1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/racct.h> 90 #include <sys/resource.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/sysctl.h> 94 #include <sys/sysproto.h> 95 #include <sys/blist.h> 96 #include <sys/lock.h> 97 #include <sys/sx.h> 98 #include <sys/vmmeter.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #include <vm/vm.h> 103 #include <vm/pmap.h> 104 #include <vm/vm_map.h> 105 #include <vm/vm_kern.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_page.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_pageout.h> 110 #include <vm/vm_param.h> 111 #include <vm/swap_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/uma.h> 114 115 #include <geom/geom.h> 116 117 /* 118 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, 16 119 * or 32 pages per allocation. 120 * The 32-page limit is due to the radix code (kern/subr_blist.c). 121 */ 122 #ifndef MAX_PAGEOUT_CLUSTER 123 #define MAX_PAGEOUT_CLUSTER 16 124 #endif 125 126 #if !defined(SWB_NPAGES) 127 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 128 #endif 129 130 /* 131 * The swblock structure maps an object and a small, fixed-size range 132 * of page indices to disk addresses within a swap area. 133 * The collection of these mappings is implemented as a hash table. 134 * Unused disk addresses within a swap area are allocated and managed 135 * using a blist. 136 */ 137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 138 #define SWAP_META_PAGES (SWB_NPAGES * 2) 139 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 140 141 struct swblock { 142 struct swblock *swb_hnext; 143 vm_object_t swb_object; 144 vm_pindex_t swb_index; 145 int swb_count; 146 daddr_t swb_pages[SWAP_META_PAGES]; 147 }; 148 149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 150 static struct mtx sw_dev_mtx; 151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 152 static struct swdevt *swdevhd; /* Allocate from here next */ 153 static int nswapdev; /* Number of swap devices */ 154 int swap_pager_avail; 155 static struct sx swdev_syscall_lock; /* serialize swap(on|off) */ 156 157 static vm_ooffset_t swap_total; 158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 159 "Total amount of available swap storage."); 160 static vm_ooffset_t swap_reserved; 161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 162 "Amount of swap storage needed to back all allocated anonymous memory."); 163 static int overcommit = 0; 164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 165 "Configure virtual memory overcommit behavior. See tuning(7) " 166 "for details."); 167 static unsigned long swzone; 168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, 169 "Actual size of swap metadata zone"); 170 static unsigned long swap_maxpages; 171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, 172 "Maximum amount of swap supported"); 173 174 /* bits from overcommit */ 175 #define SWAP_RESERVE_FORCE_ON (1 << 0) 176 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 177 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 178 179 int 180 swap_reserve(vm_ooffset_t incr) 181 { 182 183 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 184 } 185 186 int 187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 188 { 189 vm_ooffset_t r, s; 190 int res, error; 191 static int curfail; 192 static struct timeval lastfail; 193 struct uidinfo *uip; 194 195 uip = cred->cr_ruidinfo; 196 197 if (incr & PAGE_MASK) 198 panic("swap_reserve: & PAGE_MASK"); 199 200 #ifdef RACCT 201 if (racct_enable) { 202 PROC_LOCK(curproc); 203 error = racct_add(curproc, RACCT_SWAP, incr); 204 PROC_UNLOCK(curproc); 205 if (error != 0) 206 return (0); 207 } 208 #endif 209 210 res = 0; 211 mtx_lock(&sw_dev_mtx); 212 r = swap_reserved + incr; 213 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 214 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count; 215 s *= PAGE_SIZE; 216 } else 217 s = 0; 218 s += swap_total; 219 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 220 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 221 res = 1; 222 swap_reserved = r; 223 } 224 mtx_unlock(&sw_dev_mtx); 225 226 if (res) { 227 UIDINFO_VMSIZE_LOCK(uip); 228 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 229 uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) && 230 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 231 res = 0; 232 else 233 uip->ui_vmsize += incr; 234 UIDINFO_VMSIZE_UNLOCK(uip); 235 if (!res) { 236 mtx_lock(&sw_dev_mtx); 237 swap_reserved -= incr; 238 mtx_unlock(&sw_dev_mtx); 239 } 240 } 241 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 242 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 243 uip->ui_uid, curproc->p_pid, incr); 244 } 245 246 #ifdef RACCT 247 if (!res) { 248 PROC_LOCK(curproc); 249 racct_sub(curproc, RACCT_SWAP, incr); 250 PROC_UNLOCK(curproc); 251 } 252 #endif 253 254 return (res); 255 } 256 257 void 258 swap_reserve_force(vm_ooffset_t incr) 259 { 260 struct uidinfo *uip; 261 262 mtx_lock(&sw_dev_mtx); 263 swap_reserved += incr; 264 mtx_unlock(&sw_dev_mtx); 265 266 #ifdef RACCT 267 PROC_LOCK(curproc); 268 racct_add_force(curproc, RACCT_SWAP, incr); 269 PROC_UNLOCK(curproc); 270 #endif 271 272 uip = curthread->td_ucred->cr_ruidinfo; 273 PROC_LOCK(curproc); 274 UIDINFO_VMSIZE_LOCK(uip); 275 uip->ui_vmsize += incr; 276 UIDINFO_VMSIZE_UNLOCK(uip); 277 PROC_UNLOCK(curproc); 278 } 279 280 void 281 swap_release(vm_ooffset_t decr) 282 { 283 struct ucred *cred; 284 285 PROC_LOCK(curproc); 286 cred = curthread->td_ucred; 287 swap_release_by_cred(decr, cred); 288 PROC_UNLOCK(curproc); 289 } 290 291 void 292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 293 { 294 struct uidinfo *uip; 295 296 uip = cred->cr_ruidinfo; 297 298 if (decr & PAGE_MASK) 299 panic("swap_release: & PAGE_MASK"); 300 301 mtx_lock(&sw_dev_mtx); 302 if (swap_reserved < decr) 303 panic("swap_reserved < decr"); 304 swap_reserved -= decr; 305 mtx_unlock(&sw_dev_mtx); 306 307 UIDINFO_VMSIZE_LOCK(uip); 308 if (uip->ui_vmsize < decr) 309 printf("negative vmsize for uid = %d\n", uip->ui_uid); 310 uip->ui_vmsize -= decr; 311 UIDINFO_VMSIZE_UNLOCK(uip); 312 313 racct_sub_cred(cred, RACCT_SWAP, decr); 314 } 315 316 #define SWM_FREE 0x02 /* free, period */ 317 #define SWM_POP 0x04 /* pop out */ 318 319 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 320 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 321 static int nsw_rcount; /* free read buffers */ 322 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 323 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 324 static int nsw_wcount_async_max;/* assigned maximum */ 325 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 326 327 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS); 328 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW | 329 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I", 330 "Maximum running async swap ops"); 331 332 static struct swblock **swhash; 333 static int swhash_mask; 334 static struct mtx swhash_mtx; 335 336 static struct sx sw_alloc_sx; 337 338 /* 339 * "named" and "unnamed" anon region objects. Try to reduce the overhead 340 * of searching a named list by hashing it just a little. 341 */ 342 343 #define NOBJLISTS 8 344 345 #define NOBJLIST(handle) \ 346 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 347 348 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 349 static uma_zone_t swap_zone; 350 351 /* 352 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 353 * calls hooked from other parts of the VM system and do not appear here. 354 * (see vm/swap_pager.h). 355 */ 356 static vm_object_t 357 swap_pager_alloc(void *handle, vm_ooffset_t size, 358 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 359 static void swap_pager_dealloc(vm_object_t object); 360 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *, 361 int *); 362 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 363 int *, pgo_getpages_iodone_t, void *); 364 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 365 static boolean_t 366 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 367 static void swap_pager_init(void); 368 static void swap_pager_unswapped(vm_page_t); 369 static void swap_pager_swapoff(struct swdevt *sp); 370 371 struct pagerops swappagerops = { 372 .pgo_init = swap_pager_init, /* early system initialization of pager */ 373 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 374 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 375 .pgo_getpages = swap_pager_getpages, /* pagein */ 376 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ 377 .pgo_putpages = swap_pager_putpages, /* pageout */ 378 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 379 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 380 }; 381 382 /* 383 * dmmax is in page-sized chunks with the new swap system. It was 384 * dev-bsized chunks in the old. dmmax is always a power of 2. 385 * 386 * swap_*() routines are externally accessible. swp_*() routines are 387 * internal. 