xref: /freebsd/sys/vm/swap_pager.c (revision ce4946daa5ce852d28008dac492029500ab2ee95)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD$
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/conf.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/bio.h>
76 #include <sys/buf.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sysctl.h>
81 #include <sys/blist.h>
82 #include <sys/lock.h>
83 #include <sys/sx.h>
84 #include <sys/vmmeter.h>
85 
86 #ifndef MAX_PAGEOUT_CLUSTER
87 #define MAX_PAGEOUT_CLUSTER 16
88 #endif
89 
90 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
91 
92 #include "opt_swap.h"
93 #include <vm/vm.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_zone.h>
102 #include <vm/swap_pager.h>
103 #include <vm/vm_extern.h>
104 
105 #define SWM_FREE	0x02	/* free, period			*/
106 #define SWM_POP		0x04	/* pop out			*/
107 
108 /*
109  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
110  * in the old system.
111  */
112 
113 extern int vm_swap_size;	/* number of free swap blocks, in pages */
114 
115 int swap_pager_full;		/* swap space exhaustion (task killing) */
116 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
117 static int nsw_rcount;		/* free read buffers			*/
118 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
119 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
120 static int nsw_wcount_async_max;/* assigned maximum			*/
121 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
122 
123 struct blist *swapblist;
124 static struct swblock **swhash;
125 static int swhash_mask;
126 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
127 
128 /* from vm_swap.c */
129 extern struct vnode *swapdev_vp;
130 extern struct swdevt *swdevt;
131 extern int nswdev;
132 
133 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
134         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
135 
136 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
137 
138 /*
139  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
140  * of searching a named list by hashing it just a little.
141  */
142 
143 #define NOBJLISTS		8
144 
145 #define NOBJLIST(handle)	\
146 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
147 
148 static struct sx sw_alloc_sx;	/* prevent concurrant creation */
149 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
150 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
151 struct pagerlst		swap_pager_un_object_list;
152 vm_zone_t		swap_zone;
153 
154 /*
155  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
156  * calls hooked from other parts of the VM system and do not appear here.
157  * (see vm/swap_pager.h).
158  */
159 
160 static vm_object_t
161 		swap_pager_alloc __P((void *handle, vm_ooffset_t size,
162 				      vm_prot_t prot, vm_ooffset_t offset));
163 static void	swap_pager_dealloc __P((vm_object_t object));
164 static int	swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
165 static void	swap_pager_init __P((void));
166 static void	swap_pager_unswapped __P((vm_page_t));
167 static void	swap_pager_strategy __P((vm_object_t, struct bio *));
168 
169 struct pagerops swappagerops = {
170 	swap_pager_init,	/* early system initialization of pager	*/
171 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
172 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
173 	swap_pager_getpages,	/* pagein				*/
174 	swap_pager_putpages,	/* pageout				*/
175 	swap_pager_haspage,	/* get backing store status for page	*/
176 	swap_pager_unswapped,	/* remove swap related to page		*/
177 	swap_pager_strategy	/* pager strategy call			*/
178 };
179 
180 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags);
181 static void flushchainbuf(struct buf *nbp);
182 static void waitchainbuf(struct bio *bp, int count, int done);
183 
184 /*
185  * dmmax is in page-sized chunks with the new swap system.  It was
186  * dev-bsized chunks in the old.  dmmax is always a power of 2.
187  *
188  * swap_*() routines are externally accessible.  swp_*() routines are
189  * internal.
190  */
191 
192 int dmmax;
193 static int dmmax_mask;
194 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
195 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
196 
197 SYSCTL_INT(_vm, OID_AUTO, dmmax,
198 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
199 
200 static __inline void	swp_sizecheck __P((void));
201 static void	swp_pager_sync_iodone __P((struct buf *bp));
202 static void	swp_pager_async_iodone __P((struct buf *bp));
203 
204 /*
205  * Swap bitmap functions
206  */
207 
208 static __inline void	swp_pager_freeswapspace __P((daddr_t blk, int npages));
209 static __inline daddr_t	swp_pager_getswapspace __P((int npages));
210 
211 /*
212  * Metadata functions
213  */
214 
215 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t));
216 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t));
217 static void swp_pager_meta_free_all __P((vm_object_t));
218 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int));
219 
220 /*
221  * SWP_SIZECHECK() -	update swap_pager_full indication
222  *
223  *	update the swap_pager_almost_full indication and warn when we are
224  *	about to run out of swap space, using lowat/hiwat hysteresis.
225  *
226  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
227  *
228  *	No restrictions on call
229  *	This routine may not block.
230  *	This routine must be called at splvm()
231  */
232 
233 static __inline void
234 swp_sizecheck()
235 {
236 	if (vm_swap_size < nswap_lowat) {
237 		if (swap_pager_almost_full == 0) {
238 			printf("swap_pager: out of swap space\n");
239 			swap_pager_almost_full = 1;
240 		}
241 	} else {
242 		swap_pager_full = 0;
243 		if (vm_swap_size > nswap_hiwat)
244 			swap_pager_almost_full = 0;
245 	}
246 }
247 
248 /*
249  * SWAP_PAGER_INIT() -	initialize the swap pager!
250  *
251  *	Expected to be started from system init.  NOTE:  This code is run
252  *	before much else so be careful what you depend on.  Most of the VM
253  *	system has yet to be initialized at this point.
254  */
255 
256 static void
257 swap_pager_init()
258 {
259 	/*
260 	 * Initialize object lists
261 	 */
262 	int i;
263 
264 	for (i = 0; i < NOBJLISTS; ++i)
265 		TAILQ_INIT(&swap_pager_object_list[i]);
266 	TAILQ_INIT(&swap_pager_un_object_list);
267 	sx_init(&sw_alloc_sx, "swap_pager create");
268 	mtx_init(&sw_alloc_mtx, "swap_pager list", MTX_DEF);
269 
270 	/*
271 	 * Device Stripe, in PAGE_SIZE'd blocks
272 	 */
273 
274 	dmmax = SWB_NPAGES * 2;
275 	dmmax_mask = ~(dmmax - 1);
276 }
277 
278 /*
279  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
280  *
281  *	Expected to be started from pageout process once, prior to entering
282  *	its main loop.
283  */
284 
285 void
286 swap_pager_swap_init()
287 {
288 	int n, n2;
289 
290 	/*
291 	 * Number of in-transit swap bp operations.  Don't
292 	 * exhaust the pbufs completely.  Make sure we
293 	 * initialize workable values (0 will work for hysteresis
294 	 * but it isn't very efficient).
295 	 *
296 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
297 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
298 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
299 	 * constrained by the swap device interleave stripe size.
300 	 *
301 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
302 	 * designed to prevent other I/O from having high latencies due to
303 	 * our pageout I/O.  The value 4 works well for one or two active swap
304 	 * devices but is probably a little low if you have more.  Even so,
305 	 * a higher value would probably generate only a limited improvement
306 	 * with three or four active swap devices since the system does not
307 	 * typically have to pageout at extreme bandwidths.   We will want
308 	 * at least 2 per swap devices, and 4 is a pretty good value if you
309 	 * have one NFS swap device due to the command/ack latency over NFS.
310 	 * So it all works out pretty well.
311 	 */
312 
313 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
314 
315 	nsw_rcount = (nswbuf + 1) / 2;
316 	nsw_wcount_sync = (nswbuf + 3) / 4;
317 	nsw_wcount_async = 4;
318 	nsw_wcount_async_max = nsw_wcount_async;
319 
320 	/*
321 	 * Initialize our zone.  Right now I'm just guessing on the number
322 	 * we need based on the number of pages in the system.  Each swblock
323 	 * can hold 16 pages, so this is probably overkill.
