trying to allocate space if it would overly
1403 		 * fragment swap.
1404 		 */
1405 		while (
1406 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1407 		    n > 4
1408 		) {
1409 			n >>= 1;
1410 		}
1411 		if (blk == SWAPBLK_NONE) {
1412 			for (j = 0; j < n; ++j)
1413 				rtvals[i+j] = VM_PAGER_FAIL;
1414 			continue;
1415 		}
1416 
1417 		/*
1418 		 * All I/O parameters have been satisfied, build the I/O
1419 		 * request and assign the swap space.
1420 		 */
1421 		if (sync == TRUE) {
1422 			bp = getpbuf(&nsw_wcount_sync);
1423 		} else {
1424 			bp = getpbuf(&nsw_wcount_async);
1425 			bp->b_flags = B_ASYNC;
1426 		}
1427 		bp->b_flags |= B_PAGING;
1428 		bp->b_iocmd = BIO_WRITE;
1429 
1430 		bp->b_rcred = crhold(thread0.td_ucred);
1431 		bp->b_wcred = crhold(thread0.td_ucred);
1432 		bp->b_bcount = PAGE_SIZE * n;
1433 		bp->b_bufsize = PAGE_SIZE * n;
1434 		bp->b_blkno = blk;
1435 
1436 		VM_OBJECT_WLOCK(object);
1437 		for (j = 0; j < n; ++j) {
1438 			vm_page_t mreq = m[i+j];
1439 
1440 			swp_pager_meta_build(
1441 			    mreq->object,
1442 			    mreq->pindex,
1443 			    blk + j
1444 			);
1445 			vm_page_dirty(mreq);
1446 			rtvals[i+j] = VM_PAGER_OK;
1447 
1448 			mreq->oflags |= VPO_SWAPINPROG;
1449 			bp->b_pages[j] = mreq;
1450 		}
1451 		VM_OBJECT_WUNLOCK(object);
1452 		bp->b_npages = n;
1453 		/*
1454 		 * Must set dirty range for NFS to work.
1455 		 */
1456 		bp->b_dirtyoff = 0;
1457 		bp->b_dirtyend = bp->b_bcount;
1458 
1459 		PCPU_INC(cnt.v_swapout);
1460 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1461 
1462 		/*
1463 		 * asynchronous
1464 		 *
1465 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1466 		 */
1467 		if (sync == FALSE) {
1468 			bp->b_iodone = swp_pager_async_iodone;
1469 			BUF_KERNPROC(bp);
1470 			swp_pager_strategy(bp);
1471 
1472 			for (j = 0; j < n; ++j)
1473 				rtvals[i+j] = VM_PAGER_PEND;
1474 			/* restart outter loop */
1475 			continue;
1476 		}
1477 
1478 		/*
1479 		 * synchronous
1480 		 *
1481 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1482 		 */
1483 		bp->b_iodone = bdone;
1484 		swp_pager_strategy(bp);
1485 
1486 		/*
1487 		 * Wait for the sync I/O to complete, then update rtvals.
1488 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1489 		 * our async completion routine at the end, thus avoiding a
1490 		 * double-free.
1491 		 */
1492 		bwait(bp, PVM, "swwrt");
1493 		for (j = 0; j < n; ++j)
1494 			rtvals[i+j] = VM_PAGER_PEND;
1495 		/*
1496 		 * Now that we are through with the bp, we can call the
1497 		 * normal async completion, which frees everything up.
1498 		 */
1499 		swp_pager_async_iodone(bp);
1500 	}
1501 	VM_OBJECT_WLOCK(object);
1502 }
1503 
1504 /*
1505  *	swp_pager_async_iodone:
1506  *
1507  *	Completion routine for asynchronous reads and writes from/to swap.
1508  *	Also called manually by synchronous code to finish up a bp.
1509  *
1510  *	This routine may not sleep.
1511  */
1512 static void
1513 swp_pager_async_iodone(struct buf *bp)
1514 {
1515 	int i;
1516 	vm_object_t object = NULL;
1517 
1518 	/*
1519 	 * report error
1520 	 */
1521 	if (bp->b_ioflags & BIO_ERROR) {
1522 		printf(
1523 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1524 			"size %ld, error %d\n",
1525 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1526 		    (long)bp->b_blkno,
1527 		    (long)bp->b_bcount,
1528 		    bp->b_error
1529 		);
1530 	}
1531 
1532 	/*
1533 	 * remove the mapping for kernel virtual
1534 	 */
1535 	if ((bp->b_flags & B_UNMAPPED) != 0) {
1536 		bp->b_data = bp->b_kvaalloc;
1537 		bp->b_kvabase = bp->b_kvaalloc;
1538 		bp->b_flags &= ~B_UNMAPPED;
1539 	} else
1540 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1541 
1542 	if (bp->b_npages) {
1543 		object = bp->b_pages[0]->object;
1544 		VM_OBJECT_WLOCK(object);
1545 	}
1546 
1547 	/*
1548 	 * cleanup pages.  If an error occurs writing to swap, we are in
1549 	 * very serious trouble.  If it happens to be a disk error, though,
1550 	 * we may be able to recover by reassigning the swap later on.  So
1551 	 * in this case we remove the m->swapblk assignment for the page
1552 	 * but do not free it in the rlist.  The errornous block(s) are thus
1553 	 * never reallocated as swap.  Redirty the page and continue.
1554 	 */
1555 	for (i = 0; i < bp->b_npages; ++i) {
1556 		vm_page_t m = bp->b_pages[i];
1557 
1558 		m->oflags &= ~VPO_SWAPINPROG;
1559 		if (m->oflags & VPO_SWAPSLEEP) {
1560 			m->oflags &= ~VPO_SWAPSLEEP;
1561 			wakeup(&object->paging_in_progress);
1562 		}
1563 
1564 		if (bp->b_ioflags & BIO_ERROR) {
1565 			/*
1566 			 * If an error occurs I'd love to throw the swapblk
1567 			 * away without freeing it back to swapspace, so it
1568 			 * can never be used again.  But I can't from an
1569 			 * interrupt.
