xref: /freebsd/sys/vm/swap_pager.c (revision f9218d3d4fd34f082473b3a021c6d4d109fb47cf)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD$
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/conf.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/bio.h>
76 #include <sys/buf.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/sysctl.h>
80 #include <sys/blist.h>
81 #include <sys/lock.h>
82 #include <sys/sx.h>
83 #include <sys/vmmeter.h>
84 
85 #ifndef MAX_PAGEOUT_CLUSTER
86 #define MAX_PAGEOUT_CLUSTER 16
87 #endif
88 
89 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
90 
91 #include "opt_swap.h"
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/swap_pager.h>
101 #include <vm/vm_extern.h>
102 #include <vm/uma.h>
103 
104 #define SWM_FREE	0x02	/* free, period			*/
105 #define SWM_POP		0x04	/* pop out			*/
106 
107 int swap_pager_full;		/* swap space exhaustion (task killing) */
108 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
109 static int nsw_rcount;		/* free read buffers			*/
110 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
111 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
112 static int nsw_wcount_async_max;/* assigned maximum			*/
113 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
114 
115 struct blist *swapblist;
116 static struct swblock **swhash;
117 static int swhash_mask;
118 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
119 static struct sx sw_alloc_sx;
120 
121 
122 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
123         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
124 
125 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
126 
127 /*
128  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
129  * of searching a named list by hashing it just a little.
130  */
131 
132 #define NOBJLISTS		8
133 
134 #define NOBJLIST(handle)	\
135 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
136 
137 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
138 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
139 struct pagerlst		swap_pager_un_object_list;
140 uma_zone_t		swap_zone;
141 
142 /*
143  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
144  * calls hooked from other parts of the VM system and do not appear here.
145  * (see vm/swap_pager.h).
146  */
147 static vm_object_t
148 		swap_pager_alloc(void *handle, vm_ooffset_t size,
149 				      vm_prot_t prot, vm_ooffset_t offset);
150 static void	swap_pager_dealloc(vm_object_t object);
151 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
152 static void	swap_pager_init(void);
153 static void	swap_pager_unswapped(vm_page_t);
154 static void	swap_pager_strategy(vm_object_t, struct bio *);
155 
156 struct pagerops swappagerops = {
157 	swap_pager_init,	/* early system initialization of pager	*/
158 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
159 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
160 	swap_pager_getpages,	/* pagein				*/
161 	swap_pager_putpages,	/* pageout				*/
162 	swap_pager_haspage,	/* get backing store status for page	*/
163 	swap_pager_unswapped,	/* remove swap related to page		*/
164 	swap_pager_strategy	/* pager strategy call			*/
165 };
166 
167 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags);
168 static void flushchainbuf(struct buf *nbp);
169 static void waitchainbuf(struct bio *bp, int count, int done);
170 
171 /*
172  * dmmax is in page-sized chunks with the new swap system.  It was
173  * dev-bsized chunks in the old.  dmmax is always a power of 2.
174  *
175  * swap_*() routines are externally accessible.  swp_*() routines are
176  * internal.
177  */
178 int dmmax, dmmax_mask;
179 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
180 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
181 
182 SYSCTL_INT(_vm, OID_AUTO, dmmax,
183 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
184 
185 static __inline void	swp_sizecheck(void);
186 static void	swp_pager_sync_iodone(struct buf *bp);
187 static void	swp_pager_async_iodone(struct buf *bp);
188 
189 /*
190  * Swap bitmap functions
191  */
192 static __inline void	swp_pager_freeswapspace(daddr_t blk, int npages);
193 static __inline daddr_t	swp_pager_getswapspace(int npages);
194 
195 /*
196  * Metadata functions
197  */
198 static __inline struct swblock **
199     swp_pager_hash(vm_object_t object, vm_pindex_t index);
200 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
201 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
202 static void swp_pager_meta_free_all(vm_object_t);
203 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
204 
205 /*
206  * SWP_SIZECHECK() -	update swap_pager_full indication
207  *
208  *	update the swap_pager_almost_full indication and warn when we are
209  *	about to run out of swap space, using lowat/hiwat hysteresis.
210  *
211  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
212  *
213  *	No restrictions on call
214  *	This routine may not block.
215  *	This routine must be called at splvm()
216  */
217 static __inline void
218 swp_sizecheck()
219 {
220 	GIANT_REQUIRED;
221 
222 	if (vm_swap_size < nswap_lowat) {
223 		if (swap_pager_almost_full == 0) {
224 			printf("swap_pager: out of swap space\n");
225 			swap_pager_almost_full = 1;
226 		}
227 	} else {
228 		swap_pager_full = 0;
229 		if (vm_swap_size > nswap_hiwat)
230 			swap_pager_almost_full = 0;
231 	}
232 }
233 
234 /*
235  * SWAP_PAGER_INIT() -	initialize the swap pager!
236  *
237  *	Expected to be started from system init.  NOTE:  This code is run
238  *	before much else so be careful what you depend on.  Most of the VM
239  *	system has yet to be initialized at this point.
240  */
241 static void
242 swap_pager_init()
243 {
244 	/*
245 	 * Initialize object lists
246 	 */
247 	int i;
248 
249 	for (i = 0; i < NOBJLISTS; ++i)
250 		TAILQ_INIT(&swap_pager_object_list[i]);
251 	TAILQ_INIT(&swap_pager_un_object_list);
252 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
253 
254 	/*
255 	 * Device Stripe, in PAGE_SIZE'd blocks
256 	 */
257 	dmmax = SWB_NPAGES * 2;
258 	dmmax_mask = ~(dmmax - 1);
259 }
260 
261 /*
262  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
263  *
264  *	Expected to be started from pageout process once, prior to entering
265  *	its main loop.
266  */
267 void
268 swap_pager_swap_init()
269 {
270 	int n, n2;
271 
272 	/*
273 	 * Number of in-transit swap bp operations.  Don't
274 	 * exhaust the pbufs completely.  Make sure we
275 	 * initialize workable values (0 will work for hysteresis
276 	 * but it isn't very efficient).
277 	 *
278 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
279 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
280 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
281 	 * constrained by the swap device interleave stripe size.
282 	 *
283 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
284 	 * designed to prevent other I/O from having high latencies due to
285 	 * our pageout I/O.  The value 4 works well for one or two active swap
286 	 * devices but is probably a little low if you have more.  Even so,
287 	 * a higher value would probably generate only a limited improvement
288 	 * with three or four active swap devices since the system does not
289 	 * typically have to pageout at extreme bandwidths.   We will want
290 	 * at least 2 per swap devices, and 4 is a pretty good value if you
291 	 * have one NFS swap device due to the command/ack latency over NFS.
292 	 * So it all works out pretty well.
293 	 */
294 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
295 
296 	mtx_lock(&pbuf_mtx);
297 	nsw_rcount = (nswbuf + 1) / 2;
298 	nsw_wcount_sync = (nswbuf + 3) / 4;
299 	nsw_wcount_async = 4;
300 	nsw_wcount_async_max = nsw_wcount_async;
301 	mtx_unlock(&pbuf_mtx);
302 
303 	/*
304 	 * Initialize our zone.  Right now I'm just guessing on the number
305 	 * we need based on the number of pages in the system.  Each swblock
306 	 * can hold 16 pages, so this is probably overkill.  This reservation
307 	 * is typically limited to around 32MB by default.
308 	 */
309 	n = cnt.v_page_count / 2;
310 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
311 		n = maxswzone / sizeof(struct swblock);
312 	n2 = n;
313 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
314 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315 	do {
316 		if (uma_zone_set_obj(swap_zone, NULL, n))
317 			break;
318 		/*
319 		 * if the allocation failed, try a zone two thirds the
320 		 * size of the previous attempt.
321 		 */
322 		n -= ((n + 2) / 3);
323 	} while (n > 0);
324 	if (swap_zone == NULL)
325 		panic("failed to create swap_zone.");
326 	if (n2 != n)
327 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
328 	n2 = n;
329 
330 	/*
331 	 * Initialize our meta-data hash table.  The swapper does not need to
332 	 * be quite as efficient as the VM system, so we do not use an
333 	 * oversized hash table.
334 	 *
335 	 * 	n: 		size of hash table, must be power of 2
336 	 *	swhash_mask:	hash table index mask
337 	 */
338 	for (n = 1; n < n2 / 8; n *= 2)
339 		;
340 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
341 	swhash_mask = n - 1;
342 }
343 
344 /*
345  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
346  *			its metadata structures.
347  *
348  *	This routine is called from the mmap and fork code to create a new
349  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
350  *	and then converting it with swp_pager_meta_build().
