xref: /freebsd/sys/vm/swap_pager.c (revision dba7640e44c5ec148a84b0d58c6c9a3c9e5147f3)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104 
105 #include <security/mac/mac_framework.h>
106 
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119 
120 #include <geom/geom.h>
121 
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define	MAX_PAGEOUT_CLUSTER	32
128 #endif
129 
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
132 #endif
133 
134 #define	SWAP_META_PAGES		PCTRIE_COUNT
135 
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143 	vm_pindex_t	p;
144 	daddr_t		d[SWAP_META_PAGES];
145 };
146 
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;	/* Allocate from here next */
151 static int nswapdev;		/* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
154 
155 static __exclusive_cache_line u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158 
159 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
160     "VM swap stats");
161 
162 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
163     &swap_reserved, 0, sysctl_page_shift, "A",
164     "Amount of swap storage needed to back all allocated anonymous memory.");
165 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
166     &swap_total, 0, sysctl_page_shift, "A",
167     "Total amount of available swap storage.");
168 
169 static int overcommit = 0;
170 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
171     "Configure virtual memory overcommit behavior. See tuning(7) "
172     "for details.");
173 static unsigned long swzone;
174 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
175     "Actual size of swap metadata zone");
176 static unsigned long swap_maxpages;
177 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
178     "Maximum amount of swap supported");
179 
180 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
181 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
182     CTLFLAG_RD, &swap_free_deferred,
183     "Number of pages that deferred freeing swap space");
184 
185 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
186 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
187     CTLFLAG_RD, &swap_free_completed,
188     "Number of deferred frees completed");
189 
190 /* bits from overcommit */
191 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
192 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
193 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
194 
195 static int
196 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
197 {
198 	uint64_t newval;
199 	u_long value = *(u_long *)arg1;
200 
201 	newval = ((uint64_t)value) << PAGE_SHIFT;
202 	return (sysctl_handle_64(oidp, &newval, 0, req));
203 }
204 
205 static bool
206 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
207 {
208 	struct uidinfo *uip;
209 	u_long prev;
210 
211 	uip = cred->cr_ruidinfo;
212 
213 	prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
214 	if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
215 	    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
216 	    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
217 		prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
218 		KASSERT(prev >= pincr, ("negative vmsize for uid = %d\n", uip->ui_uid));
219 		return (false);
220 	}
221 	return (true);
222 }
223 
224 static void
225 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
226 {
227 	struct uidinfo *uip;
228 #ifdef INVARIANTS
229 	u_long prev;
230 #endif
231 
232 	uip = cred->cr_ruidinfo;
233 
234 #ifdef INVARIANTS
235 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
236 	KASSERT(prev >= pdecr, ("negative vmsize for uid = %d\n", uip->ui_uid));
237 #else
238 	atomic_subtract_long(&uip->ui_vmsize, pdecr);
239 #endif
240 }
241 
242 static void
243 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
244 {
245 	struct uidinfo *uip;
246 
247 	uip = cred->cr_ruidinfo;
248 	atomic_add_long(&uip->ui_vmsize, pincr);
249 }
250 
251 bool
252 swap_reserve(vm_ooffset_t incr)
253 {
254 
255 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
256 }
257 
258 bool
259 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
260 {
261 	u_long r, s, prev, pincr;
262 #ifdef RACCT
263 	int error;
264 #endif
265 	int oc;
266 	static int curfail;
267 	static struct timeval lastfail;
268 
269 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
270 	    (uintmax_t)incr));
271 
272 #ifdef RACCT
273 	if (RACCT_ENABLED()) {
274 		PROC_LOCK(curproc);
275 		error = racct_add(curproc, RACCT_SWAP, incr);
276 		PROC_UNLOCK(curproc);
277 		if (error != 0)
278 			return (false);
279 	}
280 #endif
281 
282 	pincr = atop(incr);
283 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
284 	r = prev + pincr;
285 	s = swap_total;
286 	oc = atomic_load_int(&overcommit);
287 	if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
288 		s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
289 		    vm_wire_count();
290 	}
291 	if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
292 	    priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
293 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
294 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
295 		goto out_error;
296 	}
297 
298 	if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
299 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
300 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
301 		goto out_error;
302 	}
303 
304 	return (true);
305 
306 out_error:
307 	if (ppsratecheck(&lastfail, &curfail, 1)) {
308 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
309 		    cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
310 	}
311 #ifdef RACCT
312 	if (RACCT_ENABLED()) {
313 		PROC_LOCK(curproc);
314 		racct_sub(curproc, RACCT_SWAP, incr);
315 		PROC_UNLOCK(curproc);
316 	}
317 #endif
318 
319 	return (false);
320 }
321 
322 void
323 swap_reserve_force(vm_ooffset_t incr)
324 {
325 	u_long pincr;
326 
327 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
328 	    (uintmax_t)incr));
329 
330 #ifdef RACCT
331 	if (RACCT_ENABLED()) {
332 		PROC_LOCK(curproc);
333 		racct_add_force(curproc, RACCT_SWAP, incr);
334 		PROC_UNLOCK(curproc);
335 	}
336 #endif
337 	pincr = atop(incr);
338 	atomic_add_long(&swap_reserved, pincr);
339 	swap_reserve_force_rlimit(pincr, curthread->td_ucred);
340 }
341 
342 void
343 swap_release(vm_ooffset_t decr)
344 {
345 	struct ucred *cred;
346 
347 	PROC_LOCK(curproc);
348 	cred = curproc->p_ucred;
349 	swap_release_by_cred(decr, cred);
350 	PROC_UNLOCK(curproc);
351 }
352 
353 void
354 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
355 {
356 	u_long pdecr;
357 #ifdef INVARIANTS
358 	u_long prev;
359 #endif
360 
361 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
362 	    (uintmax_t)decr));
363 
364 	pdecr = atop(decr);
365 #ifdef INVARIANTS
366 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
367 	KASSERT(prev >= pdecr, ("swap_reserved < decr"));
368 #else
369 	atomic_subtract_long(&swap_reserved, pdecr);
370 #endif
371 
372 	swap_release_by_cred_rlimit(pdecr, cred);
373 #ifdef RACCT
374 	if (racct_enable)
375 		racct_sub_cred(cred, RACCT_SWAP, decr);
376 #endif
377 }
378 
379 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
380 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
381 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
382 static int nsw_wcount_async;	/* limit async write buffers */
383 static int nsw_wcount_async_max;/* assigned maximum			*/
384 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
385 
386 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
387 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
388     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
389     "Maximum running async swap ops");
390 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
391 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
392     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
393     "Swap Fragmentation Info");
394 
395 static struct sx sw_alloc_sx;
396 
397 /*
398  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
399  * of searching a named list by hashing it just a little.
400  */
401 
402 #define NOBJLISTS		8
403 
404 #define NOBJLIST(handle)	\
405 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
406 
407 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
408 static uma_zone_t swwbuf_zone;
409 static uma_zone_t swrbuf_zone;
410 static uma_zone_t swblk_zone;
411 static uma_zone_t swpctrie_zone;
412 
413 /*
414  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
415  * calls hooked from other parts of the VM system and do not appear here.
416  * (see vm/swap_pager.h).
417  */
418 static vm_object_t
419 		swap_pager_alloc(void *handle, vm_ooffset_t size,
420 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
421 static void	swap_pager_dealloc(vm_object_t object);
422 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
423     int *);
424 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
425     int *, pgo_getpages_iodone_t, void *);
426 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
427 static boolean_t
428 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
429 static void	swap_pager_init(void);
430 static void	swap_pager_unswapped(vm_page_t);
431 static void	swap_pager_swapoff(struct swdevt *sp);
432 static void	swap_pager_update_writecount(vm_object_t object,
433     vm_offset_t start, vm_offset_t end);
434 static void	swap_pager_release_writecount(vm_object_t object,
435     vm_offset_t start, vm_offset_t end);
436 
437 struct pagerops swappagerops = {
438 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
439 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
440 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
441 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
442 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
443 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
444 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
445 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
446 	.pgo_update_writecount = swap_pager_update_writecount,
447 	.pgo_release_writecount = swap_pager_release_writecount,
448 };
449 
450 /*
451  * swap_*() routines are externally accessible.  swp_*() routines are
452  * internal.
453  */
454 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
455 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
456 
457 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
458     "Maximum size of a swap block in pages");
459 
460 static void	swp_sizecheck(void);
461 static void	swp_pager_async_iodone(struct buf *bp);
462 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
463 static void	swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
464 static int	swapongeom(struct vnode *);
465 static int	swaponvp(struct thread *, struct vnode *, u_long);
466 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
467 
468 /*
469  * Swap bitmap functions
470  */
471 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
472 static daddr_t	swp_pager_getswapspace(int *npages);
473 
474 /*
475  * Metadata functions
476  */
477 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
478 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
479 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
480     vm_pindex_t pindex, vm_pindex_t count);
481 static void swp_pager_meta_free_all(vm_object_t);
482 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
483 
484 static void
485 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
486 {
487 
488 	*start = SWAPBLK_NONE;
489 	*num = 0;
490 }
491 
492 static void
493 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
494 {
495 
496 	if (*start + *num == addr) {
497 		(*num)++;
498 	} else {
499 		swp_pager_freeswapspace(*start, *num);
500 		*start = addr;
501 		*num = 1;
502 	}
503 }
504 
505 static void *
506 swblk_trie_alloc(struct pctrie *ptree)
507 {
508 
509 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
510 	    M_USE_RESERVE : 0)));
511 }
512 
513 static void
514 swblk_trie_free(struct pctrie *ptree, void *node)
515 {
516 
517 	uma_zfree(swpctrie_zone, node);
518 }
519 
520 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
521 
522 /*
523  * SWP_SIZECHECK() -	update swap_pager_full indication
524  *
525  *	update the swap_pager_almost_full indication and warn when we are
526  *	about to run out of swap space, using lowat/hiwat hysteresis.
527  *
528  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
529  *
530  *	No restrictions on call
531  *	This routine may not block.
532  */
533 static void
534 swp_sizecheck(void)
535 {
536 
537 	if (swap_pager_avail < nswap_lowat) {
538 		if (swap_pager_almost_full == 0) {
539 			printf("swap_pager: out of swap space\n");
540 			swap_pager_almost_full = 1;
541 		}
542 	} else {
543 		swap_pager_full = 0;
544 		if (swap_pager_avail > nswap_hiwat)
545 			swap_pager_almost_full = 0;
546 	}
547 }
548 
549 /*
550  * SWAP_PAGER_INIT() -	initialize the swap pager!
551  *
552  *	Expected to be started from system init.  NOTE:  This code is run
553  *	before much else so be careful what you depend on.  Most of the VM
554  *	system has yet to be initialized at this point.
555  */
556 static void
557 swap_pager_init(void)
558 {
559 	/*
560 	 * Initialize object lists
561 	 */
562 	int i;
563 
564 	for (i = 0; i < NOBJLISTS; ++i)
565 		TAILQ_INIT(&swap_pager_object_list[i]);
566 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
567 	sx_init(&sw_alloc_sx, "swspsx");
568 	sx_init(&swdev_syscall_lock, "swsysc");
569 }
570 
571 /*
572  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
573  *
574  *	Expected to be started from pageout process once, prior to entering
575  *	its main loop.
576  */
577 void
578 swap_pager_swap_init(void)
579 {
580 	unsigned long n, n2;
581 
582 	/*
583 	 * Number of in-transit swap bp operations.  Don't
584 	 * exhaust the pbufs completely.  Make sure we
585 	 * initialize workable values (0 will work for hysteresis
586 	 * but it isn't very efficient).