1570 			 */
1571 			if (bp->b_iocmd == BIO_READ) {
1572 				/*
1573 				 * When reading, reqpage needs to stay
1574 				 * locked for the parent, but all other
1575 				 * pages can be freed.  We still want to
1576 				 * wakeup the parent waiting on the page,
1577 				 * though.  ( also: pg_reqpage can be -1 and
1578 				 * not match anything ).
1579 				 *
1580 				 * We have to wake specifically requested pages
1581 				 * up too because we cleared VPO_SWAPINPROG and
1582 				 * someone may be waiting for that.
1583 				 *
1584 				 * NOTE: for reads, m->dirty will probably
1585 				 * be overridden by the original caller of
1586 				 * getpages so don't play cute tricks here.
1587 				 */
1588 				m->valid = 0;
1589 				if (i != bp->b_pager.pg_reqpage)
1590 					swp_pager_free_nrpage(m);
1591 				else {
1592 					vm_page_lock(m);
1593 					vm_page_flash(m);
1594 					vm_page_unlock(m);
1595 				}
1596 				/*
1597 				 * If i == bp->b_pager.pg_reqpage, do not wake
1598 				 * the page up.  The caller needs to.
1599 				 */
1600 			} else {
1601 				/*
1602 				 * If a write error occurs, reactivate page
1603 				 * so it doesn't clog the inactive list,
1604 				 * then finish the I/O.
1605 				 */
1606 				vm_page_dirty(m);
1607 				vm_page_lock(m);
1608 				vm_page_activate(m);
1609 				vm_page_unlock(m);
1610 				vm_page_sunbusy(m);
1611 			}
1612 		} else if (bp->b_iocmd == BIO_READ) {
1613 			/*
1614 			 * NOTE: for reads, m->dirty will probably be
1615 			 * overridden by the original caller of getpages so
1616 			 * we cannot set them in order to free the underlying
1617 			 * swap in a low-swap situation.  I don't think we'd
1618 			 * want to do that anyway, but it was an optimization
1619 			 * that existed in the old swapper for a time before
1620 			 * it got ripped out due to precisely this problem.
1621 			 *
1622 			 * If not the requested page then deactivate it.
1623 			 *
1624 			 * Note that the requested page, reqpage, is left
1625 			 * busied, but we still have to wake it up.  The
1626 			 * other pages are released (unbusied) by
1627 			 * vm_page_xunbusy().
1628 			 */
1629 			KASSERT(!pmap_page_is_mapped(m),
1630 			    ("swp_pager_async_iodone: page %p is mapped", m));
1631 			m->valid = VM_PAGE_BITS_ALL;
1632 			KASSERT(m->dirty == 0,
1633 			    ("swp_pager_async_iodone: page %p is dirty", m));
1634 
1635 			/*
1636 			 * We have to wake specifically requested pages
1637 			 * up too because we cleared VPO_SWAPINPROG and
1638 			 * could be waiting for it in getpages.  However,
1639 			 * be sure to not unbusy getpages specifically
1640 			 * requested page - getpages expects it to be
1641 			 * left busy.
1642 			 */
1643 			if (i != bp->b_pager.pg_reqpage) {
1644 				vm_page_lock(m);
1645 				vm_page_deactivate(m);
1646 				vm_page_unlock(m);
1647 				vm_page_xunbusy(m);
1648 			} else {
1649 				vm_page_lock(m);
1650 				vm_page_flash(m);
1651 				vm_page_unlock(m);
1652 			}
1653 		} else {
1654 			/*
1655 			 * For write success, clear the dirty
1656 			 * status, then finish the I/O ( which decrements the
1657 			 * busy count and possibly wakes waiter's up ).
1658 			 */
1659 			KASSERT(!pmap_page_is_write_mapped(m),
1660 			    ("swp_pager_async_iodone: page %p is not write"
1661 			    " protected", m));
1662 			vm_page_undirty(m);
1663 			vm_page_sunbusy(m);
1664 			if (vm_page_count_severe()) {
1665 				vm_page_lock(m);
1666 				vm_page_try_to_cache(m);
1667 				vm_page_unlock(m);
1668 			}
1669 		}
1670 	}
1671 
1672 	/*
1673 	 * adjust pip.  NOTE: the original parent may still have its own
1674 	 * pip refs on the object.
1675 	 */
1676 	if (object != NULL) {
1677 		vm_object_pip_wakeupn(object, bp->b_npages);
1678 		VM_OBJECT_WUNLOCK(object);
1679 	}
1680 
1681 	/*
1682 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1683 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1684 	 * trigger a KASSERT in relpbuf().
1685 	 */
1686 	if (bp->b_vp) {
1687 		    bp->b_vp = NULL;
1688 		    bp->b_bufobj = NULL;
1689 	}
1690 	/*
1691 	 * release the physical I/O buffer
1692 	 */
1693 	relpbuf(
1694 	    bp,
1695 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1696 		((bp->b_flags & B_ASYNC) ?
1697 		    &nsw_wcount_async :
1698 		    &nsw_wcount_sync
1699 		)
1700 	    )
1701 	);
1702 }
1703 
1704 /*
1705  *	swap_pager_isswapped:
1706  *
1707  *	Return 1 if at least one page in the given object is paged
1708  *	out to the given swap device.
1709  *
1710  *	This routine may not sleep.
