xref: /freebsd/sys/vm/swap_pager.c (revision e0c27215058b5786c78fcfb3963eebe61a989511)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_mac.h"
73 #include "opt_swap.h"
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/conf.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/mac.h>
89 #include <sys/malloc.h>
90 #include <sys/sysctl.h>
91 #include <sys/sysproto.h>
92 #include <sys/blist.h>
93 #include <sys/lock.h>
94 #include <sys/sx.h>
95 #include <sys/vmmeter.h>
96 
97 #include <vm/vm.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_object.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_param.h>
106 #include <vm/swap_pager.h>
107 #include <vm/vm_extern.h>
108 #include <vm/uma.h>
109 
110 #ifndef NSWAPDEV
111 #define NSWAPDEV	4
112 #endif
113 
114 /*
115  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
116  * pages per allocation.  We recommend you stick with the default of 8.
117  * The 16-page limit is due to the radix code (kern/subr_blist.c).
118  */
119 #ifndef MAX_PAGEOUT_CLUSTER
120 #define MAX_PAGEOUT_CLUSTER 16
121 #endif
122 
123 #if !defined(SWB_NPAGES)
124 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
125 #endif
126 
127 /*
128  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
129  *
130  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
131  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
132  * 32K worth of data, two levels represent 256K, three levels represent
133  * 2 MBytes.   This is acceptable.
134  *
135  * Overall memory utilization is about the same as the old swap structure.
136  */
137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
139 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140 
141 typedef	int32_t	swblk_t;	/* swap offset */
142 
143 struct swblock {
144 	struct swblock	*swb_hnext;
145 	vm_object_t	swb_object;
146 	vm_pindex_t	swb_index;
147 	int		swb_count;
148 	daddr_t		swb_pages[SWAP_META_PAGES];
149 };
150 
151 static struct swdevt swdevt[NSWAPDEV];
152 static int nswap;		/* first block after the interleaved devs */
153 int vm_swap_size;
154 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
155 
156 static int swapdev_strategy(struct vop_strategy_args *ap);
157 static struct vnode *swapdev_vp;
158 
159 #define SWM_FREE	0x02	/* free, period			*/
160 #define SWM_POP		0x04	/* pop out			*/
161 
162 int swap_pager_full;		/* swap space exhaustion (task killing) */
163 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
164 static int nsw_rcount;		/* free read buffers			*/
165 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
166 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
167 static int nsw_wcount_async_max;/* assigned maximum			*/
168 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
169 
170 static struct blist *swapblist;
171 static struct swblock **swhash;
172 static int swhash_mask;
173 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
174 static struct sx sw_alloc_sx;
175 
176 
177 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
178         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
179 
180 #define BLK2DEVIDX(blk) (NSWAPDEV > 1 ? blk / dmmax % NSWAPDEV : 0)
181 
182 /*
183  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
184  * of searching a named list by hashing it just a little.
185  */
186 
187 #define NOBJLISTS		8
188 
189 #define NOBJLIST(handle)	\
190 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
191 
192 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
193 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
194 static struct pagerlst	swap_pager_un_object_list;
195 static uma_zone_t	swap_zone;
196 
197 /*
198  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
199  * calls hooked from other parts of the VM system and do not appear here.
200  * (see vm/swap_pager.h).
201  */
202 static vm_object_t
203 		swap_pager_alloc(void *handle, vm_ooffset_t size,
204 				      vm_prot_t prot, vm_ooffset_t offset);
205 static void	swap_pager_dealloc(vm_object_t object);
206 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
207 static boolean_t
208 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
209 static void	swap_pager_init(void);
210 static void	swap_pager_unswapped(vm_page_t);
211 static void	swap_pager_strategy(vm_object_t, struct bio *);
212 static void	swap_pager_swapoff(int devidx, int *sw_used);
213 
214 struct pagerops swappagerops = {
215 	swap_pager_init,	/* early system initialization of pager	*/
216 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
217 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
218 	swap_pager_getpages,	/* pagein				*/
219 	swap_pager_putpages,	/* pageout				*/
220 	swap_pager_haspage,	/* get backing store status for page	*/
221 	swap_pager_unswapped,	/* remove swap related to page		*/
222 	swap_pager_strategy	/* pager strategy call			*/
223 };
224 
225 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags);
226 static void flushchainbuf(struct buf *nbp);
227 static void waitchainbuf(struct bio *bp, int count, int done);
228 
229 /*
230  * dmmax is in page-sized chunks with the new swap system.  It was
231  * dev-bsized chunks in the old.  dmmax is always a power of 2.
232  *
233  * swap_*() routines are externally accessible.  swp_*() routines are
234  * internal.
235  */
236 static int dmmax, dmmax_mask;
237 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
238 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
239 
240 SYSCTL_INT(_vm, OID_AUTO, dmmax,
241 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
242 
243 static void	swp_sizecheck(void);
244 static void	swp_pager_sync_iodone(struct buf *bp);
245 static void	swp_pager_async_iodone(struct buf *bp);
246 
247 /*
248  * Swap bitmap functions
249  */
250 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
251 static daddr_t	swp_pager_getswapspace(int npages);
252 
253 /*
254  * Metadata functions
255  */
256 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
257 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
258 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
259 static void swp_pager_meta_free_all(vm_object_t);
260 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
261 
262 /*
263  * SWP_SIZECHECK() -	update swap_pager_full indication
264  *
265  *	update the swap_pager_almost_full indication and warn when we are
266  *	about to run out of swap space, using lowat/hiwat hysteresis.
267  *
268  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
269  *
270  *	No restrictions on call
271  *	This routine may not block.
272  *	This routine must be called at splvm()
273  */
274 static void
275 swp_sizecheck()
276 {
277 	GIANT_REQUIRED;
278 
279 	if (vm_swap_size < nswap_lowat) {
280 		if (swap_pager_almost_full == 0) {
281 			printf("swap_pager: out of swap space\n");
282 			swap_pager_almost_full = 1;
283 		}
284 	} else {
285 		swap_pager_full = 0;
286 		if (vm_swap_size > nswap_hiwat)
287 			swap_pager_almost_full = 0;
288 	}
289 }
290 
291 /*
292  * SWP_PAGER_HASH() -	hash swap meta data
293  *
294  *	This is an helper function which hashes the swapblk given
295  *	the object and page index.  It returns a pointer to a pointer
296  *	to the object, or a pointer to a NULL pointer if it could not
297  *	find a swapblk.
298  *
299  *	This routine must be called at splvm().
300  */
301 static struct swblock **
302 swp_pager_hash(vm_object_t object, vm_pindex_t index)
303 {
304 	struct swblock **pswap;
305 	struct swblock *swap;
306 
307 	index &= ~(vm_pindex_t)SWAP_META_MASK;
308 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
309 	while ((swap = *pswap) != NULL) {
310 		if (swap->swb_object == object &&
311 		    swap->swb_index == index
312 		) {
313 			break;
314 		}
315 		pswap = &swap->swb_hnext;
316 	}
317 	return (pswap);
318 }
319 
320 /*
321  * SWAP_PAGER_INIT() -	initialize the swap pager!
322  *
323  *	Expected to be started from system init.  NOTE:  This code is run
324  *	before much else so be careful what you depend on.  Most of the VM
325  *	system has yet to be initialized at this point.
326  */
327 static void
328 swap_pager_init()
329 {
330 	/*
331 	 * Initialize object lists
332 	 */
333 	int i;
334 
335 	for (i = 0; i < NOBJLISTS; ++i)
336 		TAILQ_INIT(&swap_pager_object_list[i]);
337 	TAILQ_INIT(&swap_pager_un_object_list);
338 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
339 
340 	/*
341 	 * Device Stripe, in PAGE_SIZE'd blocks
342 	 */
343 	dmmax = SWB_NPAGES * 2;
344 	dmmax_mask = ~(dmmax - 1);
345 }
346 
347 /*
348  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
349  *
350  *	Expected to be started from pageout process once, prior to entering
351  *	its main loop.
352  */
353 void
354 swap_pager_swap_init()
355 {
356 	int n, n2;
357 
358 	/*
359 	 * Number of in-transit swap bp operations.  Don't
360 	 * exhaust the pbufs completely.  Make sure we
361 	 * initialize workable values (0 will work for hysteresis
362 	 * but it isn't very efficient).
363 	 *
364 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
365 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
366 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
367 	 * constrained by the swap device interleave stripe size.
368 	 *
369 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
370 	 * designed to prevent other I/O from having high latencies due to
371 	 * our pageout I/O.  The value 4 works well for one or two active swap
372 	 * devices but is probably a little low if you have more.  Even so,
373 	 * a higher value would probably generate only a limited improvement
374 	 * with three or four active swap devices since the system does not
375 	 * typically have to pageout at extreme bandwidths.   We will want
376 	 * at least 2 per swap devices, and 4 is a pretty good value if you
377 	 * have one NFS swap device due to the command/ack latency over NFS.
378 	 * So it all works out pretty well.
379 	 */
380 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
381 
382 	mtx_lock(&pbuf_mtx);
383 	nsw_rcount = (nswbuf + 1) / 2;
384 	nsw_wcount_sync = (nswbuf + 3) / 4;
385 	nsw_wcount_async = 4;
386 	nsw_wcount_async_max = nsw_wcount_async;
387 	mtx_unlock(&pbuf_mtx);
388 
389 	/*
390 	 * Initialize our zone.  Right now I'm just guessing on the number
391 	 * we need based on the number of pages in the system.  Each swblock
392 	 * can hold 16 pages, so this is probably overkill.  This reservation
393 	 * is typically limited to around 32MB by default.
394 	 */
395 	n = cnt.v_page_count / 2;
396 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
397 		n = maxswzone / sizeof(struct swblock);
398 	n2 = n;
399 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
400 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
401 	do {
402 		if (uma_zone_set_obj(swap_zone, NULL, n))
403 			break;
404 		/*
405 		 * if the allocation failed, try a zone two thirds the
406 		 * size of the previous attempt.
407 		 */
408 		n -= ((n + 2) / 3);
409 	} while (n > 0);
410 	if (swap_zone == NULL)
411 		panic("failed to create swap_zone.");
412 	if (n2 != n)
413 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
414 	n2 = n;
415 
416 	/*
417 	 * Initialize our meta-data hash table.  The swapper does not need to
418 	 * be quite as efficient as the VM system, so we do not use an
419 	 * oversized hash table.
420 	 *
421 	 * 	n: 		size of hash table, must be power of 2
422 	 *	swhash_mask:	hash table index mask
423 	 */
424 	for (n = 1; n < n2 / 8; n *= 2)
425 		;
426 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
427 	swhash_mask = n - 1;
428 }
429 
430 /*
431  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
432  *			its metadata structures.
433  *
434  *	This routine is called from the mmap and fork code to create a new
435  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
436  *	and then converting it with swp_pager_meta_build().
437  *
438  *	This routine may block in vm_object_allocate() and create a named
439  *	object lookup race, so we must interlock.   We must also run at
440  *	splvm() for the object lookup to handle races with interrupts, but
441  *	we do not have to maintain splvm() in between the lookup and the
442  *	add because (I believe) it is not possible to attempt to create
443  *	a new swap object w/handle when a default object with that handle
444  *	already exists.
