xref: /freebsd/sys/vm/swap_pager.c (revision d056fa046c6a91b90cd98165face0e42a33a5173)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_mac.h"
73 #include "opt_swap.h"
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/conf.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/mac.h>
89 #include <sys/malloc.h>
90 #include <sys/sysctl.h>
91 #include <sys/sysproto.h>
92 #include <sys/blist.h>
93 #include <sys/lock.h>
94 #include <sys/sx.h>
95 #include <sys/vmmeter.h>
96 
97 #include <vm/vm.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_object.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_param.h>
106 #include <vm/swap_pager.h>
107 #include <vm/vm_extern.h>
108 #include <vm/uma.h>
109 
110 #include <geom/geom.h>
111 
112 /*
113  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
114  * pages per allocation.  We recommend you stick with the default of 8.
115  * The 16-page limit is due to the radix code (kern/subr_blist.c).
116  */
117 #ifndef MAX_PAGEOUT_CLUSTER
118 #define MAX_PAGEOUT_CLUSTER 16
119 #endif
120 
121 #if !defined(SWB_NPAGES)
122 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
123 #endif
124 
125 /*
126  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
127  *
128  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
129  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
130  * 32K worth of data, two levels represent 256K, three levels represent
131  * 2 MBytes.   This is acceptable.
132  *
133  * Overall memory utilization is about the same as the old swap structure.
134  */
135 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
136 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
137 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
138 
139 typedef	int32_t	swblk_t;	/*
140 				 * swap offset.  This is the type used to
141 				 * address the "virtual swap device" and
142 				 * therefore the maximum swap space is
143 				 * 2^32 pages.
144 				 */
145 
146 struct swdevt;
147 typedef void sw_strategy_t(struct buf *bp, struct swdevt *sw);
148 typedef void sw_close_t(struct thread *td, struct swdevt *sw);
149 
150 /*
151  * Swap device table
152  */
153 struct swdevt {
154 	int	sw_flags;
155 	int	sw_nblks;
156 	int     sw_used;
157 	dev_t	sw_dev;
158 	struct vnode *sw_vp;
159 	void	*sw_id;
160 	swblk_t	sw_first;
161 	swblk_t	sw_end;
162 	struct blist *sw_blist;
163 	TAILQ_ENTRY(swdevt)	sw_list;
164 	sw_strategy_t		*sw_strategy;
165 	sw_close_t		*sw_close;
166 };
167 
168 #define	SW_CLOSING	0x04
169 
170 struct swblock {
171 	struct swblock	*swb_hnext;
172 	vm_object_t	swb_object;
173 	vm_pindex_t	swb_index;
174 	int		swb_count;
175 	daddr_t		swb_pages[SWAP_META_PAGES];
176 };
177 
178 static struct mtx sw_dev_mtx;
179 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
180 static struct swdevt *swdevhd;	/* Allocate from here next */
181 static int nswapdev;		/* Number of swap devices */
182 int swap_pager_avail;
183 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
184 
185 static void swapdev_strategy(struct buf *, struct swdevt *sw);
186 
187 #define SWM_FREE	0x02	/* free, period			*/
188 #define SWM_POP		0x04	/* pop out			*/
189 
190 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
191 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
192 static int nsw_rcount;		/* free read buffers			*/
193 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
194 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
195 static int nsw_wcount_async_max;/* assigned maximum			*/
196 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
197 
198 static struct swblock **swhash;
199 static int swhash_mask;
200 static struct mtx swhash_mtx;
201 
202 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
203 static struct sx sw_alloc_sx;
204 
205 
206 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
207         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
208 
209 /*
210  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
211  * of searching a named list by hashing it just a little.
212  */
213 
214 #define NOBJLISTS		8
215 
216 #define NOBJLIST(handle)	\
217 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
218 
219 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
220 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
221 static uma_zone_t	swap_zone;
222 static struct vm_object	swap_zone_obj;
223 
224 /*
225  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
226  * calls hooked from other parts of the VM system and do not appear here.
227  * (see vm/swap_pager.h).
228  */
229 static vm_object_t
230 		swap_pager_alloc(void *handle, vm_ooffset_t size,
231 				      vm_prot_t prot, vm_ooffset_t offset);
232 static void	swap_pager_dealloc(vm_object_t object);
233 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
234 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
235 static boolean_t
236 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
237 static void	swap_pager_init(void);
238 static void	swap_pager_unswapped(vm_page_t);
239 static void	swap_pager_swapoff(struct swdevt *sp);
240 
241 struct pagerops swappagerops = {
242 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
243 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
244 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
245 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
246 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
247 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
248 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
249 };
250 
251 /*
252  * dmmax is in page-sized chunks with the new swap system.  It was
253  * dev-bsized chunks in the old.  dmmax is always a power of 2.
254  *
255  * swap_*() routines are externally accessible.  swp_*() routines are
256  * internal.
257  */
258 static int dmmax;
259 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
260 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
261 
262 SYSCTL_INT(_vm, OID_AUTO, dmmax,
263 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
264 
265 static void	swp_sizecheck(void);
266 static void	swp_pager_async_iodone(struct buf *bp);
267 static int	swapongeom(struct thread *, struct vnode *);
268 static int	swaponvp(struct thread *, struct vnode *, u_long);
269 static int	swapoff_one(struct swdevt *sp, struct thread *td);
270 
271 /*
272  * Swap bitmap functions
273  */
274 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
275 static daddr_t	swp_pager_getswapspace(int npages);
276 
277 /*
278  * Metadata functions
279  */
280 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
281 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
282 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
283 static void swp_pager_meta_free_all(vm_object_t);
284 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
285 
286 /*
287  * SWP_SIZECHECK() -	update swap_pager_full indication
288  *
289  *	update the swap_pager_almost_full indication and warn when we are
290  *	about to run out of swap space, using lowat/hiwat hysteresis.
291  *
292  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
293  *
294  *	No restrictions on call
295  *	This routine may not block.
296  *	This routine must be called at splvm()
297  */
298 static void
299 swp_sizecheck(void)
300 {
301 
302 	if (swap_pager_avail < nswap_lowat) {
303 		if (swap_pager_almost_full == 0) {
304 			printf("swap_pager: out of swap space\n");
305 			swap_pager_almost_full = 1;
306 		}
307 	} else {
308 		swap_pager_full = 0;
309 		if (swap_pager_avail > nswap_hiwat)
310 			swap_pager_almost_full = 0;
311 	}
312 }
313 
314 /*
315  * SWP_PAGER_HASH() -	hash swap meta data
316  *
317  *	This is an helper function which hashes the swapblk given
318  *	the object and page index.  It returns a pointer to a pointer
319  *	to the object, or a pointer to a NULL pointer if it could not
320  *	find a swapblk.
321  *
322  *	This routine must be called at splvm().
323  */
324 static struct swblock **
325 swp_pager_hash(vm_object_t object, vm_pindex_t index)
326 {
327 	struct swblock **pswap;
328 	struct swblock *swap;
329 
330 	index &= ~(vm_pindex_t)SWAP_META_MASK;
331 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
332 	while ((swap = *pswap) != NULL) {
333 		if (swap->swb_object == object &&
334 		    swap->swb_index == index
335 		) {
336 			break;
337 		}
338 		pswap = &swap->swb_hnext;
339 	}
340 	return (pswap);
341 }
342 
343 /*
344  * SWAP_PAGER_INIT() -	initialize the swap pager!
345  *
346  *	Expected to be started from system init.  NOTE:  This code is run
347  *	before much else so be careful what you depend on.  Most of the VM
348  *	system has yet to be initialized at this point.
349  */
350 static void
351 swap_pager_init(void)
352 {
353 	/*
354 	 * Initialize object lists
355 	 */
356 	int i;
357 
358 	for (i = 0; i < NOBJLISTS; ++i)
359 		TAILQ_INIT(&swap_pager_object_list[i]);
360 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
361 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
362 
363 	/*
364 	 * Device Stripe, in PAGE_SIZE'd blocks
365 	 */
366 	dmmax = SWB_NPAGES * 2;
367 }
368 
369 /*
370  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
371  *
372  *	Expected to be started from pageout process once, prior to entering
373  *	its main loop.
374  */
375 void
376 swap_pager_swap_init(void)
377 {
378 	int n, n2;
379 
380 	/*
381 	 * Number of in-transit swap bp operations.  Don't
382 	 * exhaust the pbufs completely.  Make sure we
383 	 * initialize workable values (0 will work for hysteresis
384 	 * but it isn't very efficient).
385 	 *
386 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
387 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
388 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
389 	 * constrained by the swap device interleave stripe size.
390 	 *
391 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
392 	 * designed to prevent other I/O from having high latencies due to
393 	 * our pageout I/O.  The value 4 works well for one or two active swap
394 	 * devices but is probably a little low if you have more.  Even so,
395 	 * a higher value would probably generate only a limited improvement
396 	 * with three or four active swap devices since the system does not
397 	 * typically have to pageout at extreme bandwidths.   We will want
398 	 * at least 2 per swap devices, and 4 is a pretty good value if you
399 	 * have one NFS swap device due to the command/ack latency over NFS.
400 	 * So it all works out pretty well.
401 	 */
402 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
403 
404 	mtx_lock(&pbuf_mtx);
405 	nsw_rcount = (nswbuf + 1) / 2;
406 	nsw_wcount_sync = (nswbuf + 3) / 4;
407 	nsw_wcount_async = 4;
408 	nsw_wcount_async_max = nsw_wcount_async;
409 	mtx_unlock(&pbuf_mtx);
410 
411 	/*
412 	 * Initialize our zone.  Right now I'm just guessing on the number
413 	 * we need based on the number of pages in the system.  Each swblock
414 	 * can hold 16 pages, so this is probably overkill.  This reservation
415 	 * is typically limited to around 32MB by default.