1711  */
1712 int
1713 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1714 {
1715 	daddr_t index = 0;
1716 	int bcount;
1717 	int i;
1718 
1719 	VM_OBJECT_ASSERT_WLOCKED(object);
1720 	if (object->type != OBJT_SWAP)
1721 		return (0);
1722 
1723 	mtx_lock(&swhash_mtx);
1724 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1725 		struct swblock *swap;
1726 
1727 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1728 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1729 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1730 					mtx_unlock(&swhash_mtx);
1731 					return (1);
1732 				}
1733 			}
1734 		}
1735 		index += SWAP_META_PAGES;
1736 	}
1737 	mtx_unlock(&swhash_mtx);
1738 	return (0);
1739 }
1740 
1741 /*
1742  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1743  *
1744  *	This routine dissociates the page at the given index within a
1745  *	swap block from its backing store, paging it in if necessary.
1746  *	If the page is paged in, it is placed in the inactive queue,
1747  *	since it had its backing store ripped out from under it.
1748  *	We also attempt to swap in all other pages in the swap block,
1749  *	we only guarantee that the one at the specified index is
1750  *	paged in.
1751  *
1752  *	XXX - The code to page the whole block in doesn't work, so we
1753  *	      revert to the one-by-one behavior for now.  Sigh.
1754  */
1755 static inline void
1756 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1757 {
1758 	vm_page_t m;
1759 
1760 	vm_object_pip_add(object, 1);
1761 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1762 	if (m->valid == VM_PAGE_BITS_ALL) {
1763 		vm_object_pip_wakeup(object);
1764 		vm_page_dirty(m);
1765 		vm_page_lock(m);
1766 		vm_page_activate(m);
1767 		vm_page_unlock(m);
1768 		vm_page_xunbusy(m);
1769 		vm_pager_page_unswapped(m);
1770 		return;
1771 	}
1772 
1773 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1774 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1775 	vm_object_pip_wakeup(object);
1776 	vm_page_dirty(m);
1777 	vm_page_lock(m);
1778 	vm_page_deactivate(m);
1779 	vm_page_unlock(m);
1780 	vm_page_xunbusy(m);
1781 	vm_pager_page_unswapped(m);
1782 }
1783 
1784 /*
1785  *	swap_pager_swapoff:
1786  *
1787  *	Page in all of the pages that have been paged out to the
1788  *	given device.  The corresponding blocks in the bitmap must be
1789  *	marked as allocated and the device must be flagged SW_CLOSING.
1790  *	There may be no processes swapped out to the device.
1791  *
1792  *	This routine may block.
1793  */
1794 static void
1795 swap_pager_swapoff(struct swdevt *sp)
1796 {
1797 	struct swblock *swap;
1798 	int i, j, retries;
1799 
1800 	GIANT_REQUIRED;
1801 
1802 	retries = 0;
1803 full_rescan:
1804 	mtx_lock(&swhash_mtx);
1805 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1806 restart:
1807 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1808 			vm_object_t object = swap->swb_object;
1809 			vm_pindex_t pindex = swap->swb_index;
1810 			for (j = 0; j < SWAP_META_PAGES; ++j) {
1811 				if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1812 					/* avoid deadlock */
1813 					if (!VM_OBJECT_TRYWLOCK(object)) {
1814 						break;
1815 					} else {
1816 						mtx_unlock(&swhash_mtx);
1817 						swp_pager_force_pagein(object,
1818 						    pindex + j);
1819 						VM_OBJECT_WUNLOCK(object);
1820 						mtx_lock(&swhash_mtx);
1821 						goto restart;
1822 					}
1823 				}
1824 			}
1825 		}
1826 	}
1827 	mtx_unlock(&swhash_mtx);
1828 	if (sp->sw_used) {
1829 		/*
1830 		 * Objects may be locked or paging to the device being
1831 		 * removed, so we will miss their pages and need to
1832 		 * make another pass.  We have marked this device as
1833 		 * SW_CLOSING, so the activity should finish soon.
1834 		 */
1835 		retries++;
1836 		if (retries > 100) {
1837 			panic("swapoff: failed to locate %d swap blocks",
1838 			    sp->sw_used);
1839 		}
1840 		pause("swpoff", hz / 20);
1841 		goto full_rescan;
1842 	}
1843 }
1844 
1845 /************************************************************************
1846  *				SWAP META DATA 				*
1847  ************************************************************************
1848  *
1849  *	These routines manipulate the swap metadata stored in the
1850  *	OBJT_SWAP object.
1851  *
1852  *	Swap metadata is implemented with a global hash and not directly
1853  *	linked into the object.  Instead the object simply contains
1854  *	appropriate tracking counters.
1855  */
1856 
1857 /*
1858  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1859  *
1860  *	We first convert the object to a swap object if it is a default
1861  *	object.
1862  *
1863  *	The specified swapblk is added to the object's swap metadata.  If
1864  *	the swapblk is not valid, it is freed instead.  Any previously
1865  *	assigned swapblk is freed.
1866  */
1867 static void
1868 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1869 {
1870 	static volatile int exhausted;
1871 	struct swblock *swap;
1872 	struct swblock **pswap;
1873 	int idx;
1874 
1875 	VM_OBJECT_ASSERT_WLOCKED(object);
1876 	/*
1877 	 * Convert default object to swap object if necessary
1878 	 */
1879 	if (object->type != OBJT_SWAP) {
1880 		object->type = OBJT_SWAP;
1881 		object->un_pager.swp.swp_bcount = 0;
1882 
1883 		if (object->handle != NULL) {
1884 			mtx_lock(&sw_alloc_mtx);
1885 			TAILQ_INSERT_TAIL(
1886 			    NOBJLIST(object->handle),
1887 			    object,
1888 			    pager_object_list
1889 			);
1890 			mtx_unlock(&sw_alloc_mtx);
1891 		}
1892 	}
1893 
1894 	/*
1895 	 * Locate hash entry.  If not found create, but if we aren't adding
1896 	 * anything just return.  If we run out of space in the map we wait
1897 	 * and, since the hash table may have changed, retry.
