1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1998 Matthew Dillon, 5 * Copyright (c) 1994 John S. Dyson 6 * Copyright (c) 1990 University of Utah. 7 * Copyright (c) 1982, 1986, 1989, 1993 8 * The Regents of the University of California. All rights reserved. 9 * 10 * This code is derived from software contributed to Berkeley by 11 * the Systems Programming Group of the University of Utah Computer 12 * Science Department. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * New Swap System 43 * Matthew Dillon 44 * 45 * Radix Bitmap 'blists'. 46 * 47 * - The new swapper uses the new radix bitmap code. This should scale 48 * to arbitrarily small or arbitrarily large swap spaces and an almost 49 * arbitrary degree of fragmentation. 50 * 51 * Features: 52 * 53 * - on the fly reallocation of swap during putpages. The new system 54 * does not try to keep previously allocated swap blocks for dirty 55 * pages. 56 * 57 * - on the fly deallocation of swap 58 * 59 * - No more garbage collection required. Unnecessarily allocated swap 60 * blocks only exist for dirty vm_page_t's now and these are already 61 * cycled (in a high-load system) by the pager. We also do on-the-fly 62 * removal of invalidated swap blocks when a page is destroyed 63 * or renamed. 64 * 65 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 66 */ 67 68 #include <sys/cdefs.h> 69 #include "opt_vm.h" 70 71 #include <sys/param.h> 72 #include <sys/bio.h> 73 #include <sys/blist.h> 74 #include <sys/buf.h> 75 #include <sys/conf.h> 76 #include <sys/disk.h> 77 #include <sys/disklabel.h> 78 #include <sys/eventhandler.h> 79 #include <sys/fcntl.h> 80 #include <sys/limits.h> 81 #include <sys/lock.h> 82 #include <sys/kernel.h> 83 #include <sys/mount.h> 84 #include <sys/namei.h> 85 #include <sys/malloc.h> 86 #include <sys/pctrie.h> 87 #include <sys/priv.h> 88 #include <sys/proc.h> 89 #include <sys/racct.h> 90 #include <sys/resource.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/sbuf.h> 94 #include <sys/sysctl.h> 95 #include <sys/sysproto.h> 96 #include <sys/systm.h> 97 #include <sys/sx.h> 98 #include <sys/unistd.h> 99 #include <sys/user.h> 100 #include <sys/vmmeter.h> 101 #include <sys/vnode.h> 102 103 #include <security/mac/mac_framework.h> 104 105 #include <vm/vm.h> 106 #include <vm/pmap.h> 107 #include <vm/vm_map.h> 108 #include <vm/vm_kern.h> 109 #include <vm/vm_object.h> 110 #include <vm/vm_page.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_pageout.h> 113 #include <vm/vm_param.h> 114 #include <vm/vm_radix.h> 115 #include <vm/swap_pager.h> 116 #include <vm/vm_extern.h> 117 #include <vm/uma.h> 118 119 #include <geom/geom.h> 120 121 /* 122 * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64. 123 * The 64-page limit is due to the radix code (kern/subr_blist.c). 124 */ 125 #ifndef MAX_PAGEOUT_CLUSTER 126 #define MAX_PAGEOUT_CLUSTER 32 127 #endif 128 129 #if !defined(SWB_NPAGES) 130 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 131 #endif 132 133 #define SWAP_META_PAGES PCTRIE_COUNT 134 135 /* 136 * A swblk structure maps each page index within a 137 * SWAP_META_PAGES-aligned and sized range to the address of an 138 * on-disk swap block (or SWAPBLK_NONE). The collection of these 139 * mappings for an entire vm object is implemented as a pc-trie. 140 */ 141 struct swblk { 142 vm_pindex_t p; 143 daddr_t d[SWAP_META_PAGES]; 144 }; 145 146 /* 147 * A page_range structure records the start address and length of a sequence of 148 * mapped page addresses. 149 */ 150 struct page_range { 151 daddr_t start; 152 daddr_t num; 153 }; 154 155 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 156 static struct mtx sw_dev_mtx; 157 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 158 static struct swdevt *swdevhd; /* Allocate from here next */ 159 static int nswapdev; /* Number of swap devices */ 160 int swap_pager_avail; 161 static struct sx swdev_syscall_lock; /* serialize swap(on|off) */ 162 163 static __exclusive_cache_line u_long swap_reserved; 164 static u_long swap_total; 165 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS); 166 167 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 168 "VM swap stats"); 169 170 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, 171 &swap_reserved, 0, sysctl_page_shift, "QU", 172 "Amount of swap storage needed to back all allocated anonymous memory."); 173 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, 174 &swap_total, 0, sysctl_page_shift, "QU", 175 "Total amount of available swap storage."); 176 177 int vm_overcommit __read_mostly = 0; 178 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &vm_overcommit, 0, 179 "Configure virtual memory overcommit behavior. See tuning(7) " 180 "for details."); 181 static unsigned long swzone; 182 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, 183 "Actual size of swap metadata zone"); 184 static unsigned long swap_maxpages; 185 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, 186 "Maximum amount of swap supported"); 187 188 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred); 189 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred, 190 CTLFLAG_RD, &swap_free_deferred, 191 "Number of pages that deferred freeing swap space"); 192 193 static COUNTER_U64_DEFINE_EARLY(swap_free_completed); 194 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed, 195 CTLFLAG_RD, &swap_free_completed, 196 "Number of deferred frees completed"); 197 198 static int 199 sysctl_page_shift(SYSCTL_HANDLER_ARGS) 200 { 201 uint64_t newval; 202 u_long value = *(u_long *)arg1; 203 204 newval = ((uint64_t)value) << PAGE_SHIFT; 205 return (sysctl_handle_64(oidp, &newval, 0, req)); 206 } 207 208 static bool 209 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc) 210 { 211 struct uidinfo *uip; 212 u_long prev; 213 214 uip = cred->cr_ruidinfo; 215 216 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr); 217 if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 && 218 prev + pincr > lim_cur(curthread, RLIMIT_SWAP) && 219 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) { 220 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr); 221 KASSERT(prev >= pincr, 222 ("negative vmsize for uid %d\n", uip->ui_uid)); 223 return (false); 224 } 225 return (true); 226 } 227 228 static void 229 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred) 230 { 231 struct uidinfo *uip; 232 #ifdef INVARIANTS 233 u_long prev; 234 #endif 235 236 uip = cred->cr_ruidinfo; 237 238 #ifdef INVARIANTS 239 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr); 240 KASSERT(prev >= pdecr, 241 ("negative vmsize for uid %d\n", uip->ui_uid)); 242 #else 243 atomic_subtract_long(&uip->ui_vmsize, pdecr); 244 #endif 245 } 246 247 static void 248 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred) 249 { 250 struct uidinfo *uip; 251 252 uip = cred->cr_ruidinfo; 253 atomic_add_long(&uip->ui_vmsize, pincr); 254 } 255 256 bool 257 swap_reserve(vm_ooffset_t incr) 258 { 259 260 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 261 } 262 263 bool 264 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 265 { 266 u_long r, s, prev, pincr; 267 #ifdef RACCT 268 int error; 269 #endif 270 int oc; 271 static int curfail; 272 static struct timeval lastfail; 273 274 KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", 275 __func__, (uintmax_t)incr)); 276 277 #ifdef RACCT 278 if (RACCT_ENABLED()) { 279 PROC_LOCK(curproc); 280 error = racct_add(curproc, RACCT_SWAP, incr); 281 PROC_UNLOCK(curproc); 282 if (error != 0) 283 return (false); 284 } 285 #endif 286 287 pincr = atop(incr); 288 prev = atomic_fetchadd_long(&swap_reserved, pincr); 289 r = prev + pincr; 290 s = swap_total; 291 oc = atomic_load_int(&vm_overcommit); 292 if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) { 293 s += vm_cnt.v_page_count - vm_cnt.v_free_reserved - 294 vm_wire_count(); 295 } 296 if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s && 297 priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) { 298 prev = atomic_fetchadd_long(&swap_reserved, -pincr); 299 KASSERT(prev >= pincr, 300 ("swap_reserved < incr on overcommit fail")); 301 goto out_error; 302 } 303 304 if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) { 305 prev = atomic_fetchadd_long(&swap_reserved, -pincr); 306 KASSERT(prev >= pincr, 307 ("swap_reserved < incr on overcommit fail")); 308 goto out_error; 309 } 310 311 return (true); 312 313 out_error: 314 if (ppsratecheck(&lastfail, &curfail, 1)) { 315 printf("uid %d, pid %d: swap reservation " 316 "for %jd bytes failed\n", 317 cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr); 318 } 319 #ifdef RACCT 320 if (RACCT_ENABLED()) { 321 PROC_LOCK(curproc); 322 racct_sub(curproc, RACCT_SWAP, incr); 323 PROC_UNLOCK(curproc); 324 } 325 #endif 326 327 return (false); 328 } 329 330 void 331 swap_reserve_force(vm_ooffset_t incr) 332 { 333 u_long pincr; 334 335 KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", 336 __func__, (uintmax_t)incr)); 337 338 #ifdef RACCT 339 if (RACCT_ENABLED()) { 340 PROC_LOCK(curproc); 341 racct_add_force(curproc, RACCT_SWAP, incr); 342 PROC_UNLOCK(curproc); 343 } 344 #endif 345 pincr = atop(incr); 346 atomic_add_long(&swap_reserved, pincr); 347 swap_reserve_force_rlimit(pincr, curthread->td_ucred); 348 } 349 350 void 351 swap_release(vm_ooffset_t decr) 352 { 353 struct ucred *cred; 354 355 PROC_LOCK(curproc); 356 cred = curproc->p_ucred; 357 swap_release_by_cred(decr, cred); 358 PROC_UNLOCK(curproc); 359 } 360 361 void 362 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 363 { 364 u_long pdecr; 365 #ifdef INVARIANTS 366 u_long prev; 367 #endif 368 369 KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", 370 __func__, (uintmax_t)decr)); 371 372 pdecr = atop(decr); 373 #ifdef INVARIANTS 374 prev = atomic_fetchadd_long(&swap_reserved, -pdecr); 375 KASSERT(prev >= pdecr, ("swap_reserved < decr")); 376 #else 377 atomic_subtract_long(&swap_reserved, pdecr); 378 #endif 379 380 swap_release_by_cred_rlimit(pdecr, cred); 381 #ifdef RACCT 382 if (racct_enable) 383 racct_sub_cred(cred, RACCT_SWAP, decr); 384 #endif 385 } 386 387 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 388 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 389 static struct mtx swbuf_mtx; /* to sync nsw_wcount_async */ 390 static int nsw_wcount_async; /* limit async write buffers */ 391 static int nsw_wcount_async_max;/* assigned maximum */ 392 int nsw_cluster_max; /* maximum VOP I/O allowed */ 393 394 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS); 395 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW | 396 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I", 397 "Maximum running async swap ops"); 398 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS); 399 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD | 400 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A", 401 "Swap Fragmentation Info"); 402 403 static struct sx sw_alloc_sx; 404 405 /* 406 * "named" and "unnamed" anon region objects. Try to reduce the overhead 407 * of searching a named list by hashing it just a little. 408 */ 409 410 #define NOBJLISTS 8 411 412 #define NOBJLIST(handle) \ 413 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 414 415 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 416 static uma_zone_t swwbuf_zone; 417 static uma_zone_t swrbuf_zone; 418 static uma_zone_t swblk_zone; 419 static uma_zone_t swpctrie_zone; 420 421 /* 422 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 423 * calls hooked from other parts of the VM system and do not appear here. 424 * (see vm/swap_pager.h). 