324 	 */
325 
326 	n = min(cnt.v_page_count, (kernel_map->max_offset - kernel_map->min_offset) / PAGE_SIZE) * 2;
327 	n2 = n;
328 
329 	while (n > 0
330 	       && (swap_zone = zinit(
331 		       "SWAPMETA",
332 		       sizeof(struct swblock),
333 		       n,
334 		       ZONE_INTERRUPT,
335 		       1
336 		       )) == NULL)
337 		n >>= 1;
338 	if (swap_zone == NULL)
339 		printf("WARNING: failed to init swap_zone!\n");
340 	if (n2 != n)
341 		printf("Swap zone entries reduced to %d.\n", n);
342 	n2 = n;
343 
344 	/*
345 	 * Initialize our meta-data hash table.  The swapper does not need to
346 	 * be quite as efficient as the VM system, so we do not use an
347 	 * oversized hash table.
348 	 *
349 	 * 	n: 		size of hash table, must be power of 2
350 	 *	swhash_mask:	hash table index mask
351 	 */
352 
353 	for (n = 1; n < n2 ; n <<= 1)
354 		;
355 
356 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
357 
358 	swhash_mask = n - 1;
359 }
360 
361 /*
362  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
363  *			its metadata structures.
364  *
365  *	This routine is called from the mmap and fork code to create a new
366  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
367  *	and then converting it with swp_pager_meta_build().
368  *
369  *	This routine may block in vm_object_allocate() and create a named
370  *	object lookup race, so we must interlock.   We must also run at
371  *	splvm() for the object lookup to handle races with interrupts, but
372  *	we do not have to maintain splvm() in between the lookup and the
373  *	add because (I believe) it is not possible to attempt to create
374  *	a new swap object w/handle when a default object with that handle
375  *	already exists.
376  */
377 
378 static vm_object_t
379 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
380 		 vm_ooffset_t offset)
381 {
382 	vm_object_t object;
383 
384 	if (handle) {
385 		/*
386 		 * Reference existing named region or allocate new one.  There
387 		 * should not be a race here against swp_pager_meta_build()
388 		 * as called from vm_page_remove() in regards to the lookup
389 		 * of the handle.
390 		 */
391 
392 		sx_xlock(&sw_alloc_sx);
393 
394 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
395 
396 		if (object != NULL) {
397 			vm_object_reference(object);
398 		} else {
399 			object = vm_object_allocate(OBJT_DEFAULT,
400 				OFF_TO_IDX(offset + PAGE_MASK + size));
401 			object->handle = handle;
402 
403 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
404 		}
405 
406 		sx_xunlock(&sw_alloc_sx);
407 	} else {
408 		object = vm_object_allocate(OBJT_DEFAULT,
409 			OFF_TO_IDX(offset + PAGE_MASK + size));
410 
411 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
412 	}
413 
414 	return (object);
415 }
416 
417 /*
418  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
419  *
420  *	The swap backing for the object is destroyed.  The code is
421  *	designed such that we can reinstantiate it later, but this
422  *	routine is typically called only when the entire object is
423  *	about to be destroyed.
424  *
425  *	This routine may block, but no longer does.
426  *
427  *	The object must be locked or unreferenceable.
428  */
429 
430 static void
431 swap_pager_dealloc(object)
432 	vm_object_t object;
433 {
434 	int s;
435 
436 	/*
437 	 * Remove from list right away so lookups will fail if we block for
438 	 * pageout completion.
439 	 */
440 
441 	mtx_lock(&sw_alloc_mtx);
442 	if (object->handle == NULL) {
443 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
444 	} else {
445 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
446 	}
447 	mtx_unlock(&sw_alloc_mtx);
448 
449 	vm_object_pip_wait(object, "swpdea");
450 
451 	/*
452 	 * Free all remaining metadata.  We only bother to free it from
453 	 * the swap meta data.  We do not attempt to free swapblk's still
454 	 * associated with vm_page_t's for this object.  We do not care
455 	 * if paging is still in progress on some objects.
456 	 */
457 	s = splvm();
458 	swp_pager_meta_free_all(object);
459 	splx(s);
460 }
461 
462 /************************************************************************
463  *			SWAP PAGER BITMAP ROUTINES			*
464  ************************************************************************/
465 
466 /*
467  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
468  *
469  *	Allocate swap for the requested number of pages.  The starting
470  *	swap block number (a page index) is returned or SWAPBLK_NONE
471  *	if the allocation failed.
472  *
473  *	Also has the side effect of advising that somebody made a mistake
474  *	when they configured swap and didn't configure enough.
475  *
476  *	Must be called at splvm() to avoid races with bitmap frees from
477  *	vm_page_remove() aka swap_pager_page_removed().
478  *
479  *	This routine may not block
480  *	This routine must be called at splvm().
481  */
482 
483 static __inline daddr_t
484 swp_pager_getswapspace(npages)
485 	int npages;
486 {
487 	daddr_t blk;
488 
489 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
490 		if (swap_pager_full != 2) {
491 			printf("swap_pager_getswapspace: failed\n");
492 			swap_pager_full = 2;
493 			swap_pager_almost_full = 1;
494 		}
495 	} else {
496 		vm_swap_size -= npages;
497 		/* per-swap area stats */
498 		swdevt[BLK2DEVIDX(blk)].sw_used += npages;
499 		swp_sizecheck();
500 	}
501 	return(blk);
502 }
503 
504 /*
505  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
506  *
507  *	This routine returns the specified swap blocks back to the bitmap.
508  *
509  *	Note:  This routine may not block (it could in the old swap code),
510  *	and through the use of the new blist routines it does not block.
511  *
512  *	We must be called at splvm() to avoid races with bitmap frees from
513  *	vm_page_remove() aka swap_pager_page_removed().
514  *
515  *	This routine may not block
516  *	This routine must be called at splvm().
517  */
518 
519 static __inline void
520 swp_pager_freeswapspace(blk, npages)
521 	daddr_t blk;
522 	int npages;
523 {
524 	blist_free(swapblist, blk, npages);
525 	vm_swap_size += npages;
526 	/* per-swap area stats */
527 	swdevt[BLK2DEVIDX(blk)].sw_used -= npages;
528 	swp_sizecheck();
529 }
530 
531 /*
532  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
533  *				range within an object.
534  *
535  *	This is a globally accessible routine.
536  *
537  *	This routine removes swapblk assignments from swap metadata.
538  *
539  *	The external callers of this routine typically have already destroyed
540  *	or renamed vm_page_t's associated with this range in the object so
541  *	we should be ok.
542  *
543  *	This routine may be called at any spl.  We up our spl to splvm temporarily
544  *	in order to perform the metadata removal.
545  */
546 
547 void
548 swap_pager_freespace(object, start, size)
549 	vm_object_t object;
550 	vm_pindex_t start;
551 	vm_size_t size;
552 {
553 	int s = splvm();
554 	swp_pager_meta_free(object, start, size);
555 	splx(s);
556 }
557 
558 /*
559  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
560  *
561  *	Assigns swap blocks to the specified range within the object.  The
562  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
563  *
564  *	Returns 0 on success, -1 on failure.
565  */
566 
567 int
568 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
569 {
570 	int s;
571 	int n = 0;
572 	daddr_t blk = SWAPBLK_NONE;
573 	vm_pindex_t beg = start;	/* save start index */
574 
575 	s = splvm();
576 	while (size) {
577 		if (n == 0) {
578 			n = BLIST_MAX_ALLOC;
579 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
580 				n >>= 1;
581 				if (n == 0) {
582 					swp_pager_meta_free(object, beg, start - beg);
583 					splx(s);
584 					return(-1);
585 				}
586 			}
587 		}
588 		swp_pager_meta_build(object, start, blk);
589 		--size;
590 		++start;
591 		++blk;
592 		--n;
593 	}
594 	swp_pager_meta_free(object, start, n);
595 	splx(s);
596 	return(0);
597 }
598 
599 /*
600  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
601  *			and destroy the source.
