xref: /freebsd/sys/vm/swap_pager.c (revision f157ca4696f5922275d5d451736005b9332eb136)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104 
105 #include <security/mac/mac_framework.h>
106 
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119 
120 #include <geom/geom.h>
121 
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define	MAX_PAGEOUT_CLUSTER	32
128 #endif
129 
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
132 #endif
133 
134 #define	SWAP_META_PAGES		PCTRIE_COUNT
135 
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143 	vm_pindex_t	p;
144 	daddr_t		d[SWAP_META_PAGES];
145 };
146 
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;	/* Allocate from here next */
151 static int nswapdev;		/* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
154 
155 static u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158 
159 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD, 0, "VM swap stats");
160 
161 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
162     &swap_reserved, 0, sysctl_page_shift, "A",
163     "Amount of swap storage needed to back all allocated anonymous memory.");
164 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
165     &swap_total, 0, sysctl_page_shift, "A",
166     "Total amount of available swap storage.");
167 
168 static int overcommit = 0;
169 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
170     "Configure virtual memory overcommit behavior. See tuning(7) "
171     "for details.");
172 static unsigned long swzone;
173 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
174     "Actual size of swap metadata zone");
175 static unsigned long swap_maxpages;
176 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
177     "Maximum amount of swap supported");
178 
179 static counter_u64_t swap_free_deferred;
180 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
181     CTLFLAG_RD, &swap_free_deferred,
182     "Number of pages that deferred freeing swap space");
183 
184 static counter_u64_t swap_free_completed;
185 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
186     CTLFLAG_RD, &swap_free_completed,
187     "Number of deferred frees completed");
188 
189 /* bits from overcommit */
190 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
191 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
192 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
193 
194 static int
195 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
196 {
197 	uint64_t newval;
198 	u_long value = *(u_long *)arg1;
199 
200 	newval = ((uint64_t)value) << PAGE_SHIFT;
201 	return (sysctl_handle_64(oidp, &newval, 0, req));
202 }
203 
204 int
205 swap_reserve(vm_ooffset_t incr)
206 {
207 
208 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
209 }
210 
211 int
212 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
213 {
214 	u_long r, s, prev, pincr;
215 	int res, error;
216 	static int curfail;
217 	static struct timeval lastfail;
218 	struct uidinfo *uip;
219 
220 	uip = cred->cr_ruidinfo;
221 
222 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
223 	    (uintmax_t)incr));
224 
225 #ifdef RACCT
226 	if (racct_enable) {
227 		PROC_LOCK(curproc);
228 		error = racct_add(curproc, RACCT_SWAP, incr);
229 		PROC_UNLOCK(curproc);
230 		if (error != 0)
231 			return (0);
232 	}
233 #endif
234 
235 	pincr = atop(incr);
236 	res = 0;
237 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
238 	r = prev + pincr;
239 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
240 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
241 		    vm_wire_count();
242 	} else
243 		s = 0;
244 	s += swap_total;
245 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
246 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
247 		res = 1;
248 	} else {
249 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
250 		if (prev < pincr)
251 			panic("swap_reserved < incr on overcommit fail");
252 	}
253 	if (res) {
254 		prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
255 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
256 		    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
257 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
258 			res = 0;
259 			prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
260 			if (prev < pincr)
261 				panic("uip->ui_vmsize < incr on overcommit fail");
262 		}
263 	}
264 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
265 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
266 		    uip->ui_uid, curproc->p_pid, incr);
267 	}
268 
269 #ifdef RACCT
270 	if (racct_enable && !res) {
271 		PROC_LOCK(curproc);
272 		racct_sub(curproc, RACCT_SWAP, incr);
273 		PROC_UNLOCK(curproc);
274 	}
275 #endif
276 
277 	return (res);
278 }
279 
280 void
281 swap_reserve_force(vm_ooffset_t incr)
282 {
283 	struct uidinfo *uip;
284 	u_long pincr;
285 
286 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
287 	    (uintmax_t)incr));
288 
289 	PROC_LOCK(curproc);
290 #ifdef RACCT
291 	if (racct_enable)
292 		racct_add_force(curproc, RACCT_SWAP, incr);
293 #endif
294 	pincr = atop(incr);
295 	atomic_add_long(&swap_reserved, pincr);
296 	uip = curproc->p_ucred->cr_ruidinfo;
297 	atomic_add_long(&uip->ui_vmsize, pincr);
298 	PROC_UNLOCK(curproc);
299 }
300 
301 void
302 swap_release(vm_ooffset_t decr)
303 {
304 	struct ucred *cred;
305 
306 	PROC_LOCK(curproc);
307 	cred = curproc->p_ucred;
308 	swap_release_by_cred(decr, cred);
309 	PROC_UNLOCK(curproc);
310 }
311 
312 void
313 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
314 {
315 	u_long prev, pdecr;
316  	struct uidinfo *uip;
317 
318 	uip = cred->cr_ruidinfo;
319 
320 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
321 	    (uintmax_t)decr));
322 
323 	pdecr = atop(decr);
324 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
325 	if (prev < pdecr)
326 		panic("swap_reserved < decr");
327 
328 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
329 	if (prev < pdecr)
330 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
331 #ifdef RACCT
332 	if (racct_enable)
333 		racct_sub_cred(cred, RACCT_SWAP, decr);
334 #endif
335 }
336 
337 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
338 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
339 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
340 static int nsw_wcount_async;	/* limit async write buffers */
341 static int nsw_wcount_async_max;/* assigned maximum			*/
342 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
343 
344 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
345 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
346     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
347     "Maximum running async swap ops");
348 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
349 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
350     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
351     "Swap Fragmentation Info");
352 
353 static struct sx sw_alloc_sx;
354 
355 /*
356  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
357  * of searching a named list by hashing it just a little.
358  */
359 
360 #define NOBJLISTS		8
361 
362 #define NOBJLIST(handle)	\
363 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
364 
365 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
366 static uma_zone_t swwbuf_zone;
367 static uma_zone_t swrbuf_zone;
368 static uma_zone_t swblk_zone;
369 static uma_zone_t swpctrie_zone;
370 
371 /*
372  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
373  * calls hooked from other parts of the VM system and do not appear here.
374  * (see vm/swap_pager.h).
375  */
376 static vm_object_t
377 		swap_pager_alloc(void *handle, vm_ooffset_t size,
378 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
379 static void	swap_pager_dealloc(vm_object_t object);
380 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
381     int *);
382 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
383     int *, pgo_getpages_iodone_t, void *);
384 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
385 static boolean_t
386 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
387 static void	swap_pager_init(void);
388 static void	swap_pager_unswapped(vm_page_t);
389 static void	swap_pager_swapoff(struct swdevt *sp);
390 static void	swap_pager_update_writecount(vm_object_t object,
391     vm_offset_t start, vm_offset_t end);
392 static void	swap_pager_release_writecount(vm_object_t object,
393     vm_offset_t start, vm_offset_t end);
394 
395 struct pagerops swappagerops = {
396 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
397 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
398 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
399 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
400 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
401 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
402 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
403 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
404 	.pgo_update_writecount = swap_pager_update_writecount,
405 	.pgo_release_writecount = swap_pager_release_writecount,
406 };
407 
408 /*
409  * swap_*() routines are externally accessible.  swp_*() routines are
410  * internal.
411  */
412 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
413 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
414 
415 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
416     "Maximum size of a swap block in pages");
417 
418 static void	swp_sizecheck(void);
419 static void	swp_pager_async_iodone(struct buf *bp);
420 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
421 static void	swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
422 static int	swapongeom(struct vnode *);
423 static int	swaponvp(struct thread *, struct vnode *, u_long);
424 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
425 
426 /*
427  * Swap bitmap functions
428  */
429 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
430 static daddr_t	swp_pager_getswapspace(int *npages, int limit);
431 
432 /*
433  * Metadata functions
434  */
435 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
436 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
437 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
438     vm_pindex_t pindex, vm_pindex_t count);
439 static void swp_pager_meta_free_all(vm_object_t);
440 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
441 
442 static void
443 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
444 {
445 
446 	*start = SWAPBLK_NONE;
447 	*num = 0;
448 }
449 
450 static void
451 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
452 {
453 
454 	if (*start + *num == addr) {
455 		(*num)++;
456 	} else {
457 		swp_pager_freeswapspace(*start, *num);
458 		*start = addr;
459 		*num = 1;
460 	}
461 }
462 
463 static void *
464 swblk_trie_alloc(struct pctrie *ptree)
465 {
466 
467 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
468 	    M_USE_RESERVE : 0)));
469 }
470 
471 static void
472 swblk_trie_free(struct pctrie *ptree, void *node)
473 {
474 
475 	uma_zfree(swpctrie_zone, node);
476 }
477 
478 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
479 
480 /*
481  * SWP_SIZECHECK() -	update swap_pager_full indication
482  *
483  *	update the swap_pager_almost_full indication and warn when we are
484  *	about to run out of swap space, using lowat/hiwat hysteresis.
485  *
486  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
487  *
488  *	No restrictions on call
489  *	This routine may not block.
490  */
491 static void
492 swp_sizecheck(void)
493 {
494 
495 	if (swap_pager_avail < nswap_lowat) {
496 		if (swap_pager_almost_full == 0) {
497 			printf("swap_pager: out of swap space\n");
498 			swap_pager_almost_full = 1;
499 		}
500 	} else {
501 		swap_pager_full = 0;
502 		if (swap_pager_avail > nswap_hiwat)
503 			swap_pager_almost_full = 0;
504 	}
505 }
506 
507 /*
508  * SWAP_PAGER_INIT() -	initialize the swap pager!
509  *
510  *	Expected to be started from system init.  NOTE:  This code is run
511  *	before much else so be careful what you depend on.  Most of the VM
512  *	system has yet to be initialized at this point.
513  */
514 static void
515 swap_pager_init(void)
516 {
517 	/*
518 	 * Initialize object lists
519 	 */
520 	int i;
521 
522 	for (i = 0; i < NOBJLISTS; ++i)
523 		TAILQ_INIT(&swap_pager_object_list[i]);
524 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
525 	sx_init(&sw_alloc_sx, "swspsx");
526 	sx_init(&swdev_syscall_lock, "swsysc");
527 }
528 
529 static void
530 swap_pager_counters(void)
531 {
532 
533 	swap_free_deferred = counter_u64_alloc(M_WAITOK);
534 	swap_free_completed = counter_u64_alloc(M_WAITOK);
535 }
536 SYSINIT(swap_counters, SI_SUB_CPU, SI_ORDER_ANY, swap_pager_counters, NULL);
537 
538 /*
539  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
540  *
541  *	Expected to be started from pageout process once, prior to entering
542  *	its main loop.
543  */
544 void
545 swap_pager_swap_init(void)
546 {
547 	unsigned long n, n2;
548 
549 	/*
550 	 * Number of in-transit swap bp operations.  Don't
551 	 * exhaust the pbufs completely.  Make sure we
552 	 * initialize workable values (0 will work for hysteresis
553 	 * but it isn't very efficient).
554 	 *
555 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
556 	 * array, which has MAXPHYS / PAGE_SIZE entries, and our locally
557 	 * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
558 	 * constrained by the swap device interleave stripe size.
559 	 *
560 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
561 	 * designed to prevent other I/O from having high latencies due to
562 	 * our pageout I/O.  The value 4 works well for one or two active swap
563 	 * devices but is probably a little low if you have more.  Even so,
564 	 * a higher value would probably generate only a limited improvement
565 	 * with three or four active swap devices since the system does not
566 	 * typically have to pageout at extreme bandwidths.   We will want
567 	 * at least 2 per swap devices, and 4 is a pretty good value if you
568 	 * have one NFS swap device due to the command/ack latency over NFS.
569 	 * So it all works out pretty well.