416 	 */
417 	n = cnt.v_page_count / 2;
418 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
419 		n = maxswzone / sizeof(struct swblock);
420 	n2 = n;
421 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
422 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
423 	if (swap_zone == NULL)
424 		panic("failed to create swap_zone.");
425 	do {
426 		if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
427 			break;
428 		/*
429 		 * if the allocation failed, try a zone two thirds the
430 		 * size of the previous attempt.
431 		 */
432 		n -= ((n + 2) / 3);
433 	} while (n > 0);
434 	if (n2 != n)
435 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
436 	n2 = n;
437 
438 	/*
439 	 * Initialize our meta-data hash table.  The swapper does not need to
440 	 * be quite as efficient as the VM system, so we do not use an
441 	 * oversized hash table.
442 	 *
443 	 * 	n: 		size of hash table, must be power of 2
444 	 *	swhash_mask:	hash table index mask
445 	 */
446 	for (n = 1; n < n2 / 8; n *= 2)
447 		;
448 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
449 	swhash_mask = n - 1;
450 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
451 }
452 
453 /*
454  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
455  *			its metadata structures.
456  *
457  *	This routine is called from the mmap and fork code to create a new
458  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
459  *	and then converting it with swp_pager_meta_build().
460  *
461  *	This routine may block in vm_object_allocate() and create a named
462  *	object lookup race, so we must interlock.   We must also run at
463  *	splvm() for the object lookup to handle races with interrupts, but
464  *	we do not have to maintain splvm() in between the lookup and the
465  *	add because (I believe) it is not possible to attempt to create
466  *	a new swap object w/handle when a default object with that handle
467  *	already exists.
468  *
469  * MPSAFE
470  */
471 static vm_object_t
472 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
473 		 vm_ooffset_t offset)
474 {
475 	vm_object_t object;
476 	vm_pindex_t pindex;
477 
478 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
479 
480 	if (handle) {
481 		mtx_lock(&Giant);
482 		/*
483 		 * Reference existing named region or allocate new one.  There
484 		 * should not be a race here against swp_pager_meta_build()
485 		 * as called from vm_page_remove() in regards to the lookup
486 		 * of the handle.
487 		 */
488 		sx_xlock(&sw_alloc_sx);
489 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
490 
491 		if (object != NULL) {
492 			vm_object_reference(object);
493 		} else {
494 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
495 			object->handle = handle;
496 
497 			VM_OBJECT_LOCK(object);
498 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
499 			VM_OBJECT_UNLOCK(object);
500 		}
501 		sx_xunlock(&sw_alloc_sx);
502 		mtx_unlock(&Giant);
503 	} else {
504 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
505 
506 		VM_OBJECT_LOCK(object);
507 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
508 		VM_OBJECT_UNLOCK(object);
509 	}
510 	return (object);
511 }
512 
513 /*
514  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
515  *
516  *	The swap backing for the object is destroyed.  The code is
517  *	designed such that we can reinstantiate it later, but this
518  *	routine is typically called only when the entire object is
519  *	about to be destroyed.
520  *
521  *	This routine may block, but no longer does.
522  *
523  *	The object must be locked or unreferenceable.
524  */
525 static void
526 swap_pager_dealloc(vm_object_t object)
527 {
528 
529 	/*
530 	 * Remove from list right away so lookups will fail if we block for
531 	 * pageout completion.
532 	 */
533 	if (object->handle != NULL) {
534 		mtx_lock(&sw_alloc_mtx);
535 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
536 		mtx_unlock(&sw_alloc_mtx);
537 	}
538 
539 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
540 	vm_object_pip_wait(object, "swpdea");
541 
542 	/*
543 	 * Free all remaining metadata.  We only bother to free it from
544 	 * the swap meta data.  We do not attempt to free swapblk's still
545 	 * associated with vm_page_t's for this object.  We do not care
546 	 * if paging is still in progress on some objects.
547 	 */
548 	swp_pager_meta_free_all(object);
549 }
550 
551 /************************************************************************
552  *			SWAP PAGER BITMAP ROUTINES			*
553  ************************************************************************/
554 
555 /*
556  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
557  *
558  *	Allocate swap for the requested number of pages.  The starting
559  *	swap block number (a page index) is returned or SWAPBLK_NONE
560  *	if the allocation failed.
561  *
562  *	Also has the side effect of advising that somebody made a mistake
563  *	when they configured swap and didn't configure enough.
564  *
565  *	Must be called at splvm() to avoid races with bitmap frees from
566  *	vm_page_remove() aka swap_pager_page_removed().
567  *
568  *	This routine may not block
569  *	This routine must be called at splvm().
570  *
571  *	We allocate in round-robin fashion from the configured devices.
572  */
573 static daddr_t
574 swp_pager_getswapspace(int npages)
575 {
576 	daddr_t blk;
577 	struct swdevt *sp;
578 	int i;
579 
580 	blk = SWAPBLK_NONE;
581 	mtx_lock(&sw_dev_mtx);
582 	sp = swdevhd;
583 	for (i = 0; i < nswapdev; i++) {
584 		if (sp == NULL)
585 			sp = TAILQ_FIRST(&swtailq);
586 		if (!(sp->sw_flags & SW_CLOSING)) {
587 			blk = blist_alloc(sp->sw_blist, npages);
588 			if (blk != SWAPBLK_NONE) {
589 				blk += sp->sw_first;
590 				sp->sw_used += npages;
591 				swap_pager_avail -= npages;
592 				swp_sizecheck();
593 				swdevhd = TAILQ_NEXT(sp, sw_list);
594 				goto done;
595 			}
596 		}
597 		sp = TAILQ_NEXT(sp, sw_list);
598 	}
599 	if (swap_pager_full != 2) {
600 		printf("swap_pager_getswapspace(%d): failed\n", npages);
601 		swap_pager_full = 2;
602 		swap_pager_almost_full = 1;
603 	}
604 	swdevhd = NULL;
605 done:
606 	mtx_unlock(&sw_dev_mtx);
607 	return (blk);
608 }
609 
610 static int
611 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
612 {
613 
614 	return (blk >= sp->sw_first && blk < sp->sw_end);
615 }
616 
617 static void
618 swp_pager_strategy(struct buf *bp)
619 {
620 	struct swdevt *sp;
621 
622 	mtx_lock(&sw_dev_mtx);
623 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
624 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
625 			mtx_unlock(&sw_dev_mtx);
626 			sp->sw_strategy(bp, sp);
627 			return;
628 		}
629 	}
630 	panic("Swapdev not found");
631 }
632 
633 
634 /*
635  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
636  *
637  *	This routine returns the specified swap blocks back to the bitmap.
638  *
639  *	Note:  This routine may not block (it could in the old swap code),
640  *	and through the use of the new blist routines it does not block.
641  *
642  *	We must be called at splvm() to avoid races with bitmap frees from
643  *	vm_page_remove() aka swap_pager_page_removed().
644  *
645  *	This routine may not block
646  *	This routine must be called at splvm().
647  */
648 static void
649 swp_pager_freeswapspace(daddr_t blk, int npages)
650 {
651 	struct swdevt *sp;
652 
653 	mtx_lock(&sw_dev_mtx);
654 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
655 		if (blk >= sp->sw_first && blk < sp->sw_end) {
656 			sp->sw_used -= npages;
657 			/*
658 			 * If we are attempting to stop swapping on
659 			 * this device, we don't want to mark any
660 			 * blocks free lest they be reused.
661 			 */
662 			if ((sp->sw_flags & SW_CLOSING) == 0) {
663 				blist_free(sp->sw_blist, blk - sp->sw_first,
664 				    npages);
665 				swap_pager_avail += npages;
666 				swp_sizecheck();
667 			}
668 			mtx_unlock(&sw_dev_mtx);
669 			return;
670 		}
671 	}
672 	panic("Swapdev not found");
673 }
674 
675 /*
676  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
677  *				range within an object.
678  *
679  *	This is a globally accessible routine.
680  *
681  *	This routine removes swapblk assignments from swap metadata.
682  *
683  *	The external callers of this routine typically have already destroyed
684  *	or renamed vm_page_t's associated with this range in the object so
685  *	we should be ok.
686  *
687  *	This routine may be called at any spl.  We up our spl to splvm temporarily
688  *	in order to perform the metadata removal.
689  */
690 void
691 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
692 {
693 
694 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
695 	swp_pager_meta_free(object, start, size);
696 }
697 
698 /*
699  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
700  *
701  *	Assigns swap blocks to the specified range within the object.  The
702  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
703  *
704  *	Returns 0 on success, -1 on failure.
705  */
706 int
707 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
708 {
709 	int n = 0;
710 	daddr_t blk = SWAPBLK_NONE;
711 	vm_pindex_t beg = start;	/* save start index */
712 
713 	VM_OBJECT_LOCK(object);
714 	while (size) {
715 		if (n == 0) {
716 			n = BLIST_MAX_ALLOC;
717 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
718 				n >>= 1;
719 				if (n == 0) {
720 					swp_pager_meta_free(object, beg, start - beg);
721 					VM_OBJECT_UNLOCK(object);
722 					return (-1);
723 				}
724 			}
725 		}
726 		swp_pager_meta_build(object, start, blk);
727 		--size;
728 		++start;
729 		++blk;
730 		--n;
731 	}
732 	swp_pager_meta_free(object, start, n);
733 	VM_OBJECT_UNLOCK(object);
734 	return (0);
735 }
736 
737 /*
738  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
739  *			and destroy the source.
740  *
741  *	Copy any valid swapblks from the source to the destination.  In
742  *	cases where both the source and destination have a valid swapblk,
743  *	we keep the destination's.