602  *
603  *	Copy any valid swapblks from the source to the destination.  In
604  *	cases where both the source and destination have a valid swapblk,
605  *	we keep the destination's.
606  *
607  *	This routine is allowed to block.  It may block allocating metadata
608  *	indirectly through swp_pager_meta_build() or if paging is still in
609  *	progress on the source.
610  *
611  *	This routine can be called at any spl
612  *
613  *	XXX vm_page_collapse() kinda expects us not to block because we
614  *	supposedly do not need to allocate memory, but for the moment we
615  *	*may* have to get a little memory from the zone allocator, but
616  *	it is taken from the interrupt memory.  We should be ok.
617  *
618  *	The source object contains no vm_page_t's (which is just as well)
619  *
620  *	The source object is of type OBJT_SWAP.
621  *
622  *	The source and destination objects must be locked or
623  *	inaccessible (XXX are they ?)
624  */
625 
626 void
627 swap_pager_copy(srcobject, dstobject, offset, destroysource)
628 	vm_object_t srcobject;
629 	vm_object_t dstobject;
630 	vm_pindex_t offset;
631 	int destroysource;
632 {
633 	vm_pindex_t i;
634 	int s;
635 
636 	s = splvm();
637 
638 	/*
639 	 * If destroysource is set, we remove the source object from the
640 	 * swap_pager internal queue now.
641 	 */
642 
643 	if (destroysource) {
644 		mtx_lock(&sw_alloc_mtx);
645 		if (srcobject->handle == NULL) {
646 			TAILQ_REMOVE(
647 			    &swap_pager_un_object_list,
648 			    srcobject,
649 			    pager_object_list
650 			);
651 		} else {
652 			TAILQ_REMOVE(
653 			    NOBJLIST(srcobject->handle),
654 			    srcobject,
655 			    pager_object_list
656 			);
657 		}
658 		mtx_unlock(&sw_alloc_mtx);
659 	}
660 
661 	/*
662 	 * transfer source to destination.
663 	 */
664 
665 	for (i = 0; i < dstobject->size; ++i) {
666 		daddr_t dstaddr;
667 
668 		/*
669 		 * Locate (without changing) the swapblk on the destination,
670 		 * unless it is invalid in which case free it silently, or
671 		 * if the destination is a resident page, in which case the
672 		 * source is thrown away.
673 		 */
674 
675 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
676 
677 		if (dstaddr == SWAPBLK_NONE) {
678 			/*
679 			 * Destination has no swapblk and is not resident,
680 			 * copy source.
681 			 */
682 			daddr_t srcaddr;
683 
684 			srcaddr = swp_pager_meta_ctl(
685 			    srcobject,
686 			    i + offset,
687 			    SWM_POP
688 			);
689 
690 			if (srcaddr != SWAPBLK_NONE)
691 				swp_pager_meta_build(dstobject, i, srcaddr);
692 		} else {
693 			/*
694 			 * Destination has valid swapblk or it is represented
695 			 * by a resident page.  We destroy the sourceblock.
696 			 */
697 
698 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
699 		}
700 	}
701 
702 	/*
703 	 * Free left over swap blocks in source.
704 	 *
705 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
706 	 * double-remove the object from the swap queues.
707 	 */
708 
709 	if (destroysource) {
710 		swp_pager_meta_free_all(srcobject);
711 		/*
712 		 * Reverting the type is not necessary, the caller is going
713 		 * to destroy srcobject directly, but I'm doing it here
714 		 * for consistency since we've removed the object from its
715 		 * queues.
716 		 */
717 		srcobject->type = OBJT_DEFAULT;
718 	}
719 	splx(s);
720 }
721 
722 /*
723  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
724  *				the requested page.
725  *
726  *	We determine whether good backing store exists for the requested
727  *	page and return TRUE if it does, FALSE if it doesn't.
728  *
729  *	If TRUE, we also try to determine how much valid, contiguous backing
730  *	store exists before and after the requested page within a reasonable
731  *	distance.  We do not try to restrict it to the swap device stripe
732  *	(that is handled in getpages/putpages).  It probably isn't worth
733  *	doing here.
734  */
735 
736 boolean_t
737 swap_pager_haspage(object, pindex, before, after)
738 	vm_object_t object;
739 	vm_pindex_t pindex;
740 	int *before;
741 	int *after;
742 {
743 	daddr_t blk0;
744 	int s;
745 
746 	/*
747 	 * do we have good backing store at the requested index ?
748 	 */
749 
750 	s = splvm();
751 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
752 
753 	if (blk0 == SWAPBLK_NONE) {
754 		splx(s);
755 		if (before)
756 			*before = 0;
757 		if (after)
758 			*after = 0;
759 		return (FALSE);
760 	}
761 
762 	/*
763 	 * find backwards-looking contiguous good backing store
764 	 */
765 
766 	if (before != NULL) {
767 		int i;
768 
769 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
770 			daddr_t blk;
771 
772 			if (i > pindex)
773 				break;
774 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
775 			if (blk != blk0 - i)
776 				break;
777 		}
778 		*before = (i - 1);
779 	}
780 
781 	/*
782 	 * find forward-looking contiguous good backing store
783 	 */
784 
785 	if (after != NULL) {
786 		int i;
787 
788 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
789 			daddr_t blk;
790 
791 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
792 			if (blk != blk0 + i)
793 				break;
794 		}
795 		*after = (i - 1);
796 	}
797 	splx(s);
798 	return (TRUE);
799 }
800 
801 /*
802  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
803  *
804  *	This removes any associated swap backing store, whether valid or
805  *	not, from the page.
806  *
807  *	This routine is typically called when a page is made dirty, at
808  *	which point any associated swap can be freed.  MADV_FREE also
809  *	calls us in a special-case situation
810  *
811  *	NOTE!!!  If the page is clean and the swap was valid, the caller
812  *	should make the page dirty before calling this routine.  This routine
813  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
814  *	depends on it.
815  *
816  *	This routine may not block
817  *	This routine must be called at splvm()
818  */
819 
820 static void
821 swap_pager_unswapped(m)
822 	vm_page_t m;
823 {
824 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
825 }
826 
827 /*
828  * SWAP_PAGER_STRATEGY() - read, write, free blocks
829  *
830  *	This implements the vm_pager_strategy() interface to swap and allows
831  *	other parts of the system to directly access swap as backing store
832  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
833  *	cacheless interface ( i.e. caching occurs at higher levels ).
834  *	Therefore we do not maintain any resident pages.  All I/O goes
835  *	directly to and from the swap device.
836  *
837  *	Note that b_blkno is scaled for PAGE_SIZE
838  *
839  *	We currently attempt to run I/O synchronously or asynchronously as
840  *	the caller requests.  This isn't perfect because we loose error
841  *	sequencing when we run multiple ops in parallel to satisfy a request.
842  *	But this is swap, so we let it all hang out.
843  */
844 
845 static void
846 swap_pager_strategy(vm_object_t object, struct bio *bp)
847 {
848 	vm_pindex_t start;
849 	int count;
850 	int s;
851 	char *data;
852 	struct buf *nbp = NULL;
853 
854 	/* XXX: KASSERT instead ? */
855 	if (bp->bio_bcount & PAGE_MASK) {
856 		biofinish(bp, NULL, EINVAL);
857 		printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount);
858 		return;
859 	}
860 
861 	/*
862 	 * Clear error indication, initialize page index, count, data pointer.
863 	 */
864 
865 	bp->bio_error = 0;
866 	bp->bio_flags &= ~BIO_ERROR;
867 	bp->bio_resid = bp->bio_bcount;
868 
869 	start = bp->bio_pblkno;
870 	count = howmany(bp->bio_bcount, PAGE_SIZE);
871 	data = bp->bio_data;
872 
873 	s = splvm();
874 
875 	/*
876 	 * Deal with BIO_DELETE
877 	 */
878 
879 	if (bp->bio_cmd == BIO_DELETE) {
880 		/*
881 		 * FREE PAGE(s) - destroy underlying swap that is no longer
882 		 *		  needed.