587 	 *
588 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
589 	 * array, which has maxphys / PAGE_SIZE entries, and our locally
590 	 * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
591 	 * constrained by the swap device interleave stripe size.
592 	 *
593 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
594 	 * designed to prevent other I/O from having high latencies due to
595 	 * our pageout I/O.  The value 4 works well for one or two active swap
596 	 * devices but is probably a little low if you have more.  Even so,
597 	 * a higher value would probably generate only a limited improvement
598 	 * with three or four active swap devices since the system does not
599 	 * typically have to pageout at extreme bandwidths.   We will want
600 	 * at least 2 per swap devices, and 4 is a pretty good value if you
601 	 * have one NFS swap device due to the command/ack latency over NFS.
602 	 * So it all works out pretty well.
603 	 */
604 	nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
605 
606 	nsw_wcount_async = 4;
607 	nsw_wcount_async_max = nsw_wcount_async;
608 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
609 
610 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
611 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
612 
613 	/*
614 	 * Initialize our zone, taking the user's requested size or
615 	 * estimating the number we need based on the number of pages
616 	 * in the system.
617 	 */
618 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
619 	    vm_cnt.v_page_count / 2;
620 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
621 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
622 	if (swpctrie_zone == NULL)
623 		panic("failed to create swap pctrie zone.");
624 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
625 	    NULL, NULL, _Alignof(struct swblk) - 1, 0);
626 	if (swblk_zone == NULL)
627 		panic("failed to create swap blk zone.");
628 	n2 = n;
629 	do {
630 		if (uma_zone_reserve_kva(swblk_zone, n))
631 			break;
632 		/*
633 		 * if the allocation failed, try a zone two thirds the
634 		 * size of the previous attempt.
635 		 */
636 		n -= ((n + 2) / 3);
637 	} while (n > 0);
638 
639 	/*
640 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
641 	 * requested size.  Account for the difference when
642 	 * calculating swap_maxpages.
643 	 */
644 	n = uma_zone_get_max(swblk_zone);
645 
646 	if (n < n2)
647 		printf("Swap blk zone entries changed from %lu to %lu.\n",
648 		    n2, n);
649 	/* absolute maximum we can handle assuming 100% efficiency */
650 	swap_maxpages = n * SWAP_META_PAGES;
651 	swzone = n * sizeof(struct swblk);
652 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
653 		printf("Cannot reserve swap pctrie zone, "
654 		    "reduce kern.maxswzone.\n");
655 }
656 
657 static vm_object_t
658 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
659     vm_ooffset_t offset)
660 {
661 	vm_object_t object;
662 
663 	if (cred != NULL) {
664 		if (!swap_reserve_by_cred(size, cred))
665 			return (NULL);
666 		crhold(cred);
667 	}
668 
669 	/*
670 	 * The un_pager.swp.swp_blks trie is initialized by
671 	 * vm_object_allocate() to ensure the correct order of
672 	 * visibility to other threads.
673 	 */
674 	object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
675 	    PAGE_MASK + size));
676 
677 	object->un_pager.swp.writemappings = 0;
678 	object->handle = handle;
679 	if (cred != NULL) {
680 		object->cred = cred;
681 		object->charge = size;
682 	}
683 	return (object);
684 }
685 
686 /*
687  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
688  *			its metadata structures.
689  *
690  *	This routine is called from the mmap and fork code to create a new
691  *	OBJT_SWAP object.
692  *
693  *	This routine must ensure that no live duplicate is created for
694  *	the named object request, which is protected against by
695  *	holding the sw_alloc_sx lock in case handle != NULL.
696  */
697 static vm_object_t
698 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
699     vm_ooffset_t offset, struct ucred *cred)
700 {
701 	vm_object_t object;
702 
703 	if (handle != NULL) {
704 		/*
705 		 * Reference existing named region or allocate new one.  There
706 		 * should not be a race here against swp_pager_meta_build()
707 		 * as called from vm_page_remove() in regards to the lookup
708 		 * of the handle.
709 		 */
710 		sx_xlock(&sw_alloc_sx);
711 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
712 		if (object == NULL) {
713 			object = swap_pager_alloc_init(handle, cred, size,
714 			    offset);
715 			if (object != NULL) {
716 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
717 				    object, pager_object_list);
718 			}
719 		}
720 		sx_xunlock(&sw_alloc_sx);
721 	} else {
722 		object = swap_pager_alloc_init(handle, cred, size, offset);
723 	}
724 	return (object);
725 }
726 
727 /*
728  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
729  *
730  *	The swap backing for the object is destroyed.  The code is
731  *	designed such that we can reinstantiate it later, but this
732  *	routine is typically called only when the entire object is
733  *	about to be destroyed.
734  *
735  *	The object must be locked.
736  */
737 static void
738 swap_pager_dealloc(vm_object_t object)
739 {
740 
741 	VM_OBJECT_ASSERT_WLOCKED(object);
742 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
743 
744 	/*
745 	 * Remove from list right away so lookups will fail if we block for
746 	 * pageout completion.
747 	 */
748 	if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
749 		VM_OBJECT_WUNLOCK(object);
750 		sx_xlock(&sw_alloc_sx);
751 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
752 		    pager_object_list);
753 		sx_xunlock(&sw_alloc_sx);
754 		VM_OBJECT_WLOCK(object);
755 	}
756 
757 	vm_object_pip_wait(object, "swpdea");
758 
759 	/*
760 	 * Free all remaining metadata.  We only bother to free it from
761 	 * the swap meta data.  We do not attempt to free swapblk's still
762 	 * associated with vm_page_t's for this object.  We do not care
763 	 * if paging is still in progress on some objects.
764 	 */
765 	swp_pager_meta_free_all(object);
766 	object->handle = NULL;
767 	object->type = OBJT_DEAD;
768 }
769 
770 /************************************************************************
771  *			SWAP PAGER BITMAP ROUTINES			*
772  ************************************************************************/
773 
774 /*
775  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
776  *
777  *	Allocate swap for up to the requested number of pages.  The
778  *	starting swap block number (a page index) is returned or
779  *	SWAPBLK_NONE if the allocation failed.
780  *
781  *	Also has the side effect of advising that somebody made a mistake
782  *	when they configured swap and didn't configure enough.
783  *
784  *	This routine may not sleep.
785  *
786  *	We allocate in round-robin fashion from the configured devices.
787  */
788 static daddr_t
789 swp_pager_getswapspace(int *io_npages)
790 {
791 	daddr_t blk;
792 	struct swdevt *sp;
793 	int mpages, npages;
794 
795 	KASSERT(*io_npages >= 1,
796 	    ("%s: npages not positive", __func__));
797 	blk = SWAPBLK_NONE;
798 	mpages = *io_npages;
799 	npages = imin(BLIST_MAX_ALLOC, mpages);
800 	mtx_lock(&sw_dev_mtx);
801 	sp = swdevhd;
802 	while (!TAILQ_EMPTY(&swtailq)) {
803 		if (sp == NULL)
804 			sp = TAILQ_FIRST(&swtailq);
805 		if ((sp->sw_flags & SW_CLOSING) == 0)
806 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
807 		if (blk != SWAPBLK_NONE)
808 			break;
809 		sp = TAILQ_NEXT(sp, sw_list);
810 		if (swdevhd == sp) {
811 			if (npages == 1)
812 				break;
813 			mpages = npages - 1;
814 			npages >>= 1;
815 		}
816 	}
817 	if (blk != SWAPBLK_NONE) {
818 		*io_npages = npages;
819 		blk += sp->sw_first;
820 		sp->sw_used += npages;
821 		swap_pager_avail -= npages;
822 		swp_sizecheck();
823 		swdevhd = TAILQ_NEXT(sp, sw_list);
824 	} else {
825 		if (swap_pager_full != 2) {
826 			printf("swp_pager_getswapspace(%d): failed\n",
827 			    *io_npages);
828 			swap_pager_full = 2;
829 			swap_pager_almost_full = 1;
830 		}
831 		swdevhd = NULL;
832 	}
833 	mtx_unlock(&sw_dev_mtx);
834 	return (blk);
835 }
836 
837 static bool
838 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
839 {
840 
841 	return (blk >= sp->sw_first && blk < sp->sw_end);
842 }
843 
844 static void
845 swp_pager_strategy(struct buf *bp)
846 {
847 	struct swdevt *sp;
848 
849 	mtx_lock(&sw_dev_mtx);
850 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
851 		if (swp_pager_isondev(bp->b_blkno, sp)) {
852 			mtx_unlock(&sw_dev_mtx);
853 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
854 			    unmapped_buf_allowed) {
855 				bp->b_data = unmapped_buf;
856 				bp->b_offset = 0;
857 			} else {
858 				pmap_qenter((vm_offset_t)bp->b_data,
859 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
860 			}
861 			sp->sw_strategy(bp, sp);
862 			return;
863 		}
864 	}
865 	panic("Swapdev not found");
866 }
867 
868 /*
869  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
870  *
871  *	This routine returns the specified swap blocks back to the bitmap.
872  *
873  *	This routine may not sleep.
874  */
875 static void
876 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
877 {
878 	struct swdevt *sp;
879 
880 	if (npages == 0)
881 		return;
882 	mtx_lock(&sw_dev_mtx);
883 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
884 		if (swp_pager_isondev(blk, sp)) {
885 			sp->sw_used -= npages;
886 			/*
887 			 * If we are attempting to stop swapping on
888 			 * this device, we don't want to mark any
889 			 * blocks free lest they be reused.
890 			 */
891 			if ((sp->sw_flags & SW_CLOSING) == 0) {
892 				blist_free(sp->sw_blist, blk - sp->sw_first,
893 				    npages);
894 				swap_pager_avail += npages;
895 				swp_sizecheck();
896 			}
897 			mtx_unlock(&sw_dev_mtx);
898 			return;
899 		}
900 	}
901 	panic("Swapdev not found");
902 }
903 
904 /*
905  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
906  */
907 static int
908 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
909 {
910 	struct sbuf sbuf;
911 	struct swdevt *sp;
912 	const char *devname;
913 	int error;
914 
915 	error = sysctl_wire_old_buffer(req, 0);
916 	if (error != 0)
917 		return (error);
918 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
919 	mtx_lock(&sw_dev_mtx);
920 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
921 		if (vn_isdisk(sp->sw_vp))
922 			devname = devtoname(sp->sw_vp->v_rdev);
923 		else
924 			devname = "[file]";
925 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
926 		blist_stats(sp->sw_blist, &sbuf);
927 	}
928 	mtx_unlock(&sw_dev_mtx);
929 	error = sbuf_finish(&sbuf);
930 	sbuf_delete(&sbuf);
931 	return (error);
932 }
933 
934 /*
935  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
936  *				range within an object.
937  *
938  *	This is a globally accessible routine.
939  *
940  *	This routine removes swapblk assignments from swap metadata.
941  *
942  *	The external callers of this routine typically have already destroyed
943  *	or renamed vm_page_t's associated with this range in the object so
944  *	we should be ok.
945  *
946  *	The object must be locked.
947  */
948 void
949 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
950 {
951 
952 	swp_pager_meta_free(object, start, size);
953 }
954 
955 /*
956  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
957  *
958  *	Assigns swap blocks to the specified range within the object.  The
959  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
960  *
961  *	Returns 0 on success, -1 on failure.