351  *
352  *	This routine may block in vm_object_allocate() and create a named
353  *	object lookup race, so we must interlock.   We must also run at
354  *	splvm() for the object lookup to handle races with interrupts, but
355  *	we do not have to maintain splvm() in between the lookup and the
356  *	add because (I believe) it is not possible to attempt to create
357  *	a new swap object w/handle when a default object with that handle
358  *	already exists.
359  *
360  * MPSAFE
361  */
362 static vm_object_t
363 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
364 		 vm_ooffset_t offset)
365 {
366 	vm_object_t object;
367 
368 	mtx_lock(&Giant);
369 	if (handle) {
370 		/*
371 		 * Reference existing named region or allocate new one.  There
372 		 * should not be a race here against swp_pager_meta_build()
373 		 * as called from vm_page_remove() in regards to the lookup
374 		 * of the handle.
375 		 */
376 		sx_xlock(&sw_alloc_sx);
377 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
378 
379 		if (object != NULL) {
380 			vm_object_reference(object);
381 		} else {
382 			object = vm_object_allocate(OBJT_DEFAULT,
383 				OFF_TO_IDX(offset + PAGE_MASK + size));
384 			object->handle = handle;
385 
386 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
387 		}
388 		sx_xunlock(&sw_alloc_sx);
389 	} else {
390 		object = vm_object_allocate(OBJT_DEFAULT,
391 			OFF_TO_IDX(offset + PAGE_MASK + size));
392 
393 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
394 	}
395 	mtx_unlock(&Giant);
396 	return (object);
397 }
398 
399 /*
400  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
401  *
402  *	The swap backing for the object is destroyed.  The code is
403  *	designed such that we can reinstantiate it later, but this
404  *	routine is typically called only when the entire object is
405  *	about to be destroyed.
406  *
407  *	This routine may block, but no longer does.
408  *
409  *	The object must be locked or unreferenceable.
410  */
411 static void
412 swap_pager_dealloc(object)
413 	vm_object_t object;
414 {
415 	int s;
416 
417 	GIANT_REQUIRED;
418 
419 	/*
420 	 * Remove from list right away so lookups will fail if we block for
421 	 * pageout completion.
422 	 */
423 	mtx_lock(&sw_alloc_mtx);
424 	if (object->handle == NULL) {
425 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
426 	} else {
427 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
428 	}
429 	mtx_unlock(&sw_alloc_mtx);
430 
431 	vm_object_pip_wait(object, "swpdea");
432 
433 	/*
434 	 * Free all remaining metadata.  We only bother to free it from
435 	 * the swap meta data.  We do not attempt to free swapblk's still
436 	 * associated with vm_page_t's for this object.  We do not care
437 	 * if paging is still in progress on some objects.
438 	 */
439 	s = splvm();
440 	swp_pager_meta_free_all(object);
441 	splx(s);
442 }
443 
444 /************************************************************************
445  *			SWAP PAGER BITMAP ROUTINES			*
446  ************************************************************************/
447 
448 /*
449  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
450  *
451  *	Allocate swap for the requested number of pages.  The starting
452  *	swap block number (a page index) is returned or SWAPBLK_NONE
453  *	if the allocation failed.
454  *
455  *	Also has the side effect of advising that somebody made a mistake
456  *	when they configured swap and didn't configure enough.
457  *
458  *	Must be called at splvm() to avoid races with bitmap frees from
459  *	vm_page_remove() aka swap_pager_page_removed().
460  *
461  *	This routine may not block
462  *	This routine must be called at splvm().
463  */
464 static __inline daddr_t
465 swp_pager_getswapspace(npages)
466 	int npages;
467 {
468 	daddr_t blk;
469 
470 	GIANT_REQUIRED;
471 
472 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
473 		if (swap_pager_full != 2) {
474 			printf("swap_pager_getswapspace: failed\n");
475 			swap_pager_full = 2;
476 			swap_pager_almost_full = 1;
477 		}
478 	} else {
479 		vm_swap_size -= npages;
480 		/* per-swap area stats */
481 		swdevt[BLK2DEVIDX(blk)].sw_used += npages;
482 		swp_sizecheck();
483 	}
484 	return (blk);
485 }
486 
487 /*
488  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
489  *
490  *	This routine returns the specified swap blocks back to the bitmap.
491  *
492  *	Note:  This routine may not block (it could in the old swap code),
493  *	and through the use of the new blist routines it does not block.
494  *
495  *	We must be called at splvm() to avoid races with bitmap frees from
496  *	vm_page_remove() aka swap_pager_page_removed().
497  *
498  *	This routine may not block
499  *	This routine must be called at splvm().
500  */
501 static __inline void
502 swp_pager_freeswapspace(blk, npages)
503 	daddr_t blk;
504 	int npages;
505 {
506 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
507 
508 	GIANT_REQUIRED;
509 
510 	/* per-swap area stats */
511 	sp->sw_used -= npages;
512 
513 	/*
514 	 * If we are attempting to stop swapping on this device, we
515 	 * don't want to mark any blocks free lest they be reused.
516 	 */
517 	if (sp->sw_flags & SW_CLOSING)
518 		return;
519 
520 	blist_free(swapblist, blk, npages);
521 	vm_swap_size += npages;
522 	swp_sizecheck();
523 }
524 
525 /*
526  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
527  *				range within an object.
528  *
529  *	This is a globally accessible routine.
530  *
531  *	This routine removes swapblk assignments from swap metadata.
532  *
533  *	The external callers of this routine typically have already destroyed
534  *	or renamed vm_page_t's associated with this range in the object so
535  *	we should be ok.
536  *
537  *	This routine may be called at any spl.  We up our spl to splvm temporarily
538  *	in order to perform the metadata removal.
539  */
540 void
541 swap_pager_freespace(object, start, size)
542 	vm_object_t object;
543 	vm_pindex_t start;
544 	vm_size_t size;
545 {
546 	int s = splvm();
547 
548 	GIANT_REQUIRED;
549 	swp_pager_meta_free(object, start, size);
550 	splx(s);
551 }
552 
553 /*
554  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
555  *
556  *	Assigns swap blocks to the specified range within the object.  The
557  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
558  *
559  *	Returns 0 on success, -1 on failure.
560  */
561 int
562 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
563 {
564 	int s;
565 	int n = 0;
566 	daddr_t blk = SWAPBLK_NONE;
567 	vm_pindex_t beg = start;	/* save start index */
568 
569 	s = splvm();
570 	while (size) {
571 		if (n == 0) {
572 			n = BLIST_MAX_ALLOC;
573 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
574 				n >>= 1;
575 				if (n == 0) {
576 					swp_pager_meta_free(object, beg, start - beg);
577 					splx(s);
578 					return (-1);
579 				}
580 			}
581 		}
582 		swp_pager_meta_build(object, start, blk);
583 		--size;
584 		++start;
585 		++blk;
586 		--n;
587 	}
588 	swp_pager_meta_free(object, start, n);
589 	splx(s);
590 	return (0);
591 }
592 
593 /*
594  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
595  *			and destroy the source.
596  *
597  *	Copy any valid swapblks from the source to the destination.  In
598  *	cases where both the source and destination have a valid swapblk,
599  *	we keep the destination's.
600  *
601  *	This routine is allowed to block.  It may block allocating metadata
602  *	indirectly through swp_pager_meta_build() or if paging is still in
603  *	progress on the source.
604  *
605  *	This routine can be called at any spl
606  *
607  *	XXX vm_page_collapse() kinda expects us not to block because we
608  *	supposedly do not need to allocate memory, but for the moment we
609  *	*may* have to get a little memory from the zone allocator, but
610  *	it is taken from the interrupt memory.  We should be ok.
611  *
612  *	The source object contains no vm_page_t's (which is just as well)
613  *
614  *	The source object is of type OBJT_SWAP.
615  *
616  *	The source and destination objects must be locked or
617  *	inaccessible (XXX are they ?)
618  */
619 void
620 swap_pager_copy(srcobject, dstobject, offset, destroysource)
621 	vm_object_t srcobject;
622 	vm_object_t dstobject;
623 	vm_pindex_t offset;
624 	int destroysource;
625 {
626 	vm_pindex_t i;
627 	int s;
628 
629 	GIANT_REQUIRED;
630 
631 	s = splvm();
632 	/*
633 	 * If destroysource is set, we remove the source object from the
634 	 * swap_pager internal queue now.