744  *
745  *	This routine is allowed to block.  It may block allocating metadata
746  *	indirectly through swp_pager_meta_build() or if paging is still in
747  *	progress on the source.
748  *
749  *	This routine can be called at any spl
750  *
751  *	XXX vm_page_collapse() kinda expects us not to block because we
752  *	supposedly do not need to allocate memory, but for the moment we
753  *	*may* have to get a little memory from the zone allocator, but
754  *	it is taken from the interrupt memory.  We should be ok.
755  *
756  *	The source object contains no vm_page_t's (which is just as well)
757  *
758  *	The source object is of type OBJT_SWAP.
759  *
760  *	The source and destination objects must be locked or
761  *	inaccessible (XXX are they ?)
762  */
763 void
764 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
765     vm_pindex_t offset, int destroysource)
766 {
767 	vm_pindex_t i;
768 
769 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
770 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
771 
772 	/*
773 	 * If destroysource is set, we remove the source object from the
774 	 * swap_pager internal queue now.
775 	 */
776 	if (destroysource) {
777 		if (srcobject->handle != NULL) {
778 			mtx_lock(&sw_alloc_mtx);
779 			TAILQ_REMOVE(
780 			    NOBJLIST(srcobject->handle),
781 			    srcobject,
782 			    pager_object_list
783 			);
784 			mtx_unlock(&sw_alloc_mtx);
785 		}
786 	}
787 
788 	/*
789 	 * transfer source to destination.
790 	 */
791 	for (i = 0; i < dstobject->size; ++i) {
792 		daddr_t dstaddr;
793 
794 		/*
795 		 * Locate (without changing) the swapblk on the destination,
796 		 * unless it is invalid in which case free it silently, or
797 		 * if the destination is a resident page, in which case the
798 		 * source is thrown away.
799 		 */
800 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
801 
802 		if (dstaddr == SWAPBLK_NONE) {
803 			/*
804 			 * Destination has no swapblk and is not resident,
805 			 * copy source.
806 			 */
807 			daddr_t srcaddr;
808 
809 			srcaddr = swp_pager_meta_ctl(
810 			    srcobject,
811 			    i + offset,
812 			    SWM_POP
813 			);
814 
815 			if (srcaddr != SWAPBLK_NONE) {
816 				/*
817 				 * swp_pager_meta_build() can sleep.
818 				 */
819 				vm_object_pip_add(srcobject, 1);
820 				VM_OBJECT_UNLOCK(srcobject);
821 				vm_object_pip_add(dstobject, 1);
822 				swp_pager_meta_build(dstobject, i, srcaddr);
823 				vm_object_pip_wakeup(dstobject);
824 				VM_OBJECT_LOCK(srcobject);
825 				vm_object_pip_wakeup(srcobject);
826 			}
827 		} else {
828 			/*
829 			 * Destination has valid swapblk or it is represented
830 			 * by a resident page.  We destroy the sourceblock.
831 			 */
832 
833 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
834 		}
835 	}
836 
837 	/*
838 	 * Free left over swap blocks in source.
839 	 *
840 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
841 	 * double-remove the object from the swap queues.
842 	 */
843 	if (destroysource) {
844 		swp_pager_meta_free_all(srcobject);
845 		/*
846 		 * Reverting the type is not necessary, the caller is going
847 		 * to destroy srcobject directly, but I'm doing it here
848 		 * for consistency since we've removed the object from its
849 		 * queues.
850 		 */
851 		srcobject->type = OBJT_DEFAULT;
852 	}
853 }
854 
855 /*
856  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
857  *				the requested page.
858  *
859  *	We determine whether good backing store exists for the requested
860  *	page and return TRUE if it does, FALSE if it doesn't.
861  *
862  *	If TRUE, we also try to determine how much valid, contiguous backing
863  *	store exists before and after the requested page within a reasonable
864  *	distance.  We do not try to restrict it to the swap device stripe
865  *	(that is handled in getpages/putpages).  It probably isn't worth
866  *	doing here.
867  */
868 static boolean_t
869 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
870 {
871 	daddr_t blk0;
872 
873 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
874 	/*
875 	 * do we have good backing store at the requested index ?
876 	 */
877 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
878 
879 	if (blk0 == SWAPBLK_NONE) {
880 		if (before)
881 			*before = 0;
882 		if (after)
883 			*after = 0;
884 		return (FALSE);
885 	}
886 
887 	/*
888 	 * find backwards-looking contiguous good backing store
889 	 */
890 	if (before != NULL) {
891 		int i;
892 
893 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
894 			daddr_t blk;
895 
896 			if (i > pindex)
897 				break;
898 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
899 			if (blk != blk0 - i)
900 				break;
901 		}
902 		*before = (i - 1);
903 	}
904 
905 	/*
906 	 * find forward-looking contiguous good backing store
907 	 */
908 	if (after != NULL) {
909 		int i;
910 
911 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
912 			daddr_t blk;
913 
914 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
915 			if (blk != blk0 + i)
916 				break;
917 		}
918 		*after = (i - 1);
919 	}
920 	return (TRUE);
921 }
922 
923 /*
924  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
925  *
926  *	This removes any associated swap backing store, whether valid or
927  *	not, from the page.
928  *
929  *	This routine is typically called when a page is made dirty, at
930  *	which point any associated swap can be freed.  MADV_FREE also
931  *	calls us in a special-case situation
932  *
933  *	NOTE!!!  If the page is clean and the swap was valid, the caller
934  *	should make the page dirty before calling this routine.  This routine
935  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
936  *	depends on it.
937  *
938  *	This routine may not block
939  *	This routine must be called at splvm()
940  */
941 static void
942 swap_pager_unswapped(vm_page_t m)
943 {
944 
945 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
946 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
947 }
948 
949 /*
950  * SWAP_PAGER_GETPAGES() - bring pages in from swap
951  *
952  *	Attempt to retrieve (m, count) pages from backing store, but make
953  *	sure we retrieve at least m[reqpage].  We try to load in as large
954  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
955  *	belongs to the same object.
956  *
957  *	The code is designed for asynchronous operation and
958  *	immediate-notification of 'reqpage' but tends not to be
959  *	used that way.  Please do not optimize-out this algorithmic
960  *	feature, I intend to improve on it in the future.
961  *
962  *	The parent has a single vm_object_pip_add() reference prior to
963  *	calling us and we should return with the same.
964  *
965  *	The parent has BUSY'd the pages.  We should return with 'm'
966  *	left busy, but the others adjusted.
967  */
968 static int
969 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
970 {
971 	struct buf *bp;
972 	vm_page_t mreq;
973 	int i;
974 	int j;
975 	daddr_t blk;
976 
977 	mreq = m[reqpage];
978 
979 	KASSERT(mreq->object == object,
980 	    ("swap_pager_getpages: object mismatch %p/%p",
981 	    object, mreq->object));
982 
983 	/*
984 	 * Calculate range to retrieve.  The pages have already been assigned
985 	 * their swapblks.  We require a *contiguous* range but we know it to
986 	 * not span devices.   If we do not supply it, bad things
987 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
988 	 * loops are set up such that the case(s) are handled implicitly.
989 	 *
990 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
991 	 * not need to be, but it will go a little faster if it is.
992 	 */
993 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
994 
995 	for (i = reqpage - 1; i >= 0; --i) {
996 		daddr_t iblk;
997 
998 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
999 		if (blk != iblk + (reqpage - i))
1000 			break;
1001 	}
1002 	++i;
1003 
1004 	for (j = reqpage + 1; j < count; ++j) {
1005 		daddr_t jblk;
1006 
1007 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1008 		if (blk != jblk - (j - reqpage))
1009 			break;
1010 	}
1011 
1012 	/*
1013 	 * free pages outside our collection range.   Note: we never free
1014 	 * mreq, it must remain busy throughout.
1015 	 */
1016 	if (0 < i || j < count) {
1017 		int k;
1018 
1019 		vm_page_lock_queues();
1020 		for (k = 0; k < i; ++k)
1021 			vm_page_free(m[k]);
1022 		for (k = j; k < count; ++k)
1023 			vm_page_free(m[k]);
1024 		vm_page_unlock_queues();
1025 	}
1026 
1027 	/*
1028 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1029 	 * still busy, but the others unbusied.
1030 	 */
1031 	if (blk == SWAPBLK_NONE)
1032 		return (VM_PAGER_FAIL);
1033 
1034 	/*
1035 	 * Getpbuf() can sleep.
1036 	 */
1037 	VM_OBJECT_UNLOCK(object);
1038 	/*
1039 	 * Get a swap buffer header to perform the IO
1040 	 */
1041 	bp = getpbuf(&nsw_rcount);
1042 	bp->b_flags |= B_PAGING;
1043 
1044 	/*
1045 	 * map our page(s) into kva for input
1046 	 */
1047 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1048 
1049 	bp->b_iocmd = BIO_READ;
1050 	bp->b_iodone = swp_pager_async_iodone;
1051 	bp->b_rcred = crhold(thread0.td_ucred);
1052 	bp->b_wcred = crhold(thread0.td_ucred);
1053 	bp->b_blkno = blk - (reqpage - i);
1054 	bp->b_bcount = PAGE_SIZE * (j - i);
1055 	bp->b_bufsize = PAGE_SIZE * (j - i);
1056 	bp->b_pager.pg_reqpage = reqpage - i;
1057 
1058 	VM_OBJECT_LOCK(object);
1059 	vm_page_lock_queues();
1060 	{
1061 		int k;
1062 
1063 		for (k = i; k < j; ++k) {
1064 			bp->b_pages[k - i] = m[k];
1065 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1066 		}
1067 	}
1068 	vm_page_unlock_queues();
1069 	bp->b_npages = j - i;
1070 
1071 	cnt.v_swapin++;
1072 	cnt.v_swappgsin += bp->b_npages;
1073 
1074 	/*
1075 	 * We still hold the lock on mreq, and our automatic completion routine
1076 	 * does not remove it.
