1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/racct.h> 90 #include <sys/resource.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/sysctl.h> 94 #include <sys/sysproto.h> 95 #include <sys/blist.h> 96 #include <sys/lock.h> 97 #include <sys/sx.h> 98 #include <sys/vmmeter.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #include <vm/vm.h> 103 #include <vm/pmap.h> 104 #include <vm/vm_map.h> 105 #include <vm/vm_kern.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_page.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_pageout.h> 110 #include <vm/vm_param.h> 111 #include <vm/swap_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/uma.h> 114 115 #include <geom/geom.h> 116 117 /* 118 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, 16 119 * or 32 pages per allocation. 120 * The 32-page limit is due to the radix code (kern/subr_blist.c). 121 */ 122 #ifndef MAX_PAGEOUT_CLUSTER 123 #define MAX_PAGEOUT_CLUSTER 16 124 #endif 125 126 #if !defined(SWB_NPAGES) 127 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 128 #endif 129 130 /* 131 * The swblock structure maps an object and a small, fixed-size range 132 * of page indices to disk addresses within a swap area. 133 * The collection of these mappings is implemented as a hash table. 134 * Unused disk addresses within a swap area are allocated and managed 135 * using a blist. 136 */ 137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 138 #define SWAP_META_PAGES (SWB_NPAGES * 2) 139 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 140 141 struct swblock { 142 struct swblock *swb_hnext; 143 vm_object_t swb_object; 144 vm_pindex_t swb_index; 145 int swb_count; 146 daddr_t swb_pages[SWAP_META_PAGES]; 147 }; 148 149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 150 static struct mtx sw_dev_mtx; 151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 152 static struct swdevt *swdevhd; /* Allocate from here next */ 153 static int nswapdev; /* Number of swap devices */ 154 int swap_pager_avail; 155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 156 157 static vm_ooffset_t swap_total; 158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 159 "Total amount of available swap storage."); 160 static vm_ooffset_t swap_reserved; 161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 162 "Amount of swap storage needed to back all allocated anonymous memory."); 163 static int overcommit = 0; 164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 165 "Configure virtual memory overcommit behavior. See tuning(7) " 166 "for details."); 167 168 /* bits from overcommit */ 169 #define SWAP_RESERVE_FORCE_ON (1 << 0) 170 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 171 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 172 173 int 174 swap_reserve(vm_ooffset_t incr) 175 { 176 177 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 178 } 179 180 int 181 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 182 { 183 vm_ooffset_t r, s; 184 int res, error; 185 static int curfail; 186 static struct timeval lastfail; 187 struct uidinfo *uip; 188 189 uip = cred->cr_ruidinfo; 190 191 if (incr & PAGE_MASK) 192 panic("swap_reserve: & PAGE_MASK"); 193 194 #ifdef RACCT 195 PROC_LOCK(curproc); 196 error = racct_add(curproc, RACCT_SWAP, incr); 197 PROC_UNLOCK(curproc); 198 if (error != 0) 199 return (0); 200 #endif 201 202 res = 0; 203 mtx_lock(&sw_dev_mtx); 204 r = swap_reserved + incr; 205 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 206 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count; 207 s *= PAGE_SIZE; 208 } else 209 s = 0; 210 s += swap_total; 211 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 212 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 213 res = 1; 214 swap_reserved = r; 215 } 216 mtx_unlock(&sw_dev_mtx); 217 218 if (res) { 219 PROC_LOCK(curproc); 220 UIDINFO_VMSIZE_LOCK(uip); 221 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 222 uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) && 223 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 224 res = 0; 225 else 226 uip->ui_vmsize += incr; 227 UIDINFO_VMSIZE_UNLOCK(uip); 228 PROC_UNLOCK(curproc); 229 if (!res) { 230 mtx_lock(&sw_dev_mtx); 231 swap_reserved -= incr; 232 mtx_unlock(&sw_dev_mtx); 233 } 234 } 235 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 236 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 237 uip->ui_uid, curproc->p_pid, incr); 238 } 239 240 #ifdef RACCT 241 if (!res) { 242 PROC_LOCK(curproc); 243 racct_sub(curproc, RACCT_SWAP, incr); 244 PROC_UNLOCK(curproc); 245 } 246 #endif 247 248 return (res); 249 } 250 251 void 252 swap_reserve_force(vm_ooffset_t incr) 253 { 254 struct uidinfo *uip; 255 256 mtx_lock(&sw_dev_mtx); 257 swap_reserved += incr; 258 mtx_unlock(&sw_dev_mtx); 259 260 #ifdef RACCT 261 PROC_LOCK(curproc); 262 racct_add_force(curproc, RACCT_SWAP, incr); 263 PROC_UNLOCK(curproc); 264 #endif 265 266 uip = curthread->td_ucred->cr_ruidinfo; 267 PROC_LOCK(curproc); 268 UIDINFO_VMSIZE_LOCK(uip); 269 uip->ui_vmsize += incr; 270 UIDINFO_VMSIZE_UNLOCK(uip); 271 PROC_UNLOCK(curproc); 272 } 273 274 void 275 swap_release(vm_ooffset_t decr) 276 { 277 struct ucred *cred; 278 279 PROC_LOCK(curproc); 280 cred = curthread->td_ucred; 281 swap_release_by_cred(decr, cred); 282 PROC_UNLOCK(curproc); 283 } 284 285 void 286 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 287 { 288 struct uidinfo *uip; 289 290 uip = cred->cr_ruidinfo; 291 292 if (decr & PAGE_MASK) 293 panic("swap_release: & PAGE_MASK"); 294 295 mtx_lock(&sw_dev_mtx); 296 if (swap_reserved < decr) 297 panic("swap_reserved < decr"); 298 swap_reserved -= decr; 299 mtx_unlock(&sw_dev_mtx); 300 301 UIDINFO_VMSIZE_LOCK(uip); 302 if (uip->ui_vmsize < decr) 303 printf("negative vmsize for uid = %d\n", uip->ui_uid); 304 uip->ui_vmsize -= decr; 305 UIDINFO_VMSIZE_UNLOCK(uip); 306 307 racct_sub_cred(cred, RACCT_SWAP, decr); 308 } 309 310 static void swapdev_strategy(struct buf *, struct swdevt *sw); 311 312 #define SWM_FREE 0x02 /* free, period */ 313 #define SWM_POP 0x04 /* pop out */ 314 315 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 316 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 317 static int nsw_rcount; /* free read buffers */ 318 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 319 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 320 static int nsw_wcount_async_max;/* assigned maximum */ 321 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 322 323 static struct swblock **swhash; 324 static int swhash_mask; 325 static struct mtx swhash_mtx; 326 327 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 328 static struct sx sw_alloc_sx; 329 330 331 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 332 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 333 334 /* 335 * "named" and "unnamed" anon region objects. Try to reduce the overhead 336 * of searching a named list by hashing it just a little. 337 */ 338 339 #define NOBJLISTS 8 340 341 #define NOBJLIST(handle) \ 342 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 343 344 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 345 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 346 static uma_zone_t swap_zone; 347 348 /* 349 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 350 * calls hooked from other parts of the VM system and do not appear here. 351 * (see vm/swap_pager.h). 352 */ 353 static vm_object_t 354 swap_pager_alloc(void *handle, vm_ooffset_t size, 355 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 356 static void swap_pager_dealloc(vm_object_t object); 357 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 358 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 359 static boolean_t 360 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 361 static void swap_pager_init(void); 362 static void swap_pager_unswapped(vm_page_t); 363 static void swap_pager_swapoff(struct swdevt *sp); 364 365 struct pagerops swappagerops = { 366 .pgo_init = swap_pager_init, /* early system initialization of pager */ 367 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 368 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 369 .pgo_getpages = swap_pager_getpages, /* pagein */ 370 .pgo_putpages = swap_pager_putpages, /* pageout */ 371 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 372 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 373 }; 374 375 /* 376 * dmmax is in page-sized chunks with the new swap system. It was 377 * dev-bsized chunks in the old. dmmax is always a power of 2. 378 * 379 * swap_*() routines are externally accessible. swp_*() routines are 380 * internal. 