570 	 */
571 	nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
572 
573 	nsw_wcount_async = 4;
574 	nsw_wcount_async_max = nsw_wcount_async;
575 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
576 
577 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
578 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
579 
580 	/*
581 	 * Initialize our zone, taking the user's requested size or
582 	 * estimating the number we need based on the number of pages
583 	 * in the system.
584 	 */
585 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
586 	    vm_cnt.v_page_count / 2;
587 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
588 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
589 	if (swpctrie_zone == NULL)
590 		panic("failed to create swap pctrie zone.");
591 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
592 	    NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
593 	if (swblk_zone == NULL)
594 		panic("failed to create swap blk zone.");
595 	n2 = n;
596 	do {
597 		if (uma_zone_reserve_kva(swblk_zone, n))
598 			break;
599 		/*
600 		 * if the allocation failed, try a zone two thirds the
601 		 * size of the previous attempt.
602 		 */
603 		n -= ((n + 2) / 3);
604 	} while (n > 0);
605 
606 	/*
607 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
608 	 * requested size.  Account for the difference when
609 	 * calculating swap_maxpages.
610 	 */
611 	n = uma_zone_get_max(swblk_zone);
612 
613 	if (n < n2)
614 		printf("Swap blk zone entries changed from %lu to %lu.\n",
615 		    n2, n);
616 	/* absolute maximum we can handle assuming 100% efficiency */
617 	swap_maxpages = n * SWAP_META_PAGES;
618 	swzone = n * sizeof(struct swblk);
619 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
620 		printf("Cannot reserve swap pctrie zone, "
621 		    "reduce kern.maxswzone.\n");
622 }
623 
624 static vm_object_t
625 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
626     vm_ooffset_t offset)
627 {
628 	vm_object_t object;
629 
630 	if (cred != NULL) {
631 		if (!swap_reserve_by_cred(size, cred))
632 			return (NULL);
633 		crhold(cred);
634 	}
635 
636 	/*
637 	 * The un_pager.swp.swp_blks trie is initialized by
638 	 * vm_object_allocate() to ensure the correct order of
639 	 * visibility to other threads.
640 	 */
641 	object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
642 	    PAGE_MASK + size));
643 
644 	object->un_pager.swp.writemappings = 0;
645 	object->handle = handle;
646 	if (cred != NULL) {
647 		object->cred = cred;
648 		object->charge = size;
649 	}
650 	return (object);
651 }
652 
653 /*
654  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
655  *			its metadata structures.
656  *
657  *	This routine is called from the mmap and fork code to create a new
658  *	OBJT_SWAP object.
659  *
660  *	This routine must ensure that no live duplicate is created for
661  *	the named object request, which is protected against by
662  *	holding the sw_alloc_sx lock in case handle != NULL.
663  */
664 static vm_object_t
665 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
666     vm_ooffset_t offset, struct ucred *cred)
667 {
668 	vm_object_t object;
669 
670 	if (handle != NULL) {
671 		/*
672 		 * Reference existing named region or allocate new one.  There
673 		 * should not be a race here against swp_pager_meta_build()
674 		 * as called from vm_page_remove() in regards to the lookup
675 		 * of the handle.
676 		 */
677 		sx_xlock(&sw_alloc_sx);
678 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
679 		if (object == NULL) {
680 			object = swap_pager_alloc_init(handle, cred, size,
681 			    offset);
682 			if (object != NULL) {
683 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
684 				    object, pager_object_list);
685 			}
686 		}
687 		sx_xunlock(&sw_alloc_sx);
688 	} else {
689 		object = swap_pager_alloc_init(handle, cred, size, offset);
690 	}
691 	return (object);
692 }
693 
694 /*
695  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
696  *
697  *	The swap backing for the object is destroyed.  The code is
698  *	designed such that we can reinstantiate it later, but this
699  *	routine is typically called only when the entire object is
700  *	about to be destroyed.
701  *
702  *	The object must be locked.
703  */
704 static void
705 swap_pager_dealloc(vm_object_t object)
706 {
707 
708 	VM_OBJECT_ASSERT_WLOCKED(object);
709 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
710 
711 	/*
712 	 * Remove from list right away so lookups will fail if we block for
713 	 * pageout completion.
714 	 */
715 	if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
716 		VM_OBJECT_WUNLOCK(object);
717 		sx_xlock(&sw_alloc_sx);
718 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
719 		    pager_object_list);
720 		sx_xunlock(&sw_alloc_sx);
721 		VM_OBJECT_WLOCK(object);
722 	}
723 
724 	vm_object_pip_wait(object, "swpdea");
725 
726 	/*
727 	 * Free all remaining metadata.  We only bother to free it from
728 	 * the swap meta data.  We do not attempt to free swapblk's still
729 	 * associated with vm_page_t's for this object.  We do not care
730 	 * if paging is still in progress on some objects.
731 	 */
732 	swp_pager_meta_free_all(object);
733 	object->handle = NULL;
734 	object->type = OBJT_DEAD;
735 }
736 
737 /************************************************************************
738  *			SWAP PAGER BITMAP ROUTINES			*
739  ************************************************************************/
740 
741 /*
742  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
743  *
744  *	Allocate swap for up to the requested number of pages, and at
745  *	least a minimum number of pages.  The starting swap block number
746  *	(a page index) is returned or SWAPBLK_NONE if the allocation
747  *	failed.
748  *
749  *	Also has the side effect of advising that somebody made a mistake
750  *	when they configured swap and didn't configure enough.
751  *
752  *	This routine may not sleep.
753  *
754  *	We allocate in round-robin fashion from the configured devices.
755  */
756 static daddr_t
757 swp_pager_getswapspace(int *io_npages, int limit)
758 {
759 	daddr_t blk;
760 	struct swdevt *sp;
761 	int mpages, npages;
762 
763 	blk = SWAPBLK_NONE;
764 	mpages = *io_npages;
765 	npages = imin(BLIST_MAX_ALLOC, mpages);
766 	mtx_lock(&sw_dev_mtx);
767 	sp = swdevhd;
768 	while (!TAILQ_EMPTY(&swtailq)) {
769 		if (sp == NULL)
770 			sp = TAILQ_FIRST(&swtailq);
771 		if ((sp->sw_flags & SW_CLOSING) == 0)
772 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
773 		if (blk != SWAPBLK_NONE)
774 			break;
775 		sp = TAILQ_NEXT(sp, sw_list);
776 		if (swdevhd == sp) {
777 			if (npages <= limit)
778 				break;
779 			mpages = npages - 1;
780 			npages >>= 1;
781 		}
782 	}
783 	if (blk != SWAPBLK_NONE) {
784 		*io_npages = npages;
785 		blk += sp->sw_first;
786 		sp->sw_used += npages;
787 		swap_pager_avail -= npages;
788 		swp_sizecheck();
789 		swdevhd = TAILQ_NEXT(sp, sw_list);
790 	} else {
791 		if (swap_pager_full != 2) {
792 			printf("swp_pager_getswapspace(%d): failed\n",
793 			    *io_npages);
794 			swap_pager_full = 2;
795 			swap_pager_almost_full = 1;
796 		}
797 		swdevhd = NULL;
798 	}
799 	mtx_unlock(&sw_dev_mtx);
800 	return (blk);
801 }
802 
803 static bool
804 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
805 {
806 
807 	return (blk >= sp->sw_first && blk < sp->sw_end);
808 }
809 
810 static void
811 swp_pager_strategy(struct buf *bp)
812 {
813 	struct swdevt *sp;
814 
815 	mtx_lock(&sw_dev_mtx);
816 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
817 		if (swp_pager_isondev(bp->b_blkno, sp)) {
818 			mtx_unlock(&sw_dev_mtx);
819 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
820 			    unmapped_buf_allowed) {
821 				bp->b_data = unmapped_buf;
822 				bp->b_offset = 0;
823 			} else {
824 				pmap_qenter((vm_offset_t)bp->b_data,
825 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
826 			}
827 			sp->sw_strategy(bp, sp);
828 			return;
829 		}
830 	}
831 	panic("Swapdev not found");
832 }
833 
834 
835 /*
836  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
837  *
838  *	This routine returns the specified swap blocks back to the bitmap.
839  *
840  *	This routine may not sleep.
841  */
842 static void
843 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
844 {
845 	struct swdevt *sp;
846 
847 	if (npages == 0)
848 		return;
849 	mtx_lock(&sw_dev_mtx);
850 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
851 		if (swp_pager_isondev(blk, sp)) {
852 			sp->sw_used -= npages;
853 			/*
854 			 * If we are attempting to stop swapping on
855 			 * this device, we don't want to mark any
856 			 * blocks free lest they be reused.
857 			 */
858 			if ((sp->sw_flags & SW_CLOSING) == 0) {
859 				blist_free(sp->sw_blist, blk - sp->sw_first,
860 				    npages);
861 				swap_pager_avail += npages;
862 				swp_sizecheck();
863 			}
864 			mtx_unlock(&sw_dev_mtx);
865 			return;
866 		}
867 	}
868 	panic("Swapdev not found");
869 }
870 
871 /*
872  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
873  */
874 static int
875 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
876 {
877 	struct sbuf sbuf;
878 	struct swdevt *sp;
879 	const char *devname;
880 	int error;
881 
882 	error = sysctl_wire_old_buffer(req, 0);
883 	if (error != 0)
884 		return (error);
885 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
886 	mtx_lock(&sw_dev_mtx);
887 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
888 		if (vn_isdisk(sp->sw_vp, NULL))
889 			devname = devtoname(sp->sw_vp->v_rdev);
890 		else
891 			devname = "[file]";
892 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
893 		blist_stats(sp->sw_blist, &sbuf);
894 	}
895 	mtx_unlock(&sw_dev_mtx);
896 	error = sbuf_finish(&sbuf);
897 	sbuf_delete(&sbuf);
898 	return (error);
899 }
900 
901 /*
902  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
903  *				range within an object.
904  *
905  *	This is a globally accessible routine.
906  *
907  *	This routine removes swapblk assignments from swap metadata.
908  *
909  *	The external callers of this routine typically have already destroyed
910  *	or renamed vm_page_t's associated with this range in the object so
911  *	we should be ok.
912  *
913  *	The object must be locked.
914  */
915 void
916 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
917 {
918 
919 	swp_pager_meta_free(object, start, size);
920 }
921 
922 /*
923  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
924  *
925  *	Assigns swap blocks to the specified range within the object.  The
926  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
927  *
928  *	Returns 0 on success, -1 on failure.
929  */
930 int
931 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
932 {
933 	daddr_t addr, blk, n_free, s_free;
934 	int i, j, n;
935 
936 	swp_pager_init_freerange(&s_free, &n_free);
937 	VM_OBJECT_WLOCK(object);
938 	for (i = 0; i < size; i += n) {
939 		n = size - i;
940 		blk = swp_pager_getswapspace(&n, 1);
941 		if (blk == SWAPBLK_NONE) {
942 			swp_pager_meta_free(object, start, i);
943 			VM_OBJECT_WUNLOCK(object);
944 			return (-1);
945 		}
946 		for (j = 0; j < n; ++j) {
947 			addr = swp_pager_meta_build(object,
948 			    start + i + j, blk + j);
949 			if (addr != SWAPBLK_NONE)
950 				swp_pager_update_freerange(&s_free, &n_free,
951 				    addr);
952 		}
953 	}
954 	swp_pager_freeswapspace(s_free, n_free);
955 	VM_OBJECT_WUNLOCK(object);
956 	return (0);
957 }
958 
959 static bool
960 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
961     vm_pindex_t pindex, daddr_t addr)
962 {
963 	daddr_t dstaddr;
964 
965 	KASSERT(srcobject->type == OBJT_SWAP,
966 	    ("%s: Srcobject not swappable", __func__));
967 	if (dstobject->type == OBJT_SWAP &&
968 	    swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
969 		/* Caller should destroy the source block. */
970 		return (false);
971 	}
972 
973 	/*
974 	 * Destination has no swapblk and is not resident, transfer source.
