xref: /freebsd/sys/vm/swap_pager.c (revision d5fc25e5d6c52b306312784663ccad85923a9c76)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/sysctl.h>
90 #include <sys/sysproto.h>
91 #include <sys/blist.h>
92 #include <sys/lock.h>
93 #include <sys/sx.h>
94 #include <sys/vmmeter.h>
95 
96 #include <security/mac/mac_framework.h>
97 
98 #include <vm/vm.h>
99 #include <vm/pmap.h>
100 #include <vm/vm_map.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_param.h>
107 #include <vm/swap_pager.h>
108 #include <vm/vm_extern.h>
109 #include <vm/uma.h>
110 
111 #include <geom/geom.h>
112 
113 /*
114  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
115  * pages per allocation.  We recommend you stick with the default of 8.
116  * The 16-page limit is due to the radix code (kern/subr_blist.c).
117  */
118 #ifndef MAX_PAGEOUT_CLUSTER
119 #define MAX_PAGEOUT_CLUSTER 16
120 #endif
121 
122 #if !defined(SWB_NPAGES)
123 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
124 #endif
125 
126 /*
127  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
128  *
129  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
130  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
131  * 32K worth of data, two levels represent 256K, three levels represent
132  * 2 MBytes.   This is acceptable.
133  *
134  * Overall memory utilization is about the same as the old swap structure.
135  */
136 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
137 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
138 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
139 
140 struct swblock {
141 	struct swblock	*swb_hnext;
142 	vm_object_t	swb_object;
143 	vm_pindex_t	swb_index;
144 	int		swb_count;
145 	daddr_t		swb_pages[SWAP_META_PAGES];
146 };
147 
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;	/* Allocate from here next */
151 static int nswapdev;		/* Number of swap devices */
152 int swap_pager_avail;
153 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
154 
155 static void swapdev_strategy(struct buf *, struct swdevt *sw);
156 
157 #define SWM_FREE	0x02	/* free, period			*/
158 #define SWM_POP		0x04	/* pop out			*/
159 
160 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
161 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
162 static int nsw_rcount;		/* free read buffers			*/
163 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
164 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
165 static int nsw_wcount_async_max;/* assigned maximum			*/
166 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
167 
168 static struct swblock **swhash;
169 static int swhash_mask;
170 static struct mtx swhash_mtx;
171 
172 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
173 static struct sx sw_alloc_sx;
174 
175 
176 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
177         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
178 
179 /*
180  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
181  * of searching a named list by hashing it just a little.
182  */
183 
184 #define NOBJLISTS		8
185 
186 #define NOBJLIST(handle)	\
187 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
188 
189 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
190 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
191 static uma_zone_t	swap_zone;
192 static struct vm_object	swap_zone_obj;
193 
194 /*
195  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
196  * calls hooked from other parts of the VM system and do not appear here.
197  * (see vm/swap_pager.h).
198  */
199 static vm_object_t
200 		swap_pager_alloc(void *handle, vm_ooffset_t size,
201 				      vm_prot_t prot, vm_ooffset_t offset);
202 static void	swap_pager_dealloc(vm_object_t object);
203 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
204 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
205 static boolean_t
206 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
207 static void	swap_pager_init(void);
208 static void	swap_pager_unswapped(vm_page_t);
209 static void	swap_pager_swapoff(struct swdevt *sp);
210 
211 struct pagerops swappagerops = {
212 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
213 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
214 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
215 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
216 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
217 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
218 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
219 };
220 
221 /*
222  * dmmax is in page-sized chunks with the new swap system.  It was
223  * dev-bsized chunks in the old.  dmmax is always a power of 2.
224  *
225  * swap_*() routines are externally accessible.  swp_*() routines are
226  * internal.
227  */
228 static int dmmax;
229 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
230 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
231 
232 SYSCTL_INT(_vm, OID_AUTO, dmmax,
233 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
234 
235 static void	swp_sizecheck(void);
236 static void	swp_pager_async_iodone(struct buf *bp);
237 static int	swapongeom(struct thread *, struct vnode *);
238 static int	swaponvp(struct thread *, struct vnode *, u_long);
239 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
240 
241 /*
242  * Swap bitmap functions
243  */
244 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
245 static daddr_t	swp_pager_getswapspace(int npages);
246 
247 /*
248  * Metadata functions
249  */
250 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
251 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
252 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
253 static void swp_pager_meta_free_all(vm_object_t);
254 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
255 
256 /*
257  * SWP_SIZECHECK() -	update swap_pager_full indication
258  *
259  *	update the swap_pager_almost_full indication and warn when we are
260  *	about to run out of swap space, using lowat/hiwat hysteresis.
261  *
262  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
263  *
264  *	No restrictions on call
265  *	This routine may not block.
266  *	This routine must be called at splvm()
267  */
268 static void
269 swp_sizecheck(void)
270 {
271 
272 	if (swap_pager_avail < nswap_lowat) {
273 		if (swap_pager_almost_full == 0) {
274 			printf("swap_pager: out of swap space\n");
275 			swap_pager_almost_full = 1;
276 		}
277 	} else {
278 		swap_pager_full = 0;
279 		if (swap_pager_avail > nswap_hiwat)
280 			swap_pager_almost_full = 0;
281 	}
282 }
283 
284 /*
285  * SWP_PAGER_HASH() -	hash swap meta data
286  *
287  *	This is an helper function which hashes the swapblk given
288  *	the object and page index.  It returns a pointer to a pointer
289  *	to the object, or a pointer to a NULL pointer if it could not
290  *	find a swapblk.
291  *
292  *	This routine must be called at splvm().
293  */
294 static struct swblock **
295 swp_pager_hash(vm_object_t object, vm_pindex_t index)
296 {
297 	struct swblock **pswap;
298 	struct swblock *swap;
299 
300 	index &= ~(vm_pindex_t)SWAP_META_MASK;
301 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
302 	while ((swap = *pswap) != NULL) {
303 		if (swap->swb_object == object &&
304 		    swap->swb_index == index
305 		) {
306 			break;
307 		}
308 		pswap = &swap->swb_hnext;
309 	}
310 	return (pswap);
311 }
312 
313 /*
314  * SWAP_PAGER_INIT() -	initialize the swap pager!
315  *
316  *	Expected to be started from system init.  NOTE:  This code is run
317  *	before much else so be careful what you depend on.  Most of the VM
318  *	system has yet to be initialized at this point.
319  */
320 static void
321 swap_pager_init(void)
322 {
323 	/*
324 	 * Initialize object lists
325 	 */
326 	int i;
327 
328 	for (i = 0; i < NOBJLISTS; ++i)
329 		TAILQ_INIT(&swap_pager_object_list[i]);
330 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
331 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
332 
333 	/*
334 	 * Device Stripe, in PAGE_SIZE'd blocks
335 	 */
336 	dmmax = SWB_NPAGES * 2;
337 }
338 
339 /*
340  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
341  *
342  *	Expected to be started from pageout process once, prior to entering
343  *	its main loop.
344  */
345 void
346 swap_pager_swap_init(void)
347 {
348 	int n, n2;
349 
350 	/*
351 	 * Number of in-transit swap bp operations.  Don't
352 	 * exhaust the pbufs completely.  Make sure we
353 	 * initialize workable values (0 will work for hysteresis
354 	 * but it isn't very efficient).
355 	 *
356 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
357 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
358 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
359 	 * constrained by the swap device interleave stripe size.
360 	 *
361 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
362 	 * designed to prevent other I/O from having high latencies due to
363 	 * our pageout I/O.  The value 4 works well for one or two active swap
364 	 * devices but is probably a little low if you have more.  Even so,
365 	 * a higher value would probably generate only a limited improvement
366 	 * with three or four active swap devices since the system does not
367 	 * typically have to pageout at extreme bandwidths.   We will want
368 	 * at least 2 per swap devices, and 4 is a pretty good value if you
369 	 * have one NFS swap device due to the command/ack latency over NFS.
370 	 * So it all works out pretty well.
371 	 */
372 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
373 
374 	mtx_lock(&pbuf_mtx);
375 	nsw_rcount = (nswbuf + 1) / 2;
376 	nsw_wcount_sync = (nswbuf + 3) / 4;
377 	nsw_wcount_async = 4;
378 	nsw_wcount_async_max = nsw_wcount_async;
379 	mtx_unlock(&pbuf_mtx);
380 
381 	/*
382 	 * Initialize our zone.  Right now I'm just guessing on the number
383 	 * we need based on the number of pages in the system.  Each swblock
384 	 * can hold 16 pages, so this is probably overkill.  This reservation
385 	 * is typically limited to around 32MB by default.
386 	 */
387 	n = cnt.v_page_count / 2;
388 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
389 		n = maxswzone / sizeof(struct swblock);
390 	n2 = n;
391 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
392 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
393 	if (swap_zone == NULL)
394 		panic("failed to create swap_zone.");
395 	do {
396 		if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
397 			break;
398 		/*
399 		 * if the allocation failed, try a zone two thirds the
400 		 * size of the previous attempt.
401 		 */
402 		n -= ((n + 2) / 3);
403 	} while (n > 0);
404 	if (n2 != n)
405 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
406 	n2 = n;
407 
408 	/*
409 	 * Initialize our meta-data hash table.  The swapper does not need to
410 	 * be quite as efficient as the VM system, so we do not use an
411 	 * oversized hash table.
412 	 *
413 	 * 	n: 		size of hash table, must be power of 2
414 	 *	swhash_mask:	hash table index mask
415 	 */
416 	for (n = 1; n < n2 / 8; n *= 2)
417 		;
418 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
419 	swhash_mask = n - 1;
420 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
421 }
422 
423 /*
424  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
425  *			its metadata structures.
