1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/racct.h> 90 #include <sys/resource.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/sysctl.h> 94 #include <sys/sysproto.h> 95 #include <sys/blist.h> 96 #include <sys/lock.h> 97 #include <sys/sx.h> 98 #include <sys/vmmeter.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #include <vm/vm.h> 103 #include <vm/pmap.h> 104 #include <vm/vm_map.h> 105 #include <vm/vm_kern.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_page.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_pageout.h> 110 #include <vm/vm_param.h> 111 #include <vm/swap_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/uma.h> 114 115 #include <geom/geom.h> 116 117 /* 118 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, 16 119 * or 32 pages per allocation. 120 * The 32-page limit is due to the radix code (kern/subr_blist.c). 121 */ 122 #ifndef MAX_PAGEOUT_CLUSTER 123 #define MAX_PAGEOUT_CLUSTER 16 124 #endif 125 126 #if !defined(SWB_NPAGES) 127 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 128 #endif 129 130 /* 131 * The swblock structure maps an object and a small, fixed-size range 132 * of page indices to disk addresses within a swap area. 133 * The collection of these mappings is implemented as a hash table. 134 * Unused disk addresses within a swap area are allocated and managed 135 * using a blist. 136 */ 137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 138 #define SWAP_META_PAGES (SWB_NPAGES * 2) 139 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 140 141 struct swblock { 142 struct swblock *swb_hnext; 143 vm_object_t swb_object; 144 vm_pindex_t swb_index; 145 int swb_count; 146 daddr_t swb_pages[SWAP_META_PAGES]; 147 }; 148 149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 150 static struct mtx sw_dev_mtx; 151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 152 static struct swdevt *swdevhd; /* Allocate from here next */ 153 static int nswapdev; /* Number of swap devices */ 154 int swap_pager_avail; 155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 156 157 static vm_ooffset_t swap_total; 158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 159 "Total amount of available swap storage."); 160 static vm_ooffset_t swap_reserved; 161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 162 "Amount of swap storage needed to back all allocated anonymous memory."); 163 static int overcommit = 0; 164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 165 "Configure virtual memory overcommit behavior. See tuning(7) " 166 "for details."); 167 static unsigned long swzone; 168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, 169 "Actual size of swap metadata zone"); 170 static unsigned long swap_maxpages; 171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, 172 "Maximum amount of swap supported"); 173 174 /* bits from overcommit */ 175 #define SWAP_RESERVE_FORCE_ON (1 << 0) 176 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 177 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 178 179 int 180 swap_reserve(vm_ooffset_t incr) 181 { 182 183 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 184 } 185 186 int 187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 188 { 189 vm_ooffset_t r, s; 190 int res, error; 191 static int curfail; 192 static struct timeval lastfail; 193 struct uidinfo *uip; 194 195 uip = cred->cr_ruidinfo; 196 197 if (incr & PAGE_MASK) 198 panic("swap_reserve: & PAGE_MASK"); 199 200 #ifdef RACCT 201 PROC_LOCK(curproc); 202 error = racct_add(curproc, RACCT_SWAP, incr); 203 PROC_UNLOCK(curproc); 204 if (error != 0) 205 return (0); 206 #endif 207 208 res = 0; 209 mtx_lock(&sw_dev_mtx); 210 r = swap_reserved + incr; 211 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 212 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count; 213 s *= PAGE_SIZE; 214 } else 215 s = 0; 216 s += swap_total; 217 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 218 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 219 res = 1; 220 swap_reserved = r; 221 } 222 mtx_unlock(&sw_dev_mtx); 223 224 if (res) { 225 PROC_LOCK(curproc); 226 UIDINFO_VMSIZE_LOCK(uip); 227 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 228 uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) && 229 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 230 res = 0; 231 else 232 uip->ui_vmsize += incr; 233 UIDINFO_VMSIZE_UNLOCK(uip); 234 PROC_UNLOCK(curproc); 235 if (!res) { 236 mtx_lock(&sw_dev_mtx); 237 swap_reserved -= incr; 238 mtx_unlock(&sw_dev_mtx); 239 } 240 } 241 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 242 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 243 uip->ui_uid, curproc->p_pid, incr); 244 } 245 246 #ifdef RACCT 247 if (!res) { 248 PROC_LOCK(curproc); 249 racct_sub(curproc, RACCT_SWAP, incr); 250 PROC_UNLOCK(curproc); 251 } 252 #endif 253 254 return (res); 255 } 256 257 void 258 swap_reserve_force(vm_ooffset_t incr) 259 { 260 struct uidinfo *uip; 261 262 mtx_lock(&sw_dev_mtx); 263 swap_reserved += incr; 264 mtx_unlock(&sw_dev_mtx); 265 266 #ifdef RACCT 267 PROC_LOCK(curproc); 268 racct_add_force(curproc, RACCT_SWAP, incr); 269 PROC_UNLOCK(curproc); 270 #endif 271 272 uip = curthread->td_ucred->cr_ruidinfo; 273 PROC_LOCK(curproc); 274 UIDINFO_VMSIZE_LOCK(uip); 275 uip->ui_vmsize += incr; 276 UIDINFO_VMSIZE_UNLOCK(uip); 277 PROC_UNLOCK(curproc); 278 } 279 280 void 281 swap_release(vm_ooffset_t decr) 282 { 283 struct ucred *cred; 284 285 PROC_LOCK(curproc); 286 cred = curthread->td_ucred; 287 swap_release_by_cred(decr, cred); 288 PROC_UNLOCK(curproc); 289 } 290 291 void 292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 293 { 294 struct uidinfo *uip; 295 296 uip = cred->cr_ruidinfo; 297 298 if (decr & PAGE_MASK) 299 panic("swap_release: & PAGE_MASK"); 300 301 mtx_lock(&sw_dev_mtx); 302 if (swap_reserved < decr) 303 panic("swap_reserved < decr"); 304 swap_reserved -= decr; 305 mtx_unlock(&sw_dev_mtx); 306 307 UIDINFO_VMSIZE_LOCK(uip); 308 if (uip->ui_vmsize < decr) 309 printf("negative vmsize for uid = %d\n", uip->ui_uid); 310 uip->ui_vmsize -= decr; 311 UIDINFO_VMSIZE_UNLOCK(uip); 312 313 racct_sub_cred(cred, RACCT_SWAP, decr); 314 } 315 316 static void swapdev_strategy(struct buf *, struct swdevt *sw); 317 318 #define SWM_FREE 0x02 /* free, period */ 319 #define SWM_POP 0x04 /* pop out */ 320 321 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 322 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 323 static int nsw_rcount; /* free read buffers */ 324 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 325 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 326 static int nsw_wcount_async_max;/* assigned maximum */ 327 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 328 329 static struct swblock **swhash; 330 static int swhash_mask; 331 static struct mtx swhash_mtx; 332 333 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 334 static struct sx sw_alloc_sx; 335 336 337 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 338 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 339 340 /* 341 * "named" and "unnamed" anon region objects. Try to reduce the overhead 342 * of searching a named list by hashing it just a little. 343 */ 344 345 #define NOBJLISTS 8 346 347 #define NOBJLIST(handle) \ 348 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 349 350 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 351 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 352 static uma_zone_t swap_zone; 353 354 /* 355 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 356 * calls hooked from other parts of the VM system and do not appear here. 357 * (see vm/swap_pager.h). 358 */ 359 static vm_object_t 360 swap_pager_alloc(void *handle, vm_ooffset_t size, 361 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 362 static void swap_pager_dealloc(vm_object_t object); 363 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 364 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int, 365 pgo_getpages_iodone_t, void *); 366 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 367 static boolean_t 368 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 369 static void swap_pager_init(void); 370 static void swap_pager_unswapped(vm_page_t); 371 static void swap_pager_swapoff(struct swdevt *sp); 372 373 struct pagerops swappagerops = { 374 .pgo_init = swap_pager_init, /* early system initialization of pager */ 375 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 376 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 377 .pgo_getpages = swap_pager_getpages, /* pagein */ 378 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ 379 .pgo_putpages = swap_pager_putpages, /* pageout */ 380 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 381 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 382 }; 383 384 /* 385 * dmmax is in page-sized chunks with the new swap system. It was 386 * dev-bsized chunks in the old. dmmax is always a power of 2. 387 * 388 * swap_*() routines are externally accessible. swp_*() routines are 389 * internal. 