975 	 * swp_pager_meta_build() can sleep.
976 	 */
977 	vm_object_pip_add(srcobject, 1);
978 	VM_OBJECT_WUNLOCK(srcobject);
979 	vm_object_pip_add(dstobject, 1);
980 	dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
981 	KASSERT(dstaddr == SWAPBLK_NONE,
982 	    ("Unexpected destination swapblk"));
983 	vm_object_pip_wakeup(dstobject);
984 	VM_OBJECT_WLOCK(srcobject);
985 	vm_object_pip_wakeup(srcobject);
986 	return (true);
987 }
988 
989 /*
990  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
991  *			and destroy the source.
992  *
993  *	Copy any valid swapblks from the source to the destination.  In
994  *	cases where both the source and destination have a valid swapblk,
995  *	we keep the destination's.
996  *
997  *	This routine is allowed to sleep.  It may sleep allocating metadata
998  *	indirectly through swp_pager_meta_build() or if paging is still in
999  *	progress on the source.
1000  *
1001  *	The source object contains no vm_page_t's (which is just as well)
1002  *
1003  *	The source object is of type OBJT_SWAP.
1004  *
1005  *	The source and destination objects must be locked.
1006  *	Both object locks may temporarily be released.
1007  */
1008 void
1009 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1010     vm_pindex_t offset, int destroysource)
1011 {
1012 
1013 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
1014 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
1015 
1016 	/*
1017 	 * If destroysource is set, we remove the source object from the
1018 	 * swap_pager internal queue now.
1019 	 */
1020 	if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1021 	    srcobject->handle != NULL) {
1022 		vm_object_pip_add(srcobject, 1);
1023 		VM_OBJECT_WUNLOCK(srcobject);
1024 		vm_object_pip_add(dstobject, 1);
1025 		VM_OBJECT_WUNLOCK(dstobject);
1026 		sx_xlock(&sw_alloc_sx);
1027 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1028 		    pager_object_list);
1029 		sx_xunlock(&sw_alloc_sx);
1030 		VM_OBJECT_WLOCK(dstobject);
1031 		vm_object_pip_wakeup(dstobject);
1032 		VM_OBJECT_WLOCK(srcobject);
1033 		vm_object_pip_wakeup(srcobject);
1034 	}
1035 
1036 	/*
1037 	 * Transfer source to destination.
1038 	 */
1039 	swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1040 
1041 	/*
1042 	 * Free left over swap blocks in source.
1043 	 *
1044 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1045 	 * double-remove the object from the swap queues.
1046 	 */
1047 	if (destroysource) {
1048 		swp_pager_meta_free_all(srcobject);
1049 		/*
1050 		 * Reverting the type is not necessary, the caller is going
1051 		 * to destroy srcobject directly, but I'm doing it here
1052 		 * for consistency since we've removed the object from its
1053 		 * queues.
1054 		 */
1055 		srcobject->type = OBJT_DEFAULT;
1056 	}
1057 }
1058 
1059 /*
1060  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1061  *				the requested page.
1062  *
1063  *	We determine whether good backing store exists for the requested
1064  *	page and return TRUE if it does, FALSE if it doesn't.
1065  *
1066  *	If TRUE, we also try to determine how much valid, contiguous backing
1067  *	store exists before and after the requested page.
1068  */
1069 static boolean_t
1070 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1071     int *after)
1072 {
1073 	daddr_t blk, blk0;
1074 	int i;
1075 
1076 	VM_OBJECT_ASSERT_LOCKED(object);
1077 	KASSERT(object->type == OBJT_SWAP,
1078 	    ("%s: object not swappable", __func__));
1079 
1080 	/*
1081 	 * do we have good backing store at the requested index ?
1082 	 */
1083 	blk0 = swp_pager_meta_lookup(object, pindex);
1084 	if (blk0 == SWAPBLK_NONE) {
1085 		if (before)
1086 			*before = 0;
1087 		if (after)
1088 			*after = 0;
1089 		return (FALSE);
1090 	}
1091 
1092 	/*
1093 	 * find backwards-looking contiguous good backing store
1094 	 */
1095 	if (before != NULL) {
1096 		for (i = 1; i < SWB_NPAGES; i++) {
1097 			if (i > pindex)
1098 				break;
1099 			blk = swp_pager_meta_lookup(object, pindex - i);
1100 			if (blk != blk0 - i)
1101 				break;
1102 		}
1103 		*before = i - 1;
1104 	}
1105 
1106 	/*
1107 	 * find forward-looking contiguous good backing store
1108 	 */
1109 	if (after != NULL) {
1110 		for (i = 1; i < SWB_NPAGES; i++) {
1111 			blk = swp_pager_meta_lookup(object, pindex + i);
1112 			if (blk != blk0 + i)
1113 				break;
1114 		}
1115 		*after = i - 1;
1116 	}
1117 	return (TRUE);
1118 }
1119 
1120 /*
1121  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1122  *
1123  *	This removes any associated swap backing store, whether valid or
1124  *	not, from the page.
1125  *
1126  *	This routine is typically called when a page is made dirty, at
1127  *	which point any associated swap can be freed.  MADV_FREE also
1128  *	calls us in a special-case situation
1129  *
1130  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1131  *	should make the page dirty before calling this routine.  This routine
1132  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1133  *	depends on it.
1134  *
1135  *	This routine may not sleep.
1136  *
1137  *	The object containing the page may be locked.
1138  */
1139 static void
1140 swap_pager_unswapped(vm_page_t m)
1141 {
1142 	struct swblk *sb;
1143 	vm_object_t obj;
1144 
1145 	/*
1146 	 * Handle enqueing deferred frees first.  If we do not have the
1147 	 * object lock we wait for the page daemon to clear the space.
1148 	 */
1149 	obj = m->object;
1150 	if (!VM_OBJECT_WOWNED(obj)) {
1151 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
1152 		/*
1153 		 * The caller is responsible for synchronization but we
1154 		 * will harmlessly handle races.  This is typically provided
1155 		 * by only calling unswapped() when a page transitions from
1156 		 * clean to dirty.
1157 		 */
1158 		if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1159 		    PGA_SWAP_SPACE) {
1160 			vm_page_aflag_set(m, PGA_SWAP_FREE);
1161 			counter_u64_add(swap_free_deferred, 1);
1162 		}
1163 		return;
1164 	}
1165 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1166 		counter_u64_add(swap_free_completed, 1);
1167 	vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1168 
1169 	/*
1170 	 * The meta data only exists if the object is OBJT_SWAP
1171 	 * and even then might not be allocated yet.
1172 	 */
1173 	KASSERT(m->object->type == OBJT_SWAP,
1174 	    ("Free object not swappable"));
1175 
1176 	sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1177 	    rounddown(m->pindex, SWAP_META_PAGES));
1178 	if (sb == NULL)
1179 		return;
1180 	if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1181 		return;
1182 	swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1183 	sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1184 	swp_pager_free_empty_swblk(m->object, sb);
1185 }
1186 
1187 /*
1188  * swap_pager_getpages() - bring pages in from swap
1189  *
1190  *	Attempt to page in the pages in array "ma" of length "count".  The
1191  *	caller may optionally specify that additional pages preceding and
1192  *	succeeding the specified range be paged in.  The number of such pages
1193  *	is returned in the "rbehind" and "rahead" parameters, and they will
1194  *	be in the inactive queue upon return.
1195  *
1196  *	The pages in "ma" must be busied and will remain busied upon return.
1197  */
1198 static int
1199 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1200     int *rahead)
1201 {
1202 	struct buf *bp;
1203 	vm_page_t bm, mpred, msucc, p;
1204 	vm_pindex_t pindex;
1205 	daddr_t blk;
1206 	int i, maxahead, maxbehind, reqcount;
1207 
1208 	reqcount = count;
1209 
1210 	/*
1211 	 * Determine the final number of read-behind pages and
1212 	 * allocate them BEFORE releasing the object lock.  Otherwise,
1213 	 * there can be a problematic race with vm_object_split().
1214 	 * Specifically, vm_object_split() might first transfer pages
1215 	 * that precede ma[0] in the current object to a new object,
1216 	 * and then this function incorrectly recreates those pages as
1217 	 * read-behind pages in the current object.
1218 	 */
1219 	KASSERT(object->type == OBJT_SWAP,
1220 	    ("%s: object not swappable", __func__));
1221 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1222 		return (VM_PAGER_FAIL);
1223 
1224 	/*
1225 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1226 	 */
1227 	if (rahead != NULL) {
1228 		KASSERT(reqcount - 1 <= maxahead,
1229 		    ("page count %d extends beyond swap block", reqcount));
1230 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1231 		pindex = ma[reqcount - 1]->pindex;
1232 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1233 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1234 			*rahead = msucc->pindex - pindex - 1;
1235 	}
1236 	if (rbehind != NULL) {
1237 		*rbehind = imin(*rbehind, maxbehind);
1238 		pindex = ma[0]->pindex;
1239 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1240 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1241 			*rbehind = pindex - mpred->pindex - 1;
1242 	}
1243 
1244 	bm = ma[0];
1245 	for (i = 0; i < count; i++)
1246 		ma[i]->oflags |= VPO_SWAPINPROG;
1247 
1248 	/*
1249 	 * Allocate readahead and readbehind pages.
1250 	 */
1251 	if (rbehind != NULL) {
1252 		for (i = 1; i <= *rbehind; i++) {
1253 			p = vm_page_alloc(object, ma[0]->pindex - i,
1254 			    VM_ALLOC_NORMAL);
1255 			if (p == NULL)
1256 				break;
1257 			p->oflags |= VPO_SWAPINPROG;
1258 			bm = p;
1259 		}
1260 		*rbehind = i - 1;
1261 	}
1262 	if (rahead != NULL) {
1263 		for (i = 0; i < *rahead; i++) {
1264 			p = vm_page_alloc(object,
1265 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1266 			if (p == NULL)
1267 				break;
1268 			p->oflags |= VPO_SWAPINPROG;
1269 		}
1270 		*rahead = i;
1271 	}
1272 	if (rbehind != NULL)
1273 		count += *rbehind;
1274 	if (rahead != NULL)
1275 		count += *rahead;
1276 
1277 	vm_object_pip_add(object, count);
1278 
1279 	pindex = bm->pindex;
1280 	blk = swp_pager_meta_lookup(object, pindex);
1281 	KASSERT(blk != SWAPBLK_NONE,
1282 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1283 
1284 	VM_OBJECT_WUNLOCK(object);
1285 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1286 	/* Pages cannot leave the object while busy. */
1287 	for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1288 		MPASS(p->pindex == bm->pindex + i);
1289 		bp->b_pages[i] = p;
1290 	}
1291 
1292 	bp->b_flags |= B_PAGING;
1293 	bp->b_iocmd = BIO_READ;
1294 	bp->b_iodone = swp_pager_async_iodone;
1295 	bp->b_rcred = crhold(thread0.td_ucred);
1296 	bp->b_wcred = crhold(thread0.td_ucred);
1297 	bp->b_blkno = blk;
1298 	bp->b_bcount = PAGE_SIZE * count;
1299 	bp->b_bufsize = PAGE_SIZE * count;
1300 	bp->b_npages = count;
1301 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1302 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1303 
1304 	VM_CNT_INC(v_swapin);
1305 	VM_CNT_ADD(v_swappgsin, count);
1306 
1307 	/*
1308 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1309 	 * this point because we automatically release it on completion.
1310 	 * Instead, we look at the one page we are interested in which we
1311 	 * still hold a lock on even through the I/O completion.
