xref: /freebsd/sys/vm/swap_pager.c (revision dce6e6518b85561495cff38a3074a69d29d58a55)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  */
67 
68 #include <sys/cdefs.h>
69 __FBSDID("$FreeBSD$");
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/conf.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/bio.h>
77 #include <sys/buf.h>
78 #include <sys/vnode.h>
79 #include <sys/malloc.h>
80 #include <sys/sysctl.h>
81 #include <sys/blist.h>
82 #include <sys/lock.h>
83 #include <sys/sx.h>
84 #include <sys/vmmeter.h>
85 
86 #ifndef MAX_PAGEOUT_CLUSTER
87 #define MAX_PAGEOUT_CLUSTER 16
88 #endif
89 
90 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
91 
92 #include "opt_swap.h"
93 #include <vm/vm.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_extern.h>
103 #include <vm/uma.h>
104 
105 #define SWM_FREE	0x02	/* free, period			*/
106 #define SWM_POP		0x04	/* pop out			*/
107 
108 int swap_pager_full;		/* swap space exhaustion (task killing) */
109 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
110 static int nsw_rcount;		/* free read buffers			*/
111 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
112 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
113 static int nsw_wcount_async_max;/* assigned maximum			*/
114 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
115 
116 struct blist *swapblist;
117 static struct swblock **swhash;
118 static int swhash_mask;
119 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
120 static struct sx sw_alloc_sx;
121 
122 
123 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
124         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
125 
126 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
127 
128 /*
129  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
130  * of searching a named list by hashing it just a little.
131  */
132 
133 #define NOBJLISTS		8
134 
135 #define NOBJLIST(handle)	\
136 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
137 
138 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
139 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
140 struct pagerlst		swap_pager_un_object_list;
141 uma_zone_t		swap_zone;
142 
143 /*
144  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
145  * calls hooked from other parts of the VM system and do not appear here.
146  * (see vm/swap_pager.h).
147  */
148 static vm_object_t
149 		swap_pager_alloc(void *handle, vm_ooffset_t size,
150 				      vm_prot_t prot, vm_ooffset_t offset);
151 static void	swap_pager_dealloc(vm_object_t object);
152 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
153 static boolean_t
154 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
155 static void	swap_pager_init(void);
156 static void	swap_pager_unswapped(vm_page_t);
157 static void	swap_pager_strategy(vm_object_t, struct bio *);
158 
159 struct pagerops swappagerops = {
160 	swap_pager_init,	/* early system initialization of pager	*/
161 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
162 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
163 	swap_pager_getpages,	/* pagein				*/
164 	swap_pager_putpages,	/* pageout				*/
165 	swap_pager_haspage,	/* get backing store status for page	*/
166 	swap_pager_unswapped,	/* remove swap related to page		*/
167 	swap_pager_strategy	/* pager strategy call			*/
168 };
169 
170 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags);
171 static void flushchainbuf(struct buf *nbp);
172 static void waitchainbuf(struct bio *bp, int count, int done);
173 
174 /*
175  * dmmax is in page-sized chunks with the new swap system.  It was
176  * dev-bsized chunks in the old.  dmmax is always a power of 2.
177  *
178  * swap_*() routines are externally accessible.  swp_*() routines are
179  * internal.
180  */
181 int dmmax, dmmax_mask;
182 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
183 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
184 
185 SYSCTL_INT(_vm, OID_AUTO, dmmax,
186 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
187 
188 static __inline void	swp_sizecheck(void);
189 static void	swp_pager_sync_iodone(struct buf *bp);
190 static void	swp_pager_async_iodone(struct buf *bp);
191 
192 /*
193  * Swap bitmap functions
194  */
195 static __inline void	swp_pager_freeswapspace(daddr_t blk, int npages);
196 static __inline daddr_t	swp_pager_getswapspace(int npages);
197 
198 /*
199  * Metadata functions
200  */
201 static __inline struct swblock **
202     swp_pager_hash(vm_object_t object, vm_pindex_t index);
203 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
204 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
205 static void swp_pager_meta_free_all(vm_object_t);
206 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
207 
208 /*
209  * SWP_SIZECHECK() -	update swap_pager_full indication
210  *
211  *	update the swap_pager_almost_full indication and warn when we are
212  *	about to run out of swap space, using lowat/hiwat hysteresis.
213  *
214  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
215  *
216  *	No restrictions on call
217  *	This routine may not block.
218  *	This routine must be called at splvm()
219  */
220 static __inline void
221 swp_sizecheck()
222 {
223 	GIANT_REQUIRED;
224 
225 	if (vm_swap_size < nswap_lowat) {
226 		if (swap_pager_almost_full == 0) {
227 			printf("swap_pager: out of swap space\n");
228 			swap_pager_almost_full = 1;
229 		}
230 	} else {
231 		swap_pager_full = 0;
232 		if (vm_swap_size > nswap_hiwat)
233 			swap_pager_almost_full = 0;
234 	}
235 }
236 
237 /*
238  * SWAP_PAGER_INIT() -	initialize the swap pager!
239  *
240  *	Expected to be started from system init.  NOTE:  This code is run
241  *	before much else so be careful what you depend on.  Most of the VM
242  *	system has yet to be initialized at this point.
243  */
244 static void
245 swap_pager_init()
246 {
247 	/*
248 	 * Initialize object lists
249 	 */
250 	int i;
251 
252 	for (i = 0; i < NOBJLISTS; ++i)
253 		TAILQ_INIT(&swap_pager_object_list[i]);
254 	TAILQ_INIT(&swap_pager_un_object_list);
255 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
256 
257 	/*
258 	 * Device Stripe, in PAGE_SIZE'd blocks
259 	 */
260 	dmmax = SWB_NPAGES * 2;
261 	dmmax_mask = ~(dmmax - 1);
262 }
263 
264 /*
265  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
266  *
267  *	Expected to be started from pageout process once, prior to entering
268  *	its main loop.
269  */
270 void
271 swap_pager_swap_init()
272 {
273 	int n, n2;
274 
275 	/*
276 	 * Number of in-transit swap bp operations.  Don't
277 	 * exhaust the pbufs completely.  Make sure we
278 	 * initialize workable values (0 will work for hysteresis
279 	 * but it isn't very efficient).
280 	 *
281 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
282 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
283 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
284 	 * constrained by the swap device interleave stripe size.
285 	 *
286 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
287 	 * designed to prevent other I/O from having high latencies due to
288 	 * our pageout I/O.  The value 4 works well for one or two active swap
289 	 * devices but is probably a little low if you have more.  Even so,
290 	 * a higher value would probably generate only a limited improvement
291 	 * with three or four active swap devices since the system does not
292 	 * typically have to pageout at extreme bandwidths.   We will want
293 	 * at least 2 per swap devices, and 4 is a pretty good value if you
294 	 * have one NFS swap device due to the command/ack latency over NFS.
295 	 * So it all works out pretty well.
296 	 */
297 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
298 
299 	mtx_lock(&pbuf_mtx);
300 	nsw_rcount = (nswbuf + 1) / 2;
301 	nsw_wcount_sync = (nswbuf + 3) / 4;
302 	nsw_wcount_async = 4;
303 	nsw_wcount_async_max = nsw_wcount_async;
304 	mtx_unlock(&pbuf_mtx);
305 
306 	/*
307 	 * Initialize our zone.  Right now I'm just guessing on the number
308 	 * we need based on the number of pages in the system.  Each swblock
309 	 * can hold 16 pages, so this is probably overkill.  This reservation
310 	 * is typically limited to around 32MB by default.
311 	 */
312 	n = cnt.v_page_count / 2;
313 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
314 		n = maxswzone / sizeof(struct swblock);
315 	n2 = n;
316 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
317 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
318 	do {
319 		if (uma_zone_set_obj(swap_zone, NULL, n))
320 			break;
321 		/*
322 		 * if the allocation failed, try a zone two thirds the
323 		 * size of the previous attempt.
324 		 */
325 		n -= ((n + 2) / 3);
326 	} while (n > 0);
327 	if (swap_zone == NULL)
328 		panic("failed to create swap_zone.");
329 	if (n2 != n)
330 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
331 	n2 = n;
332 
333 	/*
334 	 * Initialize our meta-data hash table.  The swapper does not need to
335 	 * be quite as efficient as the VM system, so we do not use an
336 	 * oversized hash table.
337 	 *
338 	 * 	n: 		size of hash table, must be power of 2
339 	 *	swhash_mask:	hash table index mask
340 	 */
341 	for (n = 1; n < n2 / 8; n *= 2)
342 		;
343 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
344 	swhash_mask = n - 1;
345 }
346 
347 /*
348  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
349  *			its metadata structures.