388 */ 389 static int dmmax; 390 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 391 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 392 393 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &dmmax, 0, 394 "Maximum size of a swap block"); 395 396 static void swp_sizecheck(void); 397 static void swp_pager_async_iodone(struct buf *bp); 398 static int swapongeom(struct vnode *); 399 static int swaponvp(struct thread *, struct vnode *, u_long); 400 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 401 402 /* 403 * Swap bitmap functions 404 */ 405 static void swp_pager_freeswapspace(daddr_t blk, int npages); 406 static daddr_t swp_pager_getswapspace(int npages); 407 408 /* 409 * Metadata functions 410 */ 411 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 412 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 413 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 414 static void swp_pager_meta_free_all(vm_object_t); 415 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 416 417 /* 418 * SWP_SIZECHECK() - update swap_pager_full indication 419 * 420 * update the swap_pager_almost_full indication and warn when we are 421 * about to run out of swap space, using lowat/hiwat hysteresis. 422 * 423 * Clear swap_pager_full ( task killing ) indication when lowat is met. 424 * 425 * No restrictions on call 426 * This routine may not block. 427 */ 428 static void 429 swp_sizecheck(void) 430 { 431 432 if (swap_pager_avail < nswap_lowat) { 433 if (swap_pager_almost_full == 0) { 434 printf("swap_pager: out of swap space\n"); 435 swap_pager_almost_full = 1; 436 } 437 } else { 438 swap_pager_full = 0; 439 if (swap_pager_avail > nswap_hiwat) 440 swap_pager_almost_full = 0; 441 } 442 } 443 444 /* 445 * SWP_PAGER_HASH() - hash swap meta data 446 * 447 * This is an helper function which hashes the swapblk given 448 * the object and page index. It returns a pointer to a pointer 449 * to the object, or a pointer to a NULL pointer if it could not 450 * find a swapblk. 451 */ 452 static struct swblock ** 453 swp_pager_hash(vm_object_t object, vm_pindex_t index) 454 { 455 struct swblock **pswap; 456 struct swblock *swap; 457 458 index &= ~(vm_pindex_t)SWAP_META_MASK; 459 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 460 while ((swap = *pswap) != NULL) { 461 if (swap->swb_object == object && 462 swap->swb_index == index 463 ) { 464 break; 465 } 466 pswap = &swap->swb_hnext; 467 } 468 return (pswap); 469 } 470 471 /* 472 * SWAP_PAGER_INIT() - initialize the swap pager! 473 * 474 * Expected to be started from system init. NOTE: This code is run 475 * before much else so be careful what you depend on. Most of the VM 476 * system has yet to be initialized at this point. 477 */ 478 static void 479 swap_pager_init(void) 480 { 481 /* 482 * Initialize object lists 483 */ 484 int i; 485 486 for (i = 0; i < NOBJLISTS; ++i) 487 TAILQ_INIT(&swap_pager_object_list[i]); 488 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 489 sx_init(&sw_alloc_sx, "swspsx"); 490 sx_init(&swdev_syscall_lock, "swsysc"); 491 492 /* 493 * Device Stripe, in PAGE_SIZE'd blocks 494 */ 495 dmmax = SWB_NPAGES * 2; 496 } 497 498 /* 499 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 500 * 501 * Expected to be started from pageout process once, prior to entering 502 * its main loop. 503 */ 504 void 505 swap_pager_swap_init(void) 506 { 507 unsigned long n, n2; 508 509 /* 510 * Number of in-transit swap bp operations. Don't 511 * exhaust the pbufs completely. Make sure we 512 * initialize workable values (0 will work for hysteresis 513 * but it isn't very efficient). 514 * 515 * The nsw_cluster_max is constrained by the bp->b_pages[] 516 * array (MAXPHYS/PAGE_SIZE) and our locally defined 517 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 518 * constrained by the swap device interleave stripe size. 519 * 520 * Currently we hardwire nsw_wcount_async to 4. This limit is 521 * designed to prevent other I/O from having high latencies due to 522 * our pageout I/O. The value 4 works well for one or two active swap 523 * devices but is probably a little low if you have more. Even so, 524 * a higher value would probably generate only a limited improvement 525 * with three or four active swap devices since the system does not 526 * typically have to pageout at extreme bandwidths. We will want 527 * at least 2 per swap devices, and 4 is a pretty good value if you 528 * have one NFS swap device due to the command/ack latency over NFS. 529 * So it all works out pretty well. 530 */ 531 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 532 533 mtx_lock(&pbuf_mtx); 534 nsw_rcount = (nswbuf + 1) / 2; 535 nsw_wcount_sync = (nswbuf + 3) / 4; 536 nsw_wcount_async = 4; 537 nsw_wcount_async_max = nsw_wcount_async; 538 mtx_unlock(&pbuf_mtx); 539 540 /* 541 * Initialize our zone. Right now I'm just guessing on the number 542 * we need based on the number of pages in the system. Each swblock 543 * can hold 32 pages, so this is probably overkill. This reservation 544 * is typically limited to around 32MB by default. 545 */ 546 n = vm_cnt.v_page_count / 2; 547 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 548 n = maxswzone / sizeof(struct swblock); 549 n2 = n; 550 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 551 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 552 if (swap_zone == NULL) 553 panic("failed to create swap_zone."); 554 do { 555 if (uma_zone_reserve_kva(swap_zone, n)) 556 break; 557 /* 558 * if the allocation failed, try a zone two thirds the 559 * size of the previous attempt. 560 */ 561 n -= ((n + 2) / 3); 562 } while (n > 0); 563 if (n2 != n) 564 printf("Swap zone entries reduced from %lu to %lu.\n", n2, n); 565 swap_maxpages = n * SWAP_META_PAGES; 566 swzone = n * sizeof(struct swblock); 567 n2 = n; 568 569 /* 570 * Initialize our meta-data hash table. The swapper does not need to 571 * be quite as efficient as the VM system, so we do not use an 572 * oversized hash table. 573 * 574 * n: size of hash table, must be power of 2 575 * swhash_mask: hash table index mask 576 */ 577 for (n = 1; n < n2 / 8; n *= 2) 578 ; 579 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 580 swhash_mask = n - 1; 581 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 582 } 583 584 static vm_object_t 585 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size, 586 vm_ooffset_t offset) 587 { 588 vm_object_t object; 589 590 if (cred != NULL) { 591 if (!swap_reserve_by_cred(size, cred)) 592 return (NULL); 593 crhold(cred); 594 } 595 object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset + 596 PAGE_MASK + size)); 597 object->handle = handle; 598 if (cred != NULL) { 599 object->cred = cred; 600 object->charge = size; 601 } 602 object->un_pager.swp.swp_bcount = 0; 603 return (object); 604 } 605 606 /* 607 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 608 * its metadata structures. 609 * 610 * This routine is called from the mmap and fork code to create a new 611 * OBJT_SWAP object. 612 * 613 * This routine must ensure that no live duplicate is created for 614 * the named object request, which is protected against by 615 * holding the sw_alloc_sx lock in case handle != NULL. 616 */ 617 static vm_object_t 618 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 619 vm_ooffset_t offset, struct ucred *cred) 620 { 621 vm_object_t object; 622 623 if (handle != NULL) { 624 /* 625 * Reference existing named region or allocate new one. There 626 * should not be a race here against swp_pager_meta_build() 627 * as called from vm_page_remove() in regards to the lookup 628 * of the handle. 629 */ 630 sx_xlock(&sw_alloc_sx); 631 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 632 if (object == NULL) { 633 object = swap_pager_alloc_init(handle, cred, size, 634 offset); 635 if (object != NULL) { 636 TAILQ_INSERT_TAIL(NOBJLIST(object->handle), 637 object, pager_object_list); 638 } 639 } 640 sx_xunlock(&sw_alloc_sx); 641 } else { 642 object = swap_pager_alloc_init(handle, cred, size, offset); 643 } 644 return (object); 645 } 646 647 /* 648 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 649 * 650 * The swap backing for the object is destroyed. The code is 651 * designed such that we can reinstantiate it later, but this 652 * routine is typically called only when the entire object is 653 * about to be destroyed. 654 * 655 * The object must be locked. 656 */ 657 static void 658 swap_pager_dealloc(vm_object_t object) 659 { 660 661 VM_OBJECT_ASSERT_WLOCKED(object); 662 KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj")); 663 664 /* 665 * Remove from list right away so lookups will fail if we block for 666 * pageout completion. 667 */ 668 if (object->handle != NULL) { 669 VM_OBJECT_WUNLOCK(object); 670 sx_xlock(&sw_alloc_sx); 671 TAILQ_REMOVE(NOBJLIST(object->handle), object, 672 pager_object_list); 673 sx_xunlock(&sw_alloc_sx); 674 VM_OBJECT_WLOCK(object); 675 } 676 677 vm_object_pip_wait(object, "swpdea"); 678 679 /* 680 * Free all remaining metadata. We only bother to free it from 681 * the swap meta data. We do not attempt to free swapblk's still 682 * associated with vm_page_t's for this object. We do not care 683 * if paging is still in progress on some objects. 684 */ 685 swp_pager_meta_free_all(object); 686 object->handle = NULL; 687 object->type = OBJT_DEAD; 688 } 689 690 /************************************************************************ 691 * SWAP PAGER BITMAP ROUTINES * 692 ************************************************************************/ 693 694 /* 695 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 696 * 697 * Allocate swap for the requested number of pages. The starting 698 * swap block number (a page index) is returned or SWAPBLK_NONE 699 * if the allocation failed. 