962  */
963 int
964 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
965 {
966 	daddr_t addr, blk, n_free, s_free;
967 	int i, j, n;
968 
969 	swp_pager_init_freerange(&s_free, &n_free);
970 	VM_OBJECT_WLOCK(object);
971 	for (i = 0; i < size; i += n) {
972 		n = size - i;
973 		blk = swp_pager_getswapspace(&n);
974 		if (blk == SWAPBLK_NONE) {
975 			swp_pager_meta_free(object, start, i);
976 			VM_OBJECT_WUNLOCK(object);
977 			return (-1);
978 		}
979 		for (j = 0; j < n; ++j) {
980 			addr = swp_pager_meta_build(object,
981 			    start + i + j, blk + j);
982 			if (addr != SWAPBLK_NONE)
983 				swp_pager_update_freerange(&s_free, &n_free,
984 				    addr);
985 		}
986 	}
987 	swp_pager_freeswapspace(s_free, n_free);
988 	VM_OBJECT_WUNLOCK(object);
989 	return (0);
990 }
991 
992 static bool
993 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
994     vm_pindex_t pindex, daddr_t addr)
995 {
996 	daddr_t dstaddr;
997 
998 	KASSERT(srcobject->type == OBJT_SWAP,
999 	    ("%s: Srcobject not swappable", __func__));
1000 	if (dstobject->type == OBJT_SWAP &&
1001 	    swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1002 		/* Caller should destroy the source block. */
1003 		return (false);
1004 	}
1005 
1006 	/*
1007 	 * Destination has no swapblk and is not resident, transfer source.
1008 	 * swp_pager_meta_build() can sleep.
1009 	 */
1010 	VM_OBJECT_WUNLOCK(srcobject);
1011 	dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1012 	KASSERT(dstaddr == SWAPBLK_NONE,
1013 	    ("Unexpected destination swapblk"));
1014 	VM_OBJECT_WLOCK(srcobject);
1015 
1016 	return (true);
1017 }
1018 
1019 /*
1020  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1021  *			and destroy the source.
1022  *
1023  *	Copy any valid swapblks from the source to the destination.  In
1024  *	cases where both the source and destination have a valid swapblk,
1025  *	we keep the destination's.
1026  *
1027  *	This routine is allowed to sleep.  It may sleep allocating metadata
1028  *	indirectly through swp_pager_meta_build().
1029  *
1030  *	The source object contains no vm_page_t's (which is just as well)
1031  *
1032  *	The source object is of type OBJT_SWAP.
1033  *
1034  *	The source and destination objects must be locked.
1035  *	Both object locks may temporarily be released.
1036  */
1037 void
1038 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1039     vm_pindex_t offset, int destroysource)
1040 {
1041 
1042 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
1043 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
1044 
1045 	/*
1046 	 * If destroysource is set, we remove the source object from the
1047 	 * swap_pager internal queue now.
1048 	 */
1049 	if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1050 	    srcobject->handle != NULL) {
1051 		VM_OBJECT_WUNLOCK(srcobject);
1052 		VM_OBJECT_WUNLOCK(dstobject);
1053 		sx_xlock(&sw_alloc_sx);
1054 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1055 		    pager_object_list);
1056 		sx_xunlock(&sw_alloc_sx);
1057 		VM_OBJECT_WLOCK(dstobject);
1058 		VM_OBJECT_WLOCK(srcobject);
1059 	}
1060 
1061 	/*
1062 	 * Transfer source to destination.
1063 	 */
1064 	swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1065 
1066 	/*
1067 	 * Free left over swap blocks in source.
1068 	 *
1069 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1070 	 * double-remove the object from the swap queues.
1071 	 */
1072 	if (destroysource) {
1073 		swp_pager_meta_free_all(srcobject);
1074 		/*
1075 		 * Reverting the type is not necessary, the caller is going
1076 		 * to destroy srcobject directly, but I'm doing it here
1077 		 * for consistency since we've removed the object from its
1078 		 * queues.
1079 		 */
1080 		srcobject->type = OBJT_DEFAULT;
1081 	}
1082 }
1083 
1084 /*
1085  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1086  *				the requested page.
1087  *
1088  *	We determine whether good backing store exists for the requested
1089  *	page and return TRUE if it does, FALSE if it doesn't.
1090  *
1091  *	If TRUE, we also try to determine how much valid, contiguous backing
1092  *	store exists before and after the requested page.
1093  */
1094 static boolean_t
1095 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1096     int *after)
1097 {
1098 	daddr_t blk, blk0;
1099 	int i;
1100 
1101 	VM_OBJECT_ASSERT_LOCKED(object);
1102 	KASSERT(object->type == OBJT_SWAP,
1103 	    ("%s: object not swappable", __func__));
1104 
1105 	/*
1106 	 * do we have good backing store at the requested index ?
1107 	 */
1108 	blk0 = swp_pager_meta_lookup(object, pindex);
1109 	if (blk0 == SWAPBLK_NONE) {
1110 		if (before)
1111 			*before = 0;
1112 		if (after)
1113 			*after = 0;
1114 		return (FALSE);
1115 	}
1116 
1117 	/*
1118 	 * find backwards-looking contiguous good backing store
1119 	 */
1120 	if (before != NULL) {
1121 		for (i = 1; i < SWB_NPAGES; i++) {
1122 			if (i > pindex)
1123 				break;
1124 			blk = swp_pager_meta_lookup(object, pindex - i);
1125 			if (blk != blk0 - i)
1126 				break;
1127 		}
1128 		*before = i - 1;
1129 	}
1130 
1131 	/*
1132 	 * find forward-looking contiguous good backing store
1133 	 */
1134 	if (after != NULL) {
1135 		for (i = 1; i < SWB_NPAGES; i++) {
1136 			blk = swp_pager_meta_lookup(object, pindex + i);
1137 			if (blk != blk0 + i)
1138 				break;
1139 		}
1140 		*after = i - 1;
1141 	}
1142 	return (TRUE);
1143 }
1144 
1145 /*
1146  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1147  *
1148  *	This removes any associated swap backing store, whether valid or
1149  *	not, from the page.
1150  *
1151  *	This routine is typically called when a page is made dirty, at
1152  *	which point any associated swap can be freed.  MADV_FREE also
1153  *	calls us in a special-case situation
1154  *
1155  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1156  *	should make the page dirty before calling this routine.  This routine
1157  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1158  *	depends on it.
1159  *
1160  *	This routine may not sleep.
1161  *
1162  *	The object containing the page may be locked.
1163  */
1164 static void
1165 swap_pager_unswapped(vm_page_t m)
1166 {
1167 	struct swblk *sb;
1168 	vm_object_t obj;
1169 
1170 	/*
1171 	 * Handle enqueing deferred frees first.  If we do not have the
1172 	 * object lock we wait for the page daemon to clear the space.
1173 	 */
1174 	obj = m->object;
1175 	if (!VM_OBJECT_WOWNED(obj)) {
1176 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
1177 		/*
1178 		 * The caller is responsible for synchronization but we
1179 		 * will harmlessly handle races.  This is typically provided
1180 		 * by only calling unswapped() when a page transitions from
1181 		 * clean to dirty.
1182 		 */
1183 		if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1184 		    PGA_SWAP_SPACE) {
1185 			vm_page_aflag_set(m, PGA_SWAP_FREE);
1186 			counter_u64_add(swap_free_deferred, 1);
1187 		}
1188 		return;
1189 	}
1190 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1191 		counter_u64_add(swap_free_completed, 1);
1192 	vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1193 
1194 	/*
1195 	 * The meta data only exists if the object is OBJT_SWAP
1196 	 * and even then might not be allocated yet.
1197 	 */
1198 	KASSERT(m->object->type == OBJT_SWAP,
1199 	    ("Free object not swappable"));
1200 
1201 	sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1202 	    rounddown(m->pindex, SWAP_META_PAGES));
1203 	if (sb == NULL)
1204 		return;
1205 	if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1206 		return;
1207 	swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1208 	sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1209 	swp_pager_free_empty_swblk(m->object, sb);
1210 }
1211 
1212 /*
1213  * swap_pager_getpages() - bring pages in from swap
1214  *
1215  *	Attempt to page in the pages in array "ma" of length "count".  The
1216  *	caller may optionally specify that additional pages preceding and
1217  *	succeeding the specified range be paged in.  The number of such pages
1218  *	is returned in the "rbehind" and "rahead" parameters, and they will
1219  *	be in the inactive queue upon return.
1220  *
1221  *	The pages in "ma" must be busied and will remain busied upon return.
1222  */
1223 static int
1224 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1225     int *rbehind, int *rahead)
1226 {
1227 	struct buf *bp;
1228 	vm_page_t bm, mpred, msucc, p;
1229 	vm_pindex_t pindex;
1230 	daddr_t blk;
1231 	int i, maxahead, maxbehind, reqcount;
1232 
1233 	VM_OBJECT_ASSERT_WLOCKED(object);
1234 	reqcount = count;
1235 
1236 	KASSERT(object->type == OBJT_SWAP,
1237 	    ("%s: object not swappable", __func__));
1238 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1239 		VM_OBJECT_WUNLOCK(object);
1240 		return (VM_PAGER_FAIL);
1241 	}
1242 
1243 	KASSERT(reqcount - 1 <= maxahead,
1244 	    ("page count %d extends beyond swap block", reqcount));
1245 
1246 	/*
1247 	 * Do not transfer any pages other than those that are xbusied
1248 	 * when running during a split or collapse operation.  This
1249 	 * prevents clustering from re-creating pages which are being
1250 	 * moved into another object.
1251 	 */
1252 	if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1253 		maxahead = reqcount - 1;
1254 		maxbehind = 0;
1255 	}
1256 
1257 	/*
1258 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1259 	 */
1260 	if (rahead != NULL) {
1261 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1262 		pindex = ma[reqcount - 1]->pindex;
1263 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1264 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1265 			*rahead = msucc->pindex - pindex - 1;
1266 	}
1267 	if (rbehind != NULL) {
1268 		*rbehind = imin(*rbehind, maxbehind);
1269 		pindex = ma[0]->pindex;
1270 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1271 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1272 			*rbehind = pindex - mpred->pindex - 1;
1273 	}
1274 
1275 	bm = ma[0];
1276 	for (i = 0; i < count; i++)
1277 		ma[i]->oflags |= VPO_SWAPINPROG;
1278 
1279 	/*
1280 	 * Allocate readahead and readbehind pages.
1281 	 */
1282 	if (rbehind != NULL) {
1283 		for (i = 1; i <= *rbehind; i++) {
1284 			p = vm_page_alloc(object, ma[0]->pindex - i,
1285 			    VM_ALLOC_NORMAL);
1286 			if (p == NULL)
1287 				break;
1288 			p->oflags |= VPO_SWAPINPROG;
1289 			bm = p;
1290 		}
1291 		*rbehind = i - 1;
1292 	}
1293 	if (rahead != NULL) {
1294 		for (i = 0; i < *rahead; i++) {
1295 			p = vm_page_alloc(object,
1296 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1297 			if (p == NULL)
1298 				break;
1299 			p->oflags |= VPO_SWAPINPROG;
1300 		}
1301 		*rahead = i;
1302 	}
1303 	if (rbehind != NULL)
1304 		count += *rbehind;
1305 	if (rahead != NULL)
1306 		count += *rahead;
1307 
1308 	vm_object_pip_add(object, count);
1309 
1310 	pindex = bm->pindex;
1311 	blk = swp_pager_meta_lookup(object, pindex);
1312 	KASSERT(blk != SWAPBLK_NONE,
1313 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1314 
1315 	VM_OBJECT_WUNLOCK(object);
1316 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1317 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
1318 	/* Pages cannot leave the object while busy. */
1319 	for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1320 		MPASS(p->pindex == bm->pindex + i);
1321 		bp->b_pages[i] = p;
1322 	}
1323 
1324 	bp->b_flags |= B_PAGING;
1325 	bp->b_iocmd = BIO_READ;
1326 	bp->b_iodone = swp_pager_async_iodone;
1327 	bp->b_rcred = crhold(thread0.td_ucred);
1328 	bp->b_wcred = crhold(thread0.td_ucred);
1329 	bp->b_blkno = blk;
1330 	bp->b_bcount = PAGE_SIZE * count;
1331 	bp->b_bufsize = PAGE_SIZE * count;
1332 	bp->b_npages = count;
1333 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1334 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1335 
1336 	VM_CNT_INC(v_swapin);
1337 	VM_CNT_ADD(v_swappgsin, count);
1338 
1339 	/*
1340 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1341 	 * this point because we automatically release it on completion.