1898 	 */
1899 retry:
1900 	mtx_lock(&swhash_mtx);
1901 	pswap = swp_pager_hash(object, pindex);
1902 
1903 	if ((swap = *pswap) == NULL) {
1904 		int i;
1905 
1906 		if (swapblk == SWAPBLK_NONE)
1907 			goto done;
1908 
1909 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
1910 		    (curproc == pageproc ? M_USE_RESERVE : 0));
1911 		if (swap == NULL) {
1912 			mtx_unlock(&swhash_mtx);
1913 			VM_OBJECT_WUNLOCK(object);
1914 			if (uma_zone_exhausted(swap_zone)) {
1915 				if (atomic_cmpset_int(&exhausted, 0, 1))
1916 					printf("swap zone exhausted, "
1917 					    "increase kern.maxswzone\n");
1918 				vm_pageout_oom(VM_OOM_SWAPZ);
1919 				pause("swzonex", 10);
1920 			} else
1921 				VM_WAIT;
1922 			VM_OBJECT_WLOCK(object);
1923 			goto retry;
1924 		}
1925 
1926 		if (atomic_cmpset_int(&exhausted, 1, 0))
1927 			printf("swap zone ok\n");
1928 
1929 		swap->swb_hnext = NULL;
1930 		swap->swb_object = object;
1931 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1932 		swap->swb_count = 0;
1933 
1934 		++object->un_pager.swp.swp_bcount;
1935 
1936 		for (i = 0; i < SWAP_META_PAGES; ++i)
1937 			swap->swb_pages[i] = SWAPBLK_NONE;
1938 	}
1939 
1940 	/*
1941 	 * Delete prior contents of metadata
1942 	 */
1943 	idx = pindex & SWAP_META_MASK;
1944 
1945 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1946 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1947 		--swap->swb_count;
1948 	}
1949 
1950 	/*
1951 	 * Enter block into metadata
1952 	 */
1953 	swap->swb_pages[idx] = swapblk;
1954 	if (swapblk != SWAPBLK_NONE)
1955 		++swap->swb_count;
1956 done:
1957 	mtx_unlock(&swhash_mtx);
1958 }
1959 
1960 /*
1961  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1962  *
1963  *	The requested range of blocks is freed, with any associated swap
1964  *	returned to the swap bitmap.
1965  *
1966  *	This routine will free swap metadata structures as they are cleaned
1967  *	out.  This routine does *NOT* operate on swap metadata associated
1968  *	with resident pages.
1969  */
1970 static void
1971 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1972 {
1973 
1974 	VM_OBJECT_ASSERT_LOCKED(object);
1975 	if (object->type != OBJT_SWAP)
1976 		return;
1977 
1978 	while (count > 0) {
1979 		struct swblock **pswap;
1980 		struct swblock *swap;
1981 
1982 		mtx_lock(&swhash_mtx);
1983 		pswap = swp_pager_hash(object, index);
1984 
1985 		if ((swap = *pswap) != NULL) {
1986 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1987 
1988 			if (v != SWAPBLK_NONE) {
1989 				swp_pager_freeswapspace(v, 1);
1990 				swap->swb_pages[index & SWAP_META_MASK] =
1991 					SWAPBLK_NONE;
1992 				if (--swap->swb_count == 0) {
1993 					*pswap = swap->swb_hnext;
1994 					uma_zfree(swap_zone, swap);
1995 					--object->un_pager.swp.swp_bcount;
1996 				}
1997 			}
1998 			--count;
1999 			++index;
2000 		} else {
2001 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
2002 			count -= n;
2003 			index += n;
2004 		}
2005 		mtx_unlock(&swhash_mtx);
2006 	}
2007 }
2008 
2009 /*
2010  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2011  *
2012  *	This routine locates and destroys all swap metadata associated with
2013  *	an object.
2014  */
2015 static void
2016 swp_pager_meta_free_all(vm_object_t object)
2017 {
2018 	daddr_t index = 0;
2019 
2020 	VM_OBJECT_ASSERT_WLOCKED(object);
2021 	if (object->type != OBJT_SWAP)
2022 		return;
2023 
2024 	while (object->un_pager.swp.swp_bcount) {
2025 		struct swblock **pswap;
2026 		struct swblock *swap;
2027 
2028 		mtx_lock(&swhash_mtx);
2029 		pswap = swp_pager_hash(object, index);
2030 		if ((swap = *pswap) != NULL) {
2031 			int i;
2032 
2033 			for (i = 0; i < SWAP_META_PAGES; ++i) {
2034 				daddr_t v = swap->swb_pages[i];
2035 				if (v != SWAPBLK_NONE) {
2036 					--swap->swb_count;
2037 					swp_pager_freeswapspace(v, 1);
2038 				}
2039 			}
2040 			if (swap->swb_count != 0)
2041 				panic("swap_pager_meta_free_all: swb_count != 0");
2042 			*pswap = swap->swb_hnext;
2043 			uma_zfree(swap_zone, swap);
2044 			--object->un_pager.swp.swp_bcount;
2045 		}
2046 		mtx_unlock(&swhash_mtx);
2047 		index += SWAP_META_PAGES;
2048 	}
2049 }
2050 
2051 /*
2052  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2053  *
2054  *	This routine is capable of looking up, popping, or freeing
2055  *	swapblk assignments in the swap meta data or in the vm_page_t.
2056  *	The routine typically returns the swapblk being looked-up, or popped,
2057  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2058  *	was invalid.  This routine will automatically free any invalid
2059  *	meta-data swapblks.
2060  *
2061  *	It is not possible to store invalid swapblks in the swap meta data
2062  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2063  *
2064  *	When acting on a busy resident page and paging is in progress, we
2065  *	have to wait until paging is complete but otherwise can act on the
2066  *	busy page.