350  *
351  *	This routine is called from the mmap and fork code to create a new
352  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
353  *	and then converting it with swp_pager_meta_build().
354  *
355  *	This routine may block in vm_object_allocate() and create a named
356  *	object lookup race, so we must interlock.   We must also run at
357  *	splvm() for the object lookup to handle races with interrupts, but
358  *	we do not have to maintain splvm() in between the lookup and the
359  *	add because (I believe) it is not possible to attempt to create
360  *	a new swap object w/handle when a default object with that handle
361  *	already exists.
362  *
363  * MPSAFE
364  */
365 static vm_object_t
366 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
367 		 vm_ooffset_t offset)
368 {
369 	vm_object_t object;
370 
371 	mtx_lock(&Giant);
372 	if (handle) {
373 		/*
374 		 * Reference existing named region or allocate new one.  There
375 		 * should not be a race here against swp_pager_meta_build()
376 		 * as called from vm_page_remove() in regards to the lookup
377 		 * of the handle.
378 		 */
379 		sx_xlock(&sw_alloc_sx);
380 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
381 
382 		if (object != NULL) {
383 			vm_object_reference(object);
384 		} else {
385 			object = vm_object_allocate(OBJT_DEFAULT,
386 				OFF_TO_IDX(offset + PAGE_MASK + size));
387 			object->handle = handle;
388 
389 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
390 		}
391 		sx_xunlock(&sw_alloc_sx);
392 	} else {
393 		object = vm_object_allocate(OBJT_DEFAULT,
394 			OFF_TO_IDX(offset + PAGE_MASK + size));
395 
396 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
397 	}
398 	mtx_unlock(&Giant);
399 	return (object);
400 }
401 
402 /*
403  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
404  *
405  *	The swap backing for the object is destroyed.  The code is
406  *	designed such that we can reinstantiate it later, but this
407  *	routine is typically called only when the entire object is
408  *	about to be destroyed.
409  *
410  *	This routine may block, but no longer does.
411  *
412  *	The object must be locked or unreferenceable.
413  */
414 static void
415 swap_pager_dealloc(object)
416 	vm_object_t object;
417 {
418 	int s;
419 
420 	GIANT_REQUIRED;
421 
422 	/*
423 	 * Remove from list right away so lookups will fail if we block for
424 	 * pageout completion.
425 	 */
426 	mtx_lock(&sw_alloc_mtx);
427 	if (object->handle == NULL) {
428 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
429 	} else {
430 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
431 	}
432 	mtx_unlock(&sw_alloc_mtx);
433 
434 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
435 	vm_object_pip_wait(object, "swpdea");
436 
437 	/*
438 	 * Free all remaining metadata.  We only bother to free it from
439 	 * the swap meta data.  We do not attempt to free swapblk's still
440 	 * associated with vm_page_t's for this object.  We do not care
441 	 * if paging is still in progress on some objects.
442 	 */
443 	s = splvm();
444 	swp_pager_meta_free_all(object);
445 	splx(s);
446 }
447 
448 /************************************************************************
449  *			SWAP PAGER BITMAP ROUTINES			*
450  ************************************************************************/
451 
452 /*
453  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
454  *
455  *	Allocate swap for the requested number of pages.  The starting
456  *	swap block number (a page index) is returned or SWAPBLK_NONE
457  *	if the allocation failed.
458  *
459  *	Also has the side effect of advising that somebody made a mistake
460  *	when they configured swap and didn't configure enough.
461  *
462  *	Must be called at splvm() to avoid races with bitmap frees from
463  *	vm_page_remove() aka swap_pager_page_removed().
464  *
465  *	This routine may not block
466  *	This routine must be called at splvm().
467  */
468 static __inline daddr_t
469 swp_pager_getswapspace(npages)
470 	int npages;
471 {
472 	daddr_t blk;
473 
474 	GIANT_REQUIRED;
475 
476 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
477 		if (swap_pager_full != 2) {
478 			printf("swap_pager_getswapspace: failed\n");
479 			swap_pager_full = 2;
480 			swap_pager_almost_full = 1;
481 		}
482 	} else {
483 		vm_swap_size -= npages;
484 		/* per-swap area stats */
485 		swdevt[BLK2DEVIDX(blk)].sw_used += npages;
486 		swp_sizecheck();
487 	}
488 	return (blk);
489 }
490 
491 /*
492  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
493  *
494  *	This routine returns the specified swap blocks back to the bitmap.
495  *
496  *	Note:  This routine may not block (it could in the old swap code),
497  *	and through the use of the new blist routines it does not block.
498  *
499  *	We must be called at splvm() to avoid races with bitmap frees from
500  *	vm_page_remove() aka swap_pager_page_removed().
501  *
502  *	This routine may not block
503  *	This routine must be called at splvm().
504  */
505 static __inline void
506 swp_pager_freeswapspace(blk, npages)
507 	daddr_t blk;
508 	int npages;
509 {
510 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
511 
512 	GIANT_REQUIRED;
513 
514 	/* per-swap area stats */
515 	sp->sw_used -= npages;
516 
517 	/*
518 	 * If we are attempting to stop swapping on this device, we
519 	 * don't want to mark any blocks free lest they be reused.
520 	 */
521 	if (sp->sw_flags & SW_CLOSING)
522 		return;
523 
524 	blist_free(swapblist, blk, npages);
525 	vm_swap_size += npages;
526 	swp_sizecheck();
527 }
528 
529 /*
530  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
531  *				range within an object.
532  *
533  *	This is a globally accessible routine.
534  *
535  *	This routine removes swapblk assignments from swap metadata.
536  *
537  *	The external callers of this routine typically have already destroyed
538  *	or renamed vm_page_t's associated with this range in the object so
539  *	we should be ok.
540  *
541  *	This routine may be called at any spl.  We up our spl to splvm temporarily
542  *	in order to perform the metadata removal.
543  */
544 void
545 swap_pager_freespace(object, start, size)
546 	vm_object_t object;
547 	vm_pindex_t start;
548 	vm_size_t size;
549 {
550 	int s = splvm();
551 
552 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
553 	swp_pager_meta_free(object, start, size);
554 	splx(s);
555 }
556 
557 /*
558  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
559  *
560  *	Assigns swap blocks to the specified range within the object.  The
561  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
562  *
563  *	Returns 0 on success, -1 on failure.
564  */
565 int
566 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
567 {
568 	int s;
569 	int n = 0;
570 	daddr_t blk = SWAPBLK_NONE;
571 	vm_pindex_t beg = start;	/* save start index */
572 
573 	s = splvm();
574 	while (size) {
575 		if (n == 0) {
576 			n = BLIST_MAX_ALLOC;
577 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
578 				n >>= 1;
579 				if (n == 0) {
580 					swp_pager_meta_free(object, beg, start - beg);
581 					splx(s);
582 					return (-1);
583 				}
584 			}
585 		}
586 		swp_pager_meta_build(object, start, blk);
587 		--size;
588 		++start;
589 		++blk;
590 		--n;
591 	}
592 	swp_pager_meta_free(object, start, n);
593 	splx(s);
594 	return (0);
595 }
596 
597 /*
598  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
599  *			and destroy the source.
600  *
601  *	Copy any valid swapblks from the source to the destination.  In
602  *	cases where both the source and destination have a valid swapblk,
603  *	we keep the destination's.
604  *
605  *	This routine is allowed to block.  It may block allocating metadata
606  *	indirectly through swp_pager_meta_build() or if paging is still in
607  *	progress on the source.
608  *
609  *	This routine can be called at any spl
610  *
611  *	XXX vm_page_collapse() kinda expects us not to block because we
612  *	supposedly do not need to allocate memory, but for the moment we
613  *	*may* have to get a little memory from the zone allocator, but
614  *	it is taken from the interrupt memory.  We should be ok.
615  *
616  *	The source object contains no vm_page_t's (which is just as well)
617  *
618  *	The source object is of type OBJT_SWAP.
619  *
620  *	The source and destination objects must be locked or
621  *	inaccessible (XXX are they ?)
622  */
623 void
624 swap_pager_copy(srcobject, dstobject, offset, destroysource)
625 	vm_object_t srcobject;
626 	vm_object_t dstobject;
627 	vm_pindex_t offset;
628 	int destroysource;
629 {
630 	vm_pindex_t i;
631 	int s;
632 
633 	GIANT_REQUIRED;
634 
635 	s = splvm();
636 	/*
637 	 * If destroysource is set, we remove the source object from the
638 	 * swap_pager internal queue now.