390 */ 391 static int dmmax; 392 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 393 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 394 395 SYSCTL_INT(_vm, OID_AUTO, dmmax, 396 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 397 398 static void swp_sizecheck(void); 399 static void swp_pager_async_iodone(struct buf *bp); 400 static int swapongeom(struct thread *, struct vnode *); 401 static int swaponvp(struct thread *, struct vnode *, u_long); 402 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 403 404 /* 405 * Swap bitmap functions 406 */ 407 static void swp_pager_freeswapspace(daddr_t blk, int npages); 408 static daddr_t swp_pager_getswapspace(int npages); 409 410 /* 411 * Metadata functions 412 */ 413 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 414 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 415 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 416 static void swp_pager_meta_free_all(vm_object_t); 417 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 418 419 static void 420 swp_pager_free_nrpage(vm_page_t m) 421 { 422 423 vm_page_lock(m); 424 if (m->wire_count == 0) 425 vm_page_free(m); 426 vm_page_unlock(m); 427 } 428 429 /* 430 * SWP_SIZECHECK() - update swap_pager_full indication 431 * 432 * update the swap_pager_almost_full indication and warn when we are 433 * about to run out of swap space, using lowat/hiwat hysteresis. 434 * 435 * Clear swap_pager_full ( task killing ) indication when lowat is met. 436 * 437 * No restrictions on call 438 * This routine may not block. 439 */ 440 static void 441 swp_sizecheck(void) 442 { 443 444 if (swap_pager_avail < nswap_lowat) { 445 if (swap_pager_almost_full == 0) { 446 printf("swap_pager: out of swap space\n"); 447 swap_pager_almost_full = 1; 448 } 449 } else { 450 swap_pager_full = 0; 451 if (swap_pager_avail > nswap_hiwat) 452 swap_pager_almost_full = 0; 453 } 454 } 455 456 /* 457 * SWP_PAGER_HASH() - hash swap meta data 458 * 459 * This is an helper function which hashes the swapblk given 460 * the object and page index. It returns a pointer to a pointer 461 * to the object, or a pointer to a NULL pointer if it could not 462 * find a swapblk. 463 */ 464 static struct swblock ** 465 swp_pager_hash(vm_object_t object, vm_pindex_t index) 466 { 467 struct swblock **pswap; 468 struct swblock *swap; 469 470 index &= ~(vm_pindex_t)SWAP_META_MASK; 471 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 472 while ((swap = *pswap) != NULL) { 473 if (swap->swb_object == object && 474 swap->swb_index == index 475 ) { 476 break; 477 } 478 pswap = &swap->swb_hnext; 479 } 480 return (pswap); 481 } 482 483 /* 484 * SWAP_PAGER_INIT() - initialize the swap pager! 485 * 486 * Expected to be started from system init. NOTE: This code is run 487 * before much else so be careful what you depend on. Most of the VM 488 * system has yet to be initialized at this point. 489 */ 490 static void 491 swap_pager_init(void) 492 { 493 /* 494 * Initialize object lists 495 */ 496 int i; 497 498 for (i = 0; i < NOBJLISTS; ++i) 499 TAILQ_INIT(&swap_pager_object_list[i]); 500 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 501 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 502 503 /* 504 * Device Stripe, in PAGE_SIZE'd blocks 505 */ 506 dmmax = SWB_NPAGES * 2; 507 } 508 509 /* 510 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 511 * 512 * Expected to be started from pageout process once, prior to entering 513 * its main loop. 514 */ 515 void 516 swap_pager_swap_init(void) 517 { 518 unsigned long n, n2; 519 520 /* 521 * Number of in-transit swap bp operations. Don't 522 * exhaust the pbufs completely. Make sure we 523 * initialize workable values (0 will work for hysteresis 524 * but it isn't very efficient). 525 * 526 * The nsw_cluster_max is constrained by the bp->b_pages[] 527 * array (MAXPHYS/PAGE_SIZE) and our locally defined 528 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 529 * constrained by the swap device interleave stripe size. 530 * 531 * Currently we hardwire nsw_wcount_async to 4. This limit is 532 * designed to prevent other I/O from having high latencies due to 533 * our pageout I/O. The value 4 works well for one or two active swap 534 * devices but is probably a little low if you have more. Even so, 535 * a higher value would probably generate only a limited improvement 536 * with three or four active swap devices since the system does not 537 * typically have to pageout at extreme bandwidths. We will want 538 * at least 2 per swap devices, and 4 is a pretty good value if you 539 * have one NFS swap device due to the command/ack latency over NFS. 540 * So it all works out pretty well. 541 */ 542 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 543 544 mtx_lock(&pbuf_mtx); 545 nsw_rcount = (nswbuf + 1) / 2; 546 nsw_wcount_sync = (nswbuf + 3) / 4; 547 nsw_wcount_async = 4; 548 nsw_wcount_async_max = nsw_wcount_async; 549 mtx_unlock(&pbuf_mtx); 550 551 /* 552 * Initialize our zone. Right now I'm just guessing on the number 553 * we need based on the number of pages in the system. Each swblock 554 * can hold 32 pages, so this is probably overkill. This reservation 555 * is typically limited to around 32MB by default. 556 */ 557 n = vm_cnt.v_page_count / 2; 558 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 559 n = maxswzone / sizeof(struct swblock); 560 n2 = n; 561 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 562 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 563 if (swap_zone == NULL) 564 panic("failed to create swap_zone."); 565 do { 566 if (uma_zone_reserve_kva(swap_zone, n)) 567 break; 568 /* 569 * if the allocation failed, try a zone two thirds the 570 * size of the previous attempt. 571 */ 572 n -= ((n + 2) / 3); 573 } while (n > 0); 574 if (n2 != n) 575 printf("Swap zone entries reduced from %lu to %lu.\n", n2, n); 576 swap_maxpages = n * SWAP_META_PAGES; 577 swzone = n * sizeof(struct swblock); 578 n2 = n; 579 580 /* 581 * Initialize our meta-data hash table. The swapper does not need to 582 * be quite as efficient as the VM system, so we do not use an 583 * oversized hash table. 584 * 585 * n: size of hash table, must be power of 2 586 * swhash_mask: hash table index mask 587 */ 588 for (n = 1; n < n2 / 8; n *= 2) 589 ; 590 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 591 swhash_mask = n - 1; 592 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 593 } 594 595 /* 596 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 597 * its metadata structures. 598 * 599 * This routine is called from the mmap and fork code to create a new 600 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 601 * and then converting it with swp_pager_meta_build(). 602 * 603 * This routine may block in vm_object_allocate() and create a named 604 * object lookup race, so we must interlock. 605 * 606 * MPSAFE 607 */ 608 static vm_object_t 609 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 610 vm_ooffset_t offset, struct ucred *cred) 611 { 612 vm_object_t object; 613 vm_pindex_t pindex; 614 615 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 616 if (handle) { 617 mtx_lock(&Giant); 618 /* 619 * Reference existing named region or allocate new one. There 620 * should not be a race here against swp_pager_meta_build() 621 * as called from vm_page_remove() in regards to the lookup 622 * of the handle. 623 */ 624 sx_xlock(&sw_alloc_sx); 625 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 626 if (object == NULL) { 627 if (cred != NULL) { 628 if (!swap_reserve_by_cred(size, cred)) { 629 sx_xunlock(&sw_alloc_sx); 630 mtx_unlock(&Giant); 631 return (NULL); 632 } 633 crhold(cred); 634 } 635 object = vm_object_allocate(OBJT_DEFAULT, pindex); 636 VM_OBJECT_WLOCK(object); 637 object->handle = handle; 638 if (cred != NULL) { 639 object->cred = cred; 640 object->charge = size; 641 } 642 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 643 VM_OBJECT_WUNLOCK(object); 644 } 645 sx_xunlock(&sw_alloc_sx); 646 mtx_unlock(&Giant); 647 } else { 648 if (cred != NULL) { 649 if (!swap_reserve_by_cred(size, cred)) 650 return (NULL); 651 crhold(cred); 652 } 653 object = vm_object_allocate(OBJT_DEFAULT, pindex); 654 VM_OBJECT_WLOCK(object); 655 if (cred != NULL) { 656 object->cred = cred; 657 object->charge = size; 658 } 659 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 660 VM_OBJECT_WUNLOCK(object); 661 } 662 return (object); 663 } 664 665 /* 666 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 667 * 668 * The swap backing for the object is destroyed. The code is 669 * designed such that we can reinstantiate it later, but this 670 * routine is typically called only when the entire object is 671 * about to be destroyed. 672 * 673 * The object must be locked. 674 */ 675 static void 676 swap_pager_dealloc(vm_object_t object) 677 { 678 679 /* 680 * Remove from list right away so lookups will fail if we block for 681 * pageout completion. 682 */ 683 if (object->handle != NULL) { 684 mtx_lock(&sw_alloc_mtx); 685 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 686 mtx_unlock(&sw_alloc_mtx); 687 } 688 689 VM_OBJECT_ASSERT_WLOCKED(object); 690 vm_object_pip_wait(object, "swpdea"); 691 692 /* 693 * Free all remaining metadata. We only bother to free it from 694 * the swap meta data. We do not attempt to free swapblk's still 695 * associated with vm_page_t's for this object. We do not care 696 * if paging is still in progress on some objects. 