381 */ 382 static int dmmax; 383 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 384 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 385 386 SYSCTL_INT(_vm, OID_AUTO, dmmax, 387 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 388 389 static void swp_sizecheck(void); 390 static void swp_pager_async_iodone(struct buf *bp); 391 static int swapongeom(struct thread *, struct vnode *); 392 static int swaponvp(struct thread *, struct vnode *, u_long); 393 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 394 395 /* 396 * Swap bitmap functions 397 */ 398 static void swp_pager_freeswapspace(daddr_t blk, int npages); 399 static daddr_t swp_pager_getswapspace(int npages); 400 401 /* 402 * Metadata functions 403 */ 404 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 405 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 406 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 407 static void swp_pager_meta_free_all(vm_object_t); 408 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 409 410 static void 411 swp_pager_free_nrpage(vm_page_t m) 412 { 413 414 vm_page_lock(m); 415 if (m->wire_count == 0) 416 vm_page_free(m); 417 vm_page_unlock(m); 418 } 419 420 /* 421 * SWP_SIZECHECK() - update swap_pager_full indication 422 * 423 * update the swap_pager_almost_full indication and warn when we are 424 * about to run out of swap space, using lowat/hiwat hysteresis. 425 * 426 * Clear swap_pager_full ( task killing ) indication when lowat is met. 427 * 428 * No restrictions on call 429 * This routine may not block. 430 */ 431 static void 432 swp_sizecheck(void) 433 { 434 435 if (swap_pager_avail < nswap_lowat) { 436 if (swap_pager_almost_full == 0) { 437 printf("swap_pager: out of swap space\n"); 438 swap_pager_almost_full = 1; 439 } 440 } else { 441 swap_pager_full = 0; 442 if (swap_pager_avail > nswap_hiwat) 443 swap_pager_almost_full = 0; 444 } 445 } 446 447 /* 448 * SWP_PAGER_HASH() - hash swap meta data 449 * 450 * This is an helper function which hashes the swapblk given 451 * the object and page index. It returns a pointer to a pointer 452 * to the object, or a pointer to a NULL pointer if it could not 453 * find a swapblk. 454 */ 455 static struct swblock ** 456 swp_pager_hash(vm_object_t object, vm_pindex_t index) 457 { 458 struct swblock **pswap; 459 struct swblock *swap; 460 461 index &= ~(vm_pindex_t)SWAP_META_MASK; 462 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 463 while ((swap = *pswap) != NULL) { 464 if (swap->swb_object == object && 465 swap->swb_index == index 466 ) { 467 break; 468 } 469 pswap = &swap->swb_hnext; 470 } 471 return (pswap); 472 } 473 474 /* 475 * SWAP_PAGER_INIT() - initialize the swap pager! 476 * 477 * Expected to be started from system init. NOTE: This code is run 478 * before much else so be careful what you depend on. Most of the VM 479 * system has yet to be initialized at this point. 480 */ 481 static void 482 swap_pager_init(void) 483 { 484 /* 485 * Initialize object lists 486 */ 487 int i; 488 489 for (i = 0; i < NOBJLISTS; ++i) 490 TAILQ_INIT(&swap_pager_object_list[i]); 491 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 492 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 493 494 /* 495 * Device Stripe, in PAGE_SIZE'd blocks 496 */ 497 dmmax = SWB_NPAGES * 2; 498 } 499 500 /* 501 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 502 * 503 * Expected to be started from pageout process once, prior to entering 504 * its main loop. 505 */ 506 void 507 swap_pager_swap_init(void) 508 { 509 int n, n2; 510 511 /* 512 * Number of in-transit swap bp operations. Don't 513 * exhaust the pbufs completely. Make sure we 514 * initialize workable values (0 will work for hysteresis 515 * but it isn't very efficient). 516 * 517 * The nsw_cluster_max is constrained by the bp->b_pages[] 518 * array (MAXPHYS/PAGE_SIZE) and our locally defined 519 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 520 * constrained by the swap device interleave stripe size. 521 * 522 * Currently we hardwire nsw_wcount_async to 4. This limit is 523 * designed to prevent other I/O from having high latencies due to 524 * our pageout I/O. The value 4 works well for one or two active swap 525 * devices but is probably a little low if you have more. Even so, 526 * a higher value would probably generate only a limited improvement 527 * with three or four active swap devices since the system does not 528 * typically have to pageout at extreme bandwidths. We will want 529 * at least 2 per swap devices, and 4 is a pretty good value if you 530 * have one NFS swap device due to the command/ack latency over NFS. 531 * So it all works out pretty well. 532 */ 533 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 534 535 mtx_lock(&pbuf_mtx); 536 nsw_rcount = (nswbuf + 1) / 2; 537 nsw_wcount_sync = (nswbuf + 3) / 4; 538 nsw_wcount_async = 4; 539 nsw_wcount_async_max = nsw_wcount_async; 540 mtx_unlock(&pbuf_mtx); 541 542 /* 543 * Initialize our zone. Right now I'm just guessing on the number 544 * we need based on the number of pages in the system. Each swblock 545 * can hold 16 pages, so this is probably overkill. This reservation 546 * is typically limited to around 32MB by default. 547 */ 548 n = cnt.v_page_count / 2; 549 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 550 n = maxswzone / sizeof(struct swblock); 551 n2 = n; 552 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 553 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 554 if (swap_zone == NULL) 555 panic("failed to create swap_zone."); 556 do { 557 if (uma_zone_reserve_kva(swap_zone, n)) 558 break; 559 /* 560 * if the allocation failed, try a zone two thirds the 561 * size of the previous attempt. 562 */ 563 n -= ((n + 2) / 3); 564 } while (n > 0); 565 if (n2 != n) 566 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 567 n2 = n; 568 569 /* 570 * Initialize our meta-data hash table. The swapper does not need to 571 * be quite as efficient as the VM system, so we do not use an 572 * oversized hash table. 573 * 574 * n: size of hash table, must be power of 2 575 * swhash_mask: hash table index mask 576 */ 577 for (n = 1; n < n2 / 8; n *= 2) 578 ; 579 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 580 swhash_mask = n - 1; 581 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 582 } 583 584 /* 585 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 586 * its metadata structures. 587 * 588 * This routine is called from the mmap and fork code to create a new 589 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 590 * and then converting it with swp_pager_meta_build(). 591 * 592 * This routine may block in vm_object_allocate() and create a named 593 * object lookup race, so we must interlock. 594 * 595 * MPSAFE 596 */ 597 static vm_object_t 598 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 599 vm_ooffset_t offset, struct ucred *cred) 600 { 601 vm_object_t object; 602 vm_pindex_t pindex; 603 604 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 605 if (handle) { 606 mtx_lock(&Giant); 607 /* 608 * Reference existing named region or allocate new one. There 609 * should not be a race here against swp_pager_meta_build() 610 * as called from vm_page_remove() in regards to the lookup 611 * of the handle. 612 */ 613 sx_xlock(&sw_alloc_sx); 614 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 615 if (object == NULL) { 616 if (cred != NULL) { 617 if (!swap_reserve_by_cred(size, cred)) { 618 sx_xunlock(&sw_alloc_sx); 619 mtx_unlock(&Giant); 620 return (NULL); 621 } 622 crhold(cred); 623 } 624 object = vm_object_allocate(OBJT_DEFAULT, pindex); 625 VM_OBJECT_WLOCK(object); 626 object->handle = handle; 627 if (cred != NULL) { 628 object->cred = cred; 629 object->charge = size; 630 } 631 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 632 VM_OBJECT_WUNLOCK(object); 633 } 634 sx_xunlock(&sw_alloc_sx); 635 mtx_unlock(&Giant); 636 } else { 637 if (cred != NULL) { 638 if (!swap_reserve_by_cred(size, cred)) 639 return (NULL); 640 crhold(cred); 641 } 642 object = vm_object_allocate(OBJT_DEFAULT, pindex); 643 VM_OBJECT_WLOCK(object); 644 if (cred != NULL) { 645 object->cred = cred; 646 object->charge = size; 647 } 648 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 649 VM_OBJECT_WUNLOCK(object); 650 } 651 return (object); 652 } 653 654 /* 655 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 656 * 657 * The swap backing for the object is destroyed. The code is 658 * designed such that we can reinstantiate it later, but this 659 * routine is typically called only when the entire object is 660 * about to be destroyed. 661 * 662 * The object must be locked. 663 */ 664 static void 665 swap_pager_dealloc(vm_object_t object) 666 { 667 668 /* 669 * Remove from list right away so lookups will fail if we block for 670 * pageout completion. 671 */ 672 if (object->handle != NULL) { 673 mtx_lock(&sw_alloc_mtx); 674 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 675 mtx_unlock(&sw_alloc_mtx); 676 } 677 678 VM_OBJECT_ASSERT_WLOCKED(object); 679 vm_object_pip_wait(object, "swpdea"); 680 681 /* 682 * Free all remaining metadata. We only bother to free it from 683 * the swap meta data. We do not attempt to free swapblk's still 684 * associated with vm_page_t's for this object. We do not care 685 * if paging is still in progress on some objects. 686 */ 687 swp_pager_meta_free_all(object); 688 } 689 690 /************************************************************************ 691 * SWAP PAGER BITMAP ROUTINES * 692 ************************************************************************/ 693 694 /* 695 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 696 * 697 * Allocate swap for the requested number of pages. The starting 698 * swap block number (a page index) is returned or SWAPBLK_NONE 699 * if the allocation failed. 