425 */ 426 static vm_object_t 427 swap_pager_alloc(void *handle, vm_ooffset_t size, 428 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 429 static void swap_pager_dealloc(vm_object_t object); 430 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *, 431 int *); 432 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 433 int *, pgo_getpages_iodone_t, void *); 434 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, int, int *); 435 static boolean_t 436 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 437 static void swap_pager_init(void); 438 static void swap_pager_unswapped(vm_page_t); 439 static void swap_pager_swapoff(struct swdevt *sp); 440 static void swap_pager_update_writecount(vm_object_t object, 441 vm_offset_t start, vm_offset_t end); 442 static void swap_pager_release_writecount(vm_object_t object, 443 vm_offset_t start, vm_offset_t end); 444 static void swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start, 445 vm_size_t size); 446 447 const struct pagerops swappagerops = { 448 .pgo_kvme_type = KVME_TYPE_SWAP, 449 .pgo_init = swap_pager_init, /* early system initialization of pager */ 450 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 451 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 452 .pgo_getpages = swap_pager_getpages, /* pagein */ 453 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ 454 .pgo_putpages = swap_pager_putpages, /* pageout */ 455 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 456 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 457 .pgo_update_writecount = swap_pager_update_writecount, 458 .pgo_release_writecount = swap_pager_release_writecount, 459 .pgo_freespace = swap_pager_freespace_pgo, 460 }; 461 462 /* 463 * swap_*() routines are externally accessible. swp_*() routines are 464 * internal. 465 */ 466 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 467 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 468 469 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0, 470 "Maximum size of a swap block in pages"); 471 472 static void swp_sizecheck(void); 473 static void swp_pager_async_iodone(struct buf *bp); 474 static bool swp_pager_swblk_empty(struct swblk *sb, int start, int limit); 475 static void swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb); 476 static int swapongeom(struct vnode *); 477 static int swaponvp(struct thread *, struct vnode *, u_long); 478 static int swapoff_one(struct swdevt *sp, struct ucred *cred, 479 u_int flags); 480 481 /* 482 * Swap bitmap functions 483 */ 484 static void swp_pager_freeswapspace(const struct page_range *range); 485 static daddr_t swp_pager_getswapspace(int *npages); 486 487 /* 488 * Metadata functions 489 */ 490 static daddr_t swp_pager_meta_build(struct pctrie_iter *, vm_object_t object, 491 vm_pindex_t, daddr_t, bool); 492 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t, 493 vm_size_t *); 494 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst, 495 vm_pindex_t pindex, vm_pindex_t count); 496 static void swp_pager_meta_free_all(vm_object_t); 497 static daddr_t swp_pager_meta_lookup(struct pctrie_iter *, vm_pindex_t); 498 499 static void 500 swp_pager_init_freerange(struct page_range *range) 501 { 502 range->start = SWAPBLK_NONE; 503 range->num = 0; 504 } 505 506 static void 507 swp_pager_update_freerange(struct page_range *range, daddr_t addr) 508 { 509 if (range->start + range->num == addr) { 510 range->num++; 511 } else { 512 swp_pager_freeswapspace(range); 513 range->start = addr; 514 range->num = 1; 515 } 516 } 517 518 static void * 519 swblk_trie_alloc(struct pctrie *ptree) 520 { 521 522 return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ? 523 M_USE_RESERVE : 0))); 524 } 525 526 static void 527 swblk_trie_free(struct pctrie *ptree, void *node) 528 { 529 530 uma_zfree(swpctrie_zone, node); 531 } 532 533 static int 534 swblk_start(struct swblk *sb, vm_pindex_t pindex) 535 { 536 return (sb == NULL || sb->p >= pindex ? 537 0 : pindex % SWAP_META_PAGES); 538 } 539 540 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free); 541 542 static struct swblk * 543 swblk_lookup(vm_object_t object, vm_pindex_t pindex) 544 { 545 return (SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, 546 rounddown(pindex, SWAP_META_PAGES))); 547 } 548 549 static void 550 swblk_lookup_remove(vm_object_t object, struct swblk *sb) 551 { 552 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p); 553 } 554 555 static bool 556 swblk_is_empty(vm_object_t object) 557 { 558 return (pctrie_is_empty(&object->un_pager.swp.swp_blks)); 559 } 560 561 static struct swblk * 562 swblk_iter_lookup_ge(struct pctrie_iter *blks, vm_pindex_t pindex) 563 { 564 return (SWAP_PCTRIE_ITER_LOOKUP_GE(blks, 565 rounddown(pindex, SWAP_META_PAGES))); 566 } 567 568 static void 569 swblk_iter_init_only(struct pctrie_iter *blks, vm_object_t object) 570 { 571 VM_OBJECT_ASSERT_LOCKED(object); 572 MPASS((object->flags & OBJ_SWAP) != 0); 573 pctrie_iter_init(blks, &object->un_pager.swp.swp_blks); 574 } 575 576 577 static struct swblk * 578 swblk_iter_init(struct pctrie_iter *blks, vm_object_t object, 579 vm_pindex_t pindex) 580 { 581 swblk_iter_init_only(blks, object); 582 return (swblk_iter_lookup_ge(blks, pindex)); 583 } 584 585 static struct swblk * 586 swblk_iter_reinit(struct pctrie_iter *blks, vm_object_t object, 587 vm_pindex_t pindex) 588 { 589 swblk_iter_init_only(blks, object); 590 return (SWAP_PCTRIE_ITER_LOOKUP(blks, 591 rounddown(pindex, SWAP_META_PAGES))); 592 } 593 594 static struct swblk * 595 swblk_iter_limit_init(struct pctrie_iter *blks, vm_object_t object, 596 vm_pindex_t pindex, vm_pindex_t limit) 597 { 598 VM_OBJECT_ASSERT_LOCKED(object); 599 MPASS((object->flags & OBJ_SWAP) != 0); 600 pctrie_iter_limit_init(blks, &object->un_pager.swp.swp_blks, limit); 601 return (swblk_iter_lookup_ge(blks, pindex)); 602 } 603 604 static struct swblk * 605 swblk_iter_next(struct pctrie_iter *blks) 606 { 607 return (SWAP_PCTRIE_ITER_JUMP_GE(blks, SWAP_META_PAGES)); 608 } 609 610 static struct swblk * 611 swblk_iter_lookup(struct pctrie_iter *blks, vm_pindex_t pindex) 612 { 613 return (SWAP_PCTRIE_ITER_LOOKUP(blks, 614 rounddown(pindex, SWAP_META_PAGES))); 615 } 616 617 static int 618 swblk_iter_insert(struct pctrie_iter *blks, struct swblk *sb) 619 { 620 return (SWAP_PCTRIE_ITER_INSERT(blks, sb)); 621 } 622 623 static void 624 swblk_iter_remove(struct pctrie_iter *blks) 625 { 626 SWAP_PCTRIE_ITER_REMOVE(blks); 627 } 628 629 /* 630 * SWP_SIZECHECK() - update swap_pager_full indication 631 * 632 * update the swap_pager_almost_full indication and warn when we are 633 * about to run out of swap space, using lowat/hiwat hysteresis. 634 * 635 * Clear swap_pager_full ( task killing ) indication when lowat is met. 636 * 637 * No restrictions on call 638 * This routine may not block. 639 */ 640 static void 641 swp_sizecheck(void) 642 { 643 644 if (swap_pager_avail < nswap_lowat) { 645 if (swap_pager_almost_full == 0) { 646 printf("swap_pager: out of swap space\n"); 647 swap_pager_almost_full = 1; 648 } 649 } else { 650 swap_pager_full = 0; 651 if (swap_pager_avail > nswap_hiwat) 652 swap_pager_almost_full = 0; 653 } 654 } 655 656 /* 657 * SWAP_PAGER_INIT() - initialize the swap pager! 658 * 659 * Expected to be started from system init. NOTE: This code is run 660 * before much else so be careful what you depend on. Most of the VM 661 * system has yet to be initialized at this point. 662 */ 663 static void 664 swap_pager_init(void) 665 { 666 /* 667 * Initialize object lists 668 */ 669 int i; 670 671 for (i = 0; i < NOBJLISTS; ++i) 672 TAILQ_INIT(&swap_pager_object_list[i]); 673 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 674 sx_init(&sw_alloc_sx, "swspsx"); 675 sx_init(&swdev_syscall_lock, "swsysc"); 676 677 /* 678 * The nsw_cluster_max is constrained by the bp->b_pages[] 679 * array, which has maxphys / PAGE_SIZE entries, and our locally 680 * defined MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 681 * constrained by the swap device interleave stripe size. 682 * 683 * Initialized early so that GEOM_ELI can see it. 684 */ 685 nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER); 686 } 687 688 /* 689 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 690 * 691 * Expected to be started from pageout process once, prior to entering 692 * its main loop. 693 */ 694 void 695 swap_pager_swap_init(void) 696 { 697 unsigned long n, n2; 698 699 /* 700 * Number of in-transit swap bp operations. Don't 701 * exhaust the pbufs completely. Make sure we 702 * initialize workable values (0 will work for hysteresis 703 * but it isn't very efficient). 704 * 705 * Currently we hardwire nsw_wcount_async to 4. This limit is 706 * designed to prevent other I/O from having high latencies due to 707 * our pageout I/O. The value 4 works well for one or two active swap 708 * devices but is probably a little low if you have more. Even so, 709 * a higher value would probably generate only a limited improvement 710 * with three or four active swap devices since the system does not 711 * typically have to pageout at extreme bandwidths. We will want 712 * at least 2 per swap devices, and 4 is a pretty good value if you 713 * have one NFS swap device due to the command/ack latency over NFS. 714 * So it all works out pretty well. 715 * 716 * nsw_cluster_max is initialized in swap_pager_init(). 717 */ 718 719 nsw_wcount_async = 4; 720 nsw_wcount_async_max = nsw_wcount_async; 721 mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF); 722 723 swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4); 724 swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2); 725 726 /* 727 * Initialize our zone, taking the user's requested size or 728 * estimating the number we need based on the number of pages 729 * in the system. 730 */ 731 n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) : 732 vm_cnt.v_page_count / 2; 733 swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL, 734 pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0); 735 swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL, 736 NULL, NULL, _Alignof(struct swblk) - 1, 0); 737 n2 = n; 738 do { 739 if (uma_zone_reserve_kva(swblk_zone, n)) 740 break; 741 /* 742 * if the allocation failed, try a zone two thirds the 743 * size of the previous attempt. 744 */ 745 n -= ((n + 2) / 3); 746 } while (n > 0); 747 748 /* 749 * Often uma_zone_reserve_kva() cannot reserve exactly the 750 * requested size. Account for the difference when 751 * calculating swap_maxpages. 752 */ 753 n = uma_zone_get_max(swblk_zone); 754 755 if (n < n2) 756 printf("Swap blk zone entries changed from %lu to %lu.\n", 757 n2, n); 758 /* absolute maximum we can handle assuming 100% efficiency */ 759 swap_maxpages = n * SWAP_META_PAGES; 760 swzone = n * sizeof(struct swblk); 761 if (!uma_zone_reserve_kva(swpctrie_zone, n)) 762 printf("Cannot reserve swap pctrie zone, " 763 "reduce kern.maxswzone.\n"); 764 } 765 766 bool 767 swap_pager_init_object(vm_object_t object, void *handle, struct ucred *cred, 768 vm_ooffset_t size, vm_ooffset_t offset) 769 { 770 if (cred != NULL) { 771 if (!swap_reserve_by_cred(size, cred)) 772 return (false); 773 crhold(cred); 774 } 775 776 object->un_pager.swp.writemappings = 0; 777 object->handle = handle; 778 if (cred != NULL) { 779 object->cred = cred; 780 object->charge = size; 781 } 782 return (true); 783 } 784 785 static vm_object_t 786 swap_pager_alloc_init(objtype_t otype, void *handle, struct ucred *cred, 787 vm_ooffset_t size, vm_ooffset_t offset) 788 { 789 vm_object_t object; 790 791 /* 792 * The un_pager.swp.swp_blks trie is initialized by 793 * vm_object_allocate() to ensure the correct order of 794 * visibility to other threads. 795 */ 796 object = vm_object_allocate(otype, OFF_TO_IDX(offset + 797 PAGE_MASK + size)); 798 799 if (!swap_pager_init_object(object, handle, cred, size, offset)) { 800 vm_object_deallocate(object); 801 return (NULL); 802 } 803 return (object); 804 } 805 806 /* 807 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 808 * its metadata structures. 809 * 810 * This routine is called from the mmap and fork code to create a new 811 * OBJT_SWAP object. 812 * 813 * This routine must ensure that no live duplicate is created for 814 * the named object request, which is protected against by 815 * holding the sw_alloc_sx lock in case handle != NULL. 816 */ 817 static vm_object_t 818 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 819 vm_ooffset_t offset, struct ucred *cred) 820 { 821 vm_object_t object; 822 823 if (handle != NULL) { 824 /* 825 * Reference existing named region or allocate new one. There 826 * should not be a race here against swp_pager_meta_build() 827 * as called from vm_page_remove() in regards to the lookup 828 * of the handle. 829 */ 830 sx_xlock(&sw_alloc_sx); 831 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 832 if (object == NULL) { 833 object = swap_pager_alloc_init(OBJT_SWAP, handle, cred, 834 size, offset); 835 if (object != NULL) { 836 TAILQ_INSERT_TAIL(NOBJLIST(object->handle), 837 object, pager_object_list); 838 } 839 } 840 sx_xunlock(&sw_alloc_sx); 841 } else { 842 object = swap_pager_alloc_init(OBJT_SWAP, handle, cred, 843 size, offset); 844 } 845 return (object); 846 } 847 848 /* 849 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 850 * 851 * The swap backing for the object is destroyed. The code is 852 * designed such that we can reinstantiate it later, but this 853 * routine is typically called only when the entire object is 854 * about to be destroyed. 