1342 	 * Instead, we look at the one page we are interested in which we
1343 	 * still hold a lock on even through the I/O completion.
1344 	 *
1345 	 * The other pages in our ma[] array are also released on completion,
1346 	 * so we cannot assume they are valid anymore either.
1347 	 *
1348 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1349 	 */
1350 	BUF_KERNPROC(bp);
1351 	swp_pager_strategy(bp);
1352 
1353 	/*
1354 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1355 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1356 	 * is set in the metadata for each page in the request.
1357 	 */
1358 	VM_OBJECT_WLOCK(object);
1359 	/* This could be implemented more efficiently with aflags */
1360 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1361 		ma[0]->oflags |= VPO_SWAPSLEEP;
1362 		VM_CNT_INC(v_intrans);
1363 		if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1364 		    "swread", hz * 20)) {
1365 			printf(
1366 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1367 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1368 		}
1369 	}
1370 	VM_OBJECT_WUNLOCK(object);
1371 
1372 	/*
1373 	 * If we had an unrecoverable read error pages will not be valid.
1374 	 */
1375 	for (i = 0; i < reqcount; i++)
1376 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1377 			return (VM_PAGER_ERROR);
1378 
1379 	return (VM_PAGER_OK);
1380 
1381 	/*
1382 	 * A final note: in a low swap situation, we cannot deallocate swap
1383 	 * and mark a page dirty here because the caller is likely to mark
1384 	 * the page clean when we return, causing the page to possibly revert
1385 	 * to all-zero's later.
1386 	 */
1387 }
1388 
1389 static int
1390 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1391     int *rbehind, int *rahead)
1392 {
1393 
1394 	VM_OBJECT_WLOCK(object);
1395 	return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1396 }
1397 
1398 /*
1399  * 	swap_pager_getpages_async():
1400  *
1401  *	Right now this is emulation of asynchronous operation on top of
1402  *	swap_pager_getpages().
1403  */
1404 static int
1405 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1406     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1407 {
1408 	int r, error;
1409 
1410 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1411 	switch (r) {
1412 	case VM_PAGER_OK:
1413 		error = 0;
1414 		break;
1415 	case VM_PAGER_ERROR:
1416 		error = EIO;
1417 		break;
1418 	case VM_PAGER_FAIL:
1419 		error = EINVAL;
1420 		break;
1421 	default:
1422 		panic("unhandled swap_pager_getpages() error %d", r);
1423 	}
1424 	(iodone)(arg, ma, count, error);
1425 
1426 	return (r);
1427 }
1428 
1429 /*
1430  *	swap_pager_putpages:
1431  *
1432  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1433  *
1434  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1435  *	are automatically converted to SWAP objects.
1436  *
1437  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1438  *	vm_page reservation system coupled with properly written VFS devices
1439  *	should ensure that no low-memory deadlock occurs.  This is an area
1440  *	which needs work.
1441  *
1442  *	The parent has N vm_object_pip_add() references prior to
1443  *	calling us and will remove references for rtvals[] that are
1444  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1445  *	completion.
1446  *
1447  *	The parent has soft-busy'd the pages it passes us and will unbusy
1448  *	those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1449  *	We need to unbusy the rest on I/O completion.
1450  */
1451 static void
1452 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1453     int flags, int *rtvals)
1454 {
1455 	struct buf *bp;
1456 	daddr_t addr, blk, n_free, s_free;
1457 	vm_page_t mreq;
1458 	int i, j, n;
1459 	bool async;
1460 
1461 	KASSERT(count == 0 || ma[0]->object == object,
1462 	    ("%s: object mismatch %p/%p",
1463 	    __func__, object, ma[0]->object));
1464 
1465 	/*
1466 	 * Step 1
1467 	 *
1468 	 * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1469 	 */
1470 	if (object->type != OBJT_SWAP) {
1471 		addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1472 		KASSERT(addr == SWAPBLK_NONE,
1473 		    ("unexpected object swap block"));
1474 	}
1475 	VM_OBJECT_WUNLOCK(object);
1476 	async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1477 	swp_pager_init_freerange(&s_free, &n_free);
1478 
1479 	/*
1480 	 * Step 2
1481 	 *
1482 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1483 	 * The page is left dirty until the pageout operation completes
1484 	 * successfully.
1485 	 */
1486 	for (i = 0; i < count; i += n) {
1487 		/* Maximum I/O size is limited by maximum swap block size. */
1488 		n = min(count - i, nsw_cluster_max);
1489 
1490 		if (async) {
1491 			mtx_lock(&swbuf_mtx);
1492 			while (nsw_wcount_async == 0)
1493 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1494 				    "swbufa", 0);
1495 			nsw_wcount_async--;
1496 			mtx_unlock(&swbuf_mtx);
1497 		}
1498 
1499 		/* Get a block of swap of size up to size n. */
1500 		VM_OBJECT_WLOCK(object);
1501 		blk = swp_pager_getswapspace(&n);
1502 		if (blk == SWAPBLK_NONE) {
1503 			VM_OBJECT_WUNLOCK(object);
1504 			mtx_lock(&swbuf_mtx);
1505 			if (++nsw_wcount_async == 1)
1506 				wakeup(&nsw_wcount_async);
1507 			mtx_unlock(&swbuf_mtx);
1508 			for (j = 0; j < n; ++j)
1509 				rtvals[i + j] = VM_PAGER_FAIL;
1510 			continue;
1511 		}
1512 		for (j = 0; j < n; ++j) {
1513 			mreq = ma[i + j];
1514 			vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1515 			addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1516 			    blk + j);
1517 			if (addr != SWAPBLK_NONE)
1518 				swp_pager_update_freerange(&s_free, &n_free,
1519 				    addr);
1520 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1521 			mreq->oflags |= VPO_SWAPINPROG;
1522 		}
1523 		VM_OBJECT_WUNLOCK(object);
1524 
1525 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1526 		MPASS((bp->b_flags & B_MAXPHYS) != 0);
1527 		if (async)
1528 			bp->b_flags |= B_ASYNC;
1529 		bp->b_flags |= B_PAGING;
1530 		bp->b_iocmd = BIO_WRITE;
1531 
1532 		bp->b_rcred = crhold(thread0.td_ucred);
1533 		bp->b_wcred = crhold(thread0.td_ucred);
1534 		bp->b_bcount = PAGE_SIZE * n;
1535 		bp->b_bufsize = PAGE_SIZE * n;
1536 		bp->b_blkno = blk;
1537 		for (j = 0; j < n; j++)
1538 			bp->b_pages[j] = ma[i + j];
1539 		bp->b_npages = n;
1540 
1541 		/*
1542 		 * Must set dirty range for NFS to work.
1543 		 */
1544 		bp->b_dirtyoff = 0;
1545 		bp->b_dirtyend = bp->b_bcount;
1546 
1547 		VM_CNT_INC(v_swapout);
1548 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1549 
1550 		/*
1551 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1552 		 * can call the async completion routine at the end of a
1553 		 * synchronous I/O operation.  Otherwise, our caller would
1554 		 * perform duplicate unbusy and wakeup operations on the page
1555 		 * and object, respectively.
1556 		 */
1557 		for (j = 0; j < n; j++)
1558 			rtvals[i + j] = VM_PAGER_PEND;
1559 
1560 		/*
1561 		 * asynchronous
1562 		 *
1563 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1564 		 */
1565 		if (async) {
1566 			bp->b_iodone = swp_pager_async_iodone;
1567 			BUF_KERNPROC(bp);
1568 			swp_pager_strategy(bp);
1569 			continue;
1570 		}
1571 
1572 		/*
1573 		 * synchronous
1574 		 *
1575 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1576 		 */
1577 		bp->b_iodone = bdone;
1578 		swp_pager_strategy(bp);
1579 
1580 		/*
1581 		 * Wait for the sync I/O to complete.
1582 		 */
1583 		bwait(bp, PVM, "swwrt");
1584 
1585 		/*
1586 		 * Now that we are through with the bp, we can call the
1587 		 * normal async completion, which frees everything up.
1588 		 */
1589 		swp_pager_async_iodone(bp);
1590 	}
1591 	swp_pager_freeswapspace(s_free, n_free);
1592 	VM_OBJECT_WLOCK(object);
1593 }
1594 
1595 /*
1596  *	swp_pager_async_iodone:
1597  *
1598  *	Completion routine for asynchronous reads and writes from/to swap.
1599  *	Also called manually by synchronous code to finish up a bp.
1600  *
1601  *	This routine may not sleep.
1602  */
1603 static void
1604 swp_pager_async_iodone(struct buf *bp)
1605 {
1606 	int i;
1607 	vm_object_t object = NULL;
1608 
1609 	/*
1610 	 * Report error - unless we ran out of memory, in which case
1611 	 * we've already logged it in swapgeom_strategy().
1612 	 */
1613 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1614 		printf(
1615 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1616 			"size %ld, error %d\n",
1617 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1618 		    (long)bp->b_blkno,
1619 		    (long)bp->b_bcount,
1620 		    bp->b_error
1621 		);
1622 	}
1623 
1624 	/*
1625 	 * remove the mapping for kernel virtual
1626 	 */
1627 	if (buf_mapped(bp))
1628 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1629 	else
1630 		bp->b_data = bp->b_kvabase;
1631 
1632 	if (bp->b_npages) {
1633 		object = bp->b_pages[0]->object;
1634 		VM_OBJECT_WLOCK(object);
1635 	}
1636 
1637 	/*
1638 	 * cleanup pages.  If an error occurs writing to swap, we are in
1639 	 * very serious trouble.  If it happens to be a disk error, though,
1640 	 * we may be able to recover by reassigning the swap later on.  So
1641 	 * in this case we remove the m->swapblk assignment for the page
1642 	 * but do not free it in the rlist.  The errornous block(s) are thus
1643 	 * never reallocated as swap.  Redirty the page and continue.
1644 	 */
1645 	for (i = 0; i < bp->b_npages; ++i) {
1646 		vm_page_t m = bp->b_pages[i];
1647 
1648 		m->oflags &= ~VPO_SWAPINPROG;
1649 		if (m->oflags & VPO_SWAPSLEEP) {
1650 			m->oflags &= ~VPO_SWAPSLEEP;
1651 			wakeup(&object->handle);
1652 		}
1653 
1654 		/* We always have space after I/O, successful or not. */
1655 		vm_page_aflag_set(m, PGA_SWAP_SPACE);
1656 
1657 		if (bp->b_ioflags & BIO_ERROR) {
1658 			/*
1659 			 * If an error occurs I'd love to throw the swapblk
1660 			 * away without freeing it back to swapspace, so it
1661 			 * can never be used again.  But I can't from an
1662 			 * interrupt.
1663 			 */
1664 			if (bp->b_iocmd == BIO_READ) {
1665 				/*
1666 				 * NOTE: for reads, m->dirty will probably
1667 				 * be overridden by the original caller of
1668 				 * getpages so don't play cute tricks here.