700 * 701 * Also has the side effect of advising that somebody made a mistake 702 * when they configured swap and didn't configure enough. 703 * 704 * This routine may not sleep. 705 * 706 * We allocate in round-robin fashion from the configured devices. 707 */ 708 static daddr_t 709 swp_pager_getswapspace(int npages) 710 { 711 daddr_t blk; 712 struct swdevt *sp; 713 int i; 714 715 blk = SWAPBLK_NONE; 716 mtx_lock(&sw_dev_mtx); 717 sp = swdevhd; 718 for (i = 0; i < nswapdev; i++) { 719 if (sp == NULL) 720 sp = TAILQ_FIRST(&swtailq); 721 if (!(sp->sw_flags & SW_CLOSING)) { 722 blk = blist_alloc(sp->sw_blist, npages); 723 if (blk != SWAPBLK_NONE) { 724 blk += sp->sw_first; 725 sp->sw_used += npages; 726 swap_pager_avail -= npages; 727 swp_sizecheck(); 728 swdevhd = TAILQ_NEXT(sp, sw_list); 729 goto done; 730 } 731 } 732 sp = TAILQ_NEXT(sp, sw_list); 733 } 734 if (swap_pager_full != 2) { 735 printf("swap_pager_getswapspace(%d): failed\n", npages); 736 swap_pager_full = 2; 737 swap_pager_almost_full = 1; 738 } 739 swdevhd = NULL; 740 done: 741 mtx_unlock(&sw_dev_mtx); 742 return (blk); 743 } 744 745 static int 746 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 747 { 748 749 return (blk >= sp->sw_first && blk < sp->sw_end); 750 } 751 752 static void 753 swp_pager_strategy(struct buf *bp) 754 { 755 struct swdevt *sp; 756 757 mtx_lock(&sw_dev_mtx); 758 TAILQ_FOREACH(sp, &swtailq, sw_list) { 759 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 760 mtx_unlock(&sw_dev_mtx); 761 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 762 unmapped_buf_allowed) { 763 bp->b_data = unmapped_buf; 764 bp->b_offset = 0; 765 } else { 766 pmap_qenter((vm_offset_t)bp->b_data, 767 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 768 } 769 sp->sw_strategy(bp, sp); 770 return; 771 } 772 } 773 panic("Swapdev not found"); 774 } 775 776 777 /* 778 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 779 * 780 * This routine returns the specified swap blocks back to the bitmap. 781 * 782 * This routine may not sleep. 783 */ 784 static void 785 swp_pager_freeswapspace(daddr_t blk, int npages) 786 { 787 struct swdevt *sp; 788 789 mtx_lock(&sw_dev_mtx); 790 TAILQ_FOREACH(sp, &swtailq, sw_list) { 791 if (blk >= sp->sw_first && blk < sp->sw_end) { 792 sp->sw_used -= npages; 793 /* 794 * If we are attempting to stop swapping on 795 * this device, we don't want to mark any 796 * blocks free lest they be reused. 797 */ 798 if ((sp->sw_flags & SW_CLOSING) == 0) { 799 blist_free(sp->sw_blist, blk - sp->sw_first, 800 npages); 801 swap_pager_avail += npages; 802 swp_sizecheck(); 803 } 804 mtx_unlock(&sw_dev_mtx); 805 return; 806 } 807 } 808 panic("Swapdev not found"); 809 } 810 811 /* 812 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 813 * range within an object. 814 * 815 * This is a globally accessible routine. 816 * 817 * This routine removes swapblk assignments from swap metadata. 818 * 819 * The external callers of this routine typically have already destroyed 820 * or renamed vm_page_t's associated with this range in the object so 821 * we should be ok. 822 * 823 * The object must be locked. 824 */ 825 void 826 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 827 { 828 829 swp_pager_meta_free(object, start, size); 830 } 831 832 /* 833 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 834 * 835 * Assigns swap blocks to the specified range within the object. The 836 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 837 * 838 * Returns 0 on success, -1 on failure. 839 */ 840 int 841 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 842 { 843 int n = 0; 844 daddr_t blk = SWAPBLK_NONE; 845 vm_pindex_t beg = start; /* save start index */ 846 847 VM_OBJECT_WLOCK(object); 848 while (size) { 849 if (n == 0) { 850 n = BLIST_MAX_ALLOC; 851 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 852 n >>= 1; 853 if (n == 0) { 854 swp_pager_meta_free(object, beg, start - beg); 855 VM_OBJECT_WUNLOCK(object); 856 return (-1); 857 } 858 } 859 } 860 swp_pager_meta_build(object, start, blk); 861 --size; 862 ++start; 863 ++blk; 864 --n; 865 } 866 swp_pager_meta_free(object, start, n); 867 VM_OBJECT_WUNLOCK(object); 868 return (0); 869 } 870 871 /* 872 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 873 * and destroy the source. 874 * 875 * Copy any valid swapblks from the source to the destination. In 876 * cases where both the source and destination have a valid swapblk, 877 * we keep the destination's. 878 * 879 * This routine is allowed to sleep. It may sleep allocating metadata 880 * indirectly through swp_pager_meta_build() or if paging is still in 881 * progress on the source. 882 * 883 * The source object contains no vm_page_t's (which is just as well) 884 * 885 * The source object is of type OBJT_SWAP. 886 * 887 * The source and destination objects must be locked. 888 * Both object locks may temporarily be released. 889 */ 890 void 891 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 892 vm_pindex_t offset, int destroysource) 893 { 894 vm_pindex_t i; 895 896 VM_OBJECT_ASSERT_WLOCKED(srcobject); 897 VM_OBJECT_ASSERT_WLOCKED(dstobject); 898 899 /* 900 * If destroysource is set, we remove the source object from the 901 * swap_pager internal queue now. 902 */ 903 if (destroysource && srcobject->handle != NULL) { 904 vm_object_pip_add(srcobject, 1); 905 VM_OBJECT_WUNLOCK(srcobject); 906 vm_object_pip_add(dstobject, 1); 907 VM_OBJECT_WUNLOCK(dstobject); 908 sx_xlock(&sw_alloc_sx); 909 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject, 910 pager_object_list); 911 sx_xunlock(&sw_alloc_sx); 912 VM_OBJECT_WLOCK(dstobject); 913 vm_object_pip_wakeup(dstobject); 914 VM_OBJECT_WLOCK(srcobject); 915 vm_object_pip_wakeup(srcobject); 916 } 917 918 /* 919 * transfer source to destination. 920 */ 921 for (i = 0; i < dstobject->size; ++i) { 922 daddr_t dstaddr; 923 924 /* 925 * Locate (without changing) the swapblk on the destination, 926 * unless it is invalid in which case free it silently, or 927 * if the destination is a resident page, in which case the 928 * source is thrown away. 929 */ 930 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 931 932 if (dstaddr == SWAPBLK_NONE) { 933 /* 934 * Destination has no swapblk and is not resident, 935 * copy source. 936 */ 937 daddr_t srcaddr; 938 939 srcaddr = swp_pager_meta_ctl( 940 srcobject, 941 i + offset, 942 SWM_POP 943 ); 944 945 if (srcaddr != SWAPBLK_NONE) { 946 /* 947 * swp_pager_meta_build() can sleep. 948 */ 949 vm_object_pip_add(srcobject, 1); 950 VM_OBJECT_WUNLOCK(srcobject); 951 vm_object_pip_add(dstobject, 1); 952 swp_pager_meta_build(dstobject, i, srcaddr); 953 vm_object_pip_wakeup(dstobject); 954 VM_OBJECT_WLOCK(srcobject); 955 vm_object_pip_wakeup(srcobject); 956 } 957 } else { 958 /* 959 * Destination has valid swapblk or it is represented 960 * by a resident page. We destroy the sourceblock. 961 */ 962 963 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 964 } 965 } 966 967 /* 968 * Free left over swap blocks in source. 969 * 970 * We have to revert the type to OBJT_DEFAULT so we do not accidentally 971 * double-remove the object from the swap queues. 972 */ 973 if (destroysource) { 974 swp_pager_meta_free_all(srcobject); 975 /* 976 * Reverting the type is not necessary, the caller is going 977 * to destroy srcobject directly, but I'm doing it here 978 * for consistency since we've removed the object from its 979 * queues. 980 */ 981 srcobject->type = OBJT_DEFAULT; 982 } 983 } 984 985 /* 986 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 987 * the requested page. 988 * 989 * We determine whether good backing store exists for the requested 990 * page and return TRUE if it does, FALSE if it doesn't. 991 * 992 * If TRUE, we also try to determine how much valid, contiguous backing 993 * store exists before and after the requested page. 994 */ 995 static boolean_t 996 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 997 int *after) 998 { 999 daddr_t blk, blk0; 1000 int i; 1001 1002 VM_OBJECT_ASSERT_LOCKED(object); 1003 1004 /* 1005 * do we have good backing store at the requested index ? 1006 */ 1007 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1008 if (blk0 == SWAPBLK_NONE) { 1009 if (before) 1010 *before = 0; 1011 if (after) 1012 *after = 0; 1013 return (FALSE); 1014 } 1015 1016 /* 1017 * find backwards-looking contiguous good backing store 1018 */ 1019 if (before != NULL) { 1020 for (i = 1; i < SWB_NPAGES; i++) { 1021 if (i > pindex) 1022 break; 1023 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1024 if (blk != blk0 - i) 1025 break; 1026 } 1027 *before = i - 1; 1028 } 1029 1030 /* 1031 * find forward-looking contiguous good backing store 1032 */ 1033 if (after != NULL) { 1034 for (i = 1; i < SWB_NPAGES; i++) { 1035 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1036 if (blk != blk0 + i) 1037 break; 1038 } 1039 *after = i - 1; 1040 } 1041 return (TRUE); 1042 } 1043 1044 /* 1045 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1046 * 1047 * This removes any associated swap backing store, whether valid or 1048 * not, from the page. 1049 * 1050 * This routine is typically called when a page is made dirty, at 1051 * which point any associated swap can be freed. MADV_FREE also 1052 * calls us in a special-case situation 1053 * 1054 * NOTE!!! If the page is clean and the swap was valid, the caller 1055 * should make the page dirty before calling this routine. This routine 1056 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1057 * depends on it. 1058 * 1059 * This routine may not sleep. 