1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/resource.h> 90 #include <sys/resourcevar.h> 91 #include <sys/sysctl.h> 92 #include <sys/sysproto.h> 93 #include <sys/blist.h> 94 #include <sys/lock.h> 95 #include <sys/sx.h> 96 #include <sys/vmmeter.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #include <vm/vm.h> 101 #include <vm/pmap.h> 102 #include <vm/vm_map.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_page.h> 106 #include <vm/vm_pager.h> 107 #include <vm/vm_pageout.h> 108 #include <vm/vm_param.h> 109 #include <vm/swap_pager.h> 110 #include <vm/vm_extern.h> 111 #include <vm/uma.h> 112 113 #include <geom/geom.h> 114 115 /* 116 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, or 16 117 * pages per allocation. We recommend you stick with the default of 8. 118 * The 16-page limit is due to the radix code (kern/subr_blist.c). 119 */ 120 #ifndef MAX_PAGEOUT_CLUSTER 121 #define MAX_PAGEOUT_CLUSTER 16 122 #endif 123 124 #if !defined(SWB_NPAGES) 125 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 126 #endif 127 128 /* 129 * Piecemeal swap metadata structure. Swap is stored in a radix tree. 130 * 131 * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix 132 * is basically 8. Assuming PAGE_SIZE == 4096, one tree level represents 133 * 32K worth of data, two levels represent 256K, three levels represent 134 * 2 MBytes. This is acceptable. 135 * 136 * Overall memory utilization is about the same as the old swap structure. 137 */ 138 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 139 #define SWAP_META_PAGES (SWB_NPAGES * 2) 140 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 141 142 struct swblock { 143 struct swblock *swb_hnext; 144 vm_object_t swb_object; 145 vm_pindex_t swb_index; 146 int swb_count; 147 daddr_t swb_pages[SWAP_META_PAGES]; 148 }; 149 150 static struct mtx sw_dev_mtx; 151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 152 static struct swdevt *swdevhd; /* Allocate from here next */ 153 static int nswapdev; /* Number of swap devices */ 154 int swap_pager_avail; 155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 156 157 static vm_ooffset_t swap_total; 158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 159 "Total amount of available swap storage."); 160 static vm_ooffset_t swap_reserved; 161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 162 "Amount of swap storage needed to back all allocated anonymous memory."); 163 static int overcommit = 0; 164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 165 "Configure virtual memory overcommit behavior. See tuning(7) " 166 "for details."); 167 168 /* bits from overcommit */ 169 #define SWAP_RESERVE_FORCE_ON (1 << 0) 170 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 171 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 172 173 int 174 swap_reserve(vm_ooffset_t incr) 175 { 176 177 return (swap_reserve_by_uid(incr, curthread->td_ucred->cr_ruidinfo)); 178 } 179 180 int 181 swap_reserve_by_uid(vm_ooffset_t incr, struct uidinfo *uip) 182 { 183 vm_ooffset_t r, s; 184 int res, error; 185 static int curfail; 186 static struct timeval lastfail; 187 188 if (incr & PAGE_MASK) 189 panic("swap_reserve: & PAGE_MASK"); 190 191 res = 0; 192 mtx_lock(&sw_dev_mtx); 193 r = swap_reserved + incr; 194 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 195 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count; 196 s *= PAGE_SIZE; 197 } else 198 s = 0; 199 s += swap_total; 200 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 201 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 202 res = 1; 203 swap_reserved = r; 204 } 205 mtx_unlock(&sw_dev_mtx); 206 207 if (res) { 208 PROC_LOCK(curproc); 209 UIDINFO_VMSIZE_LOCK(uip); 210 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 211 uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) && 212 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 213 res = 0; 214 else 215 uip->ui_vmsize += incr; 216 UIDINFO_VMSIZE_UNLOCK(uip); 217 PROC_UNLOCK(curproc); 218 if (!res) { 219 mtx_lock(&sw_dev_mtx); 220 swap_reserved -= incr; 221 mtx_unlock(&sw_dev_mtx); 222 } 223 } 224 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 225 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 226 curproc->p_pid, uip->ui_uid, incr); 227 } 228 229 return (res); 230 } 231 232 void 233 swap_reserve_force(vm_ooffset_t incr) 234 { 235 struct uidinfo *uip; 236 237 mtx_lock(&sw_dev_mtx); 238 swap_reserved += incr; 239 mtx_unlock(&sw_dev_mtx); 240 241 uip = curthread->td_ucred->cr_ruidinfo; 242 PROC_LOCK(curproc); 243 UIDINFO_VMSIZE_LOCK(uip); 244 uip->ui_vmsize += incr; 245 UIDINFO_VMSIZE_UNLOCK(uip); 246 PROC_UNLOCK(curproc); 247 } 248 249 void 250 swap_release(vm_ooffset_t decr) 251 { 252 struct uidinfo *uip; 253 254 PROC_LOCK(curproc); 255 uip = curthread->td_ucred->cr_ruidinfo; 256 swap_release_by_uid(decr, uip); 257 PROC_UNLOCK(curproc); 258 } 259 260 void 261 swap_release_by_uid(vm_ooffset_t decr, struct uidinfo *uip) 262 { 263 264 if (decr & PAGE_MASK) 265 panic("swap_release: & PAGE_MASK"); 266 267 mtx_lock(&sw_dev_mtx); 268 if (swap_reserved < decr) 269 panic("swap_reserved < decr"); 270 swap_reserved -= decr; 271 mtx_unlock(&sw_dev_mtx); 272 273 UIDINFO_VMSIZE_LOCK(uip); 274 if (uip->ui_vmsize < decr) 275 printf("negative vmsize for uid = %d\n", uip->ui_uid); 276 uip->ui_vmsize -= decr; 277 UIDINFO_VMSIZE_UNLOCK(uip); 278 } 279 280 static void swapdev_strategy(struct buf *, struct swdevt *sw); 281 282 #define SWM_FREE 0x02 /* free, period */ 283 #define SWM_POP 0x04 /* pop out */ 284 285 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 286 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 287 static int nsw_rcount; /* free read buffers */ 288 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 289 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 290 static int nsw_wcount_async_max;/* assigned maximum */ 291 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 292 293 static struct swblock **swhash; 294 static int swhash_mask; 295 static struct mtx swhash_mtx; 296 297 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 298 static struct sx sw_alloc_sx; 299 300 301 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 302 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 303 304 /* 305 * "named" and "unnamed" anon region objects. Try to reduce the overhead 306 * of searching a named list by hashing it just a little. 307 */ 308 309 #define NOBJLISTS 8 310 311 #define NOBJLIST(handle) \ 312 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 313 314 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 315 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 316 static uma_zone_t swap_zone; 317 static struct vm_object swap_zone_obj; 318 319 /* 320 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 321 * calls hooked from other parts of the VM system and do not appear here. 322 * (see vm/swap_pager.h). 323 */ 324 static vm_object_t 325 swap_pager_alloc(void *handle, vm_ooffset_t size, 326 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 327 static void swap_pager_dealloc(vm_object_t object); 328 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 329 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 330 static boolean_t 331 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 332 static void swap_pager_init(void); 333 static void swap_pager_unswapped(vm_page_t); 334 static void swap_pager_swapoff(struct swdevt *sp); 335 336 struct pagerops swappagerops = { 337 .pgo_init = swap_pager_init, /* early system initialization of pager */ 338 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 339 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 340 .pgo_getpages = swap_pager_getpages, /* pagein */ 341 .pgo_putpages = swap_pager_putpages, /* pageout */ 342 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 343 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 344 }; 345 346 /* 347 * dmmax is in page-sized chunks with the new swap system. It was 348 * dev-bsized chunks in the old. dmmax is always a power of 2. 349 * 350 * swap_*() routines are externally accessible. swp_*() routines are 351 * internal. 352 */ 353 static int dmmax; 354 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 355 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 356 357 SYSCTL_INT(_vm, OID_AUTO, dmmax, 358 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 359 360 static void swp_sizecheck(void); 361 static void swp_pager_async_iodone(struct buf *bp); 362 static int swapongeom(struct thread *, struct vnode *); 363 static int swaponvp(struct thread *, struct vnode *, u_long); 364 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 365 366 /* 367 * Swap bitmap functions 368 */ 369 static void swp_pager_freeswapspace(daddr_t blk, int npages); 370 static daddr_t swp_pager_getswapspace(int npages); 371 372 /* 373 * Metadata functions 374 */ 375 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 376 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 377 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 378 static void swp_pager_meta_free_all(vm_object_t); 379 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 380 381 /* 382 * SWP_SIZECHECK() - update swap_pager_full indication 383 * 384 * update the swap_pager_almost_full indication and warn when we are 385 * about to run out of swap space, using lowat/hiwat hysteresis. 