1669 				 */
1670 				vm_page_invalid(m);
1671 			} else {
1672 				/*
1673 				 * If a write error occurs, reactivate page
1674 				 * so it doesn't clog the inactive list,
1675 				 * then finish the I/O.
1676 				 */
1677 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1678 
1679 				/* PQ_UNSWAPPABLE? */
1680 				vm_page_activate(m);
1681 				vm_page_sunbusy(m);
1682 			}
1683 		} else if (bp->b_iocmd == BIO_READ) {
1684 			/*
1685 			 * NOTE: for reads, m->dirty will probably be
1686 			 * overridden by the original caller of getpages so
1687 			 * we cannot set them in order to free the underlying
1688 			 * swap in a low-swap situation.  I don't think we'd
1689 			 * want to do that anyway, but it was an optimization
1690 			 * that existed in the old swapper for a time before
1691 			 * it got ripped out due to precisely this problem.
1692 			 */
1693 			KASSERT(!pmap_page_is_mapped(m),
1694 			    ("swp_pager_async_iodone: page %p is mapped", m));
1695 			KASSERT(m->dirty == 0,
1696 			    ("swp_pager_async_iodone: page %p is dirty", m));
1697 
1698 			vm_page_valid(m);
1699 			if (i < bp->b_pgbefore ||
1700 			    i >= bp->b_npages - bp->b_pgafter)
1701 				vm_page_readahead_finish(m);
1702 		} else {
1703 			/*
1704 			 * For write success, clear the dirty
1705 			 * status, then finish the I/O ( which decrements the
1706 			 * busy count and possibly wakes waiter's up ).
1707 			 * A page is only written to swap after a period of
1708 			 * inactivity.  Therefore, we do not expect it to be
1709 			 * reused.
1710 			 */
1711 			KASSERT(!pmap_page_is_write_mapped(m),
1712 			    ("swp_pager_async_iodone: page %p is not write"
1713 			    " protected", m));
1714 			vm_page_undirty(m);
1715 			vm_page_deactivate_noreuse(m);
1716 			vm_page_sunbusy(m);
1717 		}
1718 	}
1719 
1720 	/*
1721 	 * adjust pip.  NOTE: the original parent may still have its own
1722 	 * pip refs on the object.
1723 	 */
1724 	if (object != NULL) {
1725 		vm_object_pip_wakeupn(object, bp->b_npages);
1726 		VM_OBJECT_WUNLOCK(object);
1727 	}
1728 
1729 	/*
1730 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1731 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1732 	 * trigger a KASSERT in relpbuf().
1733 	 */
1734 	if (bp->b_vp) {
1735 		    bp->b_vp = NULL;
1736 		    bp->b_bufobj = NULL;
1737 	}
1738 	/*
1739 	 * release the physical I/O buffer
1740 	 */
1741 	if (bp->b_flags & B_ASYNC) {
1742 		mtx_lock(&swbuf_mtx);
1743 		if (++nsw_wcount_async == 1)
1744 			wakeup(&nsw_wcount_async);
1745 		mtx_unlock(&swbuf_mtx);
1746 	}
1747 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1748 }
1749 
1750 int
1751 swap_pager_nswapdev(void)
1752 {
1753 
1754 	return (nswapdev);
1755 }
1756 
1757 static void
1758 swp_pager_force_dirty(vm_page_t m)
1759 {
1760 
1761 	vm_page_dirty(m);
1762 	swap_pager_unswapped(m);
1763 	vm_page_launder(m);
1764 }
1765 
1766 /*
1767  *	swap_pager_swapoff_object:
1768  *
1769  *	Page in all of the pages that have been paged out for an object
1770  *	to a swap device.
1771  */
1772 static void
1773 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1774 {
1775 	struct swblk *sb;
1776 	vm_page_t m;
1777 	vm_pindex_t pi;
1778 	daddr_t blk;
1779 	int i, nv, rahead, rv;
1780 
1781 	KASSERT(object->type == OBJT_SWAP,
1782 	    ("%s: Object not swappable", __func__));
1783 
1784 	for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1785 	    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1786 		if ((object->flags & OBJ_DEAD) != 0) {
1787 			/*
1788 			 * Make sure that pending writes finish before
1789 			 * returning.
1790 			 */
1791 			vm_object_pip_wait(object, "swpoff");
1792 			swp_pager_meta_free_all(object);
1793 			break;
1794 		}
1795 		for (i = 0; i < SWAP_META_PAGES; i++) {
1796 			/*
1797 			 * Count the number of contiguous valid blocks.
1798 			 */
1799 			for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1800 				blk = sb->d[i + nv];
1801 				if (!swp_pager_isondev(blk, sp) ||
1802 				    blk == SWAPBLK_NONE)
1803 					break;
1804 			}
1805 			if (nv == 0)
1806 				continue;
1807 
1808 			/*
1809 			 * Look for a page corresponding to the first
1810 			 * valid block and ensure that any pending paging
1811 			 * operations on it are complete.  If the page is valid,
1812 			 * mark it dirty and free the swap block.  Try to batch
1813 			 * this operation since it may cause sp to be freed,
1814 			 * meaning that we must restart the scan.  Avoid busying
1815 			 * valid pages since we may block forever on kernel
1816 			 * stack pages.
1817 			 */
1818 			m = vm_page_lookup(object, sb->p + i);
1819 			if (m == NULL) {
1820 				m = vm_page_alloc(object, sb->p + i,
1821 				    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1822 				if (m == NULL)
1823 					break;
1824 			} else {
1825 				if ((m->oflags & VPO_SWAPINPROG) != 0) {
1826 					m->oflags |= VPO_SWAPSLEEP;
1827 					VM_OBJECT_SLEEP(object, &object->handle,
1828 					    PSWP, "swpoff", 0);
1829 					break;
1830 				}
1831 				if (vm_page_all_valid(m)) {
1832 					do {
1833 						swp_pager_force_dirty(m);
1834 					} while (--nv > 0 &&
1835 					    (m = vm_page_next(m)) != NULL &&
1836 					    vm_page_all_valid(m) &&
1837 					    (m->oflags & VPO_SWAPINPROG) == 0);
1838 					break;
1839 				}
1840 				if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1841 					break;
1842 			}
1843 
1844 			vm_object_pip_add(object, 1);
1845 			rahead = SWAP_META_PAGES;
1846 			rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1847 			    &rahead);
1848 			if (rv != VM_PAGER_OK)
1849 				panic("%s: read from swap failed: %d",
1850 				    __func__, rv);
1851 			vm_object_pip_wakeupn(object, 1);
1852 			VM_OBJECT_WLOCK(object);
1853 			vm_page_xunbusy(m);
1854 
1855 			/*
1856 			 * The object lock was dropped so we must restart the
1857 			 * scan of this swap block.  Pages paged in during this
1858 			 * iteration will be marked dirty in a future iteration.
1859 			 */
1860 			break;
1861 		}
1862 		if (i == SWAP_META_PAGES)
1863 			pi = sb->p + SWAP_META_PAGES;
1864 	}
1865 }
1866 
1867 /*
1868  *	swap_pager_swapoff:
1869  *
1870  *	Page in all of the pages that have been paged out to the
1871  *	given device.  The corresponding blocks in the bitmap must be
1872  *	marked as allocated and the device must be flagged SW_CLOSING.
1873  *	There may be no processes swapped out to the device.
1874  *
1875  *	This routine may block.
1876  */
1877 static void
1878 swap_pager_swapoff(struct swdevt *sp)
1879 {
1880 	vm_object_t object;
1881 	int retries;
1882 
1883 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1884 
1885 	retries = 0;
1886 full_rescan:
1887 	mtx_lock(&vm_object_list_mtx);
1888 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1889 		if (object->type != OBJT_SWAP)
1890 			continue;
1891 		mtx_unlock(&vm_object_list_mtx);
1892 		/* Depends on type-stability. */
1893 		VM_OBJECT_WLOCK(object);
1894 
1895 		/*
1896 		 * Dead objects are eventually terminated on their own.
1897 		 */
1898 		if ((object->flags & OBJ_DEAD) != 0)
1899 			goto next_obj;
1900 
1901 		/*
1902 		 * Sync with fences placed after pctrie
1903 		 * initialization.  We must not access pctrie below
1904 		 * unless we checked that our object is swap and not
1905 		 * dead.
1906 		 */
1907 		atomic_thread_fence_acq();
1908 		if (object->type != OBJT_SWAP)
1909 			goto next_obj;
1910 
1911 		swap_pager_swapoff_object(sp, object);
1912 next_obj:
1913 		VM_OBJECT_WUNLOCK(object);
1914 		mtx_lock(&vm_object_list_mtx);
1915 	}
1916 	mtx_unlock(&vm_object_list_mtx);
1917 
1918 	if (sp->sw_used) {
1919 		/*
1920 		 * Objects may be locked or paging to the device being
1921 		 * removed, so we will miss their pages and need to
1922 		 * make another pass.  We have marked this device as
1923 		 * SW_CLOSING, so the activity should finish soon.
1924 		 */
1925 		retries++;
1926 		if (retries > 100) {
1927 			panic("swapoff: failed to locate %d swap blocks",
1928 			    sp->sw_used);
1929 		}
1930 		pause("swpoff", hz / 20);
1931 		goto full_rescan;
1932 	}
1933 	EVENTHANDLER_INVOKE(swapoff, sp);
1934 }
1935 
1936 /************************************************************************
1937  *				SWAP META DATA 				*
1938  ************************************************************************
1939  *
1940  *	These routines manipulate the swap metadata stored in the
1941  *	OBJT_SWAP object.
1942  *
1943  *	Swap metadata is implemented with a global hash and not directly
1944  *	linked into the object.  Instead the object simply contains
1945  *	appropriate tracking counters.
1946  */
1947 
1948 /*
1949  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1950  */
1951 static bool
1952 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1953 {
1954 	int i;
1955 
1956 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1957 	for (i = start; i < limit; i++) {
1958 		if (sb->d[i] != SWAPBLK_NONE)
1959 			return (false);
1960 	}
1961 	return (true);
1962 }
1963 
1964 /*
1965  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
1966  *
1967  *  Nothing is done if the block is still in use.
1968  */
1969 static void
1970 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
1971 {
1972 
1973 	if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1974 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1975 		uma_zfree(swblk_zone, sb);
1976 	}
1977 }
1978 
1979 /*
1980  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1981  *
1982  *	We first convert the object to a swap object if it is a default
1983  *	object.
1984  *
1985  *	The specified swapblk is added to the object's swap metadata.  If
1986  *	the swapblk is not valid, it is freed instead.  Any previously
1987  *	assigned swapblk is returned.
1988  */
1989 static daddr_t
1990 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1991 {
1992 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1993 	struct swblk *sb, *sb1;
1994 	vm_pindex_t modpi, rdpi;
1995 	daddr_t prev_swapblk;
1996 	int error, i;
1997 
1998 	VM_OBJECT_ASSERT_WLOCKED(object);
1999 
2000 	/*
2001 	 * Convert default object to swap object if necessary
2002 	 */
2003 	if (object->type != OBJT_SWAP) {
2004 		pctrie_init(&object->un_pager.swp.swp_blks);
2005 
2006 		/*
2007 		 * Ensure that swap_pager_swapoff()'s iteration over
2008 		 * object_list does not see a garbage pctrie.