1312 	 *
1313 	 * The other pages in our ma[] array are also released on completion,
1314 	 * so we cannot assume they are valid anymore either.
1315 	 *
1316 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1317 	 */
1318 	BUF_KERNPROC(bp);
1319 	swp_pager_strategy(bp);
1320 
1321 	/*
1322 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1323 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1324 	 * is set in the metadata for each page in the request.
1325 	 */
1326 	VM_OBJECT_WLOCK(object);
1327 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1328 		ma[0]->oflags |= VPO_SWAPSLEEP;
1329 		VM_CNT_INC(v_intrans);
1330 		if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1331 		    "swread", hz * 20)) {
1332 			printf(
1333 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1334 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1335 		}
1336 	}
1337 
1338 	/*
1339 	 * If we had an unrecoverable read error pages will not be valid.
1340 	 */
1341 	for (i = 0; i < reqcount; i++)
1342 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1343 			return (VM_PAGER_ERROR);
1344 
1345 	return (VM_PAGER_OK);
1346 
1347 	/*
1348 	 * A final note: in a low swap situation, we cannot deallocate swap
1349 	 * and mark a page dirty here because the caller is likely to mark
1350 	 * the page clean when we return, causing the page to possibly revert
1351 	 * to all-zero's later.
1352 	 */
1353 }
1354 
1355 /*
1356  * 	swap_pager_getpages_async():
1357  *
1358  *	Right now this is emulation of asynchronous operation on top of
1359  *	swap_pager_getpages().
1360  */
1361 static int
1362 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1363     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1364 {
1365 	int r, error;
1366 
1367 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1368 	VM_OBJECT_WUNLOCK(object);
1369 	switch (r) {
1370 	case VM_PAGER_OK:
1371 		error = 0;
1372 		break;
1373 	case VM_PAGER_ERROR:
1374 		error = EIO;
1375 		break;
1376 	case VM_PAGER_FAIL:
1377 		error = EINVAL;
1378 		break;
1379 	default:
1380 		panic("unhandled swap_pager_getpages() error %d", r);
1381 	}
1382 	(iodone)(arg, ma, count, error);
1383 	VM_OBJECT_WLOCK(object);
1384 
1385 	return (r);
1386 }
1387 
1388 /*
1389  *	swap_pager_putpages:
1390  *
1391  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1392  *
1393  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1394  *	are automatically converted to SWAP objects.
1395  *
1396  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1397  *	vm_page reservation system coupled with properly written VFS devices
1398  *	should ensure that no low-memory deadlock occurs.  This is an area
1399  *	which needs work.
1400  *
1401  *	The parent has N vm_object_pip_add() references prior to
1402  *	calling us and will remove references for rtvals[] that are
1403  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1404  *	completion.
1405  *
1406  *	The parent has soft-busy'd the pages it passes us and will unbusy
1407  *	those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1408  *	We need to unbusy the rest on I/O completion.
1409  */
1410 static void
1411 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1412     int flags, int *rtvals)
1413 {
1414 	struct buf *bp;
1415 	daddr_t addr, blk, n_free, s_free;
1416 	vm_page_t mreq;
1417 	int i, j, n;
1418 	bool async;
1419 
1420 	KASSERT(count == 0 || ma[0]->object == object,
1421 	    ("%s: object mismatch %p/%p",
1422 	    __func__, object, ma[0]->object));
1423 
1424 	/*
1425 	 * Step 1
1426 	 *
1427 	 * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1428 	 */
1429 	if (object->type != OBJT_SWAP) {
1430 		addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1431 		KASSERT(addr == SWAPBLK_NONE,
1432 		    ("unexpected object swap block"));
1433 	}
1434 	VM_OBJECT_WUNLOCK(object);
1435 	async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1436 	swp_pager_init_freerange(&s_free, &n_free);
1437 
1438 	/*
1439 	 * Step 2
1440 	 *
1441 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1442 	 * The page is left dirty until the pageout operation completes
1443 	 * successfully.
1444 	 */
1445 	for (i = 0; i < count; i += n) {
1446 		/* Maximum I/O size is limited by maximum swap block size. */
1447 		n = min(count - i, nsw_cluster_max);
1448 
1449 		/* Get a block of swap of size up to size n. */
1450 		blk = swp_pager_getswapspace(&n, 4);
1451 		if (blk == SWAPBLK_NONE) {
1452 			for (j = 0; j < n; ++j)
1453 				rtvals[i + j] = VM_PAGER_FAIL;
1454 			continue;
1455 		}
1456 
1457 		/*
1458 		 * All I/O parameters have been satisfied.  Build the I/O
1459 		 * request and assign the swap space.
1460 		 */
1461 		if (async) {
1462 			mtx_lock(&swbuf_mtx);
1463 			while (nsw_wcount_async == 0)
1464 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1465 				    "swbufa", 0);
1466 			nsw_wcount_async--;
1467 			mtx_unlock(&swbuf_mtx);
1468 		}
1469 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1470 		if (async)
1471 			bp->b_flags = B_ASYNC;
1472 		bp->b_flags |= B_PAGING;
1473 		bp->b_iocmd = BIO_WRITE;
1474 
1475 		bp->b_rcred = crhold(thread0.td_ucred);
1476 		bp->b_wcred = crhold(thread0.td_ucred);
1477 		bp->b_bcount = PAGE_SIZE * n;
1478 		bp->b_bufsize = PAGE_SIZE * n;
1479 		bp->b_blkno = blk;
1480 
1481 		VM_OBJECT_WLOCK(object);
1482 		for (j = 0; j < n; ++j) {
1483 			mreq = ma[i + j];
1484 			vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1485 			addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1486 			    blk + j);
1487 			if (addr != SWAPBLK_NONE)
1488 				swp_pager_update_freerange(&s_free, &n_free,
1489 				    addr);
1490 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1491 			mreq->oflags |= VPO_SWAPINPROG;
1492 			bp->b_pages[j] = mreq;
1493 		}
1494 		VM_OBJECT_WUNLOCK(object);
1495 		bp->b_npages = n;
1496 		/*
1497 		 * Must set dirty range for NFS to work.
1498 		 */
1499 		bp->b_dirtyoff = 0;
1500 		bp->b_dirtyend = bp->b_bcount;
1501 
1502 		VM_CNT_INC(v_swapout);
1503 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1504 
1505 		/*
1506 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1507 		 * can call the async completion routine at the end of a
1508 		 * synchronous I/O operation.  Otherwise, our caller would
1509 		 * perform duplicate unbusy and wakeup operations on the page
1510 		 * and object, respectively.
1511 		 */
1512 		for (j = 0; j < n; j++)
1513 			rtvals[i + j] = VM_PAGER_PEND;
1514 
1515 		/*
1516 		 * asynchronous
1517 		 *
1518 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1519 		 */
1520 		if (async) {
1521 			bp->b_iodone = swp_pager_async_iodone;
1522 			BUF_KERNPROC(bp);
1523 			swp_pager_strategy(bp);
1524 			continue;
1525 		}
1526 
1527 		/*
1528 		 * synchronous
1529 		 *
1530 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1531 		 */
1532 		bp->b_iodone = bdone;
1533 		swp_pager_strategy(bp);
1534 
1535 		/*
1536 		 * Wait for the sync I/O to complete.
1537 		 */
1538 		bwait(bp, PVM, "swwrt");
1539 
1540 		/*
1541 		 * Now that we are through with the bp, we can call the
1542 		 * normal async completion, which frees everything up.
1543 		 */
1544 		swp_pager_async_iodone(bp);
1545 	}
1546 	swp_pager_freeswapspace(s_free, n_free);
1547 	VM_OBJECT_WLOCK(object);
1548 }
1549 
1550 /*
1551  *	swp_pager_async_iodone:
1552  *
1553  *	Completion routine for asynchronous reads and writes from/to swap.
1554  *	Also called manually by synchronous code to finish up a bp.
1555  *
1556  *	This routine may not sleep.
1557  */
1558 static void
1559 swp_pager_async_iodone(struct buf *bp)
1560 {
1561 	int i;
1562 	vm_object_t object = NULL;
1563 
1564 	/*
1565 	 * Report error - unless we ran out of memory, in which case
1566 	 * we've already logged it in swapgeom_strategy().
1567 	 */
1568 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1569 		printf(
1570 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1571 			"size %ld, error %d\n",
1572 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1573 		    (long)bp->b_blkno,
1574 		    (long)bp->b_bcount,
1575 		    bp->b_error
1576 		);
1577 	}
1578 
1579 	/*
1580 	 * remove the mapping for kernel virtual
1581 	 */
1582 	if (buf_mapped(bp))
1583 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1584 	else
1585 		bp->b_data = bp->b_kvabase;
1586 
1587 	if (bp->b_npages) {
1588 		object = bp->b_pages[0]->object;
1589 		VM_OBJECT_WLOCK(object);
1590 	}
1591 
1592 	/*
1593 	 * cleanup pages.  If an error occurs writing to swap, we are in
1594 	 * very serious trouble.  If it happens to be a disk error, though,
1595 	 * we may be able to recover by reassigning the swap later on.  So
1596 	 * in this case we remove the m->swapblk assignment for the page
1597 	 * but do not free it in the rlist.  The errornous block(s) are thus
1598 	 * never reallocated as swap.  Redirty the page and continue.
1599 	 */
1600 	for (i = 0; i < bp->b_npages; ++i) {
1601 		vm_page_t m = bp->b_pages[i];
1602 
1603 		m->oflags &= ~VPO_SWAPINPROG;
1604 		if (m->oflags & VPO_SWAPSLEEP) {
1605 			m->oflags &= ~VPO_SWAPSLEEP;
1606 			wakeup(&object->handle);
1607 		}
1608 
1609 		/* We always have space after I/O, successful or not. */
1610 		vm_page_aflag_set(m, PGA_SWAP_SPACE);
1611 
1612 		if (bp->b_ioflags & BIO_ERROR) {
1613 			/*
1614 			 * If an error occurs I'd love to throw the swapblk
1615 			 * away without freeing it back to swapspace, so it
1616 			 * can never be used again.  But I can't from an
1617 			 * interrupt.
1618 			 */
1619 			if (bp->b_iocmd == BIO_READ) {
1620 				/*
1621 				 * NOTE: for reads, m->dirty will probably
1622 				 * be overridden by the original caller of
1623 				 * getpages so don't play cute tricks here.
1624 				 */
1625 				vm_page_invalid(m);
1626 			} else {
1627 				/*
1628 				 * If a write error occurs, reactivate page
1629 				 * so it doesn't clog the inactive list,
1630 				 * then finish the I/O.
1631 				 */
1632 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1633 				/* PQ_UNSWAPPABLE? */
1634 				vm_page_lock(m);
1635 				vm_page_activate(m);
1636 				vm_page_unlock(m);
1637 				vm_page_sunbusy(m);
1638 			}
1639 		} else if (bp->b_iocmd == BIO_READ) {
1640 			/*
1641 			 * NOTE: for reads, m->dirty will probably be
1642 			 * overridden by the original caller of getpages so
1643 			 * we cannot set them in order to free the underlying
1644 			 * swap in a low-swap situation.  I don't think we'd
1645 			 * want to do that anyway, but it was an optimization
1646 			 * that existed in the old swapper for a time before
1647 			 * it got ripped out due to precisely this problem.
1648 			 */
1649 			KASSERT(!pmap_page_is_mapped(m),
1650 			    ("swp_pager_async_iodone: page %p is mapped", m));
1651 			KASSERT(m->dirty == 0,
1652 			    ("swp_pager_async_iodone: page %p is dirty", m));
1653 
1654 			vm_page_valid(m);
1655 			if (i < bp->b_pgbefore ||
1656 			    i >= bp->b_npages - bp->b_pgafter)
1657 				vm_page_readahead_finish(m);
1658 		} else {
1659 			/*
1660 			 * For write success, clear the dirty
1661 			 * status, then finish the I/O ( which decrements the
1662 			 * busy count and possibly wakes waiter's up ).
