xref: /freebsd/sys/vm/swap_pager.c (revision f0a75d274af375d15b97b830966b99a02b7db911)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_mac.h"
73 #include "opt_swap.h"
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/conf.h>
79 #include <sys/kernel.h>
80 #include <sys/priv.h>
81 #include <sys/proc.h>
82 #include <sys/bio.h>
83 #include <sys/buf.h>
84 #include <sys/disk.h>
85 #include <sys/fcntl.h>
86 #include <sys/mount.h>
87 #include <sys/namei.h>
88 #include <sys/vnode.h>
89 #include <sys/malloc.h>
90 #include <sys/sysctl.h>
91 #include <sys/sysproto.h>
92 #include <sys/blist.h>
93 #include <sys/lock.h>
94 #include <sys/sx.h>
95 #include <sys/vmmeter.h>
96 
97 #include <security/mac/mac_framework.h>
98 
99 #include <vm/vm.h>
100 #include <vm/pmap.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pager.h>
106 #include <vm/vm_pageout.h>
107 #include <vm/vm_param.h>
108 #include <vm/swap_pager.h>
109 #include <vm/vm_extern.h>
110 #include <vm/uma.h>
111 
112 #include <geom/geom.h>
113 
114 /*
115  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
116  * pages per allocation.  We recommend you stick with the default of 8.
117  * The 16-page limit is due to the radix code (kern/subr_blist.c).
118  */
119 #ifndef MAX_PAGEOUT_CLUSTER
120 #define MAX_PAGEOUT_CLUSTER 16
121 #endif
122 
123 #if !defined(SWB_NPAGES)
124 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
125 #endif
126 
127 /*
128  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
129  *
130  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
131  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
132  * 32K worth of data, two levels represent 256K, three levels represent
133  * 2 MBytes.   This is acceptable.
134  *
135  * Overall memory utilization is about the same as the old swap structure.
136  */
137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
139 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140 
141 struct swblock {
142 	struct swblock	*swb_hnext;
143 	vm_object_t	swb_object;
144 	vm_pindex_t	swb_index;
145 	int		swb_count;
146 	daddr_t		swb_pages[SWAP_META_PAGES];
147 };
148 
149 static struct mtx sw_dev_mtx;
150 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
151 static struct swdevt *swdevhd;	/* Allocate from here next */
152 static int nswapdev;		/* Number of swap devices */
153 int swap_pager_avail;
154 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
155 
156 static void swapdev_strategy(struct buf *, struct swdevt *sw);
157 
158 #define SWM_FREE	0x02	/* free, period			*/
159 #define SWM_POP		0x04	/* pop out			*/
160 
161 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
162 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
163 static int nsw_rcount;		/* free read buffers			*/
164 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
165 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
166 static int nsw_wcount_async_max;/* assigned maximum			*/
167 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
168 
169 static struct swblock **swhash;
170 static int swhash_mask;
171 static struct mtx swhash_mtx;
172 
173 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
174 static struct sx sw_alloc_sx;
175 
176 
177 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
178         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
179 
180 /*
181  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
182  * of searching a named list by hashing it just a little.
183  */
184 
185 #define NOBJLISTS		8
186 
187 #define NOBJLIST(handle)	\
188 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
189 
190 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
191 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
192 static uma_zone_t	swap_zone;
193 static struct vm_object	swap_zone_obj;
194 
195 /*
196  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
197  * calls hooked from other parts of the VM system and do not appear here.
198  * (see vm/swap_pager.h).
199  */
200 static vm_object_t
201 		swap_pager_alloc(void *handle, vm_ooffset_t size,
202 				      vm_prot_t prot, vm_ooffset_t offset);
203 static void	swap_pager_dealloc(vm_object_t object);
204 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
205 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
206 static boolean_t
207 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
208 static void	swap_pager_init(void);
209 static void	swap_pager_unswapped(vm_page_t);
210 static void	swap_pager_swapoff(struct swdevt *sp);
211 
212 struct pagerops swappagerops = {
213 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
214 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
215 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
216 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
217 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
218 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
219 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
220 };
221 
222 /*
223  * dmmax is in page-sized chunks with the new swap system.  It was
224  * dev-bsized chunks in the old.  dmmax is always a power of 2.
225  *
226  * swap_*() routines are externally accessible.  swp_*() routines are
227  * internal.
228  */
229 static int dmmax;
230 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
231 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
232 
233 SYSCTL_INT(_vm, OID_AUTO, dmmax,
234 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
235 
236 static void	swp_sizecheck(void);
237 static void	swp_pager_async_iodone(struct buf *bp);
238 static int	swapongeom(struct thread *, struct vnode *);
239 static int	swaponvp(struct thread *, struct vnode *, u_long);
240 static int	swapoff_one(struct swdevt *sp, struct thread *td);
241 
242 /*
243  * Swap bitmap functions
244  */
245 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
246 static daddr_t	swp_pager_getswapspace(int npages);
247 
248 /*
249  * Metadata functions
250  */
251 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
252 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
253 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
254 static void swp_pager_meta_free_all(vm_object_t);
255 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
256 
257 /*
258  * SWP_SIZECHECK() -	update swap_pager_full indication
259  *
260  *	update the swap_pager_almost_full indication and warn when we are
261  *	about to run out of swap space, using lowat/hiwat hysteresis.
262  *
263  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
264  *
265  *	No restrictions on call
266  *	This routine may not block.
267  *	This routine must be called at splvm()
268  */
269 static void
270 swp_sizecheck(void)
271 {
272 
273 	if (swap_pager_avail < nswap_lowat) {
274 		if (swap_pager_almost_full == 0) {
275 			printf("swap_pager: out of swap space\n");
276 			swap_pager_almost_full = 1;
277 		}
278 	} else {
279 		swap_pager_full = 0;
280 		if (swap_pager_avail > nswap_hiwat)
281 			swap_pager_almost_full = 0;
282 	}
283 }
284 
285 /*
286  * SWP_PAGER_HASH() -	hash swap meta data
287  *
288  *	This is an helper function which hashes the swapblk given
289  *	the object and page index.  It returns a pointer to a pointer
290  *	to the object, or a pointer to a NULL pointer if it could not
291  *	find a swapblk.
292  *
293  *	This routine must be called at splvm().
294  */
295 static struct swblock **
296 swp_pager_hash(vm_object_t object, vm_pindex_t index)
297 {
298 	struct swblock **pswap;
299 	struct swblock *swap;
300 
301 	index &= ~(vm_pindex_t)SWAP_META_MASK;
302 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
303 	while ((swap = *pswap) != NULL) {
304 		if (swap->swb_object == object &&
305 		    swap->swb_index == index
306 		) {
307 			break;
308 		}
309 		pswap = &swap->swb_hnext;
310 	}
311 	return (pswap);
312 }
313 
314 /*
315  * SWAP_PAGER_INIT() -	initialize the swap pager!
316  *
317  *	Expected to be started from system init.  NOTE:  This code is run
318  *	before much else so be careful what you depend on.  Most of the VM
319  *	system has yet to be initialized at this point.
320  */
321 static void
322 swap_pager_init(void)
323 {
324 	/*
325 	 * Initialize object lists
326 	 */
327 	int i;
328 
329 	for (i = 0; i < NOBJLISTS; ++i)
330 		TAILQ_INIT(&swap_pager_object_list[i]);
331 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
332 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
333 
334 	/*
335 	 * Device Stripe, in PAGE_SIZE'd blocks
336 	 */
337 	dmmax = SWB_NPAGES * 2;
338 }
339 
340 /*
341  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
342  *
343  *	Expected to be started from pageout process once, prior to entering
344  *	its main loop.
345  */
346 void
347 swap_pager_swap_init(void)
348 {
349 	int n, n2;
350 
351 	/*
352 	 * Number of in-transit swap bp operations.  Don't
353 	 * exhaust the pbufs completely.  Make sure we
354 	 * initialize workable values (0 will work for hysteresis
355 	 * but it isn't very efficient).
356 	 *
357 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
358 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
359 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
360 	 * constrained by the swap device interleave stripe size.
361 	 *
362 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
363 	 * designed to prevent other I/O from having high latencies due to
364 	 * our pageout I/O.  The value 4 works well for one or two active swap
365 	 * devices but is probably a little low if you have more.  Even so,
366 	 * a higher value would probably generate only a limited improvement
367 	 * with three or four active swap devices since the system does not
368 	 * typically have to pageout at extreme bandwidths.   We will want
369 	 * at least 2 per swap devices, and 4 is a pretty good value if you
370 	 * have one NFS swap device due to the command/ack latency over NFS.
371 	 * So it all works out pretty well.
372 	 */
373 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
374 
375 	mtx_lock(&pbuf_mtx);
376 	nsw_rcount = (nswbuf + 1) / 2;
377 	nsw_wcount_sync = (nswbuf + 3) / 4;
378 	nsw_wcount_async = 4;
379 	nsw_wcount_async_max = nsw_wcount_async;
380 	mtx_unlock(&pbuf_mtx);
381 
382 	/*
383 	 * Initialize our zone.  Right now I'm just guessing on the number
384 	 * we need based on the number of pages in the system.  Each swblock
385 	 * can hold 16 pages, so this is probably overkill.  This reservation
386 	 * is typically limited to around 32MB by default.
387 	 */
388 	n = cnt.v_page_count / 2;
389 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
390 		n = maxswzone / sizeof(struct swblock);
391 	n2 = n;
392 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
393 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
394 	if (swap_zone == NULL)
395 		panic("failed to create swap_zone.");
396 	do {
397 		if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
398 			break;
399 		/*
400 		 * if the allocation failed, try a zone two thirds the
401 		 * size of the previous attempt.