883 		 */
884 		swp_pager_meta_free(object, start, count);
885 		splx(s);
886 		bp->bio_resid = 0;
887 		biodone(bp);
888 		return;
889 	}
890 
891 	/*
892 	 * Execute read or write
893 	 */
894 
895 	while (count > 0) {
896 		daddr_t blk;
897 
898 		/*
899 		 * Obtain block.  If block not found and writing, allocate a
900 		 * new block and build it into the object.
901 		 */
902 
903 		blk = swp_pager_meta_ctl(object, start, 0);
904 		if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) {
905 			blk = swp_pager_getswapspace(1);
906 			if (blk == SWAPBLK_NONE) {
907 				bp->bio_error = ENOMEM;
908 				bp->bio_flags |= BIO_ERROR;
909 				break;
910 			}
911 			swp_pager_meta_build(object, start, blk);
912 		}
913 
914 		/*
915 		 * Do we have to flush our current collection?  Yes if:
916 		 *
917 		 *	- no swap block at this index
918 		 *	- swap block is not contiguous
919 		 *	- we cross a physical disk boundry in the
920 		 *	  stripe.
921 		 */
922 
923 		if (
924 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
925 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
926 		    )
927 		) {
928 			splx(s);
929 			if (bp->bio_cmd == BIO_READ) {
930 				++cnt.v_swapin;
931 				cnt.v_swappgsin += btoc(nbp->b_bcount);
932 			} else {
933 				++cnt.v_swapout;
934 				cnt.v_swappgsout += btoc(nbp->b_bcount);
935 				nbp->b_dirtyend = nbp->b_bcount;
936 			}
937 			flushchainbuf(nbp);
938 			s = splvm();
939 			nbp = NULL;
940 		}
941 
942 		/*
943 		 * Add new swapblk to nbp, instantiating nbp if necessary.
944 		 * Zero-fill reads are able to take a shortcut.
945 		 */
946 
947 		if (blk == SWAPBLK_NONE) {
948 			/*
949 			 * We can only get here if we are reading.  Since
950 			 * we are at splvm() we can safely modify b_resid,
951 			 * even if chain ops are in progress.
952 			 */
953 			bzero(data, PAGE_SIZE);
954 			bp->bio_resid -= PAGE_SIZE;
955 		} else {
956 			if (nbp == NULL) {
957 				nbp = getchainbuf(bp, swapdev_vp, B_ASYNC);
958 				nbp->b_blkno = blk;
959 				nbp->b_bcount = 0;
960 				nbp->b_data = data;
961 			}
962 			nbp->b_bcount += PAGE_SIZE;
963 		}
964 		--count;
965 		++start;
966 		data += PAGE_SIZE;
967 	}
968 
969 	/*
970 	 *  Flush out last buffer
971 	 */
972 
973 	splx(s);
974 
975 	if (nbp) {
976 		if (nbp->b_iocmd == BIO_READ) {
977 			++cnt.v_swapin;
978 			cnt.v_swappgsin += btoc(nbp->b_bcount);
979 		} else {
980 			++cnt.v_swapout;
981 			cnt.v_swappgsout += btoc(nbp->b_bcount);
982 			nbp->b_dirtyend = nbp->b_bcount;
983 		}
984 		flushchainbuf(nbp);
985 		/* nbp = NULL; */
986 	}
987 
988 	/*
989 	 * Wait for completion.
990 	 */
991 
992 	waitchainbuf(bp, 0, 1);
993 }
994 
995 /*
996  * SWAP_PAGER_GETPAGES() - bring pages in from swap
997  *
998  *	Attempt to retrieve (m, count) pages from backing store, but make
999  *	sure we retrieve at least m[reqpage].  We try to load in as large
1000  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1001  *	belongs to the same object.
1002  *
1003  *	The code is designed for asynchronous operation and
1004  *	immediate-notification of 'reqpage' but tends not to be
1005  *	used that way.  Please do not optimize-out this algorithmic
1006  *	feature, I intend to improve on it in the future.
1007  *
1008  *	The parent has a single vm_object_pip_add() reference prior to
1009  *	calling us and we should return with the same.
1010  *
1011  *	The parent has BUSY'd the pages.  We should return with 'm'
1012  *	left busy, but the others adjusted.
1013  */
1014 
1015 static int
1016 swap_pager_getpages(object, m, count, reqpage)
1017 	vm_object_t object;
1018 	vm_page_t *m;
1019 	int count, reqpage;
1020 {
1021 	struct buf *bp;
1022 	vm_page_t mreq;
1023 	int s;
1024 	int i;
1025 	int j;
1026 	daddr_t blk;
1027 	vm_offset_t kva;
1028 	vm_pindex_t lastpindex;
1029 
1030 	mreq = m[reqpage];
1031 
1032 	if (mreq->object != object) {
1033 		panic("swap_pager_getpages: object mismatch %p/%p",
1034 		    object,
1035 		    mreq->object
1036 		);
1037 	}
1038 	/*
1039 	 * Calculate range to retrieve.  The pages have already been assigned
1040 	 * their swapblks.  We require a *contiguous* range that falls entirely
1041 	 * within a single device stripe.   If we do not supply it, bad things
1042 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1043 	 * loops are set up such that the case(s) are handled implicitly.
1044 	 *
1045 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1046 	 * not need to be, but it will go a little faster if it is.
1047 	 */
1048 
1049 	s = splvm();
1050 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1051 
1052 	for (i = reqpage - 1; i >= 0; --i) {
1053 		daddr_t iblk;
1054 
1055 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1056 		if (blk != iblk + (reqpage - i))
1057 			break;
1058 		if ((blk ^ iblk) & dmmax_mask)
1059 			break;
1060 	}
1061 	++i;
1062 
1063 	for (j = reqpage + 1; j < count; ++j) {
1064 		daddr_t jblk;
1065 
1066 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1067 		if (blk != jblk - (j - reqpage))
1068 			break;
1069 		if ((blk ^ jblk) & dmmax_mask)
1070 			break;
1071 	}
1072 
1073 	/*
1074 	 * free pages outside our collection range.   Note: we never free
1075 	 * mreq, it must remain busy throughout.
1076 	 */
1077 
1078 	{
1079 		int k;
1080 
1081 		for (k = 0; k < i; ++k)
1082 			vm_page_free(m[k]);
1083 		for (k = j; k < count; ++k)
1084 			vm_page_free(m[k]);
1085 	}
1086 	splx(s);
1087 
1088 
1089 	/*
1090 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1091 	 * still busy, but the others unbusied.
1092 	 */
1093 
1094 	if (blk == SWAPBLK_NONE)
1095 		return(VM_PAGER_FAIL);
1096 
1097 	/*
1098 	 * Get a swap buffer header to perform the IO
1099 	 */
1100 
1101 	bp = getpbuf(&nsw_rcount);
1102 	kva = (vm_offset_t) bp->b_data;
1103 
1104 	/*
1105 	 * map our page(s) into kva for input
1106 	 *
1107 	 * NOTE: B_PAGING is set by pbgetvp()
1108 	 */
1109 
1110 	pmap_qenter(kva, m + i, j - i);
1111 
1112 	bp->b_iocmd = BIO_READ;
1113 	bp->b_iodone = swp_pager_async_iodone;
1114 	bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1115 	bp->b_data = (caddr_t) kva;
1116 	crhold(bp->b_rcred);
1117 	crhold(bp->b_wcred);
1118 	bp->b_blkno = blk - (reqpage - i);
1119 	bp->b_bcount = PAGE_SIZE * (j - i);
1120 	bp->b_bufsize = PAGE_SIZE * (j - i);
1121 	bp->b_pager.pg_reqpage = reqpage - i;
1122 
1123 	{
1124 		int k;
1125 
1126 		for (k = i; k < j; ++k) {
1127 			bp->b_pages[k - i] = m[k];
1128 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1129 		}
1130 	}
1131 	bp->b_npages = j - i;
1132 
1133 	pbgetvp(swapdev_vp, bp);
1134 
1135 	cnt.v_swapin++;
1136 	cnt.v_swappgsin += bp->b_npages;
1137 
1138 	/*
1139 	 * We still hold the lock on mreq, and our automatic completion routine
1140 	 * does not remove it.