1663 			 * A page is only written to swap after a period of
1664 			 * inactivity.  Therefore, we do not expect it to be
1665 			 * reused.
1666 			 */
1667 			KASSERT(!pmap_page_is_write_mapped(m),
1668 			    ("swp_pager_async_iodone: page %p is not write"
1669 			    " protected", m));
1670 			vm_page_undirty(m);
1671 			vm_page_lock(m);
1672 			vm_page_deactivate_noreuse(m);
1673 			vm_page_unlock(m);
1674 			vm_page_sunbusy(m);
1675 		}
1676 	}
1677 
1678 	/*
1679 	 * adjust pip.  NOTE: the original parent may still have its own
1680 	 * pip refs on the object.
1681 	 */
1682 	if (object != NULL) {
1683 		vm_object_pip_wakeupn(object, bp->b_npages);
1684 		VM_OBJECT_WUNLOCK(object);
1685 	}
1686 
1687 	/*
1688 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1689 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1690 	 * trigger a KASSERT in relpbuf().
1691 	 */
1692 	if (bp->b_vp) {
1693 		    bp->b_vp = NULL;
1694 		    bp->b_bufobj = NULL;
1695 	}
1696 	/*
1697 	 * release the physical I/O buffer
1698 	 */
1699 	if (bp->b_flags & B_ASYNC) {
1700 		mtx_lock(&swbuf_mtx);
1701 		if (++nsw_wcount_async == 1)
1702 			wakeup(&nsw_wcount_async);
1703 		mtx_unlock(&swbuf_mtx);
1704 	}
1705 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1706 }
1707 
1708 int
1709 swap_pager_nswapdev(void)
1710 {
1711 
1712 	return (nswapdev);
1713 }
1714 
1715 static void
1716 swp_pager_force_dirty(vm_page_t m)
1717 {
1718 
1719 	vm_page_dirty(m);
1720 #ifdef INVARIANTS
1721 	vm_page_lock(m);
1722 	if (!vm_page_wired(m) && m->a.queue == PQ_NONE)
1723 		panic("page %p is neither wired nor queued", m);
1724 	vm_page_unlock(m);
1725 #endif
1726 	vm_page_xunbusy(m);
1727 	swap_pager_unswapped(m);
1728 }
1729 
1730 static void
1731 swp_pager_force_launder(vm_page_t m)
1732 {
1733 
1734 	vm_page_dirty(m);
1735 	vm_page_lock(m);
1736 	vm_page_launder(m);
1737 	vm_page_unlock(m);
1738 	vm_page_xunbusy(m);
1739 	swap_pager_unswapped(m);
1740 }
1741 
1742 /*
1743  * SWP_PAGER_FORCE_PAGEIN() - force swap blocks to be paged in
1744  *
1745  *	This routine dissociates pages starting at the given index within an
1746  *	object from their backing store, paging them in if they do not reside
1747  *	in memory.  Pages that are paged in are marked dirty and placed in the
1748  *	laundry queue.  Pages are marked dirty because they no longer have
1749  *	backing store.  They are placed in the laundry queue because they have
1750  *	not been accessed recently.  Otherwise, they would already reside in
1751  *	memory.
1752  */
1753 static void
1754 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex, int npages)
1755 {
1756 	vm_page_t ma[npages];
1757 	int i, j;
1758 
1759 	KASSERT(npages > 0, ("%s: No pages", __func__));
1760 	KASSERT(npages <= MAXPHYS / PAGE_SIZE,
1761 	    ("%s: Too many pages: %d", __func__, npages));
1762 	KASSERT(object->type == OBJT_SWAP,
1763 	    ("%s: Object not swappable", __func__));
1764 	vm_object_pip_add(object, npages);
1765 	vm_page_grab_pages(object, pindex, VM_ALLOC_NORMAL, ma, npages);
1766 	for (i = j = 0;; i++) {
1767 		/* Count nonresident pages, to page-in all at once. */
1768 		if (i < npages && ma[i]->valid != VM_PAGE_BITS_ALL)
1769 			continue;
1770 		if (j < i) {
1771 			/* Page-in nonresident pages. Mark for laundering. */
1772 			if (swap_pager_getpages(object, &ma[j], i - j, NULL,
1773 			    NULL) != VM_PAGER_OK)
1774 				panic("%s: read from swap failed", __func__);
1775 			do {
1776 				swp_pager_force_launder(ma[j]);
1777 			} while (++j < i);
1778 		}
1779 		if (i == npages)
1780 			break;
1781 		/* Mark dirty a resident page. */
1782 		swp_pager_force_dirty(ma[j++]);
1783 	}
1784 	vm_object_pip_wakeupn(object, npages);
1785 }
1786 
1787 /*
1788  *	swap_pager_swapoff_object:
1789  *
1790  *	Page in all of the pages that have been paged out for an object
1791  *	to a swap device.
1792  */
1793 static void
1794 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1795 {
1796 	struct swblk *sb;
1797 	vm_pindex_t pi, s_pindex;
1798 	daddr_t blk, n_blks, s_blk;
1799 	int i;
1800 
1801 	KASSERT(object->type == OBJT_SWAP,
1802 	    ("%s: Object not swappable", __func__));
1803 	n_blks = 0;
1804 	for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1805 	    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1806 		for (i = 0; i < SWAP_META_PAGES; i++) {
1807 			blk = sb->d[i];
1808 			if (!swp_pager_isondev(blk, sp))
1809 				blk = SWAPBLK_NONE;
1810 
1811 			/*
1812 			 * If there are no blocks/pages accumulated, start a new
1813 			 * accumulation here.
1814 			 */
1815 			if (n_blks == 0) {
1816 				if (blk != SWAPBLK_NONE) {
1817 					s_blk = blk;
1818 					s_pindex = sb->p + i;
1819 					n_blks = 1;
1820 				}
1821 				continue;
1822 			}
1823 
1824 			/*
1825 			 * If the accumulation can be extended without breaking
1826 			 * the sequence of consecutive blocks and pages that
1827 			 * swp_pager_force_pagein() depends on, do so.
1828 			 */
1829 			if (n_blks < MAXPHYS / PAGE_SIZE &&
1830 			    s_blk + n_blks == blk &&
1831 			    s_pindex + n_blks == sb->p + i) {
1832 				++n_blks;
1833 				continue;
1834 			}
1835 
1836 			/*
1837 			 * The sequence of consecutive blocks and pages cannot
1838 			 * be extended, so page them all in here.  Then,
1839 			 * because doing so involves releasing and reacquiring
1840 			 * a lock that protects the swap block pctrie, do not
1841 			 * rely on the current swap block.  Break this loop and
1842 			 * re-fetch the same pindex from the pctrie again.
1843 			 */
1844 			swp_pager_force_pagein(object, s_pindex, n_blks);
1845 			n_blks = 0;
1846 			break;
1847 		}
1848 		if (i == SWAP_META_PAGES)
1849 			pi = sb->p + SWAP_META_PAGES;
1850 	}
1851 	if (n_blks > 0)
1852 		swp_pager_force_pagein(object, s_pindex, n_blks);
1853 }
1854 
1855 /*
1856  *	swap_pager_swapoff:
1857  *
1858  *	Page in all of the pages that have been paged out to the
1859  *	given device.  The corresponding blocks in the bitmap must be
1860  *	marked as allocated and the device must be flagged SW_CLOSING.
1861  *	There may be no processes swapped out to the device.
1862  *
1863  *	This routine may block.
1864  */
1865 static void
1866 swap_pager_swapoff(struct swdevt *sp)
1867 {
1868 	vm_object_t object;
1869 	int retries;
1870 
1871 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1872 
1873 	retries = 0;
1874 full_rescan:
1875 	mtx_lock(&vm_object_list_mtx);
1876 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1877 		if (object->type != OBJT_SWAP)
1878 			continue;
1879 		mtx_unlock(&vm_object_list_mtx);
1880 		/* Depends on type-stability. */
1881 		VM_OBJECT_WLOCK(object);
1882 
1883 		/*
1884 		 * Dead objects are eventually terminated on their own.
1885 		 */
1886 		if ((object->flags & OBJ_DEAD) != 0)
1887 			goto next_obj;
1888 
1889 		/*
1890 		 * Sync with fences placed after pctrie
1891 		 * initialization.  We must not access pctrie below
1892 		 * unless we checked that our object is swap and not
1893 		 * dead.
1894 		 */
1895 		atomic_thread_fence_acq();
1896 		if (object->type != OBJT_SWAP)
1897 			goto next_obj;
1898 
1899 		swap_pager_swapoff_object(sp, object);
1900 next_obj:
1901 		VM_OBJECT_WUNLOCK(object);
1902 		mtx_lock(&vm_object_list_mtx);
1903 	}
1904 	mtx_unlock(&vm_object_list_mtx);
1905 
1906 	if (sp->sw_used) {
1907 		/*
1908 		 * Objects may be locked or paging to the device being
1909 		 * removed, so we will miss their pages and need to
1910 		 * make another pass.  We have marked this device as
1911 		 * SW_CLOSING, so the activity should finish soon.
1912 		 */
1913 		retries++;
1914 		if (retries > 100) {
1915 			panic("swapoff: failed to locate %d swap blocks",
1916 			    sp->sw_used);
1917 		}
1918 		pause("swpoff", hz / 20);
1919 		goto full_rescan;
1920 	}
1921 	EVENTHANDLER_INVOKE(swapoff, sp);
1922 }
1923 
1924 /************************************************************************
1925  *				SWAP META DATA 				*
1926  ************************************************************************
1927  *
1928  *	These routines manipulate the swap metadata stored in the
1929  *	OBJT_SWAP object.
1930  *
1931  *	Swap metadata is implemented with a global hash and not directly
1932  *	linked into the object.  Instead the object simply contains
1933  *	appropriate tracking counters.
1934  */
1935 
1936 /*
1937  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1938  */
1939 static bool
1940 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1941 {
1942 	int i;
1943 
1944 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1945 	for (i = start; i < limit; i++) {
1946 		if (sb->d[i] != SWAPBLK_NONE)
1947 			return (false);
1948 	}
1949 	return (true);
1950 }
1951 
1952 /*
1953  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
1954  *
1955  *  Nothing is done if the block is still in use.
1956  */
1957 static void
1958 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
1959 {
1960 
1961 	if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1962 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1963 		uma_zfree(swblk_zone, sb);
1964 	}
1965 }
1966 
1967 /*
1968  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1969  *
1970  *	We first convert the object to a swap object if it is a default
1971  *	object.
1972  *
1973  *	The specified swapblk is added to the object's swap metadata.  If
1974  *	the swapblk is not valid, it is freed instead.  Any previously
1975  *	assigned swapblk is returned.
1976  */
1977 static daddr_t
1978 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1979 {
1980 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1981 	struct swblk *sb, *sb1;
1982 	vm_pindex_t modpi, rdpi;
1983 	daddr_t prev_swapblk;
1984 	int error, i;
1985 
1986 	VM_OBJECT_ASSERT_WLOCKED(object);
1987 
1988 	/*
1989 	 * Convert default object to swap object if necessary
1990 	 */
1991 	if (object->type != OBJT_SWAP) {
1992 		pctrie_init(&object->un_pager.swp.swp_blks);
1993 
1994 		/*
1995 		 * Ensure that swap_pager_swapoff()'s iteration over
1996 		 * object_list does not see a garbage pctrie.