697 */ 698 swp_pager_meta_free_all(object); 699 } 700 701 /************************************************************************ 702 * SWAP PAGER BITMAP ROUTINES * 703 ************************************************************************/ 704 705 /* 706 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 707 * 708 * Allocate swap for the requested number of pages. The starting 709 * swap block number (a page index) is returned or SWAPBLK_NONE 710 * if the allocation failed. 711 * 712 * Also has the side effect of advising that somebody made a mistake 713 * when they configured swap and didn't configure enough. 714 * 715 * This routine may not sleep. 716 * 717 * We allocate in round-robin fashion from the configured devices. 718 */ 719 static daddr_t 720 swp_pager_getswapspace(int npages) 721 { 722 daddr_t blk; 723 struct swdevt *sp; 724 int i; 725 726 blk = SWAPBLK_NONE; 727 mtx_lock(&sw_dev_mtx); 728 sp = swdevhd; 729 for (i = 0; i < nswapdev; i++) { 730 if (sp == NULL) 731 sp = TAILQ_FIRST(&swtailq); 732 if (!(sp->sw_flags & SW_CLOSING)) { 733 blk = blist_alloc(sp->sw_blist, npages); 734 if (blk != SWAPBLK_NONE) { 735 blk += sp->sw_first; 736 sp->sw_used += npages; 737 swap_pager_avail -= npages; 738 swp_sizecheck(); 739 swdevhd = TAILQ_NEXT(sp, sw_list); 740 goto done; 741 } 742 } 743 sp = TAILQ_NEXT(sp, sw_list); 744 } 745 if (swap_pager_full != 2) { 746 printf("swap_pager_getswapspace(%d): failed\n", npages); 747 swap_pager_full = 2; 748 swap_pager_almost_full = 1; 749 } 750 swdevhd = NULL; 751 done: 752 mtx_unlock(&sw_dev_mtx); 753 return (blk); 754 } 755 756 static int 757 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 758 { 759 760 return (blk >= sp->sw_first && blk < sp->sw_end); 761 } 762 763 static void 764 swp_pager_strategy(struct buf *bp) 765 { 766 struct swdevt *sp; 767 768 mtx_lock(&sw_dev_mtx); 769 TAILQ_FOREACH(sp, &swtailq, sw_list) { 770 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 771 mtx_unlock(&sw_dev_mtx); 772 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 773 unmapped_buf_allowed) { 774 bp->b_kvaalloc = bp->b_data; 775 bp->b_data = unmapped_buf; 776 bp->b_kvabase = unmapped_buf; 777 bp->b_offset = 0; 778 bp->b_flags |= B_UNMAPPED; 779 } else { 780 pmap_qenter((vm_offset_t)bp->b_data, 781 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 782 } 783 sp->sw_strategy(bp, sp); 784 return; 785 } 786 } 787 panic("Swapdev not found"); 788 } 789 790 791 /* 792 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 793 * 794 * This routine returns the specified swap blocks back to the bitmap. 795 * 796 * This routine may not sleep. 797 */ 798 static void 799 swp_pager_freeswapspace(daddr_t blk, int npages) 800 { 801 struct swdevt *sp; 802 803 mtx_lock(&sw_dev_mtx); 804 TAILQ_FOREACH(sp, &swtailq, sw_list) { 805 if (blk >= sp->sw_first && blk < sp->sw_end) { 806 sp->sw_used -= npages; 807 /* 808 * If we are attempting to stop swapping on 809 * this device, we don't want to mark any 810 * blocks free lest they be reused. 811 */ 812 if ((sp->sw_flags & SW_CLOSING) == 0) { 813 blist_free(sp->sw_blist, blk - sp->sw_first, 814 npages); 815 swap_pager_avail += npages; 816 swp_sizecheck(); 817 } 818 mtx_unlock(&sw_dev_mtx); 819 return; 820 } 821 } 822 panic("Swapdev not found"); 823 } 824 825 /* 826 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 827 * range within an object. 828 * 829 * This is a globally accessible routine. 830 * 831 * This routine removes swapblk assignments from swap metadata. 832 * 833 * The external callers of this routine typically have already destroyed 834 * or renamed vm_page_t's associated with this range in the object so 835 * we should be ok. 836 * 837 * The object must be locked. 838 */ 839 void 840 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 841 { 842 843 swp_pager_meta_free(object, start, size); 844 } 845 846 /* 847 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 848 * 849 * Assigns swap blocks to the specified range within the object. The 850 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 851 * 852 * Returns 0 on success, -1 on failure. 853 */ 854 int 855 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 856 { 857 int n = 0; 858 daddr_t blk = SWAPBLK_NONE; 859 vm_pindex_t beg = start; /* save start index */ 860 861 VM_OBJECT_WLOCK(object); 862 while (size) { 863 if (n == 0) { 864 n = BLIST_MAX_ALLOC; 865 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 866 n >>= 1; 867 if (n == 0) { 868 swp_pager_meta_free(object, beg, start - beg); 869 VM_OBJECT_WUNLOCK(object); 870 return (-1); 871 } 872 } 873 } 874 swp_pager_meta_build(object, start, blk); 875 --size; 876 ++start; 877 ++blk; 878 --n; 879 } 880 swp_pager_meta_free(object, start, n); 881 VM_OBJECT_WUNLOCK(object); 882 return (0); 883 } 884 885 /* 886 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 887 * and destroy the source. 888 * 889 * Copy any valid swapblks from the source to the destination. In 890 * cases where both the source and destination have a valid swapblk, 891 * we keep the destination's. 892 * 893 * This routine is allowed to sleep. It may sleep allocating metadata 894 * indirectly through swp_pager_meta_build() or if paging is still in 895 * progress on the source. 896 * 897 * The source object contains no vm_page_t's (which is just as well) 898 * 899 * The source object is of type OBJT_SWAP. 900 * 901 * The source and destination objects must be locked. 902 * Both object locks may temporarily be released. 903 */ 904 void 905 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 906 vm_pindex_t offset, int destroysource) 907 { 908 vm_pindex_t i; 909 910 VM_OBJECT_ASSERT_WLOCKED(srcobject); 911 VM_OBJECT_ASSERT_WLOCKED(dstobject); 912 913 /* 914 * If destroysource is set, we remove the source object from the 915 * swap_pager internal queue now. 916 */ 917 if (destroysource) { 918 if (srcobject->handle != NULL) { 919 mtx_lock(&sw_alloc_mtx); 920 TAILQ_REMOVE( 921 NOBJLIST(srcobject->handle), 922 srcobject, 923 pager_object_list 924 ); 925 mtx_unlock(&sw_alloc_mtx); 926 } 927 } 928 929 /* 930 * transfer source to destination. 931 */ 932 for (i = 0; i < dstobject->size; ++i) { 933 daddr_t dstaddr; 934 935 /* 936 * Locate (without changing) the swapblk on the destination, 937 * unless it is invalid in which case free it silently, or 938 * if the destination is a resident page, in which case the 939 * source is thrown away. 940 */ 941 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 942 943 if (dstaddr == SWAPBLK_NONE) { 944 /* 945 * Destination has no swapblk and is not resident, 946 * copy source. 947 */ 948 daddr_t srcaddr; 949 950 srcaddr = swp_pager_meta_ctl( 951 srcobject, 952 i + offset, 953 SWM_POP 954 ); 955 956 if (srcaddr != SWAPBLK_NONE) { 957 /* 958 * swp_pager_meta_build() can sleep. 959 */ 960 vm_object_pip_add(srcobject, 1); 961 VM_OBJECT_WUNLOCK(srcobject); 962 vm_object_pip_add(dstobject, 1); 963 swp_pager_meta_build(dstobject, i, srcaddr); 964 vm_object_pip_wakeup(dstobject); 965 VM_OBJECT_WLOCK(srcobject); 966 vm_object_pip_wakeup(srcobject); 967 } 968 } else { 969 /* 970 * Destination has valid swapblk or it is represented 971 * by a resident page. We destroy the sourceblock. 972 */ 973 974 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 975 } 976 } 977 978 /* 979 * Free left over swap blocks in source. 980 * 981 * We have to revert the type to OBJT_DEFAULT so we do not accidently 982 * double-remove the object from the swap queues. 983 */ 984 if (destroysource) { 985 swp_pager_meta_free_all(srcobject); 986 /* 987 * Reverting the type is not necessary, the caller is going 988 * to destroy srcobject directly, but I'm doing it here 989 * for consistency since we've removed the object from its 990 * queues. 991 */ 992 srcobject->type = OBJT_DEFAULT; 993 } 994 } 995 996 /* 997 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 998 * the requested page. 999 * 1000 * We determine whether good backing store exists for the requested 1001 * page and return TRUE if it does, FALSE if it doesn't. 1002 * 1003 * If TRUE, we also try to determine how much valid, contiguous backing 1004 * store exists before and after the requested page within a reasonable 1005 * distance. We do not try to restrict it to the swap device stripe 1006 * (that is handled in getpages/putpages). It probably isn't worth 1007 * doing here. 1008 */ 1009 static boolean_t 1010 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 1011 { 1012 daddr_t blk0; 1013 1014 VM_OBJECT_ASSERT_LOCKED(object); 1015 /* 1016 * do we have good backing store at the requested index ? 1017 */ 1018 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1019 1020 if (blk0 == SWAPBLK_NONE) { 1021 if (before) 1022 *before = 0; 1023 if (after) 1024 *after = 0; 1025 return (FALSE); 1026 } 1027 1028 /* 1029 * find backwards-looking contiguous good backing store 1030 */ 1031 if (before != NULL) { 1032 int i; 1033 1034 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1035 daddr_t blk; 1036 1037 if (i > pindex) 1038 break; 1039 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1040 if (blk != blk0 - i) 1041 break; 1042 } 1043 *before = (i - 1); 1044 } 1045 1046 /* 1047 * find forward-looking contiguous good backing store 1048 */ 1049 if (after != NULL) { 1050 int i; 1051 1052 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1053 daddr_t blk; 1054 1055 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1056 if (blk != blk0 + i) 1057 break; 1058 } 1059 *after = (i - 1); 1060 } 1061 return (TRUE); 1062 } 1063 1064 /* 1065 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1066 * 1067 * This removes any associated swap backing store, whether valid or 1068 * not, from the page. 1069 * 1070 * This routine is typically called when a page is made dirty, at 1071 * which point any associated swap can be freed. MADV_FREE also 1072 * calls us in a special-case situation 1073 * 1074 * NOTE!!! If the page is clean and the swap was valid, the caller 1075 * should make the page dirty before calling this routine. This routine 1076 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1077 * depends on it. 1078 * 1079 * This routine may not sleep. 