402 		 */
403 		n -= ((n + 2) / 3);
404 	} while (n > 0);
405 	if (n2 != n)
406 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
407 	n2 = n;
408 
409 	/*
410 	 * Initialize our meta-data hash table.  The swapper does not need to
411 	 * be quite as efficient as the VM system, so we do not use an
412 	 * oversized hash table.
413 	 *
414 	 * 	n: 		size of hash table, must be power of 2
415 	 *	swhash_mask:	hash table index mask
416 	 */
417 	for (n = 1; n < n2 / 8; n *= 2)
418 		;
419 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
420 	swhash_mask = n - 1;
421 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
422 }
423 
424 /*
425  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
426  *			its metadata structures.
427  *
428  *	This routine is called from the mmap and fork code to create a new
429  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
430  *	and then converting it with swp_pager_meta_build().
431  *
432  *	This routine may block in vm_object_allocate() and create a named
433  *	object lookup race, so we must interlock.   We must also run at
434  *	splvm() for the object lookup to handle races with interrupts, but
435  *	we do not have to maintain splvm() in between the lookup and the
436  *	add because (I believe) it is not possible to attempt to create
437  *	a new swap object w/handle when a default object with that handle
438  *	already exists.
439  *
440  * MPSAFE
441  */
442 static vm_object_t
443 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
444 		 vm_ooffset_t offset)
445 {
446 	vm_object_t object;
447 	vm_pindex_t pindex;
448 
449 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
450 
451 	if (handle) {
452 		mtx_lock(&Giant);
453 		/*
454 		 * Reference existing named region or allocate new one.  There
455 		 * should not be a race here against swp_pager_meta_build()
456 		 * as called from vm_page_remove() in regards to the lookup
457 		 * of the handle.
458 		 */
459 		sx_xlock(&sw_alloc_sx);
460 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
461 
462 		if (object != NULL) {
463 			vm_object_reference(object);
464 		} else {
465 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
466 			object->handle = handle;
467 
468 			VM_OBJECT_LOCK(object);
469 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
470 			VM_OBJECT_UNLOCK(object);
471 		}
472 		sx_xunlock(&sw_alloc_sx);
473 		mtx_unlock(&Giant);
474 	} else {
475 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
476 
477 		VM_OBJECT_LOCK(object);
478 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
479 		VM_OBJECT_UNLOCK(object);
480 	}
481 	return (object);
482 }
483 
484 /*
485  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
486  *
487  *	The swap backing for the object is destroyed.  The code is
488  *	designed such that we can reinstantiate it later, but this
489  *	routine is typically called only when the entire object is
490  *	about to be destroyed.
491  *
492  *	This routine may block, but no longer does.
493  *
494  *	The object must be locked or unreferenceable.
495  */
496 static void
497 swap_pager_dealloc(vm_object_t object)
498 {
499 
500 	/*
501 	 * Remove from list right away so lookups will fail if we block for
502 	 * pageout completion.
503 	 */
504 	if (object->handle != NULL) {
505 		mtx_lock(&sw_alloc_mtx);
506 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
507 		mtx_unlock(&sw_alloc_mtx);
508 	}
509 
510 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
511 	vm_object_pip_wait(object, "swpdea");
512 
513 	/*
514 	 * Free all remaining metadata.  We only bother to free it from
515 	 * the swap meta data.  We do not attempt to free swapblk's still
516 	 * associated with vm_page_t's for this object.  We do not care
517 	 * if paging is still in progress on some objects.
518 	 */
519 	swp_pager_meta_free_all(object);
520 }
521 
522 /************************************************************************
523  *			SWAP PAGER BITMAP ROUTINES			*
524  ************************************************************************/
525 
526 /*
527  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
528  *
529  *	Allocate swap for the requested number of pages.  The starting
530  *	swap block number (a page index) is returned or SWAPBLK_NONE
531  *	if the allocation failed.
532  *
533  *	Also has the side effect of advising that somebody made a mistake
534  *	when they configured swap and didn't configure enough.
535  *
536  *	Must be called at splvm() to avoid races with bitmap frees from
537  *	vm_page_remove() aka swap_pager_page_removed().
538  *
539  *	This routine may not block
540  *	This routine must be called at splvm().
541  *
542  *	We allocate in round-robin fashion from the configured devices.
543  */
544 static daddr_t
545 swp_pager_getswapspace(int npages)
546 {
547 	daddr_t blk;
548 	struct swdevt *sp;
549 	int i;
550 
551 	blk = SWAPBLK_NONE;
552 	mtx_lock(&sw_dev_mtx);
553 	sp = swdevhd;
554 	for (i = 0; i < nswapdev; i++) {
555 		if (sp == NULL)
556 			sp = TAILQ_FIRST(&swtailq);
557 		if (!(sp->sw_flags & SW_CLOSING)) {
558 			blk = blist_alloc(sp->sw_blist, npages);
559 			if (blk != SWAPBLK_NONE) {
560 				blk += sp->sw_first;
561 				sp->sw_used += npages;
562 				swap_pager_avail -= npages;
563 				swp_sizecheck();
564 				swdevhd = TAILQ_NEXT(sp, sw_list);
565 				goto done;
566 			}
567 		}
568 		sp = TAILQ_NEXT(sp, sw_list);
569 	}
570 	if (swap_pager_full != 2) {
571 		printf("swap_pager_getswapspace(%d): failed\n", npages);
572 		swap_pager_full = 2;
573 		swap_pager_almost_full = 1;
574 	}
575 	swdevhd = NULL;
576 done:
577 	mtx_unlock(&sw_dev_mtx);
578 	return (blk);
579 }
580 
581 static int
582 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
583 {
584 
585 	return (blk >= sp->sw_first && blk < sp->sw_end);
586 }
587 
588 static void
589 swp_pager_strategy(struct buf *bp)
590 {
591 	struct swdevt *sp;
592 
593 	mtx_lock(&sw_dev_mtx);
594 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
595 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
596 			mtx_unlock(&sw_dev_mtx);
597 			sp->sw_strategy(bp, sp);
598 			return;
599 		}
600 	}
601 	panic("Swapdev not found");
602 }
603 
604 
605 /*
606  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
607  *
608  *	This routine returns the specified swap blocks back to the bitmap.
609  *
610  *	Note:  This routine may not block (it could in the old swap code),
611  *	and through the use of the new blist routines it does not block.
612  *
613  *	We must be called at splvm() to avoid races with bitmap frees from
614  *	vm_page_remove() aka swap_pager_page_removed().
615  *
616  *	This routine may not block
617  *	This routine must be called at splvm().
618  */
619 static void
620 swp_pager_freeswapspace(daddr_t blk, int npages)
621 {
622 	struct swdevt *sp;
623 
624 	mtx_lock(&sw_dev_mtx);
625 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
626 		if (blk >= sp->sw_first && blk < sp->sw_end) {
627 			sp->sw_used -= npages;
628 			/*
629 			 * If we are attempting to stop swapping on
630 			 * this device, we don't want to mark any
631 			 * blocks free lest they be reused.
632 			 */
633 			if ((sp->sw_flags & SW_CLOSING) == 0) {
634 				blist_free(sp->sw_blist, blk - sp->sw_first,
635 				    npages);
636 				swap_pager_avail += npages;
637 				swp_sizecheck();
638 			}
639 			mtx_unlock(&sw_dev_mtx);
640 			return;
641 		}
642 	}
643 	panic("Swapdev not found");
644 }
645 
646 /*
647  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
648  *				range within an object.
649  *
650  *	This is a globally accessible routine.
651  *
652  *	This routine removes swapblk assignments from swap metadata.
653  *
654  *	The external callers of this routine typically have already destroyed
655  *	or renamed vm_page_t's associated with this range in the object so
656  *	we should be ok.
657  *
658  *	This routine may be called at any spl.  We up our spl to splvm temporarily
659  *	in order to perform the metadata removal.
660  */
661 void
662 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
663 {
664 
665 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
666 	swp_pager_meta_free(object, start, size);
667 }
668 
669 /*
670  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
671  *
672  *	Assigns swap blocks to the specified range within the object.  The
673  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
674  *
675  *	Returns 0 on success, -1 on failure.
676  */
677 int
678 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
679 {
680 	int n = 0;
681 	daddr_t blk = SWAPBLK_NONE;
682 	vm_pindex_t beg = start;	/* save start index */
683 
684 	VM_OBJECT_LOCK(object);
685 	while (size) {
686 		if (n == 0) {
687 			n = BLIST_MAX_ALLOC;
688 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
689 				n >>= 1;
690 				if (n == 0) {
691 					swp_pager_meta_free(object, beg, start - beg);
692 					VM_OBJECT_UNLOCK(object);
693 					return (-1);
694 				}
695 			}
696 		}
697 		swp_pager_meta_build(object, start, blk);
698 		--size;
699 		++start;
700 		++blk;
701 		--n;
702 	}
703 	swp_pager_meta_free(object, start, n);
704 	VM_OBJECT_UNLOCK(object);
705 	return (0);
706 }
707 
708 /*
709  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
710  *			and destroy the source.
711  *
712  *	Copy any valid swapblks from the source to the destination.  In
713  *	cases where both the source and destination have a valid swapblk,
714  *	we keep the destination's.
715  *
716  *	This routine is allowed to block.  It may block allocating metadata
717  *	indirectly through swp_pager_meta_build() or if paging is still in
718  *	progress on the source.
719  *
720  *	This routine can be called at any spl
721  *
722  *	XXX vm_page_collapse() kinda expects us not to block because we
723  *	supposedly do not need to allocate memory, but for the moment we
724  *	*may* have to get a little memory from the zone allocator, but
725  *	it is taken from the interrupt memory.  We should be ok.