1997 		 */
1998 		atomic_thread_fence_rel();
1999 
2000 		object->type = OBJT_SWAP;
2001 		object->un_pager.swp.writemappings = 0;
2002 		KASSERT((object->flags & OBJ_ANON) != 0 ||
2003 		    object->handle == NULL,
2004 		    ("default pager %p with handle %p",
2005 		    object, object->handle));
2006 	}
2007 
2008 	rdpi = rounddown(pindex, SWAP_META_PAGES);
2009 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2010 	if (sb == NULL) {
2011 		if (swapblk == SWAPBLK_NONE)
2012 			return (SWAPBLK_NONE);
2013 		for (;;) {
2014 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2015 			    pageproc ? M_USE_RESERVE : 0));
2016 			if (sb != NULL) {
2017 				sb->p = rdpi;
2018 				for (i = 0; i < SWAP_META_PAGES; i++)
2019 					sb->d[i] = SWAPBLK_NONE;
2020 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2021 				    1, 0))
2022 					printf("swblk zone ok\n");
2023 				break;
2024 			}
2025 			VM_OBJECT_WUNLOCK(object);
2026 			if (uma_zone_exhausted(swblk_zone)) {
2027 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2028 				    0, 1))
2029 					printf("swap blk zone exhausted, "
2030 					    "increase kern.maxswzone\n");
2031 				vm_pageout_oom(VM_OOM_SWAPZ);
2032 				pause("swzonxb", 10);
2033 			} else
2034 				uma_zwait(swblk_zone);
2035 			VM_OBJECT_WLOCK(object);
2036 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2037 			    rdpi);
2038 			if (sb != NULL)
2039 				/*
2040 				 * Somebody swapped out a nearby page,
2041 				 * allocating swblk at the rdpi index,
2042 				 * while we dropped the object lock.
2043 				 */
2044 				goto allocated;
2045 		}
2046 		for (;;) {
2047 			error = SWAP_PCTRIE_INSERT(
2048 			    &object->un_pager.swp.swp_blks, sb);
2049 			if (error == 0) {
2050 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2051 				    1, 0))
2052 					printf("swpctrie zone ok\n");
2053 				break;
2054 			}
2055 			VM_OBJECT_WUNLOCK(object);
2056 			if (uma_zone_exhausted(swpctrie_zone)) {
2057 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2058 				    0, 1))
2059 					printf("swap pctrie zone exhausted, "
2060 					    "increase kern.maxswzone\n");
2061 				vm_pageout_oom(VM_OOM_SWAPZ);
2062 				pause("swzonxp", 10);
2063 			} else
2064 				uma_zwait(swpctrie_zone);
2065 			VM_OBJECT_WLOCK(object);
2066 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2067 			    rdpi);
2068 			if (sb1 != NULL) {
2069 				uma_zfree(swblk_zone, sb);
2070 				sb = sb1;
2071 				goto allocated;
2072 			}
2073 		}
2074 	}
2075 allocated:
2076 	MPASS(sb->p == rdpi);
2077 
2078 	modpi = pindex % SWAP_META_PAGES;
2079 	/* Return prior contents of metadata. */
2080 	prev_swapblk = sb->d[modpi];
2081 	/* Enter block into metadata. */
2082 	sb->d[modpi] = swapblk;
2083 
2084 	/*
2085 	 * Free the swblk if we end up with the empty page run.
2086 	 */
2087 	if (swapblk == SWAPBLK_NONE)
2088 	    swp_pager_free_empty_swblk(object, sb);
2089 	return (prev_swapblk);
2090 }
2091 
2092 /*
2093  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2094  * metadata, or transfer it into dstobject.
2095  *
2096  *	This routine will free swap metadata structures as they are cleaned
2097  *	out.
2098  */
2099 static void
2100 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2101     vm_pindex_t pindex, vm_pindex_t count)
2102 {
2103 	struct swblk *sb;
2104 	daddr_t n_free, s_free;
2105 	vm_pindex_t offset, last;
2106 	int i, limit, start;
2107 
2108 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
2109 	if (srcobject->type != OBJT_SWAP || count == 0)
2110 		return;
2111 
2112 	swp_pager_init_freerange(&s_free, &n_free);
2113 	offset = pindex;
2114 	last = pindex + count;
2115 	for (;;) {
2116 		sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2117 		    rounddown(pindex, SWAP_META_PAGES));
2118 		if (sb == NULL || sb->p >= last)
2119 			break;
2120 		start = pindex > sb->p ? pindex - sb->p : 0;
2121 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2122 		    SWAP_META_PAGES;
2123 		for (i = start; i < limit; i++) {
2124 			if (sb->d[i] == SWAPBLK_NONE)
2125 				continue;
2126 			if (dstobject == NULL ||
2127 			    !swp_pager_xfer_source(srcobject, dstobject,
2128 			    sb->p + i - offset, sb->d[i])) {
2129 				swp_pager_update_freerange(&s_free, &n_free,
2130 				    sb->d[i]);
2131 			}
2132 			sb->d[i] = SWAPBLK_NONE;
2133 		}
2134 		pindex = sb->p + SWAP_META_PAGES;
2135 		if (swp_pager_swblk_empty(sb, 0, start) &&
2136 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2137 			SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2138 			    sb->p);
2139 			uma_zfree(swblk_zone, sb);
2140 		}
2141 	}
2142 	swp_pager_freeswapspace(s_free, n_free);
2143 }
2144 
2145 /*
2146  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2147  *
2148  *	The requested range of blocks is freed, with any associated swap
2149  *	returned to the swap bitmap.
2150  *
2151  *	This routine will free swap metadata structures as they are cleaned
2152  *	out.  This routine does *NOT* operate on swap metadata associated
2153  *	with resident pages.
2154  */
2155 static void
2156 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2157 {
2158 	swp_pager_meta_transfer(object, NULL, pindex, count);
2159 }
2160 
2161 /*
2162  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2163  *
2164  *	This routine locates and destroys all swap metadata associated with
2165  *	an object.
2166  */
2167 static void
2168 swp_pager_meta_free_all(vm_object_t object)
2169 {
2170 	struct swblk *sb;
2171 	daddr_t n_free, s_free;
2172 	vm_pindex_t pindex;
2173 	int i;
2174 
2175 	VM_OBJECT_ASSERT_WLOCKED(object);
2176 	if (object->type != OBJT_SWAP)
2177 		return;
2178 
2179 	swp_pager_init_freerange(&s_free, &n_free);
2180 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2181 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2182 		pindex = sb->p + SWAP_META_PAGES;
2183 		for (i = 0; i < SWAP_META_PAGES; i++) {
2184 			if (sb->d[i] == SWAPBLK_NONE)
2185 				continue;
2186 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2187 		}
2188 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2189 		uma_zfree(swblk_zone, sb);
2190 	}
2191 	swp_pager_freeswapspace(s_free, n_free);
2192 }
2193 
2194 /*
2195  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2196  *
2197  *	This routine is capable of looking up, or removing swapblk
2198  *	assignments in the swap meta data.  It returns the swapblk being
2199  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2200  *
2201  *	When acting on a busy resident page and paging is in progress, we
2202  *	have to wait until paging is complete but otherwise can act on the
2203  *	busy page.
2204  */
2205 static daddr_t
2206 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2207 {
2208 	struct swblk *sb;
2209 
2210 	VM_OBJECT_ASSERT_LOCKED(object);
2211 
2212 	/*
2213 	 * The meta data only exists if the object is OBJT_SWAP
2214 	 * and even then might not be allocated yet.
2215 	 */
2216 	KASSERT(object->type == OBJT_SWAP,
2217 	    ("Lookup object not swappable"));
2218 
2219 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2220 	    rounddown(pindex, SWAP_META_PAGES));
2221 	if (sb == NULL)
2222 		return (SWAPBLK_NONE);
2223 	return (sb->d[pindex % SWAP_META_PAGES]);
2224 }
2225 
2226 /*
2227  * Returns the least page index which is greater than or equal to the
2228  * parameter pindex and for which there is a swap block allocated.
2229  * Returns object's size if the object's type is not swap or if there
2230  * are no allocated swap blocks for the object after the requested
2231  * pindex.
2232  */
2233 vm_pindex_t
2234 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2235 {
2236 	struct swblk *sb;
2237 	int i;
2238 
2239 	VM_OBJECT_ASSERT_LOCKED(object);
2240 	if (object->type != OBJT_SWAP)
2241 		return (object->size);
2242 
2243 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2244 	    rounddown(pindex, SWAP_META_PAGES));
2245 	if (sb == NULL)
2246 		return (object->size);
2247 	if (sb->p < pindex) {
2248 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2249 			if (sb->d[i] != SWAPBLK_NONE)
2250 				return (sb->p + i);
2251 		}
2252 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2253 		    roundup(pindex, SWAP_META_PAGES));
2254 		if (sb == NULL)
2255 			return (object->size);
2256 	}
2257 	for (i = 0; i < SWAP_META_PAGES; i++) {
2258 		if (sb->d[i] != SWAPBLK_NONE)
2259 			return (sb->p + i);
2260 	}
2261 
2262 	/*
2263 	 * We get here if a swblk is present in the trie but it
2264 	 * doesn't map any blocks.
2265 	 */
2266 	MPASS(0);
2267 	return (object->size);
2268 }
2269 
2270 /*
2271  * System call swapon(name) enables swapping on device name,
2272  * which must be in the swdevsw.  Return EBUSY
2273  * if already swapping on this device.
2274  */
2275 #ifndef _SYS_SYSPROTO_H_
2276 struct swapon_args {
2277 	char *name;
2278 };
2279 #endif
2280 
2281 /*
2282  * MPSAFE
2283  */
2284 /* ARGSUSED */
2285 int
2286 sys_swapon(struct thread *td, struct swapon_args *uap)
2287 {
2288 	struct vattr attr;
2289 	struct vnode *vp;
2290 	struct nameidata nd;
2291 	int error;
2292 
2293 	error = priv_check(td, PRIV_SWAPON);
2294 	if (error)
2295 		return (error);
2296 
2297 	sx_xlock(&swdev_syscall_lock);
2298 
2299 	/*
2300 	 * Swap metadata may not fit in the KVM if we have physical
2301 	 * memory of >1GB.
2302 	 */
2303 	if (swblk_zone == NULL) {
2304 		error = ENOMEM;
2305 		goto done;
2306 	}
2307 
2308 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2309 	    uap->name, td);
2310 	error = namei(&nd);
2311 	if (error)
2312 		goto done;
2313 
2314 	NDFREE(&nd, NDF_ONLY_PNBUF);
2315 	vp = nd.ni_vp;
2316 
2317 	if (vn_isdisk(vp, &error)) {
2318 		error = swapongeom(vp);
2319 	} else if (vp->v_type == VREG &&
2320 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2321 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2322 		/*
2323 		 * Allow direct swapping to NFS regular files in the same
2324 		 * way that nfs_mountroot() sets up diskless swapping.
2325 		 */
2326 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2327 	}
2328 
2329 	if (error)
2330 		vrele(vp);
2331 done:
2332 	sx_xunlock(&swdev_syscall_lock);
2333 	return (error);
2334 }
2335 
2336 /*
2337  * Check that the total amount of swap currently configured does not
2338  * exceed half the theoretical maximum.  If it does, print a warning
2339  * message.
2340  */
2341 static void
2342 swapon_check_swzone(void)
2343 {
2344 
2345 	/* recommend using no more than half that amount */
2346 	if (swap_total > swap_maxpages / 2) {
2347 		printf("warning: total configured swap (%lu pages) "
2348 		    "exceeds maximum recommended amount (%lu pages).\n",
2349 		    swap_total, swap_maxpages / 2);
2350 		printf("warning: increase kern.maxswzone "
2351 		    "or reduce amount of swap.\n");
2352 	}
2353 }
2354 
2355 static void
2356 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2357     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2358 {
2359 	struct swdevt *sp, *tsp;
2360 	swblk_t dvbase;
2361 	u_long mblocks;
2362 
2363 	/*
2364 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2365 	 * First chop nblks off to page-align it, then convert.