1080 * 1081 * The object containing the page must be locked. 1082 */ 1083 static void 1084 swap_pager_unswapped(vm_page_t m) 1085 { 1086 1087 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1088 } 1089 1090 /* 1091 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1092 * 1093 * Attempt to retrieve (m, count) pages from backing store, but make 1094 * sure we retrieve at least m[reqpage]. We try to load in as large 1095 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1096 * belongs to the same object. 1097 * 1098 * The code is designed for asynchronous operation and 1099 * immediate-notification of 'reqpage' but tends not to be 1100 * used that way. Please do not optimize-out this algorithmic 1101 * feature, I intend to improve on it in the future. 1102 * 1103 * The parent has a single vm_object_pip_add() reference prior to 1104 * calling us and we should return with the same. 1105 * 1106 * The parent has BUSY'd the pages. We should return with 'm' 1107 * left busy, but the others adjusted. 1108 */ 1109 static int 1110 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1111 { 1112 struct buf *bp; 1113 vm_page_t mreq; 1114 int i; 1115 int j; 1116 daddr_t blk; 1117 1118 mreq = m[reqpage]; 1119 1120 KASSERT(mreq->object == object, 1121 ("swap_pager_getpages: object mismatch %p/%p", 1122 object, mreq->object)); 1123 1124 /* 1125 * Calculate range to retrieve. The pages have already been assigned 1126 * their swapblks. We require a *contiguous* range but we know it to 1127 * not span devices. If we do not supply it, bad things 1128 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1129 * loops are set up such that the case(s) are handled implicitly. 1130 * 1131 * The swp_*() calls must be made with the object locked. 1132 */ 1133 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1134 1135 for (i = reqpage - 1; i >= 0; --i) { 1136 daddr_t iblk; 1137 1138 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1139 if (blk != iblk + (reqpage - i)) 1140 break; 1141 } 1142 ++i; 1143 1144 for (j = reqpage + 1; j < count; ++j) { 1145 daddr_t jblk; 1146 1147 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1148 if (blk != jblk - (j - reqpage)) 1149 break; 1150 } 1151 1152 /* 1153 * free pages outside our collection range. Note: we never free 1154 * mreq, it must remain busy throughout. 1155 */ 1156 if (0 < i || j < count) { 1157 int k; 1158 1159 for (k = 0; k < i; ++k) 1160 swp_pager_free_nrpage(m[k]); 1161 for (k = j; k < count; ++k) 1162 swp_pager_free_nrpage(m[k]); 1163 } 1164 1165 /* 1166 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1167 * still busy, but the others unbusied. 1168 */ 1169 if (blk == SWAPBLK_NONE) 1170 return (VM_PAGER_FAIL); 1171 1172 /* 1173 * Getpbuf() can sleep. 1174 */ 1175 VM_OBJECT_WUNLOCK(object); 1176 /* 1177 * Get a swap buffer header to perform the IO 1178 */ 1179 bp = getpbuf(&nsw_rcount); 1180 bp->b_flags |= B_PAGING; 1181 1182 bp->b_iocmd = BIO_READ; 1183 bp->b_iodone = swp_pager_async_iodone; 1184 bp->b_rcred = crhold(thread0.td_ucred); 1185 bp->b_wcred = crhold(thread0.td_ucred); 1186 bp->b_blkno = blk - (reqpage - i); 1187 bp->b_bcount = PAGE_SIZE * (j - i); 1188 bp->b_bufsize = PAGE_SIZE * (j - i); 1189 bp->b_pager.pg_reqpage = reqpage - i; 1190 1191 VM_OBJECT_WLOCK(object); 1192 { 1193 int k; 1194 1195 for (k = i; k < j; ++k) { 1196 bp->b_pages[k - i] = m[k]; 1197 m[k]->oflags |= VPO_SWAPINPROG; 1198 } 1199 } 1200 bp->b_npages = j - i; 1201 1202 PCPU_INC(cnt.v_swapin); 1203 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1204 1205 /* 1206 * We still hold the lock on mreq, and our automatic completion routine 1207 * does not remove it. 1208 */ 1209 vm_object_pip_add(object, bp->b_npages); 1210 VM_OBJECT_WUNLOCK(object); 1211 1212 /* 1213 * perform the I/O. NOTE!!! bp cannot be considered valid after 1214 * this point because we automatically release it on completion. 1215 * Instead, we look at the one page we are interested in which we 1216 * still hold a lock on even through the I/O completion. 1217 * 1218 * The other pages in our m[] array are also released on completion, 1219 * so we cannot assume they are valid anymore either. 1220 * 1221 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1222 */ 1223 BUF_KERNPROC(bp); 1224 swp_pager_strategy(bp); 1225 1226 /* 1227 * wait for the page we want to complete. VPO_SWAPINPROG is always 1228 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1229 * is set in the meta-data. 1230 */ 1231 VM_OBJECT_WLOCK(object); 1232 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1233 mreq->oflags |= VPO_SWAPSLEEP; 1234 PCPU_INC(cnt.v_intrans); 1235 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP, 1236 "swread", hz * 20)) { 1237 printf( 1238 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1239 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1240 } 1241 } 1242 1243 /* 1244 * mreq is left busied after completion, but all the other pages 1245 * are freed. If we had an unrecoverable read error the page will 1246 * not be valid. 1247 */ 1248 if (mreq->valid != VM_PAGE_BITS_ALL) { 1249 return (VM_PAGER_ERROR); 1250 } else { 1251 return (VM_PAGER_OK); 1252 } 1253 1254 /* 1255 * A final note: in a low swap situation, we cannot deallocate swap 1256 * and mark a page dirty here because the caller is likely to mark 1257 * the page clean when we return, causing the page to possibly revert 1258 * to all-zero's later. 1259 */ 1260 } 1261 1262 /* 1263 * swap_pager_getpages_async(): 1264 * 1265 * Right now this is emulation of asynchronous operation on top of 1266 * swap_pager_getpages(). 1267 */ 1268 static int 1269 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 1270 int reqpage, pgo_getpages_iodone_t iodone, void *arg) 1271 { 1272 int r, error; 1273 1274 r = swap_pager_getpages(object, m, count, reqpage); 1275 VM_OBJECT_WUNLOCK(object); 1276 switch (r) { 1277 case VM_PAGER_OK: 1278 error = 0; 1279 break; 1280 case VM_PAGER_ERROR: 1281 error = EIO; 1282 break; 1283 case VM_PAGER_FAIL: 1284 error = EINVAL; 1285 break; 1286 default: 1287 panic("unhandled swap_pager_getpages() error %d", r); 1288 } 1289 (iodone)(arg, m, count, error); 1290 VM_OBJECT_WLOCK(object); 1291 1292 return (r); 1293 } 1294 1295 /* 1296 * swap_pager_putpages: 1297 * 1298 * Assign swap (if necessary) and initiate I/O on the specified pages. 1299 * 1300 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1301 * are automatically converted to SWAP objects. 1302 * 1303 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1304 * vm_page reservation system coupled with properly written VFS devices 1305 * should ensure that no low-memory deadlock occurs. This is an area 1306 * which needs work. 1307 * 1308 * The parent has N vm_object_pip_add() references prior to 1309 * calling us and will remove references for rtvals[] that are 1310 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1311 * completion. 1312 * 1313 * The parent has soft-busy'd the pages it passes us and will unbusy 1314 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1315 * We need to unbusy the rest on I/O completion. 1316 */ 1317 void 1318 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1319 int flags, int *rtvals) 1320 { 1321 int i, n; 1322 boolean_t sync; 1323 1324 if (count && m[0]->object != object) { 1325 panic("swap_pager_putpages: object mismatch %p/%p", 1326 object, 1327 m[0]->object 1328 ); 1329 } 1330 1331 /* 1332 * Step 1 1333 * 1334 * Turn object into OBJT_SWAP 1335 * check for bogus sysops 1336 * force sync if not pageout process 1337 */ 1338 if (object->type != OBJT_SWAP) 1339 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1340 VM_OBJECT_WUNLOCK(object); 1341 1342 n = 0; 1343 if (curproc != pageproc) 1344 sync = TRUE; 1345 else 1346 sync = (flags & VM_PAGER_PUT_SYNC) != 0; 1347 1348 /* 1349 * Step 2 1350 * 1351 * Update nsw parameters from swap_async_max sysctl values. 1352 * Do not let the sysop crash the machine with bogus numbers. 1353 */ 1354 mtx_lock(&pbuf_mtx); 1355 if (swap_async_max != nsw_wcount_async_max) { 1356 int n; 1357 1358 /* 1359 * limit range 1360 */ 1361 if ((n = swap_async_max) > nswbuf / 2) 1362 n = nswbuf / 2; 1363 if (n < 1) 1364 n = 1; 1365 swap_async_max = n; 1366 1367 /* 1368 * Adjust difference ( if possible ). If the current async 1369 * count is too low, we may not be able to make the adjustment 1370 * at this time. 1371 */ 1372 n -= nsw_wcount_async_max; 1373 if (nsw_wcount_async + n >= 0) { 1374 nsw_wcount_async += n; 1375 nsw_wcount_async_max += n; 1376 wakeup(&nsw_wcount_async); 1377 } 1378 } 1379 mtx_unlock(&pbuf_mtx); 1380 1381 /* 1382 * Step 3 1383 * 1384 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1385 * The page is left dirty until the pageout operation completes 1386 * successfully. 