445  *
446  * MPSAFE
447  */
448 static vm_object_t
449 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
450 		 vm_ooffset_t offset)
451 {
452 	vm_object_t object;
453 
454 	mtx_lock(&Giant);
455 	if (handle) {
456 		/*
457 		 * Reference existing named region or allocate new one.  There
458 		 * should not be a race here against swp_pager_meta_build()
459 		 * as called from vm_page_remove() in regards to the lookup
460 		 * of the handle.
461 		 */
462 		sx_xlock(&sw_alloc_sx);
463 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
464 
465 		if (object != NULL) {
466 			vm_object_reference(object);
467 		} else {
468 			object = vm_object_allocate(OBJT_DEFAULT,
469 				OFF_TO_IDX(offset + PAGE_MASK + size));
470 			object->handle = handle;
471 
472 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
473 		}
474 		sx_xunlock(&sw_alloc_sx);
475 	} else {
476 		object = vm_object_allocate(OBJT_DEFAULT,
477 			OFF_TO_IDX(offset + PAGE_MASK + size));
478 
479 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
480 	}
481 	mtx_unlock(&Giant);
482 	return (object);
483 }
484 
485 /*
486  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
487  *
488  *	The swap backing for the object is destroyed.  The code is
489  *	designed such that we can reinstantiate it later, but this
490  *	routine is typically called only when the entire object is
491  *	about to be destroyed.
492  *
493  *	This routine may block, but no longer does.
494  *
495  *	The object must be locked or unreferenceable.
496  */
497 static void
498 swap_pager_dealloc(object)
499 	vm_object_t object;
500 {
501 	int s;
502 
503 	GIANT_REQUIRED;
504 
505 	/*
506 	 * Remove from list right away so lookups will fail if we block for
507 	 * pageout completion.
508 	 */
509 	mtx_lock(&sw_alloc_mtx);
510 	if (object->handle == NULL) {
511 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
512 	} else {
513 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
514 	}
515 	mtx_unlock(&sw_alloc_mtx);
516 
517 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
518 	vm_object_pip_wait(object, "swpdea");
519 
520 	/*
521 	 * Free all remaining metadata.  We only bother to free it from
522 	 * the swap meta data.  We do not attempt to free swapblk's still
523 	 * associated with vm_page_t's for this object.  We do not care
524 	 * if paging is still in progress on some objects.
525 	 */
526 	s = splvm();
527 	swp_pager_meta_free_all(object);
528 	splx(s);
529 }
530 
531 /************************************************************************
532  *			SWAP PAGER BITMAP ROUTINES			*
533  ************************************************************************/
534 
535 /*
536  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
537  *
538  *	Allocate swap for the requested number of pages.  The starting
539  *	swap block number (a page index) is returned or SWAPBLK_NONE
540  *	if the allocation failed.
541  *
542  *	Also has the side effect of advising that somebody made a mistake
543  *	when they configured swap and didn't configure enough.
544  *
545  *	Must be called at splvm() to avoid races with bitmap frees from
546  *	vm_page_remove() aka swap_pager_page_removed().
547  *
548  *	This routine may not block
549  *	This routine must be called at splvm().
550  */
551 static daddr_t
552 swp_pager_getswapspace(npages)
553 	int npages;
554 {
555 	daddr_t blk;
556 
557 	GIANT_REQUIRED;
558 
559 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
560 		if (swap_pager_full != 2) {
561 			printf("swap_pager_getswapspace: failed\n");
562 			swap_pager_full = 2;
563 			swap_pager_almost_full = 1;
564 		}
565 	} else {
566 		vm_swap_size -= npages;
567 		/* per-swap area stats */
568 		swdevt[BLK2DEVIDX(blk)].sw_used += npages;
569 		swp_sizecheck();
570 	}
571 	return (blk);
572 }
573 
574 /*
575  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
576  *
577  *	This routine returns the specified swap blocks back to the bitmap.
578  *
579  *	Note:  This routine may not block (it could in the old swap code),
580  *	and through the use of the new blist routines it does not block.
581  *
582  *	We must be called at splvm() to avoid races with bitmap frees from
583  *	vm_page_remove() aka swap_pager_page_removed().
584  *
585  *	This routine may not block
586  *	This routine must be called at splvm().
587  */
588 static void
589 swp_pager_freeswapspace(blk, npages)
590 	daddr_t blk;
591 	int npages;
592 {
593 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
594 
595 	GIANT_REQUIRED;
596 
597 	/* per-swap area stats */
598 	sp->sw_used -= npages;
599 
600 	/*
601 	 * If we are attempting to stop swapping on this device, we
602 	 * don't want to mark any blocks free lest they be reused.
603 	 */
604 	if (sp->sw_flags & SW_CLOSING)
605 		return;
606 
607 	blist_free(swapblist, blk, npages);
608 	vm_swap_size += npages;
609 	swp_sizecheck();
610 }
611 
612 /*
613  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
614  *				range within an object.
615  *
616  *	This is a globally accessible routine.
617  *
618  *	This routine removes swapblk assignments from swap metadata.
619  *
620  *	The external callers of this routine typically have already destroyed
621  *	or renamed vm_page_t's associated with this range in the object so
622  *	we should be ok.
623  *
624  *	This routine may be called at any spl.  We up our spl to splvm temporarily
625  *	in order to perform the metadata removal.
626  */
627 void
628 swap_pager_freespace(object, start, size)
629 	vm_object_t object;
630 	vm_pindex_t start;
631 	vm_size_t size;
632 {
633 	int s = splvm();
634 
635 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
636 	swp_pager_meta_free(object, start, size);
637 	splx(s);
638 }
639 
640 /*
641  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
642  *
643  *	Assigns swap blocks to the specified range within the object.  The
644  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
645  *
646  *	Returns 0 on success, -1 on failure.
647  */
648 int
649 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
650 {
651 	int s;
652 	int n = 0;
653 	daddr_t blk = SWAPBLK_NONE;
654 	vm_pindex_t beg = start;	/* save start index */
655 
656 	s = splvm();
657 	while (size) {
658 		if (n == 0) {
659 			n = BLIST_MAX_ALLOC;
660 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
661 				n >>= 1;
662 				if (n == 0) {
663 					swp_pager_meta_free(object, beg, start - beg);
664 					splx(s);
665 					return (-1);
666 				}
667 			}
668 		}
669 		swp_pager_meta_build(object, start, blk);
670 		--size;
671 		++start;
672 		++blk;
673 		--n;
674 	}
675 	swp_pager_meta_free(object, start, n);
676 	splx(s);
677 	return (0);
678 }
679 
680 /*
681  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
682  *			and destroy the source.
683  *
684  *	Copy any valid swapblks from the source to the destination.  In
685  *	cases where both the source and destination have a valid swapblk,
686  *	we keep the destination's.
687  *
688  *	This routine is allowed to block.  It may block allocating metadata
689  *	indirectly through swp_pager_meta_build() or if paging is still in
690  *	progress on the source.
691  *
692  *	This routine can be called at any spl
693  *
694  *	XXX vm_page_collapse() kinda expects us not to block because we
695  *	supposedly do not need to allocate memory, but for the moment we
696  *	*may* have to get a little memory from the zone allocator, but
697  *	it is taken from the interrupt memory.  We should be ok.
698  *
699  *	The source object contains no vm_page_t's (which is just as well)
700  *
701  *	The source object is of type OBJT_SWAP.
702  *
703  *	The source and destination objects must be locked or
704  *	inaccessible (XXX are they ?)
705  */
706 void
707 swap_pager_copy(srcobject, dstobject, offset, destroysource)
708 	vm_object_t srcobject;
709 	vm_object_t dstobject;
710 	vm_pindex_t offset;
711 	int destroysource;
712 {
713 	vm_pindex_t i;
714 	int s;
715 
716 	GIANT_REQUIRED;
717 
718 	s = splvm();
719 	/*
720 	 * If destroysource is set, we remove the source object from the
721 	 * swap_pager internal queue now.
722 	 */
723 	if (destroysource) {
724 		mtx_lock(&sw_alloc_mtx);
725 		if (srcobject->handle == NULL) {
726 			TAILQ_REMOVE(
727 			    &swap_pager_un_object_list,
728 			    srcobject,
729 			    pager_object_list
730 			);
731 		} else {
732 			TAILQ_REMOVE(
733 			    NOBJLIST(srcobject->handle),
734 			    srcobject,
735 			    pager_object_list
736 			);
737 		}
738 		mtx_unlock(&sw_alloc_mtx);
739 	}
740 
741 	/*
742 	 * transfer source to destination.
743 	 */
744 	for (i = 0; i < dstobject->size; ++i) {
745 		daddr_t dstaddr;
746 
747 		/*
748 		 * Locate (without changing) the swapblk on the destination,
749 		 * unless it is invalid in which case free it silently, or
750 		 * if the destination is a resident page, in which case the
751 		 * source is thrown away.
752 		 */
753 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
754 
755 		if (dstaddr == SWAPBLK_NONE) {
756 			/*
757 			 * Destination has no swapblk and is not resident,
758 			 * copy source.
759 			 */
760 			daddr_t srcaddr;
761 
762 			srcaddr = swp_pager_meta_ctl(
763 			    srcobject,
764 			    i + offset,
765 			    SWM_POP
766 			);
767 
768 			if (srcaddr != SWAPBLK_NONE)
769 				swp_pager_meta_build(dstobject, i, srcaddr);
770 		} else {
771 			/*
772 			 * Destination has valid swapblk or it is represented
773 			 * by a resident page.  We destroy the sourceblock.
774 			 */
775 
776 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
777 		}
778 	}
779 
780 	/*
781 	 * Free left over swap blocks in source.
782 	 *
783 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
784 	 * double-remove the object from the swap queues.
785 	 */
786 	if (destroysource) {
787 		swp_pager_meta_free_all(srcobject);
788 		/*
789 		 * Reverting the type is not necessary, the caller is going
790 		 * to destroy srcobject directly, but I'm doing it here
791 		 * for consistency since we've removed the object from its
792 		 * queues.
793 		 */
794 		srcobject->type = OBJT_DEFAULT;
795 	}
796 	splx(s);
797 }
798 
799 /*
800  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
801  *				the requested page.
802  *
803  *	We determine whether good backing store exists for the requested
804  *	page and return TRUE if it does, FALSE if it doesn't.
805  *
806  *	If TRUE, we also try to determine how much valid, contiguous backing
807  *	store exists before and after the requested page within a reasonable
808  *	distance.  We do not try to restrict it to the swap device stripe
809  *	(that is handled in getpages/putpages).  It probably isn't worth
810  *	doing here.
811  */
812 static boolean_t
813 swap_pager_haspage(object, pindex, before, after)
814 	vm_object_t object;
815 	vm_pindex_t pindex;
816 	int *before;
817 	int *after;
818 {
819 	daddr_t blk0;
820 	int s;
821 
822 	/*
823 	 * do we have good backing store at the requested index ?