700 * 701 * Also has the side effect of advising that somebody made a mistake 702 * when they configured swap and didn't configure enough. 703 * 704 * This routine may not sleep. 705 * 706 * We allocate in round-robin fashion from the configured devices. 707 */ 708 static daddr_t 709 swp_pager_getswapspace(int npages) 710 { 711 daddr_t blk; 712 struct swdevt *sp; 713 int i; 714 715 blk = SWAPBLK_NONE; 716 mtx_lock(&sw_dev_mtx); 717 sp = swdevhd; 718 for (i = 0; i < nswapdev; i++) { 719 if (sp == NULL) 720 sp = TAILQ_FIRST(&swtailq); 721 if (!(sp->sw_flags & SW_CLOSING)) { 722 blk = blist_alloc(sp->sw_blist, npages); 723 if (blk != SWAPBLK_NONE) { 724 blk += sp->sw_first; 725 sp->sw_used += npages; 726 swap_pager_avail -= npages; 727 swp_sizecheck(); 728 swdevhd = TAILQ_NEXT(sp, sw_list); 729 goto done; 730 } 731 } 732 sp = TAILQ_NEXT(sp, sw_list); 733 } 734 if (swap_pager_full != 2) { 735 printf("swap_pager_getswapspace(%d): failed\n", npages); 736 swap_pager_full = 2; 737 swap_pager_almost_full = 1; 738 } 739 swdevhd = NULL; 740 done: 741 mtx_unlock(&sw_dev_mtx); 742 return (blk); 743 } 744 745 static int 746 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 747 { 748 749 return (blk >= sp->sw_first && blk < sp->sw_end); 750 } 751 752 static void 753 swp_pager_strategy(struct buf *bp) 754 { 755 struct swdevt *sp; 756 757 mtx_lock(&sw_dev_mtx); 758 TAILQ_FOREACH(sp, &swtailq, sw_list) { 759 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 760 mtx_unlock(&sw_dev_mtx); 761 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 762 unmapped_buf_allowed) { 763 bp->b_kvaalloc = bp->b_data; 764 bp->b_data = unmapped_buf; 765 bp->b_kvabase = unmapped_buf; 766 bp->b_offset = 0; 767 bp->b_flags |= B_UNMAPPED; 768 } else { 769 pmap_qenter((vm_offset_t)bp->b_data, 770 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 771 } 772 sp->sw_strategy(bp, sp); 773 return; 774 } 775 } 776 panic("Swapdev not found"); 777 } 778 779 780 /* 781 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 782 * 783 * This routine returns the specified swap blocks back to the bitmap. 784 * 785 * This routine may not sleep. 786 */ 787 static void 788 swp_pager_freeswapspace(daddr_t blk, int npages) 789 { 790 struct swdevt *sp; 791 792 mtx_lock(&sw_dev_mtx); 793 TAILQ_FOREACH(sp, &swtailq, sw_list) { 794 if (blk >= sp->sw_first && blk < sp->sw_end) { 795 sp->sw_used -= npages; 796 /* 797 * If we are attempting to stop swapping on 798 * this device, we don't want to mark any 799 * blocks free lest they be reused. 800 */ 801 if ((sp->sw_flags & SW_CLOSING) == 0) { 802 blist_free(sp->sw_blist, blk - sp->sw_first, 803 npages); 804 swap_pager_avail += npages; 805 swp_sizecheck(); 806 } 807 mtx_unlock(&sw_dev_mtx); 808 return; 809 } 810 } 811 panic("Swapdev not found"); 812 } 813 814 /* 815 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 816 * range within an object. 817 * 818 * This is a globally accessible routine. 819 * 820 * This routine removes swapblk assignments from swap metadata. 821 * 822 * The external callers of this routine typically have already destroyed 823 * or renamed vm_page_t's associated with this range in the object so 824 * we should be ok. 825 * 826 * The object must be locked. 827 */ 828 void 829 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 830 { 831 832 swp_pager_meta_free(object, start, size); 833 } 834 835 /* 836 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 837 * 838 * Assigns swap blocks to the specified range within the object. The 839 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 840 * 841 * Returns 0 on success, -1 on failure. 842 */ 843 int 844 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 845 { 846 int n = 0; 847 daddr_t blk = SWAPBLK_NONE; 848 vm_pindex_t beg = start; /* save start index */ 849 850 VM_OBJECT_WLOCK(object); 851 while (size) { 852 if (n == 0) { 853 n = BLIST_MAX_ALLOC; 854 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 855 n >>= 1; 856 if (n == 0) { 857 swp_pager_meta_free(object, beg, start - beg); 858 VM_OBJECT_WUNLOCK(object); 859 return (-1); 860 } 861 } 862 } 863 swp_pager_meta_build(object, start, blk); 864 --size; 865 ++start; 866 ++blk; 867 --n; 868 } 869 swp_pager_meta_free(object, start, n); 870 VM_OBJECT_WUNLOCK(object); 871 return (0); 872 } 873 874 /* 875 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 876 * and destroy the source. 877 * 878 * Copy any valid swapblks from the source to the destination. In 879 * cases where both the source and destination have a valid swapblk, 880 * we keep the destination's. 881 * 882 * This routine is allowed to sleep. It may sleep allocating metadata 883 * indirectly through swp_pager_meta_build() or if paging is still in 884 * progress on the source. 885 * 886 * The source object contains no vm_page_t's (which is just as well) 887 * 888 * The source object is of type OBJT_SWAP. 889 * 890 * The source and destination objects must be locked. 891 * Both object locks may temporarily be released. 892 */ 893 void 894 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 895 vm_pindex_t offset, int destroysource) 896 { 897 vm_pindex_t i; 898 899 VM_OBJECT_ASSERT_WLOCKED(srcobject); 900 VM_OBJECT_ASSERT_WLOCKED(dstobject); 901 902 /* 903 * If destroysource is set, we remove the source object from the 904 * swap_pager internal queue now. 905 */ 906 if (destroysource) { 907 if (srcobject->handle != NULL) { 908 mtx_lock(&sw_alloc_mtx); 909 TAILQ_REMOVE( 910 NOBJLIST(srcobject->handle), 911 srcobject, 912 pager_object_list 913 ); 914 mtx_unlock(&sw_alloc_mtx); 915 } 916 } 917 918 /* 919 * transfer source to destination. 920 */ 921 for (i = 0; i < dstobject->size; ++i) { 922 daddr_t dstaddr; 923 924 /* 925 * Locate (without changing) the swapblk on the destination, 926 * unless it is invalid in which case free it silently, or 927 * if the destination is a resident page, in which case the 928 * source is thrown away. 929 */ 930 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 931 932 if (dstaddr == SWAPBLK_NONE) { 933 /* 934 * Destination has no swapblk and is not resident, 935 * copy source. 936 */ 937 daddr_t srcaddr; 938 939 srcaddr = swp_pager_meta_ctl( 940 srcobject, 941 i + offset, 942 SWM_POP 943 ); 944 945 if (srcaddr != SWAPBLK_NONE) { 946 /* 947 * swp_pager_meta_build() can sleep. 948 */ 949 vm_object_pip_add(srcobject, 1); 950 VM_OBJECT_WUNLOCK(srcobject); 951 vm_object_pip_add(dstobject, 1); 952 swp_pager_meta_build(dstobject, i, srcaddr); 953 vm_object_pip_wakeup(dstobject); 954 VM_OBJECT_WLOCK(srcobject); 955 vm_object_pip_wakeup(srcobject); 956 } 957 } else { 958 /* 959 * Destination has valid swapblk or it is represented 960 * by a resident page. We destroy the sourceblock. 961 */ 962 963 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 964 } 965 } 966 967 /* 968 * Free left over swap blocks in source. 969 * 970 * We have to revert the type to OBJT_DEFAULT so we do not accidently 971 * double-remove the object from the swap queues. 972 */ 973 if (destroysource) { 974 swp_pager_meta_free_all(srcobject); 975 /* 976 * Reverting the type is not necessary, the caller is going 977 * to destroy srcobject directly, but I'm doing it here 978 * for consistency since we've removed the object from its 979 * queues. 980 */ 981 srcobject->type = OBJT_DEFAULT; 982 } 983 } 984 985 /* 986 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 987 * the requested page. 988 * 989 * We determine whether good backing store exists for the requested 990 * page and return TRUE if it does, FALSE if it doesn't. 991 * 992 * If TRUE, we also try to determine how much valid, contiguous backing 993 * store exists before and after the requested page within a reasonable 994 * distance. We do not try to restrict it to the swap device stripe 995 * (that is handled in getpages/putpages). It probably isn't worth 996 * doing here. 997 */ 998 static boolean_t 999 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 1000 { 1001 daddr_t blk0; 1002 1003 VM_OBJECT_ASSERT_LOCKED(object); 1004 /* 1005 * do we have good backing store at the requested index ? 1006 */ 1007 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1008 1009 if (blk0 == SWAPBLK_NONE) { 1010 if (before) 1011 *before = 0; 1012 if (after) 1013 *after = 0; 1014 return (FALSE); 1015 } 1016 1017 /* 1018 * find backwards-looking contiguous good backing store 1019 */ 1020 if (before != NULL) { 1021 int i; 1022 1023 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1024 daddr_t blk; 1025 1026 if (i > pindex) 1027 break; 1028 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1029 if (blk != blk0 - i) 1030 break; 1031 } 1032 *before = (i - 1); 1033 } 1034 1035 /* 1036 * find forward-looking contiguous good backing store 1037 */ 1038 if (after != NULL) { 1039 int i; 1040 1041 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1042 daddr_t blk; 1043 1044 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1045 if (blk != blk0 + i) 1046 break; 1047 } 1048 *after = (i - 1); 1049 } 1050 return (TRUE); 1051 } 1052 1053 /* 1054 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1055 * 1056 * This removes any associated swap backing store, whether valid or 1057 * not, from the page. 1058 * 1059 * This routine is typically called when a page is made dirty, at 1060 * which point any associated swap can be freed. MADV_FREE also 1061 * calls us in a special-case situation 1062 * 1063 * NOTE!!! If the page is clean and the swap was valid, the caller 1064 * should make the page dirty before calling this routine. This routine 1065 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1066 * depends on it. 1067 * 1068 * This routine may not sleep. 