426  *
427  *	This routine is called from the mmap and fork code to create a new
428  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
429  *	and then converting it with swp_pager_meta_build().
430  *
431  *	This routine may block in vm_object_allocate() and create a named
432  *	object lookup race, so we must interlock.   We must also run at
433  *	splvm() for the object lookup to handle races with interrupts, but
434  *	we do not have to maintain splvm() in between the lookup and the
435  *	add because (I believe) it is not possible to attempt to create
436  *	a new swap object w/handle when a default object with that handle
437  *	already exists.
438  *
439  * MPSAFE
440  */
441 static vm_object_t
442 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
443 		 vm_ooffset_t offset)
444 {
445 	vm_object_t object;
446 	vm_pindex_t pindex;
447 
448 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
449 
450 	if (handle) {
451 		mtx_lock(&Giant);
452 		/*
453 		 * Reference existing named region or allocate new one.  There
454 		 * should not be a race here against swp_pager_meta_build()
455 		 * as called from vm_page_remove() in regards to the lookup
456 		 * of the handle.
457 		 */
458 		sx_xlock(&sw_alloc_sx);
459 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
460 
461 		if (object == NULL) {
462 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
463 			object->handle = handle;
464 
465 			VM_OBJECT_LOCK(object);
466 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
467 			VM_OBJECT_UNLOCK(object);
468 		}
469 		sx_xunlock(&sw_alloc_sx);
470 		mtx_unlock(&Giant);
471 	} else {
472 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
473 
474 		VM_OBJECT_LOCK(object);
475 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
476 		VM_OBJECT_UNLOCK(object);
477 	}
478 	return (object);
479 }
480 
481 /*
482  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
483  *
484  *	The swap backing for the object is destroyed.  The code is
485  *	designed such that we can reinstantiate it later, but this
486  *	routine is typically called only when the entire object is
487  *	about to be destroyed.
488  *
489  *	This routine may block, but no longer does.
490  *
491  *	The object must be locked or unreferenceable.
492  */
493 static void
494 swap_pager_dealloc(vm_object_t object)
495 {
496 
497 	/*
498 	 * Remove from list right away so lookups will fail if we block for
499 	 * pageout completion.
500 	 */
501 	if (object->handle != NULL) {
502 		mtx_lock(&sw_alloc_mtx);
503 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
504 		mtx_unlock(&sw_alloc_mtx);
505 	}
506 
507 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
508 	vm_object_pip_wait(object, "swpdea");
509 
510 	/*
511 	 * Free all remaining metadata.  We only bother to free it from
512 	 * the swap meta data.  We do not attempt to free swapblk's still
513 	 * associated with vm_page_t's for this object.  We do not care
514 	 * if paging is still in progress on some objects.
515 	 */
516 	swp_pager_meta_free_all(object);
517 }
518 
519 /************************************************************************
520  *			SWAP PAGER BITMAP ROUTINES			*
521  ************************************************************************/
522 
523 /*
524  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
525  *
526  *	Allocate swap for the requested number of pages.  The starting
527  *	swap block number (a page index) is returned or SWAPBLK_NONE
528  *	if the allocation failed.
529  *
530  *	Also has the side effect of advising that somebody made a mistake
531  *	when they configured swap and didn't configure enough.
532  *
533  *	Must be called at splvm() to avoid races with bitmap frees from
534  *	vm_page_remove() aka swap_pager_page_removed().
535  *
536  *	This routine may not block
537  *	This routine must be called at splvm().
538  *
539  *	We allocate in round-robin fashion from the configured devices.
540  */
541 static daddr_t
542 swp_pager_getswapspace(int npages)
543 {
544 	daddr_t blk;
545 	struct swdevt *sp;
546 	int i;
547 
548 	blk = SWAPBLK_NONE;
549 	mtx_lock(&sw_dev_mtx);
550 	sp = swdevhd;
551 	for (i = 0; i < nswapdev; i++) {
552 		if (sp == NULL)
553 			sp = TAILQ_FIRST(&swtailq);
554 		if (!(sp->sw_flags & SW_CLOSING)) {
555 			blk = blist_alloc(sp->sw_blist, npages);
556 			if (blk != SWAPBLK_NONE) {
557 				blk += sp->sw_first;
558 				sp->sw_used += npages;
559 				swap_pager_avail -= npages;
560 				swp_sizecheck();
561 				swdevhd = TAILQ_NEXT(sp, sw_list);
562 				goto done;
563 			}
564 		}
565 		sp = TAILQ_NEXT(sp, sw_list);
566 	}
567 	if (swap_pager_full != 2) {
568 		printf("swap_pager_getswapspace(%d): failed\n", npages);
569 		swap_pager_full = 2;
570 		swap_pager_almost_full = 1;
571 	}
572 	swdevhd = NULL;
573 done:
574 	mtx_unlock(&sw_dev_mtx);
575 	return (blk);
576 }
577 
578 static int
579 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
580 {
581 
582 	return (blk >= sp->sw_first && blk < sp->sw_end);
583 }
584 
585 static void
586 swp_pager_strategy(struct buf *bp)
587 {
588 	struct swdevt *sp;
589 
590 	mtx_lock(&sw_dev_mtx);
591 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
592 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
593 			mtx_unlock(&sw_dev_mtx);
594 			sp->sw_strategy(bp, sp);
595 			return;
596 		}
597 	}
598 	panic("Swapdev not found");
599 }
600 
601 
602 /*
603  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
604  *
605  *	This routine returns the specified swap blocks back to the bitmap.
606  *
607  *	Note:  This routine may not block (it could in the old swap code),
608  *	and through the use of the new blist routines it does not block.
609  *
610  *	We must be called at splvm() to avoid races with bitmap frees from
611  *	vm_page_remove() aka swap_pager_page_removed().
612  *
613  *	This routine may not block
614  *	This routine must be called at splvm().
615  */
616 static void
617 swp_pager_freeswapspace(daddr_t blk, int npages)
618 {
619 	struct swdevt *sp;
620 
621 	mtx_lock(&sw_dev_mtx);
622 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
623 		if (blk >= sp->sw_first && blk < sp->sw_end) {
624 			sp->sw_used -= npages;
625 			/*
626 			 * If we are attempting to stop swapping on
627 			 * this device, we don't want to mark any
628 			 * blocks free lest they be reused.
629 			 */
630 			if ((sp->sw_flags & SW_CLOSING) == 0) {
631 				blist_free(sp->sw_blist, blk - sp->sw_first,
632 				    npages);
633 				swap_pager_avail += npages;
634 				swp_sizecheck();
635 			}
636 			mtx_unlock(&sw_dev_mtx);
637 			return;
638 		}
639 	}
640 	panic("Swapdev not found");
641 }
642 
643 /*
644  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
645  *				range within an object.
646  *
647  *	This is a globally accessible routine.
648  *
649  *	This routine removes swapblk assignments from swap metadata.
650  *
651  *	The external callers of this routine typically have already destroyed
652  *	or renamed vm_page_t's associated with this range in the object so
653  *	we should be ok.
654  *
655  *	This routine may be called at any spl.  We up our spl to splvm temporarily
656  *	in order to perform the metadata removal.
657  */
658 void
659 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
660 {
661 
662 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
663 	swp_pager_meta_free(object, start, size);
664 }
665 
666 /*
667  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
668  *
669  *	Assigns swap blocks to the specified range within the object.  The
670  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
671  *
672  *	Returns 0 on success, -1 on failure.
673  */
674 int
675 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
676 {
677 	int n = 0;
678 	daddr_t blk = SWAPBLK_NONE;
679 	vm_pindex_t beg = start;	/* save start index */
680 
681 	VM_OBJECT_LOCK(object);
682 	while (size) {
683 		if (n == 0) {
684 			n = BLIST_MAX_ALLOC;
685 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
686 				n >>= 1;
687 				if (n == 0) {
688 					swp_pager_meta_free(object, beg, start - beg);
689 					VM_OBJECT_UNLOCK(object);
690 					return (-1);
691 				}
692 			}
693 		}
694 		swp_pager_meta_build(object, start, blk);
695 		--size;
696 		++start;
697 		++blk;
698 		--n;
699 	}
700 	swp_pager_meta_free(object, start, n);
701 	VM_OBJECT_UNLOCK(object);
702 	return (0);
703 }
704 
705 /*
706  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
707  *			and destroy the source.
708  *
709  *	Copy any valid swapblks from the source to the destination.  In
710  *	cases where both the source and destination have a valid swapblk,
711  *	we keep the destination's.
712  *
713  *	This routine is allowed to block.  It may block allocating metadata
714  *	indirectly through swp_pager_meta_build() or if paging is still in
715  *	progress on the source.
716  *
717  *	This routine can be called at any spl
718  *
719  *	XXX vm_page_collapse() kinda expects us not to block because we
720  *	supposedly do not need to allocate memory, but for the moment we
721  *	*may* have to get a little memory from the zone allocator, but
722  *	it is taken from the interrupt memory.  We should be ok.
723  *
724  *	The source object contains no vm_page_t's (which is just as well)
725  *
726  *	The source object is of type OBJT_SWAP.
727  *
728  *	The source and destination objects must be locked or
729  *	inaccessible (XXX are they ?)
730  */
731 void
732 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
733     vm_pindex_t offset, int destroysource)
734 {
735 	vm_pindex_t i;
736 
737 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
738 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
739 
740 	/*
741 	 * If destroysource is set, we remove the source object from the
742 	 * swap_pager internal queue now.
