1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/racct.h> 90 #include <sys/resource.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/sysctl.h> 94 #include <sys/sysproto.h> 95 #include <sys/blist.h> 96 #include <sys/lock.h> 97 #include <sys/sx.h> 98 #include <sys/vmmeter.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #include <vm/vm.h> 103 #include <vm/pmap.h> 104 #include <vm/vm_map.h> 105 #include <vm/vm_kern.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_page.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_pageout.h> 110 #include <vm/vm_param.h> 111 #include <vm/swap_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/uma.h> 114 115 #include <geom/geom.h> 116 117 /* 118 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, 16 119 * or 32 pages per allocation. 120 * The 32-page limit is due to the radix code (kern/subr_blist.c). 121 */ 122 #ifndef MAX_PAGEOUT_CLUSTER 123 #define MAX_PAGEOUT_CLUSTER 16 124 #endif 125 126 #if !defined(SWB_NPAGES) 127 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 128 #endif 129 130 /* 131 * The swblock structure maps an object and a small, fixed-size range 132 * of page indices to disk addresses within a swap area. 133 * The collection of these mappings is implemented as a hash table. 134 * Unused disk addresses within a swap area are allocated and managed 135 * using a blist. 136 */ 137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 138 #define SWAP_META_PAGES (SWB_NPAGES * 2) 139 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 140 141 struct swblock { 142 struct swblock *swb_hnext; 143 vm_object_t swb_object; 144 vm_pindex_t swb_index; 145 int swb_count; 146 daddr_t swb_pages[SWAP_META_PAGES]; 147 }; 148 149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 150 static struct mtx sw_dev_mtx; 151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 152 static struct swdevt *swdevhd; /* Allocate from here next */ 153 static int nswapdev; /* Number of swap devices */ 154 int swap_pager_avail; 155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 156 157 static vm_ooffset_t swap_total; 158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 159 "Total amount of available swap storage."); 160 static vm_ooffset_t swap_reserved; 161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 162 "Amount of swap storage needed to back all allocated anonymous memory."); 163 static int overcommit = 0; 164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 165 "Configure virtual memory overcommit behavior. See tuning(7) " 166 "for details."); 167 static unsigned long swzone; 168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, 169 "Actual size of swap metadata zone"); 170 static unsigned long swap_maxpages; 171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, 172 "Maximum amount of swap supported"); 173 174 /* bits from overcommit */ 175 #define SWAP_RESERVE_FORCE_ON (1 << 0) 176 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 177 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 178 179 int 180 swap_reserve(vm_ooffset_t incr) 181 { 182 183 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 184 } 185 186 int 187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 188 { 189 vm_ooffset_t r, s; 190 int res, error; 191 static int curfail; 192 static struct timeval lastfail; 193 struct uidinfo *uip; 194 195 uip = cred->cr_ruidinfo; 196 197 if (incr & PAGE_MASK) 198 panic("swap_reserve: & PAGE_MASK"); 199 200 #ifdef RACCT 201 if (racct_enable) { 202 PROC_LOCK(curproc); 203 error = racct_add(curproc, RACCT_SWAP, incr); 204 PROC_UNLOCK(curproc); 205 if (error != 0) 206 return (0); 207 } 208 #endif 209 210 res = 0; 211 mtx_lock(&sw_dev_mtx); 212 r = swap_reserved + incr; 213 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 214 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count; 215 s *= PAGE_SIZE; 216 } else 217 s = 0; 218 s += swap_total; 219 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 220 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 221 res = 1; 222 swap_reserved = r; 223 } 224 mtx_unlock(&sw_dev_mtx); 225 226 if (res) { 227 UIDINFO_VMSIZE_LOCK(uip); 228 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 229 uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) && 