2067  *
2068  *	SWM_FREE	remove and free swap block from metadata
2069  *	SWM_POP		remove from meta data but do not free.. pop it out
2070  */
2071 static daddr_t
2072 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2073 {
2074 	struct swblock **pswap;
2075 	struct swblock *swap;
2076 	daddr_t r1;
2077 	int idx;
2078 
2079 	VM_OBJECT_ASSERT_LOCKED(object);
2080 	/*
2081 	 * The meta data only exists of the object is OBJT_SWAP
2082 	 * and even then might not be allocated yet.
2083 	 */
2084 	if (object->type != OBJT_SWAP)
2085 		return (SWAPBLK_NONE);
2086 
2087 	r1 = SWAPBLK_NONE;
2088 	mtx_lock(&swhash_mtx);
2089 	pswap = swp_pager_hash(object, pindex);
2090 
2091 	if ((swap = *pswap) != NULL) {
2092 		idx = pindex & SWAP_META_MASK;
2093 		r1 = swap->swb_pages[idx];
2094 
2095 		if (r1 != SWAPBLK_NONE) {
2096 			if (flags & SWM_FREE) {
2097 				swp_pager_freeswapspace(r1, 1);
2098 				r1 = SWAPBLK_NONE;
2099 			}
2100 			if (flags & (SWM_FREE|SWM_POP)) {
2101 				swap->swb_pages[idx] = SWAPBLK_NONE;
2102 				if (--swap->swb_count == 0) {
2103 					*pswap = swap->swb_hnext;
2104 					uma_zfree(swap_zone, swap);
2105 					--object->un_pager.swp.swp_bcount;
2106 				}
2107 			}
2108 		}
2109 	}
2110 	mtx_unlock(&swhash_mtx);
2111 	return (r1);
2112 }
2113 
2114 /*
2115  * System call swapon(name) enables swapping on device name,
2116  * which must be in the swdevsw.  Return EBUSY
2117  * if already swapping on this device.
2118  */
2119 #ifndef _SYS_SYSPROTO_H_
2120 struct swapon_args {
2121 	char *name;
2122 };
2123 #endif
2124 
2125 /*
2126  * MPSAFE
2127  */
2128 /* ARGSUSED */
2129 int
2130 sys_swapon(struct thread *td, struct swapon_args *uap)
2131 {
2132 	struct vattr attr;
2133 	struct vnode *vp;
2134 	struct nameidata nd;
2135 	int error;
2136 
2137 	error = priv_check(td, PRIV_SWAPON);
2138 	if (error)
2139 		return (error);
2140 
2141 	mtx_lock(&Giant);
2142 	while (swdev_syscall_active)
2143 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2144 	swdev_syscall_active = 1;
2145 
2146 	/*
2147 	 * Swap metadata may not fit in the KVM if we have physical
2148 	 * memory of >1GB.
2149 	 */
2150 	if (swap_zone == NULL) {
2151 		error = ENOMEM;
2152 		goto done;
2153 	}
2154 
2155 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2156 	    uap->name, td);
2157 	error = namei(&nd);
2158 	if (error)
2159 		goto done;
2160 
2161 	NDFREE(&nd, NDF_ONLY_PNBUF);
2162 	vp = nd.ni_vp;
2163 
2164 	if (vn_isdisk(vp, &error)) {
2165 		error = swapongeom(td, vp);
2166 	} else if (vp->v_type == VREG &&
2167 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2168 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2169 		/*
2170 		 * Allow direct swapping to NFS regular files in the same
2171 		 * way that nfs_mountroot() sets up diskless swapping.
2172 		 */
2173 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2174 	}
2175 
2176 	if (error)
2177 		vrele(vp);
2178 done:
2179 	swdev_syscall_active = 0;
2180 	wakeup_one(&swdev_syscall_active);
2181 	mtx_unlock(&Giant);
2182 	return (error);
2183 }
2184 
2185 /*
2186  * Check that the total amount of swap currently configured does not
2187  * exceed half the theoretical maximum.  If it does, print a warning
2188  * message and return -1; otherwise, return 0.
2189  */
2190 static int
2191 swapon_check_swzone(unsigned long npages)
2192 {
2193 	unsigned long maxpages;
2194 
2195 	/* absolute maximum we can handle assuming 100% efficiency */
2196 	maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2197 
2198 	/* recommend using no more than half that amount */
2199 	if (npages > maxpages / 2) {
2200 		printf("warning: total configured swap (%lu pages) "
2201 		    "exceeds maximum recommended amount (%lu pages).\n",
2202 		    npages, maxpages / 2);
2203 		printf("warning: increase kern.maxswzone "
2204 		    "or reduce amount of swap.\n");
2205 		return (-1);
2206 	}
2207 	return (0);
2208 }
2209 
2210 static void
2211 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2212     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2213 {
2214 	struct swdevt *sp, *tsp;
2215 	swblk_t dvbase;
2216 	u_long mblocks;
2217 
2218 	/*
2219 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2220 	 * First chop nblks off to page-align it, then convert.
2221 	 *
2222 	 * sw->sw_nblks is in page-sized chunks now too.
2223 	 */
2224 	nblks &= ~(ctodb(1) - 1);
2225 	nblks = dbtoc(nblks);
2226 
2227 	/*
2228 	 * If we go beyond this, we get overflows in the radix
2229 	 * tree bitmap code.