386 * 387 * Clear swap_pager_full ( task killing ) indication when lowat is met. 388 * 389 * No restrictions on call 390 * This routine may not block. 391 * This routine must be called at splvm() 392 */ 393 static void 394 swp_sizecheck(void) 395 { 396 397 if (swap_pager_avail < nswap_lowat) { 398 if (swap_pager_almost_full == 0) { 399 printf("swap_pager: out of swap space\n"); 400 swap_pager_almost_full = 1; 401 } 402 } else { 403 swap_pager_full = 0; 404 if (swap_pager_avail > nswap_hiwat) 405 swap_pager_almost_full = 0; 406 } 407 } 408 409 /* 410 * SWP_PAGER_HASH() - hash swap meta data 411 * 412 * This is an helper function which hashes the swapblk given 413 * the object and page index. It returns a pointer to a pointer 414 * to the object, or a pointer to a NULL pointer if it could not 415 * find a swapblk. 416 * 417 * This routine must be called at splvm(). 418 */ 419 static struct swblock ** 420 swp_pager_hash(vm_object_t object, vm_pindex_t index) 421 { 422 struct swblock **pswap; 423 struct swblock *swap; 424 425 index &= ~(vm_pindex_t)SWAP_META_MASK; 426 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 427 while ((swap = *pswap) != NULL) { 428 if (swap->swb_object == object && 429 swap->swb_index == index 430 ) { 431 break; 432 } 433 pswap = &swap->swb_hnext; 434 } 435 return (pswap); 436 } 437 438 /* 439 * SWAP_PAGER_INIT() - initialize the swap pager! 440 * 441 * Expected to be started from system init. NOTE: This code is run 442 * before much else so be careful what you depend on. Most of the VM 443 * system has yet to be initialized at this point. 444 */ 445 static void 446 swap_pager_init(void) 447 { 448 /* 449 * Initialize object lists 450 */ 451 int i; 452 453 for (i = 0; i < NOBJLISTS; ++i) 454 TAILQ_INIT(&swap_pager_object_list[i]); 455 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 456 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 457 458 /* 459 * Device Stripe, in PAGE_SIZE'd blocks 460 */ 461 dmmax = SWB_NPAGES * 2; 462 } 463 464 /* 465 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 466 * 467 * Expected to be started from pageout process once, prior to entering 468 * its main loop. 469 */ 470 void 471 swap_pager_swap_init(void) 472 { 473 int n, n2; 474 475 /* 476 * Number of in-transit swap bp operations. Don't 477 * exhaust the pbufs completely. Make sure we 478 * initialize workable values (0 will work for hysteresis 479 * but it isn't very efficient). 480 * 481 * The nsw_cluster_max is constrained by the bp->b_pages[] 482 * array (MAXPHYS/PAGE_SIZE) and our locally defined 483 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 484 * constrained by the swap device interleave stripe size. 485 * 486 * Currently we hardwire nsw_wcount_async to 4. This limit is 487 * designed to prevent other I/O from having high latencies due to 488 * our pageout I/O. The value 4 works well for one or two active swap 489 * devices but is probably a little low if you have more. Even so, 490 * a higher value would probably generate only a limited improvement 491 * with three or four active swap devices since the system does not 492 * typically have to pageout at extreme bandwidths. We will want 493 * at least 2 per swap devices, and 4 is a pretty good value if you 494 * have one NFS swap device due to the command/ack latency over NFS. 495 * So it all works out pretty well. 496 */ 497 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 498 499 mtx_lock(&pbuf_mtx); 500 nsw_rcount = (nswbuf + 1) / 2; 501 nsw_wcount_sync = (nswbuf + 3) / 4; 502 nsw_wcount_async = 4; 503 nsw_wcount_async_max = nsw_wcount_async; 504 mtx_unlock(&pbuf_mtx); 505 506 /* 507 * Initialize our zone. Right now I'm just guessing on the number 508 * we need based on the number of pages in the system. Each swblock 509 * can hold 16 pages, so this is probably overkill. This reservation 510 * is typically limited to around 32MB by default. 511 */ 512 n = cnt.v_page_count / 2; 513 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 514 n = maxswzone / sizeof(struct swblock); 515 n2 = n; 516 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 517 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 518 if (swap_zone == NULL) 519 panic("failed to create swap_zone."); 520 do { 521 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n)) 522 break; 523 /* 524 * if the allocation failed, try a zone two thirds the 525 * size of the previous attempt. 526 */ 527 n -= ((n + 2) / 3); 528 } while (n > 0); 529 if (n2 != n) 530 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 531 n2 = n; 532 533 /* 534 * Initialize our meta-data hash table. The swapper does not need to 535 * be quite as efficient as the VM system, so we do not use an 536 * oversized hash table. 537 * 538 * n: size of hash table, must be power of 2 539 * swhash_mask: hash table index mask 540 */ 541 for (n = 1; n < n2 / 8; n *= 2) 542 ; 543 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 544 swhash_mask = n - 1; 545 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 546 } 547 548 /* 549 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 550 * its metadata structures. 551 * 552 * This routine is called from the mmap and fork code to create a new 553 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 554 * and then converting it with swp_pager_meta_build(). 555 * 556 * This routine may block in vm_object_allocate() and create a named 557 * object lookup race, so we must interlock. We must also run at 558 * splvm() for the object lookup to handle races with interrupts, but 559 * we do not have to maintain splvm() in between the lookup and the 560 * add because (I believe) it is not possible to attempt to create 561 * a new swap object w/handle when a default object with that handle 562 * already exists. 563 * 564 * MPSAFE 565 */ 566 static vm_object_t 567 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 568 vm_ooffset_t offset, struct ucred *cred) 569 { 570 vm_object_t object; 571 vm_pindex_t pindex; 572 struct uidinfo *uip; 573 574 uip = NULL; 575 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 576 if (handle) { 577 mtx_lock(&Giant); 578 /* 579 * Reference existing named region or allocate new one. There 580 * should not be a race here against swp_pager_meta_build() 581 * as called from vm_page_remove() in regards to the lookup 582 * of the handle. 583 */ 584 sx_xlock(&sw_alloc_sx); 585 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 586 if (object == NULL) { 587 if (cred != NULL) { 588 uip = cred->cr_ruidinfo; 589 if (!swap_reserve_by_uid(size, uip)) { 590 sx_xunlock(&sw_alloc_sx); 591 mtx_unlock(&Giant); 592 return (NULL); 593 } 594 uihold(uip); 595 } 596 object = vm_object_allocate(OBJT_DEFAULT, pindex); 597 VM_OBJECT_LOCK(object); 598 object->handle = handle; 599 if (cred != NULL) { 600 object->uip = uip; 601 object->charge = size; 602 } 603 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 604 VM_OBJECT_UNLOCK(object); 605 } 606 sx_xunlock(&sw_alloc_sx); 607 mtx_unlock(&Giant); 608 } else { 609 if (cred != NULL) { 610 uip = cred->cr_ruidinfo; 611 if (!swap_reserve_by_uid(size, uip)) 612 return (NULL); 613 uihold(uip); 614 } 615 object = vm_object_allocate(OBJT_DEFAULT, pindex); 616 VM_OBJECT_LOCK(object); 617 if (cred != NULL) { 618 object->uip = uip; 619 object->charge = size; 620 } 621 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 622 VM_OBJECT_UNLOCK(object); 623 } 624 return (object); 625 } 626 627 /* 628 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 629 * 630 * The swap backing for the object is destroyed. The code is 631 * designed such that we can reinstantiate it later, but this 632 * routine is typically called only when the entire object is 633 * about to be destroyed. 634 * 635 * This routine may block, but no longer does. 636 * 637 * The object must be locked or unreferenceable. 638 */ 639 static void 640 swap_pager_dealloc(vm_object_t object) 641 { 642 643 /* 644 * Remove from list right away so lookups will fail if we block for 645 * pageout completion. 646 */ 647 if (object->handle != NULL) { 648 mtx_lock(&sw_alloc_mtx); 649 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 650 mtx_unlock(&sw_alloc_mtx); 651 } 652 653 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 654 vm_object_pip_wait(object, "swpdea"); 655 656 /* 657 * Free all remaining metadata. We only bother to free it from 658 * the swap meta data. We do not attempt to free swapblk's still 659 * associated with vm_page_t's for this object. We do not care 660 * if paging is still in progress on some objects. 661 */ 662 swp_pager_meta_free_all(object); 663 } 664 665 /************************************************************************ 666 * SWAP PAGER BITMAP ROUTINES * 667 ************************************************************************/ 668 669 /* 670 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 671 * 672 * Allocate swap for the requested number of pages. The starting 673 * swap block number (a page index) is returned or SWAPBLK_NONE 674 * if the allocation failed. 