230 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 231 res = 0; 232 else 233 uip->ui_vmsize += incr; 234 UIDINFO_VMSIZE_UNLOCK(uip); 235 if (!res) { 236 mtx_lock(&sw_dev_mtx); 237 swap_reserved -= incr; 238 mtx_unlock(&sw_dev_mtx); 239 } 240 } 241 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 242 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 243 uip->ui_uid, curproc->p_pid, incr); 244 } 245 246 #ifdef RACCT 247 if (!res) { 248 PROC_LOCK(curproc); 249 racct_sub(curproc, RACCT_SWAP, incr); 250 PROC_UNLOCK(curproc); 251 } 252 #endif 253 254 return (res); 255 } 256 257 void 258 swap_reserve_force(vm_ooffset_t incr) 259 { 260 struct uidinfo *uip; 261 262 mtx_lock(&sw_dev_mtx); 263 swap_reserved += incr; 264 mtx_unlock(&sw_dev_mtx); 265 266 #ifdef RACCT 267 PROC_LOCK(curproc); 268 racct_add_force(curproc, RACCT_SWAP, incr); 269 PROC_UNLOCK(curproc); 270 #endif 271 272 uip = curthread->td_ucred->cr_ruidinfo; 273 PROC_LOCK(curproc); 274 UIDINFO_VMSIZE_LOCK(uip); 275 uip->ui_vmsize += incr; 276 UIDINFO_VMSIZE_UNLOCK(uip); 277 PROC_UNLOCK(curproc); 278 } 279 280 void 281 swap_release(vm_ooffset_t decr) 282 { 283 struct ucred *cred; 284 285 PROC_LOCK(curproc); 286 cred = curthread->td_ucred; 287 swap_release_by_cred(decr, cred); 288 PROC_UNLOCK(curproc); 289 } 290 291 void 292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 293 { 294 struct uidinfo *uip; 295 296 uip = cred->cr_ruidinfo; 297 298 if (decr & PAGE_MASK) 299 panic("swap_release: & PAGE_MASK"); 300 301 mtx_lock(&sw_dev_mtx); 302 if (swap_reserved < decr) 303 panic("swap_reserved < decr"); 304 swap_reserved -= decr; 305 mtx_unlock(&sw_dev_mtx); 306 307 UIDINFO_VMSIZE_LOCK(uip); 308 if (uip->ui_vmsize < decr) 309 printf("negative vmsize for uid = %d\n", uip->ui_uid); 310 uip->ui_vmsize -= decr; 311 UIDINFO_VMSIZE_UNLOCK(uip); 312 313 racct_sub_cred(cred, RACCT_SWAP, decr); 314 } 315 316 static void swapdev_strategy(struct buf *, struct swdevt *sw); 317 318 #define SWM_FREE 0x02 /* free, period */ 319 #define SWM_POP 0x04 /* pop out */ 320 321 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 322 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 323 static int nsw_rcount; /* free read buffers */ 324 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 325 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 326 static int nsw_wcount_async_max;/* assigned maximum */ 327 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 328 329 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS); 330 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW, 331 NULL, 0, sysctl_swap_async_max, "I", "Maximum running async swap ops"); 332 333 static struct swblock **swhash; 334 static int swhash_mask; 335 static struct mtx swhash_mtx; 336 337 static struct sx sw_alloc_sx; 338 339 /* 340 * "named" and "unnamed" anon region objects. Try to reduce the overhead 341 * of searching a named list by hashing it just a little. 342 */ 343 344 #define NOBJLISTS 8 345 346 #define NOBJLIST(handle) \ 347 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 348 349 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 350 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 351 static uma_zone_t swap_zone; 352 353 /* 354 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 355 * calls hooked from other parts of the VM system and do not appear here. 356 * (see vm/swap_pager.h). 357 */ 358 static vm_object_t 359 swap_pager_alloc(void *handle, vm_ooffset_t size, 360 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 361 static void swap_pager_dealloc(vm_object_t object); 362 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 363 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int, 364 pgo_getpages_iodone_t, void *); 365 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 366 static boolean_t 367 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 368 static void swap_pager_init(void); 369 static void swap_pager_unswapped(vm_page_t); 370 static void swap_pager_swapoff(struct swdevt *sp); 371 372 struct pagerops swappagerops = { 373 .pgo_init = swap_pager_init, /* early system initialization of pager */ 374 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 375 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 376 .pgo_getpages = swap_pager_getpages, /* pagein */ 377 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ 378 .pgo_putpages = swap_pager_putpages, /* pageout */ 379 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 380 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 381 }; 382 383 /* 384 * dmmax is in page-sized chunks with the new swap system. It was 385 * dev-bsized chunks in the old. dmmax is always a power of 2. 