824 	 */
825 	s = splvm();
826 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
827 
828 	if (blk0 == SWAPBLK_NONE) {
829 		splx(s);
830 		if (before)
831 			*before = 0;
832 		if (after)
833 			*after = 0;
834 		return (FALSE);
835 	}
836 
837 	/*
838 	 * find backwards-looking contiguous good backing store
839 	 */
840 	if (before != NULL) {
841 		int i;
842 
843 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
844 			daddr_t blk;
845 
846 			if (i > pindex)
847 				break;
848 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
849 			if (blk != blk0 - i)
850 				break;
851 		}
852 		*before = (i - 1);
853 	}
854 
855 	/*
856 	 * find forward-looking contiguous good backing store
857 	 */
858 	if (after != NULL) {
859 		int i;
860 
861 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
862 			daddr_t blk;
863 
864 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
865 			if (blk != blk0 + i)
866 				break;
867 		}
868 		*after = (i - 1);
869 	}
870 	splx(s);
871 	return (TRUE);
872 }
873 
874 /*
875  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
876  *
877  *	This removes any associated swap backing store, whether valid or
878  *	not, from the page.
879  *
880  *	This routine is typically called when a page is made dirty, at
881  *	which point any associated swap can be freed.  MADV_FREE also
882  *	calls us in a special-case situation
883  *
884  *	NOTE!!!  If the page is clean and the swap was valid, the caller
885  *	should make the page dirty before calling this routine.  This routine
886  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
887  *	depends on it.
888  *
889  *	This routine may not block
890  *	This routine must be called at splvm()
891  */
892 static void
893 swap_pager_unswapped(m)
894 	vm_page_t m;
895 {
896 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
897 }
898 
899 /*
900  * SWAP_PAGER_STRATEGY() - read, write, free blocks
901  *
902  *	This implements the vm_pager_strategy() interface to swap and allows
903  *	other parts of the system to directly access swap as backing store
904  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
905  *	cacheless interface ( i.e. caching occurs at higher levels ).
906  *	Therefore we do not maintain any resident pages.  All I/O goes
907  *	directly to and from the swap device.
908  *
909  *	Note that b_blkno is scaled for PAGE_SIZE
910  *
911  *	We currently attempt to run I/O synchronously or asynchronously as
912  *	the caller requests.  This isn't perfect because we loose error
913  *	sequencing when we run multiple ops in parallel to satisfy a request.
914  *	But this is swap, so we let it all hang out.
915  */
916 static void
917 swap_pager_strategy(vm_object_t object, struct bio *bp)
918 {
919 	vm_pindex_t start;
920 	int count;
921 	int s;
922 	char *data;
923 	struct buf *nbp = NULL;
924 
925 	GIANT_REQUIRED;
926 
927 	/* XXX: KASSERT instead ? */
928 	if (bp->bio_bcount & PAGE_MASK) {
929 		biofinish(bp, NULL, EINVAL);
930 		printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount);
931 		return;
932 	}
933 
934 	/*
935 	 * Clear error indication, initialize page index, count, data pointer.
936 	 */
937 	bp->bio_error = 0;
938 	bp->bio_flags &= ~BIO_ERROR;
939 	bp->bio_resid = bp->bio_bcount;
940 	*(u_int *) &bp->bio_driver1 = 0;
941 
942 	start = bp->bio_pblkno;
943 	count = howmany(bp->bio_bcount, PAGE_SIZE);
944 	data = bp->bio_data;
945 
946 	s = splvm();
947 
948 	/*
949 	 * Deal with BIO_DELETE
950 	 */
951 	if (bp->bio_cmd == BIO_DELETE) {
952 		/*
953 		 * FREE PAGE(s) - destroy underlying swap that is no longer
954 		 *		  needed.
955 		 */
956 		swp_pager_meta_free(object, start, count);
957 		splx(s);
958 		bp->bio_resid = 0;
959 		biodone(bp);
960 		return;
961 	}
962 
963 	/*
964 	 * Execute read or write
965 	 */
966 	while (count > 0) {
967 		daddr_t blk;
968 
969 		/*
970 		 * Obtain block.  If block not found and writing, allocate a
971 		 * new block and build it into the object.
972 		 */
973 
974 		blk = swp_pager_meta_ctl(object, start, 0);
975 		if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) {
976 			blk = swp_pager_getswapspace(1);
977 			if (blk == SWAPBLK_NONE) {
978 				bp->bio_error = ENOMEM;
979 				bp->bio_flags |= BIO_ERROR;
980 				break;
981 			}
982 			swp_pager_meta_build(object, start, blk);
983 		}
984 
985 		/*
986 		 * Do we have to flush our current collection?  Yes if:
987 		 *
988 		 *	- no swap block at this index
989 		 *	- swap block is not contiguous
990 		 *	- we cross a physical disk boundry in the
991 		 *	  stripe.
992 		 */
993 		if (
994 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
995 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
996 		    )
997 		) {
998 			splx(s);
999 			if (bp->bio_cmd == BIO_READ) {
1000 				++cnt.v_swapin;
1001 				cnt.v_swappgsin += btoc(nbp->b_bcount);
1002 			} else {
1003 				++cnt.v_swapout;
1004 				cnt.v_swappgsout += btoc(nbp->b_bcount);
1005 				nbp->b_dirtyend = nbp->b_bcount;
1006 			}
1007 			flushchainbuf(nbp);
1008 			s = splvm();
1009 			nbp = NULL;
1010 		}
1011 
1012 		/*
1013 		 * Add new swapblk to nbp, instantiating nbp if necessary.
1014 		 * Zero-fill reads are able to take a shortcut.
1015 		 */
1016 		if (blk == SWAPBLK_NONE) {
1017 			/*
1018 			 * We can only get here if we are reading.  Since
1019 			 * we are at splvm() we can safely modify b_resid,
1020 			 * even if chain ops are in progress.
1021 			 */
1022 			bzero(data, PAGE_SIZE);
1023 			bp->bio_resid -= PAGE_SIZE;
1024 		} else {
1025 			if (nbp == NULL) {
1026 				nbp = getchainbuf(bp, swapdev_vp, B_ASYNC);
1027 				nbp->b_blkno = blk;
1028 				nbp->b_bcount = 0;
1029 				nbp->b_data = data;
1030 			}
1031 			nbp->b_bcount += PAGE_SIZE;
1032 		}
1033 		--count;
1034 		++start;
1035 		data += PAGE_SIZE;
1036 	}
1037 
1038 	/*
1039 	 *  Flush out last buffer
1040 	 */
1041 	splx(s);
1042 
1043 	if (nbp) {
1044 		if (nbp->b_iocmd == BIO_READ) {
1045 			++cnt.v_swapin;
1046 			cnt.v_swappgsin += btoc(nbp->b_bcount);
1047 		} else {
1048 			++cnt.v_swapout;
1049 			cnt.v_swappgsout += btoc(nbp->b_bcount);
1050 			nbp->b_dirtyend = nbp->b_bcount;
1051 		}
1052 		flushchainbuf(nbp);
1053 		/* nbp = NULL; */
1054 	}
1055 	/*
1056 	 * Wait for completion.
1057 	 */
1058 	waitchainbuf(bp, 0, 1);
1059 }
1060 
1061 /*
1062  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1063  *
1064  *	Attempt to retrieve (m, count) pages from backing store, but make
1065  *	sure we retrieve at least m[reqpage].  We try to load in as large
1066  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1067  *	belongs to the same object.
1068  *
1069  *	The code is designed for asynchronous operation and
1070  *	immediate-notification of 'reqpage' but tends not to be
1071  *	used that way.  Please do not optimize-out this algorithmic
1072  *	feature, I intend to improve on it in the future.
1073  *
1074  *	The parent has a single vm_object_pip_add() reference prior to
1075  *	calling us and we should return with the same.
1076  *
1077  *	The parent has BUSY'd the pages.  We should return with 'm'
1078  *	left busy, but the others adjusted.
1079  */
1080 static int
1081 swap_pager_getpages(object, m, count, reqpage)
1082 	vm_object_t object;
1083 	vm_page_t *m;
1084 	int count, reqpage;
1085 {
1086 	struct buf *bp;
1087 	vm_page_t mreq;
1088 	int s;
1089 	int i;
1090 	int j;
1091 	daddr_t blk;
1092 	vm_pindex_t lastpindex;
1093 
1094 	mreq = m[reqpage];
1095 
1096 	if (mreq->object != object) {
1097 		panic("swap_pager_getpages: object mismatch %p/%p",
1098 		    object,
1099 		    mreq->object
1100 		);
1101 	}
1102 	/*
1103 	 * Calculate range to retrieve.  The pages have already been assigned
1104 	 * their swapblks.  We require a *contiguous* range that falls entirely
1105 	 * within a single device stripe.   If we do not supply it, bad things
1106 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1107 	 * loops are set up such that the case(s) are handled implicitly.
1108 	 *
1109 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1110 	 * not need to be, but it will go a little faster if it is.
1111 	 */
1112 	s = splvm();
1113 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1114 
1115 	for (i = reqpage - 1; i >= 0; --i) {
1116 		daddr_t iblk;
1117 
1118 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1119 		if (blk != iblk + (reqpage - i))
1120 			break;
1121 		if ((blk ^ iblk) & dmmax_mask)
1122 			break;
1123 	}
1124 	++i;
1125 
1126 	for (j = reqpage + 1; j < count; ++j) {
1127 		daddr_t jblk;
1128 
1129 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1130 		if (blk != jblk - (j - reqpage))
1131 			break;
1132 		if ((blk ^ jblk) & dmmax_mask)
1133 			break;
1134 	}
1135 
1136 	/*
1137 	 * free pages outside our collection range.   Note: we never free
1138 	 * mreq, it must remain busy throughout.
1139 	 */
1140 	vm_page_lock_queues();
1141 	{
1142 		int k;
1143 
1144 		for (k = 0; k < i; ++k)
1145 			vm_page_free(m[k]);
1146 		for (k = j; k < count; ++k)
1147 			vm_page_free(m[k]);
1148 	}
1149 	vm_page_unlock_queues();
1150 	splx(s);
1151 
1152 
1153 	/*
1154 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1155 	 * still busy, but the others unbusied.
1156 	 */
1157 	if (blk == SWAPBLK_NONE)
1158 		return (VM_PAGER_FAIL);
1159 
1160 	/*
1161 	 * Getpbuf() can sleep.