2230 	 */
2231 	mblocks = 0x40000000 / BLIST_META_RADIX;
2232 	if (nblks > mblocks) {
2233 		printf(
2234     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2235 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2236 		nblks = mblocks;
2237 	}
2238 
2239 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2240 	sp->sw_vp = vp;
2241 	sp->sw_id = id;
2242 	sp->sw_dev = dev;
2243 	sp->sw_flags = 0;
2244 	sp->sw_nblks = nblks;
2245 	sp->sw_used = 0;
2246 	sp->sw_strategy = strategy;
2247 	sp->sw_close = close;
2248 	sp->sw_flags = flags;
2249 
2250 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2251 	/*
2252 	 * Do not free the first two block in order to avoid overwriting
2253 	 * any bsd label at the front of the partition
2254 	 */
2255 	blist_free(sp->sw_blist, 2, nblks - 2);
2256 
2257 	dvbase = 0;
2258 	mtx_lock(&sw_dev_mtx);
2259 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2260 		if (tsp->sw_end >= dvbase) {
2261 			/*
2262 			 * We put one uncovered page between the devices
2263 			 * in order to definitively prevent any cross-device
2264 			 * I/O requests
2265 			 */
2266 			dvbase = tsp->sw_end + 1;
2267 		}
2268 	}
2269 	sp->sw_first = dvbase;
2270 	sp->sw_end = dvbase + nblks;
2271 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2272 	nswapdev++;
2273 	swap_pager_avail += nblks;
2274 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2275 	swapon_check_swzone(swap_total / PAGE_SIZE);
2276 	swp_sizecheck();
2277 	mtx_unlock(&sw_dev_mtx);
2278 }
2279 
2280 /*
2281  * SYSCALL: swapoff(devname)
2282  *
2283  * Disable swapping on the given device.
2284  *
2285  * XXX: Badly designed system call: it should use a device index
2286  * rather than filename as specification.  We keep sw_vp around
2287  * only to make this work.
2288  */
2289 #ifndef _SYS_SYSPROTO_H_
2290 struct swapoff_args {
2291 	char *name;
2292 };
2293 #endif
2294 
2295 /*
2296  * MPSAFE
2297  */
2298 /* ARGSUSED */
2299 int
2300 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2301 {
2302 	struct vnode *vp;
2303 	struct nameidata nd;
2304 	struct swdevt *sp;
2305 	int error;
2306 
2307 	error = priv_check(td, PRIV_SWAPOFF);
2308 	if (error)
2309 		return (error);
2310 
2311 	mtx_lock(&Giant);
2312 	while (swdev_syscall_active)
2313 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2314 	swdev_syscall_active = 1;
2315 
2316 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2317 	    td);
2318 	error = namei(&nd);
2319 	if (error)
2320 		goto done;
2321 	NDFREE(&nd, NDF_ONLY_PNBUF);
2322 	vp = nd.ni_vp;
2323 
2324 	mtx_lock(&sw_dev_mtx);
2325 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2326 		if (sp->sw_vp == vp)
2327 			break;
2328 	}
2329 	mtx_unlock(&sw_dev_mtx);
2330 	if (sp == NULL) {
2331 		error = EINVAL;
2332 		goto done;
2333 	}
2334 	error = swapoff_one(sp, td->td_ucred);
2335 done:
2336 	swdev_syscall_active = 0;
2337 	wakeup_one(&swdev_syscall_active);
2338 	mtx_unlock(&Giant);
2339 	return (error);
2340 }
2341 
2342 static int
2343 swapoff_one(struct swdevt *sp, struct ucred *cred)
2344 {
2345 	u_long nblks, dvbase;
2346 #ifdef MAC
2347 	int error;
2348 #endif
2349 
2350 	mtx_assert(&Giant, MA_OWNED);
2351 #ifdef MAC
2352 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2353 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2354 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2355 	if (error != 0)
2356 		return (error);
2357 #endif
2358 	nblks = sp->sw_nblks;
2359 
2360 	/*
2361 	 * We can turn off this swap device safely only if the
2362 	 * available virtual memory in the system will fit the amount
2363 	 * of data we will have to page back in, plus an epsilon so
2364 	 * the system doesn't become critically low on swap space.
2365 	 */
2366 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail <
2367 	    nblks + nswap_lowat) {
2368 		return (ENOMEM);
2369 	}
2370 
2371 	/*
2372 	 * Prevent further allocations on this device.
2373 	 */
2374 	mtx_lock(&sw_dev_mtx);
2375 	sp->sw_flags |= SW_CLOSING;
2376 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2377 		swap_pager_avail -= blist_fill(sp->sw_blist,
2378 		     dvbase, dmmax);
2379 	}
2380 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2381 	mtx_unlock(&sw_dev_mtx);
2382 
2383 	/*
2384 	 * Page in the contents of the device and close it.