726  *
727  *	The source object contains no vm_page_t's (which is just as well)
728  *
729  *	The source object is of type OBJT_SWAP.
730  *
731  *	The source and destination objects must be locked or
732  *	inaccessible (XXX are they ?)
733  */
734 void
735 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
736     vm_pindex_t offset, int destroysource)
737 {
738 	vm_pindex_t i;
739 
740 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
741 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
742 
743 	/*
744 	 * If destroysource is set, we remove the source object from the
745 	 * swap_pager internal queue now.
746 	 */
747 	if (destroysource) {
748 		if (srcobject->handle != NULL) {
749 			mtx_lock(&sw_alloc_mtx);
750 			TAILQ_REMOVE(
751 			    NOBJLIST(srcobject->handle),
752 			    srcobject,
753 			    pager_object_list
754 			);
755 			mtx_unlock(&sw_alloc_mtx);
756 		}
757 	}
758 
759 	/*
760 	 * transfer source to destination.
761 	 */
762 	for (i = 0; i < dstobject->size; ++i) {
763 		daddr_t dstaddr;
764 
765 		/*
766 		 * Locate (without changing) the swapblk on the destination,
767 		 * unless it is invalid in which case free it silently, or
768 		 * if the destination is a resident page, in which case the
769 		 * source is thrown away.
770 		 */
771 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
772 
773 		if (dstaddr == SWAPBLK_NONE) {
774 			/*
775 			 * Destination has no swapblk and is not resident,
776 			 * copy source.
777 			 */
778 			daddr_t srcaddr;
779 
780 			srcaddr = swp_pager_meta_ctl(
781 			    srcobject,
782 			    i + offset,
783 			    SWM_POP
784 			);
785 
786 			if (srcaddr != SWAPBLK_NONE) {
787 				/*
788 				 * swp_pager_meta_build() can sleep.
789 				 */
790 				vm_object_pip_add(srcobject, 1);
791 				VM_OBJECT_UNLOCK(srcobject);
792 				vm_object_pip_add(dstobject, 1);
793 				swp_pager_meta_build(dstobject, i, srcaddr);
794 				vm_object_pip_wakeup(dstobject);
795 				VM_OBJECT_LOCK(srcobject);
796 				vm_object_pip_wakeup(srcobject);
797 			}
798 		} else {
799 			/*
800 			 * Destination has valid swapblk or it is represented
801 			 * by a resident page.  We destroy the sourceblock.
802 			 */
803 
804 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
805 		}
806 	}
807 
808 	/*
809 	 * Free left over swap blocks in source.
810 	 *
811 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
812 	 * double-remove the object from the swap queues.
813 	 */
814 	if (destroysource) {
815 		swp_pager_meta_free_all(srcobject);
816 		/*
817 		 * Reverting the type is not necessary, the caller is going
818 		 * to destroy srcobject directly, but I'm doing it here
819 		 * for consistency since we've removed the object from its
820 		 * queues.
821 		 */
822 		srcobject->type = OBJT_DEFAULT;
823 	}
824 }
825 
826 /*
827  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
828  *				the requested page.
829  *
830  *	We determine whether good backing store exists for the requested
831  *	page and return TRUE if it does, FALSE if it doesn't.
832  *
833  *	If TRUE, we also try to determine how much valid, contiguous backing
834  *	store exists before and after the requested page within a reasonable
835  *	distance.  We do not try to restrict it to the swap device stripe
836  *	(that is handled in getpages/putpages).  It probably isn't worth
837  *	doing here.
838  */
839 static boolean_t
840 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
841 {
842 	daddr_t blk0;
843 
844 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
845 	/*
846 	 * do we have good backing store at the requested index ?
847 	 */
848 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
849 
850 	if (blk0 == SWAPBLK_NONE) {
851 		if (before)
852 			*before = 0;
853 		if (after)
854 			*after = 0;
855 		return (FALSE);
856 	}
857 
858 	/*
859 	 * find backwards-looking contiguous good backing store
860 	 */
861 	if (before != NULL) {
862 		int i;
863 
864 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
865 			daddr_t blk;
866 
867 			if (i > pindex)
868 				break;
869 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
870 			if (blk != blk0 - i)
871 				break;
872 		}
873 		*before = (i - 1);
874 	}
875 
876 	/*
877 	 * find forward-looking contiguous good backing store
878 	 */
879 	if (after != NULL) {
880 		int i;
881 
882 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
883 			daddr_t blk;
884 
885 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
886 			if (blk != blk0 + i)
887 				break;
888 		}
889 		*after = (i - 1);
890 	}
891 	return (TRUE);
892 }
893 
894 /*
895  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
896  *
897  *	This removes any associated swap backing store, whether valid or
898  *	not, from the page.
899  *
900  *	This routine is typically called when a page is made dirty, at
901  *	which point any associated swap can be freed.  MADV_FREE also
902  *	calls us in a special-case situation
903  *
904  *	NOTE!!!  If the page is clean and the swap was valid, the caller
905  *	should make the page dirty before calling this routine.  This routine
906  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
907  *	depends on it.
908  *
909  *	This routine may not block
910  *	This routine must be called at splvm()
911  */
912 static void
913 swap_pager_unswapped(vm_page_t m)
914 {
915 
916 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
917 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
918 }
919 
920 /*
921  * SWAP_PAGER_GETPAGES() - bring pages in from swap
922  *
923  *	Attempt to retrieve (m, count) pages from backing store, but make
924  *	sure we retrieve at least m[reqpage].  We try to load in as large
925  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
926  *	belongs to the same object.
927  *
928  *	The code is designed for asynchronous operation and
929  *	immediate-notification of 'reqpage' but tends not to be
930  *	used that way.  Please do not optimize-out this algorithmic
931  *	feature, I intend to improve on it in the future.
932  *
933  *	The parent has a single vm_object_pip_add() reference prior to
934  *	calling us and we should return with the same.
935  *
936  *	The parent has BUSY'd the pages.  We should return with 'm'
937  *	left busy, but the others adjusted.
938  */
939 static int
940 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
941 {
942 	struct buf *bp;
943 	vm_page_t mreq;
944 	int i;
945 	int j;
946 	daddr_t blk;
947 
948 	mreq = m[reqpage];
949 
950 	KASSERT(mreq->object == object,
951 	    ("swap_pager_getpages: object mismatch %p/%p",
952 	    object, mreq->object));
953 
954 	/*
955 	 * Calculate range to retrieve.  The pages have already been assigned
956 	 * their swapblks.  We require a *contiguous* range but we know it to
957 	 * not span devices.   If we do not supply it, bad things
958 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
959 	 * loops are set up such that the case(s) are handled implicitly.
960 	 *
961 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
962 	 * not need to be, but it will go a little faster if it is.
963 	 */
964 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
965 
966 	for (i = reqpage - 1; i >= 0; --i) {
967 		daddr_t iblk;
968 
969 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
970 		if (blk != iblk + (reqpage - i))
971 			break;
972 	}
973 	++i;
974 
975 	for (j = reqpage + 1; j < count; ++j) {
976 		daddr_t jblk;
977 
978 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
979 		if (blk != jblk - (j - reqpage))
980 			break;
981 	}
982 
983 	/*
984 	 * free pages outside our collection range.   Note: we never free
985 	 * mreq, it must remain busy throughout.
986 	 */
987 	if (0 < i || j < count) {
988 		int k;
989 
990 		vm_page_lock_queues();
991 		for (k = 0; k < i; ++k)
992 			vm_page_free(m[k]);
993 		for (k = j; k < count; ++k)
994 			vm_page_free(m[k]);
995 		vm_page_unlock_queues();
996 	}
997 
998 	/*
999 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1000 	 * still busy, but the others unbusied.
1001 	 */
1002 	if (blk == SWAPBLK_NONE)
1003 		return (VM_PAGER_FAIL);
1004 
1005 	/*
1006 	 * Getpbuf() can sleep.
1007 	 */
1008 	VM_OBJECT_UNLOCK(object);
1009 	/*
1010 	 * Get a swap buffer header to perform the IO
1011 	 */
1012 	bp = getpbuf(&nsw_rcount);
1013 	bp->b_flags |= B_PAGING;
1014 
1015 	/*
1016 	 * map our page(s) into kva for input
1017 	 */
1018 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1019 
1020 	bp->b_iocmd = BIO_READ;
1021 	bp->b_iodone = swp_pager_async_iodone;
1022 	bp->b_rcred = crhold(thread0.td_ucred);
1023 	bp->b_wcred = crhold(thread0.td_ucred);
1024 	bp->b_blkno = blk - (reqpage - i);
1025 	bp->b_bcount = PAGE_SIZE * (j - i);
1026 	bp->b_bufsize = PAGE_SIZE * (j - i);
1027 	bp->b_pager.pg_reqpage = reqpage - i;
1028 
1029 	VM_OBJECT_LOCK(object);
1030 	{
1031 		int k;
1032 
1033 		for (k = i; k < j; ++k) {
1034 			bp->b_pages[k - i] = m[k];
1035 			m[k]->oflags |= VPO_SWAPINPROG;
1036 		}
1037 	}
1038 	bp->b_npages = j - i;
1039 
1040 	cnt.v_swapin++;
1041 	cnt.v_swappgsin += bp->b_npages;
1042 
1043 	/*
1044 	 * We still hold the lock on mreq, and our automatic completion routine
1045 	 * does not remove it.
1046 	 */
1047 	vm_object_pip_add(object, bp->b_npages);
1048 	VM_OBJECT_UNLOCK(object);
1049 
1050 	/*
1051 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1052 	 * this point because we automatically release it on completion.