743 	 */
744 	if (destroysource) {
745 		if (srcobject->handle != NULL) {
746 			mtx_lock(&sw_alloc_mtx);
747 			TAILQ_REMOVE(
748 			    NOBJLIST(srcobject->handle),
749 			    srcobject,
750 			    pager_object_list
751 			);
752 			mtx_unlock(&sw_alloc_mtx);
753 		}
754 	}
755 
756 	/*
757 	 * transfer source to destination.
758 	 */
759 	for (i = 0; i < dstobject->size; ++i) {
760 		daddr_t dstaddr;
761 
762 		/*
763 		 * Locate (without changing) the swapblk on the destination,
764 		 * unless it is invalid in which case free it silently, or
765 		 * if the destination is a resident page, in which case the
766 		 * source is thrown away.
767 		 */
768 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
769 
770 		if (dstaddr == SWAPBLK_NONE) {
771 			/*
772 			 * Destination has no swapblk and is not resident,
773 			 * copy source.
774 			 */
775 			daddr_t srcaddr;
776 
777 			srcaddr = swp_pager_meta_ctl(
778 			    srcobject,
779 			    i + offset,
780 			    SWM_POP
781 			);
782 
783 			if (srcaddr != SWAPBLK_NONE) {
784 				/*
785 				 * swp_pager_meta_build() can sleep.
786 				 */
787 				vm_object_pip_add(srcobject, 1);
788 				VM_OBJECT_UNLOCK(srcobject);
789 				vm_object_pip_add(dstobject, 1);
790 				swp_pager_meta_build(dstobject, i, srcaddr);
791 				vm_object_pip_wakeup(dstobject);
792 				VM_OBJECT_LOCK(srcobject);
793 				vm_object_pip_wakeup(srcobject);
794 			}
795 		} else {
796 			/*
797 			 * Destination has valid swapblk or it is represented
798 			 * by a resident page.  We destroy the sourceblock.
799 			 */
800 
801 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
802 		}
803 	}
804 
805 	/*
806 	 * Free left over swap blocks in source.
807 	 *
808 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
809 	 * double-remove the object from the swap queues.
810 	 */
811 	if (destroysource) {
812 		swp_pager_meta_free_all(srcobject);
813 		/*
814 		 * Reverting the type is not necessary, the caller is going
815 		 * to destroy srcobject directly, but I'm doing it here
816 		 * for consistency since we've removed the object from its
817 		 * queues.
818 		 */
819 		srcobject->type = OBJT_DEFAULT;
820 	}
821 }
822 
823 /*
824  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
825  *				the requested page.
826  *
827  *	We determine whether good backing store exists for the requested
828  *	page and return TRUE if it does, FALSE if it doesn't.
829  *
830  *	If TRUE, we also try to determine how much valid, contiguous backing
831  *	store exists before and after the requested page within a reasonable
832  *	distance.  We do not try to restrict it to the swap device stripe
833  *	(that is handled in getpages/putpages).  It probably isn't worth
834  *	doing here.
835  */
836 static boolean_t
837 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
838 {
839 	daddr_t blk0;
840 
841 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
842 	/*
843 	 * do we have good backing store at the requested index ?
844 	 */
845 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
846 
847 	if (blk0 == SWAPBLK_NONE) {
848 		if (before)
849 			*before = 0;
850 		if (after)
851 			*after = 0;
852 		return (FALSE);
853 	}
854 
855 	/*
856 	 * find backwards-looking contiguous good backing store
857 	 */
858 	if (before != NULL) {
859 		int i;
860 
861 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
862 			daddr_t blk;
863 
864 			if (i > pindex)
865 				break;
866 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
867 			if (blk != blk0 - i)
868 				break;
869 		}
870 		*before = (i - 1);
871 	}
872 
873 	/*
874 	 * find forward-looking contiguous good backing store
875 	 */
876 	if (after != NULL) {
877 		int i;
878 
879 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
880 			daddr_t blk;
881 
882 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
883 			if (blk != blk0 + i)
884 				break;
885 		}
886 		*after = (i - 1);
887 	}
888 	return (TRUE);
889 }
890 
891 /*
892  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
893  *
894  *	This removes any associated swap backing store, whether valid or
895  *	not, from the page.
896  *
897  *	This routine is typically called when a page is made dirty, at
898  *	which point any associated swap can be freed.  MADV_FREE also
899  *	calls us in a special-case situation
900  *
901  *	NOTE!!!  If the page is clean and the swap was valid, the caller
902  *	should make the page dirty before calling this routine.  This routine
903  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
904  *	depends on it.
905  *
906  *	This routine may not block
907  *	This routine must be called at splvm()
908  */
909 static void
910 swap_pager_unswapped(vm_page_t m)
911 {
912 
913 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
914 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
915 }
916 
917 /*
918  * SWAP_PAGER_GETPAGES() - bring pages in from swap
919  *
920  *	Attempt to retrieve (m, count) pages from backing store, but make
921  *	sure we retrieve at least m[reqpage].  We try to load in as large
922  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
923  *	belongs to the same object.
924  *
925  *	The code is designed for asynchronous operation and
926  *	immediate-notification of 'reqpage' but tends not to be
927  *	used that way.  Please do not optimize-out this algorithmic
928  *	feature, I intend to improve on it in the future.
929  *
930  *	The parent has a single vm_object_pip_add() reference prior to
931  *	calling us and we should return with the same.
932  *
933  *	The parent has BUSY'd the pages.  We should return with 'm'
934  *	left busy, but the others adjusted.
935  */
936 static int
937 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
938 {
939 	struct buf *bp;
940 	vm_page_t mreq;
941 	int i;
942 	int j;
943 	daddr_t blk;
944 
945 	mreq = m[reqpage];
946 
947 	KASSERT(mreq->object == object,
948 	    ("swap_pager_getpages: object mismatch %p/%p",
949 	    object, mreq->object));
950 
951 	/*
952 	 * Calculate range to retrieve.  The pages have already been assigned
953 	 * their swapblks.  We require a *contiguous* range but we know it to
954 	 * not span devices.   If we do not supply it, bad things
955 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
956 	 * loops are set up such that the case(s) are handled implicitly.
957 	 *
958 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
959 	 * not need to be, but it will go a little faster if it is.
960 	 */
961 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
962 
963 	for (i = reqpage - 1; i >= 0; --i) {
964 		daddr_t iblk;
965 
966 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
967 		if (blk != iblk + (reqpage - i))
968 			break;
969 	}
970 	++i;
971 
972 	for (j = reqpage + 1; j < count; ++j) {
973 		daddr_t jblk;
974 
975 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
976 		if (blk != jblk - (j - reqpage))
977 			break;
978 	}
979 
980 	/*
981 	 * free pages outside our collection range.   Note: we never free
982 	 * mreq, it must remain busy throughout.
983 	 */
984 	if (0 < i || j < count) {
985 		int k;
986 
987 		vm_page_lock_queues();
988 		for (k = 0; k < i; ++k)
989 			vm_page_free(m[k]);
990 		for (k = j; k < count; ++k)
991 			vm_page_free(m[k]);
992 		vm_page_unlock_queues();
993 	}
994 
995 	/*
996 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
997 	 * still busy, but the others unbusied.
998 	 */
999 	if (blk == SWAPBLK_NONE)
1000 		return (VM_PAGER_FAIL);
1001 
1002 	/*
1003 	 * Getpbuf() can sleep.
1004 	 */
1005 	VM_OBJECT_UNLOCK(object);
1006 	/*
1007 	 * Get a swap buffer header to perform the IO
1008 	 */
1009 	bp = getpbuf(&nsw_rcount);
1010 	bp->b_flags |= B_PAGING;
1011 
1012 	/*
1013 	 * map our page(s) into kva for input
1014 	 */
1015 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1016 
1017 	bp->b_iocmd = BIO_READ;
1018 	bp->b_iodone = swp_pager_async_iodone;
1019 	bp->b_rcred = crhold(thread0.td_ucred);
1020 	bp->b_wcred = crhold(thread0.td_ucred);
1021 	bp->b_blkno = blk - (reqpage - i);
1022 	bp->b_bcount = PAGE_SIZE * (j - i);
1023 	bp->b_bufsize = PAGE_SIZE * (j - i);
1024 	bp->b_pager.pg_reqpage = reqpage - i;
1025 
1026 	VM_OBJECT_LOCK(object);
1027 	{
1028 		int k;
1029 
1030 		for (k = i; k < j; ++k) {
1031 			bp->b_pages[k - i] = m[k];
1032 			m[k]->oflags |= VPO_SWAPINPROG;
1033 		}
1034 	}
1035 	bp->b_npages = j - i;
1036 
1037 	PCPU_INC(cnt.v_swapin);
1038 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1039 
1040 	/*
1041 	 * We still hold the lock on mreq, and our automatic completion routine
1042 	 * does not remove it.
1043 	 */
1044 	vm_object_pip_add(object, bp->b_npages);
1045 	VM_OBJECT_UNLOCK(object);
1046 
1047 	/*
1048 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1049 	 * this point because we automatically release it on completion.
1050 	 * Instead, we look at the one page we are interested in which we
1051 	 * still hold a lock on even through the I/O completion.
1052 	 *
1053 	 * The other pages in our m[] array are also released on completion,
1054 	 * so we cannot assume they are valid anymore either.
1055 	 *
1056 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1057 	 */
1058 	BUF_KERNPROC(bp);
1059 	swp_pager_strategy(bp);
1060 
1061 	/*
1062 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1063 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1064 	 * is set in the meta-data.