386 * 387 * swap_*() routines are externally accessible. swp_*() routines are 388 * internal. 389 */ 390 static int dmmax; 391 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 392 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 393 394 SYSCTL_INT(_vm, OID_AUTO, dmmax, 395 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 396 397 static void swp_sizecheck(void); 398 static void swp_pager_async_iodone(struct buf *bp); 399 static int swapongeom(struct thread *, struct vnode *); 400 static int swaponvp(struct thread *, struct vnode *, u_long); 401 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 402 403 /* 404 * Swap bitmap functions 405 */ 406 static void swp_pager_freeswapspace(daddr_t blk, int npages); 407 static daddr_t swp_pager_getswapspace(int npages); 408 409 /* 410 * Metadata functions 411 */ 412 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 413 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 414 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 415 static void swp_pager_meta_free_all(vm_object_t); 416 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 417 418 static void 419 swp_pager_free_nrpage(vm_page_t m) 420 { 421 422 vm_page_lock(m); 423 if (m->wire_count == 0) 424 vm_page_free(m); 425 vm_page_unlock(m); 426 } 427 428 /* 429 * SWP_SIZECHECK() - update swap_pager_full indication 430 * 431 * update the swap_pager_almost_full indication and warn when we are 432 * about to run out of swap space, using lowat/hiwat hysteresis. 433 * 434 * Clear swap_pager_full ( task killing ) indication when lowat is met. 435 * 436 * No restrictions on call 437 * This routine may not block. 438 */ 439 static void 440 swp_sizecheck(void) 441 { 442 443 if (swap_pager_avail < nswap_lowat) { 444 if (swap_pager_almost_full == 0) { 445 printf("swap_pager: out of swap space\n"); 446 swap_pager_almost_full = 1; 447 } 448 } else { 449 swap_pager_full = 0; 450 if (swap_pager_avail > nswap_hiwat) 451 swap_pager_almost_full = 0; 452 } 453 } 454 455 /* 456 * SWP_PAGER_HASH() - hash swap meta data 457 * 458 * This is an helper function which hashes the swapblk given 459 * the object and page index. It returns a pointer to a pointer 460 * to the object, or a pointer to a NULL pointer if it could not 461 * find a swapblk. 462 */ 463 static struct swblock ** 464 swp_pager_hash(vm_object_t object, vm_pindex_t index) 465 { 466 struct swblock **pswap; 467 struct swblock *swap; 468 469 index &= ~(vm_pindex_t)SWAP_META_MASK; 470 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 471 while ((swap = *pswap) != NULL) { 472 if (swap->swb_object == object && 473 swap->swb_index == index 474 ) { 475 break; 476 } 477 pswap = &swap->swb_hnext; 478 } 479 return (pswap); 480 } 481 482 /* 483 * SWAP_PAGER_INIT() - initialize the swap pager! 484 * 485 * Expected to be started from system init. NOTE: This code is run 486 * before much else so be careful what you depend on. Most of the VM 487 * system has yet to be initialized at this point. 488 */ 489 static void 490 swap_pager_init(void) 491 { 492 /* 493 * Initialize object lists 494 */ 495 int i; 496 497 for (i = 0; i < NOBJLISTS; ++i) 498 TAILQ_INIT(&swap_pager_object_list[i]); 499 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 500 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 501 502 /* 503 * Device Stripe, in PAGE_SIZE'd blocks 504 */ 505 dmmax = SWB_NPAGES * 2; 506 } 507 508 /* 509 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 510 * 511 * Expected to be started from pageout process once, prior to entering 512 * its main loop. 513 */ 514 void 515 swap_pager_swap_init(void) 516 { 517 unsigned long n, n2; 518 519 /* 520 * Number of in-transit swap bp operations. Don't 521 * exhaust the pbufs completely. Make sure we 522 * initialize workable values (0 will work for hysteresis 523 * but it isn't very efficient). 