675 * 676 * Also has the side effect of advising that somebody made a mistake 677 * when they configured swap and didn't configure enough. 678 * 679 * Must be called at splvm() to avoid races with bitmap frees from 680 * vm_page_remove() aka swap_pager_page_removed(). 681 * 682 * This routine may not block 683 * This routine must be called at splvm(). 684 * 685 * We allocate in round-robin fashion from the configured devices. 686 */ 687 static daddr_t 688 swp_pager_getswapspace(int npages) 689 { 690 daddr_t blk; 691 struct swdevt *sp; 692 int i; 693 694 blk = SWAPBLK_NONE; 695 mtx_lock(&sw_dev_mtx); 696 sp = swdevhd; 697 for (i = 0; i < nswapdev; i++) { 698 if (sp == NULL) 699 sp = TAILQ_FIRST(&swtailq); 700 if (!(sp->sw_flags & SW_CLOSING)) { 701 blk = blist_alloc(sp->sw_blist, npages); 702 if (blk != SWAPBLK_NONE) { 703 blk += sp->sw_first; 704 sp->sw_used += npages; 705 swap_pager_avail -= npages; 706 swp_sizecheck(); 707 swdevhd = TAILQ_NEXT(sp, sw_list); 708 goto done; 709 } 710 } 711 sp = TAILQ_NEXT(sp, sw_list); 712 } 713 if (swap_pager_full != 2) { 714 printf("swap_pager_getswapspace(%d): failed\n", npages); 715 swap_pager_full = 2; 716 swap_pager_almost_full = 1; 717 } 718 swdevhd = NULL; 719 done: 720 mtx_unlock(&sw_dev_mtx); 721 return (blk); 722 } 723 724 static int 725 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 726 { 727 728 return (blk >= sp->sw_first && blk < sp->sw_end); 729 } 730 731 static void 732 swp_pager_strategy(struct buf *bp) 733 { 734 struct swdevt *sp; 735 736 mtx_lock(&sw_dev_mtx); 737 TAILQ_FOREACH(sp, &swtailq, sw_list) { 738 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 739 mtx_unlock(&sw_dev_mtx); 740 sp->sw_strategy(bp, sp); 741 return; 742 } 743 } 744 panic("Swapdev not found"); 745 } 746 747 748 /* 749 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 750 * 751 * This routine returns the specified swap blocks back to the bitmap. 752 * 753 * Note: This routine may not block (it could in the old swap code), 754 * and through the use of the new blist routines it does not block. 755 * 756 * We must be called at splvm() to avoid races with bitmap frees from 757 * vm_page_remove() aka swap_pager_page_removed(). 758 * 759 * This routine may not block 760 * This routine must be called at splvm(). 761 */ 762 static void 763 swp_pager_freeswapspace(daddr_t blk, int npages) 764 { 765 struct swdevt *sp; 766 767 mtx_lock(&sw_dev_mtx); 768 TAILQ_FOREACH(sp, &swtailq, sw_list) { 769 if (blk >= sp->sw_first && blk < sp->sw_end) { 770 sp->sw_used -= npages; 771 /* 772 * If we are attempting to stop swapping on 773 * this device, we don't want to mark any 774 * blocks free lest they be reused. 775 */ 776 if ((sp->sw_flags & SW_CLOSING) == 0) { 777 blist_free(sp->sw_blist, blk - sp->sw_first, 778 npages); 779 swap_pager_avail += npages; 780 swp_sizecheck(); 781 } 782 mtx_unlock(&sw_dev_mtx); 783 return; 784 } 785 } 786 panic("Swapdev not found"); 787 } 788 789 /* 790 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 791 * range within an object. 792 * 793 * This is a globally accessible routine. 794 * 795 * This routine removes swapblk assignments from swap metadata. 796 * 797 * The external callers of this routine typically have already destroyed 798 * or renamed vm_page_t's associated with this range in the object so 799 * we should be ok. 800 * 801 * This routine may be called at any spl. We up our spl to splvm temporarily 802 * in order to perform the metadata removal. 803 */ 804 void 805 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 806 { 807 808 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 809 swp_pager_meta_free(object, start, size); 810 } 811 812 /* 813 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 814 * 815 * Assigns swap blocks to the specified range within the object. The 816 * swap blocks are not zerod. Any previous swap assignment is destroyed. 817 * 818 * Returns 0 on success, -1 on failure. 819 */ 820 int 821 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 822 { 823 int n = 0; 824 daddr_t blk = SWAPBLK_NONE; 825 vm_pindex_t beg = start; /* save start index */ 826 827 VM_OBJECT_LOCK(object); 828 while (size) { 829 if (n == 0) { 830 n = BLIST_MAX_ALLOC; 831 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 832 n >>= 1; 833 if (n == 0) { 834 swp_pager_meta_free(object, beg, start - beg); 835 VM_OBJECT_UNLOCK(object); 836 return (-1); 837 } 838 } 839 } 840 swp_pager_meta_build(object, start, blk); 841 --size; 842 ++start; 843 ++blk; 844 --n; 845 } 846 swp_pager_meta_free(object, start, n); 847 VM_OBJECT_UNLOCK(object); 848 return (0); 849 } 850 851 /* 852 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 853 * and destroy the source. 854 * 855 * Copy any valid swapblks from the source to the destination. In 856 * cases where both the source and destination have a valid swapblk, 857 * we keep the destination's. 858 * 859 * This routine is allowed to block. It may block allocating metadata 860 * indirectly through swp_pager_meta_build() or if paging is still in 861 * progress on the source. 862 * 863 * This routine can be called at any spl 864 * 865 * XXX vm_page_collapse() kinda expects us not to block because we 866 * supposedly do not need to allocate memory, but for the moment we 867 * *may* have to get a little memory from the zone allocator, but 868 * it is taken from the interrupt memory. We should be ok. 869 * 870 * The source object contains no vm_page_t's (which is just as well) 871 * 872 * The source object is of type OBJT_SWAP. 873 * 874 * The source and destination objects must be locked or 875 * inaccessible (XXX are they ?) 876 */ 877 void 878 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 879 vm_pindex_t offset, int destroysource) 880 { 881 vm_pindex_t i; 882 883 VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED); 884 VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED); 885 886 /* 887 * If destroysource is set, we remove the source object from the 888 * swap_pager internal queue now. 889 */ 890 if (destroysource) { 891 if (srcobject->handle != NULL) { 892 mtx_lock(&sw_alloc_mtx); 893 TAILQ_REMOVE( 894 NOBJLIST(srcobject->handle), 895 srcobject, 896 pager_object_list 897 ); 898 mtx_unlock(&sw_alloc_mtx); 899 } 900 } 901 902 /* 903 * transfer source to destination. 904 */ 905 for (i = 0; i < dstobject->size; ++i) { 906 daddr_t dstaddr; 907 908 /* 909 * Locate (without changing) the swapblk on the destination, 910 * unless it is invalid in which case free it silently, or 911 * if the destination is a resident page, in which case the 912 * source is thrown away. 913 */ 914 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 915 916 if (dstaddr == SWAPBLK_NONE) { 917 /* 918 * Destination has no swapblk and is not resident, 919 * copy source. 920 */ 921 daddr_t srcaddr; 922 923 srcaddr = swp_pager_meta_ctl( 924 srcobject, 925 i + offset, 926 SWM_POP 927 ); 928 929 if (srcaddr != SWAPBLK_NONE) { 930 /* 931 * swp_pager_meta_build() can sleep. 932 */ 933 vm_object_pip_add(srcobject, 1); 934 VM_OBJECT_UNLOCK(srcobject); 935 vm_object_pip_add(dstobject, 1); 936 swp_pager_meta_build(dstobject, i, srcaddr); 937 vm_object_pip_wakeup(dstobject); 938 VM_OBJECT_LOCK(srcobject); 939 vm_object_pip_wakeup(srcobject); 940 } 941 } else { 942 /* 943 * Destination has valid swapblk or it is represented 944 * by a resident page. We destroy the sourceblock. 945 */ 946 947 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 948 } 949 } 950 951 /* 952 * Free left over swap blocks in source. 953 * 954 * We have to revert the type to OBJT_DEFAULT so we do not accidently 955 * double-remove the object from the swap queues. 956 */ 957 if (destroysource) { 958 swp_pager_meta_free_all(srcobject); 959 /* 960 * Reverting the type is not necessary, the caller is going 961 * to destroy srcobject directly, but I'm doing it here 962 * for consistency since we've removed the object from its 963 * queues. 964 */ 965 srcobject->type = OBJT_DEFAULT; 966 } 967 } 968 969 /* 970 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 971 * the requested page. 972 * 973 * We determine whether good backing store exists for the requested 974 * page and return TRUE if it does, FALSE if it doesn't. 975 * 976 * If TRUE, we also try to determine how much valid, contiguous backing 977 * store exists before and after the requested page within a reasonable 978 * distance. We do not try to restrict it to the swap device stripe 979 * (that is handled in getpages/putpages). It probably isn't worth 980 * doing here. 981 */ 982 static boolean_t 983 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 984 { 985 daddr_t blk0; 986 987 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 988 /* 989 * do we have good backing store at the requested index ? 