1060 * 1061 * The object containing the page must be locked. 1062 */ 1063 static void 1064 swap_pager_unswapped(vm_page_t m) 1065 { 1066 1067 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1068 } 1069 1070 /* 1071 * swap_pager_getpages() - bring pages in from swap 1072 * 1073 * Attempt to page in the pages in array "m" of length "count". The caller 1074 * may optionally specify that additional pages preceding and succeeding 1075 * the specified range be paged in. The number of such pages is returned 1076 * in the "rbehind" and "rahead" parameters, and they will be in the 1077 * inactive queue upon return. 1078 * 1079 * The pages in "m" must be busied and will remain busied upon return. 1080 */ 1081 static int 1082 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, 1083 int *rahead) 1084 { 1085 struct buf *bp; 1086 vm_page_t mpred, msucc, p; 1087 vm_pindex_t pindex; 1088 daddr_t blk; 1089 int i, j, reqcount, shift; 1090 1091 reqcount = count; 1092 1093 VM_OBJECT_WUNLOCK(object); 1094 bp = getpbuf(&nsw_rcount); 1095 VM_OBJECT_WLOCK(object); 1096 1097 if (!swap_pager_haspage(object, m[0]->pindex, rbehind, rahead)) { 1098 relpbuf(bp, &nsw_rcount); 1099 return (VM_PAGER_FAIL); 1100 } 1101 1102 /* 1103 * Clip the readahead and readbehind ranges to exclude resident pages. 1104 */ 1105 if (rahead != NULL) { 1106 KASSERT(reqcount - 1 <= *rahead, 1107 ("page count %d extends beyond swap block", reqcount)); 1108 *rahead -= reqcount - 1; 1109 pindex = m[reqcount - 1]->pindex; 1110 msucc = TAILQ_NEXT(m[reqcount - 1], listq); 1111 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead) 1112 *rahead = msucc->pindex - pindex - 1; 1113 } 1114 if (rbehind != NULL) { 1115 pindex = m[0]->pindex; 1116 mpred = TAILQ_PREV(m[0], pglist, listq); 1117 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind) 1118 *rbehind = pindex - mpred->pindex - 1; 1119 } 1120 1121 /* 1122 * Allocate readahead and readbehind pages. 1123 */ 1124 shift = rbehind != NULL ? *rbehind : 0; 1125 if (shift != 0) { 1126 for (i = 1; i <= shift; i++) { 1127 p = vm_page_alloc(object, m[0]->pindex - i, 1128 VM_ALLOC_NORMAL | VM_ALLOC_IFNOTCACHED); 1129 if (p == NULL) { 1130 /* Shift allocated pages to the left. */ 1131 for (j = 0; j < i - 1; j++) 1132 bp->b_pages[j] = 1133 bp->b_pages[j + shift - i + 1]; 1134 break; 1135 } 1136 bp->b_pages[shift - i] = p; 1137 } 1138 shift = i - 1; 1139 *rbehind = shift; 1140 } 1141 for (i = 0; i < reqcount; i++) 1142 bp->b_pages[i + shift] = m[i]; 1143 if (rahead != NULL) { 1144 for (i = 0; i < *rahead; i++) { 1145 p = vm_page_alloc(object, 1146 m[reqcount - 1]->pindex + i + 1, 1147 VM_ALLOC_NORMAL | VM_ALLOC_IFNOTCACHED); 1148 if (p == NULL) 1149 break; 1150 bp->b_pages[shift + reqcount + i] = p; 1151 } 1152 *rahead = i; 1153 } 1154 if (rbehind != NULL) 1155 count += *rbehind; 1156 if (rahead != NULL) 1157 count += *rahead; 1158 1159 vm_object_pip_add(object, count); 1160 1161 for (i = 0; i < count; i++) 1162 bp->b_pages[i]->oflags |= VPO_SWAPINPROG; 1163 1164 pindex = bp->b_pages[0]->pindex; 1165 blk = swp_pager_meta_ctl(object, pindex, 0); 1166 KASSERT(blk != SWAPBLK_NONE, 1167 ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex)); 1168 1169 VM_OBJECT_WUNLOCK(object); 1170 1171 bp->b_flags |= B_PAGING; 1172 bp->b_iocmd = BIO_READ; 1173 bp->b_iodone = swp_pager_async_iodone; 1174 bp->b_rcred = crhold(thread0.td_ucred); 1175 bp->b_wcred = crhold(thread0.td_ucred); 1176 bp->b_blkno = blk; 1177 bp->b_bcount = PAGE_SIZE * count; 1178 bp->b_bufsize = PAGE_SIZE * count; 1179 bp->b_npages = count; 1180 bp->b_pgbefore = rbehind != NULL ? *rbehind : 0; 1181 bp->b_pgafter = rahead != NULL ? *rahead : 0; 1182 1183 PCPU_INC(cnt.v_swapin); 1184 PCPU_ADD(cnt.v_swappgsin, count); 1185 1186 /* 1187 * perform the I/O. NOTE!!! bp cannot be considered valid after 1188 * this point because we automatically release it on completion. 1189 * Instead, we look at the one page we are interested in which we 1190 * still hold a lock on even through the I/O completion. 1191 * 1192 * The other pages in our m[] array are also released on completion, 1193 * so we cannot assume they are valid anymore either. 1194 * 1195 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1196 */ 1197 BUF_KERNPROC(bp); 1198 swp_pager_strategy(bp); 1199 1200 /* 1201 * Wait for the pages we want to complete. VPO_SWAPINPROG is always 1202 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1203 * is set in the metadata for each page in the request. 1204 */ 1205 VM_OBJECT_WLOCK(object); 1206 while ((m[0]->oflags & VPO_SWAPINPROG) != 0) { 1207 m[0]->oflags |= VPO_SWAPSLEEP; 1208 PCPU_INC(cnt.v_intrans); 1209 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP, 1210 "swread", hz * 20)) { 1211 printf( 1212 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1213 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1214 } 1215 } 1216 1217 /* 1218 * If we had an unrecoverable read error pages will not be valid. 1219 */ 1220 for (i = 0; i < reqcount; i++) 1221 if (m[i]->valid != VM_PAGE_BITS_ALL) 1222 return (VM_PAGER_ERROR); 1223 1224 return (VM_PAGER_OK); 1225 1226 /* 1227 * A final note: in a low swap situation, we cannot deallocate swap 1228 * and mark a page dirty here because the caller is likely to mark 1229 * the page clean when we return, causing the page to possibly revert 1230 * to all-zero's later. 1231 */ 1232 } 1233 1234 /* 1235 * swap_pager_getpages_async(): 1236 * 1237 * Right now this is emulation of asynchronous operation on top of 1238 * swap_pager_getpages(). 1239 */ 1240 static int 1241 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 1242 int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg) 1243 { 1244 int r, error; 1245 1246 r = swap_pager_getpages(object, m, count, rbehind, rahead); 1247 VM_OBJECT_WUNLOCK(object); 1248 switch (r) { 1249 case VM_PAGER_OK: 1250 error = 0; 1251 break; 1252 case VM_PAGER_ERROR: 1253 error = EIO; 1254 break; 1255 case VM_PAGER_FAIL: 1256 error = EINVAL; 1257 break; 1258 default: 1259 panic("unhandled swap_pager_getpages() error %d", r); 1260 } 1261 (iodone)(arg, m, count, error); 1262 VM_OBJECT_WLOCK(object); 1263 1264 return (r); 1265 } 1266 1267 /* 1268 * swap_pager_putpages: 1269 * 1270 * Assign swap (if necessary) and initiate I/O on the specified pages. 1271 * 1272 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1273 * are automatically converted to SWAP objects. 1274 * 1275 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1276 * vm_page reservation system coupled with properly written VFS devices 1277 * should ensure that no low-memory deadlock occurs. This is an area 1278 * which needs work. 1279 * 1280 * The parent has N vm_object_pip_add() references prior to 1281 * calling us and will remove references for rtvals[] that are 1282 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1283 * completion. 1284 * 1285 * The parent has soft-busy'd the pages it passes us and will unbusy 1286 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1287 * We need to unbusy the rest on I/O completion. 1288 */ 1289 static void 1290 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1291 int flags, int *rtvals) 1292 { 1293 int i, n; 1294 boolean_t sync; 1295 1296 if (count && m[0]->object != object) { 1297 panic("swap_pager_putpages: object mismatch %p/%p", 1298 object, 1299 m[0]->object 1300 ); 1301 } 1302 1303 /* 1304 * Step 1 1305 * 1306 * Turn object into OBJT_SWAP 1307 * check for bogus sysops 1308 * force sync if not pageout process 1309 */ 1310 if (object->type != OBJT_SWAP) 1311 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1312 VM_OBJECT_WUNLOCK(object); 1313 1314 n = 0; 1315 if (curproc != pageproc) 1316 sync = TRUE; 1317 else 1318 sync = (flags & VM_PAGER_PUT_SYNC) != 0; 1319 1320 /* 1321 * Step 2 1322 * 1323 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1324 * The page is left dirty until the pageout operation completes 1325 * successfully. 1326 */ 1327 for (i = 0; i < count; i += n) { 1328 int j; 1329 struct buf *bp; 1330 daddr_t blk; 1331 1332 /* 1333 * Maximum I/O size is limited by a number of factors. 1334 */ 1335 n = min(BLIST_MAX_ALLOC, count - i); 1336 n = min(n, nsw_cluster_max); 1337 1338 /* 1339 * Get biggest block of swap we can. If we fail, fall 1340 * back and try to allocate a smaller block. Don't go 1341 * overboard trying to allocate space if it would overly 1342 * fragment swap. 1343 */ 1344 while ( 1345 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1346 n > 4 1347 ) { 1348 n >>= 1; 1349 } 1350 if (blk == SWAPBLK_NONE) { 1351 for (j = 0; j < n; ++j) 1352 rtvals[i+j] = VM_PAGER_FAIL; 1353 continue; 1354 } 1355 1356 /* 1357 * All I/O parameters have been satisfied, build the I/O 1358 * request and assign the swap space. 