1162 	 */
1163 	VM_OBJECT_UNLOCK(object);
1164 	/*
1165 	 * Get a swap buffer header to perform the IO
1166 	 */
1167 	bp = getpbuf(&nsw_rcount);
1168 
1169 	/*
1170 	 * map our page(s) into kva for input
1171 	 *
1172 	 * NOTE: B_PAGING is set by pbgetvp()
1173 	 */
1174 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1175 
1176 	bp->b_iocmd = BIO_READ;
1177 	bp->b_iodone = swp_pager_async_iodone;
1178 	bp->b_rcred = crhold(thread0.td_ucred);
1179 	bp->b_wcred = crhold(thread0.td_ucred);
1180 	bp->b_blkno = blk - (reqpage - i);
1181 	bp->b_bcount = PAGE_SIZE * (j - i);
1182 	bp->b_bufsize = PAGE_SIZE * (j - i);
1183 	bp->b_pager.pg_reqpage = reqpage - i;
1184 
1185 	VM_OBJECT_LOCK(object);
1186 	vm_page_lock_queues();
1187 	{
1188 		int k;
1189 
1190 		for (k = i; k < j; ++k) {
1191 			bp->b_pages[k - i] = m[k];
1192 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1193 		}
1194 	}
1195 	vm_page_unlock_queues();
1196 	VM_OBJECT_UNLOCK(object);
1197 	bp->b_npages = j - i;
1198 
1199 	pbgetvp(swapdev_vp, bp);
1200 
1201 	cnt.v_swapin++;
1202 	cnt.v_swappgsin += bp->b_npages;
1203 
1204 	/*
1205 	 * We still hold the lock on mreq, and our automatic completion routine
1206 	 * does not remove it.
1207 	 */
1208 	VM_OBJECT_LOCK(mreq->object);
1209 	vm_object_pip_add(mreq->object, bp->b_npages);
1210 	VM_OBJECT_UNLOCK(mreq->object);
1211 	lastpindex = m[j-1]->pindex;
1212 
1213 	/*
1214 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1215 	 * this point because we automatically release it on completion.
1216 	 * Instead, we look at the one page we are interested in which we
1217 	 * still hold a lock on even through the I/O completion.
1218 	 *
1219 	 * The other pages in our m[] array are also released on completion,
1220 	 * so we cannot assume they are valid anymore either.
1221 	 *
1222 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1223 	 */
1224 	BUF_KERNPROC(bp);
1225 	VOP_STRATEGY(bp->b_vp, bp);
1226 
1227 	/*
1228 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1229 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1230 	 * is set in the meta-data.
1231 	 */
1232 	s = splvm();
1233 	vm_page_lock_queues();
1234 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1235 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1236 		cnt.v_intrans++;
1237 		if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) {
1238 			printf(
1239 			    "swap_pager: indefinite wait buffer: device:"
1240 				" %s, blkno: %ld, size: %ld\n",
1241 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1242 			    bp->b_bcount
1243 			);
1244 		}
1245 	}
1246 	vm_page_unlock_queues();
1247 	splx(s);
1248 
1249 	VM_OBJECT_LOCK(mreq->object);
1250 	/*
1251 	 * mreq is left busied after completion, but all the other pages
1252 	 * are freed.  If we had an unrecoverable read error the page will
1253 	 * not be valid.
1254 	 */
1255 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1256 		return (VM_PAGER_ERROR);
1257 	} else {
1258 		return (VM_PAGER_OK);
1259 	}
1260 
1261 	/*
1262 	 * A final note: in a low swap situation, we cannot deallocate swap
1263 	 * and mark a page dirty here because the caller is likely to mark
1264 	 * the page clean when we return, causing the page to possibly revert
1265 	 * to all-zero's later.
1266 	 */
1267 }
1268 
1269 /*
1270  *	swap_pager_putpages:
1271  *
1272  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1273  *
1274  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1275  *	are automatically converted to SWAP objects.
1276  *
1277  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1278  *	vm_page reservation system coupled with properly written VFS devices
1279  *	should ensure that no low-memory deadlock occurs.  This is an area
1280  *	which needs work.
1281  *
1282  *	The parent has N vm_object_pip_add() references prior to
1283  *	calling us and will remove references for rtvals[] that are
1284  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1285  *	completion.
1286  *
1287  *	The parent has soft-busy'd the pages it passes us and will unbusy
1288  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1289  *	We need to unbusy the rest on I/O completion.
1290  */
1291 void
1292 swap_pager_putpages(object, m, count, sync, rtvals)
1293 	vm_object_t object;
1294 	vm_page_t *m;
1295 	int count;
1296 	boolean_t sync;
1297 	int *rtvals;
1298 {
1299 	int i;
1300 	int n = 0;
1301 
1302 	GIANT_REQUIRED;
1303 	if (count && m[0]->object != object) {
1304 		panic("swap_pager_getpages: object mismatch %p/%p",
1305 		    object,
1306 		    m[0]->object
1307 		);
1308 	}
1309 	/*
1310 	 * Step 1
1311 	 *
1312 	 * Turn object into OBJT_SWAP
1313 	 * check for bogus sysops
1314 	 * force sync if not pageout process
1315 	 */
1316 	if (object->type != OBJT_SWAP)
1317 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1318 
1319 	if (curproc != pageproc)
1320 		sync = TRUE;
1321 
1322 	/*
1323 	 * Step 2
1324 	 *
1325 	 * Update nsw parameters from swap_async_max sysctl values.
1326 	 * Do not let the sysop crash the machine with bogus numbers.
1327 	 */
1328 	mtx_lock(&pbuf_mtx);
1329 	if (swap_async_max != nsw_wcount_async_max) {
1330 		int n;
1331 		int s;
1332 
1333 		/*
1334 		 * limit range
1335 		 */
1336 		if ((n = swap_async_max) > nswbuf / 2)
1337 			n = nswbuf / 2;
1338 		if (n < 1)
1339 			n = 1;
1340 		swap_async_max = n;
1341 
1342 		/*
1343 		 * Adjust difference ( if possible ).  If the current async
1344 		 * count is too low, we may not be able to make the adjustment
1345 		 * at this time.
1346 		 */
1347 		s = splvm();
1348 		n -= nsw_wcount_async_max;
1349 		if (nsw_wcount_async + n >= 0) {
1350 			nsw_wcount_async += n;
1351 			nsw_wcount_async_max += n;
1352 			wakeup(&nsw_wcount_async);
1353 		}
1354 		splx(s);
1355 	}
1356 	mtx_unlock(&pbuf_mtx);
1357 
1358 	/*
1359 	 * Step 3
1360 	 *
1361 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1362 	 * The page is left dirty until the pageout operation completes
1363 	 * successfully.
1364 	 */
1365 	for (i = 0; i < count; i += n) {
1366 		int s;
1367 		int j;
1368 		struct buf *bp;
1369 		daddr_t blk;
1370 
1371 		/*
1372 		 * Maximum I/O size is limited by a number of factors.
1373 		 */
1374 		n = min(BLIST_MAX_ALLOC, count - i);
1375 		n = min(n, nsw_cluster_max);
1376 
1377 		s = splvm();
1378 
1379 		/*
1380 		 * Get biggest block of swap we can.  If we fail, fall
1381 		 * back and try to allocate a smaller block.  Don't go
1382 		 * overboard trying to allocate space if it would overly
1383 		 * fragment swap.
1384 		 */
1385 		while (
1386 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1387 		    n > 4
1388 		) {
1389 			n >>= 1;
1390 		}
1391 		if (blk == SWAPBLK_NONE) {
1392 			for (j = 0; j < n; ++j)
1393 				rtvals[i+j] = VM_PAGER_FAIL;
1394 			splx(s);
1395 			continue;
1396 		}
1397 
1398 		/*
1399 		 * The I/O we are constructing cannot cross a physical
1400 		 * disk boundry in the swap stripe.  Note: we are still
1401 		 * at splvm().
1402 		 */
1403 		if ((blk ^ (blk + n)) & dmmax_mask) {
1404 			j = ((blk + dmmax) & dmmax_mask) - blk;
1405 			swp_pager_freeswapspace(blk + j, n - j);
1406 			n = j;
1407 		}
1408 
1409 		/*
1410 		 * All I/O parameters have been satisfied, build the I/O
1411 		 * request and assign the swap space.
1412 		 *
1413 		 * NOTE: B_PAGING is set by pbgetvp()
1414 		 */
1415 		if (sync == TRUE) {
1416 			bp = getpbuf(&nsw_wcount_sync);
1417 		} else {
1418 			bp = getpbuf(&nsw_wcount_async);
1419 			bp->b_flags = B_ASYNC;
1420 		}
1421 		bp->b_iocmd = BIO_WRITE;
1422 
1423 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1424 
1425 		bp->b_rcred = crhold(thread0.td_ucred);
1426 		bp->b_wcred = crhold(thread0.td_ucred);
1427 		bp->b_bcount = PAGE_SIZE * n;
1428 		bp->b_bufsize = PAGE_SIZE * n;
1429 		bp->b_blkno = blk;
1430 
1431 		pbgetvp(swapdev_vp, bp);
1432 
1433 		for (j = 0; j < n; ++j) {
1434 			vm_page_t mreq = m[i+j];
1435 
1436 			swp_pager_meta_build(
1437 			    mreq->object,
1438 			    mreq->pindex,
1439 			    blk + j
1440 			);
1441 			vm_page_dirty(mreq);
1442 			rtvals[i+j] = VM_PAGER_OK;
1443 
1444 			vm_page_lock_queues();
1445 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1446 			vm_page_unlock_queues();
1447 			bp->b_pages[j] = mreq;
1448 		}
1449 		bp->b_npages = n;
1450 		/*
1451 		 * Must set dirty range for NFS to work.
1452 		 */
1453 		bp->b_dirtyoff = 0;
1454 		bp->b_dirtyend = bp->b_bcount;
1455 
1456 		cnt.v_swapout++;
1457 		cnt.v_swappgsout += bp->b_npages;
1458 		VI_LOCK(swapdev_vp);
1459 		swapdev_vp->v_numoutput++;
1460 		VI_UNLOCK(swapdev_vp);
1461 
1462 		splx(s);
1463 
1464 		/*
1465 		 * asynchronous
1466 		 *
1467 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1468 		 */
1469 		if (sync == FALSE) {
1470 			bp->b_iodone = swp_pager_async_iodone;
1471 			BUF_KERNPROC(bp);
1472 			VOP_STRATEGY(bp->b_vp, bp);
1473 
1474 			for (j = 0; j < n; ++j)
1475 				rtvals[i+j] = VM_PAGER_PEND;
1476 			/* restart outter loop */
1477 			continue;
1478 		}
1479 
1480 		/*
1481 		 * synchronous
1482 		 *
1483 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1484 		 */
1485 		bp->b_iodone = swp_pager_sync_iodone;
1486 		VOP_STRATEGY(bp->b_vp, bp);
1487 
1488 		/*
1489 		 * Wait for the sync I/O to complete, then update rtvals.
1490 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1491 		 * our async completion routine at the end, thus avoiding a
1492 		 * double-free.
1493 		 */
1494 		s = splbio();
1495 		while ((bp->b_flags & B_DONE) == 0) {
1496 			tsleep(bp, PVM, "swwrt", 0);
1497 		}
1498 		for (j = 0; j < n; ++j)
1499 			rtvals[i+j] = VM_PAGER_PEND;
1500 		/*
1501 		 * Now that we are through with the bp, we can call the
1502 		 * normal async completion, which frees everything up.
1503 		 */
1504 		swp_pager_async_iodone(bp);
1505 		splx(s);
1506 	}
1507 }
1508 
1509 /*
1510  *	swap_pager_sync_iodone:
1511  *
1512  *	Completion routine for synchronous reads and writes from/to swap.