855 * 856 * The object must be locked. 857 */ 858 static void 859 swap_pager_dealloc(vm_object_t object) 860 { 861 862 VM_OBJECT_ASSERT_WLOCKED(object); 863 KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj")); 864 865 /* 866 * Remove from list right away so lookups will fail if we block for 867 * pageout completion. 868 */ 869 if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) { 870 VM_OBJECT_WUNLOCK(object); 871 sx_xlock(&sw_alloc_sx); 872 TAILQ_REMOVE(NOBJLIST(object->handle), object, 873 pager_object_list); 874 sx_xunlock(&sw_alloc_sx); 875 VM_OBJECT_WLOCK(object); 876 } 877 878 vm_object_pip_wait(object, "swpdea"); 879 880 /* 881 * Free all remaining metadata. We only bother to free it from 882 * the swap meta data. We do not attempt to free swapblk's still 883 * associated with vm_page_t's for this object. We do not care 884 * if paging is still in progress on some objects. 885 */ 886 swp_pager_meta_free_all(object); 887 object->handle = NULL; 888 object->type = OBJT_DEAD; 889 890 /* 891 * Release the allocation charge. 892 */ 893 if (object->cred != NULL) { 894 swap_release_by_cred(object->charge, object->cred); 895 object->charge = 0; 896 crfree(object->cred); 897 object->cred = NULL; 898 } 899 900 /* 901 * Hide the object from swap_pager_swapoff(). 902 */ 903 vm_object_clear_flag(object, OBJ_SWAP); 904 } 905 906 /************************************************************************ 907 * SWAP PAGER BITMAP ROUTINES * 908 ************************************************************************/ 909 910 /* 911 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 912 * 913 * Allocate swap for up to the requested number of pages. The 914 * starting swap block number (a page index) is returned or 915 * SWAPBLK_NONE if the allocation failed. 916 * 917 * Also has the side effect of advising that somebody made a mistake 918 * when they configured swap and didn't configure enough. 919 * 920 * This routine may not sleep. 921 * 922 * We allocate in round-robin fashion from the configured devices. 923 */ 924 static daddr_t 925 swp_pager_getswapspace(int *io_npages) 926 { 927 daddr_t blk; 928 struct swdevt *sp; 929 int mpages, npages; 930 931 KASSERT(*io_npages >= 1, 932 ("%s: npages not positive", __func__)); 933 blk = SWAPBLK_NONE; 934 mpages = *io_npages; 935 npages = imin(BLIST_MAX_ALLOC, mpages); 936 mtx_lock(&sw_dev_mtx); 937 sp = swdevhd; 938 while (!TAILQ_EMPTY(&swtailq)) { 939 if (sp == NULL) 940 sp = TAILQ_FIRST(&swtailq); 941 if ((sp->sw_flags & SW_CLOSING) == 0) 942 blk = blist_alloc(sp->sw_blist, &npages, mpages); 943 if (blk != SWAPBLK_NONE) 944 break; 945 sp = TAILQ_NEXT(sp, sw_list); 946 if (swdevhd == sp) { 947 if (npages == 1) 948 break; 949 mpages = npages - 1; 950 npages >>= 1; 951 } 952 } 953 if (blk != SWAPBLK_NONE) { 954 *io_npages = npages; 955 blk += sp->sw_first; 956 sp->sw_used += npages; 957 swap_pager_avail -= npages; 958 swp_sizecheck(); 959 swdevhd = TAILQ_NEXT(sp, sw_list); 960 } else { 961 if (swap_pager_full != 2) { 962 printf("swp_pager_getswapspace(%d): failed\n", 963 *io_npages); 964 swap_pager_full = 2; 965 swap_pager_almost_full = 1; 966 } 967 swdevhd = NULL; 968 } 969 mtx_unlock(&sw_dev_mtx); 970 return (blk); 971 } 972 973 static bool 974 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 975 { 976 977 return (blk >= sp->sw_first && blk < sp->sw_end); 978 } 979 980 static void 981 swp_pager_strategy(struct buf *bp) 982 { 983 struct swdevt *sp; 984 985 mtx_lock(&sw_dev_mtx); 986 TAILQ_FOREACH(sp, &swtailq, sw_list) { 987 if (swp_pager_isondev(bp->b_blkno, sp)) { 988 mtx_unlock(&sw_dev_mtx); 989 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 990 unmapped_buf_allowed) { 991 bp->b_data = unmapped_buf; 992 bp->b_offset = 0; 993 } else { 994 pmap_qenter((vm_offset_t)bp->b_data, 995 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 996 } 997 sp->sw_strategy(bp, sp); 998 return; 999 } 1000 } 1001 panic("Swapdev not found"); 1002 } 1003 1004 /* 1005 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 1006 * 1007 * This routine returns the specified swap blocks back to the bitmap. 1008 * 1009 * This routine may not sleep. 1010 */ 1011 static void 1012 swp_pager_freeswapspace(const struct page_range *range) 1013 { 1014 daddr_t blk, npages; 1015 struct swdevt *sp; 1016 1017 blk = range->start; 1018 npages = range->num; 1019 if (npages == 0) 1020 return; 1021 mtx_lock(&sw_dev_mtx); 1022 TAILQ_FOREACH(sp, &swtailq, sw_list) { 1023 if (swp_pager_isondev(blk, sp)) { 1024 sp->sw_used -= npages; 1025 /* 1026 * If we are attempting to stop swapping on 1027 * this device, we don't want to mark any 1028 * blocks free lest they be reused. 1029 */ 1030 if ((sp->sw_flags & SW_CLOSING) == 0) { 1031 blist_free(sp->sw_blist, blk - sp->sw_first, 1032 npages); 1033 swap_pager_avail += npages; 1034 swp_sizecheck(); 1035 } 1036 mtx_unlock(&sw_dev_mtx); 1037 return; 1038 } 1039 } 1040 panic("Swapdev not found"); 1041 } 1042 1043 /* 1044 * SYSCTL_SWAP_FRAGMENTATION() - produce raw swap space stats 1045 */ 1046 static int 1047 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS) 1048 { 1049 struct sbuf sbuf; 1050 struct swdevt *sp; 1051 const char *devname; 1052 int error; 1053 1054 error = sysctl_wire_old_buffer(req, 0); 1055 if (error != 0) 1056 return (error); 1057 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1058 mtx_lock(&sw_dev_mtx); 1059 TAILQ_FOREACH(sp, &swtailq, sw_list) { 1060 if (vn_isdisk(sp->sw_vp)) 1061 devname = devtoname(sp->sw_vp->v_rdev); 1062 else 1063 devname = "[file]"; 1064 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname); 1065 blist_stats(sp->sw_blist, &sbuf); 1066 } 1067 mtx_unlock(&sw_dev_mtx); 1068 error = sbuf_finish(&sbuf); 1069 sbuf_delete(&sbuf); 1070 return (error); 1071 } 1072 1073 /* 1074 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 1075 * range within an object. 1076 * 1077 * This routine removes swapblk assignments from swap metadata. 1078 * 1079 * The external callers of this routine typically have already destroyed 1080 * or renamed vm_page_t's associated with this range in the object so 1081 * we should be ok. 1082 * 1083 * The object must be locked. 1084 */ 1085 void 1086 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size, 1087 vm_size_t *freed) 1088 { 1089 MPASS((object->flags & OBJ_SWAP) != 0); 1090 1091 swp_pager_meta_free(object, start, size, freed); 1092 } 1093 1094 static void 1095 swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start, vm_size_t size) 1096 { 1097 MPASS((object->flags & OBJ_SWAP) != 0); 1098 1099 swp_pager_meta_free(object, start, size, NULL); 1100 } 1101 1102 /* 1103 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 1104 * 1105 * Assigns swap blocks to the specified range within the object. The 1106 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 1107 * 1108 * Returns 0 on success, -1 on failure. 1109 */ 1110 int 1111 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_pindex_t size) 1112 { 1113 struct pctrie_iter blks; 1114 struct page_range range; 1115 daddr_t addr, blk; 1116 vm_pindex_t i, j; 1117 int n; 1118 1119 swp_pager_init_freerange(&range); 1120 VM_OBJECT_WLOCK(object); 1121 swblk_iter_init_only(&blks, object); 1122 for (i = 0; i < size; i += n) { 1123 n = MIN(size - i, INT_MAX); 1124 blk = swp_pager_getswapspace(&n); 1125 if (blk == SWAPBLK_NONE) { 1126 swp_pager_meta_free(object, start, i, NULL); 1127 VM_OBJECT_WUNLOCK(object); 1128 return (-1); 1129 } 1130 for (j = 0; j < n; ++j) { 1131 addr = swp_pager_meta_build(&blks, object, 1132 start + i + j, blk + j, false); 1133 if (addr != SWAPBLK_NONE) 1134 swp_pager_update_freerange(&range, addr); 1135 } 1136 } 1137 swp_pager_freeswapspace(&range); 1138 VM_OBJECT_WUNLOCK(object); 1139 return (0); 1140 } 1141 1142 /* 1143 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 1144 * and destroy the source. 1145 * 1146 * Copy any valid swapblks from the source to the destination. In 1147 * cases where both the source and destination have a valid swapblk, 1148 * we keep the destination's. 1149 * 1150 * This routine is allowed to sleep. It may sleep allocating metadata 1151 * indirectly through swp_pager_meta_build(). 1152 * 1153 * The source object contains no vm_page_t's (which is just as well) 1154 * 1155 * The source and destination objects must be locked. 1156 * Both object locks may temporarily be released. 1157 */ 1158 void 1159 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 1160 vm_pindex_t offset, int destroysource) 1161 { 1162 VM_OBJECT_ASSERT_WLOCKED(srcobject); 1163 VM_OBJECT_ASSERT_WLOCKED(dstobject); 1164 1165 /* 1166 * If destroysource is set, we remove the source object from the 1167 * swap_pager internal queue now. 1168 */ 1169 if (destroysource && (srcobject->flags & OBJ_ANON) == 0 && 1170 srcobject->handle != NULL) { 1171 VM_OBJECT_WUNLOCK(srcobject); 1172 VM_OBJECT_WUNLOCK(dstobject); 1173 sx_xlock(&sw_alloc_sx); 1174 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject, 1175 pager_object_list); 1176 sx_xunlock(&sw_alloc_sx); 1177 VM_OBJECT_WLOCK(dstobject); 1178 VM_OBJECT_WLOCK(srcobject); 1179 } 1180 1181 /* 1182 * Transfer source to destination. 1183 */ 1184 swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size); 1185 1186 /* 1187 * Free left over swap blocks in source. 1188 */ 1189 if (destroysource) 1190 swp_pager_meta_free_all(srcobject); 1191 } 1192 1193 /* 1194 * SWP_PAGER_HASPAGE_ITER() - determine if we have good backing store for 1195 * the requested page, accessed with the given 1196 * iterator. 1197 * 1198 * We determine whether good backing store exists for the requested 1199 * page and return TRUE if it does, FALSE if it doesn't. 1200 * 1201 * If TRUE, we also try to determine how much valid, contiguous backing 1202 * store exists before and after the requested page. 1203 */ 1204 static boolean_t 1205 swp_pager_haspage_iter(struct pctrie_iter *blks, vm_pindex_t pindex, 1206 int *before, int *after) 1207 { 1208 daddr_t blk, blk0; 1209 int i; 1210 1211 /* 1212 * do we have good backing store at the requested index ? 1213 */ 1214 blk0 = swp_pager_meta_lookup(blks, pindex); 1215 if (blk0 == SWAPBLK_NONE) { 1216 if (before) 1217 *before = 0; 1218 if (after) 1219 *after = 0; 1220 return (FALSE); 1221 } 1222 1223 /* 1224 * find backwards-looking contiguous good backing store 1225 */ 1226 if (before != NULL) { 1227 for (i = 1; i < SWB_NPAGES; i++) { 1228 if (i > pindex) 1229 break; 1230 blk = swp_pager_meta_lookup(blks, pindex - i); 1231 if (blk != blk0 - i) 1232 break; 1233 } 1234 *before = i - 1; 1235 } 1236 1237 /* 1238 * find forward-looking contiguous good backing store 1239 */ 1240 if (after != NULL) { 1241 for (i = 1; i < SWB_NPAGES; i++) { 1242 blk = swp_pager_meta_lookup(blks, pindex + i); 1243 if (blk != blk0 + i) 1244 break; 1245 } 1246 *after = i - 1; 1247 } 1248 return (TRUE); 1249 } 1250 1251 /* 1252 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 1253 * the requested page, in the given object. 1254 * 1255 * We determine whether good backing store exists for the requested 1256 * page and return TRUE if it does, FALSE if it doesn't. 1257 * 1258 * If TRUE, we also try to determine how much valid, contiguous backing 1259 * store exists before and after the requested page. 1260 */ 1261 static boolean_t 1262 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 1263 int *after) 1264 { 1265 struct pctrie_iter blks; 1266 1267 swblk_iter_init_only(&blks, object); 1268 return (swp_pager_haspage_iter(&blks, pindex, before, after)); 1269 } 1270 1271 static void 1272 swap_pager_unswapped_acct(vm_page_t m) 1273 { 1274 KASSERT((m->object->flags & OBJ_SWAP) != 0, 1275 ("Free object not swappable")); 1276 if ((m->a.flags & PGA_SWAP_FREE) != 0) 1277 counter_u64_add(swap_free_completed, 1); 1278 vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE); 1279 1280 /* 1281 * The meta data only exists if the object is OBJT_SWAP 1282 * and even then might not be allocated yet. 1283 */ 1284 } 1285 1286 /* 1287 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1288 * 1289 * This removes any associated swap backing store, whether valid or 1290 * not, from the page. 1291 * 1292 * This routine is typically called when a page is made dirty, at 1293 * which point any associated swap can be freed. MADV_FREE also 1294 * calls us in a special-case situation 1295 * 1296 * NOTE!!! If the page is clean and the swap was valid, the caller 1297 * should make the page dirty before calling this routine. This routine 1298 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1299 * depends on it. 1300 * 1301 * This routine may not sleep. 