1053 	 * Instead, we look at the one page we are interested in which we
1054 	 * still hold a lock on even through the I/O completion.
1055 	 *
1056 	 * The other pages in our m[] array are also released on completion,
1057 	 * so we cannot assume they are valid anymore either.
1058 	 *
1059 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1060 	 */
1061 	BUF_KERNPROC(bp);
1062 	swp_pager_strategy(bp);
1063 
1064 	/*
1065 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1066 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1067 	 * is set in the meta-data.
1068 	 */
1069 	VM_OBJECT_LOCK(object);
1070 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1071 		mreq->oflags |= VPO_WANTED;
1072 		vm_page_lock_queues();
1073 		vm_page_flag_set(mreq, PG_REFERENCED);
1074 		vm_page_unlock_queues();
1075 		cnt.v_intrans++;
1076 		if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
1077 			printf(
1078 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1079 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1080 		}
1081 	}
1082 
1083 	/*
1084 	 * mreq is left busied after completion, but all the other pages
1085 	 * are freed.  If we had an unrecoverable read error the page will
1086 	 * not be valid.
1087 	 */
1088 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1089 		return (VM_PAGER_ERROR);
1090 	} else {
1091 		return (VM_PAGER_OK);
1092 	}
1093 
1094 	/*
1095 	 * A final note: in a low swap situation, we cannot deallocate swap
1096 	 * and mark a page dirty here because the caller is likely to mark
1097 	 * the page clean when we return, causing the page to possibly revert
1098 	 * to all-zero's later.
1099 	 */
1100 }
1101 
1102 /*
1103  *	swap_pager_putpages:
1104  *
1105  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1106  *
1107  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1108  *	are automatically converted to SWAP objects.
1109  *
1110  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1111  *	vm_page reservation system coupled with properly written VFS devices
1112  *	should ensure that no low-memory deadlock occurs.  This is an area
1113  *	which needs work.
1114  *
1115  *	The parent has N vm_object_pip_add() references prior to
1116  *	calling us and will remove references for rtvals[] that are
1117  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1118  *	completion.
1119  *
1120  *	The parent has soft-busy'd the pages it passes us and will unbusy
1121  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1122  *	We need to unbusy the rest on I/O completion.
1123  */
1124 void
1125 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1126     boolean_t sync, int *rtvals)
1127 {
1128 	int i;
1129 	int n = 0;
1130 
1131 	GIANT_REQUIRED;
1132 	if (count && m[0]->object != object) {
1133 		panic("swap_pager_getpages: object mismatch %p/%p",
1134 		    object,
1135 		    m[0]->object
1136 		);
1137 	}
1138 
1139 	/*
1140 	 * Step 1
1141 	 *
1142 	 * Turn object into OBJT_SWAP
1143 	 * check for bogus sysops
1144 	 * force sync if not pageout process
1145 	 */
1146 	if (object->type != OBJT_SWAP)
1147 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1148 	VM_OBJECT_UNLOCK(object);
1149 
1150 	if (curproc != pageproc)
1151 		sync = TRUE;
1152 
1153 	/*
1154 	 * Step 2
1155 	 *
1156 	 * Update nsw parameters from swap_async_max sysctl values.
1157 	 * Do not let the sysop crash the machine with bogus numbers.
1158 	 */
1159 	mtx_lock(&pbuf_mtx);
1160 	if (swap_async_max != nsw_wcount_async_max) {
1161 		int n;
1162 
1163 		/*
1164 		 * limit range
1165 		 */
1166 		if ((n = swap_async_max) > nswbuf / 2)
1167 			n = nswbuf / 2;
1168 		if (n < 1)
1169 			n = 1;
1170 		swap_async_max = n;
1171 
1172 		/*
1173 		 * Adjust difference ( if possible ).  If the current async
1174 		 * count is too low, we may not be able to make the adjustment
1175 		 * at this time.
1176 		 */
1177 		n -= nsw_wcount_async_max;
1178 		if (nsw_wcount_async + n >= 0) {
1179 			nsw_wcount_async += n;
1180 			nsw_wcount_async_max += n;
1181 			wakeup(&nsw_wcount_async);
1182 		}
1183 	}
1184 	mtx_unlock(&pbuf_mtx);
1185 
1186 	/*
1187 	 * Step 3
1188 	 *
1189 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1190 	 * The page is left dirty until the pageout operation completes
1191 	 * successfully.
1192 	 */
1193 	for (i = 0; i < count; i += n) {
1194 		int j;
1195 		struct buf *bp;
1196 		daddr_t blk;
1197 
1198 		/*
1199 		 * Maximum I/O size is limited by a number of factors.
1200 		 */
1201 		n = min(BLIST_MAX_ALLOC, count - i);
1202 		n = min(n, nsw_cluster_max);
1203 
1204 		/*
1205 		 * Get biggest block of swap we can.  If we fail, fall
1206 		 * back and try to allocate a smaller block.  Don't go
1207 		 * overboard trying to allocate space if it would overly
1208 		 * fragment swap.
1209 		 */
1210 		while (
1211 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1212 		    n > 4
1213 		) {
1214 			n >>= 1;
1215 		}
1216 		if (blk == SWAPBLK_NONE) {
1217 			for (j = 0; j < n; ++j)
1218 				rtvals[i+j] = VM_PAGER_FAIL;
1219 			continue;
1220 		}
1221 
1222 		/*
1223 		 * All I/O parameters have been satisfied, build the I/O
1224 		 * request and assign the swap space.
1225 		 */
1226 		if (sync == TRUE) {
1227 			bp = getpbuf(&nsw_wcount_sync);
1228 		} else {
1229 			bp = getpbuf(&nsw_wcount_async);
1230 			bp->b_flags = B_ASYNC;
1231 		}
1232 		bp->b_flags |= B_PAGING;
1233 		bp->b_iocmd = BIO_WRITE;
1234 
1235 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1236 
1237 		bp->b_rcred = crhold(thread0.td_ucred);
1238 		bp->b_wcred = crhold(thread0.td_ucred);
1239 		bp->b_bcount = PAGE_SIZE * n;
1240 		bp->b_bufsize = PAGE_SIZE * n;
1241 		bp->b_blkno = blk;
1242 
1243 		VM_OBJECT_LOCK(object);
1244 		for (j = 0; j < n; ++j) {
1245 			vm_page_t mreq = m[i+j];
1246 
1247 			swp_pager_meta_build(
1248 			    mreq->object,
1249 			    mreq->pindex,
1250 			    blk + j
1251 			);
1252 			vm_page_dirty(mreq);
1253 			rtvals[i+j] = VM_PAGER_OK;
1254 
1255 			mreq->oflags |= VPO_SWAPINPROG;
1256 			bp->b_pages[j] = mreq;
1257 		}
1258 		VM_OBJECT_UNLOCK(object);
1259 		bp->b_npages = n;
1260 		/*
1261 		 * Must set dirty range for NFS to work.
1262 		 */
1263 		bp->b_dirtyoff = 0;
1264 		bp->b_dirtyend = bp->b_bcount;
1265 
1266 		cnt.v_swapout++;
1267 		cnt.v_swappgsout += bp->b_npages;
1268 
1269 		/*
1270 		 * asynchronous
1271 		 *
1272 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1273 		 */
1274 		if (sync == FALSE) {
1275 			bp->b_iodone = swp_pager_async_iodone;
1276 			BUF_KERNPROC(bp);
1277 			swp_pager_strategy(bp);
1278 
1279 			for (j = 0; j < n; ++j)
1280 				rtvals[i+j] = VM_PAGER_PEND;
1281 			/* restart outter loop */
1282 			continue;
1283 		}
1284 
1285 		/*
1286 		 * synchronous
1287 		 *
1288 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1289 		 */
1290 		bp->b_iodone = bdone;
1291 		swp_pager_strategy(bp);
1292 
1293 		/*
1294 		 * Wait for the sync I/O to complete, then update rtvals.
1295 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1296 		 * our async completion routine at the end, thus avoiding a
1297 		 * double-free.
1298 		 */
1299 		bwait(bp, PVM, "swwrt");
1300 		for (j = 0; j < n; ++j)
1301 			rtvals[i+j] = VM_PAGER_PEND;
1302 		/*
1303 		 * Now that we are through with the bp, we can call the
1304 		 * normal async completion, which frees everything up.
1305 		 */
1306 		swp_pager_async_iodone(bp);
1307 	}
1308 	VM_OBJECT_LOCK(object);
1309 }
1310 
1311 /*
1312  *	swp_pager_async_iodone:
1313  *
1314  *	Completion routine for asynchronous reads and writes from/to swap.
1315  *	Also called manually by synchronous code to finish up a bp.
1316  *
1317  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1318  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1319  *	unbusy all pages except the 'main' request page.  For WRITE
1320  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1321  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1322  *
1323  *	This routine may not block.
1324  *	This routine is called at splbio() or better
1325  *
1326  *	We up ourselves to splvm() as required for various vm_page related
1327  *	calls.
1328  */
1329 static void
1330 swp_pager_async_iodone(struct buf *bp)
1331 {
1332 	int i;
1333 	vm_object_t object = NULL;
1334 
1335 	/*
1336 	 * report error
1337 	 */
1338 	if (bp->b_ioflags & BIO_ERROR) {
1339 		printf(
1340 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1341 			"size %ld, error %d\n",
1342 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1343 		    (long)bp->b_blkno,
1344 		    (long)bp->b_bcount,
1345 		    bp->b_error
1346 		);
1347 	}
1348 
1349 	/*
1350 	 * remove the mapping for kernel virtual
1351 	 */
1352 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1353 
1354 	if (bp->b_npages) {
1355 		object = bp->b_pages[0]->object;
1356 		VM_OBJECT_LOCK(object);
1357 	}
1358 	vm_page_lock_queues();
1359 	/*
1360 	 * cleanup pages.  If an error occurs writing to swap, we are in
1361 	 * very serious trouble.  If it happens to be a disk error, though,
1362 	 * we may be able to recover by reassigning the swap later on.  So
1363 	 * in this case we remove the m->swapblk assignment for the page
1364 	 * but do not free it in the rlist.  The errornous block(s) are thus
1365 	 * never reallocated as swap.  Redirty the page and continue.