990 */ 991 blk0 = swp_pager_meta_ctl(object, pindex, 0); 992 993 if (blk0 == SWAPBLK_NONE) { 994 if (before) 995 *before = 0; 996 if (after) 997 *after = 0; 998 return (FALSE); 999 } 1000 1001 /* 1002 * find backwards-looking contiguous good backing store 1003 */ 1004 if (before != NULL) { 1005 int i; 1006 1007 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1008 daddr_t blk; 1009 1010 if (i > pindex) 1011 break; 1012 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1013 if (blk != blk0 - i) 1014 break; 1015 } 1016 *before = (i - 1); 1017 } 1018 1019 /* 1020 * find forward-looking contiguous good backing store 1021 */ 1022 if (after != NULL) { 1023 int i; 1024 1025 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1026 daddr_t blk; 1027 1028 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1029 if (blk != blk0 + i) 1030 break; 1031 } 1032 *after = (i - 1); 1033 } 1034 return (TRUE); 1035 } 1036 1037 /* 1038 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1039 * 1040 * This removes any associated swap backing store, whether valid or 1041 * not, from the page. 1042 * 1043 * This routine is typically called when a page is made dirty, at 1044 * which point any associated swap can be freed. MADV_FREE also 1045 * calls us in a special-case situation 1046 * 1047 * NOTE!!! If the page is clean and the swap was valid, the caller 1048 * should make the page dirty before calling this routine. This routine 1049 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1050 * depends on it. 1051 * 1052 * This routine may not block 1053 * This routine must be called at splvm() 1054 */ 1055 static void 1056 swap_pager_unswapped(vm_page_t m) 1057 { 1058 1059 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1060 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1061 } 1062 1063 /* 1064 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1065 * 1066 * Attempt to retrieve (m, count) pages from backing store, but make 1067 * sure we retrieve at least m[reqpage]. We try to load in as large 1068 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1069 * belongs to the same object. 1070 * 1071 * The code is designed for asynchronous operation and 1072 * immediate-notification of 'reqpage' but tends not to be 1073 * used that way. Please do not optimize-out this algorithmic 1074 * feature, I intend to improve on it in the future. 1075 * 1076 * The parent has a single vm_object_pip_add() reference prior to 1077 * calling us and we should return with the same. 1078 * 1079 * The parent has BUSY'd the pages. We should return with 'm' 1080 * left busy, but the others adjusted. 1081 */ 1082 static int 1083 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1084 { 1085 struct buf *bp; 1086 vm_page_t mreq; 1087 int i; 1088 int j; 1089 daddr_t blk; 1090 1091 mreq = m[reqpage]; 1092 1093 KASSERT(mreq->object == object, 1094 ("swap_pager_getpages: object mismatch %p/%p", 1095 object, mreq->object)); 1096 1097 /* 1098 * Calculate range to retrieve. The pages have already been assigned 1099 * their swapblks. We require a *contiguous* range but we know it to 1100 * not span devices. If we do not supply it, bad things 1101 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1102 * loops are set up such that the case(s) are handled implicitly. 1103 * 1104 * The swp_*() calls must be made at splvm(). vm_page_free() does 1105 * not need to be, but it will go a little faster if it is. 1106 */ 1107 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1108 1109 for (i = reqpage - 1; i >= 0; --i) { 1110 daddr_t iblk; 1111 1112 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1113 if (blk != iblk + (reqpage - i)) 1114 break; 1115 } 1116 ++i; 1117 1118 for (j = reqpage + 1; j < count; ++j) { 1119 daddr_t jblk; 1120 1121 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1122 if (blk != jblk - (j - reqpage)) 1123 break; 1124 } 1125 1126 /* 1127 * free pages outside our collection range. Note: we never free 1128 * mreq, it must remain busy throughout. 1129 */ 1130 if (0 < i || j < count) { 1131 int k; 1132 1133 vm_page_lock_queues(); 1134 for (k = 0; k < i; ++k) 1135 vm_page_free(m[k]); 1136 for (k = j; k < count; ++k) 1137 vm_page_free(m[k]); 1138 vm_page_unlock_queues(); 1139 } 1140 1141 /* 1142 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1143 * still busy, but the others unbusied. 1144 */ 1145 if (blk == SWAPBLK_NONE) 1146 return (VM_PAGER_FAIL); 1147 1148 /* 1149 * Getpbuf() can sleep. 1150 */ 1151 VM_OBJECT_UNLOCK(object); 1152 /* 1153 * Get a swap buffer header to perform the IO 1154 */ 1155 bp = getpbuf(&nsw_rcount); 1156 bp->b_flags |= B_PAGING; 1157 1158 /* 1159 * map our page(s) into kva for input 1160 */ 1161 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i); 1162 1163 bp->b_iocmd = BIO_READ; 1164 bp->b_iodone = swp_pager_async_iodone; 1165 bp->b_rcred = crhold(thread0.td_ucred); 1166 bp->b_wcred = crhold(thread0.td_ucred); 1167 bp->b_blkno = blk - (reqpage - i); 1168 bp->b_bcount = PAGE_SIZE * (j - i); 1169 bp->b_bufsize = PAGE_SIZE * (j - i); 1170 bp->b_pager.pg_reqpage = reqpage - i; 1171 1172 VM_OBJECT_LOCK(object); 1173 { 1174 int k; 1175 1176 for (k = i; k < j; ++k) { 1177 bp->b_pages[k - i] = m[k]; 1178 m[k]->oflags |= VPO_SWAPINPROG; 1179 } 1180 } 1181 bp->b_npages = j - i; 1182 1183 PCPU_INC(cnt.v_swapin); 1184 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1185 1186 /* 1187 * We still hold the lock on mreq, and our automatic completion routine 1188 * does not remove it. 1189 */ 1190 vm_object_pip_add(object, bp->b_npages); 1191 VM_OBJECT_UNLOCK(object); 1192 1193 /* 1194 * perform the I/O. NOTE!!! bp cannot be considered valid after 1195 * this point because we automatically release it on completion. 1196 * Instead, we look at the one page we are interested in which we 1197 * still hold a lock on even through the I/O completion. 1198 * 1199 * The other pages in our m[] array are also released on completion, 1200 * so we cannot assume they are valid anymore either. 1201 * 1202 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1203 */ 1204 BUF_KERNPROC(bp); 1205 swp_pager_strategy(bp); 1206 1207 /* 1208 * wait for the page we want to complete. VPO_SWAPINPROG is always 1209 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1210 * is set in the meta-data. 1211 */ 1212 VM_OBJECT_LOCK(object); 1213 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1214 mreq->oflags |= VPO_WANTED; 1215 vm_page_lock_queues(); 1216 vm_page_flag_set(mreq, PG_REFERENCED); 1217 vm_page_unlock_queues(); 1218 PCPU_INC(cnt.v_intrans); 1219 if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) { 1220 printf( 1221 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1222 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1223 } 1224 } 1225 1226 /* 1227 * mreq is left busied after completion, but all the other pages 1228 * are freed. If we had an unrecoverable read error the page will 1229 * not be valid. 1230 */ 1231 if (mreq->valid != VM_PAGE_BITS_ALL) { 1232 return (VM_PAGER_ERROR); 1233 } else { 1234 return (VM_PAGER_OK); 1235 } 1236 1237 /* 1238 * A final note: in a low swap situation, we cannot deallocate swap 1239 * and mark a page dirty here because the caller is likely to mark 1240 * the page clean when we return, causing the page to possibly revert 1241 * to all-zero's later. 1242 */ 1243 } 1244 1245 /* 1246 * swap_pager_putpages: 1247 * 1248 * Assign swap (if necessary) and initiate I/O on the specified pages. 1249 * 1250 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1251 * are automatically converted to SWAP objects. 1252 * 1253 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1254 * vm_page reservation system coupled with properly written VFS devices 1255 * should ensure that no low-memory deadlock occurs. This is an area 1256 * which needs work. 1257 * 1258 * The parent has N vm_object_pip_add() references prior to 1259 * calling us and will remove references for rtvals[] that are 1260 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1261 * completion. 1262 * 1263 * The parent has soft-busy'd the pages it passes us and will unbusy 1264 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1265 * We need to unbusy the rest on I/O completion. 1266 */ 1267 void 1268 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1269 boolean_t sync, int *rtvals) 1270 { 1271 int i; 1272 int n = 0; 1273 1274 if (count && m[0]->object != object) { 1275 panic("swap_pager_putpages: object mismatch %p/%p", 1276 object, 1277 m[0]->object 1278 ); 1279 } 1280 1281 /* 1282 * Step 1 1283 * 1284 * Turn object into OBJT_SWAP 1285 * check for bogus sysops 1286 * force sync if not pageout process 1287 */ 1288 if (object->type != OBJT_SWAP) 1289 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1290 VM_OBJECT_UNLOCK(object); 1291 1292 if (curproc != pageproc) 1293 sync = TRUE; 1294 1295 /* 1296 * Step 2 1297 * 1298 * Update nsw parameters from swap_async_max sysctl values. 1299 * Do not let the sysop crash the machine with bogus numbers. 