524 * 525 * The nsw_cluster_max is constrained by the bp->b_pages[] 526 * array (MAXPHYS/PAGE_SIZE) and our locally defined 527 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 528 * constrained by the swap device interleave stripe size. 529 * 530 * Currently we hardwire nsw_wcount_async to 4. This limit is 531 * designed to prevent other I/O from having high latencies due to 532 * our pageout I/O. The value 4 works well for one or two active swap 533 * devices but is probably a little low if you have more. Even so, 534 * a higher value would probably generate only a limited improvement 535 * with three or four active swap devices since the system does not 536 * typically have to pageout at extreme bandwidths. We will want 537 * at least 2 per swap devices, and 4 is a pretty good value if you 538 * have one NFS swap device due to the command/ack latency over NFS. 539 * So it all works out pretty well. 540 */ 541 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 542 543 mtx_lock(&pbuf_mtx); 544 nsw_rcount = (nswbuf + 1) / 2; 545 nsw_wcount_sync = (nswbuf + 3) / 4; 546 nsw_wcount_async = 4; 547 nsw_wcount_async_max = nsw_wcount_async; 548 mtx_unlock(&pbuf_mtx); 549 550 /* 551 * Initialize our zone. Right now I'm just guessing on the number 552 * we need based on the number of pages in the system. Each swblock 553 * can hold 32 pages, so this is probably overkill. This reservation 554 * is typically limited to around 32MB by default. 555 */ 556 n = vm_cnt.v_page_count / 2; 557 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 558 n = maxswzone / sizeof(struct swblock); 559 n2 = n; 560 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 561 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 562 if (swap_zone == NULL) 563 panic("failed to create swap_zone."); 564 do { 565 if (uma_zone_reserve_kva(swap_zone, n)) 566 break; 567 /* 568 * if the allocation failed, try a zone two thirds the 569 * size of the previous attempt. 570 */ 571 n -= ((n + 2) / 3); 572 } while (n > 0); 573 if (n2 != n) 574 printf("Swap zone entries reduced from %lu to %lu.\n", n2, n); 575 swap_maxpages = n * SWAP_META_PAGES; 576 swzone = n * sizeof(struct swblock); 577 n2 = n; 578 579 /* 580 * Initialize our meta-data hash table. The swapper does not need to 581 * be quite as efficient as the VM system, so we do not use an 582 * oversized hash table. 583 * 584 * n: size of hash table, must be power of 2 585 * swhash_mask: hash table index mask 586 */ 587 for (n = 1; n < n2 / 8; n *= 2) 588 ; 589 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 590 swhash_mask = n - 1; 591 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 592 } 593 594 /* 595 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 596 * its metadata structures. 597 * 598 * This routine is called from the mmap and fork code to create a new 599 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 600 * and then converting it with swp_pager_meta_build(). 601 * 602 * This routine may block in vm_object_allocate() and create a named 603 * object lookup race, so we must interlock. 604 * 605 * MPSAFE 606 */ 607 static vm_object_t 608 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 609 vm_ooffset_t offset, struct ucred *cred) 610 { 611 vm_object_t object; 612 vm_pindex_t pindex; 613 614 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 615 if (handle) { 616 mtx_lock(&Giant); 617 /* 618 * Reference existing named region or allocate new one. There 619 * should not be a race here against swp_pager_meta_build() 620 * as called from vm_page_remove() in regards to the lookup 621 * of the handle. 