1069 * 1070 * The object containing the page must be locked. 1071 */ 1072 static void 1073 swap_pager_unswapped(vm_page_t m) 1074 { 1075 1076 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1077 } 1078 1079 /* 1080 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1081 * 1082 * Attempt to retrieve (m, count) pages from backing store, but make 1083 * sure we retrieve at least m[reqpage]. We try to load in as large 1084 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1085 * belongs to the same object. 1086 * 1087 * The code is designed for asynchronous operation and 1088 * immediate-notification of 'reqpage' but tends not to be 1089 * used that way. Please do not optimize-out this algorithmic 1090 * feature, I intend to improve on it in the future. 1091 * 1092 * The parent has a single vm_object_pip_add() reference prior to 1093 * calling us and we should return with the same. 1094 * 1095 * The parent has BUSY'd the pages. We should return with 'm' 1096 * left busy, but the others adjusted. 1097 */ 1098 static int 1099 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1100 { 1101 struct buf *bp; 1102 vm_page_t mreq; 1103 int i; 1104 int j; 1105 daddr_t blk; 1106 1107 mreq = m[reqpage]; 1108 1109 KASSERT(mreq->object == object, 1110 ("swap_pager_getpages: object mismatch %p/%p", 1111 object, mreq->object)); 1112 1113 /* 1114 * Calculate range to retrieve. The pages have already been assigned 1115 * their swapblks. We require a *contiguous* range but we know it to 1116 * not span devices. If we do not supply it, bad things 1117 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1118 * loops are set up such that the case(s) are handled implicitly. 1119 * 1120 * The swp_*() calls must be made with the object locked. 1121 */ 1122 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1123 1124 for (i = reqpage - 1; i >= 0; --i) { 1125 daddr_t iblk; 1126 1127 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1128 if (blk != iblk + (reqpage - i)) 1129 break; 1130 } 1131 ++i; 1132 1133 for (j = reqpage + 1; j < count; ++j) { 1134 daddr_t jblk; 1135 1136 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1137 if (blk != jblk - (j - reqpage)) 1138 break; 1139 } 1140 1141 /* 1142 * free pages outside our collection range. Note: we never free 1143 * mreq, it must remain busy throughout. 1144 */ 1145 if (0 < i || j < count) { 1146 int k; 1147 1148 for (k = 0; k < i; ++k) 1149 swp_pager_free_nrpage(m[k]); 1150 for (k = j; k < count; ++k) 1151 swp_pager_free_nrpage(m[k]); 1152 } 1153 1154 /* 1155 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1156 * still busy, but the others unbusied. 1157 */ 1158 if (blk == SWAPBLK_NONE) 1159 return (VM_PAGER_FAIL); 1160 1161 /* 1162 * Getpbuf() can sleep. 1163 */ 1164 VM_OBJECT_WUNLOCK(object); 1165 /* 1166 * Get a swap buffer header to perform the IO 1167 */ 1168 bp = getpbuf(&nsw_rcount); 1169 bp->b_flags |= B_PAGING; 1170 1171 bp->b_iocmd = BIO_READ; 1172 bp->b_iodone = swp_pager_async_iodone; 1173 bp->b_rcred = crhold(thread0.td_ucred); 1174 bp->b_wcred = crhold(thread0.td_ucred); 1175 bp->b_blkno = blk - (reqpage - i); 1176 bp->b_bcount = PAGE_SIZE * (j - i); 1177 bp->b_bufsize = PAGE_SIZE * (j - i); 1178 bp->b_pager.pg_reqpage = reqpage - i; 1179 1180 VM_OBJECT_WLOCK(object); 1181 { 1182 int k; 1183 1184 for (k = i; k < j; ++k) { 1185 bp->b_pages[k - i] = m[k]; 1186 m[k]->oflags |= VPO_SWAPINPROG; 1187 } 1188 } 1189 bp->b_npages = j - i; 1190 1191 PCPU_INC(cnt.v_swapin); 1192 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1193 1194 /* 1195 * We still hold the lock on mreq, and our automatic completion routine 1196 * does not remove it. 1197 */ 1198 vm_object_pip_add(object, bp->b_npages); 1199 VM_OBJECT_WUNLOCK(object); 1200 1201 /* 1202 * perform the I/O. NOTE!!! bp cannot be considered valid after 1203 * this point because we automatically release it on completion. 1204 * Instead, we look at the one page we are interested in which we 1205 * still hold a lock on even through the I/O completion. 1206 * 1207 * The other pages in our m[] array are also released on completion, 1208 * so we cannot assume they are valid anymore either. 1209 * 1210 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1211 */ 1212 BUF_KERNPROC(bp); 1213 swp_pager_strategy(bp); 1214 1215 /* 1216 * wait for the page we want to complete. VPO_SWAPINPROG is always 1217 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1218 * is set in the meta-data. 1219 */ 1220 VM_OBJECT_WLOCK(object); 1221 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1222 mreq->oflags |= VPO_SWAPSLEEP; 1223 PCPU_INC(cnt.v_intrans); 1224 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP, 1225 "swread", hz * 20)) { 1226 printf( 1227 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1228 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1229 } 1230 } 1231 1232 /* 1233 * mreq is left busied after completion, but all the other pages 1234 * are freed. If we had an unrecoverable read error the page will 1235 * not be valid. 1236 */ 1237 if (mreq->valid != VM_PAGE_BITS_ALL) { 1238 return (VM_PAGER_ERROR); 1239 } else { 1240 return (VM_PAGER_OK); 1241 } 1242 1243 /* 1244 * A final note: in a low swap situation, we cannot deallocate swap 1245 * and mark a page dirty here because the caller is likely to mark 1246 * the page clean when we return, causing the page to possibly revert 1247 * to all-zero's later. 1248 */ 1249 } 1250 1251 /* 1252 * swap_pager_putpages: 1253 * 1254 * Assign swap (if necessary) and initiate I/O on the specified pages. 1255 * 1256 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1257 * are automatically converted to SWAP objects. 1258 * 1259 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1260 * vm_page reservation system coupled with properly written VFS devices 1261 * should ensure that no low-memory deadlock occurs. This is an area 1262 * which needs work. 1263 * 1264 * The parent has N vm_object_pip_add() references prior to 1265 * calling us and will remove references for rtvals[] that are 1266 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1267 * completion. 1268 * 1269 * The parent has soft-busy'd the pages it passes us and will unbusy 1270 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1271 * We need to unbusy the rest on I/O completion. 1272 */ 1273 void 1274 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1275 boolean_t sync, int *rtvals) 1276 { 1277 int i; 1278 int n = 0; 1279 1280 if (count && m[0]->object != object) { 1281 panic("swap_pager_putpages: object mismatch %p/%p", 1282 object, 1283 m[0]->object 1284 ); 1285 } 1286 1287 /* 1288 * Step 1 1289 * 1290 * Turn object into OBJT_SWAP 1291 * check for bogus sysops 1292 * force sync if not pageout process 1293 */ 1294 if (object->type != OBJT_SWAP) 1295 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1296 VM_OBJECT_WUNLOCK(object); 1297 1298 if (curproc != pageproc) 1299 sync = TRUE; 1300 1301 /* 1302 * Step 2 1303 * 1304 * Update nsw parameters from swap_async_max sysctl values. 1305 * Do not let the sysop crash the machine with bogus numbers. 1306 */ 1307 mtx_lock(&pbuf_mtx); 1308 if (swap_async_max != nsw_wcount_async_max) { 1309 int n; 1310 1311 /* 1312 * limit range 1313 */ 1314 if ((n = swap_async_max) > nswbuf / 2) 1315 n = nswbuf / 2; 1316 if (n < 1) 1317 n = 1; 1318 swap_async_max = n; 1319 1320 /* 1321 * Adjust difference ( if possible ). If the current async 1322 * count is too low, we may not be able to make the adjustment 1323 * at this time. 1324 */ 1325 n -= nsw_wcount_async_max; 1326 if (nsw_wcount_async + n >= 0) { 1327 nsw_wcount_async += n; 1328 nsw_wcount_async_max += n; 1329 wakeup(&nsw_wcount_async); 1330 } 1331 } 1332 mtx_unlock(&pbuf_mtx); 1333 1334 /* 1335 * Step 3 1336 * 1337 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1338 * The page is left dirty until the pageout operation completes 1339 * successfully. 1340 */ 1341 for (i = 0; i < count; i += n) { 1342 int j; 1343 struct buf *bp; 1344 daddr_t blk; 1345 1346 /* 1347 * Maximum I/O size is limited by a number of factors. 1348 */ 1349 n = min(BLIST_MAX_ALLOC, count - i); 1350 n = min(n, nsw_cluster_max); 1351 1352 /* 1353 * Get biggest block of swap we can. If we fail, fall 1354 * back and try to allocate a smaller block. Don't go 1355 * overboard trying to allocate space if it would overly 1356 * fragment swap. 1357 */ 1358 while ( 1359 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1360 n > 4 1361 ) { 1362 n >>= 1; 1363 } 1364 if (blk == SWAPBLK_NONE) { 1365 for (j = 0; j < n; ++j) 1366 rtvals[i+j] = VM_PAGER_FAIL; 1367 continue; 1368 } 1369 1370 /* 1371 * All I/O parameters have been satisfied, build the I/O 1372 * request and assign the swap space. 