1065 	 */
1066 	VM_OBJECT_LOCK(object);
1067 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1068 		mreq->oflags |= VPO_WANTED;
1069 		vm_page_lock_queues();
1070 		vm_page_flag_set(mreq, PG_REFERENCED);
1071 		vm_page_unlock_queues();
1072 		PCPU_INC(cnt.v_intrans);
1073 		if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
1074 			printf(
1075 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1076 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1077 		}
1078 	}
1079 
1080 	/*
1081 	 * mreq is left busied after completion, but all the other pages
1082 	 * are freed.  If we had an unrecoverable read error the page will
1083 	 * not be valid.
1084 	 */
1085 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1086 		return (VM_PAGER_ERROR);
1087 	} else {
1088 		return (VM_PAGER_OK);
1089 	}
1090 
1091 	/*
1092 	 * A final note: in a low swap situation, we cannot deallocate swap
1093 	 * and mark a page dirty here because the caller is likely to mark
1094 	 * the page clean when we return, causing the page to possibly revert
1095 	 * to all-zero's later.
1096 	 */
1097 }
1098 
1099 /*
1100  *	swap_pager_putpages:
1101  *
1102  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1103  *
1104  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1105  *	are automatically converted to SWAP objects.
1106  *
1107  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1108  *	vm_page reservation system coupled with properly written VFS devices
1109  *	should ensure that no low-memory deadlock occurs.  This is an area
1110  *	which needs work.
1111  *
1112  *	The parent has N vm_object_pip_add() references prior to
1113  *	calling us and will remove references for rtvals[] that are
1114  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1115  *	completion.
1116  *
1117  *	The parent has soft-busy'd the pages it passes us and will unbusy
1118  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1119  *	We need to unbusy the rest on I/O completion.
1120  */
1121 void
1122 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1123     boolean_t sync, int *rtvals)
1124 {
1125 	int i;
1126 	int n = 0;
1127 
1128 	if (count && m[0]->object != object) {
1129 		panic("swap_pager_putpages: object mismatch %p/%p",
1130 		    object,
1131 		    m[0]->object
1132 		);
1133 	}
1134 
1135 	/*
1136 	 * Step 1
1137 	 *
1138 	 * Turn object into OBJT_SWAP
1139 	 * check for bogus sysops
1140 	 * force sync if not pageout process
1141 	 */
1142 	if (object->type != OBJT_SWAP)
1143 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1144 	VM_OBJECT_UNLOCK(object);
1145 
1146 	if (curproc != pageproc)
1147 		sync = TRUE;
1148 
1149 	/*
1150 	 * Step 2
1151 	 *
1152 	 * Update nsw parameters from swap_async_max sysctl values.
1153 	 * Do not let the sysop crash the machine with bogus numbers.
1154 	 */
1155 	mtx_lock(&pbuf_mtx);
1156 	if (swap_async_max != nsw_wcount_async_max) {
1157 		int n;
1158 
1159 		/*
1160 		 * limit range
1161 		 */
1162 		if ((n = swap_async_max) > nswbuf / 2)
1163 			n = nswbuf / 2;
1164 		if (n < 1)
1165 			n = 1;
1166 		swap_async_max = n;
1167 
1168 		/*
1169 		 * Adjust difference ( if possible ).  If the current async
1170 		 * count is too low, we may not be able to make the adjustment
1171 		 * at this time.
1172 		 */
1173 		n -= nsw_wcount_async_max;
1174 		if (nsw_wcount_async + n >= 0) {
1175 			nsw_wcount_async += n;
1176 			nsw_wcount_async_max += n;
1177 			wakeup(&nsw_wcount_async);
1178 		}
1179 	}
1180 	mtx_unlock(&pbuf_mtx);
1181 
1182 	/*
1183 	 * Step 3
1184 	 *
1185 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1186 	 * The page is left dirty until the pageout operation completes
1187 	 * successfully.
1188 	 */
1189 	for (i = 0; i < count; i += n) {
1190 		int j;
1191 		struct buf *bp;
1192 		daddr_t blk;
1193 
1194 		/*
1195 		 * Maximum I/O size is limited by a number of factors.
1196 		 */
1197 		n = min(BLIST_MAX_ALLOC, count - i);
1198 		n = min(n, nsw_cluster_max);
1199 
1200 		/*
1201 		 * Get biggest block of swap we can.  If we fail, fall
1202 		 * back and try to allocate a smaller block.  Don't go
1203 		 * overboard trying to allocate space if it would overly
1204 		 * fragment swap.
1205 		 */
1206 		while (
1207 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1208 		    n > 4
1209 		) {
1210 			n >>= 1;
1211 		}
1212 		if (blk == SWAPBLK_NONE) {
1213 			for (j = 0; j < n; ++j)
1214 				rtvals[i+j] = VM_PAGER_FAIL;
1215 			continue;
1216 		}
1217 
1218 		/*
1219 		 * All I/O parameters have been satisfied, build the I/O
1220 		 * request and assign the swap space.
1221 		 */
1222 		if (sync == TRUE) {
1223 			bp = getpbuf(&nsw_wcount_sync);
1224 		} else {
1225 			bp = getpbuf(&nsw_wcount_async);
1226 			bp->b_flags = B_ASYNC;
1227 		}
1228 		bp->b_flags |= B_PAGING;
1229 		bp->b_iocmd = BIO_WRITE;
1230 
1231 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1232 
1233 		bp->b_rcred = crhold(thread0.td_ucred);
1234 		bp->b_wcred = crhold(thread0.td_ucred);
1235 		bp->b_bcount = PAGE_SIZE * n;
1236 		bp->b_bufsize = PAGE_SIZE * n;
1237 		bp->b_blkno = blk;
1238 
1239 		VM_OBJECT_LOCK(object);
1240 		for (j = 0; j < n; ++j) {
1241 			vm_page_t mreq = m[i+j];
1242 
1243 			swp_pager_meta_build(
1244 			    mreq->object,
1245 			    mreq->pindex,
1246 			    blk + j
1247 			);
1248 			vm_page_dirty(mreq);
1249 			rtvals[i+j] = VM_PAGER_OK;
1250 
1251 			mreq->oflags |= VPO_SWAPINPROG;
1252 			bp->b_pages[j] = mreq;
1253 		}
1254 		VM_OBJECT_UNLOCK(object);
1255 		bp->b_npages = n;
1256 		/*
1257 		 * Must set dirty range for NFS to work.
1258 		 */
1259 		bp->b_dirtyoff = 0;
1260 		bp->b_dirtyend = bp->b_bcount;
1261 
1262 		PCPU_INC(cnt.v_swapout);
1263 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1264 
1265 		/*
1266 		 * asynchronous
1267 		 *
1268 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1269 		 */
1270 		if (sync == FALSE) {
1271 			bp->b_iodone = swp_pager_async_iodone;
1272 			BUF_KERNPROC(bp);
1273 			swp_pager_strategy(bp);
1274 
1275 			for (j = 0; j < n; ++j)
1276 				rtvals[i+j] = VM_PAGER_PEND;
1277 			/* restart outter loop */
1278 			continue;
1279 		}
1280 
1281 		/*
1282 		 * synchronous
1283 		 *
1284 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1285 		 */
1286 		bp->b_iodone = bdone;
1287 		swp_pager_strategy(bp);
1288 
1289 		/*
1290 		 * Wait for the sync I/O to complete, then update rtvals.
1291 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1292 		 * our async completion routine at the end, thus avoiding a
1293 		 * double-free.
1294 		 */
1295 		bwait(bp, PVM, "swwrt");
1296 		for (j = 0; j < n; ++j)
1297 			rtvals[i+j] = VM_PAGER_PEND;
1298 		/*
1299 		 * Now that we are through with the bp, we can call the
1300 		 * normal async completion, which frees everything up.
1301 		 */
1302 		swp_pager_async_iodone(bp);
1303 	}
1304 	VM_OBJECT_LOCK(object);
1305 }
1306 
1307 /*
1308  *	swp_pager_async_iodone:
1309  *
1310  *	Completion routine for asynchronous reads and writes from/to swap.
1311  *	Also called manually by synchronous code to finish up a bp.
1312  *
1313  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1314  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1315  *	unbusy all pages except the 'main' request page.  For WRITE
1316  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1317  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1318  *
1319  *	This routine may not block.
1320  */
1321 static void
1322 swp_pager_async_iodone(struct buf *bp)
1323 {
1324 	int i;
1325 	vm_object_t object = NULL;
1326 
1327 	/*
1328 	 * report error
1329 	 */
1330 	if (bp->b_ioflags & BIO_ERROR) {
1331 		printf(
1332 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1333 			"size %ld, error %d\n",
1334 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1335 		    (long)bp->b_blkno,
1336 		    (long)bp->b_bcount,
1337 		    bp->b_error
1338 		);
1339 	}
1340 
1341 	/*
1342 	 * remove the mapping for kernel virtual
1343 	 */
1344 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1345 
1346 	if (bp->b_npages) {
1347 		object = bp->b_pages[0]->object;
1348 		VM_OBJECT_LOCK(object);
1349 	}
1350 	vm_page_lock_queues();
1351 	/*
1352 	 * cleanup pages.  If an error occurs writing to swap, we are in
1353 	 * very serious trouble.  If it happens to be a disk error, though,
1354 	 * we may be able to recover by reassigning the swap later on.  So
1355 	 * in this case we remove the m->swapblk assignment for the page
1356 	 * but do not free it in the rlist.  The errornous block(s) are thus
1357 	 * never reallocated as swap.  Redirty the page and continue.