635 	 */
636 	if (destroysource) {
637 		mtx_lock(&sw_alloc_mtx);
638 		if (srcobject->handle == NULL) {
639 			TAILQ_REMOVE(
640 			    &swap_pager_un_object_list,
641 			    srcobject,
642 			    pager_object_list
643 			);
644 		} else {
645 			TAILQ_REMOVE(
646 			    NOBJLIST(srcobject->handle),
647 			    srcobject,
648 			    pager_object_list
649 			);
650 		}
651 		mtx_unlock(&sw_alloc_mtx);
652 	}
653 
654 	/*
655 	 * transfer source to destination.
656 	 */
657 	for (i = 0; i < dstobject->size; ++i) {
658 		daddr_t dstaddr;
659 
660 		/*
661 		 * Locate (without changing) the swapblk on the destination,
662 		 * unless it is invalid in which case free it silently, or
663 		 * if the destination is a resident page, in which case the
664 		 * source is thrown away.
665 		 */
666 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
667 
668 		if (dstaddr == SWAPBLK_NONE) {
669 			/*
670 			 * Destination has no swapblk and is not resident,
671 			 * copy source.
672 			 */
673 			daddr_t srcaddr;
674 
675 			srcaddr = swp_pager_meta_ctl(
676 			    srcobject,
677 			    i + offset,
678 			    SWM_POP
679 			);
680 
681 			if (srcaddr != SWAPBLK_NONE)
682 				swp_pager_meta_build(dstobject, i, srcaddr);
683 		} else {
684 			/*
685 			 * Destination has valid swapblk or it is represented
686 			 * by a resident page.  We destroy the sourceblock.
687 			 */
688 
689 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
690 		}
691 	}
692 
693 	/*
694 	 * Free left over swap blocks in source.
695 	 *
696 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
697 	 * double-remove the object from the swap queues.
698 	 */
699 	if (destroysource) {
700 		swp_pager_meta_free_all(srcobject);
701 		/*
702 		 * Reverting the type is not necessary, the caller is going
703 		 * to destroy srcobject directly, but I'm doing it here
704 		 * for consistency since we've removed the object from its
705 		 * queues.
706 		 */
707 		srcobject->type = OBJT_DEFAULT;
708 	}
709 	splx(s);
710 }
711 
712 /*
713  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
714  *				the requested page.
715  *
716  *	We determine whether good backing store exists for the requested
717  *	page and return TRUE if it does, FALSE if it doesn't.
718  *
719  *	If TRUE, we also try to determine how much valid, contiguous backing
720  *	store exists before and after the requested page within a reasonable
721  *	distance.  We do not try to restrict it to the swap device stripe
722  *	(that is handled in getpages/putpages).  It probably isn't worth
723  *	doing here.
724  */
725 boolean_t
726 swap_pager_haspage(object, pindex, before, after)
727 	vm_object_t object;
728 	vm_pindex_t pindex;
729 	int *before;
730 	int *after;
731 {
732 	daddr_t blk0;
733 	int s;
734 
735 	/*
736 	 * do we have good backing store at the requested index ?
737 	 */
738 	s = splvm();
739 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
740 
741 	if (blk0 == SWAPBLK_NONE) {
742 		splx(s);
743 		if (before)
744 			*before = 0;
745 		if (after)
746 			*after = 0;
747 		return (FALSE);
748 	}
749 
750 	/*
751 	 * find backwards-looking contiguous good backing store
752 	 */
753 	if (before != NULL) {
754 		int i;
755 
756 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
757 			daddr_t blk;
758 
759 			if (i > pindex)
760 				break;
761 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
762 			if (blk != blk0 - i)
763 				break;
764 		}
765 		*before = (i - 1);
766 	}
767 
768 	/*
769 	 * find forward-looking contiguous good backing store
770 	 */
771 	if (after != NULL) {
772 		int i;
773 
774 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
775 			daddr_t blk;
776 
777 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
778 			if (blk != blk0 + i)
779 				break;
780 		}
781 		*after = (i - 1);
782 	}
783 	splx(s);
784 	return (TRUE);
785 }
786 
787 /*
788  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
789  *
790  *	This removes any associated swap backing store, whether valid or
791  *	not, from the page.
792  *
793  *	This routine is typically called when a page is made dirty, at
794  *	which point any associated swap can be freed.  MADV_FREE also
795  *	calls us in a special-case situation
796  *
797  *	NOTE!!!  If the page is clean and the swap was valid, the caller
798  *	should make the page dirty before calling this routine.  This routine
799  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
800  *	depends on it.
801  *
802  *	This routine may not block
803  *	This routine must be called at splvm()
804  */
805 static void
806 swap_pager_unswapped(m)
807 	vm_page_t m;
808 {
809 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
810 }
811 
812 /*
813  * SWAP_PAGER_STRATEGY() - read, write, free blocks
814  *
815  *	This implements the vm_pager_strategy() interface to swap and allows
816  *	other parts of the system to directly access swap as backing store
817  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
818  *	cacheless interface ( i.e. caching occurs at higher levels ).
819  *	Therefore we do not maintain any resident pages.  All I/O goes
820  *	directly to and from the swap device.
821  *
822  *	Note that b_blkno is scaled for PAGE_SIZE
823  *
824  *	We currently attempt to run I/O synchronously or asynchronously as
825  *	the caller requests.  This isn't perfect because we loose error
826  *	sequencing when we run multiple ops in parallel to satisfy a request.
827  *	But this is swap, so we let it all hang out.
828  */
829 static void
830 swap_pager_strategy(vm_object_t object, struct bio *bp)
831 {
832 	vm_pindex_t start;
833 	int count;
834 	int s;
835 	char *data;
836 	struct buf *nbp = NULL;
837 
838 	GIANT_REQUIRED;
839 
840 	/* XXX: KASSERT instead ? */
841 	if (bp->bio_bcount & PAGE_MASK) {
842 		biofinish(bp, NULL, EINVAL);
843 		printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount);
844 		return;
845 	}
846 
847 	/*
848 	 * Clear error indication, initialize page index, count, data pointer.
849 	 */
850 	bp->bio_error = 0;
851 	bp->bio_flags &= ~BIO_ERROR;
852 	bp->bio_resid = bp->bio_bcount;
853 	*(u_int *) &bp->bio_driver1 = 0;
854 
855 	start = bp->bio_pblkno;
856 	count = howmany(bp->bio_bcount, PAGE_SIZE);
857 	data = bp->bio_data;
858 
859 	s = splvm();
860 
861 	/*
862 	 * Deal with BIO_DELETE
863 	 */
864 	if (bp->bio_cmd == BIO_DELETE) {
865 		/*
866 		 * FREE PAGE(s) - destroy underlying swap that is no longer
867 		 *		  needed.
868 		 */
869 		swp_pager_meta_free(object, start, count);
870 		splx(s);
871 		bp->bio_resid = 0;
872 		biodone(bp);
873 		return;
874 	}
875 
876 	/*
877 	 * Execute read or write
878 	 */
879 	while (count > 0) {
880 		daddr_t blk;
881 
882 		/*
883 		 * Obtain block.  If block not found and writing, allocate a
884 		 * new block and build it into the object.
885 		 */
886 
887 		blk = swp_pager_meta_ctl(object, start, 0);
888 		if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) {
889 			blk = swp_pager_getswapspace(1);
890 			if (blk == SWAPBLK_NONE) {
891 				bp->bio_error = ENOMEM;
892 				bp->bio_flags |= BIO_ERROR;
893 				break;
894 			}
895 			swp_pager_meta_build(object, start, blk);
896 		}
897 
898 		/*
899 		 * Do we have to flush our current collection?  Yes if:
900 		 *
901 		 *	- no swap block at this index
902 		 *	- swap block is not contiguous
903 		 *	- we cross a physical disk boundry in the
904 		 *	  stripe.
905 		 */
906 		if (
907 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
908 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
909 		    )
910 		) {
911 			splx(s);
912 			if (bp->bio_cmd == BIO_READ) {
913 				++cnt.v_swapin;
914 				cnt.v_swappgsin += btoc(nbp->b_bcount);
915 			} else {
916 				++cnt.v_swapout;
917 				cnt.v_swappgsout += btoc(nbp->b_bcount);
918 				nbp->b_dirtyend = nbp->b_bcount;
919 			}
920 			flushchainbuf(nbp);
921 			s = splvm();
922 			nbp = NULL;
923 		}
924 
925 		/*
926 		 * Add new swapblk to nbp, instantiating nbp if necessary.
927 		 * Zero-fill reads are able to take a shortcut.