1373 */ 1374 if (sync == TRUE) { 1375 bp = getpbuf(&nsw_wcount_sync); 1376 } else { 1377 bp = getpbuf(&nsw_wcount_async); 1378 bp->b_flags = B_ASYNC; 1379 } 1380 bp->b_flags |= B_PAGING; 1381 bp->b_iocmd = BIO_WRITE; 1382 1383 bp->b_rcred = crhold(thread0.td_ucred); 1384 bp->b_wcred = crhold(thread0.td_ucred); 1385 bp->b_bcount = PAGE_SIZE * n; 1386 bp->b_bufsize = PAGE_SIZE * n; 1387 bp->b_blkno = blk; 1388 1389 VM_OBJECT_WLOCK(object); 1390 for (j = 0; j < n; ++j) { 1391 vm_page_t mreq = m[i+j]; 1392 1393 swp_pager_meta_build( 1394 mreq->object, 1395 mreq->pindex, 1396 blk + j 1397 ); 1398 vm_page_dirty(mreq); 1399 rtvals[i+j] = VM_PAGER_OK; 1400 1401 mreq->oflags |= VPO_SWAPINPROG; 1402 bp->b_pages[j] = mreq; 1403 } 1404 VM_OBJECT_WUNLOCK(object); 1405 bp->b_npages = n; 1406 /* 1407 * Must set dirty range for NFS to work. 1408 */ 1409 bp->b_dirtyoff = 0; 1410 bp->b_dirtyend = bp->b_bcount; 1411 1412 PCPU_INC(cnt.v_swapout); 1413 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1414 1415 /* 1416 * asynchronous 1417 * 1418 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1419 */ 1420 if (sync == FALSE) { 1421 bp->b_iodone = swp_pager_async_iodone; 1422 BUF_KERNPROC(bp); 1423 swp_pager_strategy(bp); 1424 1425 for (j = 0; j < n; ++j) 1426 rtvals[i+j] = VM_PAGER_PEND; 1427 /* restart outter loop */ 1428 continue; 1429 } 1430 1431 /* 1432 * synchronous 1433 * 1434 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1435 */ 1436 bp->b_iodone = bdone; 1437 swp_pager_strategy(bp); 1438 1439 /* 1440 * Wait for the sync I/O to complete, then update rtvals. 1441 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1442 * our async completion routine at the end, thus avoiding a 1443 * double-free. 1444 */ 1445 bwait(bp, PVM, "swwrt"); 1446 for (j = 0; j < n; ++j) 1447 rtvals[i+j] = VM_PAGER_PEND; 1448 /* 1449 * Now that we are through with the bp, we can call the 1450 * normal async completion, which frees everything up. 1451 */ 1452 swp_pager_async_iodone(bp); 1453 } 1454 VM_OBJECT_WLOCK(object); 1455 } 1456 1457 /* 1458 * swp_pager_async_iodone: 1459 * 1460 * Completion routine for asynchronous reads and writes from/to swap. 1461 * Also called manually by synchronous code to finish up a bp. 1462 * 1463 * This routine may not sleep. 1464 */ 1465 static void 1466 swp_pager_async_iodone(struct buf *bp) 1467 { 1468 int i; 1469 vm_object_t object = NULL; 1470 1471 /* 1472 * report error 1473 */ 1474 if (bp->b_ioflags & BIO_ERROR) { 1475 printf( 1476 "swap_pager: I/O error - %s failed; blkno %ld," 1477 "size %ld, error %d\n", 1478 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1479 (long)bp->b_blkno, 1480 (long)bp->b_bcount, 1481 bp->b_error 1482 ); 1483 } 1484 1485 /* 1486 * remove the mapping for kernel virtual 1487 */ 1488 if ((bp->b_flags & B_UNMAPPED) != 0) { 1489 bp->b_data = bp->b_kvaalloc; 1490 bp->b_kvabase = bp->b_kvaalloc; 1491 bp->b_flags &= ~B_UNMAPPED; 1492 } else 1493 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1494 1495 if (bp->b_npages) { 1496 object = bp->b_pages[0]->object; 1497 VM_OBJECT_WLOCK(object); 1498 } 1499 1500 /* 1501 * cleanup pages. If an error occurs writing to swap, we are in 1502 * very serious trouble. If it happens to be a disk error, though, 1503 * we may be able to recover by reassigning the swap later on. So 1504 * in this case we remove the m->swapblk assignment for the page 1505 * but do not free it in the rlist. The errornous block(s) are thus 1506 * never reallocated as swap. Redirty the page and continue. 1507 */ 1508 for (i = 0; i < bp->b_npages; ++i) { 1509 vm_page_t m = bp->b_pages[i]; 1510 1511 m->oflags &= ~VPO_SWAPINPROG; 1512 if (m->oflags & VPO_SWAPSLEEP) { 1513 m->oflags &= ~VPO_SWAPSLEEP; 1514 wakeup(&object->paging_in_progress); 1515 } 1516 1517 if (bp->b_ioflags & BIO_ERROR) { 1518 /* 1519 * If an error occurs I'd love to throw the swapblk 1520 * away without freeing it back to swapspace, so it 1521 * can never be used again. But I can't from an 1522 * interrupt. 1523 */ 1524 if (bp->b_iocmd == BIO_READ) { 1525 /* 1526 * When reading, reqpage needs to stay 1527 * locked for the parent, but all other 1528 * pages can be freed. We still want to 1529 * wakeup the parent waiting on the page, 1530 * though. ( also: pg_reqpage can be -1 and 1531 * not match anything ). 1532 * 1533 * We have to wake specifically requested pages 1534 * up too because we cleared VPO_SWAPINPROG and 1535 * someone may be waiting for that. 1536 * 1537 * NOTE: for reads, m->dirty will probably 1538 * be overridden by the original caller of 1539 * getpages so don't play cute tricks here. 1540 */ 1541 m->valid = 0; 1542 if (i != bp->b_pager.pg_reqpage) 1543 swp_pager_free_nrpage(m); 1544 else { 1545 vm_page_lock(m); 1546 vm_page_flash(m); 1547 vm_page_unlock(m); 1548 } 1549 /* 1550 * If i == bp->b_pager.pg_reqpage, do not wake 1551 * the page up. The caller needs to. 1552 */ 1553 } else { 1554 /* 1555 * If a write error occurs, reactivate page 1556 * so it doesn't clog the inactive list, 1557 * then finish the I/O. 1558 */ 1559 vm_page_dirty(m); 1560 vm_page_lock(m); 1561 vm_page_activate(m); 1562 vm_page_unlock(m); 1563 vm_page_sunbusy(m); 1564 } 1565 } else if (bp->b_iocmd == BIO_READ) { 1566 /* 1567 * NOTE: for reads, m->dirty will probably be 1568 * overridden by the original caller of getpages so 1569 * we cannot set them in order to free the underlying 1570 * swap in a low-swap situation. I don't think we'd 1571 * want to do that anyway, but it was an optimization 1572 * that existed in the old swapper for a time before 1573 * it got ripped out due to precisely this problem. 1574 * 1575 * If not the requested page then deactivate it. 1576 * 1577 * Note that the requested page, reqpage, is left 1578 * busied, but we still have to wake it up. The 1579 * other pages are released (unbusied) by 1580 * vm_page_xunbusy(). 1581 */ 1582 KASSERT(!pmap_page_is_mapped(m), 1583 ("swp_pager_async_iodone: page %p is mapped", m)); 1584 m->valid = VM_PAGE_BITS_ALL; 1585 KASSERT(m->dirty == 0, 1586 ("swp_pager_async_iodone: page %p is dirty", m)); 1587 1588 /* 1589 * We have to wake specifically requested pages 1590 * up too because we cleared VPO_SWAPINPROG and 1591 * could be waiting for it in getpages. However, 1592 * be sure to not unbusy getpages specifically 1593 * requested page - getpages expects it to be 1594 * left busy. 1595 */ 1596 if (i != bp->b_pager.pg_reqpage) { 1597 vm_page_lock(m); 1598 vm_page_deactivate(m); 1599 vm_page_unlock(m); 1600 vm_page_xunbusy(m); 1601 } else { 1602 vm_page_lock(m); 1603 vm_page_flash(m); 1604 vm_page_unlock(m); 1605 } 1606 } else { 1607 /* 1608 * For write success, clear the dirty 1609 * status, then finish the I/O ( which decrements the 1610 * busy count and possibly wakes waiter's up ). 1611 */ 1612 KASSERT(!pmap_page_is_write_mapped(m), 1613 ("swp_pager_async_iodone: page %p is not write" 1614 " protected", m)); 1615 vm_page_undirty(m); 1616 vm_page_sunbusy(m); 1617 if (vm_page_count_severe()) { 1618 vm_page_lock(m); 1619 vm_page_try_to_cache(m); 1620 vm_page_unlock(m); 1621 } 1622 } 1623 } 1624 1625 /* 1626 * adjust pip. NOTE: the original parent may still have its own 1627 * pip refs on the object. 1628 */ 1629 if (object != NULL) { 1630 vm_object_pip_wakeupn(object, bp->b_npages); 1631 VM_OBJECT_WUNLOCK(object); 1632 } 1633 1634 /* 1635 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1636 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1637 * trigger a KASSERT in relpbuf(). 1638 */ 1639 if (bp->b_vp) { 1640 bp->b_vp = NULL; 1641 bp->b_bufobj = NULL; 1642 } 1643 /* 1644 * release the physical I/O buffer 1645 */ 1646 relpbuf( 1647 bp, 1648 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1649 ((bp->b_flags & B_ASYNC) ? 1650 &nsw_wcount_async : 1651 &nsw_wcount_sync 1652 ) 1653 ) 1654 ); 1655 } 1656 1657 /* 1658 * swap_pager_isswapped: 1659 * 1660 * Return 1 if at least one page in the given object is paged 1661 * out to the given swap device. 1662 * 1663 * This routine may not sleep. 1664 */ 1665 int 1666 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1667 { 1668 daddr_t index = 0; 1669 int bcount; 1670 int i; 1671 1672 VM_OBJECT_ASSERT_WLOCKED(object); 1673 if (object->type != OBJT_SWAP) 1674 return (0); 1675 1676 mtx_lock(&swhash_mtx); 1677 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1678 struct swblock *swap; 1679 1680 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1681 for (i = 0; i < SWAP_META_PAGES; ++i) { 1682 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1683 mtx_unlock(&swhash_mtx); 1684 return (1); 1685 } 1686 } 1687 } 1688 index += SWAP_META_PAGES; 1689 } 1690 mtx_unlock(&swhash_mtx); 1691 return (0); 1692 } 1693 1694 /* 1695 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1696 * 1697 * This routine dissociates the page at the given index within a 1698 * swap block from its backing store, paging it in if necessary. 