2009 		 */
2010 		atomic_thread_fence_rel();
2011 
2012 		object->type = OBJT_SWAP;
2013 		object->un_pager.swp.writemappings = 0;
2014 		KASSERT((object->flags & OBJ_ANON) != 0 ||
2015 		    object->handle == NULL,
2016 		    ("default pager %p with handle %p",
2017 		    object, object->handle));
2018 	}
2019 
2020 	rdpi = rounddown(pindex, SWAP_META_PAGES);
2021 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2022 	if (sb == NULL) {
2023 		if (swapblk == SWAPBLK_NONE)
2024 			return (SWAPBLK_NONE);
2025 		for (;;) {
2026 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2027 			    pageproc ? M_USE_RESERVE : 0));
2028 			if (sb != NULL) {
2029 				sb->p = rdpi;
2030 				for (i = 0; i < SWAP_META_PAGES; i++)
2031 					sb->d[i] = SWAPBLK_NONE;
2032 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2033 				    1, 0))
2034 					printf("swblk zone ok\n");
2035 				break;
2036 			}
2037 			VM_OBJECT_WUNLOCK(object);
2038 			if (uma_zone_exhausted(swblk_zone)) {
2039 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2040 				    0, 1))
2041 					printf("swap blk zone exhausted, "
2042 					    "increase kern.maxswzone\n");
2043 				vm_pageout_oom(VM_OOM_SWAPZ);
2044 				pause("swzonxb", 10);
2045 			} else
2046 				uma_zwait(swblk_zone);
2047 			VM_OBJECT_WLOCK(object);
2048 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2049 			    rdpi);
2050 			if (sb != NULL)
2051 				/*
2052 				 * Somebody swapped out a nearby page,
2053 				 * allocating swblk at the rdpi index,
2054 				 * while we dropped the object lock.
2055 				 */
2056 				goto allocated;
2057 		}
2058 		for (;;) {
2059 			error = SWAP_PCTRIE_INSERT(
2060 			    &object->un_pager.swp.swp_blks, sb);
2061 			if (error == 0) {
2062 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2063 				    1, 0))
2064 					printf("swpctrie zone ok\n");
2065 				break;
2066 			}
2067 			VM_OBJECT_WUNLOCK(object);
2068 			if (uma_zone_exhausted(swpctrie_zone)) {
2069 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2070 				    0, 1))
2071 					printf("swap pctrie zone exhausted, "
2072 					    "increase kern.maxswzone\n");
2073 				vm_pageout_oom(VM_OOM_SWAPZ);
2074 				pause("swzonxp", 10);
2075 			} else
2076 				uma_zwait(swpctrie_zone);
2077 			VM_OBJECT_WLOCK(object);
2078 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2079 			    rdpi);
2080 			if (sb1 != NULL) {
2081 				uma_zfree(swblk_zone, sb);
2082 				sb = sb1;
2083 				goto allocated;
2084 			}
2085 		}
2086 	}
2087 allocated:
2088 	MPASS(sb->p == rdpi);
2089 
2090 	modpi = pindex % SWAP_META_PAGES;
2091 	/* Return prior contents of metadata. */
2092 	prev_swapblk = sb->d[modpi];
2093 	/* Enter block into metadata. */
2094 	sb->d[modpi] = swapblk;
2095 
2096 	/*
2097 	 * Free the swblk if we end up with the empty page run.
2098 	 */
2099 	if (swapblk == SWAPBLK_NONE)
2100 		swp_pager_free_empty_swblk(object, sb);
2101 	return (prev_swapblk);
2102 }
2103 
2104 /*
2105  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2106  * metadata, or transfer it into dstobject.
2107  *
2108  *	This routine will free swap metadata structures as they are cleaned
2109  *	out.
2110  */
2111 static void
2112 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2113     vm_pindex_t pindex, vm_pindex_t count)
2114 {
2115 	struct swblk *sb;
2116 	daddr_t n_free, s_free;
2117 	vm_pindex_t offset, last;
2118 	int i, limit, start;
2119 
2120 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
2121 	if (srcobject->type != OBJT_SWAP || count == 0)
2122 		return;
2123 
2124 	swp_pager_init_freerange(&s_free, &n_free);
2125 	offset = pindex;
2126 	last = pindex + count;
2127 	for (;;) {
2128 		sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2129 		    rounddown(pindex, SWAP_META_PAGES));
2130 		if (sb == NULL || sb->p >= last)
2131 			break;
2132 		start = pindex > sb->p ? pindex - sb->p : 0;
2133 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2134 		    SWAP_META_PAGES;
2135 		for (i = start; i < limit; i++) {
2136 			if (sb->d[i] == SWAPBLK_NONE)
2137 				continue;
2138 			if (dstobject == NULL ||
2139 			    !swp_pager_xfer_source(srcobject, dstobject,
2140 			    sb->p + i - offset, sb->d[i])) {
2141 				swp_pager_update_freerange(&s_free, &n_free,
2142 				    sb->d[i]);
2143 			}
2144 			sb->d[i] = SWAPBLK_NONE;
2145 		}
2146 		pindex = sb->p + SWAP_META_PAGES;
2147 		if (swp_pager_swblk_empty(sb, 0, start) &&
2148 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2149 			SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2150 			    sb->p);
2151 			uma_zfree(swblk_zone, sb);
2152 		}
2153 	}
2154 	swp_pager_freeswapspace(s_free, n_free);
2155 }
2156 
2157 /*
2158  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2159  *
2160  *	The requested range of blocks is freed, with any associated swap
2161  *	returned to the swap bitmap.
2162  *
2163  *	This routine will free swap metadata structures as they are cleaned
2164  *	out.  This routine does *NOT* operate on swap metadata associated
2165  *	with resident pages.
2166  */
2167 static void
2168 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2169 {
2170 	swp_pager_meta_transfer(object, NULL, pindex, count);
2171 }
2172 
2173 /*
2174  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2175  *
2176  *	This routine locates and destroys all swap metadata associated with
2177  *	an object.
2178  */
2179 static void
2180 swp_pager_meta_free_all(vm_object_t object)
2181 {
2182 	struct swblk *sb;
2183 	daddr_t n_free, s_free;
2184 	vm_pindex_t pindex;
2185 	int i;
2186 
2187 	VM_OBJECT_ASSERT_WLOCKED(object);
2188 	if (object->type != OBJT_SWAP)
2189 		return;
2190 
2191 	swp_pager_init_freerange(&s_free, &n_free);
2192 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2193 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2194 		pindex = sb->p + SWAP_META_PAGES;
2195 		for (i = 0; i < SWAP_META_PAGES; i++) {
2196 			if (sb->d[i] == SWAPBLK_NONE)
2197 				continue;
2198 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2199 		}
2200 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2201 		uma_zfree(swblk_zone, sb);
2202 	}
2203 	swp_pager_freeswapspace(s_free, n_free);
2204 }
2205 
2206 /*
2207  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2208  *
2209  *	This routine is capable of looking up, or removing swapblk
2210  *	assignments in the swap meta data.  It returns the swapblk being
2211  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2212  *
2213  *	When acting on a busy resident page and paging is in progress, we
2214  *	have to wait until paging is complete but otherwise can act on the
2215  *	busy page.
2216  */
2217 static daddr_t
2218 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2219 {
2220 	struct swblk *sb;
2221 
2222 	VM_OBJECT_ASSERT_LOCKED(object);
2223 
2224 	/*
2225 	 * The meta data only exists if the object is OBJT_SWAP
2226 	 * and even then might not be allocated yet.
2227 	 */
2228 	KASSERT(object->type == OBJT_SWAP,
2229 	    ("Lookup object not swappable"));
2230 
2231 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2232 	    rounddown(pindex, SWAP_META_PAGES));
2233 	if (sb == NULL)
2234 		return (SWAPBLK_NONE);
2235 	return (sb->d[pindex % SWAP_META_PAGES]);
2236 }
2237 
2238 /*
2239  * Returns the least page index which is greater than or equal to the
2240  * parameter pindex and for which there is a swap block allocated.
2241  * Returns object's size if the object's type is not swap or if there
2242  * are no allocated swap blocks for the object after the requested
2243  * pindex.
2244  */
2245 vm_pindex_t
2246 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2247 {
2248 	struct swblk *sb;
2249 	int i;
2250 
2251 	VM_OBJECT_ASSERT_LOCKED(object);
2252 	if (object->type != OBJT_SWAP)
2253 		return (object->size);
2254 
2255 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2256 	    rounddown(pindex, SWAP_META_PAGES));
2257 	if (sb == NULL)
2258 		return (object->size);
2259 	if (sb->p < pindex) {
2260 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2261 			if (sb->d[i] != SWAPBLK_NONE)
2262 				return (sb->p + i);
2263 		}
2264 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2265 		    roundup(pindex, SWAP_META_PAGES));
2266 		if (sb == NULL)
2267 			return (object->size);
2268 	}
2269 	for (i = 0; i < SWAP_META_PAGES; i++) {
2270 		if (sb->d[i] != SWAPBLK_NONE)
2271 			return (sb->p + i);
2272 	}
2273 
2274 	/*
2275 	 * We get here if a swblk is present in the trie but it
2276 	 * doesn't map any blocks.
2277 	 */
2278 	MPASS(0);
2279 	return (object->size);
2280 }
2281 
2282 /*
2283  * System call swapon(name) enables swapping on device name,
2284  * which must be in the swdevsw.  Return EBUSY
2285  * if already swapping on this device.
2286  */
2287 #ifndef _SYS_SYSPROTO_H_
2288 struct swapon_args {
2289 	char *name;
2290 };
2291 #endif
2292 
2293 /*
2294  * MPSAFE
2295  */
2296 /* ARGSUSED */
2297 int
2298 sys_swapon(struct thread *td, struct swapon_args *uap)
2299 {
2300 	struct vattr attr;
2301 	struct vnode *vp;
2302 	struct nameidata nd;
2303 	int error;
2304 
2305 	error = priv_check(td, PRIV_SWAPON);
2306 	if (error)
2307 		return (error);
2308 
2309 	sx_xlock(&swdev_syscall_lock);
2310 
2311 	/*
2312 	 * Swap metadata may not fit in the KVM if we have physical
2313 	 * memory of >1GB.
2314 	 */
2315 	if (swblk_zone == NULL) {
2316 		error = ENOMEM;
2317 		goto done;
2318 	}
2319 
2320 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2321 	    uap->name, td);
2322 	error = namei(&nd);
2323 	if (error)
2324 		goto done;
2325 
2326 	NDFREE(&nd, NDF_ONLY_PNBUF);
2327 	vp = nd.ni_vp;
2328 
2329 	if (vn_isdisk_error(vp, &error)) {
2330 		error = swapongeom(vp);
2331 	} else if (vp->v_type == VREG &&
2332 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2333 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2334 		/*
2335 		 * Allow direct swapping to NFS regular files in the same
2336 		 * way that nfs_mountroot() sets up diskless swapping.
2337 		 */
2338 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2339 	}
2340 
2341 	if (error)
2342 		vrele(vp);
2343 done:
2344 	sx_xunlock(&swdev_syscall_lock);
2345 	return (error);
2346 }
2347 
2348 /*
2349  * Check that the total amount of swap currently configured does not
2350  * exceed half the theoretical maximum.  If it does, print a warning
2351  * message.
2352  */
2353 static void
2354 swapon_check_swzone(void)
2355 {
2356 
2357 	/* recommend using no more than half that amount */
2358 	if (swap_total > swap_maxpages / 2) {
2359 		printf("warning: total configured swap (%lu pages) "
2360 		    "exceeds maximum recommended amount (%lu pages).\n",
2361 		    swap_total, swap_maxpages / 2);
2362 		printf("warning: increase kern.maxswzone "
2363 		    "or reduce amount of swap.\n");
2364 	}
2365 }
2366 
2367 static void
2368 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2369     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2370 {
2371 	struct swdevt *sp, *tsp;
2372 	daddr_t dvbase;
2373 
2374 	/*
2375 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2376 	 * First chop nblks off to page-align it, then convert.