1302 * 1303 * The object containing the page may be locked. 1304 */ 1305 static void 1306 swap_pager_unswapped(vm_page_t m) 1307 { 1308 struct page_range range; 1309 struct swblk *sb; 1310 vm_object_t obj; 1311 1312 /* 1313 * Handle enqueing deferred frees first. If we do not have the 1314 * object lock we wait for the page daemon to clear the space. 1315 */ 1316 obj = m->object; 1317 if (!VM_OBJECT_WOWNED(obj)) { 1318 VM_PAGE_OBJECT_BUSY_ASSERT(m); 1319 /* 1320 * The caller is responsible for synchronization but we 1321 * will harmlessly handle races. This is typically provided 1322 * by only calling unswapped() when a page transitions from 1323 * clean to dirty. 1324 */ 1325 if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) == 1326 PGA_SWAP_SPACE) { 1327 vm_page_aflag_set(m, PGA_SWAP_FREE); 1328 counter_u64_add(swap_free_deferred, 1); 1329 } 1330 return; 1331 } 1332 swap_pager_unswapped_acct(m); 1333 1334 sb = swblk_lookup(m->object, m->pindex); 1335 if (sb == NULL) 1336 return; 1337 range.start = sb->d[m->pindex % SWAP_META_PAGES]; 1338 if (range.start == SWAPBLK_NONE) 1339 return; 1340 range.num = 1; 1341 swp_pager_freeswapspace(&range); 1342 sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE; 1343 swp_pager_free_empty_swblk(m->object, sb); 1344 } 1345 1346 /* 1347 * swap_pager_getpages_locked() - bring pages in from swap 1348 * 1349 * Attempt to page in the pages in array "ma" of length "count". The 1350 * caller may optionally specify that additional pages preceding and 1351 * succeeding the specified range be paged in. The number of such pages 1352 * is returned in the "a_rbehind" and "a_rahead" parameters, and they will 1353 * be in the inactive queue upon return. 1354 * 1355 * The pages in "ma" must be busied and will remain busied upon return. 1356 */ 1357 static int 1358 swap_pager_getpages_locked(struct pctrie_iter *blks, vm_object_t object, 1359 vm_page_t *ma, int count, int *a_rbehind, int *a_rahead, struct buf *bp) 1360 { 1361 vm_pindex_t pindex; 1362 int rahead, rbehind; 1363 1364 VM_OBJECT_ASSERT_WLOCKED(object); 1365 1366 KASSERT((object->flags & OBJ_SWAP) != 0, 1367 ("%s: object not swappable", __func__)); 1368 pindex = ma[0]->pindex; 1369 if (!swp_pager_haspage_iter(blks, pindex, &rbehind, &rahead)) { 1370 VM_OBJECT_WUNLOCK(object); 1371 uma_zfree(swrbuf_zone, bp); 1372 return (VM_PAGER_FAIL); 1373 } 1374 1375 KASSERT(count - 1 <= rahead, 1376 ("page count %d extends beyond swap block", count)); 1377 1378 /* 1379 * Do not transfer any pages other than those that are xbusied 1380 * when running during a split or collapse operation. This 1381 * prevents clustering from re-creating pages which are being 1382 * moved into another object. 1383 */ 1384 if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) { 1385 rahead = count - 1; 1386 rbehind = 0; 1387 } 1388 /* Clip readbehind/ahead ranges to exclude already resident pages. */ 1389 rbehind = a_rbehind != NULL ? imin(*a_rbehind, rbehind) : 0; 1390 rahead = a_rahead != NULL ? imin(*a_rahead, rahead - count + 1) : 0; 1391 /* Allocate pages. */ 1392 vm_object_prepare_buf_pages(object, bp->b_pages, count, &rbehind, 1393 &rahead, ma); 1394 bp->b_npages = rbehind + count + rahead; 1395 for (int i = 0; i < bp->b_npages; i++) 1396 bp->b_pages[i]->oflags |= VPO_SWAPINPROG; 1397 bp->b_blkno = swp_pager_meta_lookup(blks, pindex - rbehind); 1398 KASSERT(bp->b_blkno != SWAPBLK_NONE, 1399 ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex)); 1400 1401 vm_object_pip_add(object, bp->b_npages); 1402 VM_OBJECT_WUNLOCK(object); 1403 MPASS((bp->b_flags & B_MAXPHYS) != 0); 1404 1405 /* Report back actual behind/ahead read. */ 1406 if (a_rbehind != NULL) 1407 *a_rbehind = rbehind; 1408 if (a_rahead != NULL) 1409 *a_rahead = rahead; 1410 1411 bp->b_flags |= B_PAGING; 1412 bp->b_iocmd = BIO_READ; 1413 bp->b_iodone = swp_pager_async_iodone; 1414 bp->b_rcred = crhold(thread0.td_ucred); 1415 bp->b_wcred = crhold(thread0.td_ucred); 1416 bp->b_bufsize = bp->b_bcount = ptoa(bp->b_npages); 1417 bp->b_pgbefore = rbehind; 1418 bp->b_pgafter = rahead; 1419 1420 VM_CNT_INC(v_swapin); 1421 VM_CNT_ADD(v_swappgsin, bp->b_npages); 1422 1423 /* 1424 * perform the I/O. NOTE!!! bp cannot be considered valid after 1425 * this point because we automatically release it on completion. 1426 * Instead, we look at the one page we are interested in which we 1427 * still hold a lock on even through the I/O completion. 1428 * 1429 * The other pages in our ma[] array are also released on completion, 1430 * so we cannot assume they are valid anymore either. 1431 * 1432 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1433 */ 1434 BUF_KERNPROC(bp); 1435 swp_pager_strategy(bp); 1436 1437 /* 1438 * Wait for the pages we want to complete. VPO_SWAPINPROG is always 1439 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1440 * is set in the metadata for each page in the request. 1441 */ 1442 VM_OBJECT_WLOCK(object); 1443 /* This could be implemented more efficiently with aflags */ 1444 while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) { 1445 ma[0]->oflags |= VPO_SWAPSLEEP; 1446 VM_CNT_INC(v_intrans); 1447 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP, 1448 "swread", hz * 20)) { 1449 printf( 1450 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1451 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1452 } 1453 } 1454 VM_OBJECT_WUNLOCK(object); 1455 1456 /* 1457 * If we had an unrecoverable read error pages will not be valid. 1458 */ 1459 for (int i = 0; i < count; i++) 1460 if (ma[i]->valid != VM_PAGE_BITS_ALL) 1461 return (VM_PAGER_ERROR); 1462 1463 return (VM_PAGER_OK); 1464 1465 /* 1466 * A final note: in a low swap situation, we cannot deallocate swap 1467 * and mark a page dirty here because the caller is likely to mark 1468 * the page clean when we return, causing the page to possibly revert 1469 * to all-zero's later. 1470 */ 1471 } 1472 1473 static int 1474 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, 1475 int *rbehind, int *rahead) 1476 { 1477 struct buf *bp; 1478 struct pctrie_iter blks; 1479 1480 bp = uma_zalloc(swrbuf_zone, M_WAITOK); 1481 VM_OBJECT_WLOCK(object); 1482 swblk_iter_init_only(&blks, object); 1483 return (swap_pager_getpages_locked(&blks, object, ma, count, rbehind, 1484 rahead, bp)); 1485 } 1486 1487 /* 1488 * swap_pager_getpages_async(): 1489 * 1490 * Right now this is emulation of asynchronous operation on top of 1491 * swap_pager_getpages(). 1492 */ 1493 static int 1494 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count, 1495 int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg) 1496 { 1497 int r, error; 1498 1499 r = swap_pager_getpages(object, ma, count, rbehind, rahead); 1500 switch (r) { 1501 case VM_PAGER_OK: 1502 error = 0; 1503 break; 1504 case VM_PAGER_ERROR: 1505 error = EIO; 1506 break; 1507 case VM_PAGER_FAIL: 1508 error = EINVAL; 1509 break; 1510 default: 1511 panic("unhandled swap_pager_getpages() error %d", r); 1512 } 1513 (iodone)(arg, ma, count, error); 1514 1515 return (r); 1516 } 1517 1518 /* 1519 * swap_pager_putpages: 1520 * 1521 * Assign swap (if necessary) and initiate I/O on the specified pages. 1522 * 1523 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1524 * vm_page reservation system coupled with properly written VFS devices 1525 * should ensure that no low-memory deadlock occurs. This is an area 1526 * which needs work. 1527 * 1528 * The parent has N vm_object_pip_add() references prior to 1529 * calling us and will remove references for rtvals[] that are 1530 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1531 * completion. 1532 * 1533 * The parent has soft-busy'd the pages it passes us and will unbusy 1534 * those whose rtvals[] entry is not set to VM_PAGER_PEND on return. 1535 * We need to unbusy the rest on I/O completion. 1536 */ 1537 static void 1538 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count, 1539 int flags, int *rtvals) 1540 { 1541 struct pctrie_iter blks; 1542 struct page_range range; 1543 struct buf *bp; 1544 daddr_t addr, blk; 1545 vm_page_t mreq; 1546 int i, j, n; 1547 bool async; 1548 1549 KASSERT(count == 0 || ma[0]->object == object, 1550 ("%s: object mismatch %p/%p", 1551 __func__, object, ma[0]->object)); 1552 1553 VM_OBJECT_WUNLOCK(object); 1554 async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0; 1555 swp_pager_init_freerange(&range); 1556 1557 /* 1558 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1559 * The page is left dirty until the pageout operation completes 1560 * successfully. 1561 */ 1562 for (i = 0; i < count; i += n) { 1563 /* Maximum I/O size is limited by maximum swap block size. */ 1564 n = min(count - i, nsw_cluster_max); 1565 1566 if (async) { 1567 mtx_lock(&swbuf_mtx); 1568 while (nsw_wcount_async == 0) 1569 msleep(&nsw_wcount_async, &swbuf_mtx, PVM, 1570 "swbufa", 0); 1571 nsw_wcount_async--; 1572 mtx_unlock(&swbuf_mtx); 1573 } 1574 1575 /* Get a block of swap of size up to size n. */ 1576 blk = swp_pager_getswapspace(&n); 1577 if (blk == SWAPBLK_NONE) { 1578 mtx_lock(&swbuf_mtx); 1579 if (++nsw_wcount_async == 1) 1580 wakeup(&nsw_wcount_async); 1581 mtx_unlock(&swbuf_mtx); 1582 for (j = 0; j < n; ++j) 1583 rtvals[i + j] = VM_PAGER_FAIL; 1584 continue; 1585 } 1586 VM_OBJECT_WLOCK(object); 1587 swblk_iter_init_only(&blks, object); 1588 for (j = 0; j < n; ++j) { 1589 mreq = ma[i + j]; 1590 vm_page_aflag_clear(mreq, PGA_SWAP_FREE); 1591 KASSERT(mreq->object == object, 1592 ("%s: object mismatch %p/%p", 1593 __func__, mreq->object, object)); 1594 addr = swp_pager_meta_build(&blks, object, 1595 mreq->pindex, blk + j, false); 1596 if (addr != SWAPBLK_NONE) 1597 swp_pager_update_freerange(&range, addr); 1598 MPASS(mreq->dirty == VM_PAGE_BITS_ALL); 1599 mreq->oflags |= VPO_SWAPINPROG; 1600 } 1601 VM_OBJECT_WUNLOCK(object); 1602 1603 bp = uma_zalloc(swwbuf_zone, M_WAITOK); 1604 MPASS((bp->b_flags & B_MAXPHYS) != 0); 1605 if (async) 1606 bp->b_flags |= B_ASYNC; 1607 bp->b_flags |= B_PAGING; 1608 bp->b_iocmd = BIO_WRITE; 1609 1610 bp->b_rcred = crhold(thread0.td_ucred); 1611 bp->b_wcred = crhold(thread0.td_ucred); 1612 bp->b_bcount = PAGE_SIZE * n; 1613 bp->b_bufsize = PAGE_SIZE * n; 1614 bp->b_blkno = blk; 1615 for (j = 0; j < n; j++) 1616 bp->b_pages[j] = ma[i + j]; 1617 bp->b_npages = n; 1618 1619 /* 1620 * Must set dirty range for NFS to work. 1621 */ 1622 bp->b_dirtyoff = 0; 1623 bp->b_dirtyend = bp->b_bcount; 1624 1625 VM_CNT_INC(v_swapout); 1626 VM_CNT_ADD(v_swappgsout, bp->b_npages); 1627 1628 /* 1629 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we 1630 * can call the async completion routine at the end of a 1631 * synchronous I/O operation. Otherwise, our caller would 1632 * perform duplicate unbusy and wakeup operations on the page 1633 * and object, respectively. 1634 */ 1635 for (j = 0; j < n; j++) 1636 rtvals[i + j] = VM_PAGER_PEND; 1637 1638 /* 1639 * asynchronous 1640 * 1641 * NOTE: b_blkno is destroyed by the call to swapdev_strategy. 1642 */ 1643 if (async) { 1644 bp->b_iodone = swp_pager_async_iodone; 1645 BUF_KERNPROC(bp); 1646 swp_pager_strategy(bp); 1647 continue; 1648 } 1649 1650 /* 1651 * synchronous 1652 * 1653 * NOTE: b_blkno is destroyed by the call to swapdev_strategy. 1654 */ 1655 bp->b_iodone = bdone; 1656 swp_pager_strategy(bp); 1657 1658 /* 1659 * Wait for the sync I/O to complete. 1660 */ 1661 bwait(bp, PVM, "swwrt"); 1662 1663 /* 1664 * Now that we are through with the bp, we can call the 1665 * normal async completion, which frees everything up. 1666 */ 1667 swp_pager_async_iodone(bp); 1668 } 1669 swp_pager_freeswapspace(&range); 1670 VM_OBJECT_WLOCK(object); 1671 } 1672 1673 /* 1674 * swp_pager_async_iodone: 1675 * 1676 * Completion routine for asynchronous reads and writes from/to swap. 1677 * Also called manually by synchronous code to finish up a bp. 1678 * 1679 * This routine may not sleep. 1680 */ 1681 static void 1682 swp_pager_async_iodone(struct buf *bp) 1683 { 1684 int i; 1685 vm_object_t object = NULL; 1686 1687 /* 1688 * Report error - unless we ran out of memory, in which case 1689 * we've already logged it in swapgeom_strategy(). 