2366 	 *
2367 	 * sw->sw_nblks is in page-sized chunks now too.
2368 	 */
2369 	nblks &= ~(ctodb(1) - 1);
2370 	nblks = dbtoc(nblks);
2371 
2372 	/*
2373 	 * If we go beyond this, we get overflows in the radix
2374 	 * tree bitmap code.
2375 	 */
2376 	mblocks = 0x40000000 / BLIST_META_RADIX;
2377 	if (nblks > mblocks) {
2378 		printf(
2379     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2380 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2381 		nblks = mblocks;
2382 	}
2383 
2384 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2385 	sp->sw_vp = vp;
2386 	sp->sw_id = id;
2387 	sp->sw_dev = dev;
2388 	sp->sw_nblks = nblks;
2389 	sp->sw_used = 0;
2390 	sp->sw_strategy = strategy;
2391 	sp->sw_close = close;
2392 	sp->sw_flags = flags;
2393 
2394 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2395 	/*
2396 	 * Do not free the first blocks in order to avoid overwriting
2397 	 * any bsd label at the front of the partition
2398 	 */
2399 	blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2400 	    nblks - howmany(BBSIZE, PAGE_SIZE));
2401 
2402 	dvbase = 0;
2403 	mtx_lock(&sw_dev_mtx);
2404 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2405 		if (tsp->sw_end >= dvbase) {
2406 			/*
2407 			 * We put one uncovered page between the devices
2408 			 * in order to definitively prevent any cross-device
2409 			 * I/O requests
2410 			 */
2411 			dvbase = tsp->sw_end + 1;
2412 		}
2413 	}
2414 	sp->sw_first = dvbase;
2415 	sp->sw_end = dvbase + nblks;
2416 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2417 	nswapdev++;
2418 	swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2419 	swap_total += nblks;
2420 	swapon_check_swzone();
2421 	swp_sizecheck();
2422 	mtx_unlock(&sw_dev_mtx);
2423 	EVENTHANDLER_INVOKE(swapon, sp);
2424 }
2425 
2426 /*
2427  * SYSCALL: swapoff(devname)
2428  *
2429  * Disable swapping on the given device.
2430  *
2431  * XXX: Badly designed system call: it should use a device index
2432  * rather than filename as specification.  We keep sw_vp around
2433  * only to make this work.
2434  */
2435 #ifndef _SYS_SYSPROTO_H_
2436 struct swapoff_args {
2437 	char *name;
2438 };
2439 #endif
2440 
2441 /*
2442  * MPSAFE
2443  */
2444 /* ARGSUSED */
2445 int
2446 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2447 {
2448 	struct vnode *vp;
2449 	struct nameidata nd;
2450 	struct swdevt *sp;
2451 	int error;
2452 
2453 	error = priv_check(td, PRIV_SWAPOFF);
2454 	if (error)
2455 		return (error);
2456 
2457 	sx_xlock(&swdev_syscall_lock);
2458 
2459 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2460 	    td);
2461 	error = namei(&nd);
2462 	if (error)
2463 		goto done;
2464 	NDFREE(&nd, NDF_ONLY_PNBUF);
2465 	vp = nd.ni_vp;
2466 
2467 	mtx_lock(&sw_dev_mtx);
2468 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2469 		if (sp->sw_vp == vp)
2470 			break;
2471 	}
2472 	mtx_unlock(&sw_dev_mtx);
2473 	if (sp == NULL) {
2474 		error = EINVAL;
2475 		goto done;
2476 	}
2477 	error = swapoff_one(sp, td->td_ucred);
2478 done:
2479 	sx_xunlock(&swdev_syscall_lock);
2480 	return (error);
2481 }
2482 
2483 static int
2484 swapoff_one(struct swdevt *sp, struct ucred *cred)
2485 {
2486 	u_long nblks;
2487 #ifdef MAC
2488 	int error;
2489 #endif
2490 
2491 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2492 #ifdef MAC
2493 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2494 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2495 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2496 	if (error != 0)
2497 		return (error);
2498 #endif
2499 	nblks = sp->sw_nblks;
2500 
2501 	/*
2502 	 * We can turn off this swap device safely only if the
2503 	 * available virtual memory in the system will fit the amount
2504 	 * of data we will have to page back in, plus an epsilon so
2505 	 * the system doesn't become critically low on swap space.
2506 	 */
2507 	if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2508 		return (ENOMEM);
2509 
2510 	/*
2511 	 * Prevent further allocations on this device.
2512 	 */
2513 	mtx_lock(&sw_dev_mtx);
2514 	sp->sw_flags |= SW_CLOSING;
2515 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2516 	swap_total -= nblks;
2517 	mtx_unlock(&sw_dev_mtx);
2518 
2519 	/*
2520 	 * Page in the contents of the device and close it.
2521 	 */
2522 	swap_pager_swapoff(sp);
2523 
2524 	sp->sw_close(curthread, sp);
2525 	mtx_lock(&sw_dev_mtx);
2526 	sp->sw_id = NULL;
2527 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2528 	nswapdev--;
2529 	if (nswapdev == 0) {
2530 		swap_pager_full = 2;
2531 		swap_pager_almost_full = 1;
2532 	}
2533 	if (swdevhd == sp)
2534 		swdevhd = NULL;
2535 	mtx_unlock(&sw_dev_mtx);
2536 	blist_destroy(sp->sw_blist);
2537 	free(sp, M_VMPGDATA);
2538 	return (0);
2539 }
2540 
2541 void
2542 swapoff_all(void)
2543 {
2544 	struct swdevt *sp, *spt;
2545 	const char *devname;
2546 	int error;
2547 
2548 	sx_xlock(&swdev_syscall_lock);
2549 
2550 	mtx_lock(&sw_dev_mtx);
2551 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2552 		mtx_unlock(&sw_dev_mtx);
2553 		if (vn_isdisk(sp->sw_vp, NULL))
2554 			devname = devtoname(sp->sw_vp->v_rdev);
2555 		else
2556 			devname = "[file]";
2557 		error = swapoff_one(sp, thread0.td_ucred);
2558 		if (error != 0) {
2559 			printf("Cannot remove swap device %s (error=%d), "
2560 			    "skipping.\n", devname, error);
2561 		} else if (bootverbose) {
2562 			printf("Swap device %s removed.\n", devname);
2563 		}
2564 		mtx_lock(&sw_dev_mtx);
2565 	}
2566 	mtx_unlock(&sw_dev_mtx);
2567 
2568 	sx_xunlock(&swdev_syscall_lock);
2569 }
2570 
2571 void
2572 swap_pager_status(int *total, int *used)
2573 {
2574 	struct swdevt *sp;
2575 
2576 	*total = 0;
2577 	*used = 0;
2578 	mtx_lock(&sw_dev_mtx);
2579 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2580 		*total += sp->sw_nblks;
2581 		*used += sp->sw_used;
2582 	}
2583 	mtx_unlock(&sw_dev_mtx);
2584 }
2585 
2586 int
2587 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2588 {
2589 	struct swdevt *sp;
2590 	const char *tmp_devname;
2591 	int error, n;
2592 
2593 	n = 0;
2594 	error = ENOENT;
2595 	mtx_lock(&sw_dev_mtx);
2596 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2597 		if (n != name) {
2598 			n++;
2599 			continue;
2600 		}
2601 		xs->xsw_version = XSWDEV_VERSION;
2602 		xs->xsw_dev = sp->sw_dev;
2603 		xs->xsw_flags = sp->sw_flags;
2604 		xs->xsw_nblks = sp->sw_nblks;
2605 		xs->xsw_used = sp->sw_used;
2606 		if (devname != NULL) {
2607 			if (vn_isdisk(sp->sw_vp, NULL))
2608 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2609 			else
2610 				tmp_devname = "[file]";
2611 			strncpy(devname, tmp_devname, len);
2612 		}
2613 		error = 0;
2614 		break;
2615 	}
2616 	mtx_unlock(&sw_dev_mtx);
2617 	return (error);
2618 }
2619 
2620 #if defined(COMPAT_FREEBSD11)
2621 #define XSWDEV_VERSION_11	1
2622 struct xswdev11 {
2623 	u_int	xsw_version;
2624 	uint32_t xsw_dev;
2625 	int	xsw_flags;
2626 	int	xsw_nblks;
2627 	int     xsw_used;
2628 };
2629 #endif
2630 
2631 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2632 struct xswdev32 {
2633 	u_int	xsw_version;
2634 	u_int	xsw_dev1, xsw_dev2;
2635 	int	xsw_flags;
2636 	int	xsw_nblks;
2637 	int     xsw_used;
2638 };
2639 #endif
2640 
2641 static int
2642 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2643 {
2644 	struct xswdev xs;
2645 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2646 	struct xswdev32 xs32;
2647 #endif
2648 #if defined(COMPAT_FREEBSD11)
2649 	struct xswdev11 xs11;
2650 #endif
2651 	int error;
2652 
2653 	if (arg2 != 1)			/* name length */
2654 		return (EINVAL);
2655 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2656 	if (error != 0)
2657 		return (error);
2658 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2659 	if (req->oldlen == sizeof(xs32)) {
2660 		xs32.xsw_version = XSWDEV_VERSION;
2661 		xs32.xsw_dev1 = xs.xsw_dev;
2662 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2663 		xs32.xsw_flags = xs.xsw_flags;
2664 		xs32.xsw_nblks = xs.xsw_nblks;
2665 		xs32.xsw_used = xs.xsw_used;
2666 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2667 		return (error);
2668 	}
2669 #endif
2670 #if defined(COMPAT_FREEBSD11)
2671 	if (req->oldlen == sizeof(xs11)) {
2672 		xs11.xsw_version = XSWDEV_VERSION_11;
2673 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2674 		xs11.xsw_flags = xs.xsw_flags;
2675 		xs11.xsw_nblks = xs.xsw_nblks;
2676 		xs11.xsw_used = xs.xsw_used;
2677 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2678 		return (error);
2679 	}
2680 #endif
2681 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2682 	return (error);
2683 }
2684 
2685 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2686     "Number of swap devices");
2687 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2688     sysctl_vm_swap_info,
2689     "Swap statistics by device");
2690 
2691 /*
2692  * Count the approximate swap usage in pages for a vmspace.  The
2693  * shadowed or not yet copied on write swap blocks are not accounted.
2694  * The map must be locked.
2695  */
2696 long
2697 vmspace_swap_count(struct vmspace *vmspace)
2698 {
2699 	vm_map_t map;
2700 	vm_map_entry_t cur;
2701 	vm_object_t object;
2702 	struct swblk *sb;
2703 	vm_pindex_t e, pi;
2704 	long count;
2705 	int i;
2706 
2707 	map = &vmspace->vm_map;
2708 	count = 0;
2709 
2710 	VM_MAP_ENTRY_FOREACH(cur, map) {
2711 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2712 			continue;
2713 		object = cur->object.vm_object;
2714 		if (object == NULL || object->type != OBJT_SWAP)
2715 			continue;
2716 		VM_OBJECT_RLOCK(object);
2717 		if (object->type != OBJT_SWAP)
2718 			goto unlock;
2719 		pi = OFF_TO_IDX(cur->offset);
2720 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2721 		for (;; pi = sb->p + SWAP_META_PAGES) {
2722 			sb = SWAP_PCTRIE_LOOKUP_GE(
2723 			    &object->un_pager.swp.swp_blks, pi);
2724 			if (sb == NULL || sb->p >= e)
2725 				break;
2726 			for (i = 0; i < SWAP_META_PAGES; i++) {
2727 				if (sb->p + i < e &&
2728 				    sb->d[i] != SWAPBLK_NONE)
2729 					count++;
2730 			}
2731 		}
2732 unlock:
2733 		VM_OBJECT_RUNLOCK(object);
2734 	}
2735 	return (count);
2736 }
2737 
2738 /*
2739  * GEOM backend
2740  *
2741  * Swapping onto disk devices.