928 		 */
929 		if (blk == SWAPBLK_NONE) {
930 			/*
931 			 * We can only get here if we are reading.  Since
932 			 * we are at splvm() we can safely modify b_resid,
933 			 * even if chain ops are in progress.
934 			 */
935 			bzero(data, PAGE_SIZE);
936 			bp->bio_resid -= PAGE_SIZE;
937 		} else {
938 			if (nbp == NULL) {
939 				nbp = getchainbuf(bp, swapdev_vp, B_ASYNC);
940 				nbp->b_blkno = blk;
941 				nbp->b_bcount = 0;
942 				nbp->b_data = data;
943 			}
944 			nbp->b_bcount += PAGE_SIZE;
945 		}
946 		--count;
947 		++start;
948 		data += PAGE_SIZE;
949 	}
950 
951 	/*
952 	 *  Flush out last buffer
953 	 */
954 	splx(s);
955 
956 	if (nbp) {
957 		if (nbp->b_iocmd == BIO_READ) {
958 			++cnt.v_swapin;
959 			cnt.v_swappgsin += btoc(nbp->b_bcount);
960 		} else {
961 			++cnt.v_swapout;
962 			cnt.v_swappgsout += btoc(nbp->b_bcount);
963 			nbp->b_dirtyend = nbp->b_bcount;
964 		}
965 		flushchainbuf(nbp);
966 		/* nbp = NULL; */
967 	}
968 	/*
969 	 * Wait for completion.
970 	 */
971 	waitchainbuf(bp, 0, 1);
972 }
973 
974 /*
975  * SWAP_PAGER_GETPAGES() - bring pages in from swap
976  *
977  *	Attempt to retrieve (m, count) pages from backing store, but make
978  *	sure we retrieve at least m[reqpage].  We try to load in as large
979  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
980  *	belongs to the same object.
981  *
982  *	The code is designed for asynchronous operation and
983  *	immediate-notification of 'reqpage' but tends not to be
984  *	used that way.  Please do not optimize-out this algorithmic
985  *	feature, I intend to improve on it in the future.
986  *
987  *	The parent has a single vm_object_pip_add() reference prior to
988  *	calling us and we should return with the same.
989  *
990  *	The parent has BUSY'd the pages.  We should return with 'm'
991  *	left busy, but the others adjusted.
992  */
993 static int
994 swap_pager_getpages(object, m, count, reqpage)
995 	vm_object_t object;
996 	vm_page_t *m;
997 	int count, reqpage;
998 {
999 	struct buf *bp;
1000 	vm_page_t mreq;
1001 	int s;
1002 	int i;
1003 	int j;
1004 	daddr_t blk;
1005 	vm_offset_t kva;
1006 	vm_pindex_t lastpindex;
1007 
1008 	GIANT_REQUIRED;
1009 
1010 	mreq = m[reqpage];
1011 
1012 	if (mreq->object != object) {
1013 		panic("swap_pager_getpages: object mismatch %p/%p",
1014 		    object,
1015 		    mreq->object
1016 		);
1017 	}
1018 	/*
1019 	 * Calculate range to retrieve.  The pages have already been assigned
1020 	 * their swapblks.  We require a *contiguous* range that falls entirely
1021 	 * within a single device stripe.   If we do not supply it, bad things
1022 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1023 	 * loops are set up such that the case(s) are handled implicitly.
1024 	 *
1025 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1026 	 * not need to be, but it will go a little faster if it is.
1027 	 */
1028 	s = splvm();
1029 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1030 
1031 	for (i = reqpage - 1; i >= 0; --i) {
1032 		daddr_t iblk;
1033 
1034 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1035 		if (blk != iblk + (reqpage - i))
1036 			break;
1037 		if ((blk ^ iblk) & dmmax_mask)
1038 			break;
1039 	}
1040 	++i;
1041 
1042 	for (j = reqpage + 1; j < count; ++j) {
1043 		daddr_t jblk;
1044 
1045 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1046 		if (blk != jblk - (j - reqpage))
1047 			break;
1048 		if ((blk ^ jblk) & dmmax_mask)
1049 			break;
1050 	}
1051 
1052 	/*
1053 	 * free pages outside our collection range.   Note: we never free
1054 	 * mreq, it must remain busy throughout.
1055 	 */
1056 	vm_page_lock_queues();
1057 	{
1058 		int k;
1059 
1060 		for (k = 0; k < i; ++k)
1061 			vm_page_free(m[k]);
1062 		for (k = j; k < count; ++k)
1063 			vm_page_free(m[k]);
1064 	}
1065 	vm_page_unlock_queues();
1066 	splx(s);
1067 
1068 
1069 	/*
1070 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1071 	 * still busy, but the others unbusied.
1072 	 */
1073 	if (blk == SWAPBLK_NONE)
1074 		return (VM_PAGER_FAIL);
1075 
1076 	/*
1077 	 * Get a swap buffer header to perform the IO
1078 	 */
1079 	bp = getpbuf(&nsw_rcount);
1080 	kva = (vm_offset_t) bp->b_data;
1081 
1082 	/*
1083 	 * map our page(s) into kva for input
1084 	 *
1085 	 * NOTE: B_PAGING is set by pbgetvp()
1086 	 */
1087 	pmap_qenter(kva, m + i, j - i);
1088 
1089 	bp->b_iocmd = BIO_READ;
1090 	bp->b_iodone = swp_pager_async_iodone;
1091 	bp->b_rcred = crhold(thread0.td_ucred);
1092 	bp->b_wcred = crhold(thread0.td_ucred);
1093 	bp->b_data = (caddr_t) kva;
1094 	bp->b_blkno = blk - (reqpage - i);
1095 	bp->b_bcount = PAGE_SIZE * (j - i);
1096 	bp->b_bufsize = PAGE_SIZE * (j - i);
1097 	bp->b_pager.pg_reqpage = reqpage - i;
1098 
1099 	vm_page_lock_queues();
1100 	{
1101 		int k;
1102 
1103 		for (k = i; k < j; ++k) {
1104 			bp->b_pages[k - i] = m[k];
1105 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1106 		}
1107 	}
1108 	vm_page_unlock_queues();
1109 	bp->b_npages = j - i;
1110 
1111 	pbgetvp(swapdev_vp, bp);
1112 
1113 	cnt.v_swapin++;
1114 	cnt.v_swappgsin += bp->b_npages;
1115 
1116 	/*
1117 	 * We still hold the lock on mreq, and our automatic completion routine
1118 	 * does not remove it.
1119 	 */
1120 	vm_object_pip_add(mreq->object, bp->b_npages);
1121 	lastpindex = m[j-1]->pindex;
1122 
1123 	/*
1124 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1125 	 * this point because we automatically release it on completion.
1126 	 * Instead, we look at the one page we are interested in which we
1127 	 * still hold a lock on even through the I/O completion.
1128 	 *
1129 	 * The other pages in our m[] array are also released on completion,
1130 	 * so we cannot assume they are valid anymore either.
1131 	 *
1132 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1133 	 */
1134 	BUF_KERNPROC(bp);
1135 	VOP_STRATEGY(bp->b_vp, bp);
1136 
1137 	/*
1138 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1139 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1140 	 * is set in the meta-data.
1141 	 */
1142 	s = splvm();
1143 	vm_page_lock_queues();
1144 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1145 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1146 		cnt.v_intrans++;
1147 		if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) {
1148 			printf(
1149 			    "swap_pager: indefinite wait buffer: device:"
1150 				" %s, blkno: %ld, size: %ld\n",
1151 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1152 			    bp->b_bcount
1153 			);
1154 		}
1155 	}
1156 	vm_page_unlock_queues();
1157 	splx(s);
1158 
1159 	/*
1160 	 * mreq is left busied after completion, but all the other pages
1161 	 * are freed.  If we had an unrecoverable read error the page will
1162 	 * not be valid.
1163 	 */
1164 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1165 		return (VM_PAGER_ERROR);
1166 	} else {
1167 		return (VM_PAGER_OK);
1168 	}
1169 
1170 	/*
1171 	 * A final note: in a low swap situation, we cannot deallocate swap
1172 	 * and mark a page dirty here because the caller is likely to mark
1173 	 * the page clean when we return, causing the page to possibly revert
1174 	 * to all-zero's later.
1175 	 */
1176 }
1177 
1178 /*
1179  *	swap_pager_putpages:
1180  *
1181  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1182  *
1183  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1184  *	are automatically converted to SWAP objects.
1185  *
1186  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1187  *	vm_page reservation system coupled with properly written VFS devices
1188  *	should ensure that no low-memory deadlock occurs.  This is an area
1189  *	which needs work.