639 	 */
640 	if (destroysource) {
641 		mtx_lock(&sw_alloc_mtx);
642 		if (srcobject->handle == NULL) {
643 			TAILQ_REMOVE(
644 			    &swap_pager_un_object_list,
645 			    srcobject,
646 			    pager_object_list
647 			);
648 		} else {
649 			TAILQ_REMOVE(
650 			    NOBJLIST(srcobject->handle),
651 			    srcobject,
652 			    pager_object_list
653 			);
654 		}
655 		mtx_unlock(&sw_alloc_mtx);
656 	}
657 
658 	/*
659 	 * transfer source to destination.
660 	 */
661 	for (i = 0; i < dstobject->size; ++i) {
662 		daddr_t dstaddr;
663 
664 		/*
665 		 * Locate (without changing) the swapblk on the destination,
666 		 * unless it is invalid in which case free it silently, or
667 		 * if the destination is a resident page, in which case the
668 		 * source is thrown away.
669 		 */
670 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
671 
672 		if (dstaddr == SWAPBLK_NONE) {
673 			/*
674 			 * Destination has no swapblk and is not resident,
675 			 * copy source.
676 			 */
677 			daddr_t srcaddr;
678 
679 			srcaddr = swp_pager_meta_ctl(
680 			    srcobject,
681 			    i + offset,
682 			    SWM_POP
683 			);
684 
685 			if (srcaddr != SWAPBLK_NONE)
686 				swp_pager_meta_build(dstobject, i, srcaddr);
687 		} else {
688 			/*
689 			 * Destination has valid swapblk or it is represented
690 			 * by a resident page.  We destroy the sourceblock.
691 			 */
692 
693 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
694 		}
695 	}
696 
697 	/*
698 	 * Free left over swap blocks in source.
699 	 *
700 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
701 	 * double-remove the object from the swap queues.
702 	 */
703 	if (destroysource) {
704 		swp_pager_meta_free_all(srcobject);
705 		/*
706 		 * Reverting the type is not necessary, the caller is going
707 		 * to destroy srcobject directly, but I'm doing it here
708 		 * for consistency since we've removed the object from its
709 		 * queues.
710 		 */
711 		srcobject->type = OBJT_DEFAULT;
712 	}
713 	splx(s);
714 }
715 
716 /*
717  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
718  *				the requested page.
719  *
720  *	We determine whether good backing store exists for the requested
721  *	page and return TRUE if it does, FALSE if it doesn't.
722  *
723  *	If TRUE, we also try to determine how much valid, contiguous backing
724  *	store exists before and after the requested page within a reasonable
725  *	distance.  We do not try to restrict it to the swap device stripe
726  *	(that is handled in getpages/putpages).  It probably isn't worth
727  *	doing here.
728  */
729 static boolean_t
730 swap_pager_haspage(object, pindex, before, after)
731 	vm_object_t object;
732 	vm_pindex_t pindex;
733 	int *before;
734 	int *after;
735 {
736 	daddr_t blk0;
737 	int s;
738 
739 	/*
740 	 * do we have good backing store at the requested index ?
741 	 */
742 	s = splvm();
743 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
744 
745 	if (blk0 == SWAPBLK_NONE) {
746 		splx(s);
747 		if (before)
748 			*before = 0;
749 		if (after)
750 			*after = 0;
751 		return (FALSE);
752 	}
753 
754 	/*
755 	 * find backwards-looking contiguous good backing store
756 	 */
757 	if (before != NULL) {
758 		int i;
759 
760 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
761 			daddr_t blk;
762 
763 			if (i > pindex)
764 				break;
765 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
766 			if (blk != blk0 - i)
767 				break;
768 		}
769 		*before = (i - 1);
770 	}
771 
772 	/*
773 	 * find forward-looking contiguous good backing store
774 	 */
775 	if (after != NULL) {
776 		int i;
777 
778 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
779 			daddr_t blk;
780 
781 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
782 			if (blk != blk0 + i)
783 				break;
784 		}
785 		*after = (i - 1);
786 	}
787 	splx(s);
788 	return (TRUE);
789 }
790 
791 /*
792  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
793  *
794  *	This removes any associated swap backing store, whether valid or
795  *	not, from the page.
796  *
797  *	This routine is typically called when a page is made dirty, at
798  *	which point any associated swap can be freed.  MADV_FREE also
799  *	calls us in a special-case situation
800  *
801  *	NOTE!!!  If the page is clean and the swap was valid, the caller
802  *	should make the page dirty before calling this routine.  This routine
803  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
804  *	depends on it.
805  *
806  *	This routine may not block
807  *	This routine must be called at splvm()
808  */
809 static void
810 swap_pager_unswapped(m)
811 	vm_page_t m;
812 {
813 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
814 }
815 
816 /*
817  * SWAP_PAGER_STRATEGY() - read, write, free blocks
818  *
819  *	This implements the vm_pager_strategy() interface to swap and allows
820  *	other parts of the system to directly access swap as backing store
821  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
822  *	cacheless interface ( i.e. caching occurs at higher levels ).
823  *	Therefore we do not maintain any resident pages.  All I/O goes
824  *	directly to and from the swap device.
825  *
826  *	Note that b_blkno is scaled for PAGE_SIZE
827  *
828  *	We currently attempt to run I/O synchronously or asynchronously as
829  *	the caller requests.  This isn't perfect because we loose error
830  *	sequencing when we run multiple ops in parallel to satisfy a request.
831  *	But this is swap, so we let it all hang out.
832  */
833 static void
834 swap_pager_strategy(vm_object_t object, struct bio *bp)
835 {
836 	vm_pindex_t start;
837 	int count;
838 	int s;
839 	char *data;
840 	struct buf *nbp = NULL;
841 
842 	GIANT_REQUIRED;
843 
844 	/* XXX: KASSERT instead ? */
845 	if (bp->bio_bcount & PAGE_MASK) {
846 		biofinish(bp, NULL, EINVAL);
847 		printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount);
848 		return;
849 	}
850 
851 	/*
852 	 * Clear error indication, initialize page index, count, data pointer.
853 	 */
854 	bp->bio_error = 0;
855 	bp->bio_flags &= ~BIO_ERROR;
856 	bp->bio_resid = bp->bio_bcount;
857 	*(u_int *) &bp->bio_driver1 = 0;
858 
859 	start = bp->bio_pblkno;
860 	count = howmany(bp->bio_bcount, PAGE_SIZE);
861 	data = bp->bio_data;
862 
863 	s = splvm();
864 
865 	/*
866 	 * Deal with BIO_DELETE
867 	 */
868 	if (bp->bio_cmd == BIO_DELETE) {
869 		/*
870 		 * FREE PAGE(s) - destroy underlying swap that is no longer
871 		 *		  needed.
872 		 */
873 		swp_pager_meta_free(object, start, count);
874 		splx(s);
875 		bp->bio_resid = 0;
876 		biodone(bp);
877 		return;
878 	}
879 
880 	/*
881 	 * Execute read or write
882 	 */
883 	while (count > 0) {
884 		daddr_t blk;
885 
886 		/*
887 		 * Obtain block.  If block not found and writing, allocate a
888 		 * new block and build it into the object.
889 		 */
890 
891 		blk = swp_pager_meta_ctl(object, start, 0);
892 		if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) {
893 			blk = swp_pager_getswapspace(1);
894 			if (blk == SWAPBLK_NONE) {
895 				bp->bio_error = ENOMEM;
896 				bp->bio_flags |= BIO_ERROR;
897 				break;
898 			}
899 			swp_pager_meta_build(object, start, blk);
900 		}
901 
902 		/*
903 		 * Do we have to flush our current collection?  Yes if:
904 		 *
905 		 *	- no swap block at this index
906 		 *	- swap block is not contiguous
907 		 *	- we cross a physical disk boundry in the
908 		 *	  stripe.
909 		 */
910 		if (
911 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
912 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
913 		    )
914 		) {
915 			splx(s);
916 			if (bp->bio_cmd == BIO_READ) {
917 				++cnt.v_swapin;
918 				cnt.v_swappgsin += btoc(nbp->b_bcount);
919 			} else {
920 				++cnt.v_swapout;
921 				cnt.v_swappgsout += btoc(nbp->b_bcount);
922 				nbp->b_dirtyend = nbp->b_bcount;
923 			}
924 			flushchainbuf(nbp);
925 			s = splvm();
926 			nbp = NULL;
927 		}
928 
929 		/*
930 		 * Add new swapblk to nbp, instantiating nbp if necessary.
931 		 * Zero-fill reads are able to take a shortcut.
932 		 */
933 		if (blk == SWAPBLK_NONE) {
934 			/*
935 			 * We can only get here if we are reading.  Since
936 			 * we are at splvm() we can safely modify b_resid,
937 			 * even if chain ops are in progress.