1300 */ 1301 mtx_lock(&pbuf_mtx); 1302 if (swap_async_max != nsw_wcount_async_max) { 1303 int n; 1304 1305 /* 1306 * limit range 1307 */ 1308 if ((n = swap_async_max) > nswbuf / 2) 1309 n = nswbuf / 2; 1310 if (n < 1) 1311 n = 1; 1312 swap_async_max = n; 1313 1314 /* 1315 * Adjust difference ( if possible ). If the current async 1316 * count is too low, we may not be able to make the adjustment 1317 * at this time. 1318 */ 1319 n -= nsw_wcount_async_max; 1320 if (nsw_wcount_async + n >= 0) { 1321 nsw_wcount_async += n; 1322 nsw_wcount_async_max += n; 1323 wakeup(&nsw_wcount_async); 1324 } 1325 } 1326 mtx_unlock(&pbuf_mtx); 1327 1328 /* 1329 * Step 3 1330 * 1331 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1332 * The page is left dirty until the pageout operation completes 1333 * successfully. 1334 */ 1335 for (i = 0; i < count; i += n) { 1336 int j; 1337 struct buf *bp; 1338 daddr_t blk; 1339 1340 /* 1341 * Maximum I/O size is limited by a number of factors. 1342 */ 1343 n = min(BLIST_MAX_ALLOC, count - i); 1344 n = min(n, nsw_cluster_max); 1345 1346 /* 1347 * Get biggest block of swap we can. If we fail, fall 1348 * back and try to allocate a smaller block. Don't go 1349 * overboard trying to allocate space if it would overly 1350 * fragment swap. 1351 */ 1352 while ( 1353 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1354 n > 4 1355 ) { 1356 n >>= 1; 1357 } 1358 if (blk == SWAPBLK_NONE) { 1359 for (j = 0; j < n; ++j) 1360 rtvals[i+j] = VM_PAGER_FAIL; 1361 continue; 1362 } 1363 1364 /* 1365 * All I/O parameters have been satisfied, build the I/O 1366 * request and assign the swap space. 1367 */ 1368 if (sync == TRUE) { 1369 bp = getpbuf(&nsw_wcount_sync); 1370 } else { 1371 bp = getpbuf(&nsw_wcount_async); 1372 bp->b_flags = B_ASYNC; 1373 } 1374 bp->b_flags |= B_PAGING; 1375 bp->b_iocmd = BIO_WRITE; 1376 1377 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1378 1379 bp->b_rcred = crhold(thread0.td_ucred); 1380 bp->b_wcred = crhold(thread0.td_ucred); 1381 bp->b_bcount = PAGE_SIZE * n; 1382 bp->b_bufsize = PAGE_SIZE * n; 1383 bp->b_blkno = blk; 1384 1385 VM_OBJECT_LOCK(object); 1386 for (j = 0; j < n; ++j) { 1387 vm_page_t mreq = m[i+j]; 1388 1389 swp_pager_meta_build( 1390 mreq->object, 1391 mreq->pindex, 1392 blk + j 1393 ); 1394 vm_page_dirty(mreq); 1395 rtvals[i+j] = VM_PAGER_OK; 1396 1397 mreq->oflags |= VPO_SWAPINPROG; 1398 bp->b_pages[j] = mreq; 1399 } 1400 VM_OBJECT_UNLOCK(object); 1401 bp->b_npages = n; 1402 /* 1403 * Must set dirty range for NFS to work. 1404 */ 1405 bp->b_dirtyoff = 0; 1406 bp->b_dirtyend = bp->b_bcount; 1407 1408 PCPU_INC(cnt.v_swapout); 1409 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1410 1411 /* 1412 * asynchronous 1413 * 1414 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1415 */ 1416 if (sync == FALSE) { 1417 bp->b_iodone = swp_pager_async_iodone; 1418 BUF_KERNPROC(bp); 1419 swp_pager_strategy(bp); 1420 1421 for (j = 0; j < n; ++j) 1422 rtvals[i+j] = VM_PAGER_PEND; 1423 /* restart outter loop */ 1424 continue; 1425 } 1426 1427 /* 1428 * synchronous 1429 * 1430 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1431 */ 1432 bp->b_iodone = bdone; 1433 swp_pager_strategy(bp); 1434 1435 /* 1436 * Wait for the sync I/O to complete, then update rtvals. 1437 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1438 * our async completion routine at the end, thus avoiding a 1439 * double-free. 1440 */ 1441 bwait(bp, PVM, "swwrt"); 1442 for (j = 0; j < n; ++j) 1443 rtvals[i+j] = VM_PAGER_PEND; 1444 /* 1445 * Now that we are through with the bp, we can call the 1446 * normal async completion, which frees everything up. 1447 */ 1448 swp_pager_async_iodone(bp); 1449 } 1450 VM_OBJECT_LOCK(object); 1451 } 1452 1453 /* 1454 * swp_pager_async_iodone: 1455 * 1456 * Completion routine for asynchronous reads and writes from/to swap. 1457 * Also called manually by synchronous code to finish up a bp. 1458 * 1459 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1460 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1461 * unbusy all pages except the 'main' request page. For WRITE 1462 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1463 * because we marked them all VM_PAGER_PEND on return from putpages ). 1464 * 1465 * This routine may not block. 1466 */ 1467 static void 1468 swp_pager_async_iodone(struct buf *bp) 1469 { 1470 int i; 1471 vm_object_t object = NULL; 1472 1473 /* 1474 * report error 1475 */ 1476 if (bp->b_ioflags & BIO_ERROR) { 1477 printf( 1478 "swap_pager: I/O error - %s failed; blkno %ld," 1479 "size %ld, error %d\n", 1480 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1481 (long)bp->b_blkno, 1482 (long)bp->b_bcount, 1483 bp->b_error 1484 ); 1485 } 1486 1487 /* 1488 * remove the mapping for kernel virtual 1489 */ 1490 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1491 1492 if (bp->b_npages) { 1493 object = bp->b_pages[0]->object; 1494 VM_OBJECT_LOCK(object); 1495 } 1496 vm_page_lock_queues(); 1497 /* 1498 * cleanup pages. If an error occurs writing to swap, we are in 1499 * very serious trouble. If it happens to be a disk error, though, 1500 * we may be able to recover by reassigning the swap later on. So 1501 * in this case we remove the m->swapblk assignment for the page 1502 * but do not free it in the rlist. The errornous block(s) are thus 1503 * never reallocated as swap. Redirty the page and continue. 1504 */ 1505 for (i = 0; i < bp->b_npages; ++i) { 1506 vm_page_t m = bp->b_pages[i]; 1507 1508 m->oflags &= ~VPO_SWAPINPROG; 1509 1510 if (bp->b_ioflags & BIO_ERROR) { 1511 /* 1512 * If an error occurs I'd love to throw the swapblk 1513 * away without freeing it back to swapspace, so it 1514 * can never be used again. But I can't from an 1515 * interrupt. 1516 */ 1517 if (bp->b_iocmd == BIO_READ) { 1518 /* 1519 * When reading, reqpage needs to stay 1520 * locked for the parent, but all other 1521 * pages can be freed. We still want to 1522 * wakeup the parent waiting on the page, 1523 * though. ( also: pg_reqpage can be -1 and 1524 * not match anything ). 1525 * 1526 * We have to wake specifically requested pages 1527 * up too because we cleared VPO_SWAPINPROG and 1528 * someone may be waiting for that. 1529 * 1530 * NOTE: for reads, m->dirty will probably 1531 * be overridden by the original caller of 1532 * getpages so don't play cute tricks here. 1533 */ 1534 m->valid = 0; 1535 if (i != bp->b_pager.pg_reqpage) 1536 vm_page_free(m); 1537 else 1538 vm_page_flash(m); 1539 /* 1540 * If i == bp->b_pager.pg_reqpage, do not wake 1541 * the page up. The caller needs to. 1542 */ 1543 } else { 1544 /* 1545 * If a write error occurs, reactivate page 1546 * so it doesn't clog the inactive list, 1547 * then finish the I/O. 1548 */ 1549 vm_page_dirty(m); 1550 vm_page_activate(m); 1551 vm_page_io_finish(m); 1552 } 1553 } else if (bp->b_iocmd == BIO_READ) { 1554 /* 1555 * NOTE: for reads, m->dirty will probably be 1556 * overridden by the original caller of getpages so 1557 * we cannot set them in order to free the underlying 1558 * swap in a low-swap situation. I don't think we'd 1559 * want to do that anyway, but it was an optimization 1560 * that existed in the old swapper for a time before 1561 * it got ripped out due to precisely this problem. 1562 * 1563 * If not the requested page then deactivate it. 1564 * 1565 * Note that the requested page, reqpage, is left 1566 * busied, but we still have to wake it up. The 1567 * other pages are released (unbusied) by 1568 * vm_page_wakeup(). 1569 */ 1570 KASSERT(!pmap_page_is_mapped(m), 1571 ("swp_pager_async_iodone: page %p is mapped", m)); 1572 m->valid = VM_PAGE_BITS_ALL; 1573 KASSERT(m->dirty == 0, 1574 ("swp_pager_async_iodone: page %p is dirty", m)); 1575 1576 /* 1577 * We have to wake specifically requested pages 1578 * up too because we cleared VPO_SWAPINPROG and 1579 * could be waiting for it in getpages. However, 1580 * be sure to not unbusy getpages specifically 1581 * requested page - getpages expects it to be 1582 * left busy. 1583 */ 1584 if (i != bp->b_pager.pg_reqpage) { 1585 vm_page_deactivate(m); 1586 vm_page_wakeup(m); 1587 } else { 1588 vm_page_flash(m); 1589 } 1590 } else { 1591 /* 1592 * For write success, clear the dirty 1593 * status, then finish the I/O ( which decrements the 1594 * busy count and possibly wakes waiter's up ). 1595 */ 1596 KASSERT((m->flags & PG_WRITEABLE) == 0, 1597 ("swp_pager_async_iodone: page %p is not write" 1598 " protected", m)); 1599 vm_page_undirty(m); 1600 vm_page_io_finish(m); 1601 if (vm_page_count_severe()) 1602 vm_page_try_to_cache(m); 1603 } 1604 } 1605 vm_page_unlock_queues(); 1606 1607 /* 1608 * adjust pip. NOTE: the original parent may still have its own 1609 * pip refs on the object. 1610 */ 1611 if (object != NULL) { 1612 vm_object_pip_wakeupn(object, bp->b_npages); 1613 VM_OBJECT_UNLOCK(object); 1614 } 1615 1616 /* 1617 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1618 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1619 * trigger a KASSERT in relpbuf(). 1620 */ 1621 if (bp->b_vp) { 1622 bp->b_vp = NULL; 1623 bp->b_bufobj = NULL; 1624 } 1625 /* 1626 * release the physical I/O buffer 1627 */ 1628 relpbuf( 1629 bp, 1630 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1631 ((bp->b_flags & B_ASYNC) ? 1632 &nsw_wcount_async : 1633 &nsw_wcount_sync 1634 ) 1635 ) 1636 ); 1637 } 1638 1639 /* 1640 * swap_pager_isswapped: 1641 * 1642 * Return 1 if at least one page in the given object is paged 1643 * out to the given swap device. 1644 * 1645 * This routine may not block. 