1190  *
1191  *	The parent has N vm_object_pip_add() references prior to
1192  *	calling us and will remove references for rtvals[] that are
1193  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1194  *	completion.
1195  *
1196  *	The parent has soft-busy'd the pages it passes us and will unbusy
1197  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1198  *	We need to unbusy the rest on I/O completion.
1199  */
1200 void
1201 swap_pager_putpages(object, m, count, sync, rtvals)
1202 	vm_object_t object;
1203 	vm_page_t *m;
1204 	int count;
1205 	boolean_t sync;
1206 	int *rtvals;
1207 {
1208 	int i;
1209 	int n = 0;
1210 
1211 	GIANT_REQUIRED;
1212 	if (count && m[0]->object != object) {
1213 		panic("swap_pager_getpages: object mismatch %p/%p",
1214 		    object,
1215 		    m[0]->object
1216 		);
1217 	}
1218 	/*
1219 	 * Step 1
1220 	 *
1221 	 * Turn object into OBJT_SWAP
1222 	 * check for bogus sysops
1223 	 * force sync if not pageout process
1224 	 */
1225 	if (object->type != OBJT_SWAP)
1226 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1227 
1228 	if (curproc != pageproc)
1229 		sync = TRUE;
1230 
1231 	/*
1232 	 * Step 2
1233 	 *
1234 	 * Update nsw parameters from swap_async_max sysctl values.
1235 	 * Do not let the sysop crash the machine with bogus numbers.
1236 	 */
1237 	mtx_lock(&pbuf_mtx);
1238 	if (swap_async_max != nsw_wcount_async_max) {
1239 		int n;
1240 		int s;
1241 
1242 		/*
1243 		 * limit range
1244 		 */
1245 		if ((n = swap_async_max) > nswbuf / 2)
1246 			n = nswbuf / 2;
1247 		if (n < 1)
1248 			n = 1;
1249 		swap_async_max = n;
1250 
1251 		/*
1252 		 * Adjust difference ( if possible ).  If the current async
1253 		 * count is too low, we may not be able to make the adjustment
1254 		 * at this time.
1255 		 */
1256 		s = splvm();
1257 		n -= nsw_wcount_async_max;
1258 		if (nsw_wcount_async + n >= 0) {
1259 			nsw_wcount_async += n;
1260 			nsw_wcount_async_max += n;
1261 			wakeup(&nsw_wcount_async);
1262 		}
1263 		splx(s);
1264 	}
1265 	mtx_unlock(&pbuf_mtx);
1266 
1267 	/*
1268 	 * Step 3
1269 	 *
1270 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1271 	 * The page is left dirty until the pageout operation completes
1272 	 * successfully.
1273 	 */
1274 	for (i = 0; i < count; i += n) {
1275 		int s;
1276 		int j;
1277 		struct buf *bp;
1278 		daddr_t blk;
1279 
1280 		/*
1281 		 * Maximum I/O size is limited by a number of factors.
1282 		 */
1283 		n = min(BLIST_MAX_ALLOC, count - i);
1284 		n = min(n, nsw_cluster_max);
1285 
1286 		s = splvm();
1287 
1288 		/*
1289 		 * Get biggest block of swap we can.  If we fail, fall
1290 		 * back and try to allocate a smaller block.  Don't go
1291 		 * overboard trying to allocate space if it would overly
1292 		 * fragment swap.
1293 		 */
1294 		while (
1295 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1296 		    n > 4
1297 		) {
1298 			n >>= 1;
1299 		}
1300 		if (blk == SWAPBLK_NONE) {
1301 			for (j = 0; j < n; ++j)
1302 				rtvals[i+j] = VM_PAGER_FAIL;
1303 			splx(s);
1304 			continue;
1305 		}
1306 
1307 		/*
1308 		 * The I/O we are constructing cannot cross a physical
1309 		 * disk boundry in the swap stripe.  Note: we are still
1310 		 * at splvm().
1311 		 */
1312 		if ((blk ^ (blk + n)) & dmmax_mask) {
1313 			j = ((blk + dmmax) & dmmax_mask) - blk;
1314 			swp_pager_freeswapspace(blk + j, n - j);
1315 			n = j;
1316 		}
1317 
1318 		/*
1319 		 * All I/O parameters have been satisfied, build the I/O
1320 		 * request and assign the swap space.
1321 		 *
1322 		 * NOTE: B_PAGING is set by pbgetvp()
1323 		 */
1324 		if (sync == TRUE) {
1325 			bp = getpbuf(&nsw_wcount_sync);
1326 		} else {
1327 			bp = getpbuf(&nsw_wcount_async);
1328 			bp->b_flags = B_ASYNC;
1329 		}
1330 		bp->b_iocmd = BIO_WRITE;
1331 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1332 
1333 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1334 
1335 		bp->b_rcred = crhold(thread0.td_ucred);
1336 		bp->b_wcred = crhold(thread0.td_ucred);
1337 		bp->b_bcount = PAGE_SIZE * n;
1338 		bp->b_bufsize = PAGE_SIZE * n;
1339 		bp->b_blkno = blk;
1340 
1341 		pbgetvp(swapdev_vp, bp);
1342 
1343 		for (j = 0; j < n; ++j) {
1344 			vm_page_t mreq = m[i+j];
1345 
1346 			swp_pager_meta_build(
1347 			    mreq->object,
1348 			    mreq->pindex,
1349 			    blk + j
1350 			);
1351 			vm_page_dirty(mreq);
1352 			rtvals[i+j] = VM_PAGER_OK;
1353 
1354 			vm_page_lock_queues();
1355 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1356 			vm_page_unlock_queues();
1357 			bp->b_pages[j] = mreq;
1358 		}
1359 		bp->b_npages = n;
1360 		/*
1361 		 * Must set dirty range for NFS to work.
1362 		 */
1363 		bp->b_dirtyoff = 0;
1364 		bp->b_dirtyend = bp->b_bcount;
1365 
1366 		cnt.v_swapout++;
1367 		cnt.v_swappgsout += bp->b_npages;
1368 		VI_LOCK(swapdev_vp);
1369 		swapdev_vp->v_numoutput++;
1370 		VI_UNLOCK(swapdev_vp);
1371 
1372 		splx(s);
1373 
1374 		/*
1375 		 * asynchronous
1376 		 *
1377 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1378 		 */
1379 		if (sync == FALSE) {
1380 			bp->b_iodone = swp_pager_async_iodone;
1381 			BUF_KERNPROC(bp);
1382 			VOP_STRATEGY(bp->b_vp, bp);
1383 
1384 			for (j = 0; j < n; ++j)
1385 				rtvals[i+j] = VM_PAGER_PEND;
1386 			/* restart outter loop */
1387 			continue;
1388 		}
1389 
1390 		/*
1391 		 * synchronous
1392 		 *
1393 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1394 		 */
1395 		bp->b_iodone = swp_pager_sync_iodone;
1396 		VOP_STRATEGY(bp->b_vp, bp);
1397 
1398 		/*
1399 		 * Wait for the sync I/O to complete, then update rtvals.
1400 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1401 		 * our async completion routine at the end, thus avoiding a
1402 		 * double-free.
1403 		 */
1404 		s = splbio();
1405 		while ((bp->b_flags & B_DONE) == 0) {
1406 			tsleep(bp, PVM, "swwrt", 0);
1407 		}
1408 		for (j = 0; j < n; ++j)
1409 			rtvals[i+j] = VM_PAGER_PEND;
1410 		/*
1411 		 * Now that we are through with the bp, we can call the
1412 		 * normal async completion, which frees everything up.
1413 		 */
1414 		swp_pager_async_iodone(bp);
1415 		splx(s);
1416 	}
1417 }
1418 
1419 /*
1420  *	swap_pager_sync_iodone:
1421  *
1422  *	Completion routine for synchronous reads and writes from/to swap.
1423  *	We just mark the bp is complete and wake up anyone waiting on it.
1424  *
1425  *	This routine may not block.  This routine is called at splbio() or better.
1426  */
1427 static void
1428 swp_pager_sync_iodone(bp)
1429 	struct buf *bp;
1430 {
1431 	bp->b_flags |= B_DONE;
1432 	bp->b_flags &= ~B_ASYNC;
1433 	wakeup(bp);
1434 }
1435 
1436 /*
1437  *	swp_pager_async_iodone:
1438  *
1439  *	Completion routine for asynchronous reads and writes from/to swap.
1440  *	Also called manually by synchronous code to finish up a bp.
1441  *
1442  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1443  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1444  *	unbusy all pages except the 'main' request page.  For WRITE
1445  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1446  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1447  *
1448  *	This routine may not block.