1359 */ 1360 if (sync == TRUE) { 1361 bp = getpbuf(&nsw_wcount_sync); 1362 } else { 1363 bp = getpbuf(&nsw_wcount_async); 1364 bp->b_flags = B_ASYNC; 1365 } 1366 bp->b_flags |= B_PAGING; 1367 bp->b_iocmd = BIO_WRITE; 1368 1369 bp->b_rcred = crhold(thread0.td_ucred); 1370 bp->b_wcred = crhold(thread0.td_ucred); 1371 bp->b_bcount = PAGE_SIZE * n; 1372 bp->b_bufsize = PAGE_SIZE * n; 1373 bp->b_blkno = blk; 1374 1375 VM_OBJECT_WLOCK(object); 1376 for (j = 0; j < n; ++j) { 1377 vm_page_t mreq = m[i+j]; 1378 1379 swp_pager_meta_build( 1380 mreq->object, 1381 mreq->pindex, 1382 blk + j 1383 ); 1384 vm_page_dirty(mreq); 1385 mreq->oflags |= VPO_SWAPINPROG; 1386 bp->b_pages[j] = mreq; 1387 } 1388 VM_OBJECT_WUNLOCK(object); 1389 bp->b_npages = n; 1390 /* 1391 * Must set dirty range for NFS to work. 1392 */ 1393 bp->b_dirtyoff = 0; 1394 bp->b_dirtyend = bp->b_bcount; 1395 1396 PCPU_INC(cnt.v_swapout); 1397 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1398 1399 /* 1400 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we 1401 * can call the async completion routine at the end of a 1402 * synchronous I/O operation. Otherwise, our caller would 1403 * perform duplicate unbusy and wakeup operations on the page 1404 * and object, respectively. 1405 */ 1406 for (j = 0; j < n; j++) 1407 rtvals[i + j] = VM_PAGER_PEND; 1408 1409 /* 1410 * asynchronous 1411 * 1412 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1413 */ 1414 if (sync == FALSE) { 1415 bp->b_iodone = swp_pager_async_iodone; 1416 BUF_KERNPROC(bp); 1417 swp_pager_strategy(bp); 1418 continue; 1419 } 1420 1421 /* 1422 * synchronous 1423 * 1424 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1425 */ 1426 bp->b_iodone = bdone; 1427 swp_pager_strategy(bp); 1428 1429 /* 1430 * Wait for the sync I/O to complete. 1431 */ 1432 bwait(bp, PVM, "swwrt"); 1433 1434 /* 1435 * Now that we are through with the bp, we can call the 1436 * normal async completion, which frees everything up. 1437 */ 1438 swp_pager_async_iodone(bp); 1439 } 1440 VM_OBJECT_WLOCK(object); 1441 } 1442 1443 /* 1444 * swp_pager_async_iodone: 1445 * 1446 * Completion routine for asynchronous reads and writes from/to swap. 1447 * Also called manually by synchronous code to finish up a bp. 1448 * 1449 * This routine may not sleep. 1450 */ 1451 static void 1452 swp_pager_async_iodone(struct buf *bp) 1453 { 1454 int i; 1455 vm_object_t object = NULL; 1456 1457 /* 1458 * report error 1459 */ 1460 if (bp->b_ioflags & BIO_ERROR) { 1461 printf( 1462 "swap_pager: I/O error - %s failed; blkno %ld," 1463 "size %ld, error %d\n", 1464 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1465 (long)bp->b_blkno, 1466 (long)bp->b_bcount, 1467 bp->b_error 1468 ); 1469 } 1470 1471 /* 1472 * remove the mapping for kernel virtual 1473 */ 1474 if (buf_mapped(bp)) 1475 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1476 else 1477 bp->b_data = bp->b_kvabase; 1478 1479 if (bp->b_npages) { 1480 object = bp->b_pages[0]->object; 1481 VM_OBJECT_WLOCK(object); 1482 } 1483 1484 /* 1485 * cleanup pages. If an error occurs writing to swap, we are in 1486 * very serious trouble. If it happens to be a disk error, though, 1487 * we may be able to recover by reassigning the swap later on. So 1488 * in this case we remove the m->swapblk assignment for the page 1489 * but do not free it in the rlist. The errornous block(s) are thus 1490 * never reallocated as swap. Redirty the page and continue. 1491 */ 1492 for (i = 0; i < bp->b_npages; ++i) { 1493 vm_page_t m = bp->b_pages[i]; 1494 1495 m->oflags &= ~VPO_SWAPINPROG; 1496 if (m->oflags & VPO_SWAPSLEEP) { 1497 m->oflags &= ~VPO_SWAPSLEEP; 1498 wakeup(&object->paging_in_progress); 1499 } 1500 1501 if (bp->b_ioflags & BIO_ERROR) { 1502 /* 1503 * If an error occurs I'd love to throw the swapblk 1504 * away without freeing it back to swapspace, so it 1505 * can never be used again. But I can't from an 1506 * interrupt. 1507 */ 1508 if (bp->b_iocmd == BIO_READ) { 1509 /* 1510 * NOTE: for reads, m->dirty will probably 1511 * be overridden by the original caller of 1512 * getpages so don't play cute tricks here. 1513 */ 1514 m->valid = 0; 1515 } else { 1516 /* 1517 * If a write error occurs, reactivate page 1518 * so it doesn't clog the inactive list, 1519 * then finish the I/O. 1520 */ 1521 vm_page_dirty(m); 1522 vm_page_lock(m); 1523 vm_page_activate(m); 1524 vm_page_unlock(m); 1525 vm_page_sunbusy(m); 1526 } 1527 } else if (bp->b_iocmd == BIO_READ) { 1528 /* 1529 * NOTE: for reads, m->dirty will probably be 1530 * overridden by the original caller of getpages so 1531 * we cannot set them in order to free the underlying 1532 * swap in a low-swap situation. I don't think we'd 1533 * want to do that anyway, but it was an optimization 1534 * that existed in the old swapper for a time before 1535 * it got ripped out due to precisely this problem. 1536 */ 1537 KASSERT(!pmap_page_is_mapped(m), 1538 ("swp_pager_async_iodone: page %p is mapped", m)); 1539 KASSERT(m->dirty == 0, 1540 ("swp_pager_async_iodone: page %p is dirty", m)); 1541 1542 m->valid = VM_PAGE_BITS_ALL; 1543 if (i < bp->b_pgbefore || 1544 i >= bp->b_npages - bp->b_pgafter) 1545 vm_page_readahead_finish(m); 1546 } else { 1547 /* 1548 * For write success, clear the dirty 1549 * status, then finish the I/O ( which decrements the 1550 * busy count and possibly wakes waiter's up ). 1551 */ 1552 KASSERT(!pmap_page_is_write_mapped(m), 1553 ("swp_pager_async_iodone: page %p is not write" 1554 " protected", m)); 1555 vm_page_undirty(m); 1556 vm_page_sunbusy(m); 1557 if (vm_page_count_severe()) { 1558 vm_page_lock(m); 1559 vm_page_try_to_cache(m); 1560 vm_page_unlock(m); 1561 } 1562 } 1563 } 1564 1565 /* 1566 * adjust pip. NOTE: the original parent may still have its own 1567 * pip refs on the object. 1568 */ 1569 if (object != NULL) { 1570 vm_object_pip_wakeupn(object, bp->b_npages); 1571 VM_OBJECT_WUNLOCK(object); 1572 } 1573 1574 /* 1575 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1576 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1577 * trigger a KASSERT in relpbuf(). 1578 */ 1579 if (bp->b_vp) { 1580 bp->b_vp = NULL; 1581 bp->b_bufobj = NULL; 1582 } 1583 /* 1584 * release the physical I/O buffer 1585 */ 1586 relpbuf( 1587 bp, 1588 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1589 ((bp->b_flags & B_ASYNC) ? 1590 &nsw_wcount_async : 1591 &nsw_wcount_sync 1592 ) 1593 ) 1594 ); 1595 } 1596 1597 /* 1598 * swap_pager_isswapped: 1599 * 1600 * Return 1 if at least one page in the given object is paged 1601 * out to the given swap device. 1602 * 1603 * This routine may not sleep. 1604 */ 1605 int 1606 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1607 { 1608 daddr_t index = 0; 1609 int bcount; 1610 int i; 1611 1612 VM_OBJECT_ASSERT_WLOCKED(object); 1613 if (object->type != OBJT_SWAP) 1614 return (0); 1615 1616 mtx_lock(&swhash_mtx); 1617 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1618 struct swblock *swap; 1619 1620 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1621 for (i = 0; i < SWAP_META_PAGES; ++i) { 1622 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1623 mtx_unlock(&swhash_mtx); 1624 return (1); 1625 } 1626 } 1627 } 1628 index += SWAP_META_PAGES; 1629 } 1630 mtx_unlock(&swhash_mtx); 1631 return (0); 1632 } 1633 1634 /* 1635 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1636 * 1637 * This routine dissociates the page at the given index within a 1638 * swap block from its backing store, paging it in if necessary. 1639 * If the page is paged in, it is placed in the inactive queue, 1640 * since it had its backing store ripped out from under it. 1641 * We also attempt to swap in all other pages in the swap block, 1642 * we only guarantee that the one at the specified index is 1643 * paged in. 1644 * 1645 * XXX - The code to page the whole block in doesn't work, so we 1646 * revert to the one-by-one behavior for now. Sigh. 1647 */ 1648 static inline void 1649 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1650 { 1651 vm_page_t m; 1652 1653 vm_object_pip_add(object, 1); 1654 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 1655 if (m->valid == VM_PAGE_BITS_ALL) { 1656 vm_object_pip_wakeup(object); 1657 vm_page_dirty(m); 1658 vm_page_lock(m); 1659 vm_page_activate(m); 1660 vm_page_unlock(m); 1661 vm_page_xunbusy(m); 1662 vm_pager_page_unswapped(m); 1663 return; 1664 } 1665 1666 if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK) 1667 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1668 vm_object_pip_wakeup(object); 1669 vm_page_dirty(m); 1670 vm_page_lock(m); 1671 vm_page_deactivate(m); 1672 vm_page_unlock(m); 1673 vm_page_xunbusy(m); 1674 vm_pager_page_unswapped(m); 1675 } 1676 1677 /* 1678 * swap_pager_swapoff: 1679 * 1680 * Page in all of the pages that have been paged out to the 1681 * given device. The corresponding blocks in the bitmap must be 1682 * marked as allocated and the device must be flagged SW_CLOSING. 1683 * There may be no processes swapped out to the device. 1684 * 1685 * This routine may block. 