938 			 */
939 			bzero(data, PAGE_SIZE);
940 			bp->bio_resid -= PAGE_SIZE;
941 		} else {
942 			if (nbp == NULL) {
943 				nbp = getchainbuf(bp, swapdev_vp, B_ASYNC);
944 				nbp->b_blkno = blk;
945 				nbp->b_bcount = 0;
946 				nbp->b_data = data;
947 			}
948 			nbp->b_bcount += PAGE_SIZE;
949 		}
950 		--count;
951 		++start;
952 		data += PAGE_SIZE;
953 	}
954 
955 	/*
956 	 *  Flush out last buffer
957 	 */
958 	splx(s);
959 
960 	if (nbp) {
961 		if (nbp->b_iocmd == BIO_READ) {
962 			++cnt.v_swapin;
963 			cnt.v_swappgsin += btoc(nbp->b_bcount);
964 		} else {
965 			++cnt.v_swapout;
966 			cnt.v_swappgsout += btoc(nbp->b_bcount);
967 			nbp->b_dirtyend = nbp->b_bcount;
968 		}
969 		flushchainbuf(nbp);
970 		/* nbp = NULL; */
971 	}
972 	/*
973 	 * Wait for completion.
974 	 */
975 	waitchainbuf(bp, 0, 1);
976 }
977 
978 /*
979  * SWAP_PAGER_GETPAGES() - bring pages in from swap
980  *
981  *	Attempt to retrieve (m, count) pages from backing store, but make
982  *	sure we retrieve at least m[reqpage].  We try to load in as large
983  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
984  *	belongs to the same object.
985  *
986  *	The code is designed for asynchronous operation and
987  *	immediate-notification of 'reqpage' but tends not to be
988  *	used that way.  Please do not optimize-out this algorithmic
989  *	feature, I intend to improve on it in the future.
990  *
991  *	The parent has a single vm_object_pip_add() reference prior to
992  *	calling us and we should return with the same.
993  *
994  *	The parent has BUSY'd the pages.  We should return with 'm'
995  *	left busy, but the others adjusted.
996  */
997 static int
998 swap_pager_getpages(object, m, count, reqpage)
999 	vm_object_t object;
1000 	vm_page_t *m;
1001 	int count, reqpage;
1002 {
1003 	struct buf *bp;
1004 	vm_page_t mreq;
1005 	int s;
1006 	int i;
1007 	int j;
1008 	daddr_t blk;
1009 	vm_pindex_t lastpindex;
1010 
1011 	mreq = m[reqpage];
1012 
1013 	if (mreq->object != object) {
1014 		panic("swap_pager_getpages: object mismatch %p/%p",
1015 		    object,
1016 		    mreq->object
1017 		);
1018 	}
1019 	/*
1020 	 * Calculate range to retrieve.  The pages have already been assigned
1021 	 * their swapblks.  We require a *contiguous* range that falls entirely
1022 	 * within a single device stripe.   If we do not supply it, bad things
1023 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1024 	 * loops are set up such that the case(s) are handled implicitly.
1025 	 *
1026 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1027 	 * not need to be, but it will go a little faster if it is.
1028 	 */
1029 	s = splvm();
1030 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1031 
1032 	for (i = reqpage - 1; i >= 0; --i) {
1033 		daddr_t iblk;
1034 
1035 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1036 		if (blk != iblk + (reqpage - i))
1037 			break;
1038 		if ((blk ^ iblk) & dmmax_mask)
1039 			break;
1040 	}
1041 	++i;
1042 
1043 	for (j = reqpage + 1; j < count; ++j) {
1044 		daddr_t jblk;
1045 
1046 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1047 		if (blk != jblk - (j - reqpage))
1048 			break;
1049 		if ((blk ^ jblk) & dmmax_mask)
1050 			break;
1051 	}
1052 
1053 	/*
1054 	 * free pages outside our collection range.   Note: we never free
1055 	 * mreq, it must remain busy throughout.
1056 	 */
1057 	vm_page_lock_queues();
1058 	{
1059 		int k;
1060 
1061 		for (k = 0; k < i; ++k)
1062 			vm_page_free(m[k]);
1063 		for (k = j; k < count; ++k)
1064 			vm_page_free(m[k]);
1065 	}
1066 	vm_page_unlock_queues();
1067 	splx(s);
1068 
1069 
1070 	/*
1071 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1072 	 * still busy, but the others unbusied.
1073 	 */
1074 	if (blk == SWAPBLK_NONE)
1075 		return (VM_PAGER_FAIL);
1076 
1077 	/*
1078 	 * Getpbuf() can sleep.
1079 	 */
1080 	VM_OBJECT_UNLOCK(object);
1081 	/*
1082 	 * Get a swap buffer header to perform the IO
1083 	 */
1084 	bp = getpbuf(&nsw_rcount);
1085 
1086 	/*
1087 	 * map our page(s) into kva for input
1088 	 *
1089 	 * NOTE: B_PAGING is set by pbgetvp()
1090 	 */
1091 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1092 
1093 	bp->b_iocmd = BIO_READ;
1094 	bp->b_iodone = swp_pager_async_iodone;
1095 	bp->b_rcred = crhold(thread0.td_ucred);
1096 	bp->b_wcred = crhold(thread0.td_ucred);
1097 	bp->b_blkno = blk - (reqpage - i);
1098 	bp->b_bcount = PAGE_SIZE * (j - i);
1099 	bp->b_bufsize = PAGE_SIZE * (j - i);
1100 	bp->b_pager.pg_reqpage = reqpage - i;
1101 
1102 	VM_OBJECT_LOCK(object);
1103 	vm_page_lock_queues();
1104 	{
1105 		int k;
1106 
1107 		for (k = i; k < j; ++k) {
1108 			bp->b_pages[k - i] = m[k];
1109 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1110 		}
1111 	}
1112 	vm_page_unlock_queues();
1113 	VM_OBJECT_UNLOCK(object);
1114 	bp->b_npages = j - i;
1115 
1116 	pbgetvp(swapdev_vp, bp);
1117 
1118 	cnt.v_swapin++;
1119 	cnt.v_swappgsin += bp->b_npages;
1120 
1121 	/*
1122 	 * We still hold the lock on mreq, and our automatic completion routine
1123 	 * does not remove it.
1124 	 */
1125 	VM_OBJECT_LOCK(mreq->object);
1126 	vm_object_pip_add(mreq->object, bp->b_npages);
1127 	VM_OBJECT_UNLOCK(mreq->object);
1128 	lastpindex = m[j-1]->pindex;
1129 
1130 	/*
1131 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1132 	 * this point because we automatically release it on completion.
1133 	 * Instead, we look at the one page we are interested in which we
1134 	 * still hold a lock on even through the I/O completion.
1135 	 *
1136 	 * The other pages in our m[] array are also released on completion,
1137 	 * so we cannot assume they are valid anymore either.
1138 	 *
1139 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1140 	 */
1141 	BUF_KERNPROC(bp);
1142 	VOP_STRATEGY(bp->b_vp, bp);
1143 
1144 	/*
1145 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1146 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1147 	 * is set in the meta-data.
1148 	 */
1149 	s = splvm();
1150 	vm_page_lock_queues();
1151 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1152 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1153 		cnt.v_intrans++;
1154 		if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) {
1155 			printf(
1156 			    "swap_pager: indefinite wait buffer: device:"
1157 				" %s, blkno: %ld, size: %ld\n",
1158 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1159 			    bp->b_bcount
1160 			);
1161 		}
1162 	}
1163 	vm_page_unlock_queues();
1164 	splx(s);
1165 
1166 	VM_OBJECT_LOCK(mreq->object);
1167 	/*
1168 	 * mreq is left busied after completion, but all the other pages
1169 	 * are freed.  If we had an unrecoverable read error the page will
1170 	 * not be valid.
1171 	 */
1172 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1173 		return (VM_PAGER_ERROR);
1174 	} else {
1175 		return (VM_PAGER_OK);
1176 	}
1177 
1178 	/*
1179 	 * A final note: in a low swap situation, we cannot deallocate swap
1180 	 * and mark a page dirty here because the caller is likely to mark
1181 	 * the page clean when we return, causing the page to possibly revert
1182 	 * to all-zero's later.
1183 	 */
1184 }
1185 
1186 /*
1187  *	swap_pager_putpages:
1188  *
1189  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1190  *
1191  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1192  *	are automatically converted to SWAP objects.
1193  *
1194  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1195  *	vm_page reservation system coupled with properly written VFS devices
1196  *	should ensure that no low-memory deadlock occurs.  This is an area
1197  *	which needs work.
1198  *
1199  *	The parent has N vm_object_pip_add() references prior to
1200  *	calling us and will remove references for rtvals[] that are
1201  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1202  *	completion.