1646 */ 1647 int 1648 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1649 { 1650 daddr_t index = 0; 1651 int bcount; 1652 int i; 1653 1654 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1655 if (object->type != OBJT_SWAP) 1656 return (0); 1657 1658 mtx_lock(&swhash_mtx); 1659 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1660 struct swblock *swap; 1661 1662 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1663 for (i = 0; i < SWAP_META_PAGES; ++i) { 1664 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1665 mtx_unlock(&swhash_mtx); 1666 return (1); 1667 } 1668 } 1669 } 1670 index += SWAP_META_PAGES; 1671 if (index > 0x20000000) 1672 panic("swap_pager_isswapped: failed to locate all swap meta blocks"); 1673 } 1674 mtx_unlock(&swhash_mtx); 1675 return (0); 1676 } 1677 1678 /* 1679 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1680 * 1681 * This routine dissociates the page at the given index within a 1682 * swap block from its backing store, paging it in if necessary. 1683 * If the page is paged in, it is placed in the inactive queue, 1684 * since it had its backing store ripped out from under it. 1685 * We also attempt to swap in all other pages in the swap block, 1686 * we only guarantee that the one at the specified index is 1687 * paged in. 1688 * 1689 * XXX - The code to page the whole block in doesn't work, so we 1690 * revert to the one-by-one behavior for now. Sigh. 1691 */ 1692 static inline void 1693 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1694 { 1695 vm_page_t m; 1696 1697 vm_object_pip_add(object, 1); 1698 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1699 if (m->valid == VM_PAGE_BITS_ALL) { 1700 vm_object_pip_subtract(object, 1); 1701 vm_page_lock_queues(); 1702 vm_page_activate(m); 1703 vm_page_dirty(m); 1704 vm_page_unlock_queues(); 1705 vm_page_wakeup(m); 1706 vm_pager_page_unswapped(m); 1707 return; 1708 } 1709 1710 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1711 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1712 vm_object_pip_subtract(object, 1); 1713 vm_page_lock_queues(); 1714 vm_page_dirty(m); 1715 vm_page_dontneed(m); 1716 vm_page_unlock_queues(); 1717 vm_page_wakeup(m); 1718 vm_pager_page_unswapped(m); 1719 } 1720 1721 /* 1722 * swap_pager_swapoff: 1723 * 1724 * Page in all of the pages that have been paged out to the 1725 * given device. The corresponding blocks in the bitmap must be 1726 * marked as allocated and the device must be flagged SW_CLOSING. 1727 * There may be no processes swapped out to the device. 1728 * 1729 * This routine may block. 1730 */ 1731 static void 1732 swap_pager_swapoff(struct swdevt *sp) 1733 { 1734 struct swblock *swap; 1735 int i, j, retries; 1736 1737 GIANT_REQUIRED; 1738 1739 retries = 0; 1740 full_rescan: 1741 mtx_lock(&swhash_mtx); 1742 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1743 restart: 1744 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1745 vm_object_t object = swap->swb_object; 1746 vm_pindex_t pindex = swap->swb_index; 1747 for (j = 0; j < SWAP_META_PAGES; ++j) { 1748 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1749 /* avoid deadlock */ 1750 if (!VM_OBJECT_TRYLOCK(object)) { 1751 break; 1752 } else { 1753 mtx_unlock(&swhash_mtx); 1754 swp_pager_force_pagein(object, 1755 pindex + j); 1756 VM_OBJECT_UNLOCK(object); 1757 mtx_lock(&swhash_mtx); 1758 goto restart; 1759 } 1760 } 1761 } 1762 } 1763 } 1764 mtx_unlock(&swhash_mtx); 1765 if (sp->sw_used) { 1766 /* 1767 * Objects may be locked or paging to the device being 1768 * removed, so we will miss their pages and need to 1769 * make another pass. We have marked this device as 1770 * SW_CLOSING, so the activity should finish soon. 1771 */ 1772 retries++; 1773 if (retries > 100) { 1774 panic("swapoff: failed to locate %d swap blocks", 1775 sp->sw_used); 1776 } 1777 pause("swpoff", hz / 20); 1778 goto full_rescan; 1779 } 1780 } 1781 1782 /************************************************************************ 1783 * SWAP META DATA * 1784 ************************************************************************ 1785 * 1786 * These routines manipulate the swap metadata stored in the 1787 * OBJT_SWAP object. All swp_*() routines must be called at 1788 * splvm() because swap can be freed up by the low level vm_page 1789 * code which might be called from interrupts beyond what splbio() covers. 1790 * 1791 * Swap metadata is implemented with a global hash and not directly 1792 * linked into the object. Instead the object simply contains 1793 * appropriate tracking counters. 1794 */ 1795 1796 /* 1797 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1798 * 1799 * We first convert the object to a swap object if it is a default 1800 * object. 1801 * 1802 * The specified swapblk is added to the object's swap metadata. If 1803 * the swapblk is not valid, it is freed instead. Any previously 1804 * assigned swapblk is freed. 1805 * 1806 * This routine must be called at splvm(), except when used to convert 1807 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1808 */ 1809 static void 1810 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1811 { 1812 struct swblock *swap; 1813 struct swblock **pswap; 1814 int idx; 1815 1816 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1817 /* 1818 * Convert default object to swap object if necessary 1819 */ 1820 if (object->type != OBJT_SWAP) { 1821 object->type = OBJT_SWAP; 1822 object->un_pager.swp.swp_bcount = 0; 1823 1824 if (object->handle != NULL) { 1825 mtx_lock(&sw_alloc_mtx); 1826 TAILQ_INSERT_TAIL( 1827 NOBJLIST(object->handle), 1828 object, 1829 pager_object_list 1830 ); 1831 mtx_unlock(&sw_alloc_mtx); 1832 } 1833 } 1834 1835 /* 1836 * Locate hash entry. If not found create, but if we aren't adding 1837 * anything just return. If we run out of space in the map we wait 1838 * and, since the hash table may have changed, retry. 1839 */ 1840 retry: 1841 mtx_lock(&swhash_mtx); 1842 pswap = swp_pager_hash(object, pindex); 1843 1844 if ((swap = *pswap) == NULL) { 1845 int i; 1846 1847 if (swapblk == SWAPBLK_NONE) 1848 goto done; 1849 1850 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1851 if (swap == NULL) { 1852 mtx_unlock(&swhash_mtx); 1853 VM_OBJECT_UNLOCK(object); 1854 if (uma_zone_exhausted(swap_zone)) { 1855 printf("swap zone exhausted, increase kern.maxswzone\n"); 1856 vm_pageout_oom(VM_OOM_SWAPZ); 1857 pause("swzonex", 10); 1858 } else 1859 VM_WAIT; 1860 VM_OBJECT_LOCK(object); 1861 goto retry; 1862 } 1863 1864 swap->swb_hnext = NULL; 1865 swap->swb_object = object; 1866 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1867 swap->swb_count = 0; 1868 1869 ++object->un_pager.swp.swp_bcount; 1870 1871 for (i = 0; i < SWAP_META_PAGES; ++i) 1872 swap->swb_pages[i] = SWAPBLK_NONE; 1873 } 1874 1875 /* 1876 * Delete prior contents of metadata 1877 */ 1878 idx = pindex & SWAP_META_MASK; 1879 1880 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1881 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1882 --swap->swb_count; 1883 } 1884 1885 /* 1886 * Enter block into metadata 1887 */ 1888 swap->swb_pages[idx] = swapblk; 1889 if (swapblk != SWAPBLK_NONE) 1890 ++swap->swb_count; 1891 done: 1892 mtx_unlock(&swhash_mtx); 1893 } 1894 1895 /* 1896 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1897 * 1898 * The requested range of blocks is freed, with any associated swap 1899 * returned to the swap bitmap. 1900 * 1901 * This routine will free swap metadata structures as they are cleaned 1902 * out. This routine does *NOT* operate on swap metadata associated 1903 * with resident pages. 1904 * 1905 * This routine must be called at splvm() 1906 */ 1907 static void 1908 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1909 { 1910 1911 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1912 if (object->type != OBJT_SWAP) 1913 return; 1914 1915 while (count > 0) { 1916 struct swblock **pswap; 1917 struct swblock *swap; 1918 1919 mtx_lock(&swhash_mtx); 1920 pswap = swp_pager_hash(object, index); 1921 1922 if ((swap = *pswap) != NULL) { 1923 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1924 1925 if (v != SWAPBLK_NONE) { 1926 swp_pager_freeswapspace(v, 1); 1927 swap->swb_pages[index & SWAP_META_MASK] = 1928 SWAPBLK_NONE; 1929 if (--swap->swb_count == 0) { 1930 *pswap = swap->swb_hnext; 1931 uma_zfree(swap_zone, swap); 1932 --object->un_pager.swp.swp_bcount; 1933 } 1934 } 1935 --count; 1936 ++index; 1937 } else { 1938 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1939 count -= n; 1940 index += n; 1941 } 1942 mtx_unlock(&swhash_mtx); 1943 } 1944 } 1945 1946 /* 1947 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1948 * 1949 * This routine locates and destroys all swap metadata associated with 1950 * an object. 