1366 	 */
1367 	for (i = 0; i < bp->b_npages; ++i) {
1368 		vm_page_t m = bp->b_pages[i];
1369 
1370 		m->oflags &= ~VPO_SWAPINPROG;
1371 
1372 		if (bp->b_ioflags & BIO_ERROR) {
1373 			/*
1374 			 * If an error occurs I'd love to throw the swapblk
1375 			 * away without freeing it back to swapspace, so it
1376 			 * can never be used again.  But I can't from an
1377 			 * interrupt.
1378 			 */
1379 			if (bp->b_iocmd == BIO_READ) {
1380 				/*
1381 				 * When reading, reqpage needs to stay
1382 				 * locked for the parent, but all other
1383 				 * pages can be freed.  We still want to
1384 				 * wakeup the parent waiting on the page,
1385 				 * though.  ( also: pg_reqpage can be -1 and
1386 				 * not match anything ).
1387 				 *
1388 				 * We have to wake specifically requested pages
1389 				 * up too because we cleared VPO_SWAPINPROG and
1390 				 * someone may be waiting for that.
1391 				 *
1392 				 * NOTE: for reads, m->dirty will probably
1393 				 * be overridden by the original caller of
1394 				 * getpages so don't play cute tricks here.
1395 				 */
1396 				m->valid = 0;
1397 				if (i != bp->b_pager.pg_reqpage)
1398 					vm_page_free(m);
1399 				else
1400 					vm_page_flash(m);
1401 				/*
1402 				 * If i == bp->b_pager.pg_reqpage, do not wake
1403 				 * the page up.  The caller needs to.
1404 				 */
1405 			} else {
1406 				/*
1407 				 * If a write error occurs, reactivate page
1408 				 * so it doesn't clog the inactive list,
1409 				 * then finish the I/O.
1410 				 */
1411 				vm_page_dirty(m);
1412 				vm_page_activate(m);
1413 				vm_page_io_finish(m);
1414 			}
1415 		} else if (bp->b_iocmd == BIO_READ) {
1416 			/*
1417 			 * For read success, clear dirty bits.  Nobody should
1418 			 * have this page mapped but don't take any chances,
1419 			 * make sure the pmap modify bits are also cleared.
1420 			 *
1421 			 * NOTE: for reads, m->dirty will probably be
1422 			 * overridden by the original caller of getpages so
1423 			 * we cannot set them in order to free the underlying
1424 			 * swap in a low-swap situation.  I don't think we'd
1425 			 * want to do that anyway, but it was an optimization
1426 			 * that existed in the old swapper for a time before
1427 			 * it got ripped out due to precisely this problem.
1428 			 *
1429 			 * If not the requested page then deactivate it.
1430 			 *
1431 			 * Note that the requested page, reqpage, is left
1432 			 * busied, but we still have to wake it up.  The
1433 			 * other pages are released (unbusied) by
1434 			 * vm_page_wakeup().  We do not set reqpage's
1435 			 * valid bits here, it is up to the caller.
1436 			 */
1437 			pmap_clear_modify(m);
1438 			m->valid = VM_PAGE_BITS_ALL;
1439 			vm_page_undirty(m);
1440 
1441 			/*
1442 			 * We have to wake specifically requested pages
1443 			 * up too because we cleared VPO_SWAPINPROG and
1444 			 * could be waiting for it in getpages.  However,
1445 			 * be sure to not unbusy getpages specifically
1446 			 * requested page - getpages expects it to be
1447 			 * left busy.
1448 			 */
1449 			if (i != bp->b_pager.pg_reqpage) {
1450 				vm_page_deactivate(m);
1451 				vm_page_wakeup(m);
1452 			} else {
1453 				vm_page_flash(m);
1454 			}
1455 		} else {
1456 			/*
1457 			 * For write success, clear the modify and dirty
1458 			 * status, then finish the I/O ( which decrements the
1459 			 * busy count and possibly wakes waiter's up ).
1460 			 */
1461 			pmap_clear_modify(m);
1462 			vm_page_undirty(m);
1463 			vm_page_io_finish(m);
1464 			if (vm_page_count_severe())
1465 				vm_page_try_to_cache(m);
1466 		}
1467 	}
1468 	vm_page_unlock_queues();
1469 
1470 	/*
1471 	 * adjust pip.  NOTE: the original parent may still have its own
1472 	 * pip refs on the object.
1473 	 */
1474 	if (object != NULL) {
1475 		vm_object_pip_wakeupn(object, bp->b_npages);
1476 		VM_OBJECT_UNLOCK(object);
1477 	}
1478 
1479 	/*
1480 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1481 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1482 	 * trigger a KASSERT in relpbuf().
1483 	 */
1484 	if (bp->b_vp) {
1485 		    bp->b_vp = NULL;
1486 		    bp->b_bufobj = NULL;
1487 	}
1488 	/*
1489 	 * release the physical I/O buffer
1490 	 */
1491 	relpbuf(
1492 	    bp,
1493 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1494 		((bp->b_flags & B_ASYNC) ?
1495 		    &nsw_wcount_async :
1496 		    &nsw_wcount_sync
1497 		)
1498 	    )
1499 	);
1500 }
1501 
1502 /*
1503  *	swap_pager_isswapped:
1504  *
1505  *	Return 1 if at least one page in the given object is paged
1506  *	out to the given swap device.
1507  *
1508  *	This routine may not block.
1509  */
1510 int
1511 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1512 {
1513 	daddr_t index = 0;
1514 	int bcount;
1515 	int i;
1516 
1517 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1518 	if (object->type != OBJT_SWAP)
1519 		return (0);
1520 
1521 	mtx_lock(&swhash_mtx);
1522 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1523 		struct swblock *swap;
1524 
1525 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1526 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1527 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1528 					mtx_unlock(&swhash_mtx);
1529 					return (1);
1530 				}
1531 			}
1532 		}
1533 		index += SWAP_META_PAGES;
1534 		if (index > 0x20000000)
1535 			panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1536 	}
1537 	mtx_unlock(&swhash_mtx);
1538 	return (0);
1539 }
1540 
1541 /*
1542  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1543  *
1544  *	This routine dissociates the page at the given index within a
1545  *	swap block from its backing store, paging it in if necessary.
1546  *	If the page is paged in, it is placed in the inactive queue,
1547  *	since it had its backing store ripped out from under it.
1548  *	We also attempt to swap in all other pages in the swap block,
1549  *	we only guarantee that the one at the specified index is
1550  *	paged in.
1551  *
1552  *	XXX - The code to page the whole block in doesn't work, so we
1553  *	      revert to the one-by-one behavior for now.  Sigh.
1554  */
1555 static inline void
1556 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1557 {
1558 	vm_page_t m;
1559 
1560 	vm_object_pip_add(object, 1);
1561 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1562 	if (m->valid == VM_PAGE_BITS_ALL) {
1563 		vm_object_pip_subtract(object, 1);
1564 		vm_page_lock_queues();
1565 		vm_page_activate(m);
1566 		vm_page_dirty(m);
1567 		vm_page_unlock_queues();
1568 		vm_page_wakeup(m);
1569 		vm_pager_page_unswapped(m);
1570 		return;
1571 	}
1572 
1573 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1574 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1575 	vm_object_pip_subtract(object, 1);
1576 	vm_page_lock_queues();
1577 	vm_page_dirty(m);
1578 	vm_page_dontneed(m);
1579 	vm_page_unlock_queues();
1580 	vm_page_wakeup(m);
1581 	vm_pager_page_unswapped(m);
1582 }
1583 
1584 /*
1585  *	swap_pager_swapoff:
1586  *
1587  *	Page in all of the pages that have been paged out to the
1588  *	given device.  The corresponding blocks in the bitmap must be
1589  *	marked as allocated and the device must be flagged SW_CLOSING.
1590  *	There may be no processes swapped out to the device.
1591  *
1592  *	This routine may block.
1593  */
1594 static void
1595 swap_pager_swapoff(struct swdevt *sp)
1596 {
1597 	struct swblock *swap;
1598 	int i, j, retries;
1599 
1600 	GIANT_REQUIRED;
1601 
1602 	retries = 0;
1603 full_rescan:
1604 	mtx_lock(&swhash_mtx);
1605 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1606 restart:
1607 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1608 			vm_object_t object = swap->swb_object;
1609 			vm_pindex_t pindex = swap->swb_index;
1610                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1611                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1612 					/* avoid deadlock */
1613 					if (!VM_OBJECT_TRYLOCK(object)) {
1614 						break;
1615 					} else {
1616 						mtx_unlock(&swhash_mtx);
1617 						swp_pager_force_pagein(object,
1618 						    pindex + j);
1619 						VM_OBJECT_UNLOCK(object);
1620 						mtx_lock(&swhash_mtx);
1621 						goto restart;
1622 					}
1623 				}
1624                         }
1625 		}
1626 	}
1627 	mtx_unlock(&swhash_mtx);
1628 	if (sp->sw_used) {
1629 		/*
1630 		 * Objects may be locked or paging to the device being
1631 		 * removed, so we will miss their pages and need to
1632 		 * make another pass.  We have marked this device as
1633 		 * SW_CLOSING, so the activity should finish soon.