1513  *	We just mark the bp is complete and wake up anyone waiting on it.
1514  *
1515  *	This routine may not block.  This routine is called at splbio() or better.
1516  */
1517 static void
1518 swp_pager_sync_iodone(bp)
1519 	struct buf *bp;
1520 {
1521 	bp->b_flags |= B_DONE;
1522 	bp->b_flags &= ~B_ASYNC;
1523 	wakeup(bp);
1524 }
1525 
1526 /*
1527  *	swp_pager_async_iodone:
1528  *
1529  *	Completion routine for asynchronous reads and writes from/to swap.
1530  *	Also called manually by synchronous code to finish up a bp.
1531  *
1532  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1533  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1534  *	unbusy all pages except the 'main' request page.  For WRITE
1535  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1536  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1537  *
1538  *	This routine may not block.
1539  *	This routine is called at splbio() or better
1540  *
1541  *	We up ourselves to splvm() as required for various vm_page related
1542  *	calls.
1543  */
1544 static void
1545 swp_pager_async_iodone(bp)
1546 	struct buf *bp;
1547 {
1548 	int s;
1549 	int i;
1550 	vm_object_t object = NULL;
1551 
1552 	GIANT_REQUIRED;
1553 	bp->b_flags |= B_DONE;
1554 
1555 	/*
1556 	 * report error
1557 	 */
1558 	if (bp->b_ioflags & BIO_ERROR) {
1559 		printf(
1560 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1561 			"size %ld, error %d\n",
1562 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1563 		    (long)bp->b_blkno,
1564 		    (long)bp->b_bcount,
1565 		    bp->b_error
1566 		);
1567 	}
1568 
1569 	/*
1570 	 * set object, raise to splvm().
1571 	 */
1572 	s = splvm();
1573 
1574 	/*
1575 	 * remove the mapping for kernel virtual
1576 	 */
1577 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1578 
1579 	if (bp->b_npages) {
1580 		object = bp->b_pages[0]->object;
1581 		VM_OBJECT_LOCK(object);
1582 	}
1583 	vm_page_lock_queues();
1584 	/*
1585 	 * cleanup pages.  If an error occurs writing to swap, we are in
1586 	 * very serious trouble.  If it happens to be a disk error, though,
1587 	 * we may be able to recover by reassigning the swap later on.  So
1588 	 * in this case we remove the m->swapblk assignment for the page
1589 	 * but do not free it in the rlist.  The errornous block(s) are thus
1590 	 * never reallocated as swap.  Redirty the page and continue.
1591 	 */
1592 	for (i = 0; i < bp->b_npages; ++i) {
1593 		vm_page_t m = bp->b_pages[i];
1594 
1595 		vm_page_flag_clear(m, PG_SWAPINPROG);
1596 
1597 		if (bp->b_ioflags & BIO_ERROR) {
1598 			/*
1599 			 * If an error occurs I'd love to throw the swapblk
1600 			 * away without freeing it back to swapspace, so it
1601 			 * can never be used again.  But I can't from an
1602 			 * interrupt.
1603 			 */
1604 			if (bp->b_iocmd == BIO_READ) {
1605 				/*
1606 				 * When reading, reqpage needs to stay
1607 				 * locked for the parent, but all other
1608 				 * pages can be freed.  We still want to
1609 				 * wakeup the parent waiting on the page,
1610 				 * though.  ( also: pg_reqpage can be -1 and
1611 				 * not match anything ).
1612 				 *
1613 				 * We have to wake specifically requested pages
1614 				 * up too because we cleared PG_SWAPINPROG and
1615 				 * someone may be waiting for that.
1616 				 *
1617 				 * NOTE: for reads, m->dirty will probably
1618 				 * be overridden by the original caller of
1619 				 * getpages so don't play cute tricks here.
1620 				 *
1621 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1622 				 * AS THIS MESSES WITH object->memq, and it is
1623 				 * not legal to mess with object->memq from an
1624 				 * interrupt.
1625 				 */
1626 				m->valid = 0;
1627 				vm_page_flag_clear(m, PG_ZERO);
1628 				if (i != bp->b_pager.pg_reqpage)
1629 					vm_page_free(m);
1630 				else
1631 					vm_page_flash(m);
1632 				/*
1633 				 * If i == bp->b_pager.pg_reqpage, do not wake
1634 				 * the page up.  The caller needs to.
1635 				 */
1636 			} else {
1637 				/*
1638 				 * If a write error occurs, reactivate page
1639 				 * so it doesn't clog the inactive list,
1640 				 * then finish the I/O.
1641 				 */
1642 				vm_page_dirty(m);
1643 				vm_page_activate(m);
1644 				vm_page_io_finish(m);
1645 			}
1646 		} else if (bp->b_iocmd == BIO_READ) {
1647 			/*
1648 			 * For read success, clear dirty bits.  Nobody should
1649 			 * have this page mapped but don't take any chances,
1650 			 * make sure the pmap modify bits are also cleared.
1651 			 *
1652 			 * NOTE: for reads, m->dirty will probably be
1653 			 * overridden by the original caller of getpages so
1654 			 * we cannot set them in order to free the underlying
1655 			 * swap in a low-swap situation.  I don't think we'd
1656 			 * want to do that anyway, but it was an optimization
1657 			 * that existed in the old swapper for a time before
1658 			 * it got ripped out due to precisely this problem.
1659 			 *
1660 			 * clear PG_ZERO in page.
1661 			 *
1662 			 * If not the requested page then deactivate it.
1663 			 *
1664 			 * Note that the requested page, reqpage, is left
1665 			 * busied, but we still have to wake it up.  The
1666 			 * other pages are released (unbusied) by
1667 			 * vm_page_wakeup().  We do not set reqpage's
1668 			 * valid bits here, it is up to the caller.
1669 			 */
1670 			pmap_clear_modify(m);
1671 			m->valid = VM_PAGE_BITS_ALL;
1672 			vm_page_undirty(m);
1673 			vm_page_flag_clear(m, PG_ZERO);
1674 
1675 			/*
1676 			 * We have to wake specifically requested pages
1677 			 * up too because we cleared PG_SWAPINPROG and
1678 			 * could be waiting for it in getpages.  However,
1679 			 * be sure to not unbusy getpages specifically
1680 			 * requested page - getpages expects it to be
1681 			 * left busy.
1682 			 */
1683 			if (i != bp->b_pager.pg_reqpage) {
1684 				vm_page_deactivate(m);
1685 				vm_page_wakeup(m);
1686 			} else {
1687 				vm_page_flash(m);
1688 			}
1689 		} else {
1690 			/*
1691 			 * For write success, clear the modify and dirty
1692 			 * status, then finish the I/O ( which decrements the
1693 			 * busy count and possibly wakes waiter's up ).
1694 			 */
1695 			pmap_clear_modify(m);
1696 			vm_page_undirty(m);
1697 			vm_page_io_finish(m);
1698 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1699 				pmap_page_protect(m, VM_PROT_READ);
1700 		}
1701 	}
1702 	vm_page_unlock_queues();
1703 
1704 	/*
1705 	 * adjust pip.  NOTE: the original parent may still have its own
1706 	 * pip refs on the object.
1707 	 */
1708 	if (object != NULL) {
1709 		vm_object_pip_wakeupn(object, bp->b_npages);
1710 		VM_OBJECT_UNLOCK(object);
1711 	}
1712 
1713 	/*
1714 	 * release the physical I/O buffer
1715 	 */
1716 	relpbuf(
1717 	    bp,
1718 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1719 		((bp->b_flags & B_ASYNC) ?
1720 		    &nsw_wcount_async :
1721 		    &nsw_wcount_sync
1722 		)
1723 	    )
1724 	);
1725 	splx(s);
1726 }
1727 
1728 /*
1729  *	swap_pager_isswapped:
1730  *
1731  *	Return 1 if at least one page in the given object is paged
1732  *	out to the given swap device.
1733  *
1734  *	This routine may not block.
1735  */
1736 int swap_pager_isswapped(vm_object_t object, int devidx) {
1737 	daddr_t index = 0;
1738 	int bcount;
1739 	int i;
1740 
1741 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1742 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1743 		struct swblock *swap;
1744 
1745 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1746 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1747 				daddr_t v = swap->swb_pages[i];
1748 				if (v != SWAPBLK_NONE &&
1749 				    BLK2DEVIDX(v) == devidx)
1750 					return 1;
1751 			}
1752 		}
1753 
1754 		index += SWAP_META_PAGES;
1755 		if (index > 0x20000000)
1756 			panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1757 	}
1758 	return 0;
1759 }
1760 
1761 /*
1762  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1763  *
1764  *	This routine dissociates the page at the given index within a
1765  *	swap block from its backing store, paging it in if necessary.
1766  *	If the page is paged in, it is placed in the inactive queue,
1767  *	since it had its backing store ripped out from under it.
1768  *	We also attempt to swap in all other pages in the swap block,
1769  *	we only guarantee that the one at the specified index is
1770  *	paged in.
1771  *
1772  *	XXX - The code to page the whole block in doesn't work, so we
1773  *	      revert to the one-by-one behavior for now.  Sigh.
1774  */
1775 static __inline void
1776 swp_pager_force_pagein(struct swblock *swap, int idx)
1777 {
1778 	vm_object_t object;
1779 	vm_page_t m;
1780 	vm_pindex_t pindex;
1781 
1782 	object = swap->swb_object;
1783 	pindex = swap->swb_index;
1784 
1785 	VM_OBJECT_LOCK(object);
1786 	vm_object_pip_add(object, 1);
1787 	m = vm_page_grab(object, pindex + idx, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1788 	if (m->valid == VM_PAGE_BITS_ALL) {
1789 		vm_object_pip_subtract(object, 1);
1790 		VM_OBJECT_UNLOCK(object);
1791 		vm_page_lock_queues();
1792 		vm_page_activate(m);
1793 		vm_page_dirty(m);
1794 		vm_page_wakeup(m);
1795 		vm_page_unlock_queues();
1796 		vm_pager_page_unswapped(m);
1797 		return;
1798 	}
1799 
1800 	if (swap_pager_getpages(object, &m, 1, 0) !=
1801 	    VM_PAGER_OK)
1802 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1803 	vm_object_pip_subtract(object, 1);
1804 	VM_OBJECT_UNLOCK(object);
1805 
1806 	vm_page_lock_queues();
1807 	vm_page_dirty(m);
1808 	vm_page_dontneed(m);
1809 	vm_page_wakeup(m);
1810 	vm_page_unlock_queues();
1811 	vm_pager_page_unswapped(m);
1812 }
1813 
1814 
1815 /*
1816  *	swap_pager_swapoff:
1817  *
1818  *	Page in all of the pages that have been paged out to the
1819  *	given device.  The corresponding blocks in the bitmap must be
1820  *	marked as allocated and the device must be flagged SW_CLOSING.
1821  *	There may be no processes swapped out to the device.
1822  *
1823  *	The sw_used parameter points to the field in the swdev structure
1824  *	that contains a count of the number of blocks still allocated
1825  *	on the device.  If we encounter objects with a nonzero pip count
1826  *	in our scan, we use this number to determine if we're really done.