2377 	 *
2378 	 * sw->sw_nblks is in page-sized chunks now too.
2379 	 */
2380 	nblks &= ~(ctodb(1) - 1);
2381 	nblks = dbtoc(nblks);
2382 
2383 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2384 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2385 	sp->sw_vp = vp;
2386 	sp->sw_id = id;
2387 	sp->sw_dev = dev;
2388 	sp->sw_nblks = nblks;
2389 	sp->sw_used = 0;
2390 	sp->sw_strategy = strategy;
2391 	sp->sw_close = close;
2392 	sp->sw_flags = flags;
2393 
2394 	/*
2395 	 * Do not free the first blocks in order to avoid overwriting
2396 	 * any bsd label at the front of the partition
2397 	 */
2398 	blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2399 	    nblks - howmany(BBSIZE, PAGE_SIZE));
2400 
2401 	dvbase = 0;
2402 	mtx_lock(&sw_dev_mtx);
2403 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2404 		if (tsp->sw_end >= dvbase) {
2405 			/*
2406 			 * We put one uncovered page between the devices
2407 			 * in order to definitively prevent any cross-device
2408 			 * I/O requests
2409 			 */
2410 			dvbase = tsp->sw_end + 1;
2411 		}
2412 	}
2413 	sp->sw_first = dvbase;
2414 	sp->sw_end = dvbase + nblks;
2415 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2416 	nswapdev++;
2417 	swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2418 	swap_total += nblks;
2419 	swapon_check_swzone();
2420 	swp_sizecheck();
2421 	mtx_unlock(&sw_dev_mtx);
2422 	EVENTHANDLER_INVOKE(swapon, sp);
2423 }
2424 
2425 /*
2426  * SYSCALL: swapoff(devname)
2427  *
2428  * Disable swapping on the given device.
2429  *
2430  * XXX: Badly designed system call: it should use a device index
2431  * rather than filename as specification.  We keep sw_vp around
2432  * only to make this work.
2433  */
2434 #ifndef _SYS_SYSPROTO_H_
2435 struct swapoff_args {
2436 	char *name;
2437 };
2438 #endif
2439 
2440 /*
2441  * MPSAFE
2442  */
2443 /* ARGSUSED */
2444 int
2445 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2446 {
2447 	struct vnode *vp;
2448 	struct nameidata nd;
2449 	struct swdevt *sp;
2450 	int error;
2451 
2452 	error = priv_check(td, PRIV_SWAPOFF);
2453 	if (error)
2454 		return (error);
2455 
2456 	sx_xlock(&swdev_syscall_lock);
2457 
2458 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2459 	    td);
2460 	error = namei(&nd);
2461 	if (error)
2462 		goto done;
2463 	NDFREE(&nd, NDF_ONLY_PNBUF);
2464 	vp = nd.ni_vp;
2465 
2466 	mtx_lock(&sw_dev_mtx);
2467 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2468 		if (sp->sw_vp == vp)
2469 			break;
2470 	}
2471 	mtx_unlock(&sw_dev_mtx);
2472 	if (sp == NULL) {
2473 		error = EINVAL;
2474 		goto done;
2475 	}
2476 	error = swapoff_one(sp, td->td_ucred);
2477 done:
2478 	sx_xunlock(&swdev_syscall_lock);
2479 	return (error);
2480 }
2481 
2482 static int
2483 swapoff_one(struct swdevt *sp, struct ucred *cred)
2484 {
2485 	u_long nblks;
2486 #ifdef MAC
2487 	int error;
2488 #endif
2489 
2490 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2491 #ifdef MAC
2492 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2493 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2494 	(void) VOP_UNLOCK(sp->sw_vp);
2495 	if (error != 0)
2496 		return (error);
2497 #endif
2498 	nblks = sp->sw_nblks;
2499 
2500 	/*
2501 	 * We can turn off this swap device safely only if the
2502 	 * available virtual memory in the system will fit the amount
2503 	 * of data we will have to page back in, plus an epsilon so
2504 	 * the system doesn't become critically low on swap space.
2505 	 */
2506 	if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2507 		return (ENOMEM);
2508 
2509 	/*
2510 	 * Prevent further allocations on this device.
2511 	 */
2512 	mtx_lock(&sw_dev_mtx);
2513 	sp->sw_flags |= SW_CLOSING;
2514 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2515 	swap_total -= nblks;
2516 	mtx_unlock(&sw_dev_mtx);
2517 
2518 	/*
2519 	 * Page in the contents of the device and close it.
2520 	 */
2521 	swap_pager_swapoff(sp);
2522 
2523 	sp->sw_close(curthread, sp);
2524 	mtx_lock(&sw_dev_mtx);
2525 	sp->sw_id = NULL;
2526 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2527 	nswapdev--;
2528 	if (nswapdev == 0) {
2529 		swap_pager_full = 2;
2530 		swap_pager_almost_full = 1;
2531 	}
2532 	if (swdevhd == sp)
2533 		swdevhd = NULL;
2534 	mtx_unlock(&sw_dev_mtx);
2535 	blist_destroy(sp->sw_blist);
2536 	free(sp, M_VMPGDATA);
2537 	return (0);
2538 }
2539 
2540 void
2541 swapoff_all(void)
2542 {
2543 	struct swdevt *sp, *spt;
2544 	const char *devname;
2545 	int error;
2546 
2547 	sx_xlock(&swdev_syscall_lock);
2548 
2549 	mtx_lock(&sw_dev_mtx);
2550 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2551 		mtx_unlock(&sw_dev_mtx);
2552 		if (vn_isdisk(sp->sw_vp))
2553 			devname = devtoname(sp->sw_vp->v_rdev);
2554 		else
2555 			devname = "[file]";
2556 		error = swapoff_one(sp, thread0.td_ucred);
2557 		if (error != 0) {
2558 			printf("Cannot remove swap device %s (error=%d), "
2559 			    "skipping.\n", devname, error);
2560 		} else if (bootverbose) {
2561 			printf("Swap device %s removed.\n", devname);
2562 		}
2563 		mtx_lock(&sw_dev_mtx);
2564 	}
2565 	mtx_unlock(&sw_dev_mtx);
2566 
2567 	sx_xunlock(&swdev_syscall_lock);
2568 }
2569 
2570 void
2571 swap_pager_status(int *total, int *used)
2572 {
2573 
2574 	*total = swap_total;
2575 	*used = swap_total - swap_pager_avail -
2576 	    nswapdev * howmany(BBSIZE, PAGE_SIZE);
2577 }
2578 
2579 int
2580 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2581 {
2582 	struct swdevt *sp;
2583 	const char *tmp_devname;
2584 	int error, n;
2585 
2586 	n = 0;
2587 	error = ENOENT;
2588 	mtx_lock(&sw_dev_mtx);
2589 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2590 		if (n != name) {
2591 			n++;
2592 			continue;
2593 		}
2594 		xs->xsw_version = XSWDEV_VERSION;
2595 		xs->xsw_dev = sp->sw_dev;
2596 		xs->xsw_flags = sp->sw_flags;
2597 		xs->xsw_nblks = sp->sw_nblks;
2598 		xs->xsw_used = sp->sw_used;
2599 		if (devname != NULL) {
2600 			if (vn_isdisk(sp->sw_vp))
2601 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2602 			else
2603 				tmp_devname = "[file]";
2604 			strncpy(devname, tmp_devname, len);
2605 		}
2606 		error = 0;
2607 		break;
2608 	}
2609 	mtx_unlock(&sw_dev_mtx);
2610 	return (error);
2611 }
2612 
2613 #if defined(COMPAT_FREEBSD11)
2614 #define XSWDEV_VERSION_11	1
2615 struct xswdev11 {
2616 	u_int	xsw_version;
2617 	uint32_t xsw_dev;
2618 	int	xsw_flags;
2619 	int	xsw_nblks;
2620 	int     xsw_used;
2621 };
2622 #endif
2623 
2624 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2625 struct xswdev32 {
2626 	u_int	xsw_version;
2627 	u_int	xsw_dev1, xsw_dev2;
2628 	int	xsw_flags;
2629 	int	xsw_nblks;
2630 	int     xsw_used;
2631 };
2632 #endif
2633 
2634 static int
2635 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2636 {
2637 	struct xswdev xs;
2638 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2639 	struct xswdev32 xs32;
2640 #endif
2641 #if defined(COMPAT_FREEBSD11)
2642 	struct xswdev11 xs11;
2643 #endif
2644 	int error;
2645 
2646 	if (arg2 != 1)			/* name length */
2647 		return (EINVAL);
2648 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2649 	if (error != 0)
2650 		return (error);
2651 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2652 	if (req->oldlen == sizeof(xs32)) {
2653 		xs32.xsw_version = XSWDEV_VERSION;
2654 		xs32.xsw_dev1 = xs.xsw_dev;
2655 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2656 		xs32.xsw_flags = xs.xsw_flags;
2657 		xs32.xsw_nblks = xs.xsw_nblks;
2658 		xs32.xsw_used = xs.xsw_used;
2659 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2660 		return (error);
2661 	}
2662 #endif
2663 #if defined(COMPAT_FREEBSD11)
2664 	if (req->oldlen == sizeof(xs11)) {
2665 		xs11.xsw_version = XSWDEV_VERSION_11;
2666 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2667 		xs11.xsw_flags = xs.xsw_flags;
2668 		xs11.xsw_nblks = xs.xsw_nblks;
2669 		xs11.xsw_used = xs.xsw_used;
2670 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2671 		return (error);
2672 	}
2673 #endif
2674 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2675 	return (error);
2676 }
2677 
2678 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2679     "Number of swap devices");
2680 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2681     sysctl_vm_swap_info,
2682     "Swap statistics by device");
2683 
2684 /*
2685  * Count the approximate swap usage in pages for a vmspace.  The
2686  * shadowed or not yet copied on write swap blocks are not accounted.
2687  * The map must be locked.
2688  */
2689 long
2690 vmspace_swap_count(struct vmspace *vmspace)
2691 {
2692 	vm_map_t map;
2693 	vm_map_entry_t cur;
2694 	vm_object_t object;
2695 	struct swblk *sb;
2696 	vm_pindex_t e, pi;
2697 	long count;
2698 	int i;
2699 
2700 	map = &vmspace->vm_map;
2701 	count = 0;
2702 
2703 	VM_MAP_ENTRY_FOREACH(cur, map) {
2704 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2705 			continue;
2706 		object = cur->object.vm_object;
2707 		if (object == NULL || object->type != OBJT_SWAP)
2708 			continue;
2709 		VM_OBJECT_RLOCK(object);
2710 		if (object->type != OBJT_SWAP)
2711 			goto unlock;
2712 		pi = OFF_TO_IDX(cur->offset);
2713 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2714 		for (;; pi = sb->p + SWAP_META_PAGES) {
2715 			sb = SWAP_PCTRIE_LOOKUP_GE(
2716 			    &object->un_pager.swp.swp_blks, pi);
2717 			if (sb == NULL || sb->p >= e)
2718 				break;
2719 			for (i = 0; i < SWAP_META_PAGES; i++) {
2720 				if (sb->p + i < e &&
2721 				    sb->d[i] != SWAPBLK_NONE)
2722 					count++;
2723 			}
2724 		}
2725 unlock:
2726 		VM_OBJECT_RUNLOCK(object);
2727 	}
2728 	return (count);
2729 }
2730 
2731 /*
2732  * GEOM backend
2733  *
2734  * Swapping onto disk devices.