1690 */ 1691 if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) { 1692 printf( 1693 "swap_pager: I/O error - %s failed; blkno %ld," 1694 "size %ld, error %d\n", 1695 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1696 (long)bp->b_blkno, 1697 (long)bp->b_bcount, 1698 bp->b_error 1699 ); 1700 } 1701 1702 /* 1703 * remove the mapping for kernel virtual 1704 */ 1705 if (buf_mapped(bp)) 1706 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1707 else 1708 bp->b_data = bp->b_kvabase; 1709 1710 if (bp->b_npages) { 1711 object = bp->b_pages[0]->object; 1712 VM_OBJECT_WLOCK(object); 1713 } 1714 1715 /* 1716 * cleanup pages. If an error occurs writing to swap, we are in 1717 * very serious trouble. If it happens to be a disk error, though, 1718 * we may be able to recover by reassigning the swap later on. So 1719 * in this case we remove the m->swapblk assignment for the page 1720 * but do not free it in the rlist. The errornous block(s) are thus 1721 * never reallocated as swap. Redirty the page and continue. 1722 */ 1723 for (i = 0; i < bp->b_npages; ++i) { 1724 vm_page_t m = bp->b_pages[i]; 1725 1726 m->oflags &= ~VPO_SWAPINPROG; 1727 if (m->oflags & VPO_SWAPSLEEP) { 1728 m->oflags &= ~VPO_SWAPSLEEP; 1729 wakeup(&object->handle); 1730 } 1731 1732 /* We always have space after I/O, successful or not. */ 1733 vm_page_aflag_set(m, PGA_SWAP_SPACE); 1734 1735 if (bp->b_ioflags & BIO_ERROR) { 1736 /* 1737 * If an error occurs I'd love to throw the swapblk 1738 * away without freeing it back to swapspace, so it 1739 * can never be used again. But I can't from an 1740 * interrupt. 1741 */ 1742 if (bp->b_iocmd == BIO_READ) { 1743 /* 1744 * NOTE: for reads, m->dirty will probably 1745 * be overridden by the original caller of 1746 * getpages so don't play cute tricks here. 1747 */ 1748 vm_page_invalid(m); 1749 if (i < bp->b_pgbefore || 1750 i >= bp->b_npages - bp->b_pgafter) 1751 vm_page_free_invalid(m); 1752 } else { 1753 /* 1754 * If a write error occurs, reactivate page 1755 * so it doesn't clog the inactive list, 1756 * then finish the I/O. 1757 */ 1758 MPASS(m->dirty == VM_PAGE_BITS_ALL); 1759 1760 /* PQ_UNSWAPPABLE? */ 1761 vm_page_activate(m); 1762 vm_page_sunbusy(m); 1763 } 1764 } else if (bp->b_iocmd == BIO_READ) { 1765 /* 1766 * NOTE: for reads, m->dirty will probably be 1767 * overridden by the original caller of getpages so 1768 * we cannot set them in order to free the underlying 1769 * swap in a low-swap situation. I don't think we'd 1770 * want to do that anyway, but it was an optimization 1771 * that existed in the old swapper for a time before 1772 * it got ripped out due to precisely this problem. 1773 */ 1774 KASSERT(!pmap_page_is_mapped(m), 1775 ("swp_pager_async_iodone: page %p is mapped", m)); 1776 KASSERT(m->dirty == 0, 1777 ("swp_pager_async_iodone: page %p is dirty", m)); 1778 1779 vm_page_valid(m); 1780 if (i < bp->b_pgbefore || 1781 i >= bp->b_npages - bp->b_pgafter) 1782 vm_page_readahead_finish(m); 1783 } else { 1784 /* 1785 * For write success, clear the dirty 1786 * status, then finish the I/O ( which decrements the 1787 * busy count and possibly wakes waiter's up ). 1788 * A page is only written to swap after a period of 1789 * inactivity. Therefore, we do not expect it to be 1790 * reused. 1791 */ 1792 KASSERT(!pmap_page_is_write_mapped(m), 1793 ("swp_pager_async_iodone: page %p is not write" 1794 " protected", m)); 1795 vm_page_undirty(m); 1796 vm_page_deactivate_noreuse(m); 1797 vm_page_sunbusy(m); 1798 } 1799 } 1800 1801 /* 1802 * adjust pip. NOTE: the original parent may still have its own 1803 * pip refs on the object. 1804 */ 1805 if (object != NULL) { 1806 vm_object_pip_wakeupn(object, bp->b_npages); 1807 VM_OBJECT_WUNLOCK(object); 1808 } 1809 1810 /* 1811 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1812 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1813 * trigger a KASSERT in relpbuf(). 1814 */ 1815 if (bp->b_vp) { 1816 bp->b_vp = NULL; 1817 bp->b_bufobj = NULL; 1818 } 1819 /* 1820 * release the physical I/O buffer 1821 */ 1822 if (bp->b_flags & B_ASYNC) { 1823 mtx_lock(&swbuf_mtx); 1824 if (++nsw_wcount_async == 1) 1825 wakeup(&nsw_wcount_async); 1826 mtx_unlock(&swbuf_mtx); 1827 } 1828 uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp); 1829 } 1830 1831 int 1832 swap_pager_nswapdev(void) 1833 { 1834 1835 return (nswapdev); 1836 } 1837 1838 static void 1839 swp_pager_force_dirty(struct page_range *range, vm_page_t m, daddr_t *blk) 1840 { 1841 vm_page_dirty(m); 1842 swap_pager_unswapped_acct(m); 1843 swp_pager_update_freerange(range, *blk); 1844 *blk = SWAPBLK_NONE; 1845 vm_page_launder(m); 1846 } 1847 1848 u_long 1849 swap_pager_swapped_pages(vm_object_t object) 1850 { 1851 struct pctrie_iter blks; 1852 struct swblk *sb; 1853 u_long res; 1854 int i; 1855 1856 VM_OBJECT_ASSERT_LOCKED(object); 1857 1858 if (swblk_is_empty(object)) 1859 return (0); 1860 1861 res = 0; 1862 for (sb = swblk_iter_init(&blks, object, 0); sb != NULL; 1863 sb = swblk_iter_next(&blks)) { 1864 for (i = 0; i < SWAP_META_PAGES; i++) { 1865 if (sb->d[i] != SWAPBLK_NONE) 1866 res++; 1867 } 1868 } 1869 return (res); 1870 } 1871 1872 /* 1873 * swap_pager_swapoff_object: 1874 * 1875 * Page in all of the pages that have been paged out for an object 1876 * to a swap device. 1877 */ 1878 static void 1879 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object, 1880 struct buf **bp) 1881 { 1882 struct pctrie_iter blks, pages; 1883 struct page_range range; 1884 struct swblk *sb; 1885 vm_page_t m; 1886 int i, rahead, rv; 1887 bool sb_empty; 1888 1889 VM_OBJECT_ASSERT_WLOCKED(object); 1890 KASSERT((object->flags & OBJ_SWAP) != 0, 1891 ("%s: Object not swappable", __func__)); 1892 KASSERT((object->flags & OBJ_DEAD) == 0, 1893 ("%s: Object already dead", __func__)); 1894 KASSERT((sp->sw_flags & SW_CLOSING) != 0, 1895 ("%s: Device not blocking further allocations", __func__)); 1896 1897 vm_page_iter_init(&pages, object); 1898 swp_pager_init_freerange(&range); 1899 sb = swblk_iter_init(&blks, object, 0); 1900 while (sb != NULL) { 1901 sb_empty = true; 1902 for (i = 0; i < SWAP_META_PAGES; i++) { 1903 /* Skip an invalid block. */ 1904 if (sb->d[i] == SWAPBLK_NONE) 1905 continue; 1906 /* Skip a block not of this device. */ 1907 if (!swp_pager_isondev(sb->d[i], sp)) { 1908 sb_empty = false; 1909 continue; 1910 } 1911 1912 /* 1913 * Look for a page corresponding to this block. If the 1914 * found page has pending operations, sleep and restart 1915 * the scan. 1916 */ 1917 m = vm_radix_iter_lookup(&pages, blks.index + i); 1918 if (m != NULL && (m->oflags & VPO_SWAPINPROG) != 0) { 1919 m->oflags |= VPO_SWAPSLEEP; 1920 VM_OBJECT_SLEEP(object, &object->handle, PSWP, 1921 "swpoff", 0); 1922 break; 1923 } 1924 1925 /* 1926 * If the found page is valid, mark it dirty and free 1927 * the swap block. 1928 */ 1929 if (m != NULL && vm_page_all_valid(m)) { 1930 swp_pager_force_dirty(&range, m, &sb->d[i]); 1931 continue; 1932 } 1933 /* Is there a page we can acquire or allocate? */ 1934 if (m != NULL) { 1935 if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL)) 1936 break; 1937 } else { 1938 m = vm_radix_iter_lookup_lt(&pages, 1939 blks.index + i); 1940 m = vm_page_alloc_after( 1941 object, &pages, blks.index + i, 1942 VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL, m); 1943 if (m == NULL) 1944 break; 1945 } 1946 1947 /* Get the page from swap, and restart the scan. */ 1948 vm_object_pip_add(object, 1); 1949 rahead = SWAP_META_PAGES; 1950 rv = swap_pager_getpages_locked(&blks, object, &m, 1, 1951 NULL, &rahead, *bp); 1952 if (rv != VM_PAGER_OK) 1953 panic("%s: read from swap failed: %d", 1954 __func__, rv); 1955 *bp = uma_zalloc(swrbuf_zone, M_WAITOK); 1956 VM_OBJECT_WLOCK(object); 1957 vm_object_pip_wakeupn(object, 1); 1958 KASSERT(vm_page_all_valid(m), 1959 ("%s: Page %p not all valid", __func__, m)); 1960 vm_page_deactivate_noreuse(m); 1961 vm_page_xunbusy(m); 1962 break; 1963 } 1964 if (i < SWAP_META_PAGES) { 1965 /* 1966 * The object lock has been released and regained. 1967 * Perhaps the object is now dead. 1968 */ 1969 if ((object->flags & OBJ_DEAD) != 0) { 1970 /* 1971 * Make sure that pending writes finish before 1972 * returning. 1973 */ 1974 vm_object_pip_wait(object, "swpoff"); 1975 swp_pager_meta_free_all(object); 1976 break; 1977 } 1978 1979 /* 1980 * The swapblk could have been freed, so reset the pages 1981 * iterator and search again for the first swblk at or 1982 * after blks.index. 1983 */ 1984 pctrie_iter_reset(&pages); 1985 sb = swblk_iter_init(&blks, object, blks.index); 1986 continue; 1987 } 1988 if (sb_empty) { 1989 swblk_iter_remove(&blks); 1990 uma_zfree(swblk_zone, sb); 1991 } 1992 1993 /* 1994 * It is safe to advance to the next block. No allocations 1995 * before blk.index have happened, even with the lock released, 1996 * because allocations on this device are blocked. 1997 */ 1998 sb = swblk_iter_next(&blks); 1999 } 2000 swp_pager_freeswapspace(&range); 2001 } 2002 2003 /* 2004 * swap_pager_swapoff: 2005 * 2006 * Page in all of the pages that have been paged out to the 2007 * given device. The corresponding blocks in the bitmap must be 2008 * marked as allocated and the device must be flagged SW_CLOSING. 2009 * There may be no processes swapped out to the device. 2010 * 2011 * This routine may block. 2012 */ 2013 static void 2014 swap_pager_swapoff(struct swdevt *sp) 2015 { 2016 vm_object_t object; 2017 struct buf *bp; 2018 int retries; 2019 2020 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 2021 2022 retries = 0; 2023 full_rescan: 2024 bp = uma_zalloc(swrbuf_zone, M_WAITOK); 2025 mtx_lock(&vm_object_list_mtx); 2026 TAILQ_FOREACH(object, &vm_object_list, object_list) { 2027 if ((object->flags & OBJ_SWAP) == 0) 2028 continue; 2029 mtx_unlock(&vm_object_list_mtx); 2030 /* Depends on type-stability. */ 2031 VM_OBJECT_WLOCK(object); 2032 2033 /* 2034 * Dead objects are eventually terminated on their own. 2035 */ 2036 if ((object->flags & OBJ_DEAD) != 0) 2037 goto next_obj; 2038 2039 /* 2040 * Sync with fences placed after pctrie 2041 * initialization. We must not access pctrie below 2042 * unless we checked that our object is swap and not 2043 * dead. 2044 */ 2045 atomic_thread_fence_acq(); 2046 if ((object->flags & OBJ_SWAP) == 0) 2047 goto next_obj; 2048 2049 swap_pager_swapoff_object(sp, object, &bp); 2050 next_obj: 2051 VM_OBJECT_WUNLOCK(object); 2052 mtx_lock(&vm_object_list_mtx); 2053 } 2054 mtx_unlock(&vm_object_list_mtx); 2055 uma_zfree(swrbuf_zone, bp); 2056 2057 if (sp->sw_used) { 2058 /* 2059 * Objects may be locked or paging to the device being 2060 * removed, so we will miss their pages and need to 2061 * make another pass. We have marked this device as 2062 * SW_CLOSING, so the activity should finish soon. 2063 */ 2064 retries++; 2065 if (retries > 100) { 2066 panic("swapoff: failed to locate %d swap blocks", 2067 sp->sw_used); 2068 } 2069 pause("swpoff", hz / 20); 2070 goto full_rescan; 2071 } 2072 EVENTHANDLER_INVOKE(swapoff, sp); 2073 } 2074 2075 /************************************************************************ 2076 * SWAP META DATA * 2077 ************************************************************************ 2078 * 2079 * These routines manipulate the swap metadata stored in the 2080 * OBJT_SWAP object. 2081 * 2082 * Swap metadata is implemented with a global hash and not directly 2083 * linked into the object. Instead the object simply contains 2084 * appropriate tracking counters. 