1203  *
1204  *	The parent has soft-busy'd the pages it passes us and will unbusy
1205  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1206  *	We need to unbusy the rest on I/O completion.
1207  */
1208 void
1209 swap_pager_putpages(object, m, count, sync, rtvals)
1210 	vm_object_t object;
1211 	vm_page_t *m;
1212 	int count;
1213 	boolean_t sync;
1214 	int *rtvals;
1215 {
1216 	int i;
1217 	int n = 0;
1218 
1219 	GIANT_REQUIRED;
1220 	if (count && m[0]->object != object) {
1221 		panic("swap_pager_getpages: object mismatch %p/%p",
1222 		    object,
1223 		    m[0]->object
1224 		);
1225 	}
1226 	/*
1227 	 * Step 1
1228 	 *
1229 	 * Turn object into OBJT_SWAP
1230 	 * check for bogus sysops
1231 	 * force sync if not pageout process
1232 	 */
1233 	if (object->type != OBJT_SWAP)
1234 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1235 
1236 	if (curproc != pageproc)
1237 		sync = TRUE;
1238 
1239 	/*
1240 	 * Step 2
1241 	 *
1242 	 * Update nsw parameters from swap_async_max sysctl values.
1243 	 * Do not let the sysop crash the machine with bogus numbers.
1244 	 */
1245 	mtx_lock(&pbuf_mtx);
1246 	if (swap_async_max != nsw_wcount_async_max) {
1247 		int n;
1248 		int s;
1249 
1250 		/*
1251 		 * limit range
1252 		 */
1253 		if ((n = swap_async_max) > nswbuf / 2)
1254 			n = nswbuf / 2;
1255 		if (n < 1)
1256 			n = 1;
1257 		swap_async_max = n;
1258 
1259 		/*
1260 		 * Adjust difference ( if possible ).  If the current async
1261 		 * count is too low, we may not be able to make the adjustment
1262 		 * at this time.
1263 		 */
1264 		s = splvm();
1265 		n -= nsw_wcount_async_max;
1266 		if (nsw_wcount_async + n >= 0) {
1267 			nsw_wcount_async += n;
1268 			nsw_wcount_async_max += n;
1269 			wakeup(&nsw_wcount_async);
1270 		}
1271 		splx(s);
1272 	}
1273 	mtx_unlock(&pbuf_mtx);
1274 
1275 	/*
1276 	 * Step 3
1277 	 *
1278 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1279 	 * The page is left dirty until the pageout operation completes
1280 	 * successfully.
1281 	 */
1282 	for (i = 0; i < count; i += n) {
1283 		int s;
1284 		int j;
1285 		struct buf *bp;
1286 		daddr_t blk;
1287 
1288 		/*
1289 		 * Maximum I/O size is limited by a number of factors.
1290 		 */
1291 		n = min(BLIST_MAX_ALLOC, count - i);
1292 		n = min(n, nsw_cluster_max);
1293 
1294 		s = splvm();
1295 
1296 		/*
1297 		 * Get biggest block of swap we can.  If we fail, fall
1298 		 * back and try to allocate a smaller block.  Don't go
1299 		 * overboard trying to allocate space if it would overly
1300 		 * fragment swap.
1301 		 */
1302 		while (
1303 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1304 		    n > 4
1305 		) {
1306 			n >>= 1;
1307 		}
1308 		if (blk == SWAPBLK_NONE) {
1309 			for (j = 0; j < n; ++j)
1310 				rtvals[i+j] = VM_PAGER_FAIL;
1311 			splx(s);
1312 			continue;
1313 		}
1314 
1315 		/*
1316 		 * The I/O we are constructing cannot cross a physical
1317 		 * disk boundry in the swap stripe.  Note: we are still
1318 		 * at splvm().
1319 		 */
1320 		if ((blk ^ (blk + n)) & dmmax_mask) {
1321 			j = ((blk + dmmax) & dmmax_mask) - blk;
1322 			swp_pager_freeswapspace(blk + j, n - j);
1323 			n = j;
1324 		}
1325 
1326 		/*
1327 		 * All I/O parameters have been satisfied, build the I/O
1328 		 * request and assign the swap space.
1329 		 *
1330 		 * NOTE: B_PAGING is set by pbgetvp()
1331 		 */
1332 		if (sync == TRUE) {
1333 			bp = getpbuf(&nsw_wcount_sync);
1334 		} else {
1335 			bp = getpbuf(&nsw_wcount_async);
1336 			bp->b_flags = B_ASYNC;
1337 		}
1338 		bp->b_iocmd = BIO_WRITE;
1339 
1340 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1341 
1342 		bp->b_rcred = crhold(thread0.td_ucred);
1343 		bp->b_wcred = crhold(thread0.td_ucred);
1344 		bp->b_bcount = PAGE_SIZE * n;
1345 		bp->b_bufsize = PAGE_SIZE * n;
1346 		bp->b_blkno = blk;
1347 
1348 		pbgetvp(swapdev_vp, bp);
1349 
1350 		for (j = 0; j < n; ++j) {
1351 			vm_page_t mreq = m[i+j];
1352 
1353 			swp_pager_meta_build(
1354 			    mreq->object,
1355 			    mreq->pindex,
1356 			    blk + j
1357 			);
1358 			vm_page_dirty(mreq);
1359 			rtvals[i+j] = VM_PAGER_OK;
1360 
1361 			vm_page_lock_queues();
1362 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1363 			vm_page_unlock_queues();
1364 			bp->b_pages[j] = mreq;
1365 		}
1366 		bp->b_npages = n;
1367 		/*
1368 		 * Must set dirty range for NFS to work.
1369 		 */
1370 		bp->b_dirtyoff = 0;
1371 		bp->b_dirtyend = bp->b_bcount;
1372 
1373 		cnt.v_swapout++;
1374 		cnt.v_swappgsout += bp->b_npages;
1375 		VI_LOCK(swapdev_vp);
1376 		swapdev_vp->v_numoutput++;
1377 		VI_UNLOCK(swapdev_vp);
1378 
1379 		splx(s);
1380 
1381 		/*
1382 		 * asynchronous
1383 		 *
1384 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1385 		 */
1386 		if (sync == FALSE) {
1387 			bp->b_iodone = swp_pager_async_iodone;
1388 			BUF_KERNPROC(bp);
1389 			VOP_STRATEGY(bp->b_vp, bp);
1390 
1391 			for (j = 0; j < n; ++j)
1392 				rtvals[i+j] = VM_PAGER_PEND;
1393 			/* restart outter loop */
1394 			continue;
1395 		}
1396 
1397 		/*
1398 		 * synchronous
1399 		 *
1400 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1401 		 */
1402 		bp->b_iodone = swp_pager_sync_iodone;
1403 		VOP_STRATEGY(bp->b_vp, bp);
1404 
1405 		/*
1406 		 * Wait for the sync I/O to complete, then update rtvals.
1407 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1408 		 * our async completion routine at the end, thus avoiding a
1409 		 * double-free.
1410 		 */
1411 		s = splbio();
1412 		while ((bp->b_flags & B_DONE) == 0) {
1413 			tsleep(bp, PVM, "swwrt", 0);
1414 		}
1415 		for (j = 0; j < n; ++j)
1416 			rtvals[i+j] = VM_PAGER_PEND;
1417 		/*
1418 		 * Now that we are through with the bp, we can call the
1419 		 * normal async completion, which frees everything up.
1420 		 */
1421 		swp_pager_async_iodone(bp);
1422 		splx(s);
1423 	}
1424 }
1425 
1426 /*
1427  *	swap_pager_sync_iodone:
1428  *
1429  *	Completion routine for synchronous reads and writes from/to swap.
1430  *	We just mark the bp is complete and wake up anyone waiting on it.
1431  *
1432  *	This routine may not block.  This routine is called at splbio() or better.
1433  */
1434 static void
1435 swp_pager_sync_iodone(bp)
1436 	struct buf *bp;
1437 {
1438 	bp->b_flags |= B_DONE;
1439 	bp->b_flags &= ~B_ASYNC;
1440 	wakeup(bp);
1441 }
1442 
1443 /*
1444  *	swp_pager_async_iodone:
1445  *
1446  *	Completion routine for asynchronous reads and writes from/to swap.
1447  *	Also called manually by synchronous code to finish up a bp.
1448  *
1449  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1450  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1451  *	unbusy all pages except the 'main' request page.  For WRITE
1452  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1453  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1454  *
1455  *	This routine may not block.
1456  *	This routine is called at splbio() or better
1457  *
1458  *	We up ourselves to splvm() as required for various vm_page related
1459  *	calls.