1077 	 */
1078 	vm_object_pip_add(object, bp->b_npages);
1079 	VM_OBJECT_UNLOCK(object);
1080 
1081 	/*
1082 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1083 	 * this point because we automatically release it on completion.
1084 	 * Instead, we look at the one page we are interested in which we
1085 	 * still hold a lock on even through the I/O completion.
1086 	 *
1087 	 * The other pages in our m[] array are also released on completion,
1088 	 * so we cannot assume they are valid anymore either.
1089 	 *
1090 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1091 	 */
1092 	BUF_KERNPROC(bp);
1093 	swp_pager_strategy(bp);
1094 
1095 	/*
1096 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1097 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1098 	 * is set in the meta-data.
1099 	 */
1100 	vm_page_lock_queues();
1101 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1102 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1103 		cnt.v_intrans++;
1104 		if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) {
1105 			printf(
1106 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1107 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1108 		}
1109 	}
1110 	vm_page_unlock_queues();
1111 
1112 	VM_OBJECT_LOCK(object);
1113 	/*
1114 	 * mreq is left busied after completion, but all the other pages
1115 	 * are freed.  If we had an unrecoverable read error the page will
1116 	 * not be valid.
1117 	 */
1118 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1119 		return (VM_PAGER_ERROR);
1120 	} else {
1121 		return (VM_PAGER_OK);
1122 	}
1123 
1124 	/*
1125 	 * A final note: in a low swap situation, we cannot deallocate swap
1126 	 * and mark a page dirty here because the caller is likely to mark
1127 	 * the page clean when we return, causing the page to possibly revert
1128 	 * to all-zero's later.
1129 	 */
1130 }
1131 
1132 /*
1133  *	swap_pager_putpages:
1134  *
1135  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1136  *
1137  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1138  *	are automatically converted to SWAP objects.
1139  *
1140  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1141  *	vm_page reservation system coupled with properly written VFS devices
1142  *	should ensure that no low-memory deadlock occurs.  This is an area
1143  *	which needs work.
1144  *
1145  *	The parent has N vm_object_pip_add() references prior to
1146  *	calling us and will remove references for rtvals[] that are
1147  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1148  *	completion.
1149  *
1150  *	The parent has soft-busy'd the pages it passes us and will unbusy
1151  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1152  *	We need to unbusy the rest on I/O completion.
1153  */
1154 void
1155 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1156     boolean_t sync, int *rtvals)
1157 {
1158 	int i;
1159 	int n = 0;
1160 
1161 	GIANT_REQUIRED;
1162 	if (count && m[0]->object != object) {
1163 		panic("swap_pager_getpages: object mismatch %p/%p",
1164 		    object,
1165 		    m[0]->object
1166 		);
1167 	}
1168 
1169 	/*
1170 	 * Step 1
1171 	 *
1172 	 * Turn object into OBJT_SWAP
1173 	 * check for bogus sysops
1174 	 * force sync if not pageout process
1175 	 */
1176 	if (object->type != OBJT_SWAP)
1177 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1178 	VM_OBJECT_UNLOCK(object);
1179 
1180 	if (curproc != pageproc)
1181 		sync = TRUE;
1182 
1183 	/*
1184 	 * Step 2
1185 	 *
1186 	 * Update nsw parameters from swap_async_max sysctl values.
1187 	 * Do not let the sysop crash the machine with bogus numbers.
1188 	 */
1189 	mtx_lock(&pbuf_mtx);
1190 	if (swap_async_max != nsw_wcount_async_max) {
1191 		int n;
1192 
1193 		/*
1194 		 * limit range
1195 		 */
1196 		if ((n = swap_async_max) > nswbuf / 2)
1197 			n = nswbuf / 2;
1198 		if (n < 1)
1199 			n = 1;
1200 		swap_async_max = n;
1201 
1202 		/*
1203 		 * Adjust difference ( if possible ).  If the current async
1204 		 * count is too low, we may not be able to make the adjustment
1205 		 * at this time.
1206 		 */
1207 		n -= nsw_wcount_async_max;
1208 		if (nsw_wcount_async + n >= 0) {
1209 			nsw_wcount_async += n;
1210 			nsw_wcount_async_max += n;
1211 			wakeup(&nsw_wcount_async);
1212 		}
1213 	}
1214 	mtx_unlock(&pbuf_mtx);
1215 
1216 	/*
1217 	 * Step 3
1218 	 *
1219 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1220 	 * The page is left dirty until the pageout operation completes
1221 	 * successfully.
1222 	 */
1223 	for (i = 0; i < count; i += n) {
1224 		int j;
1225 		struct buf *bp;
1226 		daddr_t blk;
1227 
1228 		/*
1229 		 * Maximum I/O size is limited by a number of factors.
1230 		 */
1231 		n = min(BLIST_MAX_ALLOC, count - i);
1232 		n = min(n, nsw_cluster_max);
1233 
1234 		/*
1235 		 * Get biggest block of swap we can.  If we fail, fall
1236 		 * back and try to allocate a smaller block.  Don't go
1237 		 * overboard trying to allocate space if it would overly
1238 		 * fragment swap.
1239 		 */
1240 		while (
1241 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1242 		    n > 4
1243 		) {
1244 			n >>= 1;
1245 		}
1246 		if (blk == SWAPBLK_NONE) {
1247 			for (j = 0; j < n; ++j)
1248 				rtvals[i+j] = VM_PAGER_FAIL;
1249 			continue;
1250 		}
1251 
1252 		/*
1253 		 * All I/O parameters have been satisfied, build the I/O
1254 		 * request and assign the swap space.
1255 		 */
1256 		if (sync == TRUE) {
1257 			bp = getpbuf(&nsw_wcount_sync);
1258 		} else {
1259 			bp = getpbuf(&nsw_wcount_async);
1260 			bp->b_flags = B_ASYNC;
1261 		}
1262 		bp->b_flags |= B_PAGING;
1263 		bp->b_iocmd = BIO_WRITE;
1264 
1265 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1266 
1267 		bp->b_rcred = crhold(thread0.td_ucred);
1268 		bp->b_wcred = crhold(thread0.td_ucred);
1269 		bp->b_bcount = PAGE_SIZE * n;
1270 		bp->b_bufsize = PAGE_SIZE * n;
1271 		bp->b_blkno = blk;
1272 
1273 		VM_OBJECT_LOCK(object);
1274 		for (j = 0; j < n; ++j) {
1275 			vm_page_t mreq = m[i+j];
1276 
1277 			swp_pager_meta_build(
1278 			    mreq->object,
1279 			    mreq->pindex,
1280 			    blk + j
1281 			);
1282 			vm_page_dirty(mreq);
1283 			rtvals[i+j] = VM_PAGER_OK;
1284 
1285 			vm_page_lock_queues();
1286 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1287 			vm_page_unlock_queues();
1288 			bp->b_pages[j] = mreq;
1289 		}
1290 		VM_OBJECT_UNLOCK(object);
1291 		bp->b_npages = n;
1292 		/*
1293 		 * Must set dirty range for NFS to work.
1294 		 */
1295 		bp->b_dirtyoff = 0;
1296 		bp->b_dirtyend = bp->b_bcount;
1297 
1298 		cnt.v_swapout++;
1299 		cnt.v_swappgsout += bp->b_npages;
1300 
1301 		/*
1302 		 * asynchronous
1303 		 *
1304 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1305 		 */
1306 		if (sync == FALSE) {
1307 			bp->b_iodone = swp_pager_async_iodone;
1308 			BUF_KERNPROC(bp);
1309 			swp_pager_strategy(bp);
1310 
1311 			for (j = 0; j < n; ++j)
1312 				rtvals[i+j] = VM_PAGER_PEND;
1313 			/* restart outter loop */
1314 			continue;
1315 		}
1316 
1317 		/*
1318 		 * synchronous
1319 		 *
1320 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1321 		 */
1322 		bp->b_iodone = bdone;
1323 		swp_pager_strategy(bp);
1324 
1325 		/*
1326 		 * Wait for the sync I/O to complete, then update rtvals.
1327 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1328 		 * our async completion routine at the end, thus avoiding a
1329 		 * double-free.
1330 		 */
1331 		bwait(bp, PVM, "swwrt");
1332 		for (j = 0; j < n; ++j)
1333 			rtvals[i+j] = VM_PAGER_PEND;
1334 		/*
1335 		 * Now that we are through with the bp, we can call the
1336 		 * normal async completion, which frees everything up.
1337 		 */
1338 		swp_pager_async_iodone(bp);
1339 	}
1340 	VM_OBJECT_LOCK(object);
1341 }
1342 
1343 /*
1344  *	swp_pager_async_iodone:
1345  *
1346  *	Completion routine for asynchronous reads and writes from/to swap.
1347  *	Also called manually by synchronous code to finish up a bp.
1348  *
1349  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1350  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1351  *	unbusy all pages except the 'main' request page.  For WRITE
1352  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1353  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1354  *
1355  *	This routine may not block.
1356  *	This routine is called at splbio() or better
1357  *
1358  *	We up ourselves to splvm() as required for various vm_page related
1359  *	calls.