1358 	 */
1359 	for (i = 0; i < bp->b_npages; ++i) {
1360 		vm_page_t m = bp->b_pages[i];
1361 
1362 		m->oflags &= ~VPO_SWAPINPROG;
1363 
1364 		if (bp->b_ioflags & BIO_ERROR) {
1365 			/*
1366 			 * If an error occurs I'd love to throw the swapblk
1367 			 * away without freeing it back to swapspace, so it
1368 			 * can never be used again.  But I can't from an
1369 			 * interrupt.
1370 			 */
1371 			if (bp->b_iocmd == BIO_READ) {
1372 				/*
1373 				 * When reading, reqpage needs to stay
1374 				 * locked for the parent, but all other
1375 				 * pages can be freed.  We still want to
1376 				 * wakeup the parent waiting on the page,
1377 				 * though.  ( also: pg_reqpage can be -1 and
1378 				 * not match anything ).
1379 				 *
1380 				 * We have to wake specifically requested pages
1381 				 * up too because we cleared VPO_SWAPINPROG and
1382 				 * someone may be waiting for that.
1383 				 *
1384 				 * NOTE: for reads, m->dirty will probably
1385 				 * be overridden by the original caller of
1386 				 * getpages so don't play cute tricks here.
1387 				 */
1388 				m->valid = 0;
1389 				if (i != bp->b_pager.pg_reqpage)
1390 					vm_page_free(m);
1391 				else
1392 					vm_page_flash(m);
1393 				/*
1394 				 * If i == bp->b_pager.pg_reqpage, do not wake
1395 				 * the page up.  The caller needs to.
1396 				 */
1397 			} else {
1398 				/*
1399 				 * If a write error occurs, reactivate page
1400 				 * so it doesn't clog the inactive list,
1401 				 * then finish the I/O.
1402 				 */
1403 				vm_page_dirty(m);
1404 				vm_page_activate(m);
1405 				vm_page_io_finish(m);
1406 			}
1407 		} else if (bp->b_iocmd == BIO_READ) {
1408 			/*
1409 			 * NOTE: for reads, m->dirty will probably be
1410 			 * overridden by the original caller of getpages so
1411 			 * we cannot set them in order to free the underlying
1412 			 * swap in a low-swap situation.  I don't think we'd
1413 			 * want to do that anyway, but it was an optimization
1414 			 * that existed in the old swapper for a time before
1415 			 * it got ripped out due to precisely this problem.
1416 			 *
1417 			 * If not the requested page then deactivate it.
1418 			 *
1419 			 * Note that the requested page, reqpage, is left
1420 			 * busied, but we still have to wake it up.  The
1421 			 * other pages are released (unbusied) by
1422 			 * vm_page_wakeup().
1423 			 */
1424 			KASSERT(!pmap_page_is_mapped(m),
1425 			    ("swp_pager_async_iodone: page %p is mapped", m));
1426 			m->valid = VM_PAGE_BITS_ALL;
1427 			KASSERT(m->dirty == 0,
1428 			    ("swp_pager_async_iodone: page %p is dirty", m));
1429 
1430 			/*
1431 			 * We have to wake specifically requested pages
1432 			 * up too because we cleared VPO_SWAPINPROG and
1433 			 * could be waiting for it in getpages.  However,
1434 			 * be sure to not unbusy getpages specifically
1435 			 * requested page - getpages expects it to be
1436 			 * left busy.
1437 			 */
1438 			if (i != bp->b_pager.pg_reqpage) {
1439 				vm_page_deactivate(m);
1440 				vm_page_wakeup(m);
1441 			} else {
1442 				vm_page_flash(m);
1443 			}
1444 		} else {
1445 			/*
1446 			 * For write success, clear the dirty
1447 			 * status, then finish the I/O ( which decrements the
1448 			 * busy count and possibly wakes waiter's up ).
1449 			 */
1450 			KASSERT((m->flags & PG_WRITEABLE) == 0,
1451 			    ("swp_pager_async_iodone: page %p is not write"
1452 			    " protected", m));
1453 			vm_page_undirty(m);
1454 			vm_page_io_finish(m);
1455 			if (vm_page_count_severe())
1456 				vm_page_try_to_cache(m);
1457 		}
1458 	}
1459 	vm_page_unlock_queues();
1460 
1461 	/*
1462 	 * adjust pip.  NOTE: the original parent may still have its own
1463 	 * pip refs on the object.
1464 	 */
1465 	if (object != NULL) {
1466 		vm_object_pip_wakeupn(object, bp->b_npages);
1467 		VM_OBJECT_UNLOCK(object);
1468 	}
1469 
1470 	/*
1471 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1472 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1473 	 * trigger a KASSERT in relpbuf().
1474 	 */
1475 	if (bp->b_vp) {
1476 		    bp->b_vp = NULL;
1477 		    bp->b_bufobj = NULL;
1478 	}
1479 	/*
1480 	 * release the physical I/O buffer
1481 	 */
1482 	relpbuf(
1483 	    bp,
1484 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1485 		((bp->b_flags & B_ASYNC) ?
1486 		    &nsw_wcount_async :
1487 		    &nsw_wcount_sync
1488 		)
1489 	    )
1490 	);
1491 }
1492 
1493 /*
1494  *	swap_pager_isswapped:
1495  *
1496  *	Return 1 if at least one page in the given object is paged
1497  *	out to the given swap device.
1498  *
1499  *	This routine may not block.
1500  */
1501 int
1502 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1503 {
1504 	daddr_t index = 0;
1505 	int bcount;
1506 	int i;
1507 
1508 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1509 	if (object->type != OBJT_SWAP)
1510 		return (0);
1511 
1512 	mtx_lock(&swhash_mtx);
1513 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1514 		struct swblock *swap;
1515 
1516 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1517 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1518 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1519 					mtx_unlock(&swhash_mtx);
1520 					return (1);
1521 				}
1522 			}
1523 		}
1524 		index += SWAP_META_PAGES;
1525 		if (index > 0x20000000)
1526 			panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1527 	}
1528 	mtx_unlock(&swhash_mtx);
1529 	return (0);
1530 }
1531 
1532 /*
1533  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1534  *
1535  *	This routine dissociates the page at the given index within a
1536  *	swap block from its backing store, paging it in if necessary.
1537  *	If the page is paged in, it is placed in the inactive queue,
1538  *	since it had its backing store ripped out from under it.
1539  *	We also attempt to swap in all other pages in the swap block,
1540  *	we only guarantee that the one at the specified index is
1541  *	paged in.
1542  *
1543  *	XXX - The code to page the whole block in doesn't work, so we
1544  *	      revert to the one-by-one behavior for now.  Sigh.
1545  */
1546 static inline void
1547 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1548 {
1549 	vm_page_t m;
1550 
1551 	vm_object_pip_add(object, 1);
1552 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1553 	if (m->valid == VM_PAGE_BITS_ALL) {
1554 		vm_object_pip_subtract(object, 1);
1555 		vm_page_lock_queues();
1556 		vm_page_activate(m);
1557 		vm_page_dirty(m);
1558 		vm_page_unlock_queues();
1559 		vm_page_wakeup(m);
1560 		vm_pager_page_unswapped(m);
1561 		return;
1562 	}
1563 
1564 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1565 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1566 	vm_object_pip_subtract(object, 1);
1567 	vm_page_lock_queues();
1568 	vm_page_dirty(m);
1569 	vm_page_dontneed(m);
1570 	vm_page_unlock_queues();
1571 	vm_page_wakeup(m);
1572 	vm_pager_page_unswapped(m);
1573 }
1574 
1575 /*
1576  *	swap_pager_swapoff:
1577  *
1578  *	Page in all of the pages that have been paged out to the
1579  *	given device.  The corresponding blocks in the bitmap must be
1580  *	marked as allocated and the device must be flagged SW_CLOSING.
1581  *	There may be no processes swapped out to the device.
1582  *
1583  *	This routine may block.
1584  */
1585 static void
1586 swap_pager_swapoff(struct swdevt *sp)
1587 {
1588 	struct swblock *swap;
1589 	int i, j, retries;
1590 
1591 	GIANT_REQUIRED;
1592 
1593 	retries = 0;
1594 full_rescan:
1595 	mtx_lock(&swhash_mtx);
1596 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1597 restart:
1598 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1599 			vm_object_t object = swap->swb_object;
1600 			vm_pindex_t pindex = swap->swb_index;
1601                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1602                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1603 					/* avoid deadlock */
1604 					if (!VM_OBJECT_TRYLOCK(object)) {
1605 						break;
1606 					} else {
1607 						mtx_unlock(&swhash_mtx);
1608 						swp_pager_force_pagein(object,
1609 						    pindex + j);
1610 						VM_OBJECT_UNLOCK(object);
1611 						mtx_lock(&swhash_mtx);
1612 						goto restart;
1613 					}
1614 				}
1615                         }
1616 		}
1617 	}
1618 	mtx_unlock(&swhash_mtx);
1619 	if (sp->sw_used) {
1620 		/*
1621 		 * Objects may be locked or paging to the device being
1622 		 * removed, so we will miss their pages and need to
1623 		 * make another pass.  We have marked this device as
1624 		 * SW_CLOSING, so the activity should finish soon.