1634 		 */
1635 		retries++;
1636 		if (retries > 100) {
1637 			panic("swapoff: failed to locate %d swap blocks",
1638 			    sp->sw_used);
1639 		}
1640 		pause("swpoff", hz / 20);
1641 		goto full_rescan;
1642 	}
1643 }
1644 
1645 /************************************************************************
1646  *				SWAP META DATA 				*
1647  ************************************************************************
1648  *
1649  *	These routines manipulate the swap metadata stored in the
1650  *	OBJT_SWAP object.  All swp_*() routines must be called at
1651  *	splvm() because swap can be freed up by the low level vm_page
1652  *	code which might be called from interrupts beyond what splbio() covers.
1653  *
1654  *	Swap metadata is implemented with a global hash and not directly
1655  *	linked into the object.  Instead the object simply contains
1656  *	appropriate tracking counters.
1657  */
1658 
1659 /*
1660  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1661  *
1662  *	We first convert the object to a swap object if it is a default
1663  *	object.
1664  *
1665  *	The specified swapblk is added to the object's swap metadata.  If
1666  *	the swapblk is not valid, it is freed instead.  Any previously
1667  *	assigned swapblk is freed.
1668  *
1669  *	This routine must be called at splvm(), except when used to convert
1670  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1671  */
1672 static void
1673 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1674 {
1675 	struct swblock *swap;
1676 	struct swblock **pswap;
1677 	int idx;
1678 
1679 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1680 	/*
1681 	 * Convert default object to swap object if necessary
1682 	 */
1683 	if (object->type != OBJT_SWAP) {
1684 		object->type = OBJT_SWAP;
1685 		object->un_pager.swp.swp_bcount = 0;
1686 
1687 		if (object->handle != NULL) {
1688 			mtx_lock(&sw_alloc_mtx);
1689 			TAILQ_INSERT_TAIL(
1690 			    NOBJLIST(object->handle),
1691 			    object,
1692 			    pager_object_list
1693 			);
1694 			mtx_unlock(&sw_alloc_mtx);
1695 		}
1696 	}
1697 
1698 	/*
1699 	 * Locate hash entry.  If not found create, but if we aren't adding
1700 	 * anything just return.  If we run out of space in the map we wait
1701 	 * and, since the hash table may have changed, retry.
1702 	 */
1703 retry:
1704 	mtx_lock(&swhash_mtx);
1705 	pswap = swp_pager_hash(object, pindex);
1706 
1707 	if ((swap = *pswap) == NULL) {
1708 		int i;
1709 
1710 		if (swapblk == SWAPBLK_NONE)
1711 			goto done;
1712 
1713 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1714 		if (swap == NULL) {
1715 			mtx_unlock(&swhash_mtx);
1716 			VM_OBJECT_UNLOCK(object);
1717 			if (uma_zone_exhausted(swap_zone))
1718 				printf("swap zone exhausted, increase kern.maxswzone\n");
1719 			VM_WAIT;
1720 			VM_OBJECT_LOCK(object);
1721 			goto retry;
1722 		}
1723 
1724 		swap->swb_hnext = NULL;
1725 		swap->swb_object = object;
1726 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1727 		swap->swb_count = 0;
1728 
1729 		++object->un_pager.swp.swp_bcount;
1730 
1731 		for (i = 0; i < SWAP_META_PAGES; ++i)
1732 			swap->swb_pages[i] = SWAPBLK_NONE;
1733 	}
1734 
1735 	/*
1736 	 * Delete prior contents of metadata
1737 	 */
1738 	idx = pindex & SWAP_META_MASK;
1739 
1740 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1741 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1742 		--swap->swb_count;
1743 	}
1744 
1745 	/*
1746 	 * Enter block into metadata
1747 	 */
1748 	swap->swb_pages[idx] = swapblk;
1749 	if (swapblk != SWAPBLK_NONE)
1750 		++swap->swb_count;
1751 done:
1752 	mtx_unlock(&swhash_mtx);
1753 }
1754 
1755 /*
1756  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1757  *
1758  *	The requested range of blocks is freed, with any associated swap
1759  *	returned to the swap bitmap.
1760  *
1761  *	This routine will free swap metadata structures as they are cleaned
1762  *	out.  This routine does *NOT* operate on swap metadata associated
1763  *	with resident pages.
1764  *
1765  *	This routine must be called at splvm()
1766  */
1767 static void
1768 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1769 {
1770 
1771 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1772 	if (object->type != OBJT_SWAP)
1773 		return;
1774 
1775 	while (count > 0) {
1776 		struct swblock **pswap;
1777 		struct swblock *swap;
1778 
1779 		mtx_lock(&swhash_mtx);
1780 		pswap = swp_pager_hash(object, index);
1781 
1782 		if ((swap = *pswap) != NULL) {
1783 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1784 
1785 			if (v != SWAPBLK_NONE) {
1786 				swp_pager_freeswapspace(v, 1);
1787 				swap->swb_pages[index & SWAP_META_MASK] =
1788 					SWAPBLK_NONE;
1789 				if (--swap->swb_count == 0) {
1790 					*pswap = swap->swb_hnext;
1791 					uma_zfree(swap_zone, swap);
1792 					--object->un_pager.swp.swp_bcount;
1793 				}
1794 			}
1795 			--count;
1796 			++index;
1797 		} else {
1798 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1799 			count -= n;
1800 			index += n;
1801 		}
1802 		mtx_unlock(&swhash_mtx);
1803 	}
1804 }
1805 
1806 /*
1807  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1808  *
1809  *	This routine locates and destroys all swap metadata associated with
1810  *	an object.
1811  *
1812  *	This routine must be called at splvm()
1813  */
1814 static void
1815 swp_pager_meta_free_all(vm_object_t object)
1816 {
1817 	daddr_t index = 0;
1818 
1819 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1820 	if (object->type != OBJT_SWAP)
1821 		return;
1822 
1823 	while (object->un_pager.swp.swp_bcount) {
1824 		struct swblock **pswap;
1825 		struct swblock *swap;
1826 
1827 		mtx_lock(&swhash_mtx);
1828 		pswap = swp_pager_hash(object, index);
1829 		if ((swap = *pswap) != NULL) {
1830 			int i;
1831 
1832 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1833 				daddr_t v = swap->swb_pages[i];
1834 				if (v != SWAPBLK_NONE) {
1835 					--swap->swb_count;
1836 					swp_pager_freeswapspace(v, 1);
1837 				}
1838 			}
1839 			if (swap->swb_count != 0)
1840 				panic("swap_pager_meta_free_all: swb_count != 0");
1841 			*pswap = swap->swb_hnext;
1842 			uma_zfree(swap_zone, swap);
1843 			--object->un_pager.swp.swp_bcount;
1844 		}
1845 		mtx_unlock(&swhash_mtx);
1846 		index += SWAP_META_PAGES;
1847 		if (index > 0x20000000)
1848 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1849 	}
1850 }
1851 
1852 /*
1853  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1854  *
1855  *	This routine is capable of looking up, popping, or freeing
1856  *	swapblk assignments in the swap meta data or in the vm_page_t.
1857  *	The routine typically returns the swapblk being looked-up, or popped,
1858  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1859  *	was invalid.  This routine will automatically free any invalid
1860  *	meta-data swapblks.
1861  *
1862  *	It is not possible to store invalid swapblks in the swap meta data
1863  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1864  *
1865  *	When acting on a busy resident page and paging is in progress, we
1866  *	have to wait until paging is complete but otherwise can act on the
1867  *	busy page.
1868  *
1869  *	This routine must be called at splvm().
1870  *
1871  *	SWM_FREE	remove and free swap block from metadata
1872  *	SWM_POP		remove from meta data but do not free.. pop it out
1873  */
1874 static daddr_t
1875 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1876 {
1877 	struct swblock **pswap;
1878 	struct swblock *swap;
1879 	daddr_t r1;
1880 	int idx;
1881 
1882 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1883 	/*
1884 	 * The meta data only exists of the object is OBJT_SWAP
1885 	 * and even then might not be allocated yet.
1886 	 */
1887 	if (object->type != OBJT_SWAP)
1888 		return (SWAPBLK_NONE);
1889 
1890 	r1 = SWAPBLK_NONE;
1891 	mtx_lock(&swhash_mtx);
1892 	pswap = swp_pager_hash(object, pindex);
1893 
1894 	if ((swap = *pswap) != NULL) {
1895 		idx = pindex & SWAP_META_MASK;
1896 		r1 = swap->swb_pages[idx];
1897 
1898 		if (r1 != SWAPBLK_NONE) {
1899 			if (flags & SWM_FREE) {
1900 				swp_pager_freeswapspace(r1, 1);
1901 				r1 = SWAPBLK_NONE;
1902 			}
1903 			if (flags & (SWM_FREE|SWM_POP)) {
1904 				swap->swb_pages[idx] = SWAPBLK_NONE;
1905 				if (--swap->swb_count == 0) {
1906 					*pswap = swap->swb_hnext;
1907 					uma_zfree(swap_zone, swap);
1908 					--object->un_pager.swp.swp_bcount;
1909 				}
1910 			}
1911 		}
1912 	}
1913 	mtx_unlock(&swhash_mtx);
1914 	return (r1);
1915 }
1916 
1917 /*
1918  * System call swapon(name) enables swapping on device name,
1919  * which must be in the swdevsw.  Return EBUSY
1920  * if already swapping on this device.