1360  */
1361 static void
1362 swp_pager_async_iodone(struct buf *bp)
1363 {
1364 	int i;
1365 	vm_object_t object = NULL;
1366 
1367 	/*
1368 	 * report error
1369 	 */
1370 	if (bp->b_ioflags & BIO_ERROR) {
1371 		printf(
1372 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1373 			"size %ld, error %d\n",
1374 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1375 		    (long)bp->b_blkno,
1376 		    (long)bp->b_bcount,
1377 		    bp->b_error
1378 		);
1379 	}
1380 
1381 	/*
1382 	 * remove the mapping for kernel virtual
1383 	 */
1384 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1385 
1386 	if (bp->b_npages) {
1387 		object = bp->b_pages[0]->object;
1388 		VM_OBJECT_LOCK(object);
1389 	}
1390 	vm_page_lock_queues();
1391 	/*
1392 	 * cleanup pages.  If an error occurs writing to swap, we are in
1393 	 * very serious trouble.  If it happens to be a disk error, though,
1394 	 * we may be able to recover by reassigning the swap later on.  So
1395 	 * in this case we remove the m->swapblk assignment for the page
1396 	 * but do not free it in the rlist.  The errornous block(s) are thus
1397 	 * never reallocated as swap.  Redirty the page and continue.
1398 	 */
1399 	for (i = 0; i < bp->b_npages; ++i) {
1400 		vm_page_t m = bp->b_pages[i];
1401 
1402 		vm_page_flag_clear(m, PG_SWAPINPROG);
1403 
1404 		if (bp->b_ioflags & BIO_ERROR) {
1405 			/*
1406 			 * If an error occurs I'd love to throw the swapblk
1407 			 * away without freeing it back to swapspace, so it
1408 			 * can never be used again.  But I can't from an
1409 			 * interrupt.
1410 			 */
1411 			if (bp->b_iocmd == BIO_READ) {
1412 				/*
1413 				 * When reading, reqpage needs to stay
1414 				 * locked for the parent, but all other
1415 				 * pages can be freed.  We still want to
1416 				 * wakeup the parent waiting on the page,
1417 				 * though.  ( also: pg_reqpage can be -1 and
1418 				 * not match anything ).
1419 				 *
1420 				 * We have to wake specifically requested pages
1421 				 * up too because we cleared PG_SWAPINPROG and
1422 				 * someone may be waiting for that.
1423 				 *
1424 				 * NOTE: for reads, m->dirty will probably
1425 				 * be overridden by the original caller of
1426 				 * getpages so don't play cute tricks here.
1427 				 *
1428 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1429 				 * AS THIS MESSES WITH object->memq, and it is
1430 				 * not legal to mess with object->memq from an
1431 				 * interrupt.
1432 				 */
1433 				m->valid = 0;
1434 				if (i != bp->b_pager.pg_reqpage)
1435 					vm_page_free(m);
1436 				else
1437 					vm_page_flash(m);
1438 				/*
1439 				 * If i == bp->b_pager.pg_reqpage, do not wake
1440 				 * the page up.  The caller needs to.
1441 				 */
1442 			} else {
1443 				/*
1444 				 * If a write error occurs, reactivate page
1445 				 * so it doesn't clog the inactive list,
1446 				 * then finish the I/O.
1447 				 */
1448 				vm_page_dirty(m);
1449 				vm_page_activate(m);
1450 				vm_page_io_finish(m);
1451 			}
1452 		} else if (bp->b_iocmd == BIO_READ) {
1453 			/*
1454 			 * For read success, clear dirty bits.  Nobody should
1455 			 * have this page mapped but don't take any chances,
1456 			 * make sure the pmap modify bits are also cleared.
1457 			 *
1458 			 * NOTE: for reads, m->dirty will probably be
1459 			 * overridden by the original caller of getpages so
1460 			 * we cannot set them in order to free the underlying
1461 			 * swap in a low-swap situation.  I don't think we'd
1462 			 * want to do that anyway, but it was an optimization
1463 			 * that existed in the old swapper for a time before
1464 			 * it got ripped out due to precisely this problem.
1465 			 *
1466 			 * If not the requested page then deactivate it.
1467 			 *
1468 			 * Note that the requested page, reqpage, is left
1469 			 * busied, but we still have to wake it up.  The
1470 			 * other pages are released (unbusied) by
1471 			 * vm_page_wakeup().  We do not set reqpage's
1472 			 * valid bits here, it is up to the caller.
1473 			 */
1474 			pmap_clear_modify(m);
1475 			m->valid = VM_PAGE_BITS_ALL;
1476 			vm_page_undirty(m);
1477 
1478 			/*
1479 			 * We have to wake specifically requested pages
1480 			 * up too because we cleared PG_SWAPINPROG and
1481 			 * could be waiting for it in getpages.  However,
1482 			 * be sure to not unbusy getpages specifically
1483 			 * requested page - getpages expects it to be
1484 			 * left busy.
1485 			 */
1486 			if (i != bp->b_pager.pg_reqpage) {
1487 				vm_page_deactivate(m);
1488 				vm_page_wakeup(m);
1489 			} else {
1490 				vm_page_flash(m);
1491 			}
1492 		} else {
1493 			/*
1494 			 * For write success, clear the modify and dirty
1495 			 * status, then finish the I/O ( which decrements the
1496 			 * busy count and possibly wakes waiter's up ).
1497 			 */
1498 			pmap_clear_modify(m);
1499 			vm_page_undirty(m);
1500 			vm_page_io_finish(m);
1501 			if (vm_page_count_severe())
1502 				vm_page_try_to_cache(m);
1503 		}
1504 	}
1505 	vm_page_unlock_queues();
1506 
1507 	/*
1508 	 * adjust pip.  NOTE: the original parent may still have its own
1509 	 * pip refs on the object.
1510 	 */
1511 	if (object != NULL) {
1512 		vm_object_pip_wakeupn(object, bp->b_npages);
1513 		VM_OBJECT_UNLOCK(object);
1514 	}
1515 
1516 	/*
1517 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1518 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1519 	 * trigger a KASSERT in relpbuf().
1520 	 */
1521 	if (bp->b_vp) {
1522 		    bp->b_vp = NULL;
1523 		    bp->b_bufobj = NULL;
1524 	}
1525 	/*
1526 	 * release the physical I/O buffer
1527 	 */
1528 	relpbuf(
1529 	    bp,
1530 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1531 		((bp->b_flags & B_ASYNC) ?
1532 		    &nsw_wcount_async :
1533 		    &nsw_wcount_sync
1534 		)
1535 	    )
1536 	);
1537 }
1538 
1539 /*
1540  *	swap_pager_isswapped:
1541  *
1542  *	Return 1 if at least one page in the given object is paged
1543  *	out to the given swap device.
1544  *
1545  *	This routine may not block.
1546  */
1547 int
1548 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1549 {
1550 	daddr_t index = 0;
1551 	int bcount;
1552 	int i;
1553 
1554 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1555 	if (object->type != OBJT_SWAP)
1556 		return (0);
1557 
1558 	mtx_lock(&swhash_mtx);
1559 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1560 		struct swblock *swap;
1561 
1562 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1563 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1564 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1565 					mtx_unlock(&swhash_mtx);
1566 					return (1);
1567 				}
1568 			}
1569 		}
1570 		index += SWAP_META_PAGES;
1571 		if (index > 0x20000000)
1572 			panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1573 	}
1574 	mtx_unlock(&swhash_mtx);
1575 	return (0);
1576 }
1577 
1578 /*
1579  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1580  *
1581  *	This routine dissociates the page at the given index within a
1582  *	swap block from its backing store, paging it in if necessary.
1583  *	If the page is paged in, it is placed in the inactive queue,
1584  *	since it had its backing store ripped out from under it.
1585  *	We also attempt to swap in all other pages in the swap block,
1586  *	we only guarantee that the one at the specified index is
1587  *	paged in.
1588  *
1589  *	XXX - The code to page the whole block in doesn't work, so we
1590  *	      revert to the one-by-one behavior for now.  Sigh.
1591  */
1592 static inline void
1593 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1594 {
1595 	vm_page_t m;
1596 
1597 	vm_object_pip_add(object, 1);
1598 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1599 	if (m->valid == VM_PAGE_BITS_ALL) {
1600 		vm_object_pip_subtract(object, 1);
1601 		vm_page_lock_queues();
1602 		vm_page_activate(m);
1603 		vm_page_dirty(m);
1604 		vm_page_wakeup(m);
1605 		vm_page_unlock_queues();
1606 		vm_pager_page_unswapped(m);
1607 		return;
1608 	}
1609 
1610 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1611 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1612 	vm_object_pip_subtract(object, 1);
1613 	vm_page_lock_queues();
1614 	vm_page_dirty(m);
1615 	vm_page_dontneed(m);
1616 	vm_page_wakeup(m);
1617 	vm_page_unlock_queues();
1618 	vm_pager_page_unswapped(m);
1619 }
1620 
1621 /*
1622  *	swap_pager_swapoff:
1623  *
1624  *	Page in all of the pages that have been paged out to the
1625  *	given device.  The corresponding blocks in the bitmap must be
1626  *	marked as allocated and the device must be flagged SW_CLOSING.
1627  *	There may be no processes swapped out to the device.
1628  *
1629  *	This routine may block.
1630  */
1631 static void
1632 swap_pager_swapoff(struct swdevt *sp)
1633 {
1634 	struct swblock *swap;
1635 	int i, j, retries;
1636 
1637 	GIANT_REQUIRED;
1638 
1639 	retries = 0;
1640 full_rescan:
1641 	mtx_lock(&swhash_mtx);
1642 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1643 restart:
1644 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1645 			vm_object_t object = swap->swb_object;
1646 			vm_pindex_t pindex = swap->swb_index;
1647                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1648                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1649 					/* avoid deadlock */
1650 					if (!VM_OBJECT_TRYLOCK(object)) {
1651 						break;
1652 					} else {
1653 						mtx_unlock(&swhash_mtx);
1654 						swp_pager_force_pagein(object,
1655 						    pindex + j);
1656 						VM_OBJECT_UNLOCK(object);
1657 						mtx_lock(&swhash_mtx);
1658 						goto restart;
1659 					}
1660 				}
1661                         }
1662 		}
1663 	}
1664 	mtx_unlock(&swhash_mtx);
1665 	if (sp->sw_used) {
1666 		int dummy;
1667 		/*
1668 		 * Objects may be locked or paging to the device being
1669 		 * removed, so we will miss their pages and need to
1670 		 * make another pass.  We have marked this device as
1671 		 * SW_CLOSING, so the activity should finish soon.