1460  */
1461 static void
1462 swp_pager_async_iodone(bp)
1463 	struct buf *bp;
1464 {
1465 	int s;
1466 	int i;
1467 	vm_object_t object = NULL;
1468 
1469 	GIANT_REQUIRED;
1470 	bp->b_flags |= B_DONE;
1471 
1472 	/*
1473 	 * report error
1474 	 */
1475 	if (bp->b_ioflags & BIO_ERROR) {
1476 		printf(
1477 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1478 			"size %ld, error %d\n",
1479 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1480 		    (long)bp->b_blkno,
1481 		    (long)bp->b_bcount,
1482 		    bp->b_error
1483 		);
1484 	}
1485 
1486 	/*
1487 	 * set object, raise to splvm().
1488 	 */
1489 	s = splvm();
1490 
1491 	/*
1492 	 * remove the mapping for kernel virtual
1493 	 */
1494 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1495 
1496 	if (bp->b_npages) {
1497 		object = bp->b_pages[0]->object;
1498 		VM_OBJECT_LOCK(object);
1499 	}
1500 	vm_page_lock_queues();
1501 	/*
1502 	 * cleanup pages.  If an error occurs writing to swap, we are in
1503 	 * very serious trouble.  If it happens to be a disk error, though,
1504 	 * we may be able to recover by reassigning the swap later on.  So
1505 	 * in this case we remove the m->swapblk assignment for the page
1506 	 * but do not free it in the rlist.  The errornous block(s) are thus
1507 	 * never reallocated as swap.  Redirty the page and continue.
1508 	 */
1509 	for (i = 0; i < bp->b_npages; ++i) {
1510 		vm_page_t m = bp->b_pages[i];
1511 
1512 		vm_page_flag_clear(m, PG_SWAPINPROG);
1513 
1514 		if (bp->b_ioflags & BIO_ERROR) {
1515 			/*
1516 			 * If an error occurs I'd love to throw the swapblk
1517 			 * away without freeing it back to swapspace, so it
1518 			 * can never be used again.  But I can't from an
1519 			 * interrupt.
1520 			 */
1521 			if (bp->b_iocmd == BIO_READ) {
1522 				/*
1523 				 * When reading, reqpage needs to stay
1524 				 * locked for the parent, but all other
1525 				 * pages can be freed.  We still want to
1526 				 * wakeup the parent waiting on the page,
1527 				 * though.  ( also: pg_reqpage can be -1 and
1528 				 * not match anything ).
1529 				 *
1530 				 * We have to wake specifically requested pages
1531 				 * up too because we cleared PG_SWAPINPROG and
1532 				 * someone may be waiting for that.
1533 				 *
1534 				 * NOTE: for reads, m->dirty will probably
1535 				 * be overridden by the original caller of
1536 				 * getpages so don't play cute tricks here.
1537 				 *
1538 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1539 				 * AS THIS MESSES WITH object->memq, and it is
1540 				 * not legal to mess with object->memq from an
1541 				 * interrupt.
1542 				 */
1543 				m->valid = 0;
1544 				vm_page_flag_clear(m, PG_ZERO);
1545 				if (i != bp->b_pager.pg_reqpage)
1546 					vm_page_free(m);
1547 				else
1548 					vm_page_flash(m);
1549 				/*
1550 				 * If i == bp->b_pager.pg_reqpage, do not wake
1551 				 * the page up.  The caller needs to.
1552 				 */
1553 			} else {
1554 				/*
1555 				 * If a write error occurs, reactivate page
1556 				 * so it doesn't clog the inactive list,
1557 				 * then finish the I/O.
1558 				 */
1559 				vm_page_dirty(m);
1560 				vm_page_activate(m);
1561 				vm_page_io_finish(m);
1562 			}
1563 		} else if (bp->b_iocmd == BIO_READ) {
1564 			/*
1565 			 * For read success, clear dirty bits.  Nobody should
1566 			 * have this page mapped but don't take any chances,
1567 			 * make sure the pmap modify bits are also cleared.
1568 			 *
1569 			 * NOTE: for reads, m->dirty will probably be
1570 			 * overridden by the original caller of getpages so
1571 			 * we cannot set them in order to free the underlying
1572 			 * swap in a low-swap situation.  I don't think we'd
1573 			 * want to do that anyway, but it was an optimization
1574 			 * that existed in the old swapper for a time before
1575 			 * it got ripped out due to precisely this problem.
1576 			 *
1577 			 * clear PG_ZERO in page.
1578 			 *
1579 			 * If not the requested page then deactivate it.
1580 			 *
1581 			 * Note that the requested page, reqpage, is left
1582 			 * busied, but we still have to wake it up.  The
1583 			 * other pages are released (unbusied) by
1584 			 * vm_page_wakeup().  We do not set reqpage's
1585 			 * valid bits here, it is up to the caller.
1586 			 */
1587 			pmap_clear_modify(m);
1588 			m->valid = VM_PAGE_BITS_ALL;
1589 			vm_page_undirty(m);
1590 			vm_page_flag_clear(m, PG_ZERO);
1591 
1592 			/*
1593 			 * We have to wake specifically requested pages
1594 			 * up too because we cleared PG_SWAPINPROG and
1595 			 * could be waiting for it in getpages.  However,
1596 			 * be sure to not unbusy getpages specifically
1597 			 * requested page - getpages expects it to be
1598 			 * left busy.
1599 			 */
1600 			if (i != bp->b_pager.pg_reqpage) {
1601 				vm_page_deactivate(m);
1602 				vm_page_wakeup(m);
1603 			} else {
1604 				vm_page_flash(m);
1605 			}
1606 		} else {
1607 			/*
1608 			 * For write success, clear the modify and dirty
1609 			 * status, then finish the I/O ( which decrements the
1610 			 * busy count and possibly wakes waiter's up ).
1611 			 */
1612 			pmap_clear_modify(m);
1613 			vm_page_undirty(m);
1614 			vm_page_io_finish(m);
1615 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1616 				pmap_page_protect(m, VM_PROT_READ);
1617 		}
1618 	}
1619 	vm_page_unlock_queues();
1620 
1621 	/*
1622 	 * adjust pip.  NOTE: the original parent may still have its own
1623 	 * pip refs on the object.
1624 	 */
1625 	if (object != NULL) {
1626 		vm_object_pip_wakeupn(object, bp->b_npages);
1627 		VM_OBJECT_UNLOCK(object);
1628 	}
1629 
1630 	/*
1631 	 * release the physical I/O buffer
1632 	 */
1633 	relpbuf(
1634 	    bp,
1635 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1636 		((bp->b_flags & B_ASYNC) ?
1637 		    &nsw_wcount_async :
1638 		    &nsw_wcount_sync
1639 		)
1640 	    )
1641 	);
1642 	splx(s);
1643 }
1644 
1645 /*
1646  *	swap_pager_isswapped:
1647  *
1648  *	Return 1 if at least one page in the given object is paged
1649  *	out to the given swap device.
1650  *
1651  *	This routine may not block.
1652  */
1653 int swap_pager_isswapped(vm_object_t object, int devidx) {
1654 	daddr_t index = 0;
1655 	int bcount;
1656 	int i;
1657 
1658 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1659 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1660 		struct swblock *swap;
1661 
1662 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1663 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1664 				daddr_t v = swap->swb_pages[i];
1665 				if (v != SWAPBLK_NONE &&
1666 				    BLK2DEVIDX(v) == devidx)
1667 					return 1;
1668 			}
1669 		}
1670 
1671 		index += SWAP_META_PAGES;
1672 		if (index > 0x20000000)
1673 			panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1674 	}
1675 	return 0;
1676 }
1677 
1678 /*
1679  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1680  *
1681  *	This routine dissociates the page at the given index within a
1682  *	swap block from its backing store, paging it in if necessary.
1683  *	If the page is paged in, it is placed in the inactive queue,
1684  *	since it had its backing store ripped out from under it.
1685  *	We also attempt to swap in all other pages in the swap block,
1686  *	we only guarantee that the one at the specified index is
1687  *	paged in.
1688  *
1689  *	XXX - The code to page the whole block in doesn't work, so we
1690  *	      revert to the one-by-one behavior for now.  Sigh.