2385 	 */
2386 	swap_pager_swapoff(sp);
2387 
2388 	sp->sw_close(curthread, sp);
2389 	sp->sw_id = NULL;
2390 	mtx_lock(&sw_dev_mtx);
2391 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2392 	nswapdev--;
2393 	if (nswapdev == 0) {
2394 		swap_pager_full = 2;
2395 		swap_pager_almost_full = 1;
2396 	}
2397 	if (swdevhd == sp)
2398 		swdevhd = NULL;
2399 	mtx_unlock(&sw_dev_mtx);
2400 	blist_destroy(sp->sw_blist);
2401 	free(sp, M_VMPGDATA);
2402 	return (0);
2403 }
2404 
2405 void
2406 swapoff_all(void)
2407 {
2408 	struct swdevt *sp, *spt;
2409 	const char *devname;
2410 	int error;
2411 
2412 	mtx_lock(&Giant);
2413 	while (swdev_syscall_active)
2414 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2415 	swdev_syscall_active = 1;
2416 
2417 	mtx_lock(&sw_dev_mtx);
2418 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2419 		mtx_unlock(&sw_dev_mtx);
2420 		if (vn_isdisk(sp->sw_vp, NULL))
2421 			devname = devtoname(sp->sw_vp->v_rdev);
2422 		else
2423 			devname = "[file]";
2424 		error = swapoff_one(sp, thread0.td_ucred);
2425 		if (error != 0) {
2426 			printf("Cannot remove swap device %s (error=%d), "
2427 			    "skipping.\n", devname, error);
2428 		} else if (bootverbose) {
2429 			printf("Swap device %s removed.\n", devname);
2430 		}
2431 		mtx_lock(&sw_dev_mtx);
2432 	}
2433 	mtx_unlock(&sw_dev_mtx);
2434 
2435 	swdev_syscall_active = 0;
2436 	wakeup_one(&swdev_syscall_active);
2437 	mtx_unlock(&Giant);
2438 }
2439 
2440 void
2441 swap_pager_status(int *total, int *used)
2442 {
2443 	struct swdevt *sp;
2444 
2445 	*total = 0;
2446 	*used = 0;
2447 	mtx_lock(&sw_dev_mtx);
2448 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2449 		*total += sp->sw_nblks;
2450 		*used += sp->sw_used;
2451 	}
2452 	mtx_unlock(&sw_dev_mtx);
2453 }
2454 
2455 int
2456 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2457 {
2458 	struct swdevt *sp;
2459 	const char *tmp_devname;
2460 	int error, n;
2461 
2462 	n = 0;
2463 	error = ENOENT;
2464 	mtx_lock(&sw_dev_mtx);
2465 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2466 		if (n != name) {
2467 			n++;
2468 			continue;
2469 		}
2470 		xs->xsw_version = XSWDEV_VERSION;
2471 		xs->xsw_dev = sp->sw_dev;
2472 		xs->xsw_flags = sp->sw_flags;
2473 		xs->xsw_nblks = sp->sw_nblks;
2474 		xs->xsw_used = sp->sw_used;
2475 		if (devname != NULL) {
2476 			if (vn_isdisk(sp->sw_vp, NULL))
2477 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2478 			else
2479 				tmp_devname = "[file]";
2480 			strncpy(devname, tmp_devname, len);
2481 		}
2482 		error = 0;
2483 		break;
2484 	}
2485 	mtx_unlock(&sw_dev_mtx);
2486 	return (error);
2487 }
2488 
2489 static int
2490 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2491 {
2492 	struct xswdev xs;
2493 	int error;
2494 
2495 	if (arg2 != 1)			/* name length */
2496 		return (EINVAL);
2497 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2498 	if (error != 0)
2499 		return (error);
2500 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2501 	return (error);
2502 }
2503 
2504 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2505     "Number of swap devices");
2506 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2507     "Swap statistics by device");
2508 
2509 /*
2510  * vmspace_swap_count() - count the approximate swap usage in pages for a
2511  *			  vmspace.
2512  *
2513  *	The map must be locked.
2514  *
2515  *	Swap usage is determined by taking the proportional swap used by
2516  *	VM objects backing the VM map.  To make up for fractional losses,
2517  *	if the VM object has any swap use at all the associated map entries
2518  *	count for at least 1 swap page.
2519  */
2520 long
2521 vmspace_swap_count(struct vmspace *vmspace)
2522 {
2523 	vm_map_t map;
2524 	vm_map_entry_t cur;
2525 	vm_object_t object;
2526 	long count, n;
2527 
2528 	map = &vmspace->vm_map;
2529 	count = 0;
2530 
2531 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2532 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2533 		    (object = cur->object.vm_object) != NULL) {
2534 			VM_OBJECT_WLOCK(object);
2535 			if (object->type == OBJT_SWAP &&
2536 			    object->un_pager.swp.swp_bcount != 0) {
2537 				n = (cur->end - cur->start) / PAGE_SIZE;
2538 				count += object->un_pager.swp.swp_bcount *
2539 				    SWAP_META_PAGES * n / object->size + 1;
2540 			}
2541 			VM_OBJECT_WUNLOCK(object);
2542 		}
2543 	}
2544 	return (count);
2545 }
2546 
2547 /*
2548  * GEOM backend
2549  *
2550  * Swapping onto disk devices.
2551  *
2552  */
2553 
2554 static g_orphan_t swapgeom_orphan;
2555 
2556 static struct g_class g_swap_class = {
2557 	.name = "SWAP",
2558 	.version = G_VERSION,
2559 	.orphan = swapgeom_orphan,
2560 };
2561 
2562 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2563 
2564 
2565 static void
2566 swapgeom_done(struct bio *bp2)
2567 {
2568 	struct buf *bp;
2569 
2570 	bp = bp2->bio_caller2;
2571 	bp->b_ioflags = bp2->bio_flags;
2572 	if (bp2->bio_error)
2573 		bp->b_ioflags |= BIO_ERROR;
2574 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2575 	bp->b_error = bp2->bio_error;
2576 	bufdone(bp);
2577 	g_destroy_bio(bp2);
2578 }
2579 
2580 static void
2581 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2582 {
2583 	struct bio *bio;
2584 	struct g_consumer *cp;
2585 
2586 	cp = sp->sw_id;
2587 	if (cp == NULL) {
2588 		bp->b_error = ENXIO;