1672 		 */
1673 		retries++;
1674 		if (retries > 100) {
1675 			panic("swapoff: failed to locate %d swap blocks",
1676 			    sp->sw_used);
1677 		}
1678 		tsleep(&dummy, PVM, "swpoff", hz / 20);
1679 		goto full_rescan;
1680 	}
1681 }
1682 
1683 /************************************************************************
1684  *				SWAP META DATA 				*
1685  ************************************************************************
1686  *
1687  *	These routines manipulate the swap metadata stored in the
1688  *	OBJT_SWAP object.  All swp_*() routines must be called at
1689  *	splvm() because swap can be freed up by the low level vm_page
1690  *	code which might be called from interrupts beyond what splbio() covers.
1691  *
1692  *	Swap metadata is implemented with a global hash and not directly
1693  *	linked into the object.  Instead the object simply contains
1694  *	appropriate tracking counters.
1695  */
1696 
1697 /*
1698  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1699  *
1700  *	We first convert the object to a swap object if it is a default
1701  *	object.
1702  *
1703  *	The specified swapblk is added to the object's swap metadata.  If
1704  *	the swapblk is not valid, it is freed instead.  Any previously
1705  *	assigned swapblk is freed.
1706  *
1707  *	This routine must be called at splvm(), except when used to convert
1708  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1709  */
1710 static void
1711 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1712 {
1713 	struct swblock *swap;
1714 	struct swblock **pswap;
1715 	int idx;
1716 
1717 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1718 	/*
1719 	 * Convert default object to swap object if necessary
1720 	 */
1721 	if (object->type != OBJT_SWAP) {
1722 		object->type = OBJT_SWAP;
1723 		object->un_pager.swp.swp_bcount = 0;
1724 
1725 		if (object->handle != NULL) {
1726 			mtx_lock(&sw_alloc_mtx);
1727 			TAILQ_INSERT_TAIL(
1728 			    NOBJLIST(object->handle),
1729 			    object,
1730 			    pager_object_list
1731 			);
1732 			mtx_unlock(&sw_alloc_mtx);
1733 		}
1734 	}
1735 
1736 	/*
1737 	 * Locate hash entry.  If not found create, but if we aren't adding
1738 	 * anything just return.  If we run out of space in the map we wait
1739 	 * and, since the hash table may have changed, retry.
1740 	 */
1741 retry:
1742 	mtx_lock(&swhash_mtx);
1743 	pswap = swp_pager_hash(object, pindex);
1744 
1745 	if ((swap = *pswap) == NULL) {
1746 		int i;
1747 
1748 		if (swapblk == SWAPBLK_NONE)
1749 			goto done;
1750 
1751 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1752 		if (swap == NULL) {
1753 			mtx_unlock(&swhash_mtx);
1754 			VM_OBJECT_UNLOCK(object);
1755 			VM_WAIT;
1756 			VM_OBJECT_LOCK(object);
1757 			goto retry;
1758 		}
1759 
1760 		swap->swb_hnext = NULL;
1761 		swap->swb_object = object;
1762 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1763 		swap->swb_count = 0;
1764 
1765 		++object->un_pager.swp.swp_bcount;
1766 
1767 		for (i = 0; i < SWAP_META_PAGES; ++i)
1768 			swap->swb_pages[i] = SWAPBLK_NONE;
1769 	}
1770 
1771 	/*
1772 	 * Delete prior contents of metadata
1773 	 */
1774 	idx = pindex & SWAP_META_MASK;
1775 
1776 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1777 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1778 		--swap->swb_count;
1779 	}
1780 
1781 	/*
1782 	 * Enter block into metadata
1783 	 */
1784 	swap->swb_pages[idx] = swapblk;
1785 	if (swapblk != SWAPBLK_NONE)
1786 		++swap->swb_count;
1787 done:
1788 	mtx_unlock(&swhash_mtx);
1789 }
1790 
1791 /*
1792  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1793  *
1794  *	The requested range of blocks is freed, with any associated swap
1795  *	returned to the swap bitmap.
1796  *
1797  *	This routine will free swap metadata structures as they are cleaned
1798  *	out.  This routine does *NOT* operate on swap metadata associated
1799  *	with resident pages.
1800  *
1801  *	This routine must be called at splvm()
1802  */
1803 static void
1804 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1805 {
1806 
1807 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1808 	if (object->type != OBJT_SWAP)
1809 		return;
1810 
1811 	while (count > 0) {
1812 		struct swblock **pswap;
1813 		struct swblock *swap;
1814 
1815 		mtx_lock(&swhash_mtx);
1816 		pswap = swp_pager_hash(object, index);
1817 
1818 		if ((swap = *pswap) != NULL) {
1819 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1820 
1821 			if (v != SWAPBLK_NONE) {
1822 				swp_pager_freeswapspace(v, 1);
1823 				swap->swb_pages[index & SWAP_META_MASK] =
1824 					SWAPBLK_NONE;
1825 				if (--swap->swb_count == 0) {
1826 					*pswap = swap->swb_hnext;
1827 					uma_zfree(swap_zone, swap);
1828 					--object->un_pager.swp.swp_bcount;
1829 				}
1830 			}
1831 			--count;
1832 			++index;
1833 		} else {
1834 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1835 			count -= n;
1836 			index += n;
1837 		}
1838 		mtx_unlock(&swhash_mtx);
1839 	}
1840 }
1841 
1842 /*
1843  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1844  *
1845  *	This routine locates and destroys all swap metadata associated with
1846  *	an object.
1847  *
1848  *	This routine must be called at splvm()
1849  */
1850 static void
1851 swp_pager_meta_free_all(vm_object_t object)
1852 {
1853 	daddr_t index = 0;
1854 
1855 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1856 	if (object->type != OBJT_SWAP)
1857 		return;
1858 
1859 	while (object->un_pager.swp.swp_bcount) {
1860 		struct swblock **pswap;
1861 		struct swblock *swap;
1862 
1863 		mtx_lock(&swhash_mtx);
1864 		pswap = swp_pager_hash(object, index);
1865 		if ((swap = *pswap) != NULL) {
1866 			int i;
1867 
1868 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1869 				daddr_t v = swap->swb_pages[i];
1870 				if (v != SWAPBLK_NONE) {
1871 					--swap->swb_count;
1872 					swp_pager_freeswapspace(v, 1);
1873 				}
1874 			}
1875 			if (swap->swb_count != 0)
1876 				panic("swap_pager_meta_free_all: swb_count != 0");
1877 			*pswap = swap->swb_hnext;
1878 			uma_zfree(swap_zone, swap);
1879 			--object->un_pager.swp.swp_bcount;
1880 		}
1881 		mtx_unlock(&swhash_mtx);
1882 		index += SWAP_META_PAGES;
1883 		if (index > 0x20000000)
1884 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1885 	}
1886 }
1887 
1888 /*
1889  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1890  *
1891  *	This routine is capable of looking up, popping, or freeing
1892  *	swapblk assignments in the swap meta data or in the vm_page_t.
1893  *	The routine typically returns the swapblk being looked-up, or popped,
1894  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1895  *	was invalid.  This routine will automatically free any invalid
1896  *	meta-data swapblks.
1897  *
1898  *	It is not possible to store invalid swapblks in the swap meta data
1899  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1900  *
1901  *	When acting on a busy resident page and paging is in progress, we
1902  *	have to wait until paging is complete but otherwise can act on the
1903  *	busy page.
1904  *
1905  *	This routine must be called at splvm().
1906  *
1907  *	SWM_FREE	remove and free swap block from metadata
1908  *	SWM_POP		remove from meta data but do not free.. pop it out
1909  */
1910 static daddr_t
1911 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1912 {
1913 	struct swblock **pswap;
1914 	struct swblock *swap;
1915 	daddr_t r1;
1916 	int idx;
1917 
1918 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1919 	/*
1920 	 * The meta data only exists of the object is OBJT_SWAP
1921 	 * and even then might not be allocated yet.
1922 	 */
1923 	if (object->type != OBJT_SWAP)
1924 		return (SWAPBLK_NONE);
1925 
1926 	r1 = SWAPBLK_NONE;
1927 	mtx_lock(&swhash_mtx);
1928 	pswap = swp_pager_hash(object, pindex);
1929 
1930 	if ((swap = *pswap) != NULL) {
1931 		idx = pindex & SWAP_META_MASK;
1932 		r1 = swap->swb_pages[idx];
1933 
1934 		if (r1 != SWAPBLK_NONE) {
1935 			if (flags & SWM_FREE) {
1936 				swp_pager_freeswapspace(r1, 1);
1937 				r1 = SWAPBLK_NONE;
1938 			}
1939 			if (flags & (SWM_FREE|SWM_POP)) {
1940 				swap->swb_pages[idx] = SWAPBLK_NONE;
1941 				if (--swap->swb_count == 0) {
1942 					*pswap = swap->swb_hnext;
1943 					uma_zfree(swap_zone, swap);
1944 					--object->un_pager.swp.swp_bcount;
1945 				}
1946 			}
1947 		}
1948 	}
1949 	mtx_unlock(&swhash_mtx);
1950 	return (r1);
1951 }
1952 
1953 /*
1954  * System call swapon(name) enables swapping on device name,
1955  * which must be in the swdevsw.  Return EBUSY
1956  * if already swapping on this device.
