1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_mac.h" 73 #include "opt_swap.h" 74 #include "opt_vm.h" 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/conf.h> 79 #include <sys/kernel.h> 80 #include <sys/priv.h> 81 #include <sys/proc.h> 82 #include <sys/bio.h> 83 #include <sys/buf.h> 84 #include <sys/disk.h> 85 #include <sys/fcntl.h> 86 #include <sys/mount.h> 87 #include <sys/namei.h> 88 #include <sys/vnode.h> 89 #include <sys/malloc.h> 90 #include <sys/sysctl.h> 91 #include <sys/sysproto.h> 92 #include <sys/blist.h> 93 #include <sys/lock.h> 94 #include <sys/sx.h> 95 #include <sys/vmmeter.h> 96 97 #include <security/mac/mac_framework.h> 98 99 #include <vm/vm.h> 100 #include <vm/pmap.h> 101 #include <vm/vm_map.h> 102 #include <vm/vm_kern.h> 103 #include <vm/vm_object.h> 104 #include <vm/vm_page.h> 105 #include <vm/vm_pager.h> 106 #include <vm/vm_pageout.h> 107 #include <vm/vm_param.h> 108 #include <vm/swap_pager.h> 109 #include <vm/vm_extern.h> 110 #include <vm/uma.h> 111 112 #include <geom/geom.h> 113 114 /* 115 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, or 16 116 * pages per allocation. We recommend you stick with the default of 8. 117 * The 16-page limit is due to the radix code (kern/subr_blist.c). 118 */ 119 #ifndef MAX_PAGEOUT_CLUSTER 120 #define MAX_PAGEOUT_CLUSTER 16 121 #endif 122 123 #if !defined(SWB_NPAGES) 124 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 125 #endif 126 127 /* 128 * Piecemeal swap metadata structure. Swap is stored in a radix tree. 129 * 130 * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix 131 * is basically 8. Assuming PAGE_SIZE == 4096, one tree level represents 132 * 32K worth of data, two levels represent 256K, three levels represent 133 * 2 MBytes. This is acceptable. 134 * 135 * Overall memory utilization is about the same as the old swap structure. 136 */ 137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 138 #define SWAP_META_PAGES (SWB_NPAGES * 2) 139 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 140 141 struct swblock { 142 struct swblock *swb_hnext; 143 vm_object_t swb_object; 144 vm_pindex_t swb_index; 145 int swb_count; 146 daddr_t swb_pages[SWAP_META_PAGES]; 147 }; 148 149 static struct mtx sw_dev_mtx; 150 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 151 static struct swdevt *swdevhd; /* Allocate from here next */ 152 static int nswapdev; /* Number of swap devices */ 153 int swap_pager_avail; 154 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 155 156 static void swapdev_strategy(struct buf *, struct swdevt *sw); 157 158 #define SWM_FREE 0x02 /* free, period */ 159 #define SWM_POP 0x04 /* pop out */ 160 161 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 162 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 163 static int nsw_rcount; /* free read buffers */ 164 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 165 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 166 static int nsw_wcount_async_max;/* assigned maximum */ 167 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 168 169 static struct swblock **swhash; 170 static int swhash_mask; 171 static struct mtx swhash_mtx; 172 173 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 174 static struct sx sw_alloc_sx; 175 176 177 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 178 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 179 180 /* 181 * "named" and "unnamed" anon region objects. Try to reduce the overhead 182 * of searching a named list by hashing it just a little. 183 */ 184 185 #define NOBJLISTS 8 186 187 #define NOBJLIST(handle) \ 188 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 189 190 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 191 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 192 static uma_zone_t swap_zone; 193 static struct vm_object swap_zone_obj; 194 195 /* 196 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 197 * calls hooked from other parts of the VM system and do not appear here. 198 * (see vm/swap_pager.h). 199 */ 200 static vm_object_t 201 swap_pager_alloc(void *handle, vm_ooffset_t size, 202 vm_prot_t prot, vm_ooffset_t offset); 203 static void swap_pager_dealloc(vm_object_t object); 204 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 205 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 206 static boolean_t 207 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 208 static void swap_pager_init(void); 209 static void swap_pager_unswapped(vm_page_t); 210 static void swap_pager_swapoff(struct swdevt *sp); 211 212 struct pagerops swappagerops = { 213 .pgo_init = swap_pager_init, /* early system initialization of pager */ 214 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 215 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 216 .pgo_getpages = swap_pager_getpages, /* pagein */ 217 .pgo_putpages = swap_pager_putpages, /* pageout */ 218 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 219 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 220 }; 221 222 /* 223 * dmmax is in page-sized chunks with the new swap system. It was 224 * dev-bsized chunks in the old. dmmax is always a power of 2. 225 * 226 * swap_*() routines are externally accessible. swp_*() routines are 227 * internal. 228 */ 229 static int dmmax; 230 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 231 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 232 233 SYSCTL_INT(_vm, OID_AUTO, dmmax, 234 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 235 236 static void swp_sizecheck(void); 237 static void swp_pager_async_iodone(struct buf *bp); 238 static int swapongeom(struct thread *, struct vnode *); 239 static int swaponvp(struct thread *, struct vnode *, u_long); 240 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 241 242 /* 243 * Swap bitmap functions 244 */ 245 static void swp_pager_freeswapspace(daddr_t blk, int npages); 246 static daddr_t swp_pager_getswapspace(int npages); 247 248 /* 249 * Metadata functions 250 */ 251 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 252 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 253 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 254 static void swp_pager_meta_free_all(vm_object_t); 255 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 256 257 /* 258 * SWP_SIZECHECK() - update swap_pager_full indication 259 * 260 * update the swap_pager_almost_full indication and warn when we are 261 * about to run out of swap space, using lowat/hiwat hysteresis. 262 * 263 * Clear swap_pager_full ( task killing ) indication when lowat is met. 264 * 265 * No restrictions on call 266 * This routine may not block. 267 * This routine must be called at splvm() 268 */ 269 static void 270 swp_sizecheck(void) 271 { 272 273 if (swap_pager_avail < nswap_lowat) { 274 if (swap_pager_almost_full == 0) { 275 printf("swap_pager: out of swap space\n"); 276 swap_pager_almost_full = 1; 277 } 278 } else { 279 swap_pager_full = 0; 280 if (swap_pager_avail > nswap_hiwat) 281 swap_pager_almost_full = 0; 282 } 283 } 284 285 /* 286 * SWP_PAGER_HASH() - hash swap meta data 287 * 288 * This is an helper function which hashes the swapblk given 289 * the object and page index. It returns a pointer to a pointer 290 * to the object, or a pointer to a NULL pointer if it could not 291 * find a swapblk. 292 * 293 * This routine must be called at splvm(). 294 */ 295 static struct swblock ** 296 swp_pager_hash(vm_object_t object, vm_pindex_t index) 297 { 298 struct swblock **pswap; 299 struct swblock *swap; 300 301 index &= ~(vm_pindex_t)SWAP_META_MASK; 302 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 303 while ((swap = *pswap) != NULL) { 304 if (swap->swb_object == object && 305 swap->swb_index == index 306 ) { 307 break; 308 } 309 pswap = &swap->swb_hnext; 310 } 311 return (pswap); 312 } 313 314 /* 315 * SWAP_PAGER_INIT() - initialize the swap pager! 316 * 317 * Expected to be started from system init. NOTE: This code is run 318 * before much else so be careful what you depend on. Most of the VM 319 * system has yet to be initialized at this point. 320 */ 321 static void 322 swap_pager_init(void) 323 { 324 /* 325 * Initialize object lists 326 */ 327 int i; 328 329 for (i = 0; i < NOBJLISTS; ++i) 330 TAILQ_INIT(&swap_pager_object_list[i]); 331 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 332 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 333 334 /* 335 * Device Stripe, in PAGE_SIZE'd blocks 336 */ 337 dmmax = SWB_NPAGES * 2; 338 } 339 340 /* 341 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 342 * 343 * Expected to be started from pageout process once, prior to entering 344 * its main loop. 345 */ 346 void 347 swap_pager_swap_init(void) 348 { 349 int n, n2; 350 351 /* 352 * Number of in-transit swap bp operations. Don't 353 * exhaust the pbufs completely. Make sure we 354 * initialize workable values (0 will work for hysteresis 355 * but it isn't very efficient). 