2085 */ 2086 2087 /* 2088 * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free? 2089 */ 2090 static bool 2091 swp_pager_swblk_empty(struct swblk *sb, int start, int limit) 2092 { 2093 int i; 2094 2095 MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES); 2096 for (i = start; i < limit; i++) { 2097 if (sb->d[i] != SWAPBLK_NONE) 2098 return (false); 2099 } 2100 return (true); 2101 } 2102 2103 /* 2104 * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free 2105 * 2106 * Nothing is done if the block is still in use. 2107 */ 2108 static void 2109 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb) 2110 { 2111 2112 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) { 2113 swblk_lookup_remove(object, sb); 2114 uma_zfree(swblk_zone, sb); 2115 } 2116 } 2117 2118 /* 2119 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 2120 * 2121 * Try to add the specified swapblk to the object's swap metadata. If 2122 * nowait_noreplace is set, add the specified swapblk only if there is no 2123 * previously assigned swapblk at pindex. If the swapblk is invalid, and 2124 * replaces a valid swapblk, empty swap metadata is freed. If memory 2125 * allocation fails, and nowait_noreplace is set, return the specified 2126 * swapblk immediately to indicate failure; otherwise, wait and retry until 2127 * memory allocation succeeds. Return the previously assigned swapblk, if 2128 * any. 2129 */ 2130 static daddr_t 2131 swp_pager_meta_build(struct pctrie_iter *blks, vm_object_t object, 2132 vm_pindex_t pindex, daddr_t swapblk, bool nowait_noreplace) 2133 { 2134 static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted; 2135 struct swblk *sb, *sb1; 2136 vm_pindex_t modpi; 2137 daddr_t prev_swapblk; 2138 int error, i; 2139 2140 VM_OBJECT_ASSERT_WLOCKED(object); 2141 2142 sb = swblk_iter_lookup(blks, pindex); 2143 if (sb == NULL) { 2144 if (swapblk == SWAPBLK_NONE) 2145 return (SWAPBLK_NONE); 2146 for (;;) { 2147 sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc == 2148 pageproc ? M_USE_RESERVE : 0)); 2149 if (sb != NULL) { 2150 sb->p = rounddown(pindex, SWAP_META_PAGES); 2151 for (i = 0; i < SWAP_META_PAGES; i++) 2152 sb->d[i] = SWAPBLK_NONE; 2153 if (atomic_cmpset_int(&swblk_zone_exhausted, 2154 1, 0)) 2155 printf("swblk zone ok\n"); 2156 break; 2157 } 2158 if (nowait_noreplace) 2159 return (swapblk); 2160 VM_OBJECT_WUNLOCK(object); 2161 if (uma_zone_exhausted(swblk_zone)) { 2162 if (atomic_cmpset_int(&swblk_zone_exhausted, 2163 0, 1)) 2164 printf("swap blk zone exhausted, " 2165 "increase kern.maxswzone\n"); 2166 vm_pageout_oom(VM_OOM_SWAPZ); 2167 pause("swzonxb", 10); 2168 } else 2169 uma_zwait(swblk_zone); 2170 VM_OBJECT_WLOCK(object); 2171 sb = swblk_iter_reinit(blks, object, pindex); 2172 if (sb != NULL) 2173 /* 2174 * Somebody swapped out a nearby page, 2175 * allocating swblk at the pindex index, 2176 * while we dropped the object lock. 2177 */ 2178 goto allocated; 2179 } 2180 for (;;) { 2181 error = swblk_iter_insert(blks, sb); 2182 if (error == 0) { 2183 if (atomic_cmpset_int(&swpctrie_zone_exhausted, 2184 1, 0)) 2185 printf("swpctrie zone ok\n"); 2186 break; 2187 } 2188 if (nowait_noreplace) { 2189 uma_zfree(swblk_zone, sb); 2190 return (swapblk); 2191 } 2192 VM_OBJECT_WUNLOCK(object); 2193 if (uma_zone_exhausted(swpctrie_zone)) { 2194 if (atomic_cmpset_int(&swpctrie_zone_exhausted, 2195 0, 1)) 2196 printf("swap pctrie zone exhausted, " 2197 "increase kern.maxswzone\n"); 2198 vm_pageout_oom(VM_OOM_SWAPZ); 2199 pause("swzonxp", 10); 2200 } else 2201 uma_zwait(swpctrie_zone); 2202 VM_OBJECT_WLOCK(object); 2203 sb1 = swblk_iter_reinit(blks, object, pindex); 2204 if (sb1 != NULL) { 2205 uma_zfree(swblk_zone, sb); 2206 sb = sb1; 2207 goto allocated; 2208 } 2209 } 2210 } 2211 allocated: 2212 MPASS(sb->p == rounddown(pindex, SWAP_META_PAGES)); 2213 2214 modpi = pindex % SWAP_META_PAGES; 2215 /* Return prior contents of metadata. */ 2216 prev_swapblk = sb->d[modpi]; 2217 if (!nowait_noreplace || prev_swapblk == SWAPBLK_NONE) { 2218 /* Enter block into metadata. */ 2219 sb->d[modpi] = swapblk; 2220 2221 /* 2222 * Free the swblk if we end up with the empty page run. 2223 */ 2224 if (swapblk == SWAPBLK_NONE && 2225 swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) { 2226 swblk_iter_remove(blks); 2227 uma_zfree(swblk_zone, sb); 2228 } 2229 } 2230 return (prev_swapblk); 2231 } 2232 2233 /* 2234 * SWP_PAGER_META_TRANSFER() - transfer a range of blocks in the srcobject's 2235 * swap metadata into dstobject. 2236 * 2237 * Blocks in src that correspond to holes in dst are transferred. Blocks 2238 * in src that correspond to blocks in dst are freed. 2239 */ 2240 static void 2241 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject, 2242 vm_pindex_t pindex, vm_pindex_t count) 2243 { 2244 struct pctrie_iter dstblks, srcblks; 2245 struct page_range range; 2246 struct swblk *sb; 2247 daddr_t blk, d[SWAP_META_PAGES]; 2248 vm_pindex_t last; 2249 int d_mask, i, limit, start; 2250 _Static_assert(8 * sizeof(d_mask) >= SWAP_META_PAGES, 2251 "d_mask not big enough"); 2252 2253 VM_OBJECT_ASSERT_WLOCKED(srcobject); 2254 VM_OBJECT_ASSERT_WLOCKED(dstobject); 2255 2256 if (count == 0 || swblk_is_empty(srcobject)) 2257 return; 2258 2259 swp_pager_init_freerange(&range); 2260 d_mask = 0; 2261 last = pindex + count; 2262 swblk_iter_init_only(&dstblks, dstobject); 2263 for (sb = swblk_iter_limit_init(&srcblks, srcobject, pindex, last), 2264 start = swblk_start(sb, pindex); 2265 sb != NULL; sb = swblk_iter_next(&srcblks), start = 0) { 2266 limit = MIN(last - srcblks.index, SWAP_META_PAGES); 2267 for (i = start; i < limit; i++) { 2268 if (sb->d[i] == SWAPBLK_NONE) 2269 continue; 2270 blk = swp_pager_meta_build(&dstblks, dstobject, 2271 srcblks.index + i - pindex, sb->d[i], true); 2272 if (blk == sb->d[i]) { 2273 /* 2274 * Failed memory allocation stopped transfer; 2275 * save this block for transfer with lock 2276 * released. 2277 */ 2278 d[i] = blk; 2279 d_mask |= 1 << i; 2280 } else if (blk != SWAPBLK_NONE) { 2281 /* Dst has a block at pindex, so free block. */ 2282 swp_pager_update_freerange(&range, sb->d[i]); 2283 } 2284 sb->d[i] = SWAPBLK_NONE; 2285 } 2286 if (swp_pager_swblk_empty(sb, 0, start) && 2287 swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) { 2288 swblk_iter_remove(&srcblks); 2289 uma_zfree(swblk_zone, sb); 2290 } 2291 if (d_mask != 0) { 2292 /* Finish block transfer, with the lock released. */ 2293 VM_OBJECT_WUNLOCK(srcobject); 2294 do { 2295 i = ffs(d_mask) - 1; 2296 swp_pager_meta_build(&dstblks, dstobject, 2297 srcblks.index + i - pindex, d[i], false); 2298 d_mask &= ~(1 << i); 2299 } while (d_mask != 0); 2300 VM_OBJECT_WLOCK(srcobject); 2301 2302 /* 2303 * While the lock was not held, the iterator path could 2304 * have become stale, so discard it. 2305 */ 2306 pctrie_iter_reset(&srcblks); 2307 } 2308 } 2309 swp_pager_freeswapspace(&range); 2310 } 2311 2312 /* 2313 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 2314 * 2315 * Return freed swap blocks to the swap bitmap, and free emptied swblk 2316 * metadata. With 'freed' set, provide a count of freed blocks that were 2317 * not associated with valid resident pages. 2318 */ 2319 static void 2320 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count, 2321 vm_size_t *freed) 2322 { 2323 struct pctrie_iter blks, pages; 2324 struct page_range range; 2325 struct swblk *sb; 2326 vm_page_t m; 2327 vm_pindex_t last; 2328 vm_size_t fc; 2329 int i, limit, start; 2330 2331 VM_OBJECT_ASSERT_WLOCKED(object); 2332 2333 fc = 0; 2334 if (count == 0 || swblk_is_empty(object)) 2335 goto out; 2336 2337 swp_pager_init_freerange(&range); 2338 vm_page_iter_init(&pages, object); 2339 last = pindex + count; 2340 for (sb = swblk_iter_limit_init(&blks, object, pindex, last), 2341 start = swblk_start(sb, pindex); 2342 sb != NULL; sb = swblk_iter_next(&blks), start = 0) { 2343 limit = MIN(last - blks.index, SWAP_META_PAGES); 2344 for (i = start; i < limit; i++) { 2345 if (sb->d[i] == SWAPBLK_NONE) 2346 continue; 2347 swp_pager_update_freerange(&range, sb->d[i]); 2348 if (freed != NULL) { 2349 m = vm_radix_iter_lookup(&pages, blks.index + i); 2350 if (m == NULL || vm_page_none_valid(m)) 2351 fc++; 2352 } 2353 sb->d[i] = SWAPBLK_NONE; 2354 } 2355 if (swp_pager_swblk_empty(sb, 0, start) && 2356 swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) { 2357 swblk_iter_remove(&blks); 2358 uma_zfree(swblk_zone, sb); 2359 } 2360 } 2361 swp_pager_freeswapspace(&range); 2362 out: 2363 if (freed != NULL) 2364 *freed = fc; 2365 } 2366 2367 static void 2368 swp_pager_meta_free_block(struct swblk *sb, void *rangev) 2369 { 2370 struct page_range *range = rangev; 2371 2372 for (int i = 0; i < SWAP_META_PAGES; i++) { 2373 if (sb->d[i] != SWAPBLK_NONE) 2374 swp_pager_update_freerange(range, sb->d[i]); 2375 } 2376 uma_zfree(swblk_zone, sb); 2377 } 2378 2379 /* 2380 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 2381 * 2382 * This routine locates and destroys all swap metadata associated with 2383 * an object. 2384 */ 2385 static void 2386 swp_pager_meta_free_all(vm_object_t object) 2387 { 2388 struct page_range range; 2389 2390 VM_OBJECT_ASSERT_WLOCKED(object); 2391 2392 swp_pager_init_freerange(&range); 2393 SWAP_PCTRIE_RECLAIM_CALLBACK(&object->un_pager.swp.swp_blks, 2394 swp_pager_meta_free_block, &range); 2395 swp_pager_freeswapspace(&range); 2396 } 2397 2398 /* 2399 * SWP_PAGER_METACTL() - misc control of swap meta data. 2400 * 2401 * This routine is capable of looking up, or removing swapblk 2402 * assignments in the swap meta data. It returns the swapblk being 2403 * looked-up, popped, or SWAPBLK_NONE if the block was invalid. 2404 * 2405 * When acting on a busy resident page and paging is in progress, we 2406 * have to wait until paging is complete but otherwise can act on the 2407 * busy page. 2408 */ 2409 static daddr_t 2410 swp_pager_meta_lookup(struct pctrie_iter *blks, vm_pindex_t pindex) 2411 { 2412 struct swblk *sb; 2413 2414 sb = swblk_iter_lookup(blks, pindex); 2415 if (sb == NULL) 2416 return (SWAPBLK_NONE); 2417 return (sb->d[pindex % SWAP_META_PAGES]); 2418 } 2419 2420 /* 2421 * Returns the least page index which is greater than or equal to the parameter 2422 * pindex and for which there is a swap block allocated. Returns OBJ_MAX_SIZE 2423 * if are no allocated swap blocks for the object after the requested pindex. 2424 */ 2425 static vm_pindex_t 2426 swap_pager_iter_find_least(struct pctrie_iter *blks, vm_pindex_t pindex) 2427 { 2428 struct swblk *sb; 2429 int i; 2430 2431 if ((sb = swblk_iter_lookup_ge(blks, pindex)) == NULL) 2432 return (OBJ_MAX_SIZE); 2433 if (blks->index < pindex) { 2434 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) { 2435 if (sb->d[i] != SWAPBLK_NONE) 2436 return (blks->index + i); 2437 } 2438 if ((sb = swblk_iter_next(blks)) == NULL) 2439 return (OBJ_MAX_SIZE); 2440 } 2441 for (i = 0; i < SWAP_META_PAGES; i++) { 2442 if (sb->d[i] != SWAPBLK_NONE) 2443 return (blks->index + i); 2444 } 2445 2446 /* 2447 * We get here if a swblk is present in the trie but it 2448 * doesn't map any blocks. 2449 */ 2450 MPASS(0); 2451 return (OBJ_MAX_SIZE); 2452 } 2453 2454 /* 2455 * Find the first index >= pindex that has either a valid page or a swap 2456 * block. 2457 */ 2458 vm_pindex_t 2459 swap_pager_seek_data(vm_object_t object, vm_pindex_t pindex) 2460 { 2461 struct pctrie_iter blks, pages; 2462 vm_page_t m; 2463 vm_pindex_t swap_index; 2464 2465 VM_OBJECT_ASSERT_RLOCKED(object); 2466 vm_page_iter_init(&pages, object); 2467 m = vm_radix_iter_lookup_ge(&pages, pindex); 2468 if (m != NULL && pages.index == pindex && vm_page_any_valid(m)) 2469 return (pages.index); 2470 swblk_iter_init_only(&blks, object); 2471 swap_index = swap_pager_iter_find_least(&blks, pindex); 2472 if (swap_index == pindex) 2473 return (swap_index); 2474 2475 /* 2476 * Find the first resident page after m, before swap_index. 2477 */ 2478 while (m != NULL && pages.index < swap_index) { 2479 if (vm_page_any_valid(m)) 2480 return (pages.index); 2481 m = vm_radix_iter_step(&pages); 2482 } 2483 if (swap_index == OBJ_MAX_SIZE) 2484 swap_index = object->size; 2485 return (swap_index); 2486 } 2487 2488 /* 2489 * Find the first index >= pindex that has neither a valid page nor a swap 2490 * block. 2491 */ 2492 vm_pindex_t 2493 swap_pager_seek_hole(vm_object_t object, vm_pindex_t pindex) 2494 { 2495 struct pctrie_iter blks, pages; 2496 struct swblk *sb; 2497 vm_page_t m; 2498 2499 VM_OBJECT_ASSERT_RLOCKED(object); 2500 vm_page_iter_init(&pages, object); 2501 swblk_iter_init_only(&blks, object); 2502 while (((m = vm_radix_iter_lookup(&pages, pindex)) != NULL && 2503 vm_page_any_valid(m)) || 2504 ((sb = swblk_iter_lookup(&blks, pindex)) != NULL && 2505 sb->d[pindex % SWAP_META_PAGES] != SWAPBLK_NONE)) 2506 pindex++; 2507 return (pindex); 2508 } 2509 2510 /* 2511 * Is every page in the backing object or swap shadowed in the parent, and 2512 * unbusy and valid in swap? 2513 */ 2514 bool 2515 swap_pager_scan_all_shadowed(vm_object_t object) 2516 { 2517 struct pctrie_iter backing_blks, backing_pages, blks, pages; 2518 vm_object_t backing_object; 2519 vm_page_t p, pp; 2520 vm_pindex_t backing_offset_index, new_pindex, pi, pi_ubound, ps, pv; 2521 2522 VM_OBJECT_ASSERT_WLOCKED(object); 2523 VM_OBJECT_ASSERT_WLOCKED(object->backing_object); 2524 2525 backing_object = object->backing_object; 2526 2527 if ((backing_object->flags & OBJ_ANON) == 0) 2528 return (false); 2529 2530 KASSERT((object->flags & OBJ_ANON) != 0, 2531 ("Shadow object is not anonymous")); 2532 backing_offset_index = OFF_TO_IDX(object->backing_object_offset); 2533 pi_ubound = MIN(backing_object->size, 2534 backing_offset_index + object->size); 2535 vm_page_iter_init(&pages, object); 2536 vm_page_iter_init(&backing_pages, backing_object); 2537 swblk_iter_init_only(&blks, object); 2538 swblk_iter_init_only(&backing_blks, backing_object); 2539 2540 /* 2541 * Only check pages inside the parent object's range and inside the 2542 * parent object's mapping of the backing object. 