1141 	 */
1142 
1143 	vm_object_pip_add(mreq->object, bp->b_npages);
1144 	lastpindex = m[j-1]->pindex;
1145 
1146 	/*
1147 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1148 	 * this point because we automatically release it on completion.
1149 	 * Instead, we look at the one page we are interested in which we
1150 	 * still hold a lock on even through the I/O completion.
1151 	 *
1152 	 * The other pages in our m[] array are also released on completion,
1153 	 * so we cannot assume they are valid anymore either.
1154 	 *
1155 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1156 	 */
1157 
1158 	BUF_KERNPROC(bp);
1159 	BUF_STRATEGY(bp);
1160 
1161 	/*
1162 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1163 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1164 	 * is set in the meta-data.
1165 	 */
1166 
1167 	s = splvm();
1168 
1169 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1170 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1171 		cnt.v_intrans++;
1172 		if (tsleep(mreq, PSWP, "swread", hz*20)) {
1173 			printf(
1174 			    "swap_pager: indefinite wait buffer: device:"
1175 				" %s, blkno: %ld, size: %ld\n",
1176 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1177 			    bp->b_bcount
1178 			);
1179 		}
1180 	}
1181 
1182 	splx(s);
1183 
1184 	/*
1185 	 * mreq is left bussied after completion, but all the other pages
1186 	 * are freed.  If we had an unrecoverable read error the page will
1187 	 * not be valid.
1188 	 */
1189 
1190 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1191 		return(VM_PAGER_ERROR);
1192 	} else {
1193 		return(VM_PAGER_OK);
1194 	}
1195 
1196 	/*
1197 	 * A final note: in a low swap situation, we cannot deallocate swap
1198 	 * and mark a page dirty here because the caller is likely to mark
1199 	 * the page clean when we return, causing the page to possibly revert
1200 	 * to all-zero's later.
1201 	 */
1202 }
1203 
1204 /*
1205  *	swap_pager_putpages:
1206  *
1207  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1208  *
1209  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1210  *	are automatically converted to SWAP objects.
1211  *
1212  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1213  *	vm_page reservation system coupled with properly written VFS devices
1214  *	should ensure that no low-memory deadlock occurs.  This is an area
1215  *	which needs work.
1216  *
1217  *	The parent has N vm_object_pip_add() references prior to
1218  *	calling us and will remove references for rtvals[] that are
1219  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1220  *	completion.
1221  *
1222  *	The parent has soft-busy'd the pages it passes us and will unbusy
1223  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1224  *	We need to unbusy the rest on I/O completion.
1225  */
1226 
1227 void
1228 swap_pager_putpages(object, m, count, sync, rtvals)
1229 	vm_object_t object;
1230 	vm_page_t *m;
1231 	int count;
1232 	boolean_t sync;
1233 	int *rtvals;
1234 {
1235 	int i;
1236 	int n = 0;
1237 
1238 	if (count && m[0]->object != object) {
1239 		panic("swap_pager_getpages: object mismatch %p/%p",
1240 		    object,
1241 		    m[0]->object
1242 		);
1243 	}
1244 	/*
1245 	 * Step 1
1246 	 *
1247 	 * Turn object into OBJT_SWAP
1248 	 * check for bogus sysops
1249 	 * force sync if not pageout process
1250 	 */
1251 
1252 	if (object->type != OBJT_SWAP)
1253 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1254 
1255 	if (curproc != pageproc)
1256 		sync = TRUE;
1257 
1258 	/*
1259 	 * Step 2
1260 	 *
1261 	 * Update nsw parameters from swap_async_max sysctl values.
1262 	 * Do not let the sysop crash the machine with bogus numbers.
1263 	 */
1264 
1265 	if (swap_async_max != nsw_wcount_async_max) {
1266 		int n;
1267 		int s;
1268 
1269 		/*
1270 		 * limit range
1271 		 */
1272 		if ((n = swap_async_max) > nswbuf / 2)
1273 			n = nswbuf / 2;
1274 		if (n < 1)
1275 			n = 1;
1276 		swap_async_max = n;
1277 
1278 		/*
1279 		 * Adjust difference ( if possible ).  If the current async
1280 		 * count is too low, we may not be able to make the adjustment
1281 		 * at this time.
1282 		 */
1283 		s = splvm();
1284 		mtx_lock(&pbuf_mtx);
1285 		n -= nsw_wcount_async_max;
1286 		if (nsw_wcount_async + n >= 0) {
1287 			nsw_wcount_async += n;
1288 			nsw_wcount_async_max += n;
1289 			wakeup(&nsw_wcount_async);
1290 		}
1291 		mtx_unlock(&pbuf_mtx);
1292 		splx(s);
1293 	}
1294 
1295 	/*
1296 	 * Step 3
1297 	 *
1298 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1299 	 * The page is left dirty until the pageout operation completes
1300 	 * successfully.
1301 	 */
1302 
1303 	for (i = 0; i < count; i += n) {
1304 		int s;
1305 		int j;
1306 		struct buf *bp;
1307 		daddr_t blk;
1308 
1309 		/*
1310 		 * Maximum I/O size is limited by a number of factors.
1311 		 */
1312 
1313 		n = min(BLIST_MAX_ALLOC, count - i);
1314 		n = min(n, nsw_cluster_max);
1315 
1316 		s = splvm();
1317 
1318 		/*
1319 		 * Get biggest block of swap we can.  If we fail, fall
1320 		 * back and try to allocate a smaller block.  Don't go
1321 		 * overboard trying to allocate space if it would overly
1322 		 * fragment swap.
1323 		 */
1324 		while (
1325 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1326 		    n > 4
1327 		) {
1328 			n >>= 1;
1329 		}
1330 		if (blk == SWAPBLK_NONE) {
1331 			for (j = 0; j < n; ++j)
1332 				rtvals[i+j] = VM_PAGER_FAIL;
1333 			splx(s);
1334 			continue;
1335 		}
1336 
1337 		/*
1338 		 * The I/O we are constructing cannot cross a physical
1339 		 * disk boundry in the swap stripe.  Note: we are still
1340 		 * at splvm().
1341 		 */
1342 		if ((blk ^ (blk + n)) & dmmax_mask) {
1343 			j = ((blk + dmmax) & dmmax_mask) - blk;
1344 			swp_pager_freeswapspace(blk + j, n - j);
1345 			n = j;
1346 		}
1347 
1348 		/*
1349 		 * All I/O parameters have been satisfied, build the I/O
1350 		 * request and assign the swap space.
1351 		 *
1352 		 * NOTE: B_PAGING is set by pbgetvp()
1353 		 */
1354 
1355 		if (sync == TRUE) {
1356 			bp = getpbuf(&nsw_wcount_sync);
1357 		} else {
1358 			bp = getpbuf(&nsw_wcount_async);
1359 			bp->b_flags = B_ASYNC;
1360 		}
1361 		bp->b_iocmd = BIO_WRITE;
1362 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1363 
1364 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1365 
1366 		bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1367 		bp->b_bcount = PAGE_SIZE * n;
1368 		bp->b_bufsize = PAGE_SIZE * n;
1369 		bp->b_blkno = blk;
1370 
1371 		crhold(bp->b_rcred);
1372 		crhold(bp->b_wcred);
1373 
1374 		pbgetvp(swapdev_vp, bp);
1375 
1376 		for (j = 0; j < n; ++j) {
1377 			vm_page_t mreq = m[i+j];
1378 
1379 			swp_pager_meta_build(
1380 			    mreq->object,
1381 			    mreq->pindex,
1382 			    blk + j
1383 			);
1384 			vm_page_dirty(mreq);
1385 			rtvals[i+j] = VM_PAGER_OK;
1386 
1387 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1388 			bp->b_pages[j] = mreq;
1389 		}
1390 		bp->b_npages = n;
1391 		/*
1392 		 * Must set dirty range for NFS to work.