356 * 357 * The nsw_cluster_max is constrained by the bp->b_pages[] 358 * array (MAXPHYS/PAGE_SIZE) and our locally defined 359 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 360 * constrained by the swap device interleave stripe size. 361 * 362 * Currently we hardwire nsw_wcount_async to 4. This limit is 363 * designed to prevent other I/O from having high latencies due to 364 * our pageout I/O. The value 4 works well for one or two active swap 365 * devices but is probably a little low if you have more. Even so, 366 * a higher value would probably generate only a limited improvement 367 * with three or four active swap devices since the system does not 368 * typically have to pageout at extreme bandwidths. We will want 369 * at least 2 per swap devices, and 4 is a pretty good value if you 370 * have one NFS swap device due to the command/ack latency over NFS. 371 * So it all works out pretty well. 372 */ 373 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 374 375 mtx_lock(&pbuf_mtx); 376 nsw_rcount = (nswbuf + 1) / 2; 377 nsw_wcount_sync = (nswbuf + 3) / 4; 378 nsw_wcount_async = 4; 379 nsw_wcount_async_max = nsw_wcount_async; 380 mtx_unlock(&pbuf_mtx); 381 382 /* 383 * Initialize our zone. Right now I'm just guessing on the number 384 * we need based on the number of pages in the system. Each swblock 385 * can hold 16 pages, so this is probably overkill. This reservation 386 * is typically limited to around 32MB by default. 387 */ 388 n = cnt.v_page_count / 2; 389 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 390 n = maxswzone / sizeof(struct swblock); 391 n2 = n; 392 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 393 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 394 if (swap_zone == NULL) 395 panic("failed to create swap_zone."); 396 do { 397 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n)) 398 break; 399 /* 400 * if the allocation failed, try a zone two thirds the 401 * size of the previous attempt. 402 */ 403 n -= ((n + 2) / 3); 404 } while (n > 0); 405 if (n2 != n) 406 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 407 n2 = n; 408 409 /* 410 * Initialize our meta-data hash table. The swapper does not need to 411 * be quite as efficient as the VM system, so we do not use an 412 * oversized hash table. 413 * 414 * n: size of hash table, must be power of 2 415 * swhash_mask: hash table index mask 416 */ 417 for (n = 1; n < n2 / 8; n *= 2) 418 ; 419 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 420 swhash_mask = n - 1; 421 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 422 } 423 424 /* 425 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 426 * its metadata structures. 427 * 428 * This routine is called from the mmap and fork code to create a new 429 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 430 * and then converting it with swp_pager_meta_build(). 431 * 432 * This routine may block in vm_object_allocate() and create a named 433 * object lookup race, so we must interlock. We must also run at 434 * splvm() for the object lookup to handle races with interrupts, but 435 * we do not have to maintain splvm() in between the lookup and the 436 * add because (I believe) it is not possible to attempt to create 437 * a new swap object w/handle when a default object with that handle 438 * already exists. 439 * 440 * MPSAFE 441 */ 442 static vm_object_t 443 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 444 vm_ooffset_t offset) 445 { 446 vm_object_t object; 447 vm_pindex_t pindex; 448 449 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 450 451 if (handle) { 452 mtx_lock(&Giant); 453 /* 454 * Reference existing named region or allocate new one. There 455 * should not be a race here against swp_pager_meta_build() 456 * as called from vm_page_remove() in regards to the lookup 457 * of the handle. 458 */ 459 sx_xlock(&sw_alloc_sx); 460 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 461 462 if (object == NULL) { 463 object = vm_object_allocate(OBJT_DEFAULT, pindex); 464 object->handle = handle; 465 466 VM_OBJECT_LOCK(object); 467 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 468 VM_OBJECT_UNLOCK(object); 469 } 470 sx_xunlock(&sw_alloc_sx); 471 mtx_unlock(&Giant); 472 } else { 473 object = vm_object_allocate(OBJT_DEFAULT, pindex); 474 475 VM_OBJECT_LOCK(object); 476 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 477 VM_OBJECT_UNLOCK(object); 478 } 479 return (object); 480 } 481 482 /* 483 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 484 * 485 * The swap backing for the object is destroyed. The code is 486 * designed such that we can reinstantiate it later, but this 487 * routine is typically called only when the entire object is 488 * about to be destroyed. 489 * 490 * This routine may block, but no longer does. 491 * 492 * The object must be locked or unreferenceable. 493 */ 494 static void 495 swap_pager_dealloc(vm_object_t object) 496 { 497 498 /* 499 * Remove from list right away so lookups will fail if we block for 500 * pageout completion. 501 */ 502 if (object->handle != NULL) { 503 mtx_lock(&sw_alloc_mtx); 504 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 505 mtx_unlock(&sw_alloc_mtx); 506 } 507 508 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 509 vm_object_pip_wait(object, "swpdea"); 510 511 /* 512 * Free all remaining metadata. We only bother to free it from 513 * the swap meta data. We do not attempt to free swapblk's still 514 * associated with vm_page_t's for this object. We do not care 515 * if paging is still in progress on some objects. 516 */ 517 swp_pager_meta_free_all(object); 518 } 519 520 /************************************************************************ 521 * SWAP PAGER BITMAP ROUTINES * 522 ************************************************************************/ 523 524 /* 525 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 526 * 527 * Allocate swap for the requested number of pages. The starting 528 * swap block number (a page index) is returned or SWAPBLK_NONE 529 * if the allocation failed. 530 * 531 * Also has the side effect of advising that somebody made a mistake 532 * when they configured swap and didn't configure enough. 533 * 534 * Must be called at splvm() to avoid races with bitmap frees from 535 * vm_page_remove() aka swap_pager_page_removed(). 536 * 537 * This routine may not block 538 * This routine must be called at splvm(). 539 * 540 * We allocate in round-robin fashion from the configured devices. 541 */ 542 static daddr_t 543 swp_pager_getswapspace(int npages) 544 { 545 daddr_t blk; 546 struct swdevt *sp; 547 int i; 548 549 blk = SWAPBLK_NONE; 550 mtx_lock(&sw_dev_mtx); 551 sp = swdevhd; 552 for (i = 0; i < nswapdev; i++) { 553 if (sp == NULL) 554 sp = TAILQ_FIRST(&swtailq); 555 if (!(sp->sw_flags & SW_CLOSING)) { 556 blk = blist_alloc(sp->sw_blist, npages); 557 if (blk != SWAPBLK_NONE) { 558 blk += sp->sw_first; 559 sp->sw_used += npages; 560 swap_pager_avail -= npages; 561 swp_sizecheck(); 562 swdevhd = TAILQ_NEXT(sp, sw_list); 563 goto done; 564 } 565 } 566 sp = TAILQ_NEXT(sp, sw_list); 567 } 568 if (swap_pager_full != 2) { 569 printf("swap_pager_getswapspace(%d): failed\n", npages); 570 swap_pager_full = 2; 571 swap_pager_almost_full = 1; 572 } 573 swdevhd = NULL; 574 done: 575 mtx_unlock(&sw_dev_mtx); 576 return (blk); 577 } 578 579 static int 580 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 581 { 582 583 return (blk >= sp->sw_first && blk < sp->sw_end); 584 } 585 586 static void 587 swp_pager_strategy(struct buf *bp) 588 { 589 struct swdevt *sp; 590 591 mtx_lock(&sw_dev_mtx); 592 TAILQ_FOREACH(sp, &swtailq, sw_list) { 593 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 594 mtx_unlock(&sw_dev_mtx); 595 sp->sw_strategy(bp, sp); 596 return; 597 } 598 } 599 panic("Swapdev not found"); 600 } 601 602 603 /* 604 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 605 * 606 * This routine returns the specified swap blocks back to the bitmap. 607 * 608 * Note: This routine may not block (it could in the old swap code), 609 * and through the use of the new blist routines it does not block. 610 * 611 * We must be called at splvm() to avoid races with bitmap frees from 612 * vm_page_remove() aka swap_pager_page_removed(). 613 * 614 * This routine may not block 615 * This routine must be called at splvm(). 