1699 * If the page is paged in, it is placed in the inactive queue, 1700 * since it had its backing store ripped out from under it. 1701 * We also attempt to swap in all other pages in the swap block, 1702 * we only guarantee that the one at the specified index is 1703 * paged in. 1704 * 1705 * XXX - The code to page the whole block in doesn't work, so we 1706 * revert to the one-by-one behavior for now. Sigh. 1707 */ 1708 static inline void 1709 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1710 { 1711 vm_page_t m; 1712 1713 vm_object_pip_add(object, 1); 1714 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 1715 if (m->valid == VM_PAGE_BITS_ALL) { 1716 vm_object_pip_subtract(object, 1); 1717 vm_page_dirty(m); 1718 vm_page_lock(m); 1719 vm_page_activate(m); 1720 vm_page_unlock(m); 1721 vm_page_xunbusy(m); 1722 vm_pager_page_unswapped(m); 1723 return; 1724 } 1725 1726 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1727 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1728 vm_object_pip_subtract(object, 1); 1729 vm_page_dirty(m); 1730 vm_page_lock(m); 1731 vm_page_deactivate(m); 1732 vm_page_unlock(m); 1733 vm_page_xunbusy(m); 1734 vm_pager_page_unswapped(m); 1735 } 1736 1737 /* 1738 * swap_pager_swapoff: 1739 * 1740 * Page in all of the pages that have been paged out to the 1741 * given device. The corresponding blocks in the bitmap must be 1742 * marked as allocated and the device must be flagged SW_CLOSING. 1743 * There may be no processes swapped out to the device. 1744 * 1745 * This routine may block. 1746 */ 1747 static void 1748 swap_pager_swapoff(struct swdevt *sp) 1749 { 1750 struct swblock *swap; 1751 int i, j, retries; 1752 1753 GIANT_REQUIRED; 1754 1755 retries = 0; 1756 full_rescan: 1757 mtx_lock(&swhash_mtx); 1758 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1759 restart: 1760 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1761 vm_object_t object = swap->swb_object; 1762 vm_pindex_t pindex = swap->swb_index; 1763 for (j = 0; j < SWAP_META_PAGES; ++j) { 1764 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1765 /* avoid deadlock */ 1766 if (!VM_OBJECT_TRYWLOCK(object)) { 1767 break; 1768 } else { 1769 mtx_unlock(&swhash_mtx); 1770 swp_pager_force_pagein(object, 1771 pindex + j); 1772 VM_OBJECT_WUNLOCK(object); 1773 mtx_lock(&swhash_mtx); 1774 goto restart; 1775 } 1776 } 1777 } 1778 } 1779 } 1780 mtx_unlock(&swhash_mtx); 1781 if (sp->sw_used) { 1782 /* 1783 * Objects may be locked or paging to the device being 1784 * removed, so we will miss their pages and need to 1785 * make another pass. We have marked this device as 1786 * SW_CLOSING, so the activity should finish soon. 1787 */ 1788 retries++; 1789 if (retries > 100) { 1790 panic("swapoff: failed to locate %d swap blocks", 1791 sp->sw_used); 1792 } 1793 pause("swpoff", hz / 20); 1794 goto full_rescan; 1795 } 1796 } 1797 1798 /************************************************************************ 1799 * SWAP META DATA * 1800 ************************************************************************ 1801 * 1802 * These routines manipulate the swap metadata stored in the 1803 * OBJT_SWAP object. 1804 * 1805 * Swap metadata is implemented with a global hash and not directly 1806 * linked into the object. Instead the object simply contains 1807 * appropriate tracking counters. 1808 */ 1809 1810 /* 1811 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1812 * 1813 * We first convert the object to a swap object if it is a default 1814 * object. 1815 * 1816 * The specified swapblk is added to the object's swap metadata. If 1817 * the swapblk is not valid, it is freed instead. Any previously 1818 * assigned swapblk is freed. 1819 */ 1820 static void 1821 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1822 { 1823 static volatile int exhausted; 1824 struct swblock *swap; 1825 struct swblock **pswap; 1826 int idx; 1827 1828 VM_OBJECT_ASSERT_WLOCKED(object); 1829 /* 1830 * Convert default object to swap object if necessary 1831 */ 1832 if (object->type != OBJT_SWAP) { 1833 object->type = OBJT_SWAP; 1834 object->un_pager.swp.swp_bcount = 0; 1835 1836 if (object->handle != NULL) { 1837 mtx_lock(&sw_alloc_mtx); 1838 TAILQ_INSERT_TAIL( 1839 NOBJLIST(object->handle), 1840 object, 1841 pager_object_list 1842 ); 1843 mtx_unlock(&sw_alloc_mtx); 1844 } 1845 } 1846 1847 /* 1848 * Locate hash entry. If not found create, but if we aren't adding 1849 * anything just return. If we run out of space in the map we wait 1850 * and, since the hash table may have changed, retry. 1851 */ 1852 retry: 1853 mtx_lock(&swhash_mtx); 1854 pswap = swp_pager_hash(object, pindex); 1855 1856 if ((swap = *pswap) == NULL) { 1857 int i; 1858 1859 if (swapblk == SWAPBLK_NONE) 1860 goto done; 1861 1862 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT | 1863 (curproc == pageproc ? M_USE_RESERVE : 0)); 1864 if (swap == NULL) { 1865 mtx_unlock(&swhash_mtx); 1866 VM_OBJECT_WUNLOCK(object); 1867 if (uma_zone_exhausted(swap_zone)) { 1868 if (atomic_cmpset_int(&exhausted, 0, 1)) 1869 printf("swap zone exhausted, " 1870 "increase kern.maxswzone\n"); 1871 vm_pageout_oom(VM_OOM_SWAPZ); 1872 pause("swzonex", 10); 1873 } else 1874 VM_WAIT; 1875 VM_OBJECT_WLOCK(object); 1876 goto retry; 1877 } 1878 1879 if (atomic_cmpset_int(&exhausted, 1, 0)) 1880 printf("swap zone ok\n"); 1881 1882 swap->swb_hnext = NULL; 1883 swap->swb_object = object; 1884 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1885 swap->swb_count = 0; 1886 1887 ++object->un_pager.swp.swp_bcount; 1888 1889 for (i = 0; i < SWAP_META_PAGES; ++i) 1890 swap->swb_pages[i] = SWAPBLK_NONE; 1891 } 1892 1893 /* 1894 * Delete prior contents of metadata 1895 */ 1896 idx = pindex & SWAP_META_MASK; 1897 1898 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1899 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1900 --swap->swb_count; 1901 } 1902 1903 /* 1904 * Enter block into metadata 1905 */ 1906 swap->swb_pages[idx] = swapblk; 1907 if (swapblk != SWAPBLK_NONE) 1908 ++swap->swb_count; 1909 done: 1910 mtx_unlock(&swhash_mtx); 1911 } 1912 1913 /* 1914 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1915 * 1916 * The requested range of blocks is freed, with any associated swap 1917 * returned to the swap bitmap. 1918 * 1919 * This routine will free swap metadata structures as they are cleaned 1920 * out. This routine does *NOT* operate on swap metadata associated 1921 * with resident pages. 1922 */ 1923 static void 1924 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1925 { 1926 1927 VM_OBJECT_ASSERT_LOCKED(object); 1928 if (object->type != OBJT_SWAP) 1929 return; 1930 1931 while (count > 0) { 1932 struct swblock **pswap; 1933 struct swblock *swap; 1934 1935 mtx_lock(&swhash_mtx); 1936 pswap = swp_pager_hash(object, index); 1937 1938 if ((swap = *pswap) != NULL) { 1939 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1940 1941 if (v != SWAPBLK_NONE) { 1942 swp_pager_freeswapspace(v, 1); 1943 swap->swb_pages[index & SWAP_META_MASK] = 1944 SWAPBLK_NONE; 1945 if (--swap->swb_count == 0) { 1946 *pswap = swap->swb_hnext; 1947 uma_zfree(swap_zone, swap); 1948 --object->un_pager.swp.swp_bcount; 1949 } 1950 } 1951 --count; 1952 ++index; 1953 } else { 1954 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1955 count -= n; 1956 index += n; 1957 } 1958 mtx_unlock(&swhash_mtx); 1959 } 1960 } 1961 1962 /* 1963 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1964 * 1965 * This routine locates and destroys all swap metadata associated with 1966 * an object. 1967 */ 1968 static void 1969 swp_pager_meta_free_all(vm_object_t object) 1970 { 1971 daddr_t index = 0; 1972 1973 VM_OBJECT_ASSERT_WLOCKED(object); 1974 if (object->type != OBJT_SWAP) 1975 return; 1976 1977 while (object->un_pager.swp.swp_bcount) { 1978 struct swblock **pswap; 1979 struct swblock *swap; 1980 1981 mtx_lock(&swhash_mtx); 1982 pswap = swp_pager_hash(object, index); 1983 if ((swap = *pswap) != NULL) { 1984 int i; 1985 1986 for (i = 0; i < SWAP_META_PAGES; ++i) { 1987 daddr_t v = swap->swb_pages[i]; 1988 if (v != SWAPBLK_NONE) { 1989 --swap->swb_count; 1990 swp_pager_freeswapspace(v, 1); 1991 } 1992 } 1993 if (swap->swb_count != 0) 1994 panic("swap_pager_meta_free_all: swb_count != 0"); 1995 *pswap = swap->swb_hnext; 1996 uma_zfree(swap_zone, swap); 1997 --object->un_pager.swp.swp_bcount; 1998 } 1999 mtx_unlock(&swhash_mtx); 2000 index += SWAP_META_PAGES; 2001 } 2002 } 2003 2004 /* 2005 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2006 * 2007 * This routine is capable of looking up, popping, or freeing 2008 * swapblk assignments in the swap meta data or in the vm_page_t. 2009 * The routine typically returns the swapblk being looked-up, or popped, 2010 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2011 * was invalid. This routine will automatically free any invalid 2012 * meta-data swapblks. 