1449  *	This routine is called at splbio() or better
1450  *
1451  *	We up ourselves to splvm() as required for various vm_page related
1452  *	calls.
1453  */
1454 static void
1455 swp_pager_async_iodone(bp)
1456 	struct buf *bp;
1457 {
1458 	int s;
1459 	int i;
1460 	vm_object_t object = NULL;
1461 
1462 	GIANT_REQUIRED;
1463 	bp->b_flags |= B_DONE;
1464 
1465 	/*
1466 	 * report error
1467 	 */
1468 	if (bp->b_ioflags & BIO_ERROR) {
1469 		printf(
1470 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1471 			"size %ld, error %d\n",
1472 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1473 		    (long)bp->b_blkno,
1474 		    (long)bp->b_bcount,
1475 		    bp->b_error
1476 		);
1477 	}
1478 
1479 	/*
1480 	 * set object, raise to splvm().
1481 	 */
1482 	if (bp->b_npages)
1483 		object = bp->b_pages[0]->object;
1484 	s = splvm();
1485 
1486 	/*
1487 	 * remove the mapping for kernel virtual
1488 	 */
1489 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1490 
1491 	vm_page_lock_queues();
1492 	/*
1493 	 * cleanup pages.  If an error occurs writing to swap, we are in
1494 	 * very serious trouble.  If it happens to be a disk error, though,
1495 	 * we may be able to recover by reassigning the swap later on.  So
1496 	 * in this case we remove the m->swapblk assignment for the page
1497 	 * but do not free it in the rlist.  The errornous block(s) are thus
1498 	 * never reallocated as swap.  Redirty the page and continue.
1499 	 */
1500 	for (i = 0; i < bp->b_npages; ++i) {
1501 		vm_page_t m = bp->b_pages[i];
1502 
1503 		vm_page_flag_clear(m, PG_SWAPINPROG);
1504 
1505 		if (bp->b_ioflags & BIO_ERROR) {
1506 			/*
1507 			 * If an error occurs I'd love to throw the swapblk
1508 			 * away without freeing it back to swapspace, so it
1509 			 * can never be used again.  But I can't from an
1510 			 * interrupt.
1511 			 */
1512 			if (bp->b_iocmd == BIO_READ) {
1513 				/*
1514 				 * When reading, reqpage needs to stay
1515 				 * locked for the parent, but all other
1516 				 * pages can be freed.  We still want to
1517 				 * wakeup the parent waiting on the page,
1518 				 * though.  ( also: pg_reqpage can be -1 and
1519 				 * not match anything ).
1520 				 *
1521 				 * We have to wake specifically requested pages
1522 				 * up too because we cleared PG_SWAPINPROG and
1523 				 * someone may be waiting for that.
1524 				 *
1525 				 * NOTE: for reads, m->dirty will probably
1526 				 * be overridden by the original caller of
1527 				 * getpages so don't play cute tricks here.
1528 				 *
1529 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1530 				 * AS THIS MESSES WITH object->memq, and it is
1531 				 * not legal to mess with object->memq from an
1532 				 * interrupt.
1533 				 */
1534 				m->valid = 0;
1535 				vm_page_flag_clear(m, PG_ZERO);
1536 				if (i != bp->b_pager.pg_reqpage)
1537 					vm_page_free(m);
1538 				else
1539 					vm_page_flash(m);
1540 				/*
1541 				 * If i == bp->b_pager.pg_reqpage, do not wake
1542 				 * the page up.  The caller needs to.
1543 				 */
1544 			} else {
1545 				/*
1546 				 * If a write error occurs, reactivate page
1547 				 * so it doesn't clog the inactive list,
1548 				 * then finish the I/O.
1549 				 */
1550 				vm_page_dirty(m);
1551 				vm_page_activate(m);
1552 				vm_page_io_finish(m);
1553 			}
1554 		} else if (bp->b_iocmd == BIO_READ) {
1555 			/*
1556 			 * For read success, clear dirty bits.  Nobody should
1557 			 * have this page mapped but don't take any chances,
1558 			 * make sure the pmap modify bits are also cleared.
1559 			 *
1560 			 * NOTE: for reads, m->dirty will probably be
1561 			 * overridden by the original caller of getpages so
1562 			 * we cannot set them in order to free the underlying
1563 			 * swap in a low-swap situation.  I don't think we'd
1564 			 * want to do that anyway, but it was an optimization
1565 			 * that existed in the old swapper for a time before
1566 			 * it got ripped out due to precisely this problem.
1567 			 *
1568 			 * clear PG_ZERO in page.
1569 			 *
1570 			 * If not the requested page then deactivate it.
1571 			 *
1572 			 * Note that the requested page, reqpage, is left
1573 			 * busied, but we still have to wake it up.  The
1574 			 * other pages are released (unbusied) by
1575 			 * vm_page_wakeup().  We do not set reqpage's
1576 			 * valid bits here, it is up to the caller.
1577 			 */
1578 			pmap_clear_modify(m);
1579 			m->valid = VM_PAGE_BITS_ALL;
1580 			vm_page_undirty(m);
1581 			vm_page_flag_clear(m, PG_ZERO);
1582 
1583 			/*
1584 			 * We have to wake specifically requested pages
1585 			 * up too because we cleared PG_SWAPINPROG and
1586 			 * could be waiting for it in getpages.  However,
1587 			 * be sure to not unbusy getpages specifically
1588 			 * requested page - getpages expects it to be
1589 			 * left busy.
1590 			 */
1591 			if (i != bp->b_pager.pg_reqpage) {
1592 				vm_page_deactivate(m);
1593 				vm_page_wakeup(m);
1594 			} else {
1595 				vm_page_flash(m);
1596 			}
1597 		} else {
1598 			/*
1599 			 * For write success, clear the modify and dirty
1600 			 * status, then finish the I/O ( which decrements the
1601 			 * busy count and possibly wakes waiter's up ).
1602 			 */
1603 			pmap_clear_modify(m);
1604 			vm_page_undirty(m);
1605 			vm_page_io_finish(m);
1606 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1607 				pmap_page_protect(m, VM_PROT_READ);
1608 		}
1609 	}
1610 	vm_page_unlock_queues();
1611 
1612 	/*
1613 	 * adjust pip.  NOTE: the original parent may still have its own
1614 	 * pip refs on the object.
1615 	 */
1616 	if (object)
1617 		vm_object_pip_wakeupn(object, bp->b_npages);
1618 
1619 	/*
1620 	 * release the physical I/O buffer
1621 	 */
1622 	relpbuf(
1623 	    bp,
1624 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1625 		((bp->b_flags & B_ASYNC) ?
1626 		    &nsw_wcount_async :
1627 		    &nsw_wcount_sync
1628 		)
1629 	    )
1630 	);
1631 	splx(s);
1632 }
1633 
1634 /*
1635  *	swap_pager_isswapped:
1636  *
1637  *	Return 1 if at least one page in the given object is paged
1638  *	out to the given swap device.
1639  *
1640  *	This routine may not block.
1641  */
1642 int swap_pager_isswapped(vm_object_t object, int devidx) {
1643 	daddr_t index = 0;
1644 	int bcount;
1645 	int i;
1646 
1647 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1648 		struct swblock *swap;
1649 
1650 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1651 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1652 				daddr_t v = swap->swb_pages[i];
1653 				if (v != SWAPBLK_NONE &&
1654 				    BLK2DEVIDX(v) == devidx)
1655 					return 1;
1656 			}
1657 		}
1658 
1659 		index += SWAP_META_PAGES;
1660 		if (index > 0x20000000)
1661 			panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1662 	}
1663 	return 0;
1664 }
1665 
1666 /*
1667  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1668  *
1669  *	This routine dissociates the page at the given index within a
1670  *	swap block from its backing store, paging it in if necessary.
1671  *	If the page is paged in, it is placed in the inactive queue,
1672  *	since it had its backing store ripped out from under it.
1673  *	We also attempt to swap in all other pages in the swap block,
1674  *	we only guarantee that the one at the specified index is
1675  *	paged in.
1676  *
1677  *	XXX - The code to page the whole block in doesn't work, so we
1678  *	      revert to the one-by-one behavior for now.  Sigh.