1957  */
1958 #ifndef _SYS_SYSPROTO_H_
1959 struct swapon_args {
1960 	char *name;
1961 };
1962 #endif
1963 
1964 /*
1965  * MPSAFE
1966  */
1967 /* ARGSUSED */
1968 int
1969 swapon(struct thread *td, struct swapon_args *uap)
1970 {
1971 	struct vattr attr;
1972 	struct vnode *vp;
1973 	struct nameidata nd;
1974 	int error;
1975 
1976 	mtx_lock(&Giant);
1977 	error = suser(td);
1978 	if (error)
1979 		goto done2;
1980 
1981 	while (swdev_syscall_active)
1982 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
1983 	swdev_syscall_active = 1;
1984 
1985 	/*
1986 	 * Swap metadata may not fit in the KVM if we have physical
1987 	 * memory of >1GB.
1988 	 */
1989 	if (swap_zone == NULL) {
1990 		error = ENOMEM;
1991 		goto done;
1992 	}
1993 
1994 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW, UIO_USERSPACE, uap->name, td);
1995 	error = namei(&nd);
1996 	if (error)
1997 		goto done;
1998 
1999 	NDFREE(&nd, NDF_ONLY_PNBUF);
2000 	vp = nd.ni_vp;
2001 
2002 	if (vn_isdisk(vp, &error)) {
2003 		error = swapongeom(td, vp);
2004 	} else if (vp->v_type == VREG &&
2005 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2006 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) {
2007 		/*
2008 		 * Allow direct swapping to NFS regular files in the same
2009 		 * way that nfs_mountroot() sets up diskless swapping.
2010 		 */
2011 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2012 	}
2013 
2014 	if (error)
2015 		vrele(vp);
2016 done:
2017 	swdev_syscall_active = 0;
2018 	wakeup_one(&swdev_syscall_active);
2019 done2:
2020 	mtx_unlock(&Giant);
2021 	return (error);
2022 }
2023 
2024 static void
2025 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
2026 {
2027 	struct swdevt *sp, *tsp;
2028 	swblk_t dvbase;
2029 	u_long mblocks;
2030 
2031 	/*
2032 	 * If we go beyond this, we get overflows in the radix
2033 	 * tree bitmap code.
2034 	 */
2035 	mblocks = 0x40000000 / BLIST_META_RADIX;
2036 	if (nblks > mblocks) {
2037 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2038 			mblocks);
2039 		nblks = mblocks;
2040 	}
2041 	/*
2042 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2043 	 * First chop nblks off to page-align it, then convert.
2044 	 *
2045 	 * sw->sw_nblks is in page-sized chunks now too.
2046 	 */
2047 	nblks &= ~(ctodb(1) - 1);
2048 	nblks = dbtoc(nblks);
2049 
2050 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2051 	sp->sw_vp = vp;
2052 	sp->sw_id = id;
2053 	sp->sw_dev = dev;
2054 	sp->sw_flags = 0;
2055 	sp->sw_nblks = nblks;
2056 	sp->sw_used = 0;
2057 	sp->sw_strategy = strategy;
2058 	sp->sw_close = close;
2059 
2060 	sp->sw_blist = blist_create(nblks);
2061 	/*
2062 	 * Do not free the first two block in order to avoid overwriting
2063 	 * any bsd label at the front of the partition
2064 	 */
2065 	blist_free(sp->sw_blist, 2, nblks - 2);
2066 
2067 	dvbase = 0;
2068 	mtx_lock(&sw_dev_mtx);
2069 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2070 		if (tsp->sw_end >= dvbase) {
2071 			/*
2072 			 * We put one uncovered page between the devices
2073 			 * in order to definitively prevent any cross-device
2074 			 * I/O requests
2075 			 */
2076 			dvbase = tsp->sw_end + 1;
2077 		}
2078 	}
2079 	sp->sw_first = dvbase;
2080 	sp->sw_end = dvbase + nblks;
2081 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2082 	nswapdev++;
2083 	swap_pager_avail += nblks;
2084 	swp_sizecheck();
2085 	mtx_unlock(&sw_dev_mtx);
2086 }
2087 
2088 /*
2089  * SYSCALL: swapoff(devname)
2090  *
2091  * Disable swapping on the given device.
2092  *
2093  * XXX: Badly designed system call: it should use a device index
2094  * rather than filename as specification.  We keep sw_vp around
2095  * only to make this work.
2096  */
2097 #ifndef _SYS_SYSPROTO_H_
2098 struct swapoff_args {
2099 	char *name;
2100 };
2101 #endif
2102 
2103 /*
2104  * MPSAFE
2105  */
2106 /* ARGSUSED */
2107 int
2108 swapoff(struct thread *td, struct swapoff_args *uap)
2109 {
2110 	struct vnode *vp;
2111 	struct nameidata nd;
2112 	struct swdevt *sp;
2113 	int error;
2114 
2115 	error = suser(td);
2116 	if (error)
2117 		return (error);
2118 
2119 	mtx_lock(&Giant);
2120 	while (swdev_syscall_active)
2121 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2122 	swdev_syscall_active = 1;
2123 
2124 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td);
2125 	error = namei(&nd);
2126 	if (error)
2127 		goto done;
2128 	NDFREE(&nd, NDF_ONLY_PNBUF);
2129 	vp = nd.ni_vp;
2130 
2131 	mtx_lock(&sw_dev_mtx);
2132 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2133 		if (sp->sw_vp == vp)
2134 			break;
2135 	}
2136 	mtx_unlock(&sw_dev_mtx);
2137 	if (sp == NULL) {
2138 		error = EINVAL;
2139 		goto done;
2140 	}
2141 	error = swapoff_one(sp, td);
2142 done:
2143 	swdev_syscall_active = 0;
2144 	wakeup_one(&swdev_syscall_active);
2145 	mtx_unlock(&Giant);
2146 	return (error);
2147 }
2148 
2149 static int
2150 swapoff_one(struct swdevt *sp, struct thread *td)
2151 {
2152 	u_long nblks, dvbase;
2153 #ifdef MAC
2154 	int error;
2155 #endif
2156 
2157 	mtx_assert(&Giant, MA_OWNED);
2158 #ifdef MAC
2159 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY, td);
2160 	error = mac_check_system_swapoff(td->td_ucred, sp->sw_vp);
2161 	(void) VOP_UNLOCK(sp->sw_vp, 0, td);
2162 	if (error != 0)
2163 		return (error);
2164 #endif
2165 	nblks = sp->sw_nblks;
2166 
2167 	/*
2168 	 * We can turn off this swap device safely only if the
2169 	 * available virtual memory in the system will fit the amount
2170 	 * of data we will have to page back in, plus an epsilon so
2171 	 * the system doesn't become critically low on swap space.
2172 	 */
2173 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2174 	    nblks + nswap_lowat) {
2175 		return (ENOMEM);
2176 	}
2177 
2178 	/*
2179 	 * Prevent further allocations on this device.
2180 	 */
2181 	mtx_lock(&sw_dev_mtx);
2182 	sp->sw_flags |= SW_CLOSING;
2183 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2184 		swap_pager_avail -= blist_fill(sp->sw_blist,
2185 		     dvbase, dmmax);
2186 	}
2187 	mtx_unlock(&sw_dev_mtx);
2188 
2189 	/*
2190 	 * Page in the contents of the device and close it.
2191 	 */
2192 	swap_pager_swapoff(sp);
2193 
2194 	sp->sw_close(td, sp);
2195 	sp->sw_id = NULL;
2196 	mtx_lock(&sw_dev_mtx);
2197 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2198 	nswapdev--;
2199 	if (nswapdev == 0) {
2200 		swap_pager_full = 2;
2201 		swap_pager_almost_full = 1;
2202 	}
2203 	if (swdevhd == sp)
2204 		swdevhd = NULL;
2205 	mtx_unlock(&sw_dev_mtx);
2206 	blist_destroy(sp->sw_blist);
2207 	free(sp, M_VMPGDATA);
2208 	return (0);
2209 }
2210 
2211 void
2212 swapoff_all(void)
2213 {
2214 	struct swdevt *sp, *spt;
2215 	const char *devname;
2216 	int error;
2217 
2218 	mtx_lock(&Giant);
2219 	while (swdev_syscall_active)
2220 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2221 	swdev_syscall_active = 1;
2222 
2223 	mtx_lock(&sw_dev_mtx);
2224 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2225 		mtx_unlock(&sw_dev_mtx);
2226 		if (vn_isdisk(sp->sw_vp, NULL))
2227 			devname = sp->sw_vp->v_rdev->si_name;
2228 		else
2229 			devname = "[file]";
2230 		error = swapoff_one(sp, &thread0);
2231 		if (error != 0) {
2232 			printf("Cannot remove swap device %s (error=%d), "
2233 			    "skipping.\n", devname, error);
2234 		} else if (bootverbose) {
2235 			printf("Swap device %s removed.\n", devname);
2236 		}
2237 		mtx_lock(&sw_dev_mtx);
2238 	}
2239 	mtx_unlock(&sw_dev_mtx);
2240 
2241 	swdev_syscall_active = 0;
2242 	wakeup_one(&swdev_syscall_active);
2243 	mtx_unlock(&Giant);
2244 }
2245 
2246 void
2247 swap_pager_status(int *total, int *used)
2248 {
2249 	struct swdevt *sp;
2250 
2251 	*total = 0;
2252 	*used = 0;
2253 	mtx_lock(&sw_dev_mtx);
2254 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2255 		*total += sp->sw_nblks;
2256 		*used += sp->sw_used;
2257 	}
2258 	mtx_unlock(&sw_dev_mtx);
2259 }
2260 
2261 static int
2262 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2263 {
2264 	int	*name = (int *)arg1;
2265 	int	error, n;
2266 	struct xswdev xs;
2267 	struct swdevt *sp;
2268 
2269 	if (arg2 != 1) /* name length */
2270 		return (EINVAL);
2271 
2272 	n = 0;
2273 	mtx_lock(&sw_dev_mtx);
2274 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2275 		if (n == *name) {
2276 			mtx_unlock(&sw_dev_mtx);
2277 			xs.xsw_version = XSWDEV_VERSION;
2278 			xs.xsw_dev = sp->sw_dev;
2279 			xs.xsw_flags = sp->sw_flags;
2280 			xs.xsw_nblks = sp->sw_nblks;
2281 			xs.xsw_used = sp->sw_used;
2282 
2283 			error = SYSCTL_OUT(req, &xs, sizeof(xs));
2284 			return (error);
2285 		}
2286 		n++;
2287 	}
2288 	mtx_unlock(&sw_dev_mtx);
2289 	return (ENOENT);
2290 }
2291 
2292 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2293     "Number of swap devices");
2294 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2295     "Swap statistics by device");
2296 
2297 /*
2298  * vmspace_swap_count() - count the approximate swap useage in pages for a
2299  *			  vmspace.