1387 */ 1388 for (i = 0; i < count; i += n) { 1389 int j; 1390 struct buf *bp; 1391 daddr_t blk; 1392 1393 /* 1394 * Maximum I/O size is limited by a number of factors. 1395 */ 1396 n = min(BLIST_MAX_ALLOC, count - i); 1397 n = min(n, nsw_cluster_max); 1398 1399 /* 1400 * Get biggest block of swap we can. If we fail, fall 1401 * back and try to allocate a smaller block. Don't go 1402 * overboard trying to allocate space if it would overly 1403 * fragment swap. 1404 */ 1405 while ( 1406 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1407 n > 4 1408 ) { 1409 n >>= 1; 1410 } 1411 if (blk == SWAPBLK_NONE) { 1412 for (j = 0; j < n; ++j) 1413 rtvals[i+j] = VM_PAGER_FAIL; 1414 continue; 1415 } 1416 1417 /* 1418 * All I/O parameters have been satisfied, build the I/O 1419 * request and assign the swap space. 1420 */ 1421 if (sync == TRUE) { 1422 bp = getpbuf(&nsw_wcount_sync); 1423 } else { 1424 bp = getpbuf(&nsw_wcount_async); 1425 bp->b_flags = B_ASYNC; 1426 } 1427 bp->b_flags |= B_PAGING; 1428 bp->b_iocmd = BIO_WRITE; 1429 1430 bp->b_rcred = crhold(thread0.td_ucred); 1431 bp->b_wcred = crhold(thread0.td_ucred); 1432 bp->b_bcount = PAGE_SIZE * n; 1433 bp->b_bufsize = PAGE_SIZE * n; 1434 bp->b_blkno = blk; 1435 1436 VM_OBJECT_WLOCK(object); 1437 for (j = 0; j < n; ++j) { 1438 vm_page_t mreq = m[i+j]; 1439 1440 swp_pager_meta_build( 1441 mreq->object, 1442 mreq->pindex, 1443 blk + j 1444 ); 1445 vm_page_dirty(mreq); 1446 rtvals[i+j] = VM_PAGER_OK; 1447 1448 mreq->oflags |= VPO_SWAPINPROG; 1449 bp->b_pages[j] = mreq; 1450 } 1451 VM_OBJECT_WUNLOCK(object); 1452 bp->b_npages = n; 1453 /* 1454 * Must set dirty range for NFS to work. 1455 */ 1456 bp->b_dirtyoff = 0; 1457 bp->b_dirtyend = bp->b_bcount; 1458 1459 PCPU_INC(cnt.v_swapout); 1460 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1461 1462 /* 1463 * asynchronous 1464 * 1465 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1466 */ 1467 if (sync == FALSE) { 1468 bp->b_iodone = swp_pager_async_iodone; 1469 BUF_KERNPROC(bp); 1470 swp_pager_strategy(bp); 1471 1472 for (j = 0; j < n; ++j) 1473 rtvals[i+j] = VM_PAGER_PEND; 1474 /* restart outter loop */ 1475 continue; 1476 } 1477 1478 /* 1479 * synchronous 1480 * 1481 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1482 */ 1483 bp->b_iodone = bdone; 1484 swp_pager_strategy(bp); 1485 1486 /* 1487 * Wait for the sync I/O to complete, then update rtvals. 1488 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1489 * our async completion routine at the end, thus avoiding a 1490 * double-free. 1491 */ 1492 bwait(bp, PVM, "swwrt"); 1493 for (j = 0; j < n; ++j) 1494 rtvals[i+j] = VM_PAGER_PEND; 1495 /* 1496 * Now that we are through with the bp, we can call the 1497 * normal async completion, which frees everything up. 1498 */ 1499 swp_pager_async_iodone(bp); 1500 } 1501 VM_OBJECT_WLOCK(object); 1502 } 1503 1504 /* 1505 * swp_pager_async_iodone: 1506 * 1507 * Completion routine for asynchronous reads and writes from/to swap. 1508 * Also called manually by synchronous code to finish up a bp. 1509 * 1510 * This routine may not sleep. 1511 */ 1512 static void 1513 swp_pager_async_iodone(struct buf *bp) 1514 { 1515 int i; 1516 vm_object_t object = NULL; 1517 1518 /* 1519 * report error 1520 */ 1521 if (bp->b_ioflags & BIO_ERROR) { 1522 printf( 1523 "swap_pager: I/O error - %s failed; blkno %ld," 1524 "size %ld, error %d\n", 1525 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1526 (long)bp->b_blkno, 1527 (long)bp->b_bcount, 1528 bp->b_error 1529 ); 1530 } 1531 1532 /* 1533 * remove the mapping for kernel virtual 1534 */ 1535 if ((bp->b_flags & B_UNMAPPED) != 0) { 1536 bp->b_data = bp->b_kvaalloc; 1537 bp->b_kvabase = bp->b_kvaalloc; 1538 bp->b_flags &= ~B_UNMAPPED; 1539 } else 1540 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1541 1542 if (bp->b_npages) { 1543 object = bp->b_pages[0]->object; 1544 VM_OBJECT_WLOCK(object); 1545 } 1546 1547 /* 1548 * cleanup pages. If an error occurs writing to swap, we are in 1549 * very serious trouble. If it happens to be a disk error, though, 1550 * we may be able to recover by reassigning the swap later on. So 1551 * in this case we remove the m->swapblk assignment for the page 1552 * but do not free it in the rlist. The errornous block(s) are thus 1553 * never reallocated as swap. Redirty the page and continue. 1554 */ 1555 for (i = 0; i < bp->b_npages; ++i) { 1556 vm_page_t m = bp->b_pages[i]; 1557 1558 m->oflags &= ~VPO_SWAPINPROG; 1559 if (m->oflags & VPO_SWAPSLEEP) { 1560 m->oflags &= ~VPO_SWAPSLEEP; 1561 wakeup(&object->paging_in_progress); 1562 } 1563 1564 if (bp->b_ioflags & BIO_ERROR) { 1565 /* 1566 * If an error occurs I'd love to throw the swapblk 1567 * away without freeing it back to swapspace, so it 1568 * can never be used again. But I can't from an 1569 * interrupt. 1570 */ 1571 if (bp->b_iocmd == BIO_READ) { 1572 /* 1573 * When reading, reqpage needs to stay 1574 * locked for the parent, but all other 1575 * pages can be freed. We still want to 1576 * wakeup the parent waiting on the page, 1577 * though. ( also: pg_reqpage can be -1 and 1578 * not match anything ). 1579 * 1580 * We have to wake specifically requested pages 1581 * up too because we cleared VPO_SWAPINPROG and 1582 * someone may be waiting for that. 1583 * 1584 * NOTE: for reads, m->dirty will probably 1585 * be overridden by the original caller of 1586 * getpages so don't play cute tricks here. 1587 */ 1588 m->valid = 0; 1589 if (i != bp->b_pager.pg_reqpage) 1590 swp_pager_free_nrpage(m); 1591 else { 1592 vm_page_lock(m); 1593 vm_page_flash(m); 1594 vm_page_unlock(m); 1595 } 1596 /* 1597 * If i == bp->b_pager.pg_reqpage, do not wake 1598 * the page up. The caller needs to. 1599 */ 1600 } else { 1601 /* 1602 * If a write error occurs, reactivate page 1603 * so it doesn't clog the inactive list, 1604 * then finish the I/O. 1605 */ 1606 vm_page_dirty(m); 1607 vm_page_lock(m); 1608 vm_page_activate(m); 1609 vm_page_unlock(m); 1610 vm_page_sunbusy(m); 1611 } 1612 } else if (bp->b_iocmd == BIO_READ) { 1613 /* 1614 * NOTE: for reads, m->dirty will probably be 1615 * overridden by the original caller of getpages so 1616 * we cannot set them in order to free the underlying 1617 * swap in a low-swap situation. I don't think we'd 1618 * want to do that anyway, but it was an optimization 1619 * that existed in the old swapper for a time before 1620 * it got ripped out due to precisely this problem. 1621 * 1622 * If not the requested page then deactivate it. 1623 * 1624 * Note that the requested page, reqpage, is left 1625 * busied, but we still have to wake it up. The 1626 * other pages are released (unbusied) by 1627 * vm_page_xunbusy(). 1628 */ 1629 KASSERT(!pmap_page_is_mapped(m), 1630 ("swp_pager_async_iodone: page %p is mapped", m)); 1631 m->valid = VM_PAGE_BITS_ALL; 1632 KASSERT(m->dirty == 0, 1633 ("swp_pager_async_iodone: page %p is dirty", m)); 1634 1635 /* 1636 * We have to wake specifically requested pages 1637 * up too because we cleared VPO_SWAPINPROG and 1638 * could be waiting for it in getpages. However, 1639 * be sure to not unbusy getpages specifically 1640 * requested page - getpages expects it to be 1641 * left busy. 1642 */ 1643 if (i != bp->b_pager.pg_reqpage) { 1644 vm_page_lock(m); 1645 vm_page_deactivate(m); 1646 vm_page_unlock(m); 1647 vm_page_xunbusy(m); 1648 } else { 1649 vm_page_lock(m); 1650 vm_page_flash(m); 1651 vm_page_unlock(m); 1652 } 1653 } else { 1654 /* 1655 * For write success, clear the dirty 1656 * status, then finish the I/O ( which decrements the 1657 * busy count and possibly wakes waiter's up ). 1658 */ 1659 KASSERT(!pmap_page_is_write_mapped(m), 1660 ("swp_pager_async_iodone: page %p is not write" 1661 " protected", m)); 1662 vm_page_undirty(m); 1663 vm_page_sunbusy(m); 1664 if (vm_page_count_severe()) { 1665 vm_page_lock(m); 1666 vm_page_try_to_cache(m); 1667 vm_page_unlock(m); 1668 } 1669 } 1670 } 1671 1672 /* 1673 * adjust pip. NOTE: the original parent may still have its own 1674 * pip refs on the object. 1675 */ 1676 if (object != NULL) { 1677 vm_object_pip_wakeupn(object, bp->b_npages); 1678 VM_OBJECT_WUNLOCK(object); 1679 } 1680 1681 /* 1682 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1683 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1684 * trigger a KASSERT in relpbuf(). 1685 */ 1686 if (bp->b_vp) { 1687 bp->b_vp = NULL; 1688 bp->b_bufobj = NULL; 1689 } 1690 /* 1691 * release the physical I/O buffer 1692 */ 1693 relpbuf( 1694 bp, 1695 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1696 ((bp->b_flags & B_ASYNC) ? 1697 &nsw_wcount_async : 1698 &nsw_wcount_sync 1699 ) 1700 ) 1701 ); 1702 } 1703 1704 /* 1705 * swap_pager_isswapped: 1706 * 1707 * Return 1 if at least one page in the given object is paged 1708 * out to the given swap device. 1709 * 1710 * This routine may not sleep. 1711 */ 1712 int 1713 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1714 { 1715 daddr_t index = 0; 1716 int bcount; 1717 int i; 1718 1719 VM_OBJECT_ASSERT_WLOCKED(object); 1720 if (object->type != OBJT_SWAP) 1721 return (0); 1722 1723 mtx_lock(&swhash_mtx); 1724 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1725 struct swblock *swap; 1726 1727 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1728 for (i = 0; i < SWAP_META_PAGES; ++i) { 1729 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1730 mtx_unlock(&swhash_mtx); 1731 return (1); 1732 } 1733 } 1734 } 1735 index += SWAP_META_PAGES; 1736 } 1737 mtx_unlock(&swhash_mtx); 1738 return (0); 1739 } 1740 1741 /* 1742 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1743 * 1744 * This routine dissociates the page at the given index within a 1745 * swap block from its backing store, paging it in if necessary. 