1625 		 */
1626 		retries++;
1627 		if (retries > 100) {
1628 			panic("swapoff: failed to locate %d swap blocks",
1629 			    sp->sw_used);
1630 		}
1631 		pause("swpoff", hz / 20);
1632 		goto full_rescan;
1633 	}
1634 }
1635 
1636 /************************************************************************
1637  *				SWAP META DATA 				*
1638  ************************************************************************
1639  *
1640  *	These routines manipulate the swap metadata stored in the
1641  *	OBJT_SWAP object.  All swp_*() routines must be called at
1642  *	splvm() because swap can be freed up by the low level vm_page
1643  *	code which might be called from interrupts beyond what splbio() covers.
1644  *
1645  *	Swap metadata is implemented with a global hash and not directly
1646  *	linked into the object.  Instead the object simply contains
1647  *	appropriate tracking counters.
1648  */
1649 
1650 /*
1651  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1652  *
1653  *	We first convert the object to a swap object if it is a default
1654  *	object.
1655  *
1656  *	The specified swapblk is added to the object's swap metadata.  If
1657  *	the swapblk is not valid, it is freed instead.  Any previously
1658  *	assigned swapblk is freed.
1659  *
1660  *	This routine must be called at splvm(), except when used to convert
1661  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1662  */
1663 static void
1664 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1665 {
1666 	struct swblock *swap;
1667 	struct swblock **pswap;
1668 	int idx;
1669 
1670 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1671 	/*
1672 	 * Convert default object to swap object if necessary
1673 	 */
1674 	if (object->type != OBJT_SWAP) {
1675 		object->type = OBJT_SWAP;
1676 		object->un_pager.swp.swp_bcount = 0;
1677 
1678 		if (object->handle != NULL) {
1679 			mtx_lock(&sw_alloc_mtx);
1680 			TAILQ_INSERT_TAIL(
1681 			    NOBJLIST(object->handle),
1682 			    object,
1683 			    pager_object_list
1684 			);
1685 			mtx_unlock(&sw_alloc_mtx);
1686 		}
1687 	}
1688 
1689 	/*
1690 	 * Locate hash entry.  If not found create, but if we aren't adding
1691 	 * anything just return.  If we run out of space in the map we wait
1692 	 * and, since the hash table may have changed, retry.
1693 	 */
1694 retry:
1695 	mtx_lock(&swhash_mtx);
1696 	pswap = swp_pager_hash(object, pindex);
1697 
1698 	if ((swap = *pswap) == NULL) {
1699 		int i;
1700 
1701 		if (swapblk == SWAPBLK_NONE)
1702 			goto done;
1703 
1704 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1705 		if (swap == NULL) {
1706 			mtx_unlock(&swhash_mtx);
1707 			VM_OBJECT_UNLOCK(object);
1708 			if (uma_zone_exhausted(swap_zone)) {
1709 				printf("swap zone exhausted, increase kern.maxswzone\n");
1710 				vm_pageout_oom(VM_OOM_SWAPZ);
1711 				pause("swzonex", 10);
1712 			} else
1713 				VM_WAIT;
1714 			VM_OBJECT_LOCK(object);
1715 			goto retry;
1716 		}
1717 
1718 		swap->swb_hnext = NULL;
1719 		swap->swb_object = object;
1720 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1721 		swap->swb_count = 0;
1722 
1723 		++object->un_pager.swp.swp_bcount;
1724 
1725 		for (i = 0; i < SWAP_META_PAGES; ++i)
1726 			swap->swb_pages[i] = SWAPBLK_NONE;
1727 	}
1728 
1729 	/*
1730 	 * Delete prior contents of metadata
1731 	 */
1732 	idx = pindex & SWAP_META_MASK;
1733 
1734 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1735 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1736 		--swap->swb_count;
1737 	}
1738 
1739 	/*
1740 	 * Enter block into metadata
1741 	 */
1742 	swap->swb_pages[idx] = swapblk;
1743 	if (swapblk != SWAPBLK_NONE)
1744 		++swap->swb_count;
1745 done:
1746 	mtx_unlock(&swhash_mtx);
1747 }
1748 
1749 /*
1750  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1751  *
1752  *	The requested range of blocks is freed, with any associated swap
1753  *	returned to the swap bitmap.
1754  *
1755  *	This routine will free swap metadata structures as they are cleaned
1756  *	out.  This routine does *NOT* operate on swap metadata associated
1757  *	with resident pages.
1758  *
1759  *	This routine must be called at splvm()
1760  */
1761 static void
1762 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1763 {
1764 
1765 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1766 	if (object->type != OBJT_SWAP)
1767 		return;
1768 
1769 	while (count > 0) {
1770 		struct swblock **pswap;
1771 		struct swblock *swap;
1772 
1773 		mtx_lock(&swhash_mtx);
1774 		pswap = swp_pager_hash(object, index);
1775 
1776 		if ((swap = *pswap) != NULL) {
1777 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1778 
1779 			if (v != SWAPBLK_NONE) {
1780 				swp_pager_freeswapspace(v, 1);
1781 				swap->swb_pages[index & SWAP_META_MASK] =
1782 					SWAPBLK_NONE;
1783 				if (--swap->swb_count == 0) {
1784 					*pswap = swap->swb_hnext;
1785 					uma_zfree(swap_zone, swap);
1786 					--object->un_pager.swp.swp_bcount;
1787 				}
1788 			}
1789 			--count;
1790 			++index;
1791 		} else {
1792 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1793 			count -= n;
1794 			index += n;
1795 		}
1796 		mtx_unlock(&swhash_mtx);
1797 	}
1798 }
1799 
1800 /*
1801  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1802  *
1803  *	This routine locates and destroys all swap metadata associated with
1804  *	an object.
1805  *
1806  *	This routine must be called at splvm()
1807  */
1808 static void
1809 swp_pager_meta_free_all(vm_object_t object)
1810 {
1811 	daddr_t index = 0;
1812 
1813 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1814 	if (object->type != OBJT_SWAP)
1815 		return;
1816 
1817 	while (object->un_pager.swp.swp_bcount) {
1818 		struct swblock **pswap;
1819 		struct swblock *swap;
1820 
1821 		mtx_lock(&swhash_mtx);
1822 		pswap = swp_pager_hash(object, index);
1823 		if ((swap = *pswap) != NULL) {
1824 			int i;
1825 
1826 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1827 				daddr_t v = swap->swb_pages[i];
1828 				if (v != SWAPBLK_NONE) {
1829 					--swap->swb_count;
1830 					swp_pager_freeswapspace(v, 1);
1831 				}
1832 			}
1833 			if (swap->swb_count != 0)
1834 				panic("swap_pager_meta_free_all: swb_count != 0");
1835 			*pswap = swap->swb_hnext;
1836 			uma_zfree(swap_zone, swap);
1837 			--object->un_pager.swp.swp_bcount;
1838 		}
1839 		mtx_unlock(&swhash_mtx);
1840 		index += SWAP_META_PAGES;
1841 		if (index > 0x20000000)
1842 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1843 	}
1844 }
1845 
1846 /*
1847  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1848  *
1849  *	This routine is capable of looking up, popping, or freeing
1850  *	swapblk assignments in the swap meta data or in the vm_page_t.
1851  *	The routine typically returns the swapblk being looked-up, or popped,
1852  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1853  *	was invalid.  This routine will automatically free any invalid
1854  *	meta-data swapblks.
1855  *
1856  *	It is not possible to store invalid swapblks in the swap meta data
1857  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1858  *
1859  *	When acting on a busy resident page and paging is in progress, we
1860  *	have to wait until paging is complete but otherwise can act on the
1861  *	busy page.
1862  *
1863  *	This routine must be called at splvm().
1864  *
1865  *	SWM_FREE	remove and free swap block from metadata
1866  *	SWM_POP		remove from meta data but do not free.. pop it out
1867  */
1868 static daddr_t
1869 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1870 {
1871 	struct swblock **pswap;
1872 	struct swblock *swap;
1873 	daddr_t r1;
1874 	int idx;
1875 
1876 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1877 	/*
1878 	 * The meta data only exists of the object is OBJT_SWAP
1879 	 * and even then might not be allocated yet.
1880 	 */
1881 	if (object->type != OBJT_SWAP)
1882 		return (SWAPBLK_NONE);
1883 
1884 	r1 = SWAPBLK_NONE;
1885 	mtx_lock(&swhash_mtx);
1886 	pswap = swp_pager_hash(object, pindex);
1887 
1888 	if ((swap = *pswap) != NULL) {
1889 		idx = pindex & SWAP_META_MASK;
1890 		r1 = swap->swb_pages[idx];
1891 
1892 		if (r1 != SWAPBLK_NONE) {
1893 			if (flags & SWM_FREE) {
1894 				swp_pager_freeswapspace(r1, 1);
1895 				r1 = SWAPBLK_NONE;
1896 			}
1897 			if (flags & (SWM_FREE|SWM_POP)) {
1898 				swap->swb_pages[idx] = SWAPBLK_NONE;
1899 				if (--swap->swb_count == 0) {
1900 					*pswap = swap->swb_hnext;
1901 					uma_zfree(swap_zone, swap);
1902 					--object->un_pager.swp.swp_bcount;
1903 				}
1904 			}
1905 		}
1906 	}
1907 	mtx_unlock(&swhash_mtx);
1908 	return (r1);
1909 }
1910 
1911 /*
1912  * System call swapon(name) enables swapping on device name,
1913  * which must be in the swdevsw.  Return EBUSY
1914  * if already swapping on this device.