616 */ 617 static void 618 swp_pager_freeswapspace(daddr_t blk, int npages) 619 { 620 struct swdevt *sp; 621 622 mtx_lock(&sw_dev_mtx); 623 TAILQ_FOREACH(sp, &swtailq, sw_list) { 624 if (blk >= sp->sw_first && blk < sp->sw_end) { 625 sp->sw_used -= npages; 626 /* 627 * If we are attempting to stop swapping on 628 * this device, we don't want to mark any 629 * blocks free lest they be reused. 630 */ 631 if ((sp->sw_flags & SW_CLOSING) == 0) { 632 blist_free(sp->sw_blist, blk - sp->sw_first, 633 npages); 634 swap_pager_avail += npages; 635 swp_sizecheck(); 636 } 637 mtx_unlock(&sw_dev_mtx); 638 return; 639 } 640 } 641 panic("Swapdev not found"); 642 } 643 644 /* 645 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 646 * range within an object. 647 * 648 * This is a globally accessible routine. 649 * 650 * This routine removes swapblk assignments from swap metadata. 651 * 652 * The external callers of this routine typically have already destroyed 653 * or renamed vm_page_t's associated with this range in the object so 654 * we should be ok. 655 * 656 * This routine may be called at any spl. We up our spl to splvm temporarily 657 * in order to perform the metadata removal. 658 */ 659 void 660 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 661 { 662 663 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 664 swp_pager_meta_free(object, start, size); 665 } 666 667 /* 668 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 669 * 670 * Assigns swap blocks to the specified range within the object. The 671 * swap blocks are not zerod. Any previous swap assignment is destroyed. 672 * 673 * Returns 0 on success, -1 on failure. 674 */ 675 int 676 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 677 { 678 int n = 0; 679 daddr_t blk = SWAPBLK_NONE; 680 vm_pindex_t beg = start; /* save start index */ 681 682 VM_OBJECT_LOCK(object); 683 while (size) { 684 if (n == 0) { 685 n = BLIST_MAX_ALLOC; 686 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 687 n >>= 1; 688 if (n == 0) { 689 swp_pager_meta_free(object, beg, start - beg); 690 VM_OBJECT_UNLOCK(object); 691 return (-1); 692 } 693 } 694 } 695 swp_pager_meta_build(object, start, blk); 696 --size; 697 ++start; 698 ++blk; 699 --n; 700 } 701 swp_pager_meta_free(object, start, n); 702 VM_OBJECT_UNLOCK(object); 703 return (0); 704 } 705 706 /* 707 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 708 * and destroy the source. 709 * 710 * Copy any valid swapblks from the source to the destination. In 711 * cases where both the source and destination have a valid swapblk, 712 * we keep the destination's. 713 * 714 * This routine is allowed to block. It may block allocating metadata 715 * indirectly through swp_pager_meta_build() or if paging is still in 716 * progress on the source. 717 * 718 * This routine can be called at any spl 719 * 720 * XXX vm_page_collapse() kinda expects us not to block because we 721 * supposedly do not need to allocate memory, but for the moment we 722 * *may* have to get a little memory from the zone allocator, but 723 * it is taken from the interrupt memory. We should be ok. 724 * 725 * The source object contains no vm_page_t's (which is just as well) 726 * 727 * The source object is of type OBJT_SWAP. 728 * 729 * The source and destination objects must be locked or 730 * inaccessible (XXX are they ?) 731 */ 732 void 733 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 734 vm_pindex_t offset, int destroysource) 735 { 736 vm_pindex_t i; 737 738 VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED); 739 VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED); 740 741 /* 742 * If destroysource is set, we remove the source object from the 743 * swap_pager internal queue now. 744 */ 745 if (destroysource) { 746 if (srcobject->handle != NULL) { 747 mtx_lock(&sw_alloc_mtx); 748 TAILQ_REMOVE( 749 NOBJLIST(srcobject->handle), 750 srcobject, 751 pager_object_list 752 ); 753 mtx_unlock(&sw_alloc_mtx); 754 } 755 } 756 757 /* 758 * transfer source to destination. 759 */ 760 for (i = 0; i < dstobject->size; ++i) { 761 daddr_t dstaddr; 762 763 /* 764 * Locate (without changing) the swapblk on the destination, 765 * unless it is invalid in which case free it silently, or 766 * if the destination is a resident page, in which case the 767 * source is thrown away. 768 */ 769 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 770 771 if (dstaddr == SWAPBLK_NONE) { 772 /* 773 * Destination has no swapblk and is not resident, 774 * copy source. 775 */ 776 daddr_t srcaddr; 777 778 srcaddr = swp_pager_meta_ctl( 779 srcobject, 780 i + offset, 781 SWM_POP 782 ); 783 784 if (srcaddr != SWAPBLK_NONE) { 785 /* 786 * swp_pager_meta_build() can sleep. 787 */ 788 vm_object_pip_add(srcobject, 1); 789 VM_OBJECT_UNLOCK(srcobject); 790 vm_object_pip_add(dstobject, 1); 791 swp_pager_meta_build(dstobject, i, srcaddr); 792 vm_object_pip_wakeup(dstobject); 793 VM_OBJECT_LOCK(srcobject); 794 vm_object_pip_wakeup(srcobject); 795 } 796 } else { 797 /* 798 * Destination has valid swapblk or it is represented 799 * by a resident page. We destroy the sourceblock. 800 */ 801 802 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 803 } 804 } 805 806 /* 807 * Free left over swap blocks in source. 808 * 809 * We have to revert the type to OBJT_DEFAULT so we do not accidently 810 * double-remove the object from the swap queues. 811 */ 812 if (destroysource) { 813 swp_pager_meta_free_all(srcobject); 814 /* 815 * Reverting the type is not necessary, the caller is going 816 * to destroy srcobject directly, but I'm doing it here 817 * for consistency since we've removed the object from its 818 * queues. 819 */ 820 srcobject->type = OBJT_DEFAULT; 821 } 822 } 823 824 /* 825 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 826 * the requested page. 827 * 828 * We determine whether good backing store exists for the requested 829 * page and return TRUE if it does, FALSE if it doesn't. 830 * 831 * If TRUE, we also try to determine how much valid, contiguous backing 832 * store exists before and after the requested page within a reasonable 833 * distance. We do not try to restrict it to the swap device stripe 834 * (that is handled in getpages/putpages). It probably isn't worth 835 * doing here. 836 */ 837 static boolean_t 838 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 839 { 840 daddr_t blk0; 841 842 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 843 /* 844 * do we have good backing store at the requested index ? 845 */ 846 blk0 = swp_pager_meta_ctl(object, pindex, 0); 847 848 if (blk0 == SWAPBLK_NONE) { 849 if (before) 850 *before = 0; 851 if (after) 852 *after = 0; 853 return (FALSE); 854 } 855 856 /* 857 * find backwards-looking contiguous good backing store 858 */ 859 if (before != NULL) { 860 int i; 861 862 for (i = 1; i < (SWB_NPAGES/2); ++i) { 863 daddr_t blk; 864 865 if (i > pindex) 866 break; 867 blk = swp_pager_meta_ctl(object, pindex - i, 0); 868 if (blk != blk0 - i) 869 break; 870 } 871 *before = (i - 1); 872 } 873 874 /* 875 * find forward-looking contiguous good backing store 876 */ 877 if (after != NULL) { 878 int i; 879 880 for (i = 1; i < (SWB_NPAGES/2); ++i) { 881 daddr_t blk; 882 883 blk = swp_pager_meta_ctl(object, pindex + i, 0); 884 if (blk != blk0 + i) 885 break; 886 } 887 *after = (i - 1); 888 } 889 return (TRUE); 890 } 891 892 /* 893 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 894 * 895 * This removes any associated swap backing store, whether valid or 896 * not, from the page. 897 * 898 * This routine is typically called when a page is made dirty, at 899 * which point any associated swap can be freed. MADV_FREE also 900 * calls us in a special-case situation 901 * 902 * NOTE!!! If the page is clean and the swap was valid, the caller 903 * should make the page dirty before calling this routine. This routine 904 * does NOT change the m->dirty status of the page. Also: MADV_FREE 905 * depends on it. 906 * 907 * This routine may not block 908 * This routine must be called at splvm() 909 */ 910 static void 911 swap_pager_unswapped(vm_page_t m) 912 { 913 914 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 915 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 916 } 917 918 /* 919 * SWAP_PAGER_GETPAGES() - bring pages in from swap 920 * 921 * Attempt to retrieve (m, count) pages from backing store, but make 922 * sure we retrieve at least m[reqpage]. We try to load in as large 923 * a chunk surrounding m[reqpage] as is contiguous in swap and which 924 * belongs to the same object. 925 * 926 * The code is designed for asynchronous operation and 927 * immediate-notification of 'reqpage' but tends not to be 928 * used that way. Please do not optimize-out this algorithmic 929 * feature, I intend to improve on it in the future. 