2742  *
2743  */
2744 
2745 static g_orphan_t swapgeom_orphan;
2746 
2747 static struct g_class g_swap_class = {
2748 	.name = "SWAP",
2749 	.version = G_VERSION,
2750 	.orphan = swapgeom_orphan,
2751 };
2752 
2753 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2754 
2755 
2756 static void
2757 swapgeom_close_ev(void *arg, int flags)
2758 {
2759 	struct g_consumer *cp;
2760 
2761 	cp = arg;
2762 	g_access(cp, -1, -1, 0);
2763 	g_detach(cp);
2764 	g_destroy_consumer(cp);
2765 }
2766 
2767 /*
2768  * Add a reference to the g_consumer for an inflight transaction.
2769  */
2770 static void
2771 swapgeom_acquire(struct g_consumer *cp)
2772 {
2773 
2774 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2775 	cp->index++;
2776 }
2777 
2778 /*
2779  * Remove a reference from the g_consumer.  Post a close event if all
2780  * references go away, since the function might be called from the
2781  * biodone context.
2782  */
2783 static void
2784 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2785 {
2786 
2787 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2788 	cp->index--;
2789 	if (cp->index == 0) {
2790 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2791 			sp->sw_id = NULL;
2792 	}
2793 }
2794 
2795 static void
2796 swapgeom_done(struct bio *bp2)
2797 {
2798 	struct swdevt *sp;
2799 	struct buf *bp;
2800 	struct g_consumer *cp;
2801 
2802 	bp = bp2->bio_caller2;
2803 	cp = bp2->bio_from;
2804 	bp->b_ioflags = bp2->bio_flags;
2805 	if (bp2->bio_error)
2806 		bp->b_ioflags |= BIO_ERROR;
2807 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2808 	bp->b_error = bp2->bio_error;
2809 	bp->b_caller1 = NULL;
2810 	bufdone(bp);
2811 	sp = bp2->bio_caller1;
2812 	mtx_lock(&sw_dev_mtx);
2813 	swapgeom_release(cp, sp);
2814 	mtx_unlock(&sw_dev_mtx);
2815 	g_destroy_bio(bp2);
2816 }
2817 
2818 static void
2819 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2820 {
2821 	struct bio *bio;
2822 	struct g_consumer *cp;
2823 
2824 	mtx_lock(&sw_dev_mtx);
2825 	cp = sp->sw_id;
2826 	if (cp == NULL) {
2827 		mtx_unlock(&sw_dev_mtx);
2828 		bp->b_error = ENXIO;
2829 		bp->b_ioflags |= BIO_ERROR;
2830 		bufdone(bp);
2831 		return;
2832 	}
2833 	swapgeom_acquire(cp);
2834 	mtx_unlock(&sw_dev_mtx);
2835 	if (bp->b_iocmd == BIO_WRITE)
2836 		bio = g_new_bio();
2837 	else
2838 		bio = g_alloc_bio();
2839 	if (bio == NULL) {
2840 		mtx_lock(&sw_dev_mtx);
2841 		swapgeom_release(cp, sp);
2842 		mtx_unlock(&sw_dev_mtx);
2843 		bp->b_error = ENOMEM;
2844 		bp->b_ioflags |= BIO_ERROR;
2845 		printf("swap_pager: cannot allocate bio\n");
2846 		bufdone(bp);
2847 		return;
2848 	}
2849 
2850 	bp->b_caller1 = bio;
2851 	bio->bio_caller1 = sp;
2852 	bio->bio_caller2 = bp;
2853 	bio->bio_cmd = bp->b_iocmd;
2854 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2855 	bio->bio_length = bp->b_bcount;
2856 	bio->bio_done = swapgeom_done;
2857 	if (!buf_mapped(bp)) {
2858 		bio->bio_ma = bp->b_pages;
2859 		bio->bio_data = unmapped_buf;
2860 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2861 		bio->bio_ma_n = bp->b_npages;
2862 		bio->bio_flags |= BIO_UNMAPPED;
2863 	} else {
2864 		bio->bio_data = bp->b_data;
2865 		bio->bio_ma = NULL;
2866 	}
2867 	g_io_request(bio, cp);
2868 	return;
2869 }
2870 
2871 static void
2872 swapgeom_orphan(struct g_consumer *cp)
2873 {
2874 	struct swdevt *sp;
2875 	int destroy;
2876 
2877 	mtx_lock(&sw_dev_mtx);
2878 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2879 		if (sp->sw_id == cp) {
2880 			sp->sw_flags |= SW_CLOSING;
2881 			break;
2882 		}
2883 	}
2884 	/*
2885 	 * Drop reference we were created with. Do directly since we're in a
2886 	 * special context where we don't have to queue the call to
2887 	 * swapgeom_close_ev().
2888 	 */
2889 	cp->index--;
2890 	destroy = ((sp != NULL) && (cp->index == 0));
2891 	if (destroy)
2892 		sp->sw_id = NULL;
2893 	mtx_unlock(&sw_dev_mtx);
2894 	if (destroy)
2895 		swapgeom_close_ev(cp, 0);
2896 }
2897 
2898 static void
2899 swapgeom_close(struct thread *td, struct swdevt *sw)
2900 {
2901 	struct g_consumer *cp;
2902 
2903 	mtx_lock(&sw_dev_mtx);
2904 	cp = sw->sw_id;
2905 	sw->sw_id = NULL;
2906 	mtx_unlock(&sw_dev_mtx);
2907 
2908 	/*
2909 	 * swapgeom_close() may be called from the biodone context,
2910 	 * where we cannot perform topology changes.  Delegate the
2911 	 * work to the events thread.
2912 	 */
2913 	if (cp != NULL)
2914 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2915 }
2916 
2917 static int
2918 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2919 {
2920 	struct g_provider *pp;
2921 	struct g_consumer *cp;
2922 	static struct g_geom *gp;
2923 	struct swdevt *sp;
2924 	u_long nblks;
2925 	int error;
2926 
2927 	pp = g_dev_getprovider(dev);
2928 	if (pp == NULL)
2929 		return (ENODEV);
2930 	mtx_lock(&sw_dev_mtx);
2931 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2932 		cp = sp->sw_id;
2933 		if (cp != NULL && cp->provider == pp) {
2934 			mtx_unlock(&sw_dev_mtx);
2935 			return (EBUSY);
2936 		}
2937 	}
2938 	mtx_unlock(&sw_dev_mtx);
2939 	if (gp == NULL)
2940 		gp = g_new_geomf(&g_swap_class, "swap");
2941 	cp = g_new_consumer(gp);
2942 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2943 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2944 	g_attach(cp, pp);
2945 	/*
2946 	 * XXX: Every time you think you can improve the margin for
2947 	 * footshooting, somebody depends on the ability to do so:
2948 	 * savecore(8) wants to write to our swapdev so we cannot
2949 	 * set an exclusive count :-(
2950 	 */
2951 	error = g_access(cp, 1, 1, 0);
2952 	if (error != 0) {
2953 		g_detach(cp);
2954 		g_destroy_consumer(cp);
2955 		return (error);
2956 	}
2957 	nblks = pp->mediasize / DEV_BSIZE;
2958 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2959 	    swapgeom_close, dev2udev(dev),
2960 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2961 	return (0);
2962 }
2963 
2964 static int
2965 swapongeom(struct vnode *vp)
2966 {
2967 	int error;
2968 
2969 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2970 	if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
2971 		error = ENOENT;
2972 	} else {
2973 		g_topology_lock();
2974 		error = swapongeom_locked(vp->v_rdev, vp);
2975 		g_topology_unlock();
2976 	}
2977 	VOP_UNLOCK(vp, 0);
2978 	return (error);
2979 }
2980 
2981 /*
2982  * VNODE backend
2983  *
2984  * This is used mainly for network filesystem (read: probably only tested
2985  * with NFS) swapfiles.
2986  *
2987  */
2988 
2989 static void
2990 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2991 {
2992 	struct vnode *vp2;
2993 
2994 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2995 
2996 	vp2 = sp->sw_id;
2997 	vhold(vp2);
2998 	if (bp->b_iocmd == BIO_WRITE) {
2999 		if (bp->b_bufobj)
3000 			bufobj_wdrop(bp->b_bufobj);
3001 		bufobj_wref(&vp2->v_bufobj);
3002 	}
3003 	if (bp->b_bufobj != &vp2->v_bufobj)
3004 		bp->b_bufobj = &vp2->v_bufobj;
3005 	bp->b_vp = vp2;
3006 	bp->b_iooffset = dbtob(bp->b_blkno);
3007 	bstrategy(bp);
3008 	return;
3009 }
3010 
3011 static void
3012 swapdev_close(struct thread *td, struct swdevt *sp)
3013 {
3014 
3015 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
3016 	vrele(sp->sw_vp);
3017 }
3018 
3019 
3020 static int
3021 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3022 {
3023 	struct swdevt *sp;
3024 	int error;
3025 
3026 	if (nblks == 0)
3027 		return (ENXIO);
3028 	mtx_lock(&sw_dev_mtx);
3029 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3030 		if (sp->sw_id == vp) {
3031 			mtx_unlock(&sw_dev_mtx);
3032 			return (EBUSY);
3033 		}
3034 	}
3035 	mtx_unlock(&sw_dev_mtx);
3036 
3037 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3038 #ifdef MAC
3039 	error = mac_system_check_swapon(td->td_ucred, vp);
3040 	if (error == 0)
3041 #endif
3042 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3043 	(void) VOP_UNLOCK(vp, 0);
3044 	if (error)
3045 		return (error);
3046 
3047 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3048 	    NODEV, 0);
3049 	return (0);
3050 }
3051 
3052 static int
3053 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3054 {
3055 	int error, new, n;
3056 
3057 	new = nsw_wcount_async_max;
3058 	error = sysctl_handle_int(oidp, &new, 0, req);
3059 	if (error != 0 || req->newptr == NULL)
3060 		return (error);
3061 
3062 	if (new > nswbuf / 2 || new < 1)
3063 		return (EINVAL);
3064 
3065 	mtx_lock(&swbuf_mtx);
3066 	while (nsw_wcount_async_max != new) {
3067 		/*
3068 		 * Adjust difference.  If the current async count is too low,
3069 		 * we will need to sqeeze our update slowly in.  Sleep with a
3070 		 * higher priority than getpbuf() to finish faster.
3071 		 */
3072 		n = new - nsw_wcount_async_max;
3073 		if (nsw_wcount_async + n >= 0) {
3074 			nsw_wcount_async += n;
3075 			nsw_wcount_async_max += n;
3076 			wakeup(&nsw_wcount_async);
3077 		} else {
3078 			nsw_wcount_async_max -= nsw_wcount_async;
3079 			nsw_wcount_async = 0;
3080 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3081 			    "swpsysctl", 0);
3082 		}
3083 	}
3084 	mtx_unlock(&swbuf_mtx);
3085 
3086 	return (0);
3087 }
3088 
3089 static void
3090 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3091     vm_offset_t end)
3092 {
3093 
3094 	VM_OBJECT_WLOCK(object);
3095 	KASSERT((object->flags & OBJ_ANON) == 0,
3096 	    ("Splittable object with writecount"));
3097 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3098 	VM_OBJECT_WUNLOCK(object);
3099 }
3100 
3101 static void
3102 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3103     vm_offset_t end)
3104 {
3105 
3106 	VM_OBJECT_WLOCK(object);
3107 	KASSERT((object->flags & OBJ_ANON) == 0,
3108 	    ("Splittable object with writecount"));
3109 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3110 	VM_OBJECT_WUNLOCK(object);
3111 }
3112