1393 		 */
1394 		bp->b_dirtyoff = 0;
1395 		bp->b_dirtyend = bp->b_bcount;
1396 
1397 		cnt.v_swapout++;
1398 		cnt.v_swappgsout += bp->b_npages;
1399 		swapdev_vp->v_numoutput++;
1400 
1401 		splx(s);
1402 
1403 		/*
1404 		 * asynchronous
1405 		 *
1406 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1407 		 */
1408 
1409 		if (sync == FALSE) {
1410 			bp->b_iodone = swp_pager_async_iodone;
1411 			BUF_KERNPROC(bp);
1412 			BUF_STRATEGY(bp);
1413 
1414 			for (j = 0; j < n; ++j)
1415 				rtvals[i+j] = VM_PAGER_PEND;
1416 			continue;
1417 		}
1418 
1419 		/*
1420 		 * synchronous
1421 		 *
1422 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1423 		 */
1424 
1425 		bp->b_iodone = swp_pager_sync_iodone;
1426 		BUF_STRATEGY(bp);
1427 
1428 		/*
1429 		 * Wait for the sync I/O to complete, then update rtvals.
1430 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1431 		 * our async completion routine at the end, thus avoiding a
1432 		 * double-free.
1433 		 */
1434 		s = splbio();
1435 
1436 		while ((bp->b_flags & B_DONE) == 0) {
1437 			tsleep(bp, PVM, "swwrt", 0);
1438 		}
1439 
1440 		for (j = 0; j < n; ++j)
1441 			rtvals[i+j] = VM_PAGER_PEND;
1442 
1443 		/*
1444 		 * Now that we are through with the bp, we can call the
1445 		 * normal async completion, which frees everything up.
1446 		 */
1447 
1448 		swp_pager_async_iodone(bp);
1449 
1450 		splx(s);
1451 	}
1452 }
1453 
1454 /*
1455  *	swap_pager_sync_iodone:
1456  *
1457  *	Completion routine for synchronous reads and writes from/to swap.
1458  *	We just mark the bp is complete and wake up anyone waiting on it.
1459  *
1460  *	This routine may not block.  This routine is called at splbio() or better.
1461  */
1462 
1463 static void
1464 swp_pager_sync_iodone(bp)
1465 	struct buf *bp;
1466 {
1467 	bp->b_flags |= B_DONE;
1468 	bp->b_flags &= ~B_ASYNC;
1469 	wakeup(bp);
1470 }
1471 
1472 /*
1473  *	swp_pager_async_iodone:
1474  *
1475  *	Completion routine for asynchronous reads and writes from/to swap.
1476  *	Also called manually by synchronous code to finish up a bp.
1477  *
1478  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1479  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1480  *	unbusy all pages except the 'main' request page.  For WRITE
1481  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1482  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1483  *
1484  *	This routine may not block.
1485  *	This routine is called at splbio() or better
1486  *
1487  *	We up ourselves to splvm() as required for various vm_page related
1488  *	calls.
1489  */
1490 
1491 static void
1492 swp_pager_async_iodone(bp)
1493 	register struct buf *bp;
1494 {
1495 	int s;
1496 	int i;
1497 	vm_object_t object = NULL;
1498 
1499 	bp->b_flags |= B_DONE;
1500 
1501 	/*
1502 	 * report error
1503 	 */
1504 
1505 	if (bp->b_ioflags & BIO_ERROR) {
1506 		printf(
1507 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1508 			"size %ld, error %d\n",
1509 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1510 		    (long)bp->b_blkno,
1511 		    (long)bp->b_bcount,
1512 		    bp->b_error
1513 		);
1514 	}
1515 
1516 	/*
1517 	 * set object, raise to splvm().
1518 	 */
1519 
1520 	if (bp->b_npages)
1521 		object = bp->b_pages[0]->object;
1522 	s = splvm();
1523 
1524 	/*
1525 	 * remove the mapping for kernel virtual
1526 	 */
1527 
1528 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1529 
1530 	/*
1531 	 * cleanup pages.  If an error occurs writing to swap, we are in
1532 	 * very serious trouble.  If it happens to be a disk error, though,
1533 	 * we may be able to recover by reassigning the swap later on.  So
1534 	 * in this case we remove the m->swapblk assignment for the page
1535 	 * but do not free it in the rlist.  The errornous block(s) are thus
1536 	 * never reallocated as swap.  Redirty the page and continue.
1537 	 */
1538 
1539 	for (i = 0; i < bp->b_npages; ++i) {
1540 		vm_page_t m = bp->b_pages[i];
1541 
1542 		vm_page_flag_clear(m, PG_SWAPINPROG);
1543 
1544 		if (bp->b_ioflags & BIO_ERROR) {
1545 			/*
1546 			 * If an error occurs I'd love to throw the swapblk
1547 			 * away without freeing it back to swapspace, so it
1548 			 * can never be used again.  But I can't from an
1549 			 * interrupt.
1550 			 */
1551 
1552 			if (bp->b_iocmd == BIO_READ) {
1553 				/*
1554 				 * When reading, reqpage needs to stay
1555 				 * locked for the parent, but all other
1556 				 * pages can be freed.  We still want to
1557 				 * wakeup the parent waiting on the page,
1558 				 * though.  ( also: pg_reqpage can be -1 and
1559 				 * not match anything ).
1560 				 *
1561 				 * We have to wake specifically requested pages
1562 				 * up too because we cleared PG_SWAPINPROG and
1563 				 * someone may be waiting for that.
1564 				 *
1565 				 * NOTE: for reads, m->dirty will probably
1566 				 * be overridden by the original caller of
1567 				 * getpages so don't play cute tricks here.
1568 				 *
1569 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1570 				 * AS THIS MESSES WITH object->memq, and it is
1571 				 * not legal to mess with object->memq from an
1572 				 * interrupt.
1573 				 */
1574 
1575 				m->valid = 0;
1576 				vm_page_flag_clear(m, PG_ZERO);
1577 
1578 				if (i != bp->b_pager.pg_reqpage)
1579 					vm_page_free(m);
1580 				else
1581 					vm_page_flash(m);
1582 				/*
1583 				 * If i == bp->b_pager.pg_reqpage, do not wake
1584 				 * the page up.  The caller needs to.
1585 				 */
1586 			} else {
1587 				/*
1588 				 * If a write error occurs, reactivate page
1589 				 * so it doesn't clog the inactive list,
1590 				 * then finish the I/O.
1591 				 */
1592 				vm_page_dirty(m);
1593 				vm_page_activate(m);
1594 				vm_page_io_finish(m);
1595 			}
1596 		} else if (bp->b_iocmd == BIO_READ) {
1597 			/*
1598 			 * For read success, clear dirty bits.  Nobody should
1599 			 * have this page mapped but don't take any chances,
1600 			 * make sure the pmap modify bits are also cleared.
1601 			 *
1602 			 * NOTE: for reads, m->dirty will probably be
1603 			 * overridden by the original caller of getpages so
1604 			 * we cannot set them in order to free the underlying
1605 			 * swap in a low-swap situation.  I don't think we'd
1606 			 * want to do that anyway, but it was an optimization
1607 			 * that existed in the old swapper for a time before
1608 			 * it got ripped out due to precisely this problem.
1609 			 *
1610 			 * clear PG_ZERO in page.
1611 			 *
1612 			 * If not the requested page then deactivate it.