2589 		bp->b_ioflags |= BIO_ERROR;
2590 		bufdone(bp);
2591 		return;
2592 	}
2593 	if (bp->b_iocmd == BIO_WRITE)
2594 		bio = g_new_bio();
2595 	else
2596 		bio = g_alloc_bio();
2597 	if (bio == NULL) {
2598 		bp->b_error = ENOMEM;
2599 		bp->b_ioflags |= BIO_ERROR;
2600 		bufdone(bp);
2601 		return;
2602 	}
2603 
2604 	bio->bio_caller2 = bp;
2605 	bio->bio_cmd = bp->b_iocmd;
2606 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2607 	bio->bio_length = bp->b_bcount;
2608 	bio->bio_done = swapgeom_done;
2609 	if ((bp->b_flags & B_UNMAPPED) != 0) {
2610 		bio->bio_ma = bp->b_pages;
2611 		bio->bio_data = unmapped_buf;
2612 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2613 		bio->bio_ma_n = bp->b_npages;
2614 		bio->bio_flags |= BIO_UNMAPPED;
2615 	} else {
2616 		bio->bio_data = bp->b_data;
2617 		bio->bio_ma = NULL;
2618 	}
2619 	g_io_request(bio, cp);
2620 	return;
2621 }
2622 
2623 static void
2624 swapgeom_orphan(struct g_consumer *cp)
2625 {
2626 	struct swdevt *sp;
2627 
2628 	mtx_lock(&sw_dev_mtx);
2629 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2630 		if (sp->sw_id == cp)
2631 			sp->sw_flags |= SW_CLOSING;
2632 	mtx_unlock(&sw_dev_mtx);
2633 }
2634 
2635 static void
2636 swapgeom_close_ev(void *arg, int flags)
2637 {
2638 	struct g_consumer *cp;
2639 
2640 	cp = arg;
2641 	g_access(cp, -1, -1, 0);
2642 	g_detach(cp);
2643 	g_destroy_consumer(cp);
2644 }
2645 
2646 static void
2647 swapgeom_close(struct thread *td, struct swdevt *sw)
2648 {
2649 
2650 	/* XXX: direct call when Giant untangled */
2651 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2652 }
2653 
2654 
2655 struct swh0h0 {
2656 	struct cdev *dev;
2657 	struct vnode *vp;
2658 	int	error;
2659 };
2660 
2661 static void
2662 swapongeom_ev(void *arg, int flags)
2663 {
2664 	struct swh0h0 *swh;
2665 	struct g_provider *pp;
2666 	struct g_consumer *cp;
2667 	static struct g_geom *gp;
2668 	struct swdevt *sp;
2669 	u_long nblks;
2670 	int error;
2671 
2672 	swh = arg;
2673 	swh->error = 0;
2674 	pp = g_dev_getprovider(swh->dev);
2675 	if (pp == NULL) {
2676 		swh->error = ENODEV;
2677 		return;
2678 	}
2679 	mtx_lock(&sw_dev_mtx);
2680 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2681 		cp = sp->sw_id;
2682 		if (cp != NULL && cp->provider == pp) {
2683 			mtx_unlock(&sw_dev_mtx);
2684 			swh->error = EBUSY;
2685 			return;
2686 		}
2687 	}
2688 	mtx_unlock(&sw_dev_mtx);
2689 	if (gp == NULL)
2690 		gp = g_new_geomf(&g_swap_class, "swap");
2691 	cp = g_new_consumer(gp);
2692 	g_attach(cp, pp);
2693 	/*
2694 	 * XXX: Everytime you think you can improve the margin for
2695 	 * footshooting, somebody depends on the ability to do so:
2696 	 * savecore(8) wants to write to our swapdev so we cannot
2697 	 * set an exclusive count :-(
2698 	 */
2699 	error = g_access(cp, 1, 1, 0);
2700 	if (error) {
2701 		g_detach(cp);
2702 		g_destroy_consumer(cp);
2703 		swh->error = error;
2704 		return;
2705 	}
2706 	nblks = pp->mediasize / DEV_BSIZE;
2707 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2708 	    swapgeom_close, dev2udev(swh->dev),
2709 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2710 	swh->error = 0;
2711 }
2712 
2713 static int
2714 swapongeom(struct thread *td, struct vnode *vp)
2715 {
2716 	int error;
2717 	struct swh0h0 swh;
2718 
2719 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2720 
2721 	swh.dev = vp->v_rdev;
2722 	swh.vp = vp;
2723 	swh.error = 0;
2724 	/* XXX: direct call when Giant untangled */
2725 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2726 	if (!error)
2727 		error = swh.error;
2728 	VOP_UNLOCK(vp, 0);
2729 	return (error);
2730 }
2731 
2732 /*
2733  * VNODE backend
2734  *
2735  * This is used mainly for network filesystem (read: probably only tested
2736  * with NFS) swapfiles.
2737  *
2738  */
2739 
2740 static void
2741 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2742 {
2743 	struct vnode *vp2;
2744 
2745 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2746 
2747 	vp2 = sp->sw_id;
2748 	vhold(vp2);
2749 	if (bp->b_iocmd == BIO_WRITE) {
2750 		if (bp->b_bufobj)
2751 			bufobj_wdrop(bp->b_bufobj);
2752 		bufobj_wref(&vp2->v_bufobj);
2753 	}
2754 	if (bp->b_bufobj != &vp2->v_bufobj)
2755 		bp->b_bufobj = &vp2->v_bufobj;
2756 	bp->b_vp = vp2;
2757 	bp->b_iooffset = dbtob(bp->b_blkno);
2758 	bstrategy(bp);
2759 	return;
2760 }
2761 
2762 static void
2763 swapdev_close(struct thread *td, struct swdevt *sp)
2764 {
2765 
2766 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2767 	vrele(sp->sw_vp);
2768 }
2769 
2770 
2771 static int
2772 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2773 {
2774 	struct swdevt *sp;
2775 	int error;
2776 
2777 	if (nblks == 0)
2778 		return (ENXIO);
2779 	mtx_lock(&sw_dev_mtx);
2780 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2781 		if (sp->sw_id == vp) {
2782 			mtx_unlock(&sw_dev_mtx);
2783 			return (EBUSY);
2784 		}
2785 	}
2786 	mtx_unlock(&sw_dev_mtx);
2787 
2788 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2789 #ifdef MAC
2790 	error = mac_system_check_swapon(td->td_ucred, vp);
2791 	if (error == 0)
2792 #endif
2793 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2794 	(void) VOP_UNLOCK(vp, 0);
2795 	if (error)
2796 		return (error);
2797 
2798 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2799 	    NODEV, 0);
2800 	return (0);
2801 }
2802