1915  */
1916 #ifndef _SYS_SYSPROTO_H_
1917 struct swapon_args {
1918 	char *name;
1919 };
1920 #endif
1921 
1922 /*
1923  * MPSAFE
1924  */
1925 /* ARGSUSED */
1926 int
1927 swapon(struct thread *td, struct swapon_args *uap)
1928 {
1929 	struct vattr attr;
1930 	struct vnode *vp;
1931 	struct nameidata nd;
1932 	int error;
1933 
1934 	error = priv_check(td, PRIV_SWAPON);
1935 	if (error)
1936 		return (error);
1937 
1938 	mtx_lock(&Giant);
1939 	while (swdev_syscall_active)
1940 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
1941 	swdev_syscall_active = 1;
1942 
1943 	/*
1944 	 * Swap metadata may not fit in the KVM if we have physical
1945 	 * memory of >1GB.
1946 	 */
1947 	if (swap_zone == NULL) {
1948 		error = ENOMEM;
1949 		goto done;
1950 	}
1951 
1952 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
1953 	    uap->name, td);
1954 	error = namei(&nd);
1955 	if (error)
1956 		goto done;
1957 
1958 	NDFREE(&nd, NDF_ONLY_PNBUF);
1959 	vp = nd.ni_vp;
1960 
1961 	if (vn_isdisk(vp, &error)) {
1962 		error = swapongeom(td, vp);
1963 	} else if (vp->v_type == VREG &&
1964 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1965 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
1966 		/*
1967 		 * Allow direct swapping to NFS regular files in the same
1968 		 * way that nfs_mountroot() sets up diskless swapping.
1969 		 */
1970 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
1971 	}
1972 
1973 	if (error)
1974 		vrele(vp);
1975 done:
1976 	swdev_syscall_active = 0;
1977 	wakeup_one(&swdev_syscall_active);
1978 	mtx_unlock(&Giant);
1979 	return (error);
1980 }
1981 
1982 static void
1983 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
1984 {
1985 	struct swdevt *sp, *tsp;
1986 	swblk_t dvbase;
1987 	u_long mblocks;
1988 
1989 	/*
1990 	 * If we go beyond this, we get overflows in the radix
1991 	 * tree bitmap code.
1992 	 */
1993 	mblocks = 0x40000000 / BLIST_META_RADIX;
1994 	if (nblks > mblocks) {
1995 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
1996 			mblocks);
1997 		nblks = mblocks;
1998 	}
1999 	/*
2000 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2001 	 * First chop nblks off to page-align it, then convert.
2002 	 *
2003 	 * sw->sw_nblks is in page-sized chunks now too.
2004 	 */
2005 	nblks &= ~(ctodb(1) - 1);
2006 	nblks = dbtoc(nblks);
2007 
2008 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2009 	sp->sw_vp = vp;
2010 	sp->sw_id = id;
2011 	sp->sw_dev = dev;
2012 	sp->sw_flags = 0;
2013 	sp->sw_nblks = nblks;
2014 	sp->sw_used = 0;
2015 	sp->sw_strategy = strategy;
2016 	sp->sw_close = close;
2017 
2018 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2019 	/*
2020 	 * Do not free the first two block in order to avoid overwriting
2021 	 * any bsd label at the front of the partition
2022 	 */
2023 	blist_free(sp->sw_blist, 2, nblks - 2);
2024 
2025 	dvbase = 0;
2026 	mtx_lock(&sw_dev_mtx);
2027 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2028 		if (tsp->sw_end >= dvbase) {
2029 			/*
2030 			 * We put one uncovered page between the devices
2031 			 * in order to definitively prevent any cross-device
2032 			 * I/O requests
2033 			 */
2034 			dvbase = tsp->sw_end + 1;
2035 		}
2036 	}
2037 	sp->sw_first = dvbase;
2038 	sp->sw_end = dvbase + nblks;
2039 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2040 	nswapdev++;
2041 	swap_pager_avail += nblks;
2042 	swp_sizecheck();
2043 	mtx_unlock(&sw_dev_mtx);
2044 }
2045 
2046 /*
2047  * SYSCALL: swapoff(devname)
2048  *
2049  * Disable swapping on the given device.
2050  *
2051  * XXX: Badly designed system call: it should use a device index
2052  * rather than filename as specification.  We keep sw_vp around
2053  * only to make this work.
2054  */
2055 #ifndef _SYS_SYSPROTO_H_
2056 struct swapoff_args {
2057 	char *name;
2058 };
2059 #endif
2060 
2061 /*
2062  * MPSAFE
2063  */
2064 /* ARGSUSED */
2065 int
2066 swapoff(struct thread *td, struct swapoff_args *uap)
2067 {
2068 	struct vnode *vp;
2069 	struct nameidata nd;
2070 	struct swdevt *sp;
2071 	int error;
2072 
2073 	error = priv_check(td, PRIV_SWAPOFF);
2074 	if (error)
2075 		return (error);
2076 
2077 	mtx_lock(&Giant);
2078 	while (swdev_syscall_active)
2079 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2080 	swdev_syscall_active = 1;
2081 
2082 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2083 	    td);
2084 	error = namei(&nd);
2085 	if (error)
2086 		goto done;
2087 	NDFREE(&nd, NDF_ONLY_PNBUF);
2088 	vp = nd.ni_vp;
2089 
2090 	mtx_lock(&sw_dev_mtx);
2091 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2092 		if (sp->sw_vp == vp)
2093 			break;
2094 	}
2095 	mtx_unlock(&sw_dev_mtx);
2096 	if (sp == NULL) {
2097 		error = EINVAL;
2098 		goto done;
2099 	}
2100 	error = swapoff_one(sp, td->td_ucred);
2101 done:
2102 	swdev_syscall_active = 0;
2103 	wakeup_one(&swdev_syscall_active);
2104 	mtx_unlock(&Giant);
2105 	return (error);
2106 }
2107 
2108 static int
2109 swapoff_one(struct swdevt *sp, struct ucred *cred)
2110 {
2111 	u_long nblks, dvbase;
2112 #ifdef MAC
2113 	int error;
2114 #endif
2115 
2116 	mtx_assert(&Giant, MA_OWNED);
2117 #ifdef MAC
2118 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2119 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2120 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2121 	if (error != 0)
2122 		return (error);
2123 #endif
2124 	nblks = sp->sw_nblks;
2125 
2126 	/*
2127 	 * We can turn off this swap device safely only if the
2128 	 * available virtual memory in the system will fit the amount
2129 	 * of data we will have to page back in, plus an epsilon so
2130 	 * the system doesn't become critically low on swap space.
2131 	 */
2132 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2133 	    nblks + nswap_lowat) {
2134 		return (ENOMEM);
2135 	}
2136 
2137 	/*
2138 	 * Prevent further allocations on this device.
2139 	 */
2140 	mtx_lock(&sw_dev_mtx);
2141 	sp->sw_flags |= SW_CLOSING;
2142 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2143 		swap_pager_avail -= blist_fill(sp->sw_blist,
2144 		     dvbase, dmmax);
2145 	}
2146 	mtx_unlock(&sw_dev_mtx);
2147 
2148 	/*
2149 	 * Page in the contents of the device and close it.
2150 	 */
2151 	swap_pager_swapoff(sp);
2152 
2153 	sp->sw_close(curthread, sp);
2154 	sp->sw_id = NULL;
2155 	mtx_lock(&sw_dev_mtx);
2156 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2157 	nswapdev--;
2158 	if (nswapdev == 0) {
2159 		swap_pager_full = 2;
2160 		swap_pager_almost_full = 1;
2161 	}
2162 	if (swdevhd == sp)
2163 		swdevhd = NULL;
2164 	mtx_unlock(&sw_dev_mtx);
2165 	blist_destroy(sp->sw_blist);
2166 	free(sp, M_VMPGDATA);
2167 	return (0);
2168 }
2169 
2170 void
2171 swapoff_all(void)
2172 {
2173 	struct swdevt *sp, *spt;
2174 	const char *devname;
2175 	int error;
2176 
2177 	mtx_lock(&Giant);
2178 	while (swdev_syscall_active)
2179 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2180 	swdev_syscall_active = 1;
2181 
2182 	mtx_lock(&sw_dev_mtx);
2183 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2184 		mtx_unlock(&sw_dev_mtx);
2185 		if (vn_isdisk(sp->sw_vp, NULL))
2186 			devname = sp->sw_vp->v_rdev->si_name;
2187 		else
2188 			devname = "[file]";
2189 		error = swapoff_one(sp, thread0.td_ucred);
2190 		if (error != 0) {
2191 			printf("Cannot remove swap device %s (error=%d), "
2192 			    "skipping.\n", devname, error);
2193 		} else if (bootverbose) {
2194 			printf("Swap device %s removed.\n", devname);
2195 		}
2196 		mtx_lock(&sw_dev_mtx);
2197 	}
2198 	mtx_unlock(&sw_dev_mtx);
2199 
2200 	swdev_syscall_active = 0;
2201 	wakeup_one(&swdev_syscall_active);
2202 	mtx_unlock(&Giant);
2203 }
2204 
2205 void
2206 swap_pager_status(int *total, int *used)
2207 {
2208 	struct swdevt *sp;
2209 
2210 	*total = 0;
2211 	*used = 0;
2212 	mtx_lock(&sw_dev_mtx);
2213 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2214 		*total += sp->sw_nblks;
2215 		*used += sp->sw_used;
2216 	}
2217 	mtx_unlock(&sw_dev_mtx);
2218 }
2219 
2220 static int
2221 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2222 {
2223 	int	*name = (int *)arg1;
2224 	int	error, n;
2225 	struct xswdev xs;
2226 	struct swdevt *sp;
2227 
2228 	if (arg2 != 1) /* name length */
2229 		return (EINVAL);
2230 
2231 	n = 0;
2232 	mtx_lock(&sw_dev_mtx);
2233 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2234 		if (n == *name) {
2235 			mtx_unlock(&sw_dev_mtx);
2236 			xs.xsw_version = XSWDEV_VERSION;
2237 			xs.xsw_dev = sp->sw_dev;
2238 			xs.xsw_flags = sp->sw_flags;
2239 			xs.xsw_nblks = sp->sw_nblks;
2240 			xs.xsw_used = sp->sw_used;
2241 
2242 			error = SYSCTL_OUT(req, &xs, sizeof(xs));
2243 			return (error);
2244 		}
2245 		n++;
2246 	}
2247 	mtx_unlock(&sw_dev_mtx);
2248 	return (ENOENT);
2249 }
2250 
2251 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2252     "Number of swap devices");
2253 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2254     "Swap statistics by device");
2255 
2256 /*
2257  * vmspace_swap_count() - count the approximate swap usage in pages for a
2258  *			  vmspace.