1827  *
1828  *	This routine may block.
1829  */
1830 static void
1831 swap_pager_swapoff(int devidx, int *sw_used)
1832 {
1833 	struct swblock **pswap;
1834 	struct swblock *swap;
1835 	vm_object_t waitobj;
1836 	daddr_t v;
1837 	int i, j;
1838 
1839 	GIANT_REQUIRED;
1840 
1841 full_rescan:
1842 	waitobj = NULL;
1843 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1844 restart:
1845 		pswap = &swhash[i];
1846 		while ((swap = *pswap) != NULL) {
1847                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1848                                 v = swap->swb_pages[j];
1849                                 if (v != SWAPBLK_NONE &&
1850 				    BLK2DEVIDX(v) == devidx)
1851                                         break;
1852                         }
1853 			if (j < SWAP_META_PAGES) {
1854 				swp_pager_force_pagein(swap, j);
1855 				goto restart;
1856 			} else if (swap->swb_object->paging_in_progress) {
1857 				if (!waitobj)
1858 					waitobj = swap->swb_object;
1859 			}
1860 			pswap = &swap->swb_hnext;
1861 		}
1862 	}
1863 	if (waitobj && *sw_used) {
1864 	    /*
1865 	     * We wait on an arbitrary object to clock our rescans
1866 	     * to the rate of paging completion.
1867 	     */
1868 	    VM_OBJECT_LOCK(waitobj);
1869 	    vm_object_pip_wait(waitobj, "swpoff");
1870 	    VM_OBJECT_UNLOCK(waitobj);
1871 	    goto full_rescan;
1872 	}
1873 	if (*sw_used)
1874 	    panic("swapoff: failed to locate %d swap blocks", *sw_used);
1875 }
1876 
1877 /************************************************************************
1878  *				SWAP META DATA 				*
1879  ************************************************************************
1880  *
1881  *	These routines manipulate the swap metadata stored in the
1882  *	OBJT_SWAP object.  All swp_*() routines must be called at
1883  *	splvm() because swap can be freed up by the low level vm_page
1884  *	code which might be called from interrupts beyond what splbio() covers.
1885  *
1886  *	Swap metadata is implemented with a global hash and not directly
1887  *	linked into the object.  Instead the object simply contains
1888  *	appropriate tracking counters.
1889  */
1890 
1891 /*
1892  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1893  *
1894  *	We first convert the object to a swap object if it is a default
1895  *	object.
1896  *
1897  *	The specified swapblk is added to the object's swap metadata.  If
1898  *	the swapblk is not valid, it is freed instead.  Any previously
1899  *	assigned swapblk is freed.
1900  *
1901  *	This routine must be called at splvm(), except when used to convert
1902  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1903  */
1904 static void
1905 swp_pager_meta_build(
1906 	vm_object_t object,
1907 	vm_pindex_t pindex,
1908 	daddr_t swapblk
1909 ) {
1910 	struct swblock *swap;
1911 	struct swblock **pswap;
1912 	int idx;
1913 
1914 	GIANT_REQUIRED;
1915 	/*
1916 	 * Convert default object to swap object if necessary
1917 	 */
1918 	if (object->type != OBJT_SWAP) {
1919 		object->type = OBJT_SWAP;
1920 		object->un_pager.swp.swp_bcount = 0;
1921 
1922 		mtx_lock(&sw_alloc_mtx);
1923 		if (object->handle != NULL) {
1924 			TAILQ_INSERT_TAIL(
1925 			    NOBJLIST(object->handle),
1926 			    object,
1927 			    pager_object_list
1928 			);
1929 		} else {
1930 			TAILQ_INSERT_TAIL(
1931 			    &swap_pager_un_object_list,
1932 			    object,
1933 			    pager_object_list
1934 			);
1935 		}
1936 		mtx_unlock(&sw_alloc_mtx);
1937 	}
1938 
1939 	/*
1940 	 * Locate hash entry.  If not found create, but if we aren't adding
1941 	 * anything just return.  If we run out of space in the map we wait
1942 	 * and, since the hash table may have changed, retry.
1943 	 */
1944 retry:
1945 	pswap = swp_pager_hash(object, pindex);
1946 
1947 	if ((swap = *pswap) == NULL) {
1948 		int i;
1949 
1950 		if (swapblk == SWAPBLK_NONE)
1951 			return;
1952 
1953 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1954 		if (swap == NULL) {
1955 			VM_WAIT;
1956 			goto retry;
1957 		}
1958 
1959 		swap->swb_hnext = NULL;
1960 		swap->swb_object = object;
1961 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1962 		swap->swb_count = 0;
1963 
1964 		++object->un_pager.swp.swp_bcount;
1965 
1966 		for (i = 0; i < SWAP_META_PAGES; ++i)
1967 			swap->swb_pages[i] = SWAPBLK_NONE;
1968 	}
1969 
1970 	/*
1971 	 * Delete prior contents of metadata
1972 	 */
1973 	idx = pindex & SWAP_META_MASK;
1974 
1975 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1976 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1977 		--swap->swb_count;
1978 	}
1979 
1980 	/*
1981 	 * Enter block into metadata
1982 	 */
1983 	swap->swb_pages[idx] = swapblk;
1984 	if (swapblk != SWAPBLK_NONE)
1985 		++swap->swb_count;
1986 }
1987 
1988 /*
1989  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1990  *
1991  *	The requested range of blocks is freed, with any associated swap
1992  *	returned to the swap bitmap.
1993  *
1994  *	This routine will free swap metadata structures as they are cleaned
1995  *	out.  This routine does *NOT* operate on swap metadata associated
1996  *	with resident pages.
1997  *
1998  *	This routine must be called at splvm()
1999  */
2000 static void
2001 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
2002 {
2003 	GIANT_REQUIRED;
2004 
2005 	if (object->type != OBJT_SWAP)
2006 		return;
2007 
2008 	while (count > 0) {
2009 		struct swblock **pswap;
2010 		struct swblock *swap;
2011 
2012 		pswap = swp_pager_hash(object, index);
2013 
2014 		if ((swap = *pswap) != NULL) {
2015 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
2016 
2017 			if (v != SWAPBLK_NONE) {
2018 				swp_pager_freeswapspace(v, 1);
2019 				swap->swb_pages[index & SWAP_META_MASK] =
2020 					SWAPBLK_NONE;
2021 				if (--swap->swb_count == 0) {
2022 					*pswap = swap->swb_hnext;
2023 					uma_zfree(swap_zone, swap);
2024 					--object->un_pager.swp.swp_bcount;
2025 				}
2026 			}
2027 			--count;
2028 			++index;
2029 		} else {
2030 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
2031 			count -= n;
2032 			index += n;
2033 		}
2034 	}
2035 }
2036 
2037 /*
2038  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2039  *
2040  *	This routine locates and destroys all swap metadata associated with
2041  *	an object.
2042  *
2043  *	This routine must be called at splvm()
2044  */
2045 static void
2046 swp_pager_meta_free_all(vm_object_t object)
2047 {
2048 	daddr_t index = 0;
2049 
2050 	GIANT_REQUIRED;
2051 
2052 	if (object->type != OBJT_SWAP)
2053 		return;
2054 
2055 	while (object->un_pager.swp.swp_bcount) {
2056 		struct swblock **pswap;
2057 		struct swblock *swap;
2058 
2059 		pswap = swp_pager_hash(object, index);
2060 		if ((swap = *pswap) != NULL) {
2061 			int i;
2062 
2063 			for (i = 0; i < SWAP_META_PAGES; ++i) {
2064 				daddr_t v = swap->swb_pages[i];
2065 				if (v != SWAPBLK_NONE) {
2066 					--swap->swb_count;
2067 					swp_pager_freeswapspace(v, 1);
2068 				}
2069 			}
2070 			if (swap->swb_count != 0)
2071 				panic("swap_pager_meta_free_all: swb_count != 0");
2072 			*pswap = swap->swb_hnext;
2073 			uma_zfree(swap_zone, swap);
2074 			--object->un_pager.swp.swp_bcount;
2075 		}
2076 		index += SWAP_META_PAGES;
2077 		if (index > 0x20000000)
2078 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
2079 	}
2080 }
2081 
2082 /*
2083  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2084  *
2085  *	This routine is capable of looking up, popping, or freeing
2086  *	swapblk assignments in the swap meta data or in the vm_page_t.
2087  *	The routine typically returns the swapblk being looked-up, or popped,
2088  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2089  *	was invalid.  This routine will automatically free any invalid
2090  *	meta-data swapblks.
2091  *
2092  *	It is not possible to store invalid swapblks in the swap meta data
2093  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2094  *
2095  *	When acting on a busy resident page and paging is in progress, we
2096  *	have to wait until paging is complete but otherwise can act on the
2097  *	busy page.
2098  *
2099  *	This routine must be called at splvm().
2100  *
2101  *	SWM_FREE	remove and free swap block from metadata
2102  *	SWM_POP		remove from meta data but do not free.. pop it out
2103  */
2104 static daddr_t
2105 swp_pager_meta_ctl(
2106 	vm_object_t object,
2107 	vm_pindex_t pindex,
2108 	int flags
2109 ) {
2110 	struct swblock **pswap;
2111 	struct swblock *swap;
2112 	daddr_t r1;
2113 	int idx;
2114 
2115 	GIANT_REQUIRED;
2116 	/*
2117 	 * The meta data only exists of the object is OBJT_SWAP
2118 	 * and even then might not be allocated yet.
2119 	 */
2120 	if (object->type != OBJT_SWAP)
2121 		return (SWAPBLK_NONE);
2122 
2123 	r1 = SWAPBLK_NONE;
2124 	pswap = swp_pager_hash(object, pindex);
2125 
2126 	if ((swap = *pswap) != NULL) {
2127 		idx = pindex & SWAP_META_MASK;
2128 		r1 = swap->swb_pages[idx];
2129 
2130 		if (r1 != SWAPBLK_NONE) {
2131 			if (flags & SWM_FREE) {
2132 				swp_pager_freeswapspace(r1, 1);
2133 				r1 = SWAPBLK_NONE;
2134 			}
2135 			if (flags & (SWM_FREE|SWM_POP)) {
2136 				swap->swb_pages[idx] = SWAPBLK_NONE;
2137 				if (--swap->swb_count == 0) {
2138 					*pswap = swap->swb_hnext;
2139 					uma_zfree(swap_zone, swap);
2140 					--object->un_pager.swp.swp_bcount;
2141 				}
2142 			}
2143 		}
2144 	}
2145 	return (r1);
2146 }
2147 
2148 /********************************************************
2149  *		CHAINING FUNCTIONS			*
2150  ********************************************************
2151  *
2152  *	These functions support recursion of I/O operations
2153  *	on bp's, typically by chaining one or more 'child' bp's
2154  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
2155  *	chaining is possible.
2156  */
2157 
2158 /*
2159  *	vm_pager_chain_iodone:
2160  *
2161  *	io completion routine for child bp.  Currently we fudge a bit
2162  *	on dealing with b_resid.   Since users of these routines may issue
2163  *	multiple children simultaneously, sequencing of the error can be lost.