1746 * If the page is paged in, it is placed in the inactive queue, 1747 * since it had its backing store ripped out from under it. 1748 * We also attempt to swap in all other pages in the swap block, 1749 * we only guarantee that the one at the specified index is 1750 * paged in. 1751 * 1752 * XXX - The code to page the whole block in doesn't work, so we 1753 * revert to the one-by-one behavior for now. Sigh. 1754 */ 1755 static inline void 1756 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1757 { 1758 vm_page_t m; 1759 1760 vm_object_pip_add(object, 1); 1761 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 1762 if (m->valid == VM_PAGE_BITS_ALL) { 1763 vm_object_pip_wakeup(object); 1764 vm_page_dirty(m); 1765 vm_page_lock(m); 1766 vm_page_activate(m); 1767 vm_page_unlock(m); 1768 vm_page_xunbusy(m); 1769 vm_pager_page_unswapped(m); 1770 return; 1771 } 1772 1773 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1774 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1775 vm_object_pip_wakeup(object); 1776 vm_page_dirty(m); 1777 vm_page_lock(m); 1778 vm_page_deactivate(m); 1779 vm_page_unlock(m); 1780 vm_page_xunbusy(m); 1781 vm_pager_page_unswapped(m); 1782 } 1783 1784 /* 1785 * swap_pager_swapoff: 1786 * 1787 * Page in all of the pages that have been paged out to the 1788 * given device. The corresponding blocks in the bitmap must be 1789 * marked as allocated and the device must be flagged SW_CLOSING. 1790 * There may be no processes swapped out to the device. 1791 * 1792 * This routine may block. 1793 */ 1794 static void 1795 swap_pager_swapoff(struct swdevt *sp) 1796 { 1797 struct swblock *swap; 1798 int i, j, retries; 1799 1800 GIANT_REQUIRED; 1801 1802 retries = 0; 1803 full_rescan: 1804 mtx_lock(&swhash_mtx); 1805 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1806 restart: 1807 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1808 vm_object_t object = swap->swb_object; 1809 vm_pindex_t pindex = swap->swb_index; 1810 for (j = 0; j < SWAP_META_PAGES; ++j) { 1811 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1812 /* avoid deadlock */ 1813 if (!VM_OBJECT_TRYWLOCK(object)) { 1814 break; 1815 } else { 1816 mtx_unlock(&swhash_mtx); 1817 swp_pager_force_pagein(object, 1818 pindex + j); 1819 VM_OBJECT_WUNLOCK(object); 1820 mtx_lock(&swhash_mtx); 1821 goto restart; 1822 } 1823 } 1824 } 1825 } 1826 } 1827 mtx_unlock(&swhash_mtx); 1828 if (sp->sw_used) { 1829 /* 1830 * Objects may be locked or paging to the device being 1831 * removed, so we will miss their pages and need to 1832 * make another pass. We have marked this device as 1833 * SW_CLOSING, so the activity should finish soon. 1834 */ 1835 retries++; 1836 if (retries > 100) { 1837 panic("swapoff: failed to locate %d swap blocks", 1838 sp->sw_used); 1839 } 1840 pause("swpoff", hz / 20); 1841 goto full_rescan; 1842 } 1843 } 1844 1845 /************************************************************************ 1846 * SWAP META DATA * 1847 ************************************************************************ 1848 * 1849 * These routines manipulate the swap metadata stored in the 1850 * OBJT_SWAP object. 1851 * 1852 * Swap metadata is implemented with a global hash and not directly 1853 * linked into the object. Instead the object simply contains 1854 * appropriate tracking counters. 1855 */ 1856 1857 /* 1858 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1859 * 1860 * We first convert the object to a swap object if it is a default 1861 * object. 1862 * 1863 * The specified swapblk is added to the object's swap metadata. If 1864 * the swapblk is not valid, it is freed instead. Any previously 1865 * assigned swapblk is freed. 1866 */ 1867 static void 1868 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1869 { 1870 static volatile int exhausted; 1871 struct swblock *swap; 1872 struct swblock **pswap; 1873 int idx; 1874 1875 VM_OBJECT_ASSERT_WLOCKED(object); 1876 /* 1877 * Convert default object to swap object if necessary 1878 */ 1879 if (object->type != OBJT_SWAP) { 1880 object->type = OBJT_SWAP; 1881 object->un_pager.swp.swp_bcount = 0; 1882 1883 if (object->handle != NULL) { 1884 mtx_lock(&sw_alloc_mtx); 1885 TAILQ_INSERT_TAIL( 1886 NOBJLIST(object->handle), 1887 object, 1888 pager_object_list 1889 ); 1890 mtx_unlock(&sw_alloc_mtx); 1891 } 1892 } 1893 1894 /* 1895 * Locate hash entry. If not found create, but if we aren't adding 1896 * anything just return. If we run out of space in the map we wait 1897 * and, since the hash table may have changed, retry. 1898 */ 1899 retry: 1900 mtx_lock(&swhash_mtx); 1901 pswap = swp_pager_hash(object, pindex); 1902 1903 if ((swap = *pswap) == NULL) { 1904 int i; 1905 1906 if (swapblk == SWAPBLK_NONE) 1907 goto done; 1908 1909 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT | 1910 (curproc == pageproc ? M_USE_RESERVE : 0)); 1911 if (swap == NULL) { 1912 mtx_unlock(&swhash_mtx); 1913 VM_OBJECT_WUNLOCK(object); 1914 if (uma_zone_exhausted(swap_zone)) { 1915 if (atomic_cmpset_int(&exhausted, 0, 1)) 1916 printf("swap zone exhausted, " 1917 "increase kern.maxswzone\n"); 1918 vm_pageout_oom(VM_OOM_SWAPZ); 1919 pause("swzonex", 10); 1920 } else 1921 VM_WAIT; 1922 VM_OBJECT_WLOCK(object); 1923 goto retry; 1924 } 1925 1926 if (atomic_cmpset_int(&exhausted, 1, 0)) 1927 printf("swap zone ok\n"); 1928 1929 swap->swb_hnext = NULL; 1930 swap->swb_object = object; 1931 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1932 swap->swb_count = 0; 1933 1934 ++object->un_pager.swp.swp_bcount; 1935 1936 for (i = 0; i < SWAP_META_PAGES; ++i) 1937 swap->swb_pages[i] = SWAPBLK_NONE; 1938 } 1939 1940 /* 1941 * Delete prior contents of metadata 1942 */ 1943 idx = pindex & SWAP_META_MASK; 1944 1945 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1946 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1947 --swap->swb_count; 1948 } 1949 1950 /* 1951 * Enter block into metadata 1952 */ 1953 swap->swb_pages[idx] = swapblk; 1954 if (swapblk != SWAPBLK_NONE) 1955 ++swap->swb_count; 1956 done: 1957 mtx_unlock(&swhash_mtx); 1958 } 1959 1960 /* 1961 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1962 * 1963 * The requested range of blocks is freed, with any associated swap 1964 * returned to the swap bitmap. 1965 * 1966 * This routine will free swap metadata structures as they are cleaned 1967 * out. This routine does *NOT* operate on swap metadata associated 1968 * with resident pages. 1969 */ 1970 static void 1971 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1972 { 1973 1974 VM_OBJECT_ASSERT_LOCKED(object); 1975 if (object->type != OBJT_SWAP) 1976 return; 1977 1978 while (count > 0) { 1979 struct swblock **pswap; 1980 struct swblock *swap; 1981 1982 mtx_lock(&swhash_mtx); 1983 pswap = swp_pager_hash(object, index); 1984 1985 if ((swap = *pswap) != NULL) { 1986 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1987 1988 if (v != SWAPBLK_NONE) { 1989 swp_pager_freeswapspace(v, 1); 1990 swap->swb_pages[index & SWAP_META_MASK] = 1991 SWAPBLK_NONE; 1992 if (--swap->swb_count == 0) { 1993 *pswap = swap->swb_hnext; 1994 uma_zfree(swap_zone, swap); 1995 --object->un_pager.swp.swp_bcount; 1996 } 1997 } 1998 --count; 1999 ++index; 2000 } else { 2001 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 2002 count -= n; 2003 index += n; 2004 } 2005 mtx_unlock(&swhash_mtx); 2006 } 2007 } 2008 2009 /* 2010 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 2011 * 2012 * This routine locates and destroys all swap metadata associated with 2013 * an object. 2014 */ 2015 static void 2016 swp_pager_meta_free_all(vm_object_t object) 2017 { 2018 daddr_t index = 0; 2019 2020 VM_OBJECT_ASSERT_WLOCKED(object); 2021 if (object->type != OBJT_SWAP) 2022 return; 2023 2024 while (object->un_pager.swp.swp_bcount) { 2025 struct swblock **pswap; 2026 struct swblock *swap; 2027 2028 mtx_lock(&swhash_mtx); 2029 pswap = swp_pager_hash(object, index); 2030 if ((swap = *pswap) != NULL) { 2031 int i; 2032 2033 for (i = 0; i < SWAP_META_PAGES; ++i) { 2034 daddr_t v = swap->swb_pages[i]; 2035 if (v != SWAPBLK_NONE) { 2036 --swap->swb_count; 2037 swp_pager_freeswapspace(v, 1); 2038 } 2039 } 2040 if (swap->swb_count != 0) 2041 panic("swap_pager_meta_free_all: swb_count != 0"); 2042 *pswap = swap->swb_hnext; 2043 uma_zfree(swap_zone, swap); 2044 --object->un_pager.swp.swp_bcount; 2045 } 2046 mtx_unlock(&swhash_mtx); 2047 index += SWAP_META_PAGES; 2048 } 2049 } 2050 2051 /* 2052 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2053 * 2054 * This routine is capable of looking up, popping, or freeing 2055 * swapblk assignments in the swap meta data or in the vm_page_t. 2056 * The routine typically returns the swapblk being looked-up, or popped, 2057 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2058 * was invalid. This routine will automatically free any invalid 2059 * meta-data swapblks. 