1613 			 *
1614 			 * Note that the requested page, reqpage, is left
1615 			 * busied, but we still have to wake it up.  The
1616 			 * other pages are released (unbusied) by
1617 			 * vm_page_wakeup().  We do not set reqpage's
1618 			 * valid bits here, it is up to the caller.
1619 			 */
1620 
1621 			pmap_clear_modify(m);
1622 			m->valid = VM_PAGE_BITS_ALL;
1623 			vm_page_undirty(m);
1624 			vm_page_flag_clear(m, PG_ZERO);
1625 
1626 			/*
1627 			 * We have to wake specifically requested pages
1628 			 * up too because we cleared PG_SWAPINPROG and
1629 			 * could be waiting for it in getpages.  However,
1630 			 * be sure to not unbusy getpages specifically
1631 			 * requested page - getpages expects it to be
1632 			 * left busy.
1633 			 */
1634 			if (i != bp->b_pager.pg_reqpage) {
1635 				vm_page_deactivate(m);
1636 				vm_page_wakeup(m);
1637 			} else {
1638 				vm_page_flash(m);
1639 			}
1640 		} else {
1641 			/*
1642 			 * For write success, clear the modify and dirty
1643 			 * status, then finish the I/O ( which decrements the
1644 			 * busy count and possibly wakes waiter's up ).
1645 			 */
1646 			pmap_clear_modify(m);
1647 			vm_page_undirty(m);
1648 			vm_page_io_finish(m);
1649 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1650 				vm_page_protect(m, VM_PROT_READ);
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * adjust pip.  NOTE: the original parent may still have its own
1656 	 * pip refs on the object.
1657 	 */
1658 
1659 	if (object)
1660 		vm_object_pip_wakeupn(object, bp->b_npages);
1661 
1662 	/*
1663 	 * release the physical I/O buffer
1664 	 */
1665 
1666 	relpbuf(
1667 	    bp,
1668 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1669 		((bp->b_flags & B_ASYNC) ?
1670 		    &nsw_wcount_async :
1671 		    &nsw_wcount_sync
1672 		)
1673 	    )
1674 	);
1675 	splx(s);
1676 }
1677 
1678 /************************************************************************
1679  *				SWAP META DATA 				*
1680  ************************************************************************
1681  *
1682  *	These routines manipulate the swap metadata stored in the
1683  *	OBJT_SWAP object.  All swp_*() routines must be called at
1684  *	splvm() because swap can be freed up by the low level vm_page
1685  *	code which might be called from interrupts beyond what splbio() covers.
1686  *
1687  *	Swap metadata is implemented with a global hash and not directly
1688  *	linked into the object.  Instead the object simply contains
1689  *	appropriate tracking counters.
1690  */
1691 
1692 /*
1693  * SWP_PAGER_HASH() -	hash swap meta data
1694  *
1695  *	This is an inline helper function which hashes the swapblk given
1696  *	the object and page index.  It returns a pointer to a pointer
1697  *	to the object, or a pointer to a NULL pointer if it could not
1698  *	find a swapblk.
1699  *
1700  *	This routine must be called at splvm().
1701  */
1702 
1703 static __inline struct swblock **
1704 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1705 {
1706 	struct swblock **pswap;
1707 	struct swblock *swap;
1708 
1709 	index &= ~SWAP_META_MASK;
1710 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1711 
1712 	while ((swap = *pswap) != NULL) {
1713 		if (swap->swb_object == object &&
1714 		    swap->swb_index == index
1715 		) {
1716 			break;
1717 		}
1718 		pswap = &swap->swb_hnext;
1719 	}
1720 	return(pswap);
1721 }
1722 
1723 /*
1724  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1725  *
1726  *	We first convert the object to a swap object if it is a default
1727  *	object.
1728  *
1729  *	The specified swapblk is added to the object's swap metadata.  If
1730  *	the swapblk is not valid, it is freed instead.  Any previously
1731  *	assigned swapblk is freed.
1732  *
1733  *	This routine must be called at splvm(), except when used to convert
1734  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1735 
1736  */
1737 
1738 static void
1739 swp_pager_meta_build(
1740 	vm_object_t object,
1741 	vm_pindex_t index,
1742 	daddr_t swapblk
1743 ) {
1744 	struct swblock *swap;
1745 	struct swblock **pswap;
1746 
1747 	/*
1748 	 * Convert default object to swap object if necessary
1749 	 */
1750 
1751 	if (object->type != OBJT_SWAP) {
1752 		object->type = OBJT_SWAP;
1753 		object->un_pager.swp.swp_bcount = 0;
1754 
1755 		mtx_lock(&sw_alloc_mtx);
1756 		if (object->handle != NULL) {
1757 			TAILQ_INSERT_TAIL(
1758 			    NOBJLIST(object->handle),
1759 			    object,
1760 			    pager_object_list
1761 			);
1762 		} else {
1763 			TAILQ_INSERT_TAIL(
1764 			    &swap_pager_un_object_list,
1765 			    object,
1766 			    pager_object_list
1767 			);
1768 		}
1769 		mtx_unlock(&sw_alloc_mtx);
1770 	}
1771 
1772 	/*
1773 	 * Locate hash entry.  If not found create, but if we aren't adding
1774 	 * anything just return.  If we run out of space in the map we wait
1775 	 * and, since the hash table may have changed, retry.
1776 	 */
1777 
1778 retry:
1779 	pswap = swp_pager_hash(object, index);
1780 
1781 	if ((swap = *pswap) == NULL) {
1782 		int i;
1783 
1784 		if (swapblk == SWAPBLK_NONE)
1785 			return;
1786 
1787 		swap = *pswap = zalloc(swap_zone);
1788 		if (swap == NULL) {
1789 			VM_WAIT;
1790 			goto retry;
1791 		}
1792 		swap->swb_hnext = NULL;
1793 		swap->swb_object = object;
1794 		swap->swb_index = index & ~SWAP_META_MASK;
1795 		swap->swb_count = 0;
1796 
1797 		++object->un_pager.swp.swp_bcount;
1798 
1799 		for (i = 0; i < SWAP_META_PAGES; ++i)
1800 			swap->swb_pages[i] = SWAPBLK_NONE;
1801 	}
1802 
1803 	/*
1804 	 * Delete prior contents of metadata
1805 	 */
1806 
1807 	index &= SWAP_META_MASK;
1808 
1809 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1810 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1811 		--swap->swb_count;
1812 	}
1813 
1814 	/*
1815 	 * Enter block into metadata
1816 	 */
1817 
1818 	swap->swb_pages[index] = swapblk;
1819 	if (swapblk != SWAPBLK_NONE)
1820 		++swap->swb_count;
1821 }
1822 
1823 /*
1824  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1825  *
1826  *	The requested range of blocks is freed, with any associated swap
1827  *	returned to the swap bitmap.
1828  *
1829  *	This routine will free swap metadata structures as they are cleaned
1830  *	out.  This routine does *NOT* operate on swap metadata associated
1831  *	with resident pages.
1832  *
1833  *	This routine must be called at splvm()
1834  */
1835 
1836 static void
1837 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1838 {
1839 	if (object->type != OBJT_SWAP)
1840 		return;
1841 
1842 	while (count > 0) {
1843 		struct swblock **pswap;
1844 		struct swblock *swap;
1845 
1846 		pswap = swp_pager_hash(object, index);
1847 
1848 		if ((swap = *pswap) != NULL) {
1849 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1850 
1851 			if (v != SWAPBLK_NONE) {
1852 				swp_pager_freeswapspace(v, 1);
1853 				swap->swb_pages[index & SWAP_META_MASK] =
1854 					SWAPBLK_NONE;
1855 				if (--swap->swb_count == 0) {
1856 					*pswap = swap->swb_hnext;
1857 					zfree(swap_zone, swap);
1858 					--object->un_pager.swp.swp_bcount;
1859 				}
1860 			}
1861 			--count;
1862 			++index;
1863 		} else {
1864 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1865 			count -= n;
1866 			index += n;
1867 		}
1868 	}
1869 }
1870 
1871 /*
1872  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1873  *
1874  *	This routine locates and destroys all swap metadata associated with
1875  *	an object.