1679  */
1680 static __inline void
1681 swp_pager_force_pagein(struct swblock *swap, int idx)
1682 {
1683 	vm_object_t object;
1684 	vm_page_t m;
1685 	vm_pindex_t pindex;
1686 
1687 	object = swap->swb_object;
1688 	pindex = swap->swb_index;
1689 
1690 	vm_object_pip_add(object, 1);
1691 	m = vm_page_grab(object, pindex + idx, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1692 	if (m->valid == VM_PAGE_BITS_ALL) {
1693 		vm_object_pip_subtract(object, 1);
1694 		vm_page_lock_queues();
1695 		vm_page_activate(m);
1696 		vm_page_dirty(m);
1697 		vm_page_wakeup(m);
1698 		vm_page_unlock_queues();
1699 		vm_pager_page_unswapped(m);
1700 		return;
1701 	}
1702 
1703 	if (swap_pager_getpages(object, &m, 1, 0) !=
1704 	    VM_PAGER_OK)
1705 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1706 	vm_object_pip_subtract(object, 1);
1707 
1708 	vm_page_lock_queues();
1709 	vm_page_dirty(m);
1710 	vm_page_dontneed(m);
1711 	vm_page_wakeup(m);
1712 	vm_page_unlock_queues();
1713 	vm_pager_page_unswapped(m);
1714 }
1715 
1716 
1717 /*
1718  *	swap_pager_swapoff:
1719  *
1720  *	Page in all of the pages that have been paged out to the
1721  *	given device.  The corresponding blocks in the bitmap must be
1722  *	marked as allocated and the device must be flagged SW_CLOSING.
1723  *	There may be no processes swapped out to the device.
1724  *
1725  *	The sw_used parameter points to the field in the swdev structure
1726  *	that contains a count of the number of blocks still allocated
1727  *	on the device.  If we encounter objects with a nonzero pip count
1728  *	in our scan, we use this number to determine if we're really done.
1729  *
1730  *	This routine may block.
1731  */
1732 void
1733 swap_pager_swapoff(int devidx, int *sw_used)
1734 {
1735 	struct swblock **pswap;
1736 	struct swblock *swap;
1737 	vm_object_t waitobj;
1738 	daddr_t v;
1739 	int i, j;
1740 
1741 	GIANT_REQUIRED;
1742 
1743 full_rescan:
1744 	waitobj = NULL;
1745 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1746 restart:
1747 		pswap = &swhash[i];
1748 		while ((swap = *pswap) != NULL) {
1749                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1750                                 v = swap->swb_pages[j];
1751                                 if (v != SWAPBLK_NONE &&
1752 				    BLK2DEVIDX(v) == devidx)
1753                                         break;
1754                         }
1755 			if (j < SWAP_META_PAGES) {
1756 				swp_pager_force_pagein(swap, j);
1757 				goto restart;
1758 			} else if (swap->swb_object->paging_in_progress) {
1759 				if (!waitobj)
1760 					waitobj = swap->swb_object;
1761 			}
1762 			pswap = &swap->swb_hnext;
1763 		}
1764 	}
1765 	if (waitobj && *sw_used) {
1766 	    /*
1767 	     * We wait on an arbitrary object to clock our rescans
1768 	     * to the rate of paging completion.
1769 	     */
1770 	    vm_object_pip_wait(waitobj, "swpoff");
1771 	    goto full_rescan;
1772 	}
1773 	if (*sw_used)
1774 	    panic("swapoff: failed to locate %d swap blocks", *sw_used);
1775 }
1776 
1777 /************************************************************************
1778  *				SWAP META DATA 				*
1779  ************************************************************************
1780  *
1781  *	These routines manipulate the swap metadata stored in the
1782  *	OBJT_SWAP object.  All swp_*() routines must be called at
1783  *	splvm() because swap can be freed up by the low level vm_page
1784  *	code which might be called from interrupts beyond what splbio() covers.
1785  *
1786  *	Swap metadata is implemented with a global hash and not directly
1787  *	linked into the object.  Instead the object simply contains
1788  *	appropriate tracking counters.
1789  */
1790 
1791 /*
1792  * SWP_PAGER_HASH() -	hash swap meta data
1793  *
1794  *	This is an inline helper function which hashes the swapblk given
1795  *	the object and page index.  It returns a pointer to a pointer
1796  *	to the object, or a pointer to a NULL pointer if it could not
1797  *	find a swapblk.
1798  *
1799  *	This routine must be called at splvm().
1800  */
1801 static __inline struct swblock **
1802 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1803 {
1804 	struct swblock **pswap;
1805 	struct swblock *swap;
1806 
1807 	index &= ~(vm_pindex_t)SWAP_META_MASK;
1808 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1809 	while ((swap = *pswap) != NULL) {
1810 		if (swap->swb_object == object &&
1811 		    swap->swb_index == index
1812 		) {
1813 			break;
1814 		}
1815 		pswap = &swap->swb_hnext;
1816 	}
1817 	return (pswap);
1818 }
1819 
1820 /*
1821  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1822  *
1823  *	We first convert the object to a swap object if it is a default
1824  *	object.
1825  *
1826  *	The specified swapblk is added to the object's swap metadata.  If
1827  *	the swapblk is not valid, it is freed instead.  Any previously
1828  *	assigned swapblk is freed.
1829  *
1830  *	This routine must be called at splvm(), except when used to convert
1831  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1832  */
1833 static void
1834 swp_pager_meta_build(
1835 	vm_object_t object,
1836 	vm_pindex_t pindex,
1837 	daddr_t swapblk
1838 ) {
1839 	struct swblock *swap;
1840 	struct swblock **pswap;
1841 	int idx;
1842 
1843 	GIANT_REQUIRED;
1844 	/*
1845 	 * Convert default object to swap object if necessary
1846 	 */
1847 	if (object->type != OBJT_SWAP) {
1848 		object->type = OBJT_SWAP;
1849 		object->un_pager.swp.swp_bcount = 0;
1850 
1851 		mtx_lock(&sw_alloc_mtx);
1852 		if (object->handle != NULL) {
1853 			TAILQ_INSERT_TAIL(
1854 			    NOBJLIST(object->handle),
1855 			    object,
1856 			    pager_object_list
1857 			);
1858 		} else {
1859 			TAILQ_INSERT_TAIL(
1860 			    &swap_pager_un_object_list,
1861 			    object,
1862 			    pager_object_list
1863 			);
1864 		}
1865 		mtx_unlock(&sw_alloc_mtx);
1866 	}
1867 
1868 	/*
1869 	 * Locate hash entry.  If not found create, but if we aren't adding
1870 	 * anything just return.  If we run out of space in the map we wait
1871 	 * and, since the hash table may have changed, retry.
1872 	 */
1873 retry:
1874 	pswap = swp_pager_hash(object, pindex);
1875 
1876 	if ((swap = *pswap) == NULL) {
1877 		int i;
1878 
1879 		if (swapblk == SWAPBLK_NONE)
1880 			return;
1881 
1882 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1883 		if (swap == NULL) {
1884 			VM_WAIT;
1885 			goto retry;
1886 		}
1887 
1888 		swap->swb_hnext = NULL;
1889 		swap->swb_object = object;
1890 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1891 		swap->swb_count = 0;
1892 
1893 		++object->un_pager.swp.swp_bcount;
1894 
1895 		for (i = 0; i < SWAP_META_PAGES; ++i)
1896 			swap->swb_pages[i] = SWAPBLK_NONE;
1897 	}
1898 
1899 	/*
1900 	 * Delete prior contents of metadata
1901 	 */
1902 	idx = pindex & SWAP_META_MASK;
1903 
1904 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1905 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1906 		--swap->swb_count;
1907 	}
1908 
1909 	/*
1910 	 * Enter block into metadata
1911 	 */
1912 	swap->swb_pages[idx] = swapblk;
1913 	if (swapblk != SWAPBLK_NONE)
1914 		++swap->swb_count;
1915 }
1916 
1917 /*
1918  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1919  *
1920  *	The requested range of blocks is freed, with any associated swap
1921  *	returned to the swap bitmap.
1922  *
1923  *	This routine will free swap metadata structures as they are cleaned
1924  *	out.  This routine does *NOT* operate on swap metadata associated
1925  *	with resident pages.
1926  *
1927  *	This routine must be called at splvm()
1928  */
1929 static void
1930 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1931 {
1932 	GIANT_REQUIRED;
1933 
1934 	if (object->type != OBJT_SWAP)
1935 		return;
1936 
1937 	while (count > 0) {
1938 		struct swblock **pswap;
1939 		struct swblock *swap;
1940 
1941 		pswap = swp_pager_hash(object, index);
1942 
1943 		if ((swap = *pswap) != NULL) {
1944 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1945 
1946 			if (v != SWAPBLK_NONE) {
1947 				swp_pager_freeswapspace(v, 1);
1948 				swap->swb_pages[index & SWAP_META_MASK] =
1949 					SWAPBLK_NONE;
1950 				if (--swap->swb_count == 0) {
1951 					*pswap = swap->swb_hnext;
1952 					uma_zfree(swap_zone, swap);
1953 					--object->un_pager.swp.swp_bcount;
1954 				}
1955 			}
1956 			--count;
1957 			++index;
1958 		} else {
1959 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1960 			count -= n;
1961 			index += n;
1962 		}
1963 	}
1964 }
1965 
1966 /*
1967  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1968  *
1969  *	This routine locates and destroys all swap metadata associated with
1970  *	an object.