1951 * 1952 * This routine must be called at splvm() 1953 */ 1954 static void 1955 swp_pager_meta_free_all(vm_object_t object) 1956 { 1957 daddr_t index = 0; 1958 1959 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1960 if (object->type != OBJT_SWAP) 1961 return; 1962 1963 while (object->un_pager.swp.swp_bcount) { 1964 struct swblock **pswap; 1965 struct swblock *swap; 1966 1967 mtx_lock(&swhash_mtx); 1968 pswap = swp_pager_hash(object, index); 1969 if ((swap = *pswap) != NULL) { 1970 int i; 1971 1972 for (i = 0; i < SWAP_META_PAGES; ++i) { 1973 daddr_t v = swap->swb_pages[i]; 1974 if (v != SWAPBLK_NONE) { 1975 --swap->swb_count; 1976 swp_pager_freeswapspace(v, 1); 1977 } 1978 } 1979 if (swap->swb_count != 0) 1980 panic("swap_pager_meta_free_all: swb_count != 0"); 1981 *pswap = swap->swb_hnext; 1982 uma_zfree(swap_zone, swap); 1983 --object->un_pager.swp.swp_bcount; 1984 } 1985 mtx_unlock(&swhash_mtx); 1986 index += SWAP_META_PAGES; 1987 if (index > 0x20000000) 1988 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1989 } 1990 } 1991 1992 /* 1993 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1994 * 1995 * This routine is capable of looking up, popping, or freeing 1996 * swapblk assignments in the swap meta data or in the vm_page_t. 1997 * The routine typically returns the swapblk being looked-up, or popped, 1998 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1999 * was invalid. This routine will automatically free any invalid 2000 * meta-data swapblks. 2001 * 2002 * It is not possible to store invalid swapblks in the swap meta data 2003 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2004 * 2005 * When acting on a busy resident page and paging is in progress, we 2006 * have to wait until paging is complete but otherwise can act on the 2007 * busy page. 2008 * 2009 * This routine must be called at splvm(). 2010 * 2011 * SWM_FREE remove and free swap block from metadata 2012 * SWM_POP remove from meta data but do not free.. pop it out 2013 */ 2014 static daddr_t 2015 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2016 { 2017 struct swblock **pswap; 2018 struct swblock *swap; 2019 daddr_t r1; 2020 int idx; 2021 2022 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2023 /* 2024 * The meta data only exists of the object is OBJT_SWAP 2025 * and even then might not be allocated yet. 2026 */ 2027 if (object->type != OBJT_SWAP) 2028 return (SWAPBLK_NONE); 2029 2030 r1 = SWAPBLK_NONE; 2031 mtx_lock(&swhash_mtx); 2032 pswap = swp_pager_hash(object, pindex); 2033 2034 if ((swap = *pswap) != NULL) { 2035 idx = pindex & SWAP_META_MASK; 2036 r1 = swap->swb_pages[idx]; 2037 2038 if (r1 != SWAPBLK_NONE) { 2039 if (flags & SWM_FREE) { 2040 swp_pager_freeswapspace(r1, 1); 2041 r1 = SWAPBLK_NONE; 2042 } 2043 if (flags & (SWM_FREE|SWM_POP)) { 2044 swap->swb_pages[idx] = SWAPBLK_NONE; 2045 if (--swap->swb_count == 0) { 2046 *pswap = swap->swb_hnext; 2047 uma_zfree(swap_zone, swap); 2048 --object->un_pager.swp.swp_bcount; 2049 } 2050 } 2051 } 2052 } 2053 mtx_unlock(&swhash_mtx); 2054 return (r1); 2055 } 2056 2057 /* 2058 * System call swapon(name) enables swapping on device name, 2059 * which must be in the swdevsw. Return EBUSY 2060 * if already swapping on this device. 2061 */ 2062 #ifndef _SYS_SYSPROTO_H_ 2063 struct swapon_args { 2064 char *name; 2065 }; 2066 #endif 2067 2068 /* 2069 * MPSAFE 2070 */ 2071 /* ARGSUSED */ 2072 int 2073 swapon(struct thread *td, struct swapon_args *uap) 2074 { 2075 struct vattr attr; 2076 struct vnode *vp; 2077 struct nameidata nd; 2078 int error; 2079 2080 error = priv_check(td, PRIV_SWAPON); 2081 if (error) 2082 return (error); 2083 2084 mtx_lock(&Giant); 2085 while (swdev_syscall_active) 2086 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2087 swdev_syscall_active = 1; 2088 2089 /* 2090 * Swap metadata may not fit in the KVM if we have physical 2091 * memory of >1GB. 2092 */ 2093 if (swap_zone == NULL) { 2094 error = ENOMEM; 2095 goto done; 2096 } 2097 2098 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2099 uap->name, td); 2100 error = namei(&nd); 2101 if (error) 2102 goto done; 2103 2104 NDFREE(&nd, NDF_ONLY_PNBUF); 2105 vp = nd.ni_vp; 2106 2107 if (vn_isdisk(vp, &error)) { 2108 error = swapongeom(td, vp); 2109 } else if (vp->v_type == VREG && 2110 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2111 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2112 /* 2113 * Allow direct swapping to NFS regular files in the same 2114 * way that nfs_mountroot() sets up diskless swapping. 2115 */ 2116 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2117 } 2118 2119 if (error) 2120 vrele(vp); 2121 done: 2122 swdev_syscall_active = 0; 2123 wakeup_one(&swdev_syscall_active); 2124 mtx_unlock(&Giant); 2125 return (error); 2126 } 2127 2128 static void 2129 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev) 2130 { 2131 struct swdevt *sp, *tsp; 2132 swblk_t dvbase; 2133 u_long mblocks; 2134 2135 /* 2136 * If we go beyond this, we get overflows in the radix 2137 * tree bitmap code. 2138 */ 2139 mblocks = 0x40000000 / BLIST_META_RADIX; 2140 if (nblks > mblocks) { 2141 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n", 2142 mblocks); 2143 nblks = mblocks; 2144 } 2145 /* 2146 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2147 * First chop nblks off to page-align it, then convert. 2148 * 2149 * sw->sw_nblks is in page-sized chunks now too. 2150 */ 2151 nblks &= ~(ctodb(1) - 1); 2152 nblks = dbtoc(nblks); 2153 2154 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2155 sp->sw_vp = vp; 2156 sp->sw_id = id; 2157 sp->sw_dev = dev; 2158 sp->sw_flags = 0; 2159 sp->sw_nblks = nblks; 2160 sp->sw_used = 0; 2161 sp->sw_strategy = strategy; 2162 sp->sw_close = close; 2163 2164 sp->sw_blist = blist_create(nblks, M_WAITOK); 2165 /* 2166 * Do not free the first two block in order to avoid overwriting 2167 * any bsd label at the front of the partition 2168 */ 2169 blist_free(sp->sw_blist, 2, nblks - 2); 2170 2171 dvbase = 0; 2172 mtx_lock(&sw_dev_mtx); 2173 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2174 if (tsp->sw_end >= dvbase) { 2175 /* 2176 * We put one uncovered page between the devices 2177 * in order to definitively prevent any cross-device 2178 * I/O requests 2179 */ 2180 dvbase = tsp->sw_end + 1; 2181 } 2182 } 2183 sp->sw_first = dvbase; 2184 sp->sw_end = dvbase + nblks; 2185 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2186 nswapdev++; 2187 swap_pager_avail += nblks; 2188 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2189 swp_sizecheck(); 2190 mtx_unlock(&sw_dev_mtx); 2191 } 2192 2193 /* 2194 * SYSCALL: swapoff(devname) 2195 * 2196 * Disable swapping on the given device. 2197 * 2198 * XXX: Badly designed system call: it should use a device index 2199 * rather than filename as specification. We keep sw_vp around 2200 * only to make this work. 2201 */ 2202 #ifndef _SYS_SYSPROTO_H_ 2203 struct swapoff_args { 2204 char *name; 2205 }; 2206 #endif 2207 2208 /* 2209 * MPSAFE 2210 */ 2211 /* ARGSUSED */ 2212 int 2213 swapoff(struct thread *td, struct swapoff_args *uap) 2214 { 2215 struct vnode *vp; 2216 struct nameidata nd; 2217 struct swdevt *sp; 2218 int error; 2219 2220 error = priv_check(td, PRIV_SWAPOFF); 2221 if (error) 2222 return (error); 2223 2224 mtx_lock(&Giant); 2225 while (swdev_syscall_active) 2226 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2227 swdev_syscall_active = 1; 2228 2229 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2230 td); 2231 error = namei(&nd); 2232 if (error) 2233 goto done; 2234 NDFREE(&nd, NDF_ONLY_PNBUF); 2235 vp = nd.ni_vp; 2236 2237 mtx_lock(&sw_dev_mtx); 2238 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2239 if (sp->sw_vp == vp) 2240 break; 2241 } 2242 mtx_unlock(&sw_dev_mtx); 2243 if (sp == NULL) { 2244 error = EINVAL; 2245 goto done; 2246 } 2247 error = swapoff_one(sp, td->td_ucred); 2248 done: 2249 swdev_syscall_active = 0; 2250 wakeup_one(&swdev_syscall_active); 2251 mtx_unlock(&Giant); 2252 return (error); 2253 } 2254 2255 static int 2256 swapoff_one(struct swdevt *sp, struct ucred *cred) 2257 { 2258 u_long nblks, dvbase; 2259 #ifdef MAC 2260 int error; 2261 #endif 2262 2263 mtx_assert(&Giant, MA_OWNED); 2264 #ifdef MAC 2265 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2266 error = mac_system_check_swapoff(cred, sp->sw_vp); 2267 (void) VOP_UNLOCK(sp->sw_vp, 0); 2268 if (error != 0) 2269 return (error); 2270 #endif 2271 nblks = sp->sw_nblks; 2272 2273 /* 2274 * We can turn off this swap device safely only if the 2275 * available virtual memory in the system will fit the amount 2276 * of data we will have to page back in, plus an epsilon so 2277 * the system doesn't become critically low on swap space. 2278 */ 2279 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2280 nblks + nswap_lowat) { 2281 return (ENOMEM); 2282 } 2283 2284 /* 2285 * Prevent further allocations on this device. 