930 * 931 * The parent has a single vm_object_pip_add() reference prior to 932 * calling us and we should return with the same. 933 * 934 * The parent has BUSY'd the pages. We should return with 'm' 935 * left busy, but the others adjusted. 936 */ 937 static int 938 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 939 { 940 struct buf *bp; 941 vm_page_t mreq; 942 int i; 943 int j; 944 daddr_t blk; 945 946 mreq = m[reqpage]; 947 948 KASSERT(mreq->object == object, 949 ("swap_pager_getpages: object mismatch %p/%p", 950 object, mreq->object)); 951 952 /* 953 * Calculate range to retrieve. The pages have already been assigned 954 * their swapblks. We require a *contiguous* range but we know it to 955 * not span devices. If we do not supply it, bad things 956 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 957 * loops are set up such that the case(s) are handled implicitly. 958 * 959 * The swp_*() calls must be made at splvm(). vm_page_free() does 960 * not need to be, but it will go a little faster if it is. 961 */ 962 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 963 964 for (i = reqpage - 1; i >= 0; --i) { 965 daddr_t iblk; 966 967 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 968 if (blk != iblk + (reqpage - i)) 969 break; 970 } 971 ++i; 972 973 for (j = reqpage + 1; j < count; ++j) { 974 daddr_t jblk; 975 976 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 977 if (blk != jblk - (j - reqpage)) 978 break; 979 } 980 981 /* 982 * free pages outside our collection range. Note: we never free 983 * mreq, it must remain busy throughout. 984 */ 985 if (0 < i || j < count) { 986 int k; 987 988 vm_page_lock_queues(); 989 for (k = 0; k < i; ++k) 990 vm_page_free(m[k]); 991 for (k = j; k < count; ++k) 992 vm_page_free(m[k]); 993 vm_page_unlock_queues(); 994 } 995 996 /* 997 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 998 * still busy, but the others unbusied. 999 */ 1000 if (blk == SWAPBLK_NONE) 1001 return (VM_PAGER_FAIL); 1002 1003 /* 1004 * Getpbuf() can sleep. 1005 */ 1006 VM_OBJECT_UNLOCK(object); 1007 /* 1008 * Get a swap buffer header to perform the IO 1009 */ 1010 bp = getpbuf(&nsw_rcount); 1011 bp->b_flags |= B_PAGING; 1012 1013 /* 1014 * map our page(s) into kva for input 1015 */ 1016 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i); 1017 1018 bp->b_iocmd = BIO_READ; 1019 bp->b_iodone = swp_pager_async_iodone; 1020 bp->b_rcred = crhold(thread0.td_ucred); 1021 bp->b_wcred = crhold(thread0.td_ucred); 1022 bp->b_blkno = blk - (reqpage - i); 1023 bp->b_bcount = PAGE_SIZE * (j - i); 1024 bp->b_bufsize = PAGE_SIZE * (j - i); 1025 bp->b_pager.pg_reqpage = reqpage - i; 1026 1027 VM_OBJECT_LOCK(object); 1028 { 1029 int k; 1030 1031 for (k = i; k < j; ++k) { 1032 bp->b_pages[k - i] = m[k]; 1033 m[k]->oflags |= VPO_SWAPINPROG; 1034 } 1035 } 1036 bp->b_npages = j - i; 1037 1038 PCPU_INC(cnt.v_swapin); 1039 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1040 1041 /* 1042 * We still hold the lock on mreq, and our automatic completion routine 1043 * does not remove it. 1044 */ 1045 vm_object_pip_add(object, bp->b_npages); 1046 VM_OBJECT_UNLOCK(object); 1047 1048 /* 1049 * perform the I/O. NOTE!!! bp cannot be considered valid after 1050 * this point because we automatically release it on completion. 1051 * Instead, we look at the one page we are interested in which we 1052 * still hold a lock on even through the I/O completion. 1053 * 1054 * The other pages in our m[] array are also released on completion, 1055 * so we cannot assume they are valid anymore either. 1056 * 1057 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1058 */ 1059 BUF_KERNPROC(bp); 1060 swp_pager_strategy(bp); 1061 1062 /* 1063 * wait for the page we want to complete. VPO_SWAPINPROG is always 1064 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1065 * is set in the meta-data. 1066 */ 1067 VM_OBJECT_LOCK(object); 1068 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1069 mreq->oflags |= VPO_WANTED; 1070 vm_page_lock_queues(); 1071 vm_page_flag_set(mreq, PG_REFERENCED); 1072 vm_page_unlock_queues(); 1073 PCPU_INC(cnt.v_intrans); 1074 if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) { 1075 printf( 1076 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1077 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1078 } 1079 } 1080 1081 /* 1082 * mreq is left busied after completion, but all the other pages 1083 * are freed. If we had an unrecoverable read error the page will 1084 * not be valid. 1085 */ 1086 if (mreq->valid != VM_PAGE_BITS_ALL) { 1087 return (VM_PAGER_ERROR); 1088 } else { 1089 return (VM_PAGER_OK); 1090 } 1091 1092 /* 1093 * A final note: in a low swap situation, we cannot deallocate swap 1094 * and mark a page dirty here because the caller is likely to mark 1095 * the page clean when we return, causing the page to possibly revert 1096 * to all-zero's later. 1097 */ 1098 } 1099 1100 /* 1101 * swap_pager_putpages: 1102 * 1103 * Assign swap (if necessary) and initiate I/O on the specified pages. 1104 * 1105 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1106 * are automatically converted to SWAP objects. 1107 * 1108 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1109 * vm_page reservation system coupled with properly written VFS devices 1110 * should ensure that no low-memory deadlock occurs. This is an area 1111 * which needs work. 1112 * 1113 * The parent has N vm_object_pip_add() references prior to 1114 * calling us and will remove references for rtvals[] that are 1115 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1116 * completion. 1117 * 1118 * The parent has soft-busy'd the pages it passes us and will unbusy 1119 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1120 * We need to unbusy the rest on I/O completion. 1121 */ 1122 void 1123 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1124 boolean_t sync, int *rtvals) 1125 { 1126 int i; 1127 int n = 0; 1128 1129 if (count && m[0]->object != object) { 1130 panic("swap_pager_putpages: object mismatch %p/%p", 1131 object, 1132 m[0]->object 1133 ); 1134 } 1135 1136 /* 1137 * Step 1 1138 * 1139 * Turn object into OBJT_SWAP 1140 * check for bogus sysops 1141 * force sync if not pageout process 1142 */ 1143 if (object->type != OBJT_SWAP) 1144 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1145 VM_OBJECT_UNLOCK(object); 1146 1147 if (curproc != pageproc) 1148 sync = TRUE; 1149 1150 /* 1151 * Step 2 1152 * 1153 * Update nsw parameters from swap_async_max sysctl values. 1154 * Do not let the sysop crash the machine with bogus numbers. 1155 */ 1156 mtx_lock(&pbuf_mtx); 1157 if (swap_async_max != nsw_wcount_async_max) { 1158 int n; 1159 1160 /* 1161 * limit range 1162 */ 1163 if ((n = swap_async_max) > nswbuf / 2) 1164 n = nswbuf / 2; 1165 if (n < 1) 1166 n = 1; 1167 swap_async_max = n; 1168 1169 /* 1170 * Adjust difference ( if possible ). If the current async 1171 * count is too low, we may not be able to make the adjustment 1172 * at this time. 1173 */ 1174 n -= nsw_wcount_async_max; 1175 if (nsw_wcount_async + n >= 0) { 1176 nsw_wcount_async += n; 1177 nsw_wcount_async_max += n; 1178 wakeup(&nsw_wcount_async); 1179 } 1180 } 1181 mtx_unlock(&pbuf_mtx); 1182 1183 /* 1184 * Step 3 1185 * 1186 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1187 * The page is left dirty until the pageout operation completes 1188 * successfully. 1189 */ 1190 for (i = 0; i < count; i += n) { 1191 int j; 1192 struct buf *bp; 1193 daddr_t blk; 1194 1195 /* 1196 * Maximum I/O size is limited by a number of factors. 1197 */ 1198 n = min(BLIST_MAX_ALLOC, count - i); 1199 n = min(n, nsw_cluster_max); 1200 1201 /* 1202 * Get biggest block of swap we can. If we fail, fall 1203 * back and try to allocate a smaller block. Don't go 1204 * overboard trying to allocate space if it would overly 1205 * fragment swap. 1206 */ 1207 while ( 1208 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1209 n > 4 1210 ) { 1211 n >>= 1; 1212 } 1213 if (blk == SWAPBLK_NONE) { 1214 for (j = 0; j < n; ++j) 1215 rtvals[i+j] = VM_PAGER_FAIL; 1216 continue; 1217 } 1218 1219 /* 1220 * All I/O parameters have been satisfied, build the I/O 1221 * request and assign the swap space. 