622 */ 623 sx_xlock(&sw_alloc_sx); 624 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 625 if (object == NULL) { 626 if (cred != NULL) { 627 if (!swap_reserve_by_cred(size, cred)) { 628 sx_xunlock(&sw_alloc_sx); 629 mtx_unlock(&Giant); 630 return (NULL); 631 } 632 crhold(cred); 633 } 634 object = vm_object_allocate(OBJT_DEFAULT, pindex); 635 VM_OBJECT_WLOCK(object); 636 object->handle = handle; 637 if (cred != NULL) { 638 object->cred = cred; 639 object->charge = size; 640 } 641 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 642 VM_OBJECT_WUNLOCK(object); 643 } 644 sx_xunlock(&sw_alloc_sx); 645 mtx_unlock(&Giant); 646 } else { 647 if (cred != NULL) { 648 if (!swap_reserve_by_cred(size, cred)) 649 return (NULL); 650 crhold(cred); 651 } 652 object = vm_object_allocate(OBJT_DEFAULT, pindex); 653 VM_OBJECT_WLOCK(object); 654 if (cred != NULL) { 655 object->cred = cred; 656 object->charge = size; 657 } 658 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 659 VM_OBJECT_WUNLOCK(object); 660 } 661 return (object); 662 } 663 664 /* 665 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 666 * 667 * The swap backing for the object is destroyed. The code is 668 * designed such that we can reinstantiate it later, but this 669 * routine is typically called only when the entire object is 670 * about to be destroyed. 671 * 672 * The object must be locked. 673 */ 674 static void 675 swap_pager_dealloc(vm_object_t object) 676 { 677 678 /* 679 * Remove from list right away so lookups will fail if we block for 680 * pageout completion. 681 */ 682 if (object->handle != NULL) { 683 mtx_lock(&sw_alloc_mtx); 684 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 685 mtx_unlock(&sw_alloc_mtx); 686 } 687 688 VM_OBJECT_ASSERT_WLOCKED(object); 689 vm_object_pip_wait(object, "swpdea"); 690 691 /* 692 * Free all remaining metadata. We only bother to free it from 693 * the swap meta data. We do not attempt to free swapblk's still 694 * associated with vm_page_t's for this object. We do not care 695 * if paging is still in progress on some objects. 696 */ 697 swp_pager_meta_free_all(object); 698 object->handle = NULL; 699 object->type = OBJT_DEAD; 700 } 701 702 /************************************************************************ 703 * SWAP PAGER BITMAP ROUTINES * 704 ************************************************************************/ 705 706 /* 707 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 708 * 709 * Allocate swap for the requested number of pages. The starting 710 * swap block number (a page index) is returned or SWAPBLK_NONE 711 * if the allocation failed. 712 * 713 * Also has the side effect of advising that somebody made a mistake 714 * when they configured swap and didn't configure enough. 715 * 716 * This routine may not sleep. 717 * 718 * We allocate in round-robin fashion from the configured devices. 719 */ 720 static daddr_t 721 swp_pager_getswapspace(int npages) 722 { 723 daddr_t blk; 724 struct swdevt *sp; 725 int i; 726 727 blk = SWAPBLK_NONE; 728 mtx_lock(&sw_dev_mtx); 729 sp = swdevhd; 730 for (i = 0; i < nswapdev; i++) { 731 if (sp == NULL) 732 sp = TAILQ_FIRST(&swtailq); 733 if (!(sp->sw_flags & SW_CLOSING)) { 734 blk = blist_alloc(sp->sw_blist, npages); 735 if (blk != SWAPBLK_NONE) { 736 blk += sp->sw_first; 737 sp->sw_used += npages; 738 swap_pager_avail -= npages; 739 swp_sizecheck(); 740 swdevhd = TAILQ_NEXT(sp, sw_list); 741 goto done; 742 } 743 } 744 sp = TAILQ_NEXT(sp, sw_list); 745 } 746 if (swap_pager_full != 2) { 747 printf("swap_pager_getswapspace(%d): failed\n", npages); 748 swap_pager_full = 2; 749 swap_pager_almost_full = 1; 750 } 751 swdevhd = NULL; 752 done: 753 mtx_unlock(&sw_dev_mtx); 754 return (blk); 755 } 756 757 static int 758 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 759 { 760 761 return (blk >= sp->sw_first && blk < sp->sw_end); 762 } 763 764 static void 765 swp_pager_strategy(struct buf *bp) 766 { 767 struct swdevt *sp; 768 769 mtx_lock(&sw_dev_mtx); 770 TAILQ_FOREACH(sp, &swtailq, sw_list) { 771 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 772 mtx_unlock(&sw_dev_mtx); 773 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 774 unmapped_buf_allowed) { 775 bp->b_data = unmapped_buf; 776 bp->b_offset = 0; 777 } else { 778 pmap_qenter((vm_offset_t)bp->b_data, 779 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 780 } 781 sp->sw_strategy(bp, sp); 782 return; 783 } 784 } 785 panic("Swapdev not found"); 786 } 787 788 789 /* 790 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 791 * 792 * This routine returns the specified swap blocks back to the bitmap. 793 * 794 * This routine may not sleep. 