1691  */
1692 static __inline void
1693 swp_pager_force_pagein(struct swblock *swap, int idx)
1694 {
1695 	vm_object_t object;
1696 	vm_page_t m;
1697 	vm_pindex_t pindex;
1698 
1699 	object = swap->swb_object;
1700 	pindex = swap->swb_index;
1701 
1702 	VM_OBJECT_LOCK(object);
1703 	vm_object_pip_add(object, 1);
1704 	m = vm_page_grab(object, pindex + idx, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1705 	if (m->valid == VM_PAGE_BITS_ALL) {
1706 		vm_object_pip_subtract(object, 1);
1707 		VM_OBJECT_UNLOCK(object);
1708 		vm_page_lock_queues();
1709 		vm_page_activate(m);
1710 		vm_page_dirty(m);
1711 		vm_page_wakeup(m);
1712 		vm_page_unlock_queues();
1713 		vm_pager_page_unswapped(m);
1714 		return;
1715 	}
1716 
1717 	if (swap_pager_getpages(object, &m, 1, 0) !=
1718 	    VM_PAGER_OK)
1719 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1720 	vm_object_pip_subtract(object, 1);
1721 	VM_OBJECT_UNLOCK(object);
1722 
1723 	vm_page_lock_queues();
1724 	vm_page_dirty(m);
1725 	vm_page_dontneed(m);
1726 	vm_page_wakeup(m);
1727 	vm_page_unlock_queues();
1728 	vm_pager_page_unswapped(m);
1729 }
1730 
1731 
1732 /*
1733  *	swap_pager_swapoff:
1734  *
1735  *	Page in all of the pages that have been paged out to the
1736  *	given device.  The corresponding blocks in the bitmap must be
1737  *	marked as allocated and the device must be flagged SW_CLOSING.
1738  *	There may be no processes swapped out to the device.
1739  *
1740  *	The sw_used parameter points to the field in the swdev structure
1741  *	that contains a count of the number of blocks still allocated
1742  *	on the device.  If we encounter objects with a nonzero pip count
1743  *	in our scan, we use this number to determine if we're really done.
1744  *
1745  *	This routine may block.
1746  */
1747 void
1748 swap_pager_swapoff(int devidx, int *sw_used)
1749 {
1750 	struct swblock **pswap;
1751 	struct swblock *swap;
1752 	vm_object_t waitobj;
1753 	daddr_t v;
1754 	int i, j;
1755 
1756 	GIANT_REQUIRED;
1757 
1758 full_rescan:
1759 	waitobj = NULL;
1760 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1761 restart:
1762 		pswap = &swhash[i];
1763 		while ((swap = *pswap) != NULL) {
1764                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1765                                 v = swap->swb_pages[j];
1766                                 if (v != SWAPBLK_NONE &&
1767 				    BLK2DEVIDX(v) == devidx)
1768                                         break;
1769                         }
1770 			if (j < SWAP_META_PAGES) {
1771 				swp_pager_force_pagein(swap, j);
1772 				goto restart;
1773 			} else if (swap->swb_object->paging_in_progress) {
1774 				if (!waitobj)
1775 					waitobj = swap->swb_object;
1776 			}
1777 			pswap = &swap->swb_hnext;
1778 		}
1779 	}
1780 	if (waitobj && *sw_used) {
1781 	    /*
1782 	     * We wait on an arbitrary object to clock our rescans
1783 	     * to the rate of paging completion.
1784 	     */
1785 	    VM_OBJECT_LOCK(waitobj);
1786 	    vm_object_pip_wait(waitobj, "swpoff");
1787 	    VM_OBJECT_UNLOCK(waitobj);
1788 	    goto full_rescan;
1789 	}
1790 	if (*sw_used)
1791 	    panic("swapoff: failed to locate %d swap blocks", *sw_used);
1792 }
1793 
1794 /************************************************************************
1795  *				SWAP META DATA 				*
1796  ************************************************************************
1797  *
1798  *	These routines manipulate the swap metadata stored in the
1799  *	OBJT_SWAP object.  All swp_*() routines must be called at
1800  *	splvm() because swap can be freed up by the low level vm_page
1801  *	code which might be called from interrupts beyond what splbio() covers.
1802  *
1803  *	Swap metadata is implemented with a global hash and not directly
1804  *	linked into the object.  Instead the object simply contains
1805  *	appropriate tracking counters.
1806  */
1807 
1808 /*
1809  * SWP_PAGER_HASH() -	hash swap meta data
1810  *
1811  *	This is an inline helper function which hashes the swapblk given
1812  *	the object and page index.  It returns a pointer to a pointer
1813  *	to the object, or a pointer to a NULL pointer if it could not
1814  *	find a swapblk.
1815  *
1816  *	This routine must be called at splvm().
1817  */
1818 static __inline struct swblock **
1819 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1820 {
1821 	struct swblock **pswap;
1822 	struct swblock *swap;
1823 
1824 	index &= ~(vm_pindex_t)SWAP_META_MASK;
1825 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1826 	while ((swap = *pswap) != NULL) {
1827 		if (swap->swb_object == object &&
1828 		    swap->swb_index == index
1829 		) {
1830 			break;
1831 		}
1832 		pswap = &swap->swb_hnext;
1833 	}
1834 	return (pswap);
1835 }
1836 
1837 /*
1838  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1839  *
1840  *	We first convert the object to a swap object if it is a default
1841  *	object.
1842  *
1843  *	The specified swapblk is added to the object's swap metadata.  If
1844  *	the swapblk is not valid, it is freed instead.  Any previously
1845  *	assigned swapblk is freed.
1846  *
1847  *	This routine must be called at splvm(), except when used to convert
1848  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1849  */
1850 static void
1851 swp_pager_meta_build(
1852 	vm_object_t object,
1853 	vm_pindex_t pindex,
1854 	daddr_t swapblk
1855 ) {
1856 	struct swblock *swap;
1857 	struct swblock **pswap;
1858 	int idx;
1859 
1860 	GIANT_REQUIRED;
1861 	/*
1862 	 * Convert default object to swap object if necessary
1863 	 */
1864 	if (object->type != OBJT_SWAP) {
1865 		object->type = OBJT_SWAP;
1866 		object->un_pager.swp.swp_bcount = 0;
1867 
1868 		mtx_lock(&sw_alloc_mtx);
1869 		if (object->handle != NULL) {
1870 			TAILQ_INSERT_TAIL(
1871 			    NOBJLIST(object->handle),
1872 			    object,
1873 			    pager_object_list
1874 			);
1875 		} else {
1876 			TAILQ_INSERT_TAIL(
1877 			    &swap_pager_un_object_list,
1878 			    object,
1879 			    pager_object_list
1880 			);
1881 		}
1882 		mtx_unlock(&sw_alloc_mtx);
1883 	}
1884 
1885 	/*
1886 	 * Locate hash entry.  If not found create, but if we aren't adding
1887 	 * anything just return.  If we run out of space in the map we wait
1888 	 * and, since the hash table may have changed, retry.
1889 	 */
1890 retry:
1891 	pswap = swp_pager_hash(object, pindex);
1892 
1893 	if ((swap = *pswap) == NULL) {
1894 		int i;
1895 
1896 		if (swapblk == SWAPBLK_NONE)
1897 			return;
1898 
1899 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1900 		if (swap == NULL) {
1901 			VM_WAIT;
1902 			goto retry;
1903 		}
1904 
1905 		swap->swb_hnext = NULL;
1906 		swap->swb_object = object;
1907 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1908 		swap->swb_count = 0;
1909 
1910 		++object->un_pager.swp.swp_bcount;
1911 
1912 		for (i = 0; i < SWAP_META_PAGES; ++i)
1913 			swap->swb_pages[i] = SWAPBLK_NONE;
1914 	}
1915 
1916 	/*
1917 	 * Delete prior contents of metadata
1918 	 */
1919 	idx = pindex & SWAP_META_MASK;
1920 
1921 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1922 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1923 		--swap->swb_count;
1924 	}
1925 
1926 	/*
1927 	 * Enter block into metadata
1928 	 */
1929 	swap->swb_pages[idx] = swapblk;
1930 	if (swapblk != SWAPBLK_NONE)
1931 		++swap->swb_count;
1932 }
1933 
1934 /*
1935  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1936  *
1937  *	The requested range of blocks is freed, with any associated swap
1938  *	returned to the swap bitmap.
1939  *
1940  *	This routine will free swap metadata structures as they are cleaned
1941  *	out.  This routine does *NOT* operate on swap metadata associated
1942  *	with resident pages.