1686 */ 1687 static void 1688 swap_pager_swapoff(struct swdevt *sp) 1689 { 1690 struct swblock *swap; 1691 vm_object_t locked_obj, object; 1692 vm_pindex_t pindex; 1693 int i, j, retries; 1694 1695 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 1696 1697 retries = 0; 1698 locked_obj = NULL; 1699 full_rescan: 1700 mtx_lock(&swhash_mtx); 1701 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1702 restart: 1703 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1704 object = swap->swb_object; 1705 pindex = swap->swb_index; 1706 for (j = 0; j < SWAP_META_PAGES; ++j) { 1707 if (!swp_pager_isondev(swap->swb_pages[j], sp)) 1708 continue; 1709 if (locked_obj != object) { 1710 if (locked_obj != NULL) 1711 VM_OBJECT_WUNLOCK(locked_obj); 1712 locked_obj = object; 1713 if (!VM_OBJECT_TRYWLOCK(object)) { 1714 mtx_unlock(&swhash_mtx); 1715 /* Depends on type-stability. */ 1716 VM_OBJECT_WLOCK(object); 1717 mtx_lock(&swhash_mtx); 1718 goto restart; 1719 } 1720 } 1721 MPASS(locked_obj == object); 1722 mtx_unlock(&swhash_mtx); 1723 swp_pager_force_pagein(object, pindex + j); 1724 mtx_lock(&swhash_mtx); 1725 goto restart; 1726 } 1727 } 1728 } 1729 mtx_unlock(&swhash_mtx); 1730 if (locked_obj != NULL) { 1731 VM_OBJECT_WUNLOCK(locked_obj); 1732 locked_obj = NULL; 1733 } 1734 if (sp->sw_used) { 1735 /* 1736 * Objects may be locked or paging to the device being 1737 * removed, so we will miss their pages and need to 1738 * make another pass. We have marked this device as 1739 * SW_CLOSING, so the activity should finish soon. 1740 */ 1741 retries++; 1742 if (retries > 100) { 1743 panic("swapoff: failed to locate %d swap blocks", 1744 sp->sw_used); 1745 } 1746 pause("swpoff", hz / 20); 1747 goto full_rescan; 1748 } 1749 } 1750 1751 /************************************************************************ 1752 * SWAP META DATA * 1753 ************************************************************************ 1754 * 1755 * These routines manipulate the swap metadata stored in the 1756 * OBJT_SWAP object. 1757 * 1758 * Swap metadata is implemented with a global hash and not directly 1759 * linked into the object. Instead the object simply contains 1760 * appropriate tracking counters. 1761 */ 1762 1763 /* 1764 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1765 * 1766 * We first convert the object to a swap object if it is a default 1767 * object. 1768 * 1769 * The specified swapblk is added to the object's swap metadata. If 1770 * the swapblk is not valid, it is freed instead. Any previously 1771 * assigned swapblk is freed. 1772 */ 1773 static void 1774 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1775 { 1776 static volatile int exhausted; 1777 struct swblock *swap; 1778 struct swblock **pswap; 1779 int idx; 1780 1781 VM_OBJECT_ASSERT_WLOCKED(object); 1782 /* 1783 * Convert default object to swap object if necessary 1784 */ 1785 if (object->type != OBJT_SWAP) { 1786 object->type = OBJT_SWAP; 1787 object->un_pager.swp.swp_bcount = 0; 1788 KASSERT(object->handle == NULL, ("default pager with handle")); 1789 } 1790 1791 /* 1792 * Locate hash entry. If not found create, but if we aren't adding 1793 * anything just return. If we run out of space in the map we wait 1794 * and, since the hash table may have changed, retry. 1795 */ 1796 retry: 1797 mtx_lock(&swhash_mtx); 1798 pswap = swp_pager_hash(object, pindex); 1799 1800 if ((swap = *pswap) == NULL) { 1801 int i; 1802 1803 if (swapblk == SWAPBLK_NONE) 1804 goto done; 1805 1806 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT | 1807 (curproc == pageproc ? M_USE_RESERVE : 0)); 1808 if (swap == NULL) { 1809 mtx_unlock(&swhash_mtx); 1810 VM_OBJECT_WUNLOCK(object); 1811 if (uma_zone_exhausted(swap_zone)) { 1812 if (atomic_cmpset_int(&exhausted, 0, 1)) 1813 printf("swap zone exhausted, " 1814 "increase kern.maxswzone\n"); 1815 vm_pageout_oom(VM_OOM_SWAPZ); 1816 pause("swzonex", 10); 1817 } else 1818 VM_WAIT; 1819 VM_OBJECT_WLOCK(object); 1820 goto retry; 1821 } 1822 1823 if (atomic_cmpset_int(&exhausted, 1, 0)) 1824 printf("swap zone ok\n"); 1825 1826 swap->swb_hnext = NULL; 1827 swap->swb_object = object; 1828 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1829 swap->swb_count = 0; 1830 1831 ++object->un_pager.swp.swp_bcount; 1832 1833 for (i = 0; i < SWAP_META_PAGES; ++i) 1834 swap->swb_pages[i] = SWAPBLK_NONE; 1835 } 1836 1837 /* 1838 * Delete prior contents of metadata 1839 */ 1840 idx = pindex & SWAP_META_MASK; 1841 1842 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1843 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1844 --swap->swb_count; 1845 } 1846 1847 /* 1848 * Enter block into metadata 1849 */ 1850 swap->swb_pages[idx] = swapblk; 1851 if (swapblk != SWAPBLK_NONE) 1852 ++swap->swb_count; 1853 done: 1854 mtx_unlock(&swhash_mtx); 1855 } 1856 1857 /* 1858 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1859 * 1860 * The requested range of blocks is freed, with any associated swap 1861 * returned to the swap bitmap. 1862 * 1863 * This routine will free swap metadata structures as they are cleaned 1864 * out. This routine does *NOT* operate on swap metadata associated 1865 * with resident pages. 1866 */ 1867 static void 1868 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1869 { 1870 1871 VM_OBJECT_ASSERT_LOCKED(object); 1872 if (object->type != OBJT_SWAP) 1873 return; 1874 1875 while (count > 0) { 1876 struct swblock **pswap; 1877 struct swblock *swap; 1878 1879 mtx_lock(&swhash_mtx); 1880 pswap = swp_pager_hash(object, index); 1881 1882 if ((swap = *pswap) != NULL) { 1883 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1884 1885 if (v != SWAPBLK_NONE) { 1886 swp_pager_freeswapspace(v, 1); 1887 swap->swb_pages[index & SWAP_META_MASK] = 1888 SWAPBLK_NONE; 1889 if (--swap->swb_count == 0) { 1890 *pswap = swap->swb_hnext; 1891 uma_zfree(swap_zone, swap); 1892 --object->un_pager.swp.swp_bcount; 1893 } 1894 } 1895 --count; 1896 ++index; 1897 } else { 1898 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1899 count -= n; 1900 index += n; 1901 } 1902 mtx_unlock(&swhash_mtx); 1903 } 1904 } 1905 1906 /* 1907 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1908 * 1909 * This routine locates and destroys all swap metadata associated with 1910 * an object. 1911 */ 1912 static void 1913 swp_pager_meta_free_all(vm_object_t object) 1914 { 1915 daddr_t index = 0; 1916 1917 VM_OBJECT_ASSERT_WLOCKED(object); 1918 if (object->type != OBJT_SWAP) 1919 return; 1920 1921 while (object->un_pager.swp.swp_bcount) { 1922 struct swblock **pswap; 1923 struct swblock *swap; 1924 1925 mtx_lock(&swhash_mtx); 1926 pswap = swp_pager_hash(object, index); 1927 if ((swap = *pswap) != NULL) { 1928 int i; 1929 1930 for (i = 0; i < SWAP_META_PAGES; ++i) { 1931 daddr_t v = swap->swb_pages[i]; 1932 if (v != SWAPBLK_NONE) { 1933 --swap->swb_count; 1934 swp_pager_freeswapspace(v, 1); 1935 } 1936 } 1937 if (swap->swb_count != 0) 1938 panic("swap_pager_meta_free_all: swb_count != 0"); 1939 *pswap = swap->swb_hnext; 1940 uma_zfree(swap_zone, swap); 1941 --object->un_pager.swp.swp_bcount; 1942 } 1943 mtx_unlock(&swhash_mtx); 1944 index += SWAP_META_PAGES; 1945 } 1946 } 1947 1948 /* 1949 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1950 * 1951 * This routine is capable of looking up, popping, or freeing 1952 * swapblk assignments in the swap meta data or in the vm_page_t. 1953 * The routine typically returns the swapblk being looked-up, or popped, 1954 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1955 * was invalid. This routine will automatically free any invalid 1956 * meta-data swapblks. 1957 * 1958 * It is not possible to store invalid swapblks in the swap meta data 1959 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1960 * 1961 * When acting on a busy resident page and paging is in progress, we 1962 * have to wait until paging is complete but otherwise can act on the 1963 * busy page. 1964 * 1965 * SWM_FREE remove and free swap block from metadata 1966 * SWM_POP remove from meta data but do not free.. pop it out 1967 */ 1968 static daddr_t 1969 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 1970 { 1971 struct swblock **pswap; 1972 struct swblock *swap; 1973 daddr_t r1; 1974 int idx; 1975 1976 VM_OBJECT_ASSERT_LOCKED(object); 1977 /* 1978 * The meta data only exists of the object is OBJT_SWAP 1979 * and even then might not be allocated yet. 1980 */ 1981 if (object->type != OBJT_SWAP) 1982 return (SWAPBLK_NONE); 1983 1984 r1 = SWAPBLK_NONE; 1985 mtx_lock(&swhash_mtx); 1986 pswap = swp_pager_hash(object, pindex); 1987 1988 if ((swap = *pswap) != NULL) { 1989 idx = pindex & SWAP_META_MASK; 1990 r1 = swap->swb_pages[idx]; 1991 1992 if (r1 != SWAPBLK_NONE) { 1993 if (flags & SWM_FREE) { 1994 swp_pager_freeswapspace(r1, 1); 1995 r1 = SWAPBLK_NONE; 1996 } 1997 if (flags & (SWM_FREE|SWM_POP)) { 1998 swap->swb_pages[idx] = SWAPBLK_NONE; 1999 if (--swap->swb_count == 0) { 2000 *pswap = swap->swb_hnext; 2001 uma_zfree(swap_zone, swap); 2002 --object->un_pager.swp.swp_bcount; 2003 } 2004 } 2005 } 2006 } 2007 mtx_unlock(&swhash_mtx); 2008 return (r1); 2009 } 2010 2011 /* 2012 * System call swapon(name) enables swapping on device name, 2013 * which must be in the swdevsw. Return EBUSY 2014 * if already swapping on this device. 2015 */ 2016 #ifndef _SYS_SYSPROTO_H_ 2017 struct swapon_args { 2018 char *name; 2019 }; 2020 #endif 2021 2022 /* 2023 * MPSAFE 2024 */ 2025 /* ARGSUSED */ 2026 int 2027 sys_swapon(struct thread *td, struct swapon_args *uap) 2028 { 2029 struct vattr attr; 2030 struct vnode *vp; 2031 struct nameidata nd; 2032 int error; 2033 2034 error = priv_check(td, PRIV_SWAPON); 2035 if (error) 2036 return (error); 2037 2038 sx_xlock(&swdev_syscall_lock); 2039 2040 /* 2041 * Swap metadata may not fit in the KVM if we have physical 2042 * memory of >1GB. 2043 */ 2044 if (swap_zone == NULL) { 2045 error = ENOMEM; 2046 goto done; 2047 } 2048 2049 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2050 uap->name, td); 2051 error = namei(&nd); 2052 if (error) 2053 goto done; 2054 2055 NDFREE(&nd, NDF_ONLY_PNBUF); 2056 vp = nd.ni_vp; 2057 2058 if (vn_isdisk(vp, &error)) { 2059 error = swapongeom(vp); 2060 } else if (vp->v_type == VREG && 2061 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2062 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2063 /* 2064 * Allow direct swapping to NFS regular files in the same 2065 * way that nfs_mountroot() sets up diskless swapping. 