1921  */
1922 #ifndef _SYS_SYSPROTO_H_
1923 struct swapon_args {
1924 	char *name;
1925 };
1926 #endif
1927 
1928 /*
1929  * MPSAFE
1930  */
1931 /* ARGSUSED */
1932 int
1933 swapon(struct thread *td, struct swapon_args *uap)
1934 {
1935 	struct vattr attr;
1936 	struct vnode *vp;
1937 	struct nameidata nd;
1938 	int error;
1939 
1940 	error = priv_check(td, PRIV_SWAPON);
1941 	if (error)
1942 		return (error);
1943 
1944 	mtx_lock(&Giant);
1945 	while (swdev_syscall_active)
1946 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
1947 	swdev_syscall_active = 1;
1948 
1949 	/*
1950 	 * Swap metadata may not fit in the KVM if we have physical
1951 	 * memory of >1GB.
1952 	 */
1953 	if (swap_zone == NULL) {
1954 		error = ENOMEM;
1955 		goto done;
1956 	}
1957 
1958 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW, UIO_USERSPACE, uap->name, td);
1959 	error = namei(&nd);
1960 	if (error)
1961 		goto done;
1962 
1963 	NDFREE(&nd, NDF_ONLY_PNBUF);
1964 	vp = nd.ni_vp;
1965 
1966 	if (vn_isdisk(vp, &error)) {
1967 		error = swapongeom(td, vp);
1968 	} else if (vp->v_type == VREG &&
1969 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1970 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) {
1971 		/*
1972 		 * Allow direct swapping to NFS regular files in the same
1973 		 * way that nfs_mountroot() sets up diskless swapping.
1974 		 */
1975 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
1976 	}
1977 
1978 	if (error)
1979 		vrele(vp);
1980 done:
1981 	swdev_syscall_active = 0;
1982 	wakeup_one(&swdev_syscall_active);
1983 	mtx_unlock(&Giant);
1984 	return (error);
1985 }
1986 
1987 static void
1988 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
1989 {
1990 	struct swdevt *sp, *tsp;
1991 	swblk_t dvbase;
1992 	u_long mblocks;
1993 
1994 	/*
1995 	 * If we go beyond this, we get overflows in the radix
1996 	 * tree bitmap code.
1997 	 */
1998 	mblocks = 0x40000000 / BLIST_META_RADIX;
1999 	if (nblks > mblocks) {
2000 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2001 			mblocks);
2002 		nblks = mblocks;
2003 	}
2004 	/*
2005 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2006 	 * First chop nblks off to page-align it, then convert.
2007 	 *
2008 	 * sw->sw_nblks is in page-sized chunks now too.
2009 	 */
2010 	nblks &= ~(ctodb(1) - 1);
2011 	nblks = dbtoc(nblks);
2012 
2013 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2014 	sp->sw_vp = vp;
2015 	sp->sw_id = id;
2016 	sp->sw_dev = dev;
2017 	sp->sw_flags = 0;
2018 	sp->sw_nblks = nblks;
2019 	sp->sw_used = 0;
2020 	sp->sw_strategy = strategy;
2021 	sp->sw_close = close;
2022 
2023 	sp->sw_blist = blist_create(nblks);
2024 	/*
2025 	 * Do not free the first two block in order to avoid overwriting
2026 	 * any bsd label at the front of the partition
2027 	 */
2028 	blist_free(sp->sw_blist, 2, nblks - 2);
2029 
2030 	dvbase = 0;
2031 	mtx_lock(&sw_dev_mtx);
2032 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2033 		if (tsp->sw_end >= dvbase) {
2034 			/*
2035 			 * We put one uncovered page between the devices
2036 			 * in order to definitively prevent any cross-device
2037 			 * I/O requests
2038 			 */
2039 			dvbase = tsp->sw_end + 1;
2040 		}
2041 	}
2042 	sp->sw_first = dvbase;
2043 	sp->sw_end = dvbase + nblks;
2044 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2045 	nswapdev++;
2046 	swap_pager_avail += nblks;
2047 	swp_sizecheck();
2048 	mtx_unlock(&sw_dev_mtx);
2049 }
2050 
2051 /*
2052  * SYSCALL: swapoff(devname)
2053  *
2054  * Disable swapping on the given device.
2055  *
2056  * XXX: Badly designed system call: it should use a device index
2057  * rather than filename as specification.  We keep sw_vp around
2058  * only to make this work.
2059  */
2060 #ifndef _SYS_SYSPROTO_H_
2061 struct swapoff_args {
2062 	char *name;
2063 };
2064 #endif
2065 
2066 /*
2067  * MPSAFE
2068  */
2069 /* ARGSUSED */
2070 int
2071 swapoff(struct thread *td, struct swapoff_args *uap)
2072 {
2073 	struct vnode *vp;
2074 	struct nameidata nd;
2075 	struct swdevt *sp;
2076 	int error;
2077 
2078 	error = priv_check(td, PRIV_SWAPOFF);
2079 	if (error)
2080 		return (error);
2081 
2082 	mtx_lock(&Giant);
2083 	while (swdev_syscall_active)
2084 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2085 	swdev_syscall_active = 1;
2086 
2087 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td);
2088 	error = namei(&nd);
2089 	if (error)
2090 		goto done;
2091 	NDFREE(&nd, NDF_ONLY_PNBUF);
2092 	vp = nd.ni_vp;
2093 
2094 	mtx_lock(&sw_dev_mtx);
2095 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2096 		if (sp->sw_vp == vp)
2097 			break;
2098 	}
2099 	mtx_unlock(&sw_dev_mtx);
2100 	if (sp == NULL) {
2101 		error = EINVAL;
2102 		goto done;
2103 	}
2104 	error = swapoff_one(sp, td);
2105 done:
2106 	swdev_syscall_active = 0;
2107 	wakeup_one(&swdev_syscall_active);
2108 	mtx_unlock(&Giant);
2109 	return (error);
2110 }
2111 
2112 static int
2113 swapoff_one(struct swdevt *sp, struct thread *td)
2114 {
2115 	u_long nblks, dvbase;
2116 #ifdef MAC
2117 	int error;
2118 #endif
2119 
2120 	mtx_assert(&Giant, MA_OWNED);
2121 #ifdef MAC
2122 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY, td);
2123 	error = mac_check_system_swapoff(td->td_ucred, sp->sw_vp);
2124 	(void) VOP_UNLOCK(sp->sw_vp, 0, td);
2125 	if (error != 0)
2126 		return (error);
2127 #endif
2128 	nblks = sp->sw_nblks;
2129 
2130 	/*
2131 	 * We can turn off this swap device safely only if the
2132 	 * available virtual memory in the system will fit the amount
2133 	 * of data we will have to page back in, plus an epsilon so
2134 	 * the system doesn't become critically low on swap space.
2135 	 */
2136 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2137 	    nblks + nswap_lowat) {
2138 		return (ENOMEM);
2139 	}
2140 
2141 	/*
2142 	 * Prevent further allocations on this device.
2143 	 */
2144 	mtx_lock(&sw_dev_mtx);
2145 	sp->sw_flags |= SW_CLOSING;
2146 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2147 		swap_pager_avail -= blist_fill(sp->sw_blist,
2148 		     dvbase, dmmax);
2149 	}
2150 	mtx_unlock(&sw_dev_mtx);
2151 
2152 	/*
2153 	 * Page in the contents of the device and close it.
2154 	 */
2155 	swap_pager_swapoff(sp);
2156 
2157 	sp->sw_close(td, sp);
2158 	sp->sw_id = NULL;
2159 	mtx_lock(&sw_dev_mtx);
2160 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2161 	nswapdev--;
2162 	if (nswapdev == 0) {
2163 		swap_pager_full = 2;
2164 		swap_pager_almost_full = 1;
2165 	}
2166 	if (swdevhd == sp)
2167 		swdevhd = NULL;
2168 	mtx_unlock(&sw_dev_mtx);
2169 	blist_destroy(sp->sw_blist);
2170 	free(sp, M_VMPGDATA);
2171 	return (0);
2172 }
2173 
2174 void
2175 swapoff_all(void)
2176 {
2177 	struct swdevt *sp, *spt;
2178 	const char *devname;
2179 	int error;
2180 
2181 	mtx_lock(&Giant);
2182 	while (swdev_syscall_active)
2183 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2184 	swdev_syscall_active = 1;
2185 
2186 	mtx_lock(&sw_dev_mtx);
2187 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2188 		mtx_unlock(&sw_dev_mtx);
2189 		if (vn_isdisk(sp->sw_vp, NULL))
2190 			devname = sp->sw_vp->v_rdev->si_name;
2191 		else
2192 			devname = "[file]";
2193 		error = swapoff_one(sp, &thread0);
2194 		if (error != 0) {
2195 			printf("Cannot remove swap device %s (error=%d), "
2196 			    "skipping.\n", devname, error);
2197 		} else if (bootverbose) {
2198 			printf("Swap device %s removed.\n", devname);
2199 		}
2200 		mtx_lock(&sw_dev_mtx);
2201 	}
2202 	mtx_unlock(&sw_dev_mtx);
2203 
2204 	swdev_syscall_active = 0;
2205 	wakeup_one(&swdev_syscall_active);
2206 	mtx_unlock(&Giant);
2207 }
2208 
2209 void
2210 swap_pager_status(int *total, int *used)
2211 {
2212 	struct swdevt *sp;
2213 
2214 	*total = 0;
2215 	*used = 0;
2216 	mtx_lock(&sw_dev_mtx);
2217 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2218 		*total += sp->sw_nblks;
2219 		*used += sp->sw_used;
2220 	}
2221 	mtx_unlock(&sw_dev_mtx);
2222 }
2223 
2224 static int
2225 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2226 {
2227 	int	*name = (int *)arg1;
2228 	int	error, n;
2229 	struct xswdev xs;
2230 	struct swdevt *sp;
2231 
2232 	if (arg2 != 1) /* name length */
2233 		return (EINVAL);
2234 
2235 	n = 0;
2236 	mtx_lock(&sw_dev_mtx);
2237 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2238 		if (n == *name) {
2239 			mtx_unlock(&sw_dev_mtx);
2240 			xs.xsw_version = XSWDEV_VERSION;
2241 			xs.xsw_dev = sp->sw_dev;
2242 			xs.xsw_flags = sp->sw_flags;
2243 			xs.xsw_nblks = sp->sw_nblks;
2244 			xs.xsw_used = sp->sw_used;
2245 
2246 			error = SYSCTL_OUT(req, &xs, sizeof(xs));
2247 			return (error);
2248 		}
2249 		n++;
2250 	}
2251 	mtx_unlock(&sw_dev_mtx);
2252 	return (ENOENT);
2253 }
2254 
2255 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2256     "Number of swap devices");
2257 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2258     "Swap statistics by device");
2259 
2260 /*
2261  * vmspace_swap_count() - count the approximate swap useage in pages for a
2262  *			  vmspace.