2013 * 2014 * It is not possible to store invalid swapblks in the swap meta data 2015 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2016 * 2017 * When acting on a busy resident page and paging is in progress, we 2018 * have to wait until paging is complete but otherwise can act on the 2019 * busy page. 2020 * 2021 * SWM_FREE remove and free swap block from metadata 2022 * SWM_POP remove from meta data but do not free.. pop it out 2023 */ 2024 static daddr_t 2025 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2026 { 2027 struct swblock **pswap; 2028 struct swblock *swap; 2029 daddr_t r1; 2030 int idx; 2031 2032 VM_OBJECT_ASSERT_LOCKED(object); 2033 /* 2034 * The meta data only exists of the object is OBJT_SWAP 2035 * and even then might not be allocated yet. 2036 */ 2037 if (object->type != OBJT_SWAP) 2038 return (SWAPBLK_NONE); 2039 2040 r1 = SWAPBLK_NONE; 2041 mtx_lock(&swhash_mtx); 2042 pswap = swp_pager_hash(object, pindex); 2043 2044 if ((swap = *pswap) != NULL) { 2045 idx = pindex & SWAP_META_MASK; 2046 r1 = swap->swb_pages[idx]; 2047 2048 if (r1 != SWAPBLK_NONE) { 2049 if (flags & SWM_FREE) { 2050 swp_pager_freeswapspace(r1, 1); 2051 r1 = SWAPBLK_NONE; 2052 } 2053 if (flags & (SWM_FREE|SWM_POP)) { 2054 swap->swb_pages[idx] = SWAPBLK_NONE; 2055 if (--swap->swb_count == 0) { 2056 *pswap = swap->swb_hnext; 2057 uma_zfree(swap_zone, swap); 2058 --object->un_pager.swp.swp_bcount; 2059 } 2060 } 2061 } 2062 } 2063 mtx_unlock(&swhash_mtx); 2064 return (r1); 2065 } 2066 2067 /* 2068 * System call swapon(name) enables swapping on device name, 2069 * which must be in the swdevsw. Return EBUSY 2070 * if already swapping on this device. 2071 */ 2072 #ifndef _SYS_SYSPROTO_H_ 2073 struct swapon_args { 2074 char *name; 2075 }; 2076 #endif 2077 2078 /* 2079 * MPSAFE 2080 */ 2081 /* ARGSUSED */ 2082 int 2083 sys_swapon(struct thread *td, struct swapon_args *uap) 2084 { 2085 struct vattr attr; 2086 struct vnode *vp; 2087 struct nameidata nd; 2088 int error; 2089 2090 error = priv_check(td, PRIV_SWAPON); 2091 if (error) 2092 return (error); 2093 2094 mtx_lock(&Giant); 2095 while (swdev_syscall_active) 2096 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2097 swdev_syscall_active = 1; 2098 2099 /* 2100 * Swap metadata may not fit in the KVM if we have physical 2101 * memory of >1GB. 2102 */ 2103 if (swap_zone == NULL) { 2104 error = ENOMEM; 2105 goto done; 2106 } 2107 2108 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2109 uap->name, td); 2110 error = namei(&nd); 2111 if (error) 2112 goto done; 2113 2114 NDFREE(&nd, NDF_ONLY_PNBUF); 2115 vp = nd.ni_vp; 2116 2117 if (vn_isdisk(vp, &error)) { 2118 error = swapongeom(td, vp); 2119 } else if (vp->v_type == VREG && 2120 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2121 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2122 /* 2123 * Allow direct swapping to NFS regular files in the same 2124 * way that nfs_mountroot() sets up diskless swapping. 2125 */ 2126 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2127 } 2128 2129 if (error) 2130 vrele(vp); 2131 done: 2132 swdev_syscall_active = 0; 2133 wakeup_one(&swdev_syscall_active); 2134 mtx_unlock(&Giant); 2135 return (error); 2136 } 2137 2138 /* 2139 * Check that the total amount of swap currently configured does not 2140 * exceed half the theoretical maximum. If it does, print a warning 2141 * message and return -1; otherwise, return 0. 2142 */ 2143 static int 2144 swapon_check_swzone(unsigned long npages) 2145 { 2146 unsigned long maxpages; 2147 2148 /* absolute maximum we can handle assuming 100% efficiency */ 2149 maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES; 2150 2151 /* recommend using no more than half that amount */ 2152 if (npages > maxpages / 2) { 2153 printf("warning: total configured swap (%lu pages) " 2154 "exceeds maximum recommended amount (%lu pages).\n", 2155 npages, maxpages / 2); 2156 printf("warning: increase kern.maxswzone " 2157 "or reduce amount of swap.\n"); 2158 return (-1); 2159 } 2160 return (0); 2161 } 2162 2163 static void 2164 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2165 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2166 { 2167 struct swdevt *sp, *tsp; 2168 swblk_t dvbase; 2169 u_long mblocks; 2170 2171 /* 2172 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2173 * First chop nblks off to page-align it, then convert. 2174 * 2175 * sw->sw_nblks is in page-sized chunks now too. 2176 */ 2177 nblks &= ~(ctodb(1) - 1); 2178 nblks = dbtoc(nblks); 2179 2180 /* 2181 * If we go beyond this, we get overflows in the radix 2182 * tree bitmap code. 2183 */ 2184 mblocks = 0x40000000 / BLIST_META_RADIX; 2185 if (nblks > mblocks) { 2186 printf( 2187 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2188 mblocks / 1024 / 1024 * PAGE_SIZE); 2189 nblks = mblocks; 2190 } 2191 2192 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2193 sp->sw_vp = vp; 2194 sp->sw_id = id; 2195 sp->sw_dev = dev; 2196 sp->sw_flags = 0; 2197 sp->sw_nblks = nblks; 2198 sp->sw_used = 0; 2199 sp->sw_strategy = strategy; 2200 sp->sw_close = close; 2201 sp->sw_flags = flags; 2202 2203 sp->sw_blist = blist_create(nblks, M_WAITOK); 2204 /* 2205 * Do not free the first two block in order to avoid overwriting 2206 * any bsd label at the front of the partition 2207 */ 2208 blist_free(sp->sw_blist, 2, nblks - 2); 2209 2210 dvbase = 0; 2211 mtx_lock(&sw_dev_mtx); 2212 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2213 if (tsp->sw_end >= dvbase) { 2214 /* 2215 * We put one uncovered page between the devices 2216 * in order to definitively prevent any cross-device 2217 * I/O requests 2218 */ 2219 dvbase = tsp->sw_end + 1; 2220 } 2221 } 2222 sp->sw_first = dvbase; 2223 sp->sw_end = dvbase + nblks; 2224 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2225 nswapdev++; 2226 swap_pager_avail += nblks; 2227 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2228 swapon_check_swzone(swap_total / PAGE_SIZE); 2229 swp_sizecheck(); 2230 mtx_unlock(&sw_dev_mtx); 2231 } 2232 2233 /* 2234 * SYSCALL: swapoff(devname) 2235 * 2236 * Disable swapping on the given device. 2237 * 2238 * XXX: Badly designed system call: it should use a device index 2239 * rather than filename as specification. We keep sw_vp around 2240 * only to make this work. 2241 */ 2242 #ifndef _SYS_SYSPROTO_H_ 2243 struct swapoff_args { 2244 char *name; 2245 }; 2246 #endif 2247 2248 /* 2249 * MPSAFE 2250 */ 2251 /* ARGSUSED */ 2252 int 2253 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2254 { 2255 struct vnode *vp; 2256 struct nameidata nd; 2257 struct swdevt *sp; 2258 int error; 2259 2260 error = priv_check(td, PRIV_SWAPOFF); 2261 if (error) 2262 return (error); 2263 2264 mtx_lock(&Giant); 2265 while (swdev_syscall_active) 2266 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2267 swdev_syscall_active = 1; 2268 2269 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2270 td); 2271 error = namei(&nd); 2272 if (error) 2273 goto done; 2274 NDFREE(&nd, NDF_ONLY_PNBUF); 2275 vp = nd.ni_vp; 2276 2277 mtx_lock(&sw_dev_mtx); 2278 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2279 if (sp->sw_vp == vp) 2280 break; 2281 } 2282 mtx_unlock(&sw_dev_mtx); 2283 if (sp == NULL) { 2284 error = EINVAL; 2285 goto done; 2286 } 2287 error = swapoff_one(sp, td->td_ucred); 2288 done: 2289 swdev_syscall_active = 0; 2290 wakeup_one(&swdev_syscall_active); 2291 mtx_unlock(&Giant); 2292 return (error); 2293 } 2294 2295 static int 2296 swapoff_one(struct swdevt *sp, struct ucred *cred) 2297 { 2298 u_long nblks, dvbase; 2299 #ifdef MAC 2300 int error; 2301 #endif 2302 2303 mtx_assert(&Giant, MA_OWNED); 2304 #ifdef MAC 2305 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2306 error = mac_system_check_swapoff(cred, sp->sw_vp); 2307 (void) VOP_UNLOCK(sp->sw_vp, 0); 2308 if (error != 0) 2309 return (error); 2310 #endif 2311 nblks = sp->sw_nblks; 2312 2313 /* 2314 * We can turn off this swap device safely only if the 2315 * available virtual memory in the system will fit the amount 2316 * of data we will have to page back in, plus an epsilon so 2317 * the system doesn't become critically low on swap space. 2318 */ 2319 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2320 nblks + nswap_lowat) { 2321 return (ENOMEM); 2322 } 2323 2324 /* 2325 * Prevent further allocations on this device. 2326 */ 2327 mtx_lock(&sw_dev_mtx); 2328 sp->sw_flags |= SW_CLOSING; 2329 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2330 swap_pager_avail -= blist_fill(sp->sw_blist, 2331 dvbase, dmmax); 2332 } 2333 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2334 mtx_unlock(&sw_dev_mtx); 2335 2336 /* 2337 * Page in the contents of the device and close it. 2338 */ 2339 swap_pager_swapoff(sp); 2340 2341 sp->sw_close(curthread, sp); 2342 sp->sw_id = NULL; 2343 mtx_lock(&sw_dev_mtx); 2344 TAILQ_REMOVE(&swtailq, sp, sw_list); 2345 nswapdev--; 2346 if (nswapdev == 0) { 2347 swap_pager_full = 2; 2348 swap_pager_almost_full = 1; 2349 } 2350 if (swdevhd == sp) 2351 swdevhd = NULL; 2352 mtx_unlock(&sw_dev_mtx); 2353 blist_destroy(sp->sw_blist); 2354 free(sp, M_VMPGDATA); 2355 return (0); 2356 } 2357 2358 void 2359 swapoff_all(void) 2360 { 2361 struct swdevt *sp, *spt; 2362 const char *devname; 2363 int error; 2364 2365 mtx_lock(&Giant); 2366 while (swdev_syscall_active) 2367 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2368 swdev_syscall_active = 1; 2369 2370 mtx_lock(&sw_dev_mtx); 2371 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2372 mtx_unlock(&sw_dev_mtx); 2373 if (vn_isdisk(sp->sw_vp, NULL)) 2374 devname = devtoname(sp->sw_vp->v_rdev); 2375 else 2376 devname = "[file]"; 2377 error = swapoff_one(sp, thread0.td_ucred); 2378 if (error != 0) { 2379 printf("Cannot remove swap device %s (error=%d), " 2380 "skipping.