2543 */ 2544 pv = ps = pi = backing_offset_index - 1; 2545 for (;;) { 2546 if (pi == pv) { 2547 p = vm_radix_iter_lookup_ge(&backing_pages, pv + 1); 2548 pv = p != NULL ? p->pindex : backing_object->size; 2549 } 2550 if (pi == ps) 2551 ps = swap_pager_iter_find_least(&backing_blks, ps + 1); 2552 pi = MIN(pv, ps); 2553 if (pi >= pi_ubound) 2554 break; 2555 2556 if (pi == pv) { 2557 /* 2558 * If the backing object page is busy a grandparent or 2559 * older page may still be undergoing CoW. It is not 2560 * safe to collapse the backing object until it is 2561 * quiesced. 2562 */ 2563 if (vm_page_tryxbusy(p) == 0) 2564 return (false); 2565 2566 /* 2567 * We raced with the fault handler that left newly 2568 * allocated invalid page on the object queue and 2569 * retried. 2570 */ 2571 if (!vm_page_all_valid(p)) 2572 break; 2573 2574 /* 2575 * Busy of p disallows fault handler to validate parent 2576 * page (pp, below). 2577 */ 2578 } 2579 2580 /* 2581 * See if the parent has the page or if the parent's object 2582 * pager has the page. If the parent has the page but the page 2583 * is not valid, the parent's object pager must have the page. 2584 * 2585 * If this fails, the parent does not completely shadow the 2586 * object and we might as well give up now. 2587 */ 2588 new_pindex = pi - backing_offset_index; 2589 pp = vm_radix_iter_lookup(&pages, new_pindex); 2590 2591 /* 2592 * The valid check here is stable due to object lock being 2593 * required to clear valid and initiate paging. 2594 */ 2595 if ((pp == NULL || vm_page_none_valid(pp)) && 2596 !swp_pager_haspage_iter(&blks, new_pindex, NULL, 2597 NULL)) 2598 break; 2599 if (pi == pv) 2600 vm_page_xunbusy(p); 2601 } 2602 if (pi < pi_ubound) { 2603 if (pi == pv) 2604 vm_page_xunbusy(p); 2605 return (false); 2606 } 2607 return (true); 2608 } 2609 2610 /* 2611 * System call swapon(name) enables swapping on device name, 2612 * which must be in the swdevsw. Return EBUSY 2613 * if already swapping on this device. 2614 */ 2615 #ifndef _SYS_SYSPROTO_H_ 2616 struct swapon_args { 2617 char *name; 2618 }; 2619 #endif 2620 2621 int 2622 sys_swapon(struct thread *td, struct swapon_args *uap) 2623 { 2624 struct vattr attr; 2625 struct vnode *vp; 2626 struct nameidata nd; 2627 int error; 2628 2629 error = priv_check(td, PRIV_SWAPON); 2630 if (error) 2631 return (error); 2632 2633 sx_xlock(&swdev_syscall_lock); 2634 2635 /* 2636 * Swap metadata may not fit in the KVM if we have physical 2637 * memory of >1GB. 2638 */ 2639 if (swblk_zone == NULL) { 2640 error = ENOMEM; 2641 goto done; 2642 } 2643 2644 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1, 2645 UIO_USERSPACE, uap->name); 2646 error = namei(&nd); 2647 if (error) 2648 goto done; 2649 2650 NDFREE_PNBUF(&nd); 2651 vp = nd.ni_vp; 2652 2653 if (vn_isdisk_error(vp, &error)) { 2654 error = swapongeom(vp); 2655 } else if (vp->v_type == VREG && 2656 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2657 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2658 /* 2659 * Allow direct swapping to NFS regular files in the same 2660 * way that nfs_mountroot() sets up diskless swapping. 2661 */ 2662 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2663 } 2664 2665 if (error != 0) 2666 vput(vp); 2667 else 2668 VOP_UNLOCK(vp); 2669 done: 2670 sx_xunlock(&swdev_syscall_lock); 2671 return (error); 2672 } 2673 2674 /* 2675 * Check that the total amount of swap currently configured does not 2676 * exceed half the theoretical maximum. If it does, print a warning 2677 * message. 2678 */ 2679 static void 2680 swapon_check_swzone(void) 2681 { 2682 2683 /* recommend using no more than half that amount */ 2684 if (swap_total > swap_maxpages / 2) { 2685 printf("warning: total configured swap (%lu pages) " 2686 "exceeds maximum recommended amount (%lu pages).\n", 2687 swap_total, swap_maxpages / 2); 2688 printf("warning: increase kern.maxswzone " 2689 "or reduce amount of swap.\n"); 2690 } 2691 } 2692 2693 static void 2694 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2695 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2696 { 2697 struct swdevt *sp, *tsp; 2698 daddr_t dvbase; 2699 2700 /* 2701 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2702 * First chop nblks off to page-align it, then convert. 2703 * 2704 * sw->sw_nblks is in page-sized chunks now too. 2705 */ 2706 nblks &= ~(ctodb(1) - 1); 2707 nblks = dbtoc(nblks); 2708 2709 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2710 sp->sw_blist = blist_create(nblks, M_WAITOK); 2711 sp->sw_vp = vp; 2712 sp->sw_id = id; 2713 sp->sw_dev = dev; 2714 sp->sw_nblks = nblks; 2715 sp->sw_used = 0; 2716 sp->sw_strategy = strategy; 2717 sp->sw_close = close; 2718 sp->sw_flags = flags; 2719 2720 /* 2721 * Do not free the first blocks in order to avoid overwriting 2722 * any bsd label at the front of the partition 2723 */ 2724 blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE), 2725 nblks - howmany(BBSIZE, PAGE_SIZE)); 2726 2727 dvbase = 0; 2728 mtx_lock(&sw_dev_mtx); 2729 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2730 if (tsp->sw_end >= dvbase) { 2731 /* 2732 * We put one uncovered page between the devices 2733 * in order to definitively prevent any cross-device 2734 * I/O requests 2735 */ 2736 dvbase = tsp->sw_end + 1; 2737 } 2738 } 2739 sp->sw_first = dvbase; 2740 sp->sw_end = dvbase + nblks; 2741 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2742 nswapdev++; 2743 swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE); 2744 swap_total += nblks; 2745 swapon_check_swzone(); 2746 swp_sizecheck(); 2747 mtx_unlock(&sw_dev_mtx); 2748 EVENTHANDLER_INVOKE(swapon, sp); 2749 } 2750 2751 /* 2752 * SYSCALL: swapoff(devname) 2753 * 2754 * Disable swapping on the given device. 2755 * 2756 * XXX: Badly designed system call: it should use a device index 2757 * rather than filename as specification. We keep sw_vp around 2758 * only to make this work. 2759 */ 2760 static int 2761 kern_swapoff(struct thread *td, const char *name, enum uio_seg name_seg, 2762 u_int flags) 2763 { 2764 struct vnode *vp; 2765 struct nameidata nd; 2766 struct swdevt *sp; 2767 int error; 2768 2769 error = priv_check(td, PRIV_SWAPOFF); 2770 if (error != 0) 2771 return (error); 2772 if ((flags & ~(SWAPOFF_FORCE)) != 0) 2773 return (EINVAL); 2774 2775 sx_xlock(&swdev_syscall_lock); 2776 2777 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, name_seg, name); 2778 error = namei(&nd); 2779 if (error) 2780 goto done; 2781 NDFREE_PNBUF(&nd); 2782 vp = nd.ni_vp; 2783 2784 mtx_lock(&sw_dev_mtx); 2785 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2786 if (sp->sw_vp == vp) 2787 break; 2788 } 2789 mtx_unlock(&sw_dev_mtx); 2790 if (sp == NULL) { 2791 error = EINVAL; 2792 goto done; 2793 } 2794 error = swapoff_one(sp, td->td_ucred, flags); 2795 done: 2796 sx_xunlock(&swdev_syscall_lock); 2797 return (error); 2798 } 2799 2800 2801 #ifdef COMPAT_FREEBSD13 2802 int 2803 freebsd13_swapoff(struct thread *td, struct freebsd13_swapoff_args *uap) 2804 { 2805 return (kern_swapoff(td, uap->name, UIO_USERSPACE, 0)); 2806 } 2807 #endif 2808 2809 int 2810 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2811 { 2812 return (kern_swapoff(td, uap->name, UIO_USERSPACE, uap->flags)); 2813 } 2814 2815 static int 2816 swapoff_one(struct swdevt *sp, struct ucred *cred, u_int flags) 2817 { 2818 u_long nblks; 2819 #ifdef MAC 2820 int error; 2821 #endif 2822 2823 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 2824 #ifdef MAC 2825 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2826 error = mac_system_check_swapoff(cred, sp->sw_vp); 2827 (void) VOP_UNLOCK(sp->sw_vp); 2828 if (error != 0) 2829 return (error); 2830 #endif 2831 nblks = sp->sw_nblks; 2832 2833 /* 2834 * We can turn off this swap device safely only if the 2835 * available virtual memory in the system will fit the amount 2836 * of data we will have to page back in, plus an epsilon so 2837 * the system doesn't become critically low on swap space. 2838 * The vm_free_count() part does not account e.g. for clean 2839 * pages that can be immediately reclaimed without paging, so 2840 * this is a very rough estimation. 2841 * 2842 * On the other hand, not turning swap off on swapoff_all() 2843 * means that we can lose swap data when filesystems go away, 2844 * which is arguably worse. 2845 */ 2846 if ((flags & SWAPOFF_FORCE) == 0 && 2847 vm_free_count() + swap_pager_avail < nblks + nswap_lowat) 2848 return (ENOMEM); 2849 2850 /* 2851 * Prevent further allocations on this device. 2852 */ 2853 mtx_lock(&sw_dev_mtx); 2854 sp->sw_flags |= SW_CLOSING; 2855 swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks); 2856 swap_total -= nblks; 2857 mtx_unlock(&sw_dev_mtx); 2858 2859 /* 2860 * Page in the contents of the device and close it. 2861 */ 2862 swap_pager_swapoff(sp); 2863 2864 sp->sw_close(curthread, sp); 2865 mtx_lock(&sw_dev_mtx); 2866 sp->sw_id = NULL; 2867 TAILQ_REMOVE(&swtailq, sp, sw_list); 2868 nswapdev--; 2869 if (nswapdev == 0) { 2870 swap_pager_full = 2; 2871 swap_pager_almost_full = 1; 2872 } 2873 if (swdevhd == sp) 2874 swdevhd = NULL; 2875 mtx_unlock(&sw_dev_mtx); 2876 blist_destroy(sp->sw_blist); 2877 free(sp, M_VMPGDATA); 2878 return (0); 2879 } 2880 2881 void 2882 swapoff_all(void) 2883 { 2884 struct swdevt *sp, *spt; 2885 const char *devname; 2886 int error; 2887 2888 sx_xlock(&swdev_syscall_lock); 2889 2890 mtx_lock(&sw_dev_mtx); 2891 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2892 mtx_unlock(&sw_dev_mtx); 2893 if (vn_isdisk(sp->sw_vp)) 2894 devname = devtoname(sp->sw_vp->v_rdev); 2895 else 2896 devname = "[file]"; 2897 error = swapoff_one(sp, thread0.td_ucred, SWAPOFF_FORCE); 2898 if (error != 0) { 2899 printf("Cannot remove swap device %s (error=%d), " 2900 "skipping.\n", devname, error); 2901 } else if (bootverbose) { 2902 printf("Swap device %s removed.\n", devname); 2903 } 2904 mtx_lock(&sw_dev_mtx); 2905 } 2906 mtx_unlock(&sw_dev_mtx); 2907 2908 sx_xunlock(&swdev_syscall_lock); 2909 } 2910 2911 void 2912 swap_pager_status(int *total, int *used) 2913 { 2914 2915 *total = swap_total; 2916 *used = swap_total - swap_pager_avail - 2917 nswapdev * howmany(BBSIZE, PAGE_SIZE); 2918 } 2919 2920 int 2921 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2922 { 2923 struct swdevt *sp; 2924 const char *tmp_devname; 2925 int error, n; 2926 2927 n = 0; 2928 error = ENOENT; 2929 mtx_lock(&sw_dev_mtx); 2930 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2931 if (n != name) { 2932 n++; 2933 continue; 2934 } 2935 xs->xsw_version = XSWDEV_VERSION; 2936 xs->xsw_dev = sp->sw_dev; 2937 xs->xsw_flags = sp->sw_flags; 2938 xs->xsw_nblks = sp->sw_nblks; 2939 xs->xsw_used = sp->sw_used; 2940 if (devname != NULL) { 2941 if (vn_isdisk(sp->sw_vp)) 2942 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2943 else 2944 tmp_devname = "[file]"; 2945 strncpy(devname, tmp_devname, len); 2946 } 2947 error = 0; 2948 break; 2949 } 2950 mtx_unlock(&sw_dev_mtx); 2951 return (error); 2952 } 2953 2954 #if defined(COMPAT_FREEBSD11) 2955 #define XSWDEV_VERSION_11 1 2956 struct xswdev11 { 2957 u_int xsw_version; 2958 uint32_t xsw_dev; 2959 int xsw_flags; 2960 int xsw_nblks; 2961 int xsw_used; 2962 }; 2963 #endif 2964 2965 #if defined(__amd64__) && defined(COMPAT_FREEBSD32) 2966 struct xswdev32 { 2967 u_int xsw_version; 2968 u_int xsw_dev1, xsw_dev2; 2969 int xsw_flags; 2970 int xsw_nblks; 2971 int xsw_used; 2972 }; 2973 #endif 2974 2975 static int 2976 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2977 { 2978 struct xswdev xs; 2979 #if defined(__amd64__) && defined(COMPAT_FREEBSD32) 2980 struct xswdev32 xs32; 2981 #endif 2982 #if defined(COMPAT_FREEBSD11) 2983 struct xswdev11 xs11; 2984 #endif 2985 int error; 2986 2987 if (arg2 != 1) /* name length */ 2988 return (EINVAL); 2989 2990 memset(&xs, 0, sizeof(xs)); 2991 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2992 if (error != 0) 2993 return (error); 2994 #if defined(__amd64__) && defined(COMPAT_FREEBSD32) 2995 if (req->oldlen == sizeof(xs32)) { 2996 memset(&xs32, 0, sizeof(xs32)); 2997 xs32.xsw_version = XSWDEV_VERSION; 2998 xs32.xsw_dev1 = xs.xsw_dev; 2999 xs32.xsw_dev2 = xs.xsw_dev >> 32; 3000 xs32.xsw_flags = xs.xsw_flags; 3001 xs32.xsw_nblks = xs.xsw_nblks; 3002 xs32.xsw_used = xs.xsw_used; 3003 error = SYSCTL_OUT(req, &xs32, sizeof(xs32)); 3004 return (error); 3005 } 3006 #endif 3007 #if defined(COMPAT_FREEBSD11) 3008 if (req->oldlen == sizeof(xs11)) { 3009 memset(&xs11, 0, sizeof(xs11)); 3010 xs11.xsw_version = XSWDEV_VERSION_11; 3011 xs11.xsw_dev = xs.xsw_dev; /* truncation */ 3012 xs11.xsw_flags = xs.xsw_flags; 3013 xs11.xsw_nblks = xs.xsw_nblks; 3014 xs11.xsw_used = xs.xsw_used; 3015 error = SYSCTL_OUT(req, &xs11, sizeof(xs11)); 3016 return (error); 3017 } 3018 #endif 3019 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 3020 return (error); 3021 } 3022 3023 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 3024 "Number of swap devices"); 3025 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE, 3026 sysctl_vm_swap_info, 3027 "Swap statistics by device"); 3028 3029 /* 3030 * Count the approximate swap usage in pages for a vmspace. The 3031 * shadowed or not yet copied on write swap blocks are not accounted. 