2066 */ 2067 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2068 } 2069 2070 if (error) 2071 vrele(vp); 2072 done: 2073 sx_xunlock(&swdev_syscall_lock); 2074 return (error); 2075 } 2076 2077 /* 2078 * Check that the total amount of swap currently configured does not 2079 * exceed half the theoretical maximum. If it does, print a warning 2080 * message and return -1; otherwise, return 0. 2081 */ 2082 static int 2083 swapon_check_swzone(unsigned long npages) 2084 { 2085 unsigned long maxpages; 2086 2087 /* absolute maximum we can handle assuming 100% efficiency */ 2088 maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES; 2089 2090 /* recommend using no more than half that amount */ 2091 if (npages > maxpages / 2) { 2092 printf("warning: total configured swap (%lu pages) " 2093 "exceeds maximum recommended amount (%lu pages).\n", 2094 npages, maxpages / 2); 2095 printf("warning: increase kern.maxswzone " 2096 "or reduce amount of swap.\n"); 2097 return (-1); 2098 } 2099 return (0); 2100 } 2101 2102 static void 2103 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2104 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2105 { 2106 struct swdevt *sp, *tsp; 2107 swblk_t dvbase; 2108 u_long mblocks; 2109 2110 /* 2111 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2112 * First chop nblks off to page-align it, then convert. 2113 * 2114 * sw->sw_nblks is in page-sized chunks now too. 2115 */ 2116 nblks &= ~(ctodb(1) - 1); 2117 nblks = dbtoc(nblks); 2118 2119 /* 2120 * If we go beyond this, we get overflows in the radix 2121 * tree bitmap code. 2122 */ 2123 mblocks = 0x40000000 / BLIST_META_RADIX; 2124 if (nblks > mblocks) { 2125 printf( 2126 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2127 mblocks / 1024 / 1024 * PAGE_SIZE); 2128 nblks = mblocks; 2129 } 2130 2131 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2132 sp->sw_vp = vp; 2133 sp->sw_id = id; 2134 sp->sw_dev = dev; 2135 sp->sw_flags = 0; 2136 sp->sw_nblks = nblks; 2137 sp->sw_used = 0; 2138 sp->sw_strategy = strategy; 2139 sp->sw_close = close; 2140 sp->sw_flags = flags; 2141 2142 sp->sw_blist = blist_create(nblks, M_WAITOK); 2143 /* 2144 * Do not free the first two block in order to avoid overwriting 2145 * any bsd label at the front of the partition 2146 */ 2147 blist_free(sp->sw_blist, 2, nblks - 2); 2148 2149 dvbase = 0; 2150 mtx_lock(&sw_dev_mtx); 2151 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2152 if (tsp->sw_end >= dvbase) { 2153 /* 2154 * We put one uncovered page between the devices 2155 * in order to definitively prevent any cross-device 2156 * I/O requests 2157 */ 2158 dvbase = tsp->sw_end + 1; 2159 } 2160 } 2161 sp->sw_first = dvbase; 2162 sp->sw_end = dvbase + nblks; 2163 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2164 nswapdev++; 2165 swap_pager_avail += nblks; 2166 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2167 swapon_check_swzone(swap_total / PAGE_SIZE); 2168 swp_sizecheck(); 2169 mtx_unlock(&sw_dev_mtx); 2170 } 2171 2172 /* 2173 * SYSCALL: swapoff(devname) 2174 * 2175 * Disable swapping on the given device. 2176 * 2177 * XXX: Badly designed system call: it should use a device index 2178 * rather than filename as specification. We keep sw_vp around 2179 * only to make this work. 2180 */ 2181 #ifndef _SYS_SYSPROTO_H_ 2182 struct swapoff_args { 2183 char *name; 2184 }; 2185 #endif 2186 2187 /* 2188 * MPSAFE 2189 */ 2190 /* ARGSUSED */ 2191 int 2192 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2193 { 2194 struct vnode *vp; 2195 struct nameidata nd; 2196 struct swdevt *sp; 2197 int error; 2198 2199 error = priv_check(td, PRIV_SWAPOFF); 2200 if (error) 2201 return (error); 2202 2203 sx_xlock(&swdev_syscall_lock); 2204 2205 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2206 td); 2207 error = namei(&nd); 2208 if (error) 2209 goto done; 2210 NDFREE(&nd, NDF_ONLY_PNBUF); 2211 vp = nd.ni_vp; 2212 2213 mtx_lock(&sw_dev_mtx); 2214 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2215 if (sp->sw_vp == vp) 2216 break; 2217 } 2218 mtx_unlock(&sw_dev_mtx); 2219 if (sp == NULL) { 2220 error = EINVAL; 2221 goto done; 2222 } 2223 error = swapoff_one(sp, td->td_ucred); 2224 done: 2225 sx_xunlock(&swdev_syscall_lock); 2226 return (error); 2227 } 2228 2229 static int 2230 swapoff_one(struct swdevt *sp, struct ucred *cred) 2231 { 2232 u_long nblks, dvbase; 2233 #ifdef MAC 2234 int error; 2235 #endif 2236 2237 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 2238 #ifdef MAC 2239 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2240 error = mac_system_check_swapoff(cred, sp->sw_vp); 2241 (void) VOP_UNLOCK(sp->sw_vp, 0); 2242 if (error != 0) 2243 return (error); 2244 #endif 2245 nblks = sp->sw_nblks; 2246 2247 /* 2248 * We can turn off this swap device safely only if the 2249 * available virtual memory in the system will fit the amount 2250 * of data we will have to page back in, plus an epsilon so 2251 * the system doesn't become critically low on swap space. 2252 */ 2253 if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail < 2254 nblks + nswap_lowat) { 2255 return (ENOMEM); 2256 } 2257 2258 /* 2259 * Prevent further allocations on this device. 2260 */ 2261 mtx_lock(&sw_dev_mtx); 2262 sp->sw_flags |= SW_CLOSING; 2263 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2264 swap_pager_avail -= blist_fill(sp->sw_blist, 2265 dvbase, dmmax); 2266 } 2267 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2268 mtx_unlock(&sw_dev_mtx); 2269 2270 /* 2271 * Page in the contents of the device and close it. 2272 */ 2273 swap_pager_swapoff(sp); 2274 2275 sp->sw_close(curthread, sp); 2276 mtx_lock(&sw_dev_mtx); 2277 sp->sw_id = NULL; 2278 TAILQ_REMOVE(&swtailq, sp, sw_list); 2279 nswapdev--; 2280 if (nswapdev == 0) { 2281 swap_pager_full = 2; 2282 swap_pager_almost_full = 1; 2283 } 2284 if (swdevhd == sp) 2285 swdevhd = NULL; 2286 mtx_unlock(&sw_dev_mtx); 2287 blist_destroy(sp->sw_blist); 2288 free(sp, M_VMPGDATA); 2289 return (0); 2290 } 2291 2292 void 2293 swapoff_all(void) 2294 { 2295 struct swdevt *sp, *spt; 2296 const char *devname; 2297 int error; 2298 2299 sx_xlock(&swdev_syscall_lock); 2300 2301 mtx_lock(&sw_dev_mtx); 2302 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2303 mtx_unlock(&sw_dev_mtx); 2304 if (vn_isdisk(sp->sw_vp, NULL)) 2305 devname = devtoname(sp->sw_vp->v_rdev); 2306 else 2307 devname = "[file]"; 2308 error = swapoff_one(sp, thread0.td_ucred); 2309 if (error != 0) { 2310 printf("Cannot remove swap device %s (error=%d), " 2311 "skipping.\n", devname, error); 2312 } else if (bootverbose) { 2313 printf("Swap device %s removed.\n", devname); 2314 } 2315 mtx_lock(&sw_dev_mtx); 2316 } 2317 mtx_unlock(&sw_dev_mtx); 2318 2319 sx_xunlock(&swdev_syscall_lock); 2320 } 2321 2322 void 2323 swap_pager_status(int *total, int *used) 2324 { 2325 struct swdevt *sp; 2326 2327 *total = 0; 2328 *used = 0; 2329 mtx_lock(&sw_dev_mtx); 2330 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2331 *total += sp->sw_nblks; 2332 *used += sp->sw_used; 2333 } 2334 mtx_unlock(&sw_dev_mtx); 2335 } 2336 2337 int 2338 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2339 { 2340 struct swdevt *sp; 2341 const char *tmp_devname; 2342 int error, n; 2343 2344 n = 0; 2345 error = ENOENT; 2346 mtx_lock(&sw_dev_mtx); 2347 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2348 if (n != name) { 2349 n++; 2350 continue; 2351 } 2352 xs->xsw_version = XSWDEV_VERSION; 2353 xs->xsw_dev = sp->sw_dev; 2354 xs->xsw_flags = sp->sw_flags; 2355 xs->xsw_nblks = sp->sw_nblks; 2356 xs->xsw_used = sp->sw_used; 2357 if (devname != NULL) { 2358 if (vn_isdisk(sp->sw_vp, NULL)) 2359 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2360 else 2361 tmp_devname = "[file]"; 2362 strncpy(devname, tmp_devname, len); 2363 } 2364 error = 0; 2365 break; 2366 } 2367 mtx_unlock(&sw_dev_mtx); 2368 return (error); 2369 } 2370 2371 static int 2372 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2373 { 2374 struct xswdev xs; 2375 int error; 2376 2377 if (arg2 != 1) /* name length */ 2378 return (EINVAL); 2379 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2380 if (error != 0) 2381 return (error); 2382 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2383 return (error); 2384 } 2385 2386 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2387 "Number of swap devices"); 2388 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE, 2389 sysctl_vm_swap_info, 2390 "Swap statistics by device"); 2391 2392 /* 2393 * vmspace_swap_count() - count the approximate swap usage in pages for a 2394 * vmspace. 2395 * 2396 * The map must be locked. 