2735  *
2736  */
2737 
2738 static g_orphan_t swapgeom_orphan;
2739 
2740 static struct g_class g_swap_class = {
2741 	.name = "SWAP",
2742 	.version = G_VERSION,
2743 	.orphan = swapgeom_orphan,
2744 };
2745 
2746 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2747 
2748 static void
2749 swapgeom_close_ev(void *arg, int flags)
2750 {
2751 	struct g_consumer *cp;
2752 
2753 	cp = arg;
2754 	g_access(cp, -1, -1, 0);
2755 	g_detach(cp);
2756 	g_destroy_consumer(cp);
2757 }
2758 
2759 /*
2760  * Add a reference to the g_consumer for an inflight transaction.
2761  */
2762 static void
2763 swapgeom_acquire(struct g_consumer *cp)
2764 {
2765 
2766 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2767 	cp->index++;
2768 }
2769 
2770 /*
2771  * Remove a reference from the g_consumer.  Post a close event if all
2772  * references go away, since the function might be called from the
2773  * biodone context.
2774  */
2775 static void
2776 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2777 {
2778 
2779 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2780 	cp->index--;
2781 	if (cp->index == 0) {
2782 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2783 			sp->sw_id = NULL;
2784 	}
2785 }
2786 
2787 static void
2788 swapgeom_done(struct bio *bp2)
2789 {
2790 	struct swdevt *sp;
2791 	struct buf *bp;
2792 	struct g_consumer *cp;
2793 
2794 	bp = bp2->bio_caller2;
2795 	cp = bp2->bio_from;
2796 	bp->b_ioflags = bp2->bio_flags;
2797 	if (bp2->bio_error)
2798 		bp->b_ioflags |= BIO_ERROR;
2799 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2800 	bp->b_error = bp2->bio_error;
2801 	bp->b_caller1 = NULL;
2802 	bufdone(bp);
2803 	sp = bp2->bio_caller1;
2804 	mtx_lock(&sw_dev_mtx);
2805 	swapgeom_release(cp, sp);
2806 	mtx_unlock(&sw_dev_mtx);
2807 	g_destroy_bio(bp2);
2808 }
2809 
2810 static void
2811 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2812 {
2813 	struct bio *bio;
2814 	struct g_consumer *cp;
2815 
2816 	mtx_lock(&sw_dev_mtx);
2817 	cp = sp->sw_id;
2818 	if (cp == NULL) {
2819 		mtx_unlock(&sw_dev_mtx);
2820 		bp->b_error = ENXIO;
2821 		bp->b_ioflags |= BIO_ERROR;
2822 		bufdone(bp);
2823 		return;
2824 	}
2825 	swapgeom_acquire(cp);
2826 	mtx_unlock(&sw_dev_mtx);
2827 	if (bp->b_iocmd == BIO_WRITE)
2828 		bio = g_new_bio();
2829 	else
2830 		bio = g_alloc_bio();
2831 	if (bio == NULL) {
2832 		mtx_lock(&sw_dev_mtx);
2833 		swapgeom_release(cp, sp);
2834 		mtx_unlock(&sw_dev_mtx);
2835 		bp->b_error = ENOMEM;
2836 		bp->b_ioflags |= BIO_ERROR;
2837 		printf("swap_pager: cannot allocate bio\n");
2838 		bufdone(bp);
2839 		return;
2840 	}
2841 
2842 	bp->b_caller1 = bio;
2843 	bio->bio_caller1 = sp;
2844 	bio->bio_caller2 = bp;
2845 	bio->bio_cmd = bp->b_iocmd;
2846 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2847 	bio->bio_length = bp->b_bcount;
2848 	bio->bio_done = swapgeom_done;
2849 	if (!buf_mapped(bp)) {
2850 		bio->bio_ma = bp->b_pages;
2851 		bio->bio_data = unmapped_buf;
2852 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2853 		bio->bio_ma_n = bp->b_npages;
2854 		bio->bio_flags |= BIO_UNMAPPED;
2855 	} else {
2856 		bio->bio_data = bp->b_data;
2857 		bio->bio_ma = NULL;
2858 	}
2859 	g_io_request(bio, cp);
2860 	return;
2861 }
2862 
2863 static void
2864 swapgeom_orphan(struct g_consumer *cp)
2865 {
2866 	struct swdevt *sp;
2867 	int destroy;
2868 
2869 	mtx_lock(&sw_dev_mtx);
2870 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2871 		if (sp->sw_id == cp) {
2872 			sp->sw_flags |= SW_CLOSING;
2873 			break;
2874 		}
2875 	}
2876 	/*
2877 	 * Drop reference we were created with. Do directly since we're in a
2878 	 * special context where we don't have to queue the call to
2879 	 * swapgeom_close_ev().
2880 	 */
2881 	cp->index--;
2882 	destroy = ((sp != NULL) && (cp->index == 0));
2883 	if (destroy)
2884 		sp->sw_id = NULL;
2885 	mtx_unlock(&sw_dev_mtx);
2886 	if (destroy)
2887 		swapgeom_close_ev(cp, 0);
2888 }
2889 
2890 static void
2891 swapgeom_close(struct thread *td, struct swdevt *sw)
2892 {
2893 	struct g_consumer *cp;
2894 
2895 	mtx_lock(&sw_dev_mtx);
2896 	cp = sw->sw_id;
2897 	sw->sw_id = NULL;
2898 	mtx_unlock(&sw_dev_mtx);
2899 
2900 	/*
2901 	 * swapgeom_close() may be called from the biodone context,
2902 	 * where we cannot perform topology changes.  Delegate the
2903 	 * work to the events thread.
2904 	 */
2905 	if (cp != NULL)
2906 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2907 }
2908 
2909 static int
2910 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2911 {
2912 	struct g_provider *pp;
2913 	struct g_consumer *cp;
2914 	static struct g_geom *gp;
2915 	struct swdevt *sp;
2916 	u_long nblks;
2917 	int error;
2918 
2919 	pp = g_dev_getprovider(dev);
2920 	if (pp == NULL)
2921 		return (ENODEV);
2922 	mtx_lock(&sw_dev_mtx);
2923 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2924 		cp = sp->sw_id;
2925 		if (cp != NULL && cp->provider == pp) {
2926 			mtx_unlock(&sw_dev_mtx);
2927 			return (EBUSY);
2928 		}
2929 	}
2930 	mtx_unlock(&sw_dev_mtx);
2931 	if (gp == NULL)
2932 		gp = g_new_geomf(&g_swap_class, "swap");
2933 	cp = g_new_consumer(gp);
2934 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2935 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2936 	g_attach(cp, pp);
2937 	/*
2938 	 * XXX: Every time you think you can improve the margin for
2939 	 * footshooting, somebody depends on the ability to do so:
2940 	 * savecore(8) wants to write to our swapdev so we cannot
2941 	 * set an exclusive count :-(
2942 	 */
2943 	error = g_access(cp, 1, 1, 0);
2944 	if (error != 0) {
2945 		g_detach(cp);
2946 		g_destroy_consumer(cp);
2947 		return (error);
2948 	}
2949 	nblks = pp->mediasize / DEV_BSIZE;
2950 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2951 	    swapgeom_close, dev2udev(dev),
2952 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2953 	return (0);
2954 }
2955 
2956 static int
2957 swapongeom(struct vnode *vp)
2958 {
2959 	int error;
2960 
2961 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2962 	if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
2963 		error = ENOENT;
2964 	} else {
2965 		g_topology_lock();
2966 		error = swapongeom_locked(vp->v_rdev, vp);
2967 		g_topology_unlock();
2968 	}
2969 	VOP_UNLOCK(vp);
2970 	return (error);
2971 }
2972 
2973 /*
2974  * VNODE backend
2975  *
2976  * This is used mainly for network filesystem (read: probably only tested
2977  * with NFS) swapfiles.
2978  *
2979  */
2980 
2981 static void
2982 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2983 {
2984 	struct vnode *vp2;
2985 
2986 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2987 
2988 	vp2 = sp->sw_id;
2989 	vhold(vp2);
2990 	if (bp->b_iocmd == BIO_WRITE) {
2991 		if (bp->b_bufobj)
2992 			bufobj_wdrop(bp->b_bufobj);
2993 		bufobj_wref(&vp2->v_bufobj);
2994 	}
2995 	if (bp->b_bufobj != &vp2->v_bufobj)
2996 		bp->b_bufobj = &vp2->v_bufobj;
2997 	bp->b_vp = vp2;
2998 	bp->b_iooffset = dbtob(bp->b_blkno);
2999 	bstrategy(bp);
3000 	return;
3001 }
3002 
3003 static void
3004 swapdev_close(struct thread *td, struct swdevt *sp)
3005 {
3006 
3007 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
3008 	vrele(sp->sw_vp);
3009 }
3010 
3011 static int
3012 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3013 {
3014 	struct swdevt *sp;
3015 	int error;
3016 
3017 	if (nblks == 0)
3018 		return (ENXIO);
3019 	mtx_lock(&sw_dev_mtx);
3020 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3021 		if (sp->sw_id == vp) {
3022 			mtx_unlock(&sw_dev_mtx);
3023 			return (EBUSY);
3024 		}
3025 	}
3026 	mtx_unlock(&sw_dev_mtx);
3027 
3028 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3029 #ifdef MAC
3030 	error = mac_system_check_swapon(td->td_ucred, vp);
3031 	if (error == 0)
3032 #endif
3033 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3034 	(void) VOP_UNLOCK(vp);
3035 	if (error)
3036 		return (error);
3037 
3038 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3039 	    NODEV, 0);
3040 	return (0);
3041 }
3042 
3043 static int
3044 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3045 {
3046 	int error, new, n;
3047 
3048 	new = nsw_wcount_async_max;
3049 	error = sysctl_handle_int(oidp, &new, 0, req);
3050 	if (error != 0 || req->newptr == NULL)
3051 		return (error);
3052 
3053 	if (new > nswbuf / 2 || new < 1)
3054 		return (EINVAL);
3055 
3056 	mtx_lock(&swbuf_mtx);
3057 	while (nsw_wcount_async_max != new) {
3058 		/*
3059 		 * Adjust difference.  If the current async count is too low,
3060 		 * we will need to sqeeze our update slowly in.  Sleep with a
3061 		 * higher priority than getpbuf() to finish faster.
3062 		 */
3063 		n = new - nsw_wcount_async_max;
3064 		if (nsw_wcount_async + n >= 0) {
3065 			nsw_wcount_async += n;
3066 			nsw_wcount_async_max += n;
3067 			wakeup(&nsw_wcount_async);
3068 		} else {
3069 			nsw_wcount_async_max -= nsw_wcount_async;
3070 			nsw_wcount_async = 0;
3071 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3072 			    "swpsysctl", 0);
3073 		}
3074 	}
3075 	mtx_unlock(&swbuf_mtx);
3076 
3077 	return (0);
3078 }
3079 
3080 static void
3081 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3082     vm_offset_t end)
3083 {
3084 
3085 	VM_OBJECT_WLOCK(object);
3086 	KASSERT((object->flags & OBJ_ANON) == 0,
3087 	    ("Splittable object with writecount"));
3088 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3089 	VM_OBJECT_WUNLOCK(object);
3090 }
3091 
3092 static void
3093 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3094     vm_offset_t end)
3095 {
3096 
3097 	VM_OBJECT_WLOCK(object);
3098 	KASSERT((object->flags & OBJ_ANON) == 0,
3099 	    ("Splittable object with writecount"));
3100 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3101 	VM_OBJECT_WUNLOCK(object);
3102 }
3103