1222 */ 1223 if (sync == TRUE) { 1224 bp = getpbuf(&nsw_wcount_sync); 1225 } else { 1226 bp = getpbuf(&nsw_wcount_async); 1227 bp->b_flags = B_ASYNC; 1228 } 1229 bp->b_flags |= B_PAGING; 1230 bp->b_iocmd = BIO_WRITE; 1231 1232 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1233 1234 bp->b_rcred = crhold(thread0.td_ucred); 1235 bp->b_wcred = crhold(thread0.td_ucred); 1236 bp->b_bcount = PAGE_SIZE * n; 1237 bp->b_bufsize = PAGE_SIZE * n; 1238 bp->b_blkno = blk; 1239 1240 VM_OBJECT_LOCK(object); 1241 for (j = 0; j < n; ++j) { 1242 vm_page_t mreq = m[i+j]; 1243 1244 swp_pager_meta_build( 1245 mreq->object, 1246 mreq->pindex, 1247 blk + j 1248 ); 1249 vm_page_dirty(mreq); 1250 rtvals[i+j] = VM_PAGER_OK; 1251 1252 mreq->oflags |= VPO_SWAPINPROG; 1253 bp->b_pages[j] = mreq; 1254 } 1255 VM_OBJECT_UNLOCK(object); 1256 bp->b_npages = n; 1257 /* 1258 * Must set dirty range for NFS to work. 1259 */ 1260 bp->b_dirtyoff = 0; 1261 bp->b_dirtyend = bp->b_bcount; 1262 1263 PCPU_INC(cnt.v_swapout); 1264 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1265 1266 /* 1267 * asynchronous 1268 * 1269 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1270 */ 1271 if (sync == FALSE) { 1272 bp->b_iodone = swp_pager_async_iodone; 1273 BUF_KERNPROC(bp); 1274 swp_pager_strategy(bp); 1275 1276 for (j = 0; j < n; ++j) 1277 rtvals[i+j] = VM_PAGER_PEND; 1278 /* restart outter loop */ 1279 continue; 1280 } 1281 1282 /* 1283 * synchronous 1284 * 1285 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1286 */ 1287 bp->b_iodone = bdone; 1288 swp_pager_strategy(bp); 1289 1290 /* 1291 * Wait for the sync I/O to complete, then update rtvals. 1292 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1293 * our async completion routine at the end, thus avoiding a 1294 * double-free. 1295 */ 1296 bwait(bp, PVM, "swwrt"); 1297 for (j = 0; j < n; ++j) 1298 rtvals[i+j] = VM_PAGER_PEND; 1299 /* 1300 * Now that we are through with the bp, we can call the 1301 * normal async completion, which frees everything up. 1302 */ 1303 swp_pager_async_iodone(bp); 1304 } 1305 VM_OBJECT_LOCK(object); 1306 } 1307 1308 /* 1309 * swp_pager_async_iodone: 1310 * 1311 * Completion routine for asynchronous reads and writes from/to swap. 1312 * Also called manually by synchronous code to finish up a bp. 1313 * 1314 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1315 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1316 * unbusy all pages except the 'main' request page. For WRITE 1317 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1318 * because we marked them all VM_PAGER_PEND on return from putpages ). 1319 * 1320 * This routine may not block. 1321 * This routine is called at splbio() or better 1322 * 1323 * We up ourselves to splvm() as required for various vm_page related 1324 * calls. 1325 */ 1326 static void 1327 swp_pager_async_iodone(struct buf *bp) 1328 { 1329 int i; 1330 vm_object_t object = NULL; 1331 1332 /* 1333 * report error 1334 */ 1335 if (bp->b_ioflags & BIO_ERROR) { 1336 printf( 1337 "swap_pager: I/O error - %s failed; blkno %ld," 1338 "size %ld, error %d\n", 1339 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1340 (long)bp->b_blkno, 1341 (long)bp->b_bcount, 1342 bp->b_error 1343 ); 1344 } 1345 1346 /* 1347 * remove the mapping for kernel virtual 1348 */ 1349 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1350 1351 if (bp->b_npages) { 1352 object = bp->b_pages[0]->object; 1353 VM_OBJECT_LOCK(object); 1354 } 1355 vm_page_lock_queues(); 1356 /* 1357 * cleanup pages. If an error occurs writing to swap, we are in 1358 * very serious trouble. If it happens to be a disk error, though, 1359 * we may be able to recover by reassigning the swap later on. So 1360 * in this case we remove the m->swapblk assignment for the page 1361 * but do not free it in the rlist. The errornous block(s) are thus 1362 * never reallocated as swap. Redirty the page and continue. 1363 */ 1364 for (i = 0; i < bp->b_npages; ++i) { 1365 vm_page_t m = bp->b_pages[i]; 1366 1367 m->oflags &= ~VPO_SWAPINPROG; 1368 1369 if (bp->b_ioflags & BIO_ERROR) { 1370 /* 1371 * If an error occurs I'd love to throw the swapblk 1372 * away without freeing it back to swapspace, so it 1373 * can never be used again. But I can't from an 1374 * interrupt. 1375 */ 1376 if (bp->b_iocmd == BIO_READ) { 1377 /* 1378 * When reading, reqpage needs to stay 1379 * locked for the parent, but all other 1380 * pages can be freed. We still want to 1381 * wakeup the parent waiting on the page, 1382 * though. ( also: pg_reqpage can be -1 and 1383 * not match anything ). 1384 * 1385 * We have to wake specifically requested pages 1386 * up too because we cleared VPO_SWAPINPROG and 1387 * someone may be waiting for that. 1388 * 1389 * NOTE: for reads, m->dirty will probably 1390 * be overridden by the original caller of 1391 * getpages so don't play cute tricks here. 1392 */ 1393 m->valid = 0; 1394 if (i != bp->b_pager.pg_reqpage) 1395 vm_page_free(m); 1396 else 1397 vm_page_flash(m); 1398 /* 1399 * If i == bp->b_pager.pg_reqpage, do not wake 1400 * the page up. The caller needs to. 1401 */ 1402 } else { 1403 /* 1404 * If a write error occurs, reactivate page 1405 * so it doesn't clog the inactive list, 1406 * then finish the I/O. 1407 */ 1408 vm_page_dirty(m); 1409 vm_page_activate(m); 1410 vm_page_io_finish(m); 1411 } 1412 } else if (bp->b_iocmd == BIO_READ) { 1413 /* 1414 * For read success, clear dirty bits. Nobody should 1415 * have this page mapped but don't take any chances, 1416 * make sure the pmap modify bits are also cleared. 1417 * 1418 * NOTE: for reads, m->dirty will probably be 1419 * overridden by the original caller of getpages so 1420 * we cannot set them in order to free the underlying 1421 * swap in a low-swap situation. I don't think we'd 1422 * want to do that anyway, but it was an optimization 1423 * that existed in the old swapper for a time before 1424 * it got ripped out due to precisely this problem. 1425 * 1426 * If not the requested page then deactivate it. 1427 * 1428 * Note that the requested page, reqpage, is left 1429 * busied, but we still have to wake it up. The 1430 * other pages are released (unbusied) by 1431 * vm_page_wakeup(). We do not set reqpage's 1432 * valid bits here, it is up to the caller. 1433 */ 1434 pmap_clear_modify(m); 1435 m->valid = VM_PAGE_BITS_ALL; 1436 vm_page_undirty(m); 1437 1438 /* 1439 * We have to wake specifically requested pages 1440 * up too because we cleared VPO_SWAPINPROG and 1441 * could be waiting for it in getpages. However, 1442 * be sure to not unbusy getpages specifically 1443 * requested page - getpages expects it to be 1444 * left busy. 1445 */ 1446 if (i != bp->b_pager.pg_reqpage) { 1447 vm_page_deactivate(m); 1448 vm_page_wakeup(m); 1449 } else { 1450 vm_page_flash(m); 1451 } 1452 } else { 1453 /* 1454 * For write success, clear the modify and dirty 1455 * status, then finish the I/O ( which decrements the 1456 * busy count and possibly wakes waiter's up ). 1457 */ 1458 pmap_clear_modify(m); 1459 vm_page_undirty(m); 1460 vm_page_io_finish(m); 1461 if (vm_page_count_severe()) 1462 vm_page_try_to_cache(m); 1463 } 1464 } 1465 vm_page_unlock_queues(); 1466 1467 /* 1468 * adjust pip. NOTE: the original parent may still have its own 1469 * pip refs on the object. 1470 */ 1471 if (object != NULL) { 1472 vm_object_pip_wakeupn(object, bp->b_npages); 1473 VM_OBJECT_UNLOCK(object); 1474 } 1475 1476 /* 1477 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1478 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1479 * trigger a KASSERT in relpbuf(). 1480 */ 1481 if (bp->b_vp) { 1482 bp->b_vp = NULL; 1483 bp->b_bufobj = NULL; 1484 } 1485 /* 1486 * release the physical I/O buffer 1487 */ 1488 relpbuf( 1489 bp, 1490 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1491 ((bp->b_flags & B_ASYNC) ? 1492 &nsw_wcount_async : 1493 &nsw_wcount_sync 1494 ) 1495 ) 1496 ); 1497 } 1498 1499 /* 1500 * swap_pager_isswapped: 1501 * 1502 * Return 1 if at least one page in the given object is paged 1503 * out to the given swap device. 1504 * 1505 * This routine may not block. 1506 */ 1507 int 1508 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1509 { 1510 daddr_t index = 0; 1511 int bcount; 1512 int i; 1513 1514 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1515 if (object->type != OBJT_SWAP) 1516 return (0); 1517 1518 mtx_lock(&swhash_mtx); 1519 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1520 struct swblock *swap; 1521 1522 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1523 for (i = 0; i < SWAP_META_PAGES; ++i) { 1524 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1525 mtx_unlock(&swhash_mtx); 1526 return (1); 1527 } 1528 } 1529 } 1530 index += SWAP_META_PAGES; 1531 if (index > 0x20000000) 1532 panic("swap_pager_isswapped: failed to locate all swap meta blocks"); 1533 } 1534 mtx_unlock(&swhash_mtx); 1535 return (0); 1536 } 1537 1538 /* 1539 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1540 * 1541 * This routine dissociates the page at the given index within a 1542 * swap block from its backing store, paging it in if necessary. 