2397 * 2398 * Swap usage is determined by taking the proportional swap used by 2399 * VM objects backing the VM map. To make up for fractional losses, 2400 * if the VM object has any swap use at all the associated map entries 2401 * count for at least 1 swap page. 2402 */ 2403 long 2404 vmspace_swap_count(struct vmspace *vmspace) 2405 { 2406 vm_map_t map; 2407 vm_map_entry_t cur; 2408 vm_object_t object; 2409 long count, n; 2410 2411 map = &vmspace->vm_map; 2412 count = 0; 2413 2414 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2415 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2416 (object = cur->object.vm_object) != NULL) { 2417 VM_OBJECT_WLOCK(object); 2418 if (object->type == OBJT_SWAP && 2419 object->un_pager.swp.swp_bcount != 0) { 2420 n = (cur->end - cur->start) / PAGE_SIZE; 2421 count += object->un_pager.swp.swp_bcount * 2422 SWAP_META_PAGES * n / object->size + 1; 2423 } 2424 VM_OBJECT_WUNLOCK(object); 2425 } 2426 } 2427 return (count); 2428 } 2429 2430 /* 2431 * GEOM backend 2432 * 2433 * Swapping onto disk devices. 2434 * 2435 */ 2436 2437 static g_orphan_t swapgeom_orphan; 2438 2439 static struct g_class g_swap_class = { 2440 .name = "SWAP", 2441 .version = G_VERSION, 2442 .orphan = swapgeom_orphan, 2443 }; 2444 2445 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2446 2447 2448 static void 2449 swapgeom_close_ev(void *arg, int flags) 2450 { 2451 struct g_consumer *cp; 2452 2453 cp = arg; 2454 g_access(cp, -1, -1, 0); 2455 g_detach(cp); 2456 g_destroy_consumer(cp); 2457 } 2458 2459 /* 2460 * Add a reference to the g_consumer for an inflight transaction. 2461 */ 2462 static void 2463 swapgeom_acquire(struct g_consumer *cp) 2464 { 2465 2466 mtx_assert(&sw_dev_mtx, MA_OWNED); 2467 cp->index++; 2468 } 2469 2470 /* 2471 * Remove a reference from the g_consumer. Post a close event if all 2472 * references go away, since the function might be called from the 2473 * biodone context. 2474 */ 2475 static void 2476 swapgeom_release(struct g_consumer *cp, struct swdevt *sp) 2477 { 2478 2479 mtx_assert(&sw_dev_mtx, MA_OWNED); 2480 cp->index--; 2481 if (cp->index == 0) { 2482 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) 2483 sp->sw_id = NULL; 2484 } 2485 } 2486 2487 static void 2488 swapgeom_done(struct bio *bp2) 2489 { 2490 struct swdevt *sp; 2491 struct buf *bp; 2492 struct g_consumer *cp; 2493 2494 bp = bp2->bio_caller2; 2495 cp = bp2->bio_from; 2496 bp->b_ioflags = bp2->bio_flags; 2497 if (bp2->bio_error) 2498 bp->b_ioflags |= BIO_ERROR; 2499 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2500 bp->b_error = bp2->bio_error; 2501 bufdone(bp); 2502 sp = bp2->bio_caller1; 2503 mtx_lock(&sw_dev_mtx); 2504 swapgeom_release(cp, sp); 2505 mtx_unlock(&sw_dev_mtx); 2506 g_destroy_bio(bp2); 2507 } 2508 2509 static void 2510 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2511 { 2512 struct bio *bio; 2513 struct g_consumer *cp; 2514 2515 mtx_lock(&sw_dev_mtx); 2516 cp = sp->sw_id; 2517 if (cp == NULL) { 2518 mtx_unlock(&sw_dev_mtx); 2519 bp->b_error = ENXIO; 2520 bp->b_ioflags |= BIO_ERROR; 2521 bufdone(bp); 2522 return; 2523 } 2524 swapgeom_acquire(cp); 2525 mtx_unlock(&sw_dev_mtx); 2526 if (bp->b_iocmd == BIO_WRITE) 2527 bio = g_new_bio(); 2528 else 2529 bio = g_alloc_bio(); 2530 if (bio == NULL) { 2531 mtx_lock(&sw_dev_mtx); 2532 swapgeom_release(cp, sp); 2533 mtx_unlock(&sw_dev_mtx); 2534 bp->b_error = ENOMEM; 2535 bp->b_ioflags |= BIO_ERROR; 2536 bufdone(bp); 2537 return; 2538 } 2539 2540 bio->bio_caller1 = sp; 2541 bio->bio_caller2 = bp; 2542 bio->bio_cmd = bp->b_iocmd; 2543 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2544 bio->bio_length = bp->b_bcount; 2545 bio->bio_done = swapgeom_done; 2546 if (!buf_mapped(bp)) { 2547 bio->bio_ma = bp->b_pages; 2548 bio->bio_data = unmapped_buf; 2549 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2550 bio->bio_ma_n = bp->b_npages; 2551 bio->bio_flags |= BIO_UNMAPPED; 2552 } else { 2553 bio->bio_data = bp->b_data; 2554 bio->bio_ma = NULL; 2555 } 2556 g_io_request(bio, cp); 2557 return; 2558 } 2559 2560 static void 2561 swapgeom_orphan(struct g_consumer *cp) 2562 { 2563 struct swdevt *sp; 2564 int destroy; 2565 2566 mtx_lock(&sw_dev_mtx); 2567 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2568 if (sp->sw_id == cp) { 2569 sp->sw_flags |= SW_CLOSING; 2570 break; 2571 } 2572 } 2573 /* 2574 * Drop reference we were created with. Do directly since we're in a 2575 * special context where we don't have to queue the call to 2576 * swapgeom_close_ev(). 2577 */ 2578 cp->index--; 2579 destroy = ((sp != NULL) && (cp->index == 0)); 2580 if (destroy) 2581 sp->sw_id = NULL; 2582 mtx_unlock(&sw_dev_mtx); 2583 if (destroy) 2584 swapgeom_close_ev(cp, 0); 2585 } 2586 2587 static void 2588 swapgeom_close(struct thread *td, struct swdevt *sw) 2589 { 2590 struct g_consumer *cp; 2591 2592 mtx_lock(&sw_dev_mtx); 2593 cp = sw->sw_id; 2594 sw->sw_id = NULL; 2595 mtx_unlock(&sw_dev_mtx); 2596 2597 /* 2598 * swapgeom_close() may be called from the biodone context, 2599 * where we cannot perform topology changes. Delegate the 2600 * work to the events thread. 2601 */ 2602 if (cp != NULL) 2603 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL); 2604 } 2605 2606 static int 2607 swapongeom_locked(struct cdev *dev, struct vnode *vp) 2608 { 2609 struct g_provider *pp; 2610 struct g_consumer *cp; 2611 static struct g_geom *gp; 2612 struct swdevt *sp; 2613 u_long nblks; 2614 int error; 2615 2616 pp = g_dev_getprovider(dev); 2617 if (pp == NULL) 2618 return (ENODEV); 2619 mtx_lock(&sw_dev_mtx); 2620 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2621 cp = sp->sw_id; 2622 if (cp != NULL && cp->provider == pp) { 2623 mtx_unlock(&sw_dev_mtx); 2624 return (EBUSY); 2625 } 2626 } 2627 mtx_unlock(&sw_dev_mtx); 2628 if (gp == NULL) 2629 gp = g_new_geomf(&g_swap_class, "swap"); 2630 cp = g_new_consumer(gp); 2631 cp->index = 1; /* Number of active I/Os, plus one for being active. */ 2632 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 2633 g_attach(cp, pp); 2634 /* 2635 * XXX: Every time you think you can improve the margin for 2636 * footshooting, somebody depends on the ability to do so: 2637 * savecore(8) wants to write to our swapdev so we cannot 2638 * set an exclusive count :-( 2639 */ 2640 error = g_access(cp, 1, 1, 0); 2641 if (error != 0) { 2642 g_detach(cp); 2643 g_destroy_consumer(cp); 2644 return (error); 2645 } 2646 nblks = pp->mediasize / DEV_BSIZE; 2647 swaponsomething(vp, cp, nblks, swapgeom_strategy, 2648 swapgeom_close, dev2udev(dev), 2649 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2650 return (0); 2651 } 2652 2653 static int 2654 swapongeom(struct vnode *vp) 2655 { 2656 int error; 2657 2658 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2659 if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) { 2660 error = ENOENT; 2661 } else { 2662 g_topology_lock(); 2663 error = swapongeom_locked(vp->v_rdev, vp); 2664 g_topology_unlock(); 2665 } 2666 VOP_UNLOCK(vp, 0); 2667 return (error); 2668 } 2669 2670 /* 2671 * VNODE backend 2672 * 2673 * This is used mainly for network filesystem (read: probably only tested 2674 * with NFS) swapfiles. 2675 * 2676 */ 2677 2678 static void 2679 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2680 { 2681 struct vnode *vp2; 2682 2683 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2684 2685 vp2 = sp->sw_id; 2686 vhold(vp2); 2687 if (bp->b_iocmd == BIO_WRITE) { 2688 if (bp->b_bufobj) 2689 bufobj_wdrop(bp->b_bufobj); 2690 bufobj_wref(&vp2->v_bufobj); 2691 } 2692 if (bp->b_bufobj != &vp2->v_bufobj) 2693 bp->b_bufobj = &vp2->v_bufobj; 2694 bp->b_vp = vp2; 2695 bp->b_iooffset = dbtob(bp->b_blkno); 2696 bstrategy(bp); 2697 return; 2698 } 2699 2700 static void 2701 swapdev_close(struct thread *td, struct swdevt *sp) 2702 { 2703 2704 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2705 vrele(sp->sw_vp); 2706 } 2707 2708 2709 static int 2710 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2711 { 2712 struct swdevt *sp; 2713 int error; 2714 2715 if (nblks == 0) 2716 return (ENXIO); 2717 mtx_lock(&sw_dev_mtx); 2718 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2719 if (sp->sw_id == vp) { 2720 mtx_unlock(&sw_dev_mtx); 2721 return (EBUSY); 2722 } 2723 } 2724 mtx_unlock(&sw_dev_mtx); 2725 2726 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2727 #ifdef MAC 2728 error = mac_system_check_swapon(td->td_ucred, vp); 2729 if (error == 0) 2730 #endif 2731 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2732 (void) VOP_UNLOCK(vp, 0); 2733 if (error) 2734 return (error); 2735 2736 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2737 NODEV, 0); 2738 return (0); 2739 } 2740 2741 static int 2742 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS) 2743 { 2744 int error, new, n; 2745 2746 new = nsw_wcount_async_max; 2747 error = sysctl_handle_int(oidp, &new, 0, req); 2748 if (error != 0 || req->newptr == NULL) 2749 return (error); 2750 2751 if (new > nswbuf / 2 || new < 1) 2752 return (EINVAL); 2753 2754 mtx_lock(&pbuf_mtx); 2755 while (nsw_wcount_async_max != new) { 2756 /* 2757 * Adjust difference. If the current async count is too low, 2758 * we will need to sqeeze our update slowly in. Sleep with a 2759 * higher priority than getpbuf() to finish faster. 2760 */ 2761 n = new - nsw_wcount_async_max; 2762 if (nsw_wcount_async + n >= 0) { 2763 nsw_wcount_async += n; 2764 nsw_wcount_async_max += n; 2765 wakeup(&nsw_wcount_async); 2766 } else { 2767 nsw_wcount_async_max -= nsw_wcount_async; 2768 nsw_wcount_async = 0; 2769 msleep(&nsw_wcount_async, &pbuf_mtx, PSWP, 2770 "swpsysctl", 0); 2771 } 2772 } 2773 mtx_unlock(&pbuf_mtx); 2774 2775 return (0); 2776 } 2777