795 */ 796 static void 797 swp_pager_freeswapspace(daddr_t blk, int npages) 798 { 799 struct swdevt *sp; 800 801 mtx_lock(&sw_dev_mtx); 802 TAILQ_FOREACH(sp, &swtailq, sw_list) { 803 if (blk >= sp->sw_first && blk < sp->sw_end) { 804 sp->sw_used -= npages; 805 /* 806 * If we are attempting to stop swapping on 807 * this device, we don't want to mark any 808 * blocks free lest they be reused. 809 */ 810 if ((sp->sw_flags & SW_CLOSING) == 0) { 811 blist_free(sp->sw_blist, blk - sp->sw_first, 812 npages); 813 swap_pager_avail += npages; 814 swp_sizecheck(); 815 } 816 mtx_unlock(&sw_dev_mtx); 817 return; 818 } 819 } 820 panic("Swapdev not found"); 821 } 822 823 /* 824 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 825 * range within an object. 826 * 827 * This is a globally accessible routine. 828 * 829 * This routine removes swapblk assignments from swap metadata. 830 * 831 * The external callers of this routine typically have already destroyed 832 * or renamed vm_page_t's associated with this range in the object so 833 * we should be ok. 834 * 835 * The object must be locked. 836 */ 837 void 838 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 839 { 840 841 swp_pager_meta_free(object, start, size); 842 } 843 844 /* 845 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 846 * 847 * Assigns swap blocks to the specified range within the object. The 848 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 849 * 850 * Returns 0 on success, -1 on failure. 851 */ 852 int 853 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 854 { 855 int n = 0; 856 daddr_t blk = SWAPBLK_NONE; 857 vm_pindex_t beg = start; /* save start index */ 858 859 VM_OBJECT_WLOCK(object); 860 while (size) { 861 if (n == 0) { 862 n = BLIST_MAX_ALLOC; 863 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 864 n >>= 1; 865 if (n == 0) { 866 swp_pager_meta_free(object, beg, start - beg); 867 VM_OBJECT_WUNLOCK(object); 868 return (-1); 869 } 870 } 871 } 872 swp_pager_meta_build(object, start, blk); 873 --size; 874 ++start; 875 ++blk; 876 --n; 877 } 878 swp_pager_meta_free(object, start, n); 879 VM_OBJECT_WUNLOCK(object); 880 return (0); 881 } 882 883 /* 884 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 885 * and destroy the source. 886 * 887 * Copy any valid swapblks from the source to the destination. In 888 * cases where both the source and destination have a valid swapblk, 889 * we keep the destination's. 890 * 891 * This routine is allowed to sleep. It may sleep allocating metadata 892 * indirectly through swp_pager_meta_build() or if paging is still in 893 * progress on the source. 894 * 895 * The source object contains no vm_page_t's (which is just as well) 896 * 897 * The source object is of type OBJT_SWAP. 898 * 899 * The source and destination objects must be locked. 900 * Both object locks may temporarily be released. 901 */ 902 void 903 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 904 vm_pindex_t offset, int destroysource) 905 { 906 vm_pindex_t i; 907 908 VM_OBJECT_ASSERT_WLOCKED(srcobject); 909 VM_OBJECT_ASSERT_WLOCKED(dstobject); 910 911 /* 912 * If destroysource is set, we remove the source object from the 913 * swap_pager internal queue now. 914 */ 915 if (destroysource) { 916 if (srcobject->handle != NULL) { 917 mtx_lock(&sw_alloc_mtx); 918 TAILQ_REMOVE( 919 NOBJLIST(srcobject->handle), 920 srcobject, 921 pager_object_list 922 ); 923 mtx_unlock(&sw_alloc_mtx); 924 } 925 } 926 927 /* 928 * transfer source to destination. 929 */ 930 for (i = 0; i < dstobject->size; ++i) { 931 daddr_t dstaddr; 932 933 /* 934 * Locate (without changing) the swapblk on the destination, 935 * unless it is invalid in which case free it silently, or 936 * if the destination is a resident page, in which case the 937 * source is thrown away. 938 */ 939 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 940 941 if (dstaddr == SWAPBLK_NONE) { 942 /* 943 * Destination has no swapblk and is not resident, 944 * copy source. 945 */ 946 daddr_t srcaddr; 947 948 srcaddr = swp_pager_meta_ctl( 949 srcobject, 950 i + offset, 951 SWM_POP 952 ); 953 954 if (srcaddr != SWAPBLK_NONE) { 955 /* 956 * swp_pager_meta_build() can sleep. 957 */ 958 vm_object_pip_add(srcobject, 1); 959 VM_OBJECT_WUNLOCK(srcobject); 960 vm_object_pip_add(dstobject, 1); 961 swp_pager_meta_build(dstobject, i, srcaddr); 962 vm_object_pip_wakeup(dstobject); 963 VM_OBJECT_WLOCK(srcobject); 964 vm_object_pip_wakeup(srcobject); 965 } 966 } else { 967 /* 968 * Destination has valid swapblk or it is represented 969 * by a resident page. We destroy the sourceblock. 