1543 * If the page is paged in, it is placed in the inactive queue, 1544 * since it had its backing store ripped out from under it. 1545 * We also attempt to swap in all other pages in the swap block, 1546 * we only guarantee that the one at the specified index is 1547 * paged in. 1548 * 1549 * XXX - The code to page the whole block in doesn't work, so we 1550 * revert to the one-by-one behavior for now. Sigh. 1551 */ 1552 static inline void 1553 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1554 { 1555 vm_page_t m; 1556 1557 vm_object_pip_add(object, 1); 1558 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1559 if (m->valid == VM_PAGE_BITS_ALL) { 1560 vm_object_pip_subtract(object, 1); 1561 vm_page_lock_queues(); 1562 vm_page_activate(m); 1563 vm_page_dirty(m); 1564 vm_page_unlock_queues(); 1565 vm_page_wakeup(m); 1566 vm_pager_page_unswapped(m); 1567 return; 1568 } 1569 1570 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1571 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1572 vm_object_pip_subtract(object, 1); 1573 vm_page_lock_queues(); 1574 vm_page_dirty(m); 1575 vm_page_dontneed(m); 1576 vm_page_unlock_queues(); 1577 vm_page_wakeup(m); 1578 vm_pager_page_unswapped(m); 1579 } 1580 1581 /* 1582 * swap_pager_swapoff: 1583 * 1584 * Page in all of the pages that have been paged out to the 1585 * given device. The corresponding blocks in the bitmap must be 1586 * marked as allocated and the device must be flagged SW_CLOSING. 1587 * There may be no processes swapped out to the device. 1588 * 1589 * This routine may block. 1590 */ 1591 static void 1592 swap_pager_swapoff(struct swdevt *sp) 1593 { 1594 struct swblock *swap; 1595 int i, j, retries; 1596 1597 GIANT_REQUIRED; 1598 1599 retries = 0; 1600 full_rescan: 1601 mtx_lock(&swhash_mtx); 1602 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1603 restart: 1604 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1605 vm_object_t object = swap->swb_object; 1606 vm_pindex_t pindex = swap->swb_index; 1607 for (j = 0; j < SWAP_META_PAGES; ++j) { 1608 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1609 /* avoid deadlock */ 1610 if (!VM_OBJECT_TRYLOCK(object)) { 1611 break; 1612 } else { 1613 mtx_unlock(&swhash_mtx); 1614 swp_pager_force_pagein(object, 1615 pindex + j); 1616 VM_OBJECT_UNLOCK(object); 1617 mtx_lock(&swhash_mtx); 1618 goto restart; 1619 } 1620 } 1621 } 1622 } 1623 } 1624 mtx_unlock(&swhash_mtx); 1625 if (sp->sw_used) { 1626 /* 1627 * Objects may be locked or paging to the device being 1628 * removed, so we will miss their pages and need to 1629 * make another pass. We have marked this device as 1630 * SW_CLOSING, so the activity should finish soon. 1631 */ 1632 retries++; 1633 if (retries > 100) { 1634 panic("swapoff: failed to locate %d swap blocks", 1635 sp->sw_used); 1636 } 1637 pause("swpoff", hz / 20); 1638 goto full_rescan; 1639 } 1640 } 1641 1642 /************************************************************************ 1643 * SWAP META DATA * 1644 ************************************************************************ 1645 * 1646 * These routines manipulate the swap metadata stored in the 1647 * OBJT_SWAP object. All swp_*() routines must be called at 1648 * splvm() because swap can be freed up by the low level vm_page 1649 * code which might be called from interrupts beyond what splbio() covers. 1650 * 1651 * Swap metadata is implemented with a global hash and not directly 1652 * linked into the object. Instead the object simply contains 1653 * appropriate tracking counters. 1654 */ 1655 1656 /* 1657 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1658 * 1659 * We first convert the object to a swap object if it is a default 1660 * object. 1661 * 1662 * The specified swapblk is added to the object's swap metadata. If 1663 * the swapblk is not valid, it is freed instead. Any previously 1664 * assigned swapblk is freed. 1665 * 1666 * This routine must be called at splvm(), except when used to convert 1667 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1668 */ 1669 static void 1670 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1671 { 1672 struct swblock *swap; 1673 struct swblock **pswap; 1674 int idx; 1675 1676 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1677 /* 1678 * Convert default object to swap object if necessary 1679 */ 1680 if (object->type != OBJT_SWAP) { 1681 object->type = OBJT_SWAP; 1682 object->un_pager.swp.swp_bcount = 0; 1683 1684 if (object->handle != NULL) { 1685 mtx_lock(&sw_alloc_mtx); 1686 TAILQ_INSERT_TAIL( 1687 NOBJLIST(object->handle), 1688 object, 1689 pager_object_list 1690 ); 1691 mtx_unlock(&sw_alloc_mtx); 1692 } 1693 } 1694 1695 /* 1696 * Locate hash entry. If not found create, but if we aren't adding 1697 * anything just return. If we run out of space in the map we wait 1698 * and, since the hash table may have changed, retry. 1699 */ 1700 retry: 1701 mtx_lock(&swhash_mtx); 1702 pswap = swp_pager_hash(object, pindex); 1703 1704 if ((swap = *pswap) == NULL) { 1705 int i; 1706 1707 if (swapblk == SWAPBLK_NONE) 1708 goto done; 1709 1710 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1711 if (swap == NULL) { 1712 mtx_unlock(&swhash_mtx); 1713 VM_OBJECT_UNLOCK(object); 1714 if (uma_zone_exhausted(swap_zone)) 1715 panic("swap zone exhausted, increase kern.maxswzone\n"); 1716 VM_WAIT; 1717 VM_OBJECT_LOCK(object); 1718 goto retry; 1719 } 1720 1721 swap->swb_hnext = NULL; 1722 swap->swb_object = object; 1723 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1724 swap->swb_count = 0; 1725 1726 ++object->un_pager.swp.swp_bcount; 1727 1728 for (i = 0; i < SWAP_META_PAGES; ++i) 1729 swap->swb_pages[i] = SWAPBLK_NONE; 1730 } 1731 1732 /* 1733 * Delete prior contents of metadata 1734 */ 1735 idx = pindex & SWAP_META_MASK; 1736 1737 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1738 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1739 --swap->swb_count; 1740 } 1741 1742 /* 1743 * Enter block into metadata 1744 */ 1745 swap->swb_pages[idx] = swapblk; 1746 if (swapblk != SWAPBLK_NONE) 1747 ++swap->swb_count; 1748 done: 1749 mtx_unlock(&swhash_mtx); 1750 } 1751 1752 /* 1753 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1754 * 1755 * The requested range of blocks is freed, with any associated swap 1756 * returned to the swap bitmap. 1757 * 1758 * This routine will free swap metadata structures as they are cleaned 1759 * out. This routine does *NOT* operate on swap metadata associated 1760 * with resident pages. 1761 * 1762 * This routine must be called at splvm() 1763 */ 1764 static void 1765 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1766 { 1767 1768 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1769 if (object->type != OBJT_SWAP) 1770 return; 1771 1772 while (count > 0) { 1773 struct swblock **pswap; 1774 struct swblock *swap; 1775 1776 mtx_lock(&swhash_mtx); 1777 pswap = swp_pager_hash(object, index); 1778 1779 if ((swap = *pswap) != NULL) { 1780 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1781 1782 if (v != SWAPBLK_NONE) { 1783 swp_pager_freeswapspace(v, 1); 1784 swap->swb_pages[index & SWAP_META_MASK] = 1785 SWAPBLK_NONE; 1786 if (--swap->swb_count == 0) { 1787 *pswap = swap->swb_hnext; 1788 uma_zfree(swap_zone, swap); 1789 --object->un_pager.swp.swp_bcount; 1790 } 1791 } 1792 --count; 1793 ++index; 1794 } else { 1795 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1796 count -= n; 1797 index += n; 1798 } 1799 mtx_unlock(&swhash_mtx); 1800 } 1801 } 1802 1803 /* 1804 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1805 * 1806 * This routine locates and destroys all swap metadata associated with 1807 * an object. 1808 * 1809 * This routine must be called at splvm() 1810 */ 1811 static void 1812 swp_pager_meta_free_all(vm_object_t object) 1813 { 1814 daddr_t index = 0; 1815 1816 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1817 if (object->type != OBJT_SWAP) 1818 return; 1819 1820 while (object->un_pager.swp.swp_bcount) { 1821 struct swblock **pswap; 1822 struct swblock *swap; 1823 1824 mtx_lock(&swhash_mtx); 1825 pswap = swp_pager_hash(object, index); 1826 if ((swap = *pswap) != NULL) { 1827 int i; 1828 1829 for (i = 0; i < SWAP_META_PAGES; ++i) { 1830 daddr_t v = swap->swb_pages[i]; 1831 if (v != SWAPBLK_NONE) { 1832 --swap->swb_count; 1833 swp_pager_freeswapspace(v, 1); 1834 } 1835 } 1836 if (swap->swb_count != 0) 1837 panic("swap_pager_meta_free_all: swb_count != 0"); 1838 *pswap = swap->swb_hnext; 1839 uma_zfree(swap_zone, swap); 1840 --object->un_pager.swp.swp_bcount; 1841 } 1842 mtx_unlock(&swhash_mtx); 1843 index += SWAP_META_PAGES; 1844 if (index > 0x20000000) 1845 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1846 } 1847 } 1848 1849 /* 1850 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1851 * 1852 * This routine is capable of looking up, popping, or freeing 1853 * swapblk assignments in the swap meta data or in the vm_page_t. 1854 * The routine typically returns the swapblk being looked-up, or popped, 1855 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1856 * was invalid. This routine will automatically free any invalid 1857 * meta-data swapblks. 