2263  *
2264  *	The map must be locked.
2265  *
2266  *	Swap useage is determined by taking the proportional swap used by
2267  *	VM objects backing the VM map.  To make up for fractional losses,
2268  *	if the VM object has any swap use at all the associated map entries
2269  *	count for at least 1 swap page.
2270  */
2271 int
2272 vmspace_swap_count(struct vmspace *vmspace)
2273 {
2274 	vm_map_t map = &vmspace->vm_map;
2275 	vm_map_entry_t cur;
2276 	int count = 0;
2277 
2278 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2279 		vm_object_t object;
2280 
2281 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2282 		    (object = cur->object.vm_object) != NULL) {
2283 			VM_OBJECT_LOCK(object);
2284 			if (object->type == OBJT_SWAP &&
2285 			    object->un_pager.swp.swp_bcount != 0) {
2286 				int n = (cur->end - cur->start) / PAGE_SIZE;
2287 
2288 				count += object->un_pager.swp.swp_bcount *
2289 				    SWAP_META_PAGES * n / object->size + 1;
2290 			}
2291 			VM_OBJECT_UNLOCK(object);
2292 		}
2293 	}
2294 	return (count);
2295 }
2296 
2297 /*
2298  * GEOM backend
2299  *
2300  * Swapping onto disk devices.
2301  *
2302  */
2303 
2304 static g_orphan_t swapgeom_orphan;
2305 
2306 static struct g_class g_swap_class = {
2307 	.name = "SWAP",
2308 	.version = G_VERSION,
2309 	.orphan = swapgeom_orphan,
2310 };
2311 
2312 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2313 
2314 
2315 static void
2316 swapgeom_done(struct bio *bp2)
2317 {
2318 	struct buf *bp;
2319 
2320 	bp = bp2->bio_caller2;
2321 	bp->b_ioflags = bp2->bio_flags;
2322 	if (bp2->bio_error)
2323 		bp->b_ioflags |= BIO_ERROR;
2324 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2325 	bp->b_error = bp2->bio_error;
2326 	bufdone(bp);
2327 	g_destroy_bio(bp2);
2328 }
2329 
2330 static void
2331 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2332 {
2333 	struct bio *bio;
2334 	struct g_consumer *cp;
2335 
2336 	cp = sp->sw_id;
2337 	if (cp == NULL) {
2338 		bp->b_error = ENXIO;
2339 		bp->b_ioflags |= BIO_ERROR;
2340 		bufdone(bp);
2341 		return;
2342 	}
2343 	bio = g_alloc_bio();
2344 #if 0
2345 	/*
2346 	 * XXX: We shouldn't really sleep here when we run out of buffers
2347 	 * XXX: but the alternative is worse right now.
2348 	 */
2349 	if (bio == NULL) {
2350 		bp->b_error = ENOMEM;
2351 		bp->b_ioflags |= BIO_ERROR;
2352 		bufdone(bp);
2353 		return;
2354 	}
2355 #endif
2356 	bio->bio_caller2 = bp;
2357 	bio->bio_cmd = bp->b_iocmd;
2358 	bio->bio_data = bp->b_data;
2359 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2360 	bio->bio_length = bp->b_bcount;
2361 	bio->bio_done = swapgeom_done;
2362 	g_io_request(bio, cp);
2363 	return;
2364 }
2365 
2366 static void
2367 swapgeom_orphan(struct g_consumer *cp)
2368 {
2369 	struct swdevt *sp;
2370 
2371 	mtx_lock(&sw_dev_mtx);
2372 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2373 		if (sp->sw_id == cp)
2374 			sp->sw_id = NULL;
2375 	mtx_unlock(&sw_dev_mtx);
2376 }
2377 
2378 static void
2379 swapgeom_close_ev(void *arg, int flags)
2380 {
2381 	struct g_consumer *cp;
2382 
2383 	cp = arg;
2384 	g_access(cp, -1, -1, 0);
2385 	g_detach(cp);
2386 	g_destroy_consumer(cp);
2387 }
2388 
2389 static void
2390 swapgeom_close(struct thread *td, struct swdevt *sw)
2391 {
2392 
2393 	/* XXX: direct call when Giant untangled */
2394 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2395 }
2396 
2397 
2398 struct swh0h0 {
2399 	struct cdev *dev;
2400 	struct vnode *vp;
2401 	int	error;
2402 };
2403 
2404 static void
2405 swapongeom_ev(void *arg, int flags)
2406 {
2407 	struct swh0h0 *swh;
2408 	struct g_provider *pp;
2409 	struct g_consumer *cp;
2410 	static struct g_geom *gp;
2411 	struct swdevt *sp;
2412 	u_long nblks;
2413 	int error;
2414 
2415 	swh = arg;
2416 	swh->error = 0;
2417 	pp = g_dev_getprovider(swh->dev);
2418 	if (pp == NULL) {
2419 		swh->error = ENODEV;
2420 		return;
2421 	}
2422 	mtx_lock(&sw_dev_mtx);
2423 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2424 		cp = sp->sw_id;
2425 		if (cp != NULL && cp->provider == pp) {
2426 			mtx_unlock(&sw_dev_mtx);
2427 			swh->error = EBUSY;
2428 			return;
2429 		}
2430 	}
2431 	mtx_unlock(&sw_dev_mtx);
2432 	if (gp == NULL)
2433 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2434 	cp = g_new_consumer(gp);
2435 	g_attach(cp, pp);
2436 	/*
2437 	 * XXX: Everytime you think you can improve the margin for
2438 	 * footshooting, somebody depends on the ability to do so:
2439 	 * savecore(8) wants to write to our swapdev so we cannot
2440 	 * set an exclusive count :-(
2441 	 */
2442 	error = g_access(cp, 1, 1, 0);
2443 	if (error) {
2444 		g_detach(cp);
2445 		g_destroy_consumer(cp);
2446 		swh->error = error;
2447 		return;
2448 	}
2449 	nblks = pp->mediasize / DEV_BSIZE;
2450 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2451 	    swapgeom_close, dev2udev(swh->dev));
2452 	swh->error = 0;
2453 	return;
2454 }
2455 
2456 static int
2457 swapongeom(struct thread *td, struct vnode *vp)
2458 {
2459 	int error;
2460 	struct swh0h0 swh;
2461 
2462 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2463 
2464 	swh.dev = vp->v_rdev;
2465 	swh.vp = vp;
2466 	swh.error = 0;
2467 	/* XXX: direct call when Giant untangled */
2468 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2469 	if (!error)
2470 		error = swh.error;
2471 	VOP_UNLOCK(vp, 0, td);
2472 	return (error);
2473 }
2474 
2475 /*
2476  * VNODE backend
2477  *
2478  * This is used mainly for network filesystem (read: probably only tested
2479  * with NFS) swapfiles.
2480  *
2481  */
2482 
2483 static void
2484 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2485 {
2486 	struct vnode *vp2;
2487 
2488 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2489 
2490 	vp2 = sp->sw_id;
2491 	vhold(vp2);
2492 	if (bp->b_iocmd == BIO_WRITE) {
2493 		if (bp->b_bufobj)
2494 			bufobj_wdrop(bp->b_bufobj);
2495 		bufobj_wref(&vp2->v_bufobj);
2496 	}
2497 	if (bp->b_bufobj != &vp2->v_bufobj)
2498 		bp->b_bufobj = &vp2->v_bufobj;
2499 	bp->b_vp = vp2;
2500 	bp->b_iooffset = dbtob(bp->b_blkno);
2501 	bstrategy(bp);
2502 	return;
2503 }
2504 
2505 static void
2506 swapdev_close(struct thread *td, struct swdevt *sp)
2507 {
2508 
2509 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2510 	vrele(sp->sw_vp);
2511 }
2512 
2513 
2514 static int
2515 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2516 {
2517 	struct swdevt *sp;
2518 	int error;
2519 
2520 	if (nblks == 0)
2521 		return (ENXIO);
2522 	mtx_lock(&sw_dev_mtx);
2523 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2524 		if (sp->sw_id == vp) {
2525 			mtx_unlock(&sw_dev_mtx);
2526 			return (EBUSY);
2527 		}
2528 	}
2529 	mtx_unlock(&sw_dev_mtx);
2530 
2531 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2532 #ifdef MAC
2533 	error = mac_check_system_swapon(td->td_ucred, vp);
2534 	if (error == 0)
2535 #endif
2536 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, -1);
2537 	(void) VOP_UNLOCK(vp, 0, td);
2538 	if (error)
2539 		return (error);
2540 
2541 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2542 	    NODEV);
2543 	return (0);
2544 }
2545