1971  *
1972  *	This routine must be called at splvm()
1973  */
1974 static void
1975 swp_pager_meta_free_all(vm_object_t object)
1976 {
1977 	daddr_t index = 0;
1978 
1979 	GIANT_REQUIRED;
1980 
1981 	if (object->type != OBJT_SWAP)
1982 		return;
1983 
1984 	while (object->un_pager.swp.swp_bcount) {
1985 		struct swblock **pswap;
1986 		struct swblock *swap;
1987 
1988 		pswap = swp_pager_hash(object, index);
1989 		if ((swap = *pswap) != NULL) {
1990 			int i;
1991 
1992 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1993 				daddr_t v = swap->swb_pages[i];
1994 				if (v != SWAPBLK_NONE) {
1995 					--swap->swb_count;
1996 					swp_pager_freeswapspace(v, 1);
1997 				}
1998 			}
1999 			if (swap->swb_count != 0)
2000 				panic("swap_pager_meta_free_all: swb_count != 0");
2001 			*pswap = swap->swb_hnext;
2002 			uma_zfree(swap_zone, swap);
2003 			--object->un_pager.swp.swp_bcount;
2004 		}
2005 		index += SWAP_META_PAGES;
2006 		if (index > 0x20000000)
2007 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
2008 	}
2009 }
2010 
2011 /*
2012  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2013  *
2014  *	This routine is capable of looking up, popping, or freeing
2015  *	swapblk assignments in the swap meta data or in the vm_page_t.
2016  *	The routine typically returns the swapblk being looked-up, or popped,
2017  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2018  *	was invalid.  This routine will automatically free any invalid
2019  *	meta-data swapblks.
2020  *
2021  *	It is not possible to store invalid swapblks in the swap meta data
2022  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2023  *
2024  *	When acting on a busy resident page and paging is in progress, we
2025  *	have to wait until paging is complete but otherwise can act on the
2026  *	busy page.
2027  *
2028  *	This routine must be called at splvm().
2029  *
2030  *	SWM_FREE	remove and free swap block from metadata
2031  *	SWM_POP		remove from meta data but do not free.. pop it out
2032  */
2033 static daddr_t
2034 swp_pager_meta_ctl(
2035 	vm_object_t object,
2036 	vm_pindex_t pindex,
2037 	int flags
2038 ) {
2039 	struct swblock **pswap;
2040 	struct swblock *swap;
2041 	daddr_t r1;
2042 	int idx;
2043 
2044 	GIANT_REQUIRED;
2045 	/*
2046 	 * The meta data only exists of the object is OBJT_SWAP
2047 	 * and even then might not be allocated yet.
2048 	 */
2049 	if (object->type != OBJT_SWAP)
2050 		return (SWAPBLK_NONE);
2051 
2052 	r1 = SWAPBLK_NONE;
2053 	pswap = swp_pager_hash(object, pindex);
2054 
2055 	if ((swap = *pswap) != NULL) {
2056 		idx = pindex & SWAP_META_MASK;
2057 		r1 = swap->swb_pages[idx];
2058 
2059 		if (r1 != SWAPBLK_NONE) {
2060 			if (flags & SWM_FREE) {
2061 				swp_pager_freeswapspace(r1, 1);
2062 				r1 = SWAPBLK_NONE;
2063 			}
2064 			if (flags & (SWM_FREE|SWM_POP)) {
2065 				swap->swb_pages[idx] = SWAPBLK_NONE;
2066 				if (--swap->swb_count == 0) {
2067 					*pswap = swap->swb_hnext;
2068 					uma_zfree(swap_zone, swap);
2069 					--object->un_pager.swp.swp_bcount;
2070 				}
2071 			}
2072 		}
2073 	}
2074 	return (r1);
2075 }
2076 
2077 /********************************************************
2078  *		CHAINING FUNCTIONS			*
2079  ********************************************************
2080  *
2081  *	These functions support recursion of I/O operations
2082  *	on bp's, typically by chaining one or more 'child' bp's
2083  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
2084  *	chaining is possible.
2085  */
2086 
2087 /*
2088  *	vm_pager_chain_iodone:
2089  *
2090  *	io completion routine for child bp.  Currently we fudge a bit
2091  *	on dealing with b_resid.   Since users of these routines may issue
2092  *	multiple children simultaneously, sequencing of the error can be lost.
2093  */
2094 static void
2095 vm_pager_chain_iodone(struct buf *nbp)
2096 {
2097 	struct bio *bp;
2098 	u_int *count;
2099 
2100 	bp = nbp->b_caller1;
2101 	count = (u_int *)&(bp->bio_driver1);
2102 	if (bp != NULL) {
2103 		if (nbp->b_ioflags & BIO_ERROR) {
2104 			bp->bio_flags |= BIO_ERROR;
2105 			bp->bio_error = nbp->b_error;
2106 		} else if (nbp->b_resid != 0) {
2107 			bp->bio_flags |= BIO_ERROR;
2108 			bp->bio_error = EINVAL;
2109 		} else {
2110 			bp->bio_resid -= nbp->b_bcount;
2111 		}
2112 		nbp->b_caller1 = NULL;
2113 		--(*count);
2114 		if (bp->bio_flags & BIO_FLAG1) {
2115 			bp->bio_flags &= ~BIO_FLAG1;
2116 			wakeup(bp);
2117 		}
2118 	}
2119 	nbp->b_flags |= B_DONE;
2120 	nbp->b_flags &= ~B_ASYNC;
2121 	relpbuf(nbp, NULL);
2122 }
2123 
2124 /*
2125  *	getchainbuf:
2126  *
2127  *	Obtain a physical buffer and chain it to its parent buffer.  When
2128  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
2129  *	automatically propagated to the parent
2130  */
2131 static struct buf *
2132 getchainbuf(struct bio *bp, struct vnode *vp, int flags)
2133 {
2134 	struct buf *nbp;
2135 	u_int *count;
2136 
2137 	GIANT_REQUIRED;
2138 	nbp = getpbuf(NULL);
2139 	count = (u_int *)&(bp->bio_driver1);
2140 
2141 	nbp->b_caller1 = bp;
2142 	++(*count);
2143 
2144 	if (*count > 4)
2145 		waitchainbuf(bp, 4, 0);
2146 
2147 	nbp->b_iocmd = bp->bio_cmd;
2148 	nbp->b_ioflags = 0;
2149 	nbp->b_flags = flags;
2150 	nbp->b_rcred = crhold(thread0.td_ucred);
2151 	nbp->b_wcred = crhold(thread0.td_ucred);
2152 	nbp->b_iodone = vm_pager_chain_iodone;
2153 
2154 	if (vp)
2155 		pbgetvp(vp, nbp);
2156 	return (nbp);
2157 }
2158 
2159 static void
2160 flushchainbuf(struct buf *nbp)
2161 {
2162 	GIANT_REQUIRED;
2163 	if (nbp->b_bcount) {
2164 		nbp->b_bufsize = nbp->b_bcount;
2165 		if (nbp->b_iocmd == BIO_WRITE)
2166 			nbp->b_dirtyend = nbp->b_bcount;
2167 		BUF_KERNPROC(nbp);
2168 		VOP_STRATEGY(nbp->b_vp, nbp);
2169 	} else {
2170 		bufdone(nbp);
2171 	}
2172 }
2173 
2174 static void
2175 waitchainbuf(struct bio *bp, int limit, int done)
2176 {
2177  	int s;
2178 	u_int *count;
2179 
2180 	GIANT_REQUIRED;
2181 	count = (u_int *)&(bp->bio_driver1);
2182 	s = splbio();
2183 	while (*count > limit) {
2184 		bp->bio_flags |= BIO_FLAG1;
2185 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
2186 	}
2187 	if (done) {
2188 		if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) {
2189 			bp->bio_flags |= BIO_ERROR;
2190 			bp->bio_error = EINVAL;
2191 		}
2192 		biodone(bp);
2193 	}
2194 	splx(s);
2195 }
2196 
2197