1858 * 1859 * It is not possible to store invalid swapblks in the swap meta data 1860 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1861 * 1862 * When acting on a busy resident page and paging is in progress, we 1863 * have to wait until paging is complete but otherwise can act on the 1864 * busy page. 1865 * 1866 * This routine must be called at splvm(). 1867 * 1868 * SWM_FREE remove and free swap block from metadata 1869 * SWM_POP remove from meta data but do not free.. pop it out 1870 */ 1871 static daddr_t 1872 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 1873 { 1874 struct swblock **pswap; 1875 struct swblock *swap; 1876 daddr_t r1; 1877 int idx; 1878 1879 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1880 /* 1881 * The meta data only exists of the object is OBJT_SWAP 1882 * and even then might not be allocated yet. 1883 */ 1884 if (object->type != OBJT_SWAP) 1885 return (SWAPBLK_NONE); 1886 1887 r1 = SWAPBLK_NONE; 1888 mtx_lock(&swhash_mtx); 1889 pswap = swp_pager_hash(object, pindex); 1890 1891 if ((swap = *pswap) != NULL) { 1892 idx = pindex & SWAP_META_MASK; 1893 r1 = swap->swb_pages[idx]; 1894 1895 if (r1 != SWAPBLK_NONE) { 1896 if (flags & SWM_FREE) { 1897 swp_pager_freeswapspace(r1, 1); 1898 r1 = SWAPBLK_NONE; 1899 } 1900 if (flags & (SWM_FREE|SWM_POP)) { 1901 swap->swb_pages[idx] = SWAPBLK_NONE; 1902 if (--swap->swb_count == 0) { 1903 *pswap = swap->swb_hnext; 1904 uma_zfree(swap_zone, swap); 1905 --object->un_pager.swp.swp_bcount; 1906 } 1907 } 1908 } 1909 } 1910 mtx_unlock(&swhash_mtx); 1911 return (r1); 1912 } 1913 1914 /* 1915 * System call swapon(name) enables swapping on device name, 1916 * which must be in the swdevsw. Return EBUSY 1917 * if already swapping on this device. 1918 */ 1919 #ifndef _SYS_SYSPROTO_H_ 1920 struct swapon_args { 1921 char *name; 1922 }; 1923 #endif 1924 1925 /* 1926 * MPSAFE 1927 */ 1928 /* ARGSUSED */ 1929 int 1930 swapon(struct thread *td, struct swapon_args *uap) 1931 { 1932 struct vattr attr; 1933 struct vnode *vp; 1934 struct nameidata nd; 1935 int error; 1936 1937 error = priv_check(td, PRIV_SWAPON); 1938 if (error) 1939 return (error); 1940 1941 mtx_lock(&Giant); 1942 while (swdev_syscall_active) 1943 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 1944 swdev_syscall_active = 1; 1945 1946 /* 1947 * Swap metadata may not fit in the KVM if we have physical 1948 * memory of >1GB. 1949 */ 1950 if (swap_zone == NULL) { 1951 error = ENOMEM; 1952 goto done; 1953 } 1954 1955 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 1956 uap->name, td); 1957 error = namei(&nd); 1958 if (error) 1959 goto done; 1960 1961 NDFREE(&nd, NDF_ONLY_PNBUF); 1962 vp = nd.ni_vp; 1963 1964 if (vn_isdisk(vp, &error)) { 1965 error = swapongeom(td, vp); 1966 } else if (vp->v_type == VREG && 1967 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 1968 (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) { 1969 /* 1970 * Allow direct swapping to NFS regular files in the same 1971 * way that nfs_mountroot() sets up diskless swapping. 1972 */ 1973 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 1974 } 1975 1976 if (error) 1977 vrele(vp); 1978 done: 1979 swdev_syscall_active = 0; 1980 wakeup_one(&swdev_syscall_active); 1981 mtx_unlock(&Giant); 1982 return (error); 1983 } 1984 1985 static void 1986 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev) 1987 { 1988 struct swdevt *sp, *tsp; 1989 swblk_t dvbase; 1990 u_long mblocks; 1991 1992 /* 1993 * If we go beyond this, we get overflows in the radix 1994 * tree bitmap code. 1995 */ 1996 mblocks = 0x40000000 / BLIST_META_RADIX; 1997 if (nblks > mblocks) { 1998 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n", 1999 mblocks); 2000 nblks = mblocks; 2001 } 2002 /* 2003 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2004 * First chop nblks off to page-align it, then convert. 2005 * 2006 * sw->sw_nblks is in page-sized chunks now too. 2007 */ 2008 nblks &= ~(ctodb(1) - 1); 2009 nblks = dbtoc(nblks); 2010 2011 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2012 sp->sw_vp = vp; 2013 sp->sw_id = id; 2014 sp->sw_dev = dev; 2015 sp->sw_flags = 0; 2016 sp->sw_nblks = nblks; 2017 sp->sw_used = 0; 2018 sp->sw_strategy = strategy; 2019 sp->sw_close = close; 2020 2021 sp->sw_blist = blist_create(nblks, M_WAITOK); 2022 /* 2023 * Do not free the first two block in order to avoid overwriting 2024 * any bsd label at the front of the partition 2025 */ 2026 blist_free(sp->sw_blist, 2, nblks - 2); 2027 2028 dvbase = 0; 2029 mtx_lock(&sw_dev_mtx); 2030 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2031 if (tsp->sw_end >= dvbase) { 2032 /* 2033 * We put one uncovered page between the devices 2034 * in order to definitively prevent any cross-device 2035 * I/O requests 2036 */ 2037 dvbase = tsp->sw_end + 1; 2038 } 2039 } 2040 sp->sw_first = dvbase; 2041 sp->sw_end = dvbase + nblks; 2042 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2043 nswapdev++; 2044 swap_pager_avail += nblks; 2045 swp_sizecheck(); 2046 mtx_unlock(&sw_dev_mtx); 2047 } 2048 2049 /* 2050 * SYSCALL: swapoff(devname) 2051 * 2052 * Disable swapping on the given device. 2053 * 2054 * XXX: Badly designed system call: it should use a device index 2055 * rather than filename as specification. We keep sw_vp around 2056 * only to make this work. 2057 */ 2058 #ifndef _SYS_SYSPROTO_H_ 2059 struct swapoff_args { 2060 char *name; 2061 }; 2062 #endif 2063 2064 /* 2065 * MPSAFE 2066 */ 2067 /* ARGSUSED */ 2068 int 2069 swapoff(struct thread *td, struct swapoff_args *uap) 2070 { 2071 struct vnode *vp; 2072 struct nameidata nd; 2073 struct swdevt *sp; 2074 int error; 2075 2076 error = priv_check(td, PRIV_SWAPOFF); 2077 if (error) 2078 return (error); 2079 2080 mtx_lock(&Giant); 2081 while (swdev_syscall_active) 2082 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2083 swdev_syscall_active = 1; 2084 2085 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2086 td); 2087 error = namei(&nd); 2088 if (error) 2089 goto done; 2090 NDFREE(&nd, NDF_ONLY_PNBUF); 2091 vp = nd.ni_vp; 2092 2093 mtx_lock(&sw_dev_mtx); 2094 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2095 if (sp->sw_vp == vp) 2096 break; 2097 } 2098 mtx_unlock(&sw_dev_mtx); 2099 if (sp == NULL) { 2100 error = EINVAL; 2101 goto done; 2102 } 2103 error = swapoff_one(sp, td->td_ucred); 2104 done: 2105 swdev_syscall_active = 0; 2106 wakeup_one(&swdev_syscall_active); 2107 mtx_unlock(&Giant); 2108 return (error); 2109 } 2110 2111 static int 2112 swapoff_one(struct swdevt *sp, struct ucred *cred) 2113 { 2114 u_long nblks, dvbase; 2115 #ifdef MAC 2116 int error; 2117 #endif 2118 2119 mtx_assert(&Giant, MA_OWNED); 2120 #ifdef MAC 2121 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2122 error = mac_system_check_swapoff(cred, sp->sw_vp); 2123 (void) VOP_UNLOCK(sp->sw_vp, 0); 2124 if (error != 0) 2125 return (error); 2126 #endif 2127 nblks = sp->sw_nblks; 2128 2129 /* 2130 * We can turn off this swap device safely only if the 2131 * available virtual memory in the system will fit the amount 2132 * of data we will have to page back in, plus an epsilon so 2133 * the system doesn't become critically low on swap space. 2134 */ 2135 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2136 nblks + nswap_lowat) { 2137 return (ENOMEM); 2138 } 2139 2140 /* 2141 * Prevent further allocations on this device. 2142 */ 2143 mtx_lock(&sw_dev_mtx); 2144 sp->sw_flags |= SW_CLOSING; 2145 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2146 swap_pager_avail -= blist_fill(sp->sw_blist, 2147 dvbase, dmmax); 2148 } 2149 mtx_unlock(&sw_dev_mtx); 2150 2151 /* 2152 * Page in the contents of the device and close it. 2153 */ 2154 swap_pager_swapoff(sp); 2155 2156 sp->sw_close(curthread, sp); 2157 sp->sw_id = NULL; 2158 mtx_lock(&sw_dev_mtx); 2159 TAILQ_REMOVE(&swtailq, sp, sw_list); 2160 nswapdev--; 2161 if (nswapdev == 0) { 2162 swap_pager_full = 2; 2163 swap_pager_almost_full = 1; 2164 } 2165 if (swdevhd == sp) 2166 swdevhd = NULL; 2167 mtx_unlock(&sw_dev_mtx); 2168 blist_destroy(sp->sw_blist); 2169 free(sp, M_VMPGDATA); 2170 return (0); 2171 } 2172 2173 void 2174 swapoff_all(void) 2175 { 2176 struct swdevt *sp, *spt; 2177 const char *devname; 2178 int error; 2179 2180 mtx_lock(&Giant); 2181 while (swdev_syscall_active) 2182 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2183 swdev_syscall_active = 1; 2184 2185 mtx_lock(&sw_dev_mtx); 2186 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2187 mtx_unlock(&sw_dev_mtx); 2188 if (vn_isdisk(sp->sw_vp, NULL)) 2189 devname = sp->sw_vp->v_rdev->si_name; 2190 else 2191 devname = "[file]"; 2192 error = swapoff_one(sp, thread0.td_ucred); 2193 if (error != 0) { 2194 printf("Cannot remove swap device %s (error=%d), " 2195 "skipping.