2286 */ 2287 mtx_lock(&sw_dev_mtx); 2288 sp->sw_flags |= SW_CLOSING; 2289 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2290 swap_pager_avail -= blist_fill(sp->sw_blist, 2291 dvbase, dmmax); 2292 } 2293 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2294 mtx_unlock(&sw_dev_mtx); 2295 2296 /* 2297 * Page in the contents of the device and close it. 2298 */ 2299 swap_pager_swapoff(sp); 2300 2301 sp->sw_close(curthread, sp); 2302 sp->sw_id = NULL; 2303 mtx_lock(&sw_dev_mtx); 2304 TAILQ_REMOVE(&swtailq, sp, sw_list); 2305 nswapdev--; 2306 if (nswapdev == 0) { 2307 swap_pager_full = 2; 2308 swap_pager_almost_full = 1; 2309 } 2310 if (swdevhd == sp) 2311 swdevhd = NULL; 2312 mtx_unlock(&sw_dev_mtx); 2313 blist_destroy(sp->sw_blist); 2314 free(sp, M_VMPGDATA); 2315 return (0); 2316 } 2317 2318 void 2319 swapoff_all(void) 2320 { 2321 struct swdevt *sp, *spt; 2322 const char *devname; 2323 int error; 2324 2325 mtx_lock(&Giant); 2326 while (swdev_syscall_active) 2327 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2328 swdev_syscall_active = 1; 2329 2330 mtx_lock(&sw_dev_mtx); 2331 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2332 mtx_unlock(&sw_dev_mtx); 2333 if (vn_isdisk(sp->sw_vp, NULL)) 2334 devname = sp->sw_vp->v_rdev->si_name; 2335 else 2336 devname = "[file]"; 2337 error = swapoff_one(sp, thread0.td_ucred); 2338 if (error != 0) { 2339 printf("Cannot remove swap device %s (error=%d), " 2340 "skipping.\n", devname, error); 2341 } else if (bootverbose) { 2342 printf("Swap device %s removed.\n", devname); 2343 } 2344 mtx_lock(&sw_dev_mtx); 2345 } 2346 mtx_unlock(&sw_dev_mtx); 2347 2348 swdev_syscall_active = 0; 2349 wakeup_one(&swdev_syscall_active); 2350 mtx_unlock(&Giant); 2351 } 2352 2353 void 2354 swap_pager_status(int *total, int *used) 2355 { 2356 struct swdevt *sp; 2357 2358 *total = 0; 2359 *used = 0; 2360 mtx_lock(&sw_dev_mtx); 2361 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2362 *total += sp->sw_nblks; 2363 *used += sp->sw_used; 2364 } 2365 mtx_unlock(&sw_dev_mtx); 2366 } 2367 2368 static int 2369 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2370 { 2371 int *name = (int *)arg1; 2372 int error, n; 2373 struct xswdev xs; 2374 struct swdevt *sp; 2375 2376 if (arg2 != 1) /* name length */ 2377 return (EINVAL); 2378 2379 n = 0; 2380 mtx_lock(&sw_dev_mtx); 2381 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2382 if (n == *name) { 2383 mtx_unlock(&sw_dev_mtx); 2384 xs.xsw_version = XSWDEV_VERSION; 2385 xs.xsw_dev = sp->sw_dev; 2386 xs.xsw_flags = sp->sw_flags; 2387 xs.xsw_nblks = sp->sw_nblks; 2388 xs.xsw_used = sp->sw_used; 2389 2390 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2391 return (error); 2392 } 2393 n++; 2394 } 2395 mtx_unlock(&sw_dev_mtx); 2396 return (ENOENT); 2397 } 2398 2399 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2400 "Number of swap devices"); 2401 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2402 "Swap statistics by device"); 2403 2404 /* 2405 * vmspace_swap_count() - count the approximate swap usage in pages for a 2406 * vmspace. 2407 * 2408 * The map must be locked. 2409 * 2410 * Swap usage is determined by taking the proportional swap used by 2411 * VM objects backing the VM map. To make up for fractional losses, 2412 * if the VM object has any swap use at all the associated map entries 2413 * count for at least 1 swap page. 2414 */ 2415 int 2416 vmspace_swap_count(struct vmspace *vmspace) 2417 { 2418 vm_map_t map = &vmspace->vm_map; 2419 vm_map_entry_t cur; 2420 int count = 0; 2421 2422 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2423 vm_object_t object; 2424 2425 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2426 (object = cur->object.vm_object) != NULL) { 2427 VM_OBJECT_LOCK(object); 2428 if (object->type == OBJT_SWAP && 2429 object->un_pager.swp.swp_bcount != 0) { 2430 int n = (cur->end - cur->start) / PAGE_SIZE; 2431 2432 count += object->un_pager.swp.swp_bcount * 2433 SWAP_META_PAGES * n / object->size + 1; 2434 } 2435 VM_OBJECT_UNLOCK(object); 2436 } 2437 } 2438 return (count); 2439 } 2440 2441 /* 2442 * GEOM backend 2443 * 2444 * Swapping onto disk devices. 2445 * 2446 */ 2447 2448 static g_orphan_t swapgeom_orphan; 2449 2450 static struct g_class g_swap_class = { 2451 .name = "SWAP", 2452 .version = G_VERSION, 2453 .orphan = swapgeom_orphan, 2454 }; 2455 2456 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2457 2458 2459 static void 2460 swapgeom_done(struct bio *bp2) 2461 { 2462 struct buf *bp; 2463 2464 bp = bp2->bio_caller2; 2465 bp->b_ioflags = bp2->bio_flags; 2466 if (bp2->bio_error) 2467 bp->b_ioflags |= BIO_ERROR; 2468 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2469 bp->b_error = bp2->bio_error; 2470 bufdone(bp); 2471 g_destroy_bio(bp2); 2472 } 2473 2474 static void 2475 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2476 { 2477 struct bio *bio; 2478 struct g_consumer *cp; 2479 2480 cp = sp->sw_id; 2481 if (cp == NULL) { 2482 bp->b_error = ENXIO; 2483 bp->b_ioflags |= BIO_ERROR; 2484 bufdone(bp); 2485 return; 2486 } 2487 if (bp->b_iocmd == BIO_WRITE) 2488 bio = g_new_bio(); 2489 else 2490 bio = g_alloc_bio(); 2491 if (bio == NULL) { 2492 bp->b_error = ENOMEM; 2493 bp->b_ioflags |= BIO_ERROR; 2494 bufdone(bp); 2495 return; 2496 } 2497 2498 bio->bio_caller2 = bp; 2499 bio->bio_cmd = bp->b_iocmd; 2500 bio->bio_data = bp->b_data; 2501 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2502 bio->bio_length = bp->b_bcount; 2503 bio->bio_done = swapgeom_done; 2504 g_io_request(bio, cp); 2505 return; 2506 } 2507 2508 static void 2509 swapgeom_orphan(struct g_consumer *cp) 2510 { 2511 struct swdevt *sp; 2512 2513 mtx_lock(&sw_dev_mtx); 2514 TAILQ_FOREACH(sp, &swtailq, sw_list) 2515 if (sp->sw_id == cp) 2516 sp->sw_id = NULL; 2517 mtx_unlock(&sw_dev_mtx); 2518 } 2519 2520 static void 2521 swapgeom_close_ev(void *arg, int flags) 2522 { 2523 struct g_consumer *cp; 2524 2525 cp = arg; 2526 g_access(cp, -1, -1, 0); 2527 g_detach(cp); 2528 g_destroy_consumer(cp); 2529 } 2530 2531 static void 2532 swapgeom_close(struct thread *td, struct swdevt *sw) 2533 { 2534 2535 /* XXX: direct call when Giant untangled */ 2536 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2537 } 2538 2539 2540 struct swh0h0 { 2541 struct cdev *dev; 2542 struct vnode *vp; 2543 int error; 2544 }; 2545 2546 static void 2547 swapongeom_ev(void *arg, int flags) 2548 { 2549 struct swh0h0 *swh; 2550 struct g_provider *pp; 2551 struct g_consumer *cp; 2552 static struct g_geom *gp; 2553 struct swdevt *sp; 2554 u_long nblks; 2555 int error; 2556 2557 swh = arg; 2558 swh->error = 0; 2559 pp = g_dev_getprovider(swh->dev); 2560 if (pp == NULL) { 2561 swh->error = ENODEV; 2562 return; 2563 } 2564 mtx_lock(&sw_dev_mtx); 2565 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2566 cp = sp->sw_id; 2567 if (cp != NULL && cp->provider == pp) { 2568 mtx_unlock(&sw_dev_mtx); 2569 swh->error = EBUSY; 2570 return; 2571 } 2572 } 2573 mtx_unlock(&sw_dev_mtx); 2574 if (gp == NULL) 2575 gp = g_new_geomf(&g_swap_class, "swap", NULL); 2576 cp = g_new_consumer(gp); 2577 g_attach(cp, pp); 2578 /* 2579 * XXX: Everytime you think you can improve the margin for 2580 * footshooting, somebody depends on the ability to do so: 2581 * savecore(8) wants to write to our swapdev so we cannot 2582 * set an exclusive count :-( 2583 */ 2584 error = g_access(cp, 1, 1, 0); 2585 if (error) { 2586 g_detach(cp); 2587 g_destroy_consumer(cp); 2588 swh->error = error; 2589 return; 2590 } 2591 nblks = pp->mediasize / DEV_BSIZE; 2592 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2593 swapgeom_close, dev2udev(swh->dev)); 2594 swh->error = 0; 2595 return; 2596 } 2597 2598 static int 2599 swapongeom(struct thread *td, struct vnode *vp) 2600 { 2601 int error; 2602 struct swh0h0 swh; 2603 2604 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2605 2606 swh.dev = vp->v_rdev; 2607 swh.vp = vp; 2608 swh.error = 0; 2609 /* XXX: direct call when Giant untangled */ 2610 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2611 if (!error) 2612 error = swh.error; 2613 VOP_UNLOCK(vp, 0); 2614 return (error); 2615 } 2616 2617 /* 2618 * VNODE backend 2619 * 2620 * This is used mainly for network filesystem (read: probably only tested 2621 * with NFS) swapfiles. 2622 * 2623 */ 2624 2625 static void 2626 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2627 { 2628 struct vnode *vp2; 2629 2630 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2631 2632 vp2 = sp->sw_id; 2633 vhold(vp2); 2634 if (bp->b_iocmd == BIO_WRITE) { 2635 if (bp->b_bufobj) 2636 bufobj_wdrop(bp->b_bufobj); 2637 bufobj_wref(&vp2->v_bufobj); 2638 } 2639 if (bp->b_bufobj != &vp2->v_bufobj) 2640 bp->b_bufobj = &vp2->v_bufobj; 2641 bp->b_vp = vp2; 2642 bp->b_iooffset = dbtob(bp->b_blkno); 2643 bstrategy(bp); 2644 return; 2645 } 2646 2647 static void 2648 swapdev_close(struct thread *td, struct swdevt *sp) 2649 { 2650 2651 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2652 vrele(sp->sw_vp); 2653 } 2654 2655 2656 static int 2657 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2658 { 2659 struct swdevt *sp; 2660 int error; 2661 2662 if (nblks == 0) 2663 return (ENXIO); 2664 mtx_lock(&sw_dev_mtx); 2665 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2666 if (sp->sw_id == vp) { 2667 mtx_unlock(&sw_dev_mtx); 2668 return (EBUSY); 2669 } 2670 } 2671 mtx_unlock(&sw_dev_mtx); 2672 2673 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2674 #ifdef MAC 2675 error = mac_system_check_swapon(td->td_ucred, vp); 2676 if (error == 0) 2677 #endif 2678 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2679 (void) VOP_UNLOCK(vp, 0); 2680 if (error) 2681 return (error); 2682 2683 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2684 NODEV); 2685 return (0); 2686 } 2687