3032 * The map must be locked. 3033 */ 3034 long 3035 vmspace_swap_count(struct vmspace *vmspace) 3036 { 3037 struct pctrie_iter blks; 3038 vm_map_t map; 3039 vm_map_entry_t cur; 3040 vm_object_t object; 3041 struct swblk *sb; 3042 vm_pindex_t e, pi; 3043 long count; 3044 int i, limit, start; 3045 3046 map = &vmspace->vm_map; 3047 count = 0; 3048 3049 VM_MAP_ENTRY_FOREACH(cur, map) { 3050 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 3051 continue; 3052 object = cur->object.vm_object; 3053 if (object == NULL || (object->flags & OBJ_SWAP) == 0) 3054 continue; 3055 VM_OBJECT_RLOCK(object); 3056 if ((object->flags & OBJ_SWAP) == 0) 3057 goto unlock; 3058 pi = OFF_TO_IDX(cur->offset); 3059 e = pi + OFF_TO_IDX(cur->end - cur->start); 3060 for (sb = swblk_iter_limit_init(&blks, object, pi, e), 3061 start = swblk_start(sb, pi); 3062 sb != NULL; sb = swblk_iter_next(&blks), start = 0) { 3063 limit = MIN(e - blks.index, SWAP_META_PAGES); 3064 for (i = start; i < limit; i++) { 3065 if (sb->d[i] != SWAPBLK_NONE) 3066 count++; 3067 } 3068 } 3069 unlock: 3070 VM_OBJECT_RUNLOCK(object); 3071 } 3072 return (count); 3073 } 3074 3075 /* 3076 * GEOM backend 3077 * 3078 * Swapping onto disk devices. 3079 * 3080 */ 3081 3082 static g_orphan_t swapgeom_orphan; 3083 3084 static struct g_class g_swap_class = { 3085 .name = "SWAP", 3086 .version = G_VERSION, 3087 .orphan = swapgeom_orphan, 3088 }; 3089 3090 DECLARE_GEOM_CLASS(g_swap_class, g_class); 3091 3092 static void 3093 swapgeom_close_ev(void *arg, int flags) 3094 { 3095 struct g_consumer *cp; 3096 3097 cp = arg; 3098 g_access(cp, -1, -1, 0); 3099 g_detach(cp); 3100 g_destroy_consumer(cp); 3101 } 3102 3103 /* 3104 * Add a reference to the g_consumer for an inflight transaction. 3105 */ 3106 static void 3107 swapgeom_acquire(struct g_consumer *cp) 3108 { 3109 3110 mtx_assert(&sw_dev_mtx, MA_OWNED); 3111 cp->index++; 3112 } 3113 3114 /* 3115 * Remove a reference from the g_consumer. Post a close event if all 3116 * references go away, since the function might be called from the 3117 * biodone context. 3118 */ 3119 static void 3120 swapgeom_release(struct g_consumer *cp, struct swdevt *sp) 3121 { 3122 3123 mtx_assert(&sw_dev_mtx, MA_OWNED); 3124 cp->index--; 3125 if (cp->index == 0) { 3126 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) 3127 sp->sw_id = NULL; 3128 } 3129 } 3130 3131 static void 3132 swapgeom_done(struct bio *bp2) 3133 { 3134 struct swdevt *sp; 3135 struct buf *bp; 3136 struct g_consumer *cp; 3137 3138 bp = bp2->bio_caller2; 3139 cp = bp2->bio_from; 3140 bp->b_ioflags = bp2->bio_flags; 3141 if (bp2->bio_error) 3142 bp->b_ioflags |= BIO_ERROR; 3143 bp->b_resid = bp->b_bcount - bp2->bio_completed; 3144 bp->b_error = bp2->bio_error; 3145 bp->b_caller1 = NULL; 3146 bufdone(bp); 3147 sp = bp2->bio_caller1; 3148 mtx_lock(&sw_dev_mtx); 3149 swapgeom_release(cp, sp); 3150 mtx_unlock(&sw_dev_mtx); 3151 g_destroy_bio(bp2); 3152 } 3153 3154 static void 3155 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 3156 { 3157 struct bio *bio; 3158 struct g_consumer *cp; 3159 3160 mtx_lock(&sw_dev_mtx); 3161 cp = sp->sw_id; 3162 if (cp == NULL) { 3163 mtx_unlock(&sw_dev_mtx); 3164 bp->b_error = ENXIO; 3165 bp->b_ioflags |= BIO_ERROR; 3166 bufdone(bp); 3167 return; 3168 } 3169 swapgeom_acquire(cp); 3170 mtx_unlock(&sw_dev_mtx); 3171 if (bp->b_iocmd == BIO_WRITE) 3172 bio = g_new_bio(); 3173 else 3174 bio = g_alloc_bio(); 3175 if (bio == NULL) { 3176 mtx_lock(&sw_dev_mtx); 3177 swapgeom_release(cp, sp); 3178 mtx_unlock(&sw_dev_mtx); 3179 bp->b_error = ENOMEM; 3180 bp->b_ioflags |= BIO_ERROR; 3181 printf("swap_pager: cannot allocate bio\n"); 3182 bufdone(bp); 3183 return; 3184 } 3185 3186 bp->b_caller1 = bio; 3187 bio->bio_caller1 = sp; 3188 bio->bio_caller2 = bp; 3189 bio->bio_cmd = bp->b_iocmd; 3190 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 3191 bio->bio_length = bp->b_bcount; 3192 bio->bio_done = swapgeom_done; 3193 bio->bio_flags |= BIO_SWAP; 3194 if (!buf_mapped(bp)) { 3195 bio->bio_ma = bp->b_pages; 3196 bio->bio_data = unmapped_buf; 3197 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 3198 bio->bio_ma_n = bp->b_npages; 3199 bio->bio_flags |= BIO_UNMAPPED; 3200 } else { 3201 bio->bio_data = bp->b_data; 3202 bio->bio_ma = NULL; 3203 } 3204 g_io_request(bio, cp); 3205 return; 3206 } 3207 3208 static void 3209 swapgeom_orphan(struct g_consumer *cp) 3210 { 3211 struct swdevt *sp; 3212 int destroy; 3213 3214 mtx_lock(&sw_dev_mtx); 3215 TAILQ_FOREACH(sp, &swtailq, sw_list) { 3216 if (sp->sw_id == cp) { 3217 sp->sw_flags |= SW_CLOSING; 3218 break; 3219 } 3220 } 3221 /* 3222 * Drop reference we were created with. Do directly since we're in a 3223 * special context where we don't have to queue the call to 3224 * swapgeom_close_ev(). 3225 */ 3226 cp->index--; 3227 destroy = ((sp != NULL) && (cp->index == 0)); 3228 if (destroy) 3229 sp->sw_id = NULL; 3230 mtx_unlock(&sw_dev_mtx); 3231 if (destroy) 3232 swapgeom_close_ev(cp, 0); 3233 } 3234 3235 static void 3236 swapgeom_close(struct thread *td, struct swdevt *sw) 3237 { 3238 struct g_consumer *cp; 3239 3240 mtx_lock(&sw_dev_mtx); 3241 cp = sw->sw_id; 3242 sw->sw_id = NULL; 3243 mtx_unlock(&sw_dev_mtx); 3244 3245 /* 3246 * swapgeom_close() may be called from the biodone context, 3247 * where we cannot perform topology changes. Delegate the 3248 * work to the events thread. 3249 */ 3250 if (cp != NULL) 3251 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL); 3252 } 3253 3254 static int 3255 swapongeom_locked(struct cdev *dev, struct vnode *vp) 3256 { 3257 struct g_provider *pp; 3258 struct g_consumer *cp; 3259 static struct g_geom *gp; 3260 struct swdevt *sp; 3261 u_long nblks; 3262 int error; 3263 3264 pp = g_dev_getprovider(dev); 3265 if (pp == NULL) 3266 return (ENODEV); 3267 mtx_lock(&sw_dev_mtx); 3268 TAILQ_FOREACH(sp, &swtailq, sw_list) { 3269 cp = sp->sw_id; 3270 if (cp != NULL && cp->provider == pp) { 3271 mtx_unlock(&sw_dev_mtx); 3272 return (EBUSY); 3273 } 3274 } 3275 mtx_unlock(&sw_dev_mtx); 3276 if (gp == NULL) 3277 gp = g_new_geomf(&g_swap_class, "swap"); 3278 cp = g_new_consumer(gp); 3279 cp->index = 1; /* Number of active I/Os, plus one for being active. */ 3280 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 3281 g_attach(cp, pp); 3282 /* 3283 * XXX: Every time you think you can improve the margin for 3284 * footshooting, somebody depends on the ability to do so: 3285 * savecore(8) wants to write to our swapdev so we cannot 3286 * set an exclusive count :-( 3287 */ 3288 error = g_access(cp, 1, 1, 0); 3289 if (error != 0) { 3290 g_detach(cp); 3291 g_destroy_consumer(cp); 3292 return (error); 3293 } 3294 nblks = pp->mediasize / DEV_BSIZE; 3295 swaponsomething(vp, cp, nblks, swapgeom_strategy, 3296 swapgeom_close, dev2udev(dev), 3297 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 3298 return (0); 3299 } 3300 3301 static int 3302 swapongeom(struct vnode *vp) 3303 { 3304 int error; 3305 3306 ASSERT_VOP_ELOCKED(vp, "swapongeom"); 3307 if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) { 3308 error = ENOENT; 3309 } else { 3310 g_topology_lock(); 3311 error = swapongeom_locked(vp->v_rdev, vp); 3312 g_topology_unlock(); 3313 } 3314 return (error); 3315 } 3316 3317 /* 3318 * VNODE backend 3319 * 3320 * This is used mainly for network filesystem (read: probably only tested 3321 * with NFS) swapfiles. 3322 * 3323 */ 3324 3325 static void 3326 swapdev_strategy(struct buf *bp, struct swdevt *sp) 3327 { 3328 struct vnode *vp2; 3329 3330 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 3331 3332 vp2 = sp->sw_id; 3333 vhold(vp2); 3334 if (bp->b_iocmd == BIO_WRITE) { 3335 vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY); 3336 if (bp->b_bufobj) 3337 bufobj_wdrop(bp->b_bufobj); 3338 bufobj_wref(&vp2->v_bufobj); 3339 } else { 3340 vn_lock(vp2, LK_SHARED | LK_RETRY); 3341 } 3342 if (bp->b_bufobj != &vp2->v_bufobj) 3343 bp->b_bufobj = &vp2->v_bufobj; 3344 bp->b_vp = vp2; 3345 bp->b_iooffset = dbtob(bp->b_blkno); 3346 bstrategy(bp); 3347 VOP_UNLOCK(vp2); 3348 } 3349 3350 static void 3351 swapdev_close(struct thread *td, struct swdevt *sp) 3352 { 3353 struct vnode *vp; 3354 3355 vp = sp->sw_vp; 3356 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3357 VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td); 3358 vput(vp); 3359 } 3360 3361 static int 3362 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 3363 { 3364 struct swdevt *sp; 3365 int error; 3366 3367 ASSERT_VOP_ELOCKED(vp, "swaponvp"); 3368 if (nblks == 0) 3369 return (ENXIO); 3370 mtx_lock(&sw_dev_mtx); 3371 TAILQ_FOREACH(sp, &swtailq, sw_list) { 3372 if (sp->sw_id == vp) { 3373 mtx_unlock(&sw_dev_mtx); 3374 return (EBUSY); 3375 } 3376 } 3377 mtx_unlock(&sw_dev_mtx); 3378 3379 #ifdef MAC 3380 error = mac_system_check_swapon(td->td_ucred, vp); 3381 if (error == 0) 3382 #endif 3383 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 3384 if (error != 0) 3385 return (error); 3386 3387 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 3388 NODEV, 0); 3389 return (0); 3390 } 3391 3392 static int 3393 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS) 3394 { 3395 int error, new, n; 3396 3397 new = nsw_wcount_async_max; 3398 error = sysctl_handle_int(oidp, &new, 0, req); 3399 if (error != 0 || req->newptr == NULL) 3400 return (error); 3401 3402 if (new > nswbuf / 2 || new < 1) 3403 return (EINVAL); 3404 3405 mtx_lock(&swbuf_mtx); 3406 while (nsw_wcount_async_max != new) { 3407 /* 3408 * Adjust difference. If the current async count is too low, 3409 * we will need to sqeeze our update slowly in. Sleep with a 3410 * higher priority than getpbuf() to finish faster. 3411 */ 3412 n = new - nsw_wcount_async_max; 3413 if (nsw_wcount_async + n >= 0) { 3414 nsw_wcount_async += n; 3415 nsw_wcount_async_max += n; 3416 wakeup(&nsw_wcount_async); 3417 } else { 3418 nsw_wcount_async_max -= nsw_wcount_async; 3419 nsw_wcount_async = 0; 3420 msleep(&nsw_wcount_async, &swbuf_mtx, PSWP, 3421 "swpsysctl", 0); 3422 } 3423 } 3424 mtx_unlock(&swbuf_mtx); 3425 3426 return (0); 3427 } 3428 3429 static void 3430 swap_pager_update_writecount(vm_object_t object, vm_offset_t start, 3431 vm_offset_t end) 3432 { 3433 3434 VM_OBJECT_WLOCK(object); 3435 KASSERT((object->flags & OBJ_ANON) == 0, 3436 ("Splittable object with writecount")); 3437 object->un_pager.swp.writemappings += (vm_ooffset_t)end - start; 3438 VM_OBJECT_WUNLOCK(object); 3439 } 3440 3441 static void 3442 swap_pager_release_writecount(vm_object_t object, vm_offset_t start, 3443 vm_offset_t end) 3444 { 3445 3446 VM_OBJECT_WLOCK(object); 3447 KASSERT((object->flags & OBJ_ANON) == 0, 3448 ("Splittable object with writecount")); 3449 KASSERT(object->un_pager.swp.writemappings >= (vm_ooffset_t)end - start, 3450 ("swap obj %p writecount %jx dec %jx", object, 3451 (uintmax_t)object->un_pager.swp.writemappings, 3452 (uintmax_t)((vm_ooffset_t)end - start))); 3453 object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start; 3454 VM_OBJECT_WUNLOCK(object); 3455 } 3456