\n", devname, error); 2196 } else if (bootverbose) { 2197 printf("Swap device %s removed.\n", devname); 2198 } 2199 mtx_lock(&sw_dev_mtx); 2200 } 2201 mtx_unlock(&sw_dev_mtx); 2202 2203 swdev_syscall_active = 0; 2204 wakeup_one(&swdev_syscall_active); 2205 mtx_unlock(&Giant); 2206 } 2207 2208 void 2209 swap_pager_status(int *total, int *used) 2210 { 2211 struct swdevt *sp; 2212 2213 *total = 0; 2214 *used = 0; 2215 mtx_lock(&sw_dev_mtx); 2216 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2217 *total += sp->sw_nblks; 2218 *used += sp->sw_used; 2219 } 2220 mtx_unlock(&sw_dev_mtx); 2221 } 2222 2223 static int 2224 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2225 { 2226 int *name = (int *)arg1; 2227 int error, n; 2228 struct xswdev xs; 2229 struct swdevt *sp; 2230 2231 if (arg2 != 1) /* name length */ 2232 return (EINVAL); 2233 2234 n = 0; 2235 mtx_lock(&sw_dev_mtx); 2236 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2237 if (n == *name) { 2238 mtx_unlock(&sw_dev_mtx); 2239 xs.xsw_version = XSWDEV_VERSION; 2240 xs.xsw_dev = sp->sw_dev; 2241 xs.xsw_flags = sp->sw_flags; 2242 xs.xsw_nblks = sp->sw_nblks; 2243 xs.xsw_used = sp->sw_used; 2244 2245 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2246 return (error); 2247 } 2248 n++; 2249 } 2250 mtx_unlock(&sw_dev_mtx); 2251 return (ENOENT); 2252 } 2253 2254 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2255 "Number of swap devices"); 2256 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2257 "Swap statistics by device"); 2258 2259 /* 2260 * vmspace_swap_count() - count the approximate swap useage in pages for a 2261 * vmspace. 2262 * 2263 * The map must be locked. 2264 * 2265 * Swap useage is determined by taking the proportional swap used by 2266 * VM objects backing the VM map. To make up for fractional losses, 2267 * if the VM object has any swap use at all the associated map entries 2268 * count for at least 1 swap page. 2269 */ 2270 int 2271 vmspace_swap_count(struct vmspace *vmspace) 2272 { 2273 vm_map_t map = &vmspace->vm_map; 2274 vm_map_entry_t cur; 2275 int count = 0; 2276 2277 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2278 vm_object_t object; 2279 2280 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2281 (object = cur->object.vm_object) != NULL) { 2282 VM_OBJECT_LOCK(object); 2283 if (object->type == OBJT_SWAP && 2284 object->un_pager.swp.swp_bcount != 0) { 2285 int n = (cur->end - cur->start) / PAGE_SIZE; 2286 2287 count += object->un_pager.swp.swp_bcount * 2288 SWAP_META_PAGES * n / object->size + 1; 2289 } 2290 VM_OBJECT_UNLOCK(object); 2291 } 2292 } 2293 return (count); 2294 } 2295 2296 /* 2297 * GEOM backend 2298 * 2299 * Swapping onto disk devices. 2300 * 2301 */ 2302 2303 static g_orphan_t swapgeom_orphan; 2304 2305 static struct g_class g_swap_class = { 2306 .name = "SWAP", 2307 .version = G_VERSION, 2308 .orphan = swapgeom_orphan, 2309 }; 2310 2311 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2312 2313 2314 static void 2315 swapgeom_done(struct bio *bp2) 2316 { 2317 struct buf *bp; 2318 2319 bp = bp2->bio_caller2; 2320 bp->b_ioflags = bp2->bio_flags; 2321 if (bp2->bio_error) 2322 bp->b_ioflags |= BIO_ERROR; 2323 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2324 bp->b_error = bp2->bio_error; 2325 bufdone(bp); 2326 g_destroy_bio(bp2); 2327 } 2328 2329 static void 2330 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2331 { 2332 struct bio *bio; 2333 struct g_consumer *cp; 2334 2335 cp = sp->sw_id; 2336 if (cp == NULL) { 2337 bp->b_error = ENXIO; 2338 bp->b_ioflags |= BIO_ERROR; 2339 bufdone(bp); 2340 return; 2341 } 2342 if (bp->b_iocmd == BIO_WRITE) 2343 bio = g_new_bio(); 2344 else 2345 bio = g_alloc_bio(); 2346 if (bio == NULL) { 2347 bp->b_error = ENOMEM; 2348 bp->b_ioflags |= BIO_ERROR; 2349 bufdone(bp); 2350 return; 2351 } 2352 2353 bio->bio_caller2 = bp; 2354 bio->bio_cmd = bp->b_iocmd; 2355 bio->bio_data = bp->b_data; 2356 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2357 bio->bio_length = bp->b_bcount; 2358 bio->bio_done = swapgeom_done; 2359 g_io_request(bio, cp); 2360 return; 2361 } 2362 2363 static void 2364 swapgeom_orphan(struct g_consumer *cp) 2365 { 2366 struct swdevt *sp; 2367 2368 mtx_lock(&sw_dev_mtx); 2369 TAILQ_FOREACH(sp, &swtailq, sw_list) 2370 if (sp->sw_id == cp) 2371 sp->sw_id = NULL; 2372 mtx_unlock(&sw_dev_mtx); 2373 } 2374 2375 static void 2376 swapgeom_close_ev(void *arg, int flags) 2377 { 2378 struct g_consumer *cp; 2379 2380 cp = arg; 2381 g_access(cp, -1, -1, 0); 2382 g_detach(cp); 2383 g_destroy_consumer(cp); 2384 } 2385 2386 static void 2387 swapgeom_close(struct thread *td, struct swdevt *sw) 2388 { 2389 2390 /* XXX: direct call when Giant untangled */ 2391 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2392 } 2393 2394 2395 struct swh0h0 { 2396 struct cdev *dev; 2397 struct vnode *vp; 2398 int error; 2399 }; 2400 2401 static void 2402 swapongeom_ev(void *arg, int flags) 2403 { 2404 struct swh0h0 *swh; 2405 struct g_provider *pp; 2406 struct g_consumer *cp; 2407 static struct g_geom *gp; 2408 struct swdevt *sp; 2409 u_long nblks; 2410 int error; 2411 2412 swh = arg; 2413 swh->error = 0; 2414 pp = g_dev_getprovider(swh->dev); 2415 if (pp == NULL) { 2416 swh->error = ENODEV; 2417 return; 2418 } 2419 mtx_lock(&sw_dev_mtx); 2420 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2421 cp = sp->sw_id; 2422 if (cp != NULL && cp->provider == pp) { 2423 mtx_unlock(&sw_dev_mtx); 2424 swh->error = EBUSY; 2425 return; 2426 } 2427 } 2428 mtx_unlock(&sw_dev_mtx); 2429 if (gp == NULL) 2430 gp = g_new_geomf(&g_swap_class, "swap", NULL); 2431 cp = g_new_consumer(gp); 2432 g_attach(cp, pp); 2433 /* 2434 * XXX: Everytime you think you can improve the margin for 2435 * footshooting, somebody depends on the ability to do so: 2436 * savecore(8) wants to write to our swapdev so we cannot 2437 * set an exclusive count :-( 2438 */ 2439 error = g_access(cp, 1, 1, 0); 2440 if (error) { 2441 g_detach(cp); 2442 g_destroy_consumer(cp); 2443 swh->error = error; 2444 return; 2445 } 2446 nblks = pp->mediasize / DEV_BSIZE; 2447 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2448 swapgeom_close, dev2udev(swh->dev)); 2449 swh->error = 0; 2450 return; 2451 } 2452 2453 static int 2454 swapongeom(struct thread *td, struct vnode *vp) 2455 { 2456 int error; 2457 struct swh0h0 swh; 2458 2459 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2460 2461 swh.dev = vp->v_rdev; 2462 swh.vp = vp; 2463 swh.error = 0; 2464 /* XXX: direct call when Giant untangled */ 2465 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2466 if (!error) 2467 error = swh.error; 2468 VOP_UNLOCK(vp, 0); 2469 return (error); 2470 } 2471 2472 /* 2473 * VNODE backend 2474 * 2475 * This is used mainly for network filesystem (read: probably only tested 2476 * with NFS) swapfiles. 2477 * 2478 */ 2479 2480 static void 2481 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2482 { 2483 struct vnode *vp2; 2484 2485 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2486 2487 vp2 = sp->sw_id; 2488 vhold(vp2); 2489 if (bp->b_iocmd == BIO_WRITE) { 2490 if (bp->b_bufobj) 2491 bufobj_wdrop(bp->b_bufobj); 2492 bufobj_wref(&vp2->v_bufobj); 2493 } 2494 if (bp->b_bufobj != &vp2->v_bufobj) 2495 bp->b_bufobj = &vp2->v_bufobj; 2496 bp->b_vp = vp2; 2497 bp->b_iooffset = dbtob(bp->b_blkno); 2498 bstrategy(bp); 2499 return; 2500 } 2501 2502 static void 2503 swapdev_close(struct thread *td, struct swdevt *sp) 2504 { 2505 2506 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2507 vrele(sp->sw_vp); 2508 } 2509 2510 2511 static int 2512 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2513 { 2514 struct swdevt *sp; 2515 int error; 2516 2517 if (nblks == 0) 2518 return (ENXIO); 2519 mtx_lock(&sw_dev_mtx); 2520 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2521 if (sp->sw_id == vp) { 2522 mtx_unlock(&sw_dev_mtx); 2523 return (EBUSY); 2524 } 2525 } 2526 mtx_unlock(&sw_dev_mtx); 2527 2528 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2529 #ifdef MAC 2530 error = mac_system_check_swapon(td->td_ucred, vp); 2531 if (error == 0) 2532 #endif 2533 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2534 (void) VOP_UNLOCK(vp, 0); 2535 if (error) 2536 return (error); 2537 2538 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2539 NODEV); 2540 return (0); 2541 } 2542