2060 * 2061 * It is not possible to store invalid swapblks in the swap meta data 2062 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2063 * 2064 * When acting on a busy resident page and paging is in progress, we 2065 * have to wait until paging is complete but otherwise can act on the 2066 * busy page. 2067 * 2068 * SWM_FREE remove and free swap block from metadata 2069 * SWM_POP remove from meta data but do not free.. pop it out 2070 */ 2071 static daddr_t 2072 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2073 { 2074 struct swblock **pswap; 2075 struct swblock *swap; 2076 daddr_t r1; 2077 int idx; 2078 2079 VM_OBJECT_ASSERT_LOCKED(object); 2080 /* 2081 * The meta data only exists of the object is OBJT_SWAP 2082 * and even then might not be allocated yet. 2083 */ 2084 if (object->type != OBJT_SWAP) 2085 return (SWAPBLK_NONE); 2086 2087 r1 = SWAPBLK_NONE; 2088 mtx_lock(&swhash_mtx); 2089 pswap = swp_pager_hash(object, pindex); 2090 2091 if ((swap = *pswap) != NULL) { 2092 idx = pindex & SWAP_META_MASK; 2093 r1 = swap->swb_pages[idx]; 2094 2095 if (r1 != SWAPBLK_NONE) { 2096 if (flags & SWM_FREE) { 2097 swp_pager_freeswapspace(r1, 1); 2098 r1 = SWAPBLK_NONE; 2099 } 2100 if (flags & (SWM_FREE|SWM_POP)) { 2101 swap->swb_pages[idx] = SWAPBLK_NONE; 2102 if (--swap->swb_count == 0) { 2103 *pswap = swap->swb_hnext; 2104 uma_zfree(swap_zone, swap); 2105 --object->un_pager.swp.swp_bcount; 2106 } 2107 } 2108 } 2109 } 2110 mtx_unlock(&swhash_mtx); 2111 return (r1); 2112 } 2113 2114 /* 2115 * System call swapon(name) enables swapping on device name, 2116 * which must be in the swdevsw. Return EBUSY 2117 * if already swapping on this device. 2118 */ 2119 #ifndef _SYS_SYSPROTO_H_ 2120 struct swapon_args { 2121 char *name; 2122 }; 2123 #endif 2124 2125 /* 2126 * MPSAFE 2127 */ 2128 /* ARGSUSED */ 2129 int 2130 sys_swapon(struct thread *td, struct swapon_args *uap) 2131 { 2132 struct vattr attr; 2133 struct vnode *vp; 2134 struct nameidata nd; 2135 int error; 2136 2137 error = priv_check(td, PRIV_SWAPON); 2138 if (error) 2139 return (error); 2140 2141 mtx_lock(&Giant); 2142 while (swdev_syscall_active) 2143 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2144 swdev_syscall_active = 1; 2145 2146 /* 2147 * Swap metadata may not fit in the KVM if we have physical 2148 * memory of >1GB. 2149 */ 2150 if (swap_zone == NULL) { 2151 error = ENOMEM; 2152 goto done; 2153 } 2154 2155 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2156 uap->name, td); 2157 error = namei(&nd); 2158 if (error) 2159 goto done; 2160 2161 NDFREE(&nd, NDF_ONLY_PNBUF); 2162 vp = nd.ni_vp; 2163 2164 if (vn_isdisk(vp, &error)) { 2165 error = swapongeom(td, vp); 2166 } else if (vp->v_type == VREG && 2167 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2168 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2169 /* 2170 * Allow direct swapping to NFS regular files in the same 2171 * way that nfs_mountroot() sets up diskless swapping. 2172 */ 2173 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2174 } 2175 2176 if (error) 2177 vrele(vp); 2178 done: 2179 swdev_syscall_active = 0; 2180 wakeup_one(&swdev_syscall_active); 2181 mtx_unlock(&Giant); 2182 return (error); 2183 } 2184 2185 /* 2186 * Check that the total amount of swap currently configured does not 2187 * exceed half the theoretical maximum. If it does, print a warning 2188 * message and return -1; otherwise, return 0. 2189 */ 2190 static int 2191 swapon_check_swzone(unsigned long npages) 2192 { 2193 unsigned long maxpages; 2194 2195 /* absolute maximum we can handle assuming 100% efficiency */ 2196 maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES; 2197 2198 /* recommend using no more than half that amount */ 2199 if (npages > maxpages / 2) { 2200 printf("warning: total configured swap (%lu pages) " 2201 "exceeds maximum recommended amount (%lu pages).\n", 2202 npages, maxpages / 2); 2203 printf("warning: increase kern.maxswzone " 2204 "or reduce amount of swap.\n"); 2205 return (-1); 2206 } 2207 return (0); 2208 } 2209 2210 static void 2211 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2212 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2213 { 2214 struct swdevt *sp, *tsp; 2215 swblk_t dvbase; 2216 u_long mblocks; 2217 2218 /* 2219 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2220 * First chop nblks off to page-align it, then convert. 2221 * 2222 * sw->sw_nblks is in page-sized chunks now too. 2223 */ 2224 nblks &= ~(ctodb(1) - 1); 2225 nblks = dbtoc(nblks); 2226 2227 /* 2228 * If we go beyond this, we get overflows in the radix 2229 * tree bitmap code. 2230 */ 2231 mblocks = 0x40000000 / BLIST_META_RADIX; 2232 if (nblks > mblocks) { 2233 printf( 2234 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2235 mblocks / 1024 / 1024 * PAGE_SIZE); 2236 nblks = mblocks; 2237 } 2238 2239 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2240 sp->sw_vp = vp; 2241 sp->sw_id = id; 2242 sp->sw_dev = dev; 2243 sp->sw_flags = 0; 2244 sp->sw_nblks = nblks; 2245 sp->sw_used = 0; 2246 sp->sw_strategy = strategy; 2247 sp->sw_close = close; 2248 sp->sw_flags = flags; 2249 2250 sp->sw_blist = blist_create(nblks, M_WAITOK); 2251 /* 2252 * Do not free the first two block in order to avoid overwriting 2253 * any bsd label at the front of the partition 2254 */ 2255 blist_free(sp->sw_blist, 2, nblks - 2); 2256 2257 dvbase = 0; 2258 mtx_lock(&sw_dev_mtx); 2259 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2260 if (tsp->sw_end >= dvbase) { 2261 /* 2262 * We put one uncovered page between the devices 2263 * in order to definitively prevent any cross-device 2264 * I/O requests 2265 */ 2266 dvbase = tsp->sw_end + 1; 2267 } 2268 } 2269 sp->sw_first = dvbase; 2270 sp->sw_end = dvbase + nblks; 2271 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2272 nswapdev++; 2273 swap_pager_avail += nblks; 2274 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2275 swapon_check_swzone(swap_total / PAGE_SIZE); 2276 swp_sizecheck(); 2277 mtx_unlock(&sw_dev_mtx); 2278 } 2279 2280 /* 2281 * SYSCALL: swapoff(devname) 2282 * 2283 * Disable swapping on the given device. 2284 * 2285 * XXX: Badly designed system call: it should use a device index 2286 * rather than filename as specification. We keep sw_vp around 2287 * only to make this work. 2288 */ 2289 #ifndef _SYS_SYSPROTO_H_ 2290 struct swapoff_args { 2291 char *name; 2292 }; 2293 #endif 2294 2295 /* 2296 * MPSAFE 2297 */ 2298 /* ARGSUSED */ 2299 int 2300 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2301 { 2302 struct vnode *vp; 2303 struct nameidata nd; 2304 struct swdevt *sp; 2305 int error; 2306 2307 error = priv_check(td, PRIV_SWAPOFF); 2308 if (error) 2309 return (error); 2310 2311 mtx_lock(&Giant); 2312 while (swdev_syscall_active) 2313 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2314 swdev_syscall_active = 1; 2315 2316 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2317 td); 2318 error = namei(&nd); 2319 if (error) 2320 goto done; 2321 NDFREE(&nd, NDF_ONLY_PNBUF); 2322 vp = nd.ni_vp; 2323 2324 mtx_lock(&sw_dev_mtx); 2325 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2326 if (sp->sw_vp == vp) 2327 break; 2328 } 2329 mtx_unlock(&sw_dev_mtx); 2330 if (sp == NULL) { 2331 error = EINVAL; 2332 goto done; 2333 } 2334 error = swapoff_one(sp, td->td_ucred); 2335 done: 2336 swdev_syscall_active = 0; 2337 wakeup_one(&swdev_syscall_active); 2338 mtx_unlock(&Giant); 2339 return (error); 2340 } 2341 2342 static int 2343 swapoff_one(struct swdevt *sp, struct ucred *cred) 2344 { 2345 u_long nblks, dvbase; 2346 #ifdef MAC 2347 int error; 2348 #endif 2349 2350 mtx_assert(&Giant, MA_OWNED); 2351 #ifdef MAC 2352 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2353 error = mac_system_check_swapoff(cred, sp->sw_vp); 2354 (void) VOP_UNLOCK(sp->sw_vp, 0); 2355 if (error != 0) 2356 return (error); 2357 #endif 2358 nblks = sp->sw_nblks; 2359 2360 /* 2361 * We can turn off this swap device safely only if the 2362 * available virtual memory in the system will fit the amount 2363 * of data we will have to page back in, plus an epsilon so 2364 * the system doesn't become critically low on swap space. 2365 */ 2366 if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail < 2367 nblks + nswap_lowat) { 2368 return (ENOMEM); 2369 } 2370 2371 /* 2372 * Prevent further allocations on this device. 2373 */ 2374 mtx_lock(&sw_dev_mtx); 2375 sp->sw_flags |= SW_CLOSING; 2376 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2377 swap_pager_avail -= blist_fill(sp->sw_blist, 2378 dvbase, dmmax); 2379 } 2380 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2381 mtx_unlock(&sw_dev_mtx); 2382 2383 /* 2384 * Page in the contents of the device and close it. 2385 */ 2386 swap_pager_swapoff(sp); 2387 2388 sp->sw_close(curthread, sp); 2389 sp->sw_id = NULL; 2390 mtx_lock(&sw_dev_mtx); 2391 TAILQ_REMOVE(&swtailq, sp, sw_list); 2392 nswapdev--; 2393 if (nswapdev == 0) { 2394 swap_pager_full = 2; 2395 swap_pager_almost_full = 1; 2396 } 2397 if (swdevhd == sp) 2398 swdevhd = NULL; 2399 mtx_unlock(&sw_dev_mtx); 2400 blist_destroy(sp->sw_blist); 2401 free(sp, M_VMPGDATA); 2402 return (0); 2403 } 2404 2405 void 2406 swapoff_all(void) 2407 { 2408 struct swdevt *sp, *spt; 2409 const char *devname; 2410 int error; 2411 2412 mtx_lock(&Giant); 2413 while (swdev_syscall_active) 2414 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2415 swdev_syscall_active = 1; 2416 2417 mtx_lock(&sw_dev_mtx); 2418 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2419 mtx_unlock(&sw_dev_mtx); 2420 if (vn_isdisk(sp->sw_vp, NULL)) 2421 devname = devtoname(sp->sw_vp->v_rdev); 2422 else 2423 devname = "[file]"; 2424 error = swapoff_one(sp, thread0.td_ucred); 2425 if (error != 0) { 2426 printf("Cannot remove swap device %s (error=%d), " 2427 "skipping.