2259  *
2260  *	The map must be locked.
2261  *
2262  *	Swap usage is determined by taking the proportional swap used by
2263  *	VM objects backing the VM map.  To make up for fractional losses,
2264  *	if the VM object has any swap use at all the associated map entries
2265  *	count for at least 1 swap page.
2266  */
2267 int
2268 vmspace_swap_count(struct vmspace *vmspace)
2269 {
2270 	vm_map_t map = &vmspace->vm_map;
2271 	vm_map_entry_t cur;
2272 	int count = 0;
2273 
2274 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2275 		vm_object_t object;
2276 
2277 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2278 		    (object = cur->object.vm_object) != NULL) {
2279 			VM_OBJECT_LOCK(object);
2280 			if (object->type == OBJT_SWAP &&
2281 			    object->un_pager.swp.swp_bcount != 0) {
2282 				int n = (cur->end - cur->start) / PAGE_SIZE;
2283 
2284 				count += object->un_pager.swp.swp_bcount *
2285 				    SWAP_META_PAGES * n / object->size + 1;
2286 			}
2287 			VM_OBJECT_UNLOCK(object);
2288 		}
2289 	}
2290 	return (count);
2291 }
2292 
2293 /*
2294  * GEOM backend
2295  *
2296  * Swapping onto disk devices.
2297  *
2298  */
2299 
2300 static g_orphan_t swapgeom_orphan;
2301 
2302 static struct g_class g_swap_class = {
2303 	.name = "SWAP",
2304 	.version = G_VERSION,
2305 	.orphan = swapgeom_orphan,
2306 };
2307 
2308 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2309 
2310 
2311 static void
2312 swapgeom_done(struct bio *bp2)
2313 {
2314 	struct buf *bp;
2315 
2316 	bp = bp2->bio_caller2;
2317 	bp->b_ioflags = bp2->bio_flags;
2318 	if (bp2->bio_error)
2319 		bp->b_ioflags |= BIO_ERROR;
2320 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2321 	bp->b_error = bp2->bio_error;
2322 	bufdone(bp);
2323 	g_destroy_bio(bp2);
2324 }
2325 
2326 static void
2327 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2328 {
2329 	struct bio *bio;
2330 	struct g_consumer *cp;
2331 
2332 	cp = sp->sw_id;
2333 	if (cp == NULL) {
2334 		bp->b_error = ENXIO;
2335 		bp->b_ioflags |= BIO_ERROR;
2336 		bufdone(bp);
2337 		return;
2338 	}
2339 	if (bp->b_iocmd == BIO_WRITE)
2340 		bio = g_new_bio();
2341 	else
2342 		bio = g_alloc_bio();
2343 	if (bio == NULL) {
2344 		bp->b_error = ENOMEM;
2345 		bp->b_ioflags |= BIO_ERROR;
2346 		bufdone(bp);
2347 		return;
2348 	}
2349 
2350 	bio->bio_caller2 = bp;
2351 	bio->bio_cmd = bp->b_iocmd;
2352 	bio->bio_data = bp->b_data;
2353 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2354 	bio->bio_length = bp->b_bcount;
2355 	bio->bio_done = swapgeom_done;
2356 	g_io_request(bio, cp);
2357 	return;
2358 }
2359 
2360 static void
2361 swapgeom_orphan(struct g_consumer *cp)
2362 {
2363 	struct swdevt *sp;
2364 
2365 	mtx_lock(&sw_dev_mtx);
2366 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2367 		if (sp->sw_id == cp)
2368 			sp->sw_id = NULL;
2369 	mtx_unlock(&sw_dev_mtx);
2370 }
2371 
2372 static void
2373 swapgeom_close_ev(void *arg, int flags)
2374 {
2375 	struct g_consumer *cp;
2376 
2377 	cp = arg;
2378 	g_access(cp, -1, -1, 0);
2379 	g_detach(cp);
2380 	g_destroy_consumer(cp);
2381 }
2382 
2383 static void
2384 swapgeom_close(struct thread *td, struct swdevt *sw)
2385 {
2386 
2387 	/* XXX: direct call when Giant untangled */
2388 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2389 }
2390 
2391 
2392 struct swh0h0 {
2393 	struct cdev *dev;
2394 	struct vnode *vp;
2395 	int	error;
2396 };
2397 
2398 static void
2399 swapongeom_ev(void *arg, int flags)
2400 {
2401 	struct swh0h0 *swh;
2402 	struct g_provider *pp;
2403 	struct g_consumer *cp;
2404 	static struct g_geom *gp;
2405 	struct swdevt *sp;
2406 	u_long nblks;
2407 	int error;
2408 
2409 	swh = arg;
2410 	swh->error = 0;
2411 	pp = g_dev_getprovider(swh->dev);
2412 	if (pp == NULL) {
2413 		swh->error = ENODEV;
2414 		return;
2415 	}
2416 	mtx_lock(&sw_dev_mtx);
2417 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2418 		cp = sp->sw_id;
2419 		if (cp != NULL && cp->provider == pp) {
2420 			mtx_unlock(&sw_dev_mtx);
2421 			swh->error = EBUSY;
2422 			return;
2423 		}
2424 	}
2425 	mtx_unlock(&sw_dev_mtx);
2426 	if (gp == NULL)
2427 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2428 	cp = g_new_consumer(gp);
2429 	g_attach(cp, pp);
2430 	/*
2431 	 * XXX: Everytime you think you can improve the margin for
2432 	 * footshooting, somebody depends on the ability to do so:
2433 	 * savecore(8) wants to write to our swapdev so we cannot
2434 	 * set an exclusive count :-(
2435 	 */
2436 	error = g_access(cp, 1, 1, 0);
2437 	if (error) {
2438 		g_detach(cp);
2439 		g_destroy_consumer(cp);
2440 		swh->error = error;
2441 		return;
2442 	}
2443 	nblks = pp->mediasize / DEV_BSIZE;
2444 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2445 	    swapgeom_close, dev2udev(swh->dev));
2446 	swh->error = 0;
2447 	return;
2448 }
2449 
2450 static int
2451 swapongeom(struct thread *td, struct vnode *vp)
2452 {
2453 	int error;
2454 	struct swh0h0 swh;
2455 
2456 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2457 
2458 	swh.dev = vp->v_rdev;
2459 	swh.vp = vp;
2460 	swh.error = 0;
2461 	/* XXX: direct call when Giant untangled */
2462 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2463 	if (!error)
2464 		error = swh.error;
2465 	VOP_UNLOCK(vp, 0);
2466 	return (error);
2467 }
2468 
2469 /*
2470  * VNODE backend
2471  *
2472  * This is used mainly for network filesystem (read: probably only tested
2473  * with NFS) swapfiles.
2474  *
2475  */
2476 
2477 static void
2478 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2479 {
2480 	struct vnode *vp2;
2481 
2482 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2483 
2484 	vp2 = sp->sw_id;
2485 	vhold(vp2);
2486 	if (bp->b_iocmd == BIO_WRITE) {
2487 		if (bp->b_bufobj)
2488 			bufobj_wdrop(bp->b_bufobj);
2489 		bufobj_wref(&vp2->v_bufobj);
2490 	}
2491 	if (bp->b_bufobj != &vp2->v_bufobj)
2492 		bp->b_bufobj = &vp2->v_bufobj;
2493 	bp->b_vp = vp2;
2494 	bp->b_iooffset = dbtob(bp->b_blkno);
2495 	bstrategy(bp);
2496 	return;
2497 }
2498 
2499 static void
2500 swapdev_close(struct thread *td, struct swdevt *sp)
2501 {
2502 
2503 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2504 	vrele(sp->sw_vp);
2505 }
2506 
2507 
2508 static int
2509 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2510 {
2511 	struct swdevt *sp;
2512 	int error;
2513 
2514 	if (nblks == 0)
2515 		return (ENXIO);
2516 	mtx_lock(&sw_dev_mtx);
2517 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2518 		if (sp->sw_id == vp) {
2519 			mtx_unlock(&sw_dev_mtx);
2520 			return (EBUSY);
2521 		}
2522 	}
2523 	mtx_unlock(&sw_dev_mtx);
2524 
2525 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2526 #ifdef MAC
2527 	error = mac_system_check_swapon(td->td_ucred, vp);
2528 	if (error == 0)
2529 #endif
2530 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2531 	(void) VOP_UNLOCK(vp, 0);
2532 	if (error)
2533 		return (error);
2534 
2535 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2536 	    NODEV);
2537 	return (0);
2538 }
2539