1876  *
1877  *	This routine must be called at splvm()
1878  */
1879 
1880 static void
1881 swp_pager_meta_free_all(vm_object_t object)
1882 {
1883 	daddr_t index = 0;
1884 
1885 	if (object->type != OBJT_SWAP)
1886 		return;
1887 
1888 	while (object->un_pager.swp.swp_bcount) {
1889 		struct swblock **pswap;
1890 		struct swblock *swap;
1891 
1892 		pswap = swp_pager_hash(object, index);
1893 		if ((swap = *pswap) != NULL) {
1894 			int i;
1895 
1896 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1897 				daddr_t v = swap->swb_pages[i];
1898 				if (v != SWAPBLK_NONE) {
1899 					--swap->swb_count;
1900 					swp_pager_freeswapspace(v, 1);
1901 				}
1902 			}
1903 			if (swap->swb_count != 0)
1904 				panic("swap_pager_meta_free_all: swb_count != 0");
1905 			*pswap = swap->swb_hnext;
1906 			zfree(swap_zone, swap);
1907 			--object->un_pager.swp.swp_bcount;
1908 		}
1909 		index += SWAP_META_PAGES;
1910 		if (index > 0x20000000)
1911 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1912 	}
1913 }
1914 
1915 /*
1916  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1917  *
1918  *	This routine is capable of looking up, popping, or freeing
1919  *	swapblk assignments in the swap meta data or in the vm_page_t.
1920  *	The routine typically returns the swapblk being looked-up, or popped,
1921  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1922  *	was invalid.  This routine will automatically free any invalid
1923  *	meta-data swapblks.
1924  *
1925  *	It is not possible to store invalid swapblks in the swap meta data
1926  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1927  *
1928  *	When acting on a busy resident page and paging is in progress, we
1929  *	have to wait until paging is complete but otherwise can act on the
1930  *	busy page.
1931  *
1932  *	This routine must be called at splvm().
1933  *
1934  *	SWM_FREE	remove and free swap block from metadata
1935  *	SWM_POP		remove from meta data but do not free.. pop it out
1936  */
1937 
1938 static daddr_t
1939 swp_pager_meta_ctl(
1940 	vm_object_t object,
1941 	vm_pindex_t index,
1942 	int flags
1943 ) {
1944 	struct swblock **pswap;
1945 	struct swblock *swap;
1946 	daddr_t r1;
1947 
1948 	/*
1949 	 * The meta data only exists of the object is OBJT_SWAP
1950 	 * and even then might not be allocated yet.
1951 	 */
1952 
1953 	if (object->type != OBJT_SWAP)
1954 		return(SWAPBLK_NONE);
1955 
1956 	r1 = SWAPBLK_NONE;
1957 	pswap = swp_pager_hash(object, index);
1958 
1959 	if ((swap = *pswap) != NULL) {
1960 		index &= SWAP_META_MASK;
1961 		r1 = swap->swb_pages[index];
1962 
1963 		if (r1 != SWAPBLK_NONE) {
1964 			if (flags & SWM_FREE) {
1965 				swp_pager_freeswapspace(r1, 1);
1966 				r1 = SWAPBLK_NONE;
1967 			}
1968 			if (flags & (SWM_FREE|SWM_POP)) {
1969 				swap->swb_pages[index] = SWAPBLK_NONE;
1970 				if (--swap->swb_count == 0) {
1971 					*pswap = swap->swb_hnext;
1972 					zfree(swap_zone, swap);
1973 					--object->un_pager.swp.swp_bcount;
1974 				}
1975 			}
1976 		}
1977 	}
1978 	return(r1);
1979 }
1980 
1981 /********************************************************
1982  *		CHAINING FUNCTIONS			*
1983  ********************************************************
1984  *
1985  *	These functions support recursion of I/O operations
1986  *	on bp's, typically by chaining one or more 'child' bp's
1987  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
1988  *	chaining is possible.
1989  */
1990 
1991 /*
1992  *	vm_pager_chain_iodone:
1993  *
1994  *	io completion routine for child bp.  Currently we fudge a bit
1995  *	on dealing with b_resid.   Since users of these routines may issue
1996  *	multiple children simultaneously, sequencing of the error can be lost.
1997  */
1998 
1999 static void
2000 vm_pager_chain_iodone(struct buf *nbp)
2001 {
2002 	struct bio *bp;
2003 	u_int *count;
2004 
2005 	bp = nbp->b_caller1;
2006 	count = (u_int *)&(bp->bio_caller1);
2007 	if (bp != NULL) {
2008 		if (nbp->b_ioflags & BIO_ERROR) {
2009 			bp->bio_flags |= BIO_ERROR;
2010 			bp->bio_error = nbp->b_error;
2011 		} else if (nbp->b_resid != 0) {
2012 			bp->bio_flags |= BIO_ERROR;
2013 			bp->bio_error = EINVAL;
2014 		} else {
2015 			bp->bio_resid -= nbp->b_bcount;
2016 		}
2017 		nbp->b_caller1 = NULL;
2018 		--(*count);
2019 		if (bp->bio_flags & BIO_FLAG1) {
2020 			bp->bio_flags &= ~BIO_FLAG1;
2021 			wakeup(bp);
2022 		}
2023 	}
2024 	nbp->b_flags |= B_DONE;
2025 	nbp->b_flags &= ~B_ASYNC;
2026 	relpbuf(nbp, NULL);
2027 }
2028 
2029 /*
2030  *	getchainbuf:
2031  *
2032  *	Obtain a physical buffer and chain it to its parent buffer.  When
2033  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
2034  *	automatically propagated to the parent
2035  */
2036 
2037 struct buf *
2038 getchainbuf(struct bio *bp, struct vnode *vp, int flags)
2039 {
2040 	struct buf *nbp = getpbuf(NULL);
2041 	u_int *count = (u_int *)&(bp->bio_caller1);
2042 
2043 	nbp->b_caller1 = bp;
2044 	++(*count);
2045 
2046 	if (*count > 4)
2047 		waitchainbuf(bp, 4, 0);
2048 
2049 	nbp->b_iocmd = bp->bio_cmd;
2050 	nbp->b_ioflags = bp->bio_flags & BIO_ORDERED;
2051 	nbp->b_flags = flags;
2052 	nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
2053 	nbp->b_iodone = vm_pager_chain_iodone;
2054 
2055 	crhold(nbp->b_rcred);
2056 	crhold(nbp->b_wcred);
2057 
2058 	if (vp)
2059 		pbgetvp(vp, nbp);
2060 	return(nbp);
2061 }
2062 
2063 void
2064 flushchainbuf(struct buf *nbp)
2065 {
2066 	if (nbp->b_bcount) {
2067 		nbp->b_bufsize = nbp->b_bcount;
2068 		if (nbp->b_iocmd == BIO_WRITE)
2069 			nbp->b_dirtyend = nbp->b_bcount;
2070 		BUF_KERNPROC(nbp);
2071 		BUF_STRATEGY(nbp);
2072 	} else {
2073 		bufdone(nbp);
2074 	}
2075 }
2076 
2077 void
2078 waitchainbuf(struct bio *bp, int limit, int done)
2079 {
2080  	int s;
2081 	u_int *count = (u_int *)&(bp->bio_caller1);
2082 
2083 	s = splbio();
2084 	while (*count > limit) {
2085 		bp->bio_flags |= BIO_FLAG1;
2086 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
2087 	}
2088 	if (done) {
2089 		if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) {
2090 			bp->bio_flags |= BIO_ERROR;
2091 			bp->bio_error = EINVAL;
2092 		}
2093 		biodone(bp);
2094 	}
2095 	splx(s);
2096 }
2097 
2098