\n", devname, error); 2428 } else if (bootverbose) { 2429 printf("Swap device %s removed.\n", devname); 2430 } 2431 mtx_lock(&sw_dev_mtx); 2432 } 2433 mtx_unlock(&sw_dev_mtx); 2434 2435 swdev_syscall_active = 0; 2436 wakeup_one(&swdev_syscall_active); 2437 mtx_unlock(&Giant); 2438 } 2439 2440 void 2441 swap_pager_status(int *total, int *used) 2442 { 2443 struct swdevt *sp; 2444 2445 *total = 0; 2446 *used = 0; 2447 mtx_lock(&sw_dev_mtx); 2448 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2449 *total += sp->sw_nblks; 2450 *used += sp->sw_used; 2451 } 2452 mtx_unlock(&sw_dev_mtx); 2453 } 2454 2455 int 2456 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2457 { 2458 struct swdevt *sp; 2459 const char *tmp_devname; 2460 int error, n; 2461 2462 n = 0; 2463 error = ENOENT; 2464 mtx_lock(&sw_dev_mtx); 2465 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2466 if (n != name) { 2467 n++; 2468 continue; 2469 } 2470 xs->xsw_version = XSWDEV_VERSION; 2471 xs->xsw_dev = sp->sw_dev; 2472 xs->xsw_flags = sp->sw_flags; 2473 xs->xsw_nblks = sp->sw_nblks; 2474 xs->xsw_used = sp->sw_used; 2475 if (devname != NULL) { 2476 if (vn_isdisk(sp->sw_vp, NULL)) 2477 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2478 else 2479 tmp_devname = "[file]"; 2480 strncpy(devname, tmp_devname, len); 2481 } 2482 error = 0; 2483 break; 2484 } 2485 mtx_unlock(&sw_dev_mtx); 2486 return (error); 2487 } 2488 2489 static int 2490 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2491 { 2492 struct xswdev xs; 2493 int error; 2494 2495 if (arg2 != 1) /* name length */ 2496 return (EINVAL); 2497 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2498 if (error != 0) 2499 return (error); 2500 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2501 return (error); 2502 } 2503 2504 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2505 "Number of swap devices"); 2506 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2507 "Swap statistics by device"); 2508 2509 /* 2510 * vmspace_swap_count() - count the approximate swap usage in pages for a 2511 * vmspace. 2512 * 2513 * The map must be locked. 2514 * 2515 * Swap usage is determined by taking the proportional swap used by 2516 * VM objects backing the VM map. To make up for fractional losses, 2517 * if the VM object has any swap use at all the associated map entries 2518 * count for at least 1 swap page. 2519 */ 2520 long 2521 vmspace_swap_count(struct vmspace *vmspace) 2522 { 2523 vm_map_t map; 2524 vm_map_entry_t cur; 2525 vm_object_t object; 2526 long count, n; 2527 2528 map = &vmspace->vm_map; 2529 count = 0; 2530 2531 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2532 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2533 (object = cur->object.vm_object) != NULL) { 2534 VM_OBJECT_WLOCK(object); 2535 if (object->type == OBJT_SWAP && 2536 object->un_pager.swp.swp_bcount != 0) { 2537 n = (cur->end - cur->start) / PAGE_SIZE; 2538 count += object->un_pager.swp.swp_bcount * 2539 SWAP_META_PAGES * n / object->size + 1; 2540 } 2541 VM_OBJECT_WUNLOCK(object); 2542 } 2543 } 2544 return (count); 2545 } 2546 2547 /* 2548 * GEOM backend 2549 * 2550 * Swapping onto disk devices. 2551 * 2552 */ 2553 2554 static g_orphan_t swapgeom_orphan; 2555 2556 static struct g_class g_swap_class = { 2557 .name = "SWAP", 2558 .version = G_VERSION, 2559 .orphan = swapgeom_orphan, 2560 }; 2561 2562 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2563 2564 2565 static void 2566 swapgeom_done(struct bio *bp2) 2567 { 2568 struct buf *bp; 2569 2570 bp = bp2->bio_caller2; 2571 bp->b_ioflags = bp2->bio_flags; 2572 if (bp2->bio_error) 2573 bp->b_ioflags |= BIO_ERROR; 2574 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2575 bp->b_error = bp2->bio_error; 2576 bufdone(bp); 2577 g_destroy_bio(bp2); 2578 } 2579 2580 static void 2581 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2582 { 2583 struct bio *bio; 2584 struct g_consumer *cp; 2585 2586 cp = sp->sw_id; 2587 if (cp == NULL) { 2588 bp->b_error = ENXIO; 2589 bp->b_ioflags |= BIO_ERROR; 2590 bufdone(bp); 2591 return; 2592 } 2593 if (bp->b_iocmd == BIO_WRITE) 2594 bio = g_new_bio(); 2595 else 2596 bio = g_alloc_bio(); 2597 if (bio == NULL) { 2598 bp->b_error = ENOMEM; 2599 bp->b_ioflags |= BIO_ERROR; 2600 bufdone(bp); 2601 return; 2602 } 2603 2604 bio->bio_caller2 = bp; 2605 bio->bio_cmd = bp->b_iocmd; 2606 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2607 bio->bio_length = bp->b_bcount; 2608 bio->bio_done = swapgeom_done; 2609 if ((bp->b_flags & B_UNMAPPED) != 0) { 2610 bio->bio_ma = bp->b_pages; 2611 bio->bio_data = unmapped_buf; 2612 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2613 bio->bio_ma_n = bp->b_npages; 2614 bio->bio_flags |= BIO_UNMAPPED; 2615 } else { 2616 bio->bio_data = bp->b_data; 2617 bio->bio_ma = NULL; 2618 } 2619 g_io_request(bio, cp); 2620 return; 2621 } 2622 2623 static void 2624 swapgeom_orphan(struct g_consumer *cp) 2625 { 2626 struct swdevt *sp; 2627 2628 mtx_lock(&sw_dev_mtx); 2629 TAILQ_FOREACH(sp, &swtailq, sw_list) 2630 if (sp->sw_id == cp) 2631 sp->sw_flags |= SW_CLOSING; 2632 mtx_unlock(&sw_dev_mtx); 2633 } 2634 2635 static void 2636 swapgeom_close_ev(void *arg, int flags) 2637 { 2638 struct g_consumer *cp; 2639 2640 cp = arg; 2641 g_access(cp, -1, -1, 0); 2642 g_detach(cp); 2643 g_destroy_consumer(cp); 2644 } 2645 2646 static void 2647 swapgeom_close(struct thread *td, struct swdevt *sw) 2648 { 2649 2650 /* XXX: direct call when Giant untangled */ 2651 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2652 } 2653 2654 2655 struct swh0h0 { 2656 struct cdev *dev; 2657 struct vnode *vp; 2658 int error; 2659 }; 2660 2661 static void 2662 swapongeom_ev(void *arg, int flags) 2663 { 2664 struct swh0h0 *swh; 2665 struct g_provider *pp; 2666 struct g_consumer *cp; 2667 static struct g_geom *gp; 2668 struct swdevt *sp; 2669 u_long nblks; 2670 int error; 2671 2672 swh = arg; 2673 swh->error = 0; 2674 pp = g_dev_getprovider(swh->dev); 2675 if (pp == NULL) { 2676 swh->error = ENODEV; 2677 return; 2678 } 2679 mtx_lock(&sw_dev_mtx); 2680 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2681 cp = sp->sw_id; 2682 if (cp != NULL && cp->provider == pp) { 2683 mtx_unlock(&sw_dev_mtx); 2684 swh->error = EBUSY; 2685 return; 2686 } 2687 } 2688 mtx_unlock(&sw_dev_mtx); 2689 if (gp == NULL) 2690 gp = g_new_geomf(&g_swap_class, "swap"); 2691 cp = g_new_consumer(gp); 2692 g_attach(cp, pp); 2693 /* 2694 * XXX: Everytime you think you can improve the margin for 2695 * footshooting, somebody depends on the ability to do so: 2696 * savecore(8) wants to write to our swapdev so we cannot 2697 * set an exclusive count :-( 2698 */ 2699 error = g_access(cp, 1, 1, 0); 2700 if (error) { 2701 g_detach(cp); 2702 g_destroy_consumer(cp); 2703 swh->error = error; 2704 return; 2705 } 2706 nblks = pp->mediasize / DEV_BSIZE; 2707 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2708 swapgeom_close, dev2udev(swh->dev), 2709 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2710 swh->error = 0; 2711 } 2712 2713 static int 2714 swapongeom(struct thread *td, struct vnode *vp) 2715 { 2716 int error; 2717 struct swh0h0 swh; 2718 2719 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2720 2721 swh.dev = vp->v_rdev; 2722 swh.vp = vp; 2723 swh.error = 0; 2724 /* XXX: direct call when Giant untangled */ 2725 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2726 if (!error) 2727 error = swh.error; 2728 VOP_UNLOCK(vp, 0); 2729 return (error); 2730 } 2731 2732 /* 2733 * VNODE backend 2734 * 2735 * This is used mainly for network filesystem (read: probably only tested 2736 * with NFS) swapfiles. 2737 * 2738 */ 2739 2740 static void 2741 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2742 { 2743 struct vnode *vp2; 2744 2745 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2746 2747 vp2 = sp->sw_id; 2748 vhold(vp2); 2749 if (bp->b_iocmd == BIO_WRITE) { 2750 if (bp->b_bufobj) 2751 bufobj_wdrop(bp->b_bufobj); 2752 bufobj_wref(&vp2->v_bufobj); 2753 } 2754 if (bp->b_bufobj != &vp2->v_bufobj) 2755 bp->b_bufobj = &vp2->v_bufobj; 2756 bp->b_vp = vp2; 2757 bp->b_iooffset = dbtob(bp->b_blkno); 2758 bstrategy(bp); 2759 return; 2760 } 2761 2762 static void 2763 swapdev_close(struct thread *td, struct swdevt *sp) 2764 { 2765 2766 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2767 vrele(sp->sw_vp); 2768 } 2769 2770 2771 static int 2772 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2773 { 2774 struct swdevt *sp; 2775 int error; 2776 2777 if (nblks == 0) 2778 return (ENXIO); 2779 mtx_lock(&sw_dev_mtx); 2780 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2781 if (sp->sw_id == vp) { 2782 mtx_unlock(&sw_dev_mtx); 2783 return (EBUSY); 2784 } 2785 } 2786 mtx_unlock(&sw_dev_mtx); 2787 2788 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2789 #ifdef MAC 2790 error = mac_system_check_swapon(td->td_ucred, vp); 2791 if (error == 0) 2792 #endif 2793 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2794 (void) VOP_UNLOCK(vp, 0); 2795 if (error) 2796 return (error); 2797 2798 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2799 NODEV, 0); 2800 return (0); 2801 } 2802