2164  */
2165 static void
2166 vm_pager_chain_iodone(struct buf *nbp)
2167 {
2168 	struct bio *bp;
2169 	u_int *count;
2170 
2171 	bp = nbp->b_caller1;
2172 	count = (u_int *)&(bp->bio_driver1);
2173 	if (bp != NULL) {
2174 		if (nbp->b_ioflags & BIO_ERROR) {
2175 			bp->bio_flags |= BIO_ERROR;
2176 			bp->bio_error = nbp->b_error;
2177 		} else if (nbp->b_resid != 0) {
2178 			bp->bio_flags |= BIO_ERROR;
2179 			bp->bio_error = EINVAL;
2180 		} else {
2181 			bp->bio_resid -= nbp->b_bcount;
2182 		}
2183 		nbp->b_caller1 = NULL;
2184 		--(*count);
2185 		if (bp->bio_flags & BIO_FLAG1) {
2186 			bp->bio_flags &= ~BIO_FLAG1;
2187 			wakeup(bp);
2188 		}
2189 	}
2190 	nbp->b_flags |= B_DONE;
2191 	nbp->b_flags &= ~B_ASYNC;
2192 	relpbuf(nbp, NULL);
2193 }
2194 
2195 /*
2196  *	getchainbuf:
2197  *
2198  *	Obtain a physical buffer and chain it to its parent buffer.  When
2199  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
2200  *	automatically propagated to the parent
2201  */
2202 static struct buf *
2203 getchainbuf(struct bio *bp, struct vnode *vp, int flags)
2204 {
2205 	struct buf *nbp;
2206 	u_int *count;
2207 
2208 	GIANT_REQUIRED;
2209 	nbp = getpbuf(NULL);
2210 	count = (u_int *)&(bp->bio_driver1);
2211 
2212 	nbp->b_caller1 = bp;
2213 	++(*count);
2214 
2215 	if (*count > 4)
2216 		waitchainbuf(bp, 4, 0);
2217 
2218 	nbp->b_iocmd = bp->bio_cmd;
2219 	nbp->b_ioflags = 0;
2220 	nbp->b_flags = flags;
2221 	nbp->b_rcred = crhold(thread0.td_ucred);
2222 	nbp->b_wcred = crhold(thread0.td_ucred);
2223 	nbp->b_iodone = vm_pager_chain_iodone;
2224 
2225 	if (vp)
2226 		pbgetvp(vp, nbp);
2227 	return (nbp);
2228 }
2229 
2230 static void
2231 flushchainbuf(struct buf *nbp)
2232 {
2233 	GIANT_REQUIRED;
2234 	if (nbp->b_bcount) {
2235 		nbp->b_bufsize = nbp->b_bcount;
2236 		if (nbp->b_iocmd == BIO_WRITE)
2237 			nbp->b_dirtyend = nbp->b_bcount;
2238 		BUF_KERNPROC(nbp);
2239 		VOP_STRATEGY(nbp->b_vp, nbp);
2240 	} else {
2241 		bufdone(nbp);
2242 	}
2243 }
2244 
2245 static void
2246 waitchainbuf(struct bio *bp, int limit, int done)
2247 {
2248  	int s;
2249 	u_int *count;
2250 
2251 	GIANT_REQUIRED;
2252 	count = (u_int *)&(bp->bio_driver1);
2253 	s = splbio();
2254 	while (*count > limit) {
2255 		bp->bio_flags |= BIO_FLAG1;
2256 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
2257 	}
2258 	if (done) {
2259 		if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) {
2260 			bp->bio_flags |= BIO_ERROR;
2261 			bp->bio_error = EINVAL;
2262 		}
2263 		biodone(bp);
2264 	}
2265 	splx(s);
2266 }
2267 
2268 /*
2269  *	swapdev_strategy:
2270  *
2271  *	VOP_STRATEGY() for swapdev_vp.
2272  *	Perform swap strategy interleave device selection.
2273  *
2274  *	The bp is expected to be locked and *not* B_DONE on call.
2275  */
2276 static int
2277 swapdev_strategy(ap)
2278 	struct vop_strategy_args /* {
2279 		struct vnode *a_vp;
2280 		struct buf *a_bp;
2281 	} */ *ap;
2282 {
2283 	int s, sz, off, seg, index;
2284 	struct swdevt *sp;
2285 	struct vnode *vp;
2286 	struct buf *bp;
2287 
2288 	KASSERT(ap->a_vp == ap->a_bp->b_vp, ("%s(%p != %p)",
2289 	    __func__, ap->a_vp, ap->a_bp->b_vp));
2290 	bp = ap->a_bp;
2291 	sz = howmany(bp->b_bcount, PAGE_SIZE);
2292 
2293 	/*
2294 	 * Convert interleaved swap into per-device swap.  Note that
2295 	 * the block size is left in PAGE_SIZE'd chunks (for the newswap)
2296 	 * here.
2297 	 */
2298 	if (NSWAPDEV > 1) {
2299 		off = bp->b_blkno % dmmax;
2300 		if (off + sz > dmmax) {
2301 			bp->b_error = EINVAL;
2302 			bp->b_ioflags |= BIO_ERROR;
2303 			bufdone(bp);
2304 			return 0;
2305 		}
2306 		seg = bp->b_blkno / dmmax;
2307 		index = seg % NSWAPDEV;
2308 		seg /= NSWAPDEV;
2309 		bp->b_blkno = seg * dmmax + off;
2310 	} else {
2311 		index = 0;
2312 	}
2313 	sp = &swdevt[index];
2314 	if (bp->b_blkno + sz > sp->sw_nblks) {
2315 		bp->b_error = EINVAL;
2316 		bp->b_ioflags |= BIO_ERROR;
2317 		bufdone(bp);
2318 		return 0;
2319 	}
2320 	bp->b_dev = sp->sw_device;
2321 	if (sp->sw_vp == NULL) {
2322 		bp->b_error = ENODEV;
2323 		bp->b_ioflags |= BIO_ERROR;
2324 		bufdone(bp);
2325 		return 0;
2326 	}
2327 
2328 	/*
2329 	 * Convert from PAGE_SIZE'd to DEV_BSIZE'd chunks for the actual I/O
2330 	 */
2331 	bp->b_blkno = ctodb(bp->b_blkno);
2332 
2333 	vhold(sp->sw_vp);
2334 	s = splvm();
2335 	if (bp->b_iocmd == BIO_WRITE) {
2336 		vp = bp->b_vp;
2337 		if (vp) {
2338 			VI_LOCK(vp);
2339 			vp->v_numoutput--;
2340 			if ((vp->v_iflag & VI_BWAIT) && vp->v_numoutput <= 0) {
2341 				vp->v_iflag &= ~VI_BWAIT;
2342 				wakeup(&vp->v_numoutput);
2343 			}
2344 			VI_UNLOCK(vp);
2345 		}
2346 		VI_LOCK(sp->sw_vp);
2347 		sp->sw_vp->v_numoutput++;
2348 		VI_UNLOCK(sp->sw_vp);
2349 	}
2350 	bp->b_vp = sp->sw_vp;
2351 	splx(s);
2352 	if (bp->b_vp->v_type == VCHR)
2353 		VOP_SPECSTRATEGY(bp->b_vp, bp);
2354 	else
2355 		VOP_STRATEGY(bp->b_vp, bp);
2356 	return 0;
2357 }
2358 
2359 /*
2360  * Create a special vnode op vector for swapdev_vp - we only use
2361  * VOP_STRATEGY() and reclaim; everything else returns an error.
2362  */
2363 vop_t **swapdev_vnodeop_p;
2364 static struct vnodeopv_entry_desc swapdev_vnodeop_entries[] = {
2365 	{ &vop_default_desc,		(vop_t *) vop_defaultop },
2366 	{ &vop_reclaim_desc,		(vop_t *) vop_null },
2367 	{ &vop_strategy_desc,		(vop_t *) swapdev_strategy },
2368 	{ NULL, NULL }
2369 };
2370 static struct vnodeopv_desc swapdev_vnodeop_opv_desc =
2371 	{ &swapdev_vnodeop_p, swapdev_vnodeop_entries };
2372 
2373 VNODEOP_SET(swapdev_vnodeop_opv_desc);
2374 
2375 /*
2376  * System call swapon(name) enables swapping on device name,
2377  * which must be in the swdevsw.  Return EBUSY
2378  * if already swapping on this device.
2379  */
2380 #ifndef _SYS_SYSPROTO_H_
2381 struct swapon_args {
2382 	char *name;
2383 };
2384 #endif
2385 
2386 /*
2387  * MPSAFE
2388  */
2389 /* ARGSUSED */
2390 int
2391 swapon(td, uap)
2392 	struct thread *td;
2393 	struct swapon_args *uap;
2394 {
2395 	struct vattr attr;
2396 	struct vnode *vp;
2397 	struct nameidata nd;
2398 	int error;
2399 
2400 	mtx_lock(&Giant);
2401 	error = suser(td);
2402 	if (error)
2403 		goto done2;
2404 
2405 	while (swdev_syscall_active)
2406 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2407 	swdev_syscall_active = 1;
2408 
2409 	/*
2410 	 * Swap metadata may not fit in the KVM if we have physical
2411 	 * memory of >1GB.
2412 	 */
2413 	if (swap_zone == NULL) {
2414 		error = ENOMEM;
2415 		goto done;
2416 	}
2417 
2418 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td);
2419 	error = namei(&nd);
2420 	if (error)
2421 		goto done;
2422 
2423 	NDFREE(&nd, NDF_ONLY_PNBUF);
2424 	vp = nd.ni_vp;
2425 
2426 	if (vn_isdisk(vp, &error))
2427 		error = swaponvp(td, vp, vp->v_rdev, 0);
2428 	else if (vp->v_type == VREG &&
2429 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2430 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) {
2431 		/*
2432 		 * Allow direct swapping to NFS regular files in the same
2433 		 * way that nfs_mountroot() sets up diskless swapping.
2434 		 */
2435 		error = swaponvp(td, vp, NODEV, attr.va_size / DEV_BSIZE);
2436 	}
2437 
2438 	if (error)
2439 		vrele(vp);
2440 done:
2441 	swdev_syscall_active = 0;
2442 	wakeup_one(&swdev_syscall_active);
2443 done2:
2444 	mtx_unlock(&Giant);
2445 	return (error);
2446 }
2447 
2448 /*
2449  * Swfree(index) frees the index'th portion of the swap map.
2450  * Each of the NSWAPDEV devices provides 1/NSWAPDEV'th of the swap
2451  * space, which is laid out with blocks of dmmax pages circularly
2452  * among the devices.
2453  *
2454  * The new swap code uses page-sized blocks.  The old swap code used
2455  * DEV_BSIZE'd chunks.