1943  *
1944  *	This routine must be called at splvm()
1945  */
1946 static void
1947 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1948 {
1949 	GIANT_REQUIRED;
1950 
1951 	if (object->type != OBJT_SWAP)
1952 		return;
1953 
1954 	while (count > 0) {
1955 		struct swblock **pswap;
1956 		struct swblock *swap;
1957 
1958 		pswap = swp_pager_hash(object, index);
1959 
1960 		if ((swap = *pswap) != NULL) {
1961 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1962 
1963 			if (v != SWAPBLK_NONE) {
1964 				swp_pager_freeswapspace(v, 1);
1965 				swap->swb_pages[index & SWAP_META_MASK] =
1966 					SWAPBLK_NONE;
1967 				if (--swap->swb_count == 0) {
1968 					*pswap = swap->swb_hnext;
1969 					uma_zfree(swap_zone, swap);
1970 					--object->un_pager.swp.swp_bcount;
1971 				}
1972 			}
1973 			--count;
1974 			++index;
1975 		} else {
1976 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1977 			count -= n;
1978 			index += n;
1979 		}
1980 	}
1981 }
1982 
1983 /*
1984  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1985  *
1986  *	This routine locates and destroys all swap metadata associated with
1987  *	an object.
1988  *
1989  *	This routine must be called at splvm()
1990  */
1991 static void
1992 swp_pager_meta_free_all(vm_object_t object)
1993 {
1994 	daddr_t index = 0;
1995 
1996 	GIANT_REQUIRED;
1997 
1998 	if (object->type != OBJT_SWAP)
1999 		return;
2000 
2001 	while (object->un_pager.swp.swp_bcount) {
2002 		struct swblock **pswap;
2003 		struct swblock *swap;
2004 
2005 		pswap = swp_pager_hash(object, index);
2006 		if ((swap = *pswap) != NULL) {
2007 			int i;
2008 
2009 			for (i = 0; i < SWAP_META_PAGES; ++i) {
2010 				daddr_t v = swap->swb_pages[i];
2011 				if (v != SWAPBLK_NONE) {
2012 					--swap->swb_count;
2013 					swp_pager_freeswapspace(v, 1);
2014 				}
2015 			}
2016 			if (swap->swb_count != 0)
2017 				panic("swap_pager_meta_free_all: swb_count != 0");
2018 			*pswap = swap->swb_hnext;
2019 			uma_zfree(swap_zone, swap);
2020 			--object->un_pager.swp.swp_bcount;
2021 		}
2022 		index += SWAP_META_PAGES;
2023 		if (index > 0x20000000)
2024 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
2025 	}
2026 }
2027 
2028 /*
2029  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2030  *
2031  *	This routine is capable of looking up, popping, or freeing
2032  *	swapblk assignments in the swap meta data or in the vm_page_t.
2033  *	The routine typically returns the swapblk being looked-up, or popped,
2034  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2035  *	was invalid.  This routine will automatically free any invalid
2036  *	meta-data swapblks.
2037  *
2038  *	It is not possible to store invalid swapblks in the swap meta data
2039  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2040  *
2041  *	When acting on a busy resident page and paging is in progress, we
2042  *	have to wait until paging is complete but otherwise can act on the
2043  *	busy page.
2044  *
2045  *	This routine must be called at splvm().
2046  *
2047  *	SWM_FREE	remove and free swap block from metadata
2048  *	SWM_POP		remove from meta data but do not free.. pop it out
2049  */
2050 static daddr_t
2051 swp_pager_meta_ctl(
2052 	vm_object_t object,
2053 	vm_pindex_t pindex,
2054 	int flags
2055 ) {
2056 	struct swblock **pswap;
2057 	struct swblock *swap;
2058 	daddr_t r1;
2059 	int idx;
2060 
2061 	GIANT_REQUIRED;
2062 	/*
2063 	 * The meta data only exists of the object is OBJT_SWAP
2064 	 * and even then might not be allocated yet.
2065 	 */
2066 	if (object->type != OBJT_SWAP)
2067 		return (SWAPBLK_NONE);
2068 
2069 	r1 = SWAPBLK_NONE;
2070 	pswap = swp_pager_hash(object, pindex);
2071 
2072 	if ((swap = *pswap) != NULL) {
2073 		idx = pindex & SWAP_META_MASK;
2074 		r1 = swap->swb_pages[idx];
2075 
2076 		if (r1 != SWAPBLK_NONE) {
2077 			if (flags & SWM_FREE) {
2078 				swp_pager_freeswapspace(r1, 1);
2079 				r1 = SWAPBLK_NONE;
2080 			}
2081 			if (flags & (SWM_FREE|SWM_POP)) {
2082 				swap->swb_pages[idx] = SWAPBLK_NONE;
2083 				if (--swap->swb_count == 0) {
2084 					*pswap = swap->swb_hnext;
2085 					uma_zfree(swap_zone, swap);
2086 					--object->un_pager.swp.swp_bcount;
2087 				}
2088 			}
2089 		}
2090 	}
2091 	return (r1);
2092 }
2093 
2094 /********************************************************
2095  *		CHAINING FUNCTIONS			*
2096  ********************************************************
2097  *
2098  *	These functions support recursion of I/O operations
2099  *	on bp's, typically by chaining one or more 'child' bp's
2100  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
2101  *	chaining is possible.
2102  */
2103 
2104 /*
2105  *	vm_pager_chain_iodone:
2106  *
2107  *	io completion routine for child bp.  Currently we fudge a bit
2108  *	on dealing with b_resid.   Since users of these routines may issue
2109  *	multiple children simultaneously, sequencing of the error can be lost.
2110  */
2111 static void
2112 vm_pager_chain_iodone(struct buf *nbp)
2113 {
2114 	struct bio *bp;
2115 	u_int *count;
2116 
2117 	bp = nbp->b_caller1;
2118 	count = (u_int *)&(bp->bio_driver1);
2119 	if (bp != NULL) {
2120 		if (nbp->b_ioflags & BIO_ERROR) {
2121 			bp->bio_flags |= BIO_ERROR;
2122 			bp->bio_error = nbp->b_error;
2123 		} else if (nbp->b_resid != 0) {
2124 			bp->bio_flags |= BIO_ERROR;
2125 			bp->bio_error = EINVAL;
2126 		} else {
2127 			bp->bio_resid -= nbp->b_bcount;
2128 		}
2129 		nbp->b_caller1 = NULL;
2130 		--(*count);
2131 		if (bp->bio_flags & BIO_FLAG1) {
2132 			bp->bio_flags &= ~BIO_FLAG1;
2133 			wakeup(bp);
2134 		}
2135 	}
2136 	nbp->b_flags |= B_DONE;
2137 	nbp->b_flags &= ~B_ASYNC;
2138 	relpbuf(nbp, NULL);
2139 }
2140 
2141 /*
2142  *	getchainbuf:
2143  *
2144  *	Obtain a physical buffer and chain it to its parent buffer.  When
2145  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
2146  *	automatically propagated to the parent
2147  */
2148 static struct buf *
2149 getchainbuf(struct bio *bp, struct vnode *vp, int flags)
2150 {
2151 	struct buf *nbp;
2152 	u_int *count;
2153 
2154 	GIANT_REQUIRED;
2155 	nbp = getpbuf(NULL);
2156 	count = (u_int *)&(bp->bio_driver1);
2157 
2158 	nbp->b_caller1 = bp;
2159 	++(*count);
2160 
2161 	if (*count > 4)
2162 		waitchainbuf(bp, 4, 0);
2163 
2164 	nbp->b_iocmd = bp->bio_cmd;
2165 	nbp->b_ioflags = 0;
2166 	nbp->b_flags = flags;
2167 	nbp->b_rcred = crhold(thread0.td_ucred);
2168 	nbp->b_wcred = crhold(thread0.td_ucred);
2169 	nbp->b_iodone = vm_pager_chain_iodone;
2170 
2171 	if (vp)
2172 		pbgetvp(vp, nbp);
2173 	return (nbp);
2174 }
2175 
2176 static void
2177 flushchainbuf(struct buf *nbp)
2178 {
2179 	GIANT_REQUIRED;
2180 	if (nbp->b_bcount) {
2181 		nbp->b_bufsize = nbp->b_bcount;
2182 		if (nbp->b_iocmd == BIO_WRITE)
2183 			nbp->b_dirtyend = nbp->b_bcount;
2184 		BUF_KERNPROC(nbp);
2185 		VOP_STRATEGY(nbp->b_vp, nbp);
2186 	} else {
2187 		bufdone(nbp);
2188 	}
2189 }
2190 
2191 static void
2192 waitchainbuf(struct bio *bp, int limit, int done)
2193 {
2194  	int s;
2195 	u_int *count;
2196 
2197 	GIANT_REQUIRED;
2198 	count = (u_int *)&(bp->bio_driver1);
2199 	s = splbio();
2200 	while (*count > limit) {
2201 		bp->bio_flags |= BIO_FLAG1;
2202 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
2203 	}
2204 	if (done) {
2205 		if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) {
2206 			bp->bio_flags |= BIO_ERROR;
2207 			bp->bio_error = EINVAL;
2208 		}
2209 		biodone(bp);
2210 	}
2211 	splx(s);
2212 }
2213 
2214