\n", devname, error); 2381 } else if (bootverbose) { 2382 printf("Swap device %s removed.\n", devname); 2383 } 2384 mtx_lock(&sw_dev_mtx); 2385 } 2386 mtx_unlock(&sw_dev_mtx); 2387 2388 swdev_syscall_active = 0; 2389 wakeup_one(&swdev_syscall_active); 2390 mtx_unlock(&Giant); 2391 } 2392 2393 void 2394 swap_pager_status(int *total, int *used) 2395 { 2396 struct swdevt *sp; 2397 2398 *total = 0; 2399 *used = 0; 2400 mtx_lock(&sw_dev_mtx); 2401 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2402 *total += sp->sw_nblks; 2403 *used += sp->sw_used; 2404 } 2405 mtx_unlock(&sw_dev_mtx); 2406 } 2407 2408 int 2409 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2410 { 2411 struct swdevt *sp; 2412 const char *tmp_devname; 2413 int error, n; 2414 2415 n = 0; 2416 error = ENOENT; 2417 mtx_lock(&sw_dev_mtx); 2418 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2419 if (n != name) { 2420 n++; 2421 continue; 2422 } 2423 xs->xsw_version = XSWDEV_VERSION; 2424 xs->xsw_dev = sp->sw_dev; 2425 xs->xsw_flags = sp->sw_flags; 2426 xs->xsw_nblks = sp->sw_nblks; 2427 xs->xsw_used = sp->sw_used; 2428 if (devname != NULL) { 2429 if (vn_isdisk(sp->sw_vp, NULL)) 2430 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2431 else 2432 tmp_devname = "[file]"; 2433 strncpy(devname, tmp_devname, len); 2434 } 2435 error = 0; 2436 break; 2437 } 2438 mtx_unlock(&sw_dev_mtx); 2439 return (error); 2440 } 2441 2442 static int 2443 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2444 { 2445 struct xswdev xs; 2446 int error; 2447 2448 if (arg2 != 1) /* name length */ 2449 return (EINVAL); 2450 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2451 if (error != 0) 2452 return (error); 2453 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2454 return (error); 2455 } 2456 2457 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2458 "Number of swap devices"); 2459 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2460 "Swap statistics by device"); 2461 2462 /* 2463 * vmspace_swap_count() - count the approximate swap usage in pages for a 2464 * vmspace. 2465 * 2466 * The map must be locked. 2467 * 2468 * Swap usage is determined by taking the proportional swap used by 2469 * VM objects backing the VM map. To make up for fractional losses, 2470 * if the VM object has any swap use at all the associated map entries 2471 * count for at least 1 swap page. 2472 */ 2473 long 2474 vmspace_swap_count(struct vmspace *vmspace) 2475 { 2476 vm_map_t map; 2477 vm_map_entry_t cur; 2478 vm_object_t object; 2479 long count, n; 2480 2481 map = &vmspace->vm_map; 2482 count = 0; 2483 2484 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2485 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2486 (object = cur->object.vm_object) != NULL) { 2487 VM_OBJECT_WLOCK(object); 2488 if (object->type == OBJT_SWAP && 2489 object->un_pager.swp.swp_bcount != 0) { 2490 n = (cur->end - cur->start) / PAGE_SIZE; 2491 count += object->un_pager.swp.swp_bcount * 2492 SWAP_META_PAGES * n / object->size + 1; 2493 } 2494 VM_OBJECT_WUNLOCK(object); 2495 } 2496 } 2497 return (count); 2498 } 2499 2500 /* 2501 * GEOM backend 2502 * 2503 * Swapping onto disk devices. 2504 * 2505 */ 2506 2507 static g_orphan_t swapgeom_orphan; 2508 2509 static struct g_class g_swap_class = { 2510 .name = "SWAP", 2511 .version = G_VERSION, 2512 .orphan = swapgeom_orphan, 2513 }; 2514 2515 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2516 2517 2518 static void 2519 swapgeom_done(struct bio *bp2) 2520 { 2521 struct buf *bp; 2522 2523 bp = bp2->bio_caller2; 2524 bp->b_ioflags = bp2->bio_flags; 2525 if (bp2->bio_error) 2526 bp->b_ioflags |= BIO_ERROR; 2527 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2528 bp->b_error = bp2->bio_error; 2529 bufdone(bp); 2530 g_destroy_bio(bp2); 2531 } 2532 2533 static void 2534 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2535 { 2536 struct bio *bio; 2537 struct g_consumer *cp; 2538 2539 cp = sp->sw_id; 2540 if (cp == NULL) { 2541 bp->b_error = ENXIO; 2542 bp->b_ioflags |= BIO_ERROR; 2543 bufdone(bp); 2544 return; 2545 } 2546 if (bp->b_iocmd == BIO_WRITE) 2547 bio = g_new_bio(); 2548 else 2549 bio = g_alloc_bio(); 2550 if (bio == NULL) { 2551 bp->b_error = ENOMEM; 2552 bp->b_ioflags |= BIO_ERROR; 2553 bufdone(bp); 2554 return; 2555 } 2556 2557 bio->bio_caller2 = bp; 2558 bio->bio_cmd = bp->b_iocmd; 2559 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2560 bio->bio_length = bp->b_bcount; 2561 bio->bio_done = swapgeom_done; 2562 if ((bp->b_flags & B_UNMAPPED) != 0) { 2563 bio->bio_ma = bp->b_pages; 2564 bio->bio_data = unmapped_buf; 2565 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2566 bio->bio_ma_n = bp->b_npages; 2567 bio->bio_flags |= BIO_UNMAPPED; 2568 } else { 2569 bio->bio_data = bp->b_data; 2570 bio->bio_ma = NULL; 2571 } 2572 g_io_request(bio, cp); 2573 return; 2574 } 2575 2576 static void 2577 swapgeom_orphan(struct g_consumer *cp) 2578 { 2579 struct swdevt *sp; 2580 2581 mtx_lock(&sw_dev_mtx); 2582 TAILQ_FOREACH(sp, &swtailq, sw_list) 2583 if (sp->sw_id == cp) 2584 sp->sw_flags |= SW_CLOSING; 2585 mtx_unlock(&sw_dev_mtx); 2586 } 2587 2588 static void 2589 swapgeom_close_ev(void *arg, int flags) 2590 { 2591 struct g_consumer *cp; 2592 2593 cp = arg; 2594 g_access(cp, -1, -1, 0); 2595 g_detach(cp); 2596 g_destroy_consumer(cp); 2597 } 2598 2599 static void 2600 swapgeom_close(struct thread *td, struct swdevt *sw) 2601 { 2602 2603 /* XXX: direct call when Giant untangled */ 2604 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2605 } 2606 2607 2608 struct swh0h0 { 2609 struct cdev *dev; 2610 struct vnode *vp; 2611 int error; 2612 }; 2613 2614 static void 2615 swapongeom_ev(void *arg, int flags) 2616 { 2617 struct swh0h0 *swh; 2618 struct g_provider *pp; 2619 struct g_consumer *cp; 2620 static struct g_geom *gp; 2621 struct swdevt *sp; 2622 u_long nblks; 2623 int error; 2624 2625 swh = arg; 2626 swh->error = 0; 2627 pp = g_dev_getprovider(swh->dev); 2628 if (pp == NULL) { 2629 swh->error = ENODEV; 2630 return; 2631 } 2632 mtx_lock(&sw_dev_mtx); 2633 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2634 cp = sp->sw_id; 2635 if (cp != NULL && cp->provider == pp) { 2636 mtx_unlock(&sw_dev_mtx); 2637 swh->error = EBUSY; 2638 return; 2639 } 2640 } 2641 mtx_unlock(&sw_dev_mtx); 2642 if (gp == NULL) 2643 gp = g_new_geomf(&g_swap_class, "swap"); 2644 cp = g_new_consumer(gp); 2645 g_attach(cp, pp); 2646 /* 2647 * XXX: Everytime you think you can improve the margin for 2648 * footshooting, somebody depends on the ability to do so: 2649 * savecore(8) wants to write to our swapdev so we cannot 2650 * set an exclusive count :-( 2651 */ 2652 error = g_access(cp, 1, 1, 0); 2653 if (error) { 2654 g_detach(cp); 2655 g_destroy_consumer(cp); 2656 swh->error = error; 2657 return; 2658 } 2659 nblks = pp->mediasize / DEV_BSIZE; 2660 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2661 swapgeom_close, dev2udev(swh->dev), 2662 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2663 swh->error = 0; 2664 } 2665 2666 static int 2667 swapongeom(struct thread *td, struct vnode *vp) 2668 { 2669 int error; 2670 struct swh0h0 swh; 2671 2672 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2673 2674 swh.dev = vp->v_rdev; 2675 swh.vp = vp; 2676 swh.error = 0; 2677 /* XXX: direct call when Giant untangled */ 2678 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2679 if (!error) 2680 error = swh.error; 2681 VOP_UNLOCK(vp, 0); 2682 return (error); 2683 } 2684 2685 /* 2686 * VNODE backend 2687 * 2688 * This is used mainly for network filesystem (read: probably only tested 2689 * with NFS) swapfiles. 2690 * 2691 */ 2692 2693 static void 2694 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2695 { 2696 struct vnode *vp2; 2697 2698 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2699 2700 vp2 = sp->sw_id; 2701 vhold(vp2); 2702 if (bp->b_iocmd == BIO_WRITE) { 2703 if (bp->b_bufobj) 2704 bufobj_wdrop(bp->b_bufobj); 2705 bufobj_wref(&vp2->v_bufobj); 2706 } 2707 if (bp->b_bufobj != &vp2->v_bufobj) 2708 bp->b_bufobj = &vp2->v_bufobj; 2709 bp->b_vp = vp2; 2710 bp->b_iooffset = dbtob(bp->b_blkno); 2711 bstrategy(bp); 2712 return; 2713 } 2714 2715 static void 2716 swapdev_close(struct thread *td, struct swdevt *sp) 2717 { 2718 2719 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2720 vrele(sp->sw_vp); 2721 } 2722 2723 2724 static int 2725 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2726 { 2727 struct swdevt *sp; 2728 int error; 2729 2730 if (nblks == 0) 2731 return (ENXIO); 2732 mtx_lock(&sw_dev_mtx); 2733 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2734 if (sp->sw_id == vp) { 2735 mtx_unlock(&sw_dev_mtx); 2736 return (EBUSY); 2737 } 2738 } 2739 mtx_unlock(&sw_dev_mtx); 2740 2741 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2742 #ifdef MAC 2743 error = mac_system_check_swapon(td->td_ucred, vp); 2744 if (error == 0) 2745 #endif 2746 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2747 (void) VOP_UNLOCK(vp, 0); 2748 if (error) 2749 return (error); 2750 2751 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2752 NODEV, 0); 2753 return (0); 2754 } 2755