2300  *
2301  *	The map must be locked.
2302  *
2303  *	Swap useage is determined by taking the proportional swap used by
2304  *	VM objects backing the VM map.  To make up for fractional losses,
2305  *	if the VM object has any swap use at all the associated map entries
2306  *	count for at least 1 swap page.
2307  */
2308 int
2309 vmspace_swap_count(struct vmspace *vmspace)
2310 {
2311 	vm_map_t map = &vmspace->vm_map;
2312 	vm_map_entry_t cur;
2313 	int count = 0;
2314 
2315 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2316 		vm_object_t object;
2317 
2318 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2319 		    (object = cur->object.vm_object) != NULL) {
2320 			VM_OBJECT_LOCK(object);
2321 			if (object->type == OBJT_SWAP &&
2322 			    object->un_pager.swp.swp_bcount != 0) {
2323 				int n = (cur->end - cur->start) / PAGE_SIZE;
2324 
2325 				count += object->un_pager.swp.swp_bcount *
2326 				    SWAP_META_PAGES * n / object->size + 1;
2327 			}
2328 			VM_OBJECT_UNLOCK(object);
2329 		}
2330 	}
2331 	return (count);
2332 }
2333 
2334 /*
2335  * GEOM backend
2336  *
2337  * Swapping onto disk devices.
2338  *
2339  */
2340 
2341 static g_orphan_t swapgeom_orphan;
2342 
2343 static struct g_class g_swap_class = {
2344 	.name = "SWAP",
2345 	.version = G_VERSION,
2346 	.orphan = swapgeom_orphan,
2347 };
2348 
2349 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2350 
2351 
2352 static void
2353 swapgeom_done(struct bio *bp2)
2354 {
2355 	struct buf *bp;
2356 
2357 	bp = bp2->bio_caller2;
2358 	bp->b_ioflags = bp2->bio_flags;
2359 	if (bp2->bio_error)
2360 		bp->b_ioflags |= BIO_ERROR;
2361 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2362 	bp->b_error = bp2->bio_error;
2363 	bufdone(bp);
2364 	g_destroy_bio(bp2);
2365 }
2366 
2367 static void
2368 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2369 {
2370 	struct bio *bio;
2371 	struct g_consumer *cp;
2372 
2373 	cp = sp->sw_id;
2374 	if (cp == NULL) {
2375 		bp->b_error = ENXIO;
2376 		bp->b_ioflags |= BIO_ERROR;
2377 		bufdone(bp);
2378 		return;
2379 	}
2380 	bio = g_alloc_bio();
2381 #if 0
2382 	/*
2383 	 * XXX: We shouldn't really sleep here when we run out of buffers
2384 	 * XXX: but the alternative is worse right now.
2385 	 */
2386 	if (bio == NULL) {
2387 		bp->b_error = ENOMEM;
2388 		bp->b_ioflags |= BIO_ERROR;
2389 		bufdone(bp);
2390 		return;
2391 	}
2392 #endif
2393 	bio->bio_caller2 = bp;
2394 	bio->bio_cmd = bp->b_iocmd;
2395 	bio->bio_data = bp->b_data;
2396 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2397 	bio->bio_length = bp->b_bcount;
2398 	bio->bio_done = swapgeom_done;
2399 	g_io_request(bio, cp);
2400 	return;
2401 }
2402 
2403 static void
2404 swapgeom_orphan(struct g_consumer *cp)
2405 {
2406 	struct swdevt *sp;
2407 
2408 	mtx_lock(&sw_dev_mtx);
2409 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2410 		if (sp->sw_id == cp)
2411 			sp->sw_id = NULL;
2412 	mtx_unlock(&sw_dev_mtx);
2413 }
2414 
2415 static void
2416 swapgeom_close_ev(void *arg, int flags)
2417 {
2418 	struct g_consumer *cp;
2419 
2420 	cp = arg;
2421 	g_access(cp, -1, -1, 0);
2422 	g_detach(cp);
2423 	g_destroy_consumer(cp);
2424 }
2425 
2426 static void
2427 swapgeom_close(struct thread *td, struct swdevt *sw)
2428 {
2429 
2430 	/* XXX: direct call when Giant untangled */
2431 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2432 }
2433 
2434 
2435 struct swh0h0 {
2436 	struct cdev *dev;
2437 	struct vnode *vp;
2438 	int	error;
2439 };
2440 
2441 static void
2442 swapongeom_ev(void *arg, int flags)
2443 {
2444 	struct swh0h0 *swh;
2445 	struct g_provider *pp;
2446 	struct g_consumer *cp;
2447 	static struct g_geom *gp;
2448 	struct swdevt *sp;
2449 	u_long nblks;
2450 	int error;
2451 
2452 	swh = arg;
2453 	swh->error = 0;
2454 	pp = g_dev_getprovider(swh->dev);
2455 	if (pp == NULL) {
2456 		swh->error = ENODEV;
2457 		return;
2458 	}
2459 	mtx_lock(&sw_dev_mtx);
2460 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2461 		cp = sp->sw_id;
2462 		if (cp != NULL && cp->provider == pp) {
2463 			mtx_unlock(&sw_dev_mtx);
2464 			swh->error = EBUSY;
2465 			return;
2466 		}
2467 	}
2468 	mtx_unlock(&sw_dev_mtx);
2469 	if (gp == NULL)
2470 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2471 	cp = g_new_consumer(gp);
2472 	g_attach(cp, pp);
2473 	/*
2474 	 * XXX: Everytime you think you can improve the margin for
2475 	 * footshooting, somebody depends on the ability to do so:
2476 	 * savecore(8) wants to write to our swapdev so we cannot
2477 	 * set an exclusive count :-(
2478 	 */
2479 	error = g_access(cp, 1, 1, 0);
2480 	if (error) {
2481 		g_detach(cp);
2482 		g_destroy_consumer(cp);
2483 		swh->error = error;
2484 		return;
2485 	}
2486 	nblks = pp->mediasize / DEV_BSIZE;
2487 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2488 	    swapgeom_close, dev2udev(swh->dev));
2489 	swh->error = 0;
2490 	return;
2491 }
2492 
2493 static int
2494 swapongeom(struct thread *td, struct vnode *vp)
2495 {
2496 	int error;
2497 	struct swh0h0 swh;
2498 
2499 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2500 
2501 	swh.dev = vp->v_rdev;
2502 	swh.vp = vp;
2503 	swh.error = 0;
2504 	/* XXX: direct call when Giant untangled */
2505 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2506 	if (!error)
2507 		error = swh.error;
2508 	VOP_UNLOCK(vp, 0, td);
2509 	return (error);
2510 }
2511 
2512 /*
2513  * VNODE backend
2514  *
2515  * This is used mainly for network filesystem (read: probably only tested
2516  * with NFS) swapfiles.
2517  *
2518  */
2519 
2520 static void
2521 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2522 {
2523 	struct vnode *vp2;
2524 
2525 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2526 
2527 	vp2 = sp->sw_id;
2528 	vhold(vp2);
2529 	if (bp->b_iocmd == BIO_WRITE) {
2530 		if (bp->b_bufobj)
2531 			bufobj_wdrop(bp->b_bufobj);
2532 		bufobj_wref(&vp2->v_bufobj);
2533 	}
2534 	if (bp->b_bufobj != &vp2->v_bufobj)
2535 		bp->b_bufobj = &vp2->v_bufobj;
2536 	bp->b_vp = vp2;
2537 	bp->b_iooffset = dbtob(bp->b_blkno);
2538 	bstrategy(bp);
2539 	return;
2540 }
2541 
2542 static void
2543 swapdev_close(struct thread *td, struct swdevt *sp)
2544 {
2545 
2546 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2547 	vrele(sp->sw_vp);
2548 }
2549 
2550 
2551 static int
2552 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2553 {
2554 	struct swdevt *sp;
2555 	int error;
2556 
2557 	if (nblks == 0)
2558 		return (ENXIO);
2559 	mtx_lock(&sw_dev_mtx);
2560 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2561 		if (sp->sw_id == vp) {
2562 			mtx_unlock(&sw_dev_mtx);
2563 			return (EBUSY);
2564 		}
2565 	}
2566 	mtx_unlock(&sw_dev_mtx);
2567 
2568 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2569 #ifdef MAC
2570 	error = mac_check_system_swapon(td->td_ucred, vp);
2571 	if (error == 0)
2572 #endif
2573 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, -1);
2574 	(void) VOP_UNLOCK(vp, 0, td);
2575 	if (error)
2576 		return (error);
2577 
2578 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2579 	    NODEV);
2580 	return (0);
2581 }
2582