2456  */
2457 int
2458 swaponvp(td, vp, dev, nblks)
2459 	struct thread *td;
2460 	struct vnode *vp;
2461 	dev_t dev;
2462 	u_long nblks;
2463 {
2464 	int index;
2465 	struct swdevt *sp;
2466 	swblk_t vsbase;
2467 	long blk;
2468 	swblk_t dvbase;
2469 	int error;
2470 	u_long aligned_nblks, mblocks;
2471 	off_t mediasize;
2472 
2473 	if (!swapdev_vp) {
2474 		error = getnewvnode("none", NULL, swapdev_vnodeop_p,
2475 		    &swapdev_vp);
2476 		if (error)
2477 			panic("Cannot get vnode for swapdev");
2478 		swapdev_vp->v_type = VNON;	/* Untyped */
2479 	}
2480 
2481 	ASSERT_VOP_UNLOCKED(vp, "swaponvp");
2482 	for (sp = swdevt, index = 0 ; index < NSWAPDEV; index++, sp++) {
2483 		if (sp->sw_vp == vp)
2484 			return EBUSY;
2485 		if (!sp->sw_vp)
2486 			goto found;
2487 
2488 	}
2489 	return EINVAL;
2490     found:
2491 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2492 #ifdef MAC
2493 	error = mac_check_system_swapon(td->td_ucred, vp);
2494 	if (error == 0)
2495 #endif
2496 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td);
2497 	(void) VOP_UNLOCK(vp, 0, td);
2498 	if (error)
2499 		return (error);
2500 
2501 	if (nblks == 0) {
2502 		error = VOP_IOCTL(vp, DIOCGMEDIASIZE, (caddr_t)&mediasize,
2503 		    FREAD, td->td_ucred, td);
2504 		if (error == 0)
2505 		    nblks = mediasize / DEV_BSIZE;
2506 	}
2507 	/*
2508 	 * XXX: We should also check that the sectorsize makes sense
2509 	 * XXX: it should be a power of two, no larger than the page size.
2510 	 */
2511 	if (nblks == 0) {
2512 		(void) VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
2513 		return (ENXIO);
2514 	}
2515 
2516 	/*
2517 	 * If we go beyond this, we get overflows in the radix
2518 	 * tree bitmap code.
2519 	 */
2520 	mblocks = 0x40000000 / BLIST_META_RADIX / NSWAPDEV;
2521 	if (nblks > mblocks) {
2522 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2523 			mblocks);
2524 		nblks = mblocks;
2525 	}
2526 	/*
2527 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2528 	 * First chop nblks off to page-align it, then convert.
2529 	 *
2530 	 * sw->sw_nblks is in page-sized chunks now too.
2531 	 */
2532 	nblks &= ~(ctodb(1) - 1);
2533 	nblks = dbtoc(nblks);
2534 
2535 	sp->sw_vp = vp;
2536 	sp->sw_dev = dev2udev(dev);
2537 	sp->sw_device = dev;
2538 	sp->sw_flags = SW_FREED;
2539 	sp->sw_nblks = nblks;
2540 	sp->sw_used = 0;
2541 
2542 	/*
2543 	 * nblks, nswap, and dmmax are PAGE_SIZE'd parameters now, not
2544 	 * DEV_BSIZE'd.   aligned_nblks is used to calculate the
2545 	 * size of the swap bitmap, taking into account the stripe size.
2546 	 */
2547 	aligned_nblks = (nblks + (dmmax -1)) & ~(u_long)(dmmax -1);
2548 
2549 	if (aligned_nblks * NSWAPDEV > nswap)
2550 		nswap = aligned_nblks * NSWAPDEV;
2551 
2552 	if (swapblist == NULL)
2553 		swapblist = blist_create(nswap);
2554 	else
2555 		blist_resize(&swapblist, nswap, 0);
2556 
2557 	for (dvbase = dmmax; dvbase < nblks; dvbase += dmmax) {
2558 		blk = min(nblks - dvbase, dmmax);
2559 		vsbase = index * dmmax + dvbase * NSWAPDEV;
2560 		blist_free(swapblist, vsbase, blk);
2561 		vm_swap_size += blk;
2562 	}
2563 
2564 	swap_pager_full = 0;
2565 
2566 	return (0);
2567 }
2568 
2569 /*
2570  * SYSCALL: swapoff(devname)
2571  *
2572  * Disable swapping on the given device.
2573  */
2574 #ifndef _SYS_SYSPROTO_H_
2575 struct swapoff_args {
2576 	char *name;
2577 };
2578 #endif
2579 
2580 /*
2581  * MPSAFE
2582  */
2583 /* ARGSUSED */
2584 int
2585 swapoff(td, uap)
2586 	struct thread *td;
2587 	struct swapoff_args *uap;
2588 {
2589 	struct vnode *vp;
2590 	struct nameidata nd;
2591 	struct swdevt *sp;
2592 	swblk_t dvbase, vsbase;
2593 	u_long nblks, aligned_nblks, blk;
2594 	int error, index;
2595 
2596 	mtx_lock(&Giant);
2597 
2598 	error = suser(td);
2599 	if (error)
2600 		goto done2;
2601 
2602 	while (swdev_syscall_active)
2603 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2604 	swdev_syscall_active = 1;
2605 
2606 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td);
2607 	error = namei(&nd);
2608 	if (error)
2609 		goto done;
2610 	NDFREE(&nd, NDF_ONLY_PNBUF);
2611 	vp = nd.ni_vp;
2612 
2613 	for (sp = swdevt, index = 0 ; index < NSWAPDEV; index++, sp++) {
2614 		if (sp->sw_vp == vp)
2615 			goto found;
2616 	}
2617 	error = EINVAL;
2618 	goto done;
2619 found:
2620 #ifdef MAC
2621 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2622 	error = mac_check_system_swapoff(td->td_ucred, vp);
2623 	(void) VOP_UNLOCK(vp, 0, td);
2624 	if (error != 0)
2625 		goto done;
2626 #endif
2627 
2628 	nblks = sp->sw_nblks;
2629 
2630 	/*
2631 	 * We can turn off this swap device safely only if the
2632 	 * available virtual memory in the system will fit the amount
2633 	 * of data we will have to page back in, plus an epsilon so
2634 	 * the system doesn't become critically low on swap space.
2635 	 */
2636 	if (cnt.v_free_count + cnt.v_cache_count + vm_swap_size <
2637 	    nblks + nswap_lowat) {
2638 		error = ENOMEM;
2639 		goto done;
2640 	}
2641 
2642 	/*
2643 	 * Prevent further allocations on this device.
2644 	 */
2645 	sp->sw_flags |= SW_CLOSING;
2646 	for (dvbase = dmmax; dvbase < nblks; dvbase += dmmax) {
2647 		blk = min(nblks - dvbase, dmmax);
2648 		vsbase = index * dmmax + dvbase * NSWAPDEV;
2649 		vm_swap_size -= blist_fill(swapblist, vsbase, blk);
2650 	}
2651 
2652 	/*
2653 	 * Page in the contents of the device and close it.
2654 	 */
2655 #ifndef NO_SWAPPING
2656        	vm_proc_swapin_all(index);
2657 #endif /* !NO_SWAPPING */
2658 	swap_pager_swapoff(index, &sp->sw_used);
2659 
2660 	VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
2661 	vrele(vp);
2662 	sp->sw_vp = NULL;
2663 
2664 	/*
2665 	 * Resize the bitmap based on the new largest swap device,
2666 	 * or free the bitmap if there are no more devices.
2667 	 */
2668 	for (sp = swdevt, nblks = 0; sp < swdevt + NSWAPDEV; sp++) {
2669 		if (sp->sw_vp == NULL)
2670 			continue;
2671 		nblks = max(nblks, sp->sw_nblks);
2672 	}
2673 
2674 	aligned_nblks = (nblks + (dmmax -1)) & ~(u_long)(dmmax -1);
2675 	nswap = aligned_nblks * NSWAPDEV;
2676 
2677 	if (nswap == 0) {
2678 		blist_destroy(swapblist);
2679 		swapblist = NULL;
2680 		vrele(swapdev_vp);
2681 		swapdev_vp = NULL;
2682 	} else
2683 		blist_resize(&swapblist, nswap, 0);
2684 
2685 done:
2686 	swdev_syscall_active = 0;
2687 	wakeup_one(&swdev_syscall_active);
2688 done2:
2689 	mtx_unlock(&Giant);
2690 	return (error);
2691 }
2692 
2693 void
2694 swap_pager_status(int *total, int *used)
2695 {
2696 	struct swdevt *sp;
2697 	int i;
2698 
2699 	*total = 0;
2700 	*used = 0;
2701 	for (sp = swdevt, i = 0; i < NSWAPDEV; i++, sp++) {
2702 		if (sp->sw_vp == NULL)
2703 			continue;
2704 		*total += sp->sw_nblks;
2705 		*used += sp->sw_used;
2706 	}
2707 }
2708 
2709 static int
2710 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2711 {
2712 	int	*name = (int *)arg1;
2713 	int	error, i, n;
2714 	struct xswdev xs;
2715 	struct swdevt *sp;
2716 
2717 	if (arg2 != 1) /* name length */
2718 		return (EINVAL);
2719 
2720 	for (sp = swdevt, i = 0, n = 0 ; i < NSWAPDEV; i++, sp++) {
2721 		if (sp->sw_vp) {
2722 			if (n == *name) {
2723 				xs.xsw_version = XSWDEV_VERSION;
2724 				xs.xsw_dev = sp->sw_dev;
2725 				xs.xsw_flags = sp->sw_flags;
2726 				xs.xsw_nblks = sp->sw_nblks;
2727 				xs.xsw_used = sp->sw_used;
2728 
2729 				error = SYSCTL_OUT(req, &xs, sizeof(xs));
2730 				return (error);
2731 			}
2732 			n++;
2733 		}
2734 
2735 	}
2736 	return (ENOENT);
2737 }
2738 
2739 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, 0, NSWAPDEV,
2740     "Number of swap devices");
2741 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2742     "Swap statistics by device");
2743 
2744 /*
2745  * vmspace_swap_count() - count the approximate swap useage in pages for a
2746  *			  vmspace.
2747  *
2748  *	The map must be locked.
2749  *
2750  *	Swap useage is determined by taking the proportional swap used by
2751  *	VM objects backing the VM map.  To make up for fractional losses,
2752  *	if the VM object has any swap use at all the associated map entries
2753  *	count for at least 1 swap page.
2754  */
2755 int
2756 vmspace_swap_count(struct vmspace *vmspace)
2757 {
2758 	vm_map_t map = &vmspace->vm_map;
2759 	vm_map_entry_t cur;
2760 	int count = 0;
2761 
2762 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2763 		vm_object_t object;
2764 
2765 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2766 		    (object = cur->object.vm_object) != NULL) {
2767 			VM_OBJECT_LOCK(object);
2768 			if (object->type == OBJT_SWAP &&
2769 			    object->un_pager.swp.swp_bcount != 0) {
2770 				int n = (cur->end - cur->start) / PAGE_SIZE;
2771 
2772 				count += object->un_pager.swp.swp_bcount *
2773 				    SWAP_META_PAGES * n / object->size + 1;
2774 			}
2775 			VM_OBJECT_UNLOCK(object);
2776 		}
2777 	}
2778 	return (count);
2779 }
2780 
2781