970 */ 971 972 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 973 } 974 } 975 976 /* 977 * Free left over swap blocks in source. 978 * 979 * We have to revert the type to OBJT_DEFAULT so we do not accidently 980 * double-remove the object from the swap queues. 981 */ 982 if (destroysource) { 983 swp_pager_meta_free_all(srcobject); 984 /* 985 * Reverting the type is not necessary, the caller is going 986 * to destroy srcobject directly, but I'm doing it here 987 * for consistency since we've removed the object from its 988 * queues. 989 */ 990 srcobject->type = OBJT_DEFAULT; 991 } 992 } 993 994 /* 995 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 996 * the requested page. 997 * 998 * We determine whether good backing store exists for the requested 999 * page and return TRUE if it does, FALSE if it doesn't. 1000 * 1001 * If TRUE, we also try to determine how much valid, contiguous backing 1002 * store exists before and after the requested page within a reasonable 1003 * distance. We do not try to restrict it to the swap device stripe 1004 * (that is handled in getpages/putpages). It probably isn't worth 1005 * doing here. 1006 */ 1007 static boolean_t 1008 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 1009 { 1010 daddr_t blk0; 1011 1012 VM_OBJECT_ASSERT_LOCKED(object); 1013 /* 1014 * do we have good backing store at the requested index ? 1015 */ 1016 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1017 1018 if (blk0 == SWAPBLK_NONE) { 1019 if (before) 1020 *before = 0; 1021 if (after) 1022 *after = 0; 1023 return (FALSE); 1024 } 1025 1026 /* 1027 * find backwards-looking contiguous good backing store 1028 */ 1029 if (before != NULL) { 1030 int i; 1031 1032 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1033 daddr_t blk; 1034 1035 if (i > pindex) 1036 break; 1037 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1038 if (blk != blk0 - i) 1039 break; 1040 } 1041 *before = (i - 1); 1042 } 1043 1044 /* 1045 * find forward-looking contiguous good backing store 1046 */ 1047 if (after != NULL) { 1048 int i; 1049 1050 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1051 daddr_t blk; 1052 1053 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1054 if (blk != blk0 + i) 1055 break; 1056 } 1057 *after = (i - 1); 1058 } 1059 return (TRUE); 1060 } 1061 1062 /* 1063 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1064 * 1065 * This removes any associated swap backing store, whether valid or 1066 * not, from the page. 1067 * 1068 * This routine is typically called when a page is made dirty, at 1069 * which point any associated swap can be freed. MADV_FREE also 1070 * calls us in a special-case situation 1071 * 1072 * NOTE!!! If the page is clean and the swap was valid, the caller 1073 * should make the page dirty before calling this routine. This routine 1074 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1075 * depends on it. 1076 * 1077 * This routine may not sleep. 1078 * 1079 * The object containing the page must be locked. 1080 */ 1081 static void 1082 swap_pager_unswapped(vm_page_t m) 1083 { 1084 1085 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1086 } 1087 1088 /* 1089 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1090 * 1091 * Attempt to retrieve (m, count) pages from backing store, but make 1092 * sure we retrieve at least m[reqpage]. We try to load in as large 1093 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1094 * belongs to the same object. 1095 * 1096 * The code is designed for asynchronous operation and 1097 * immediate-notification of 'reqpage' but tends not to be 1098 * used that way. Please do not optimize-out this algorithmic 1099 * feature, I intend to improve on it in the future. 1100 * 1101 * The parent has a single vm_object_pip_add() reference prior to 1102 * calling us and we should return with the same. 1103 * 1104 * The parent has BUSY'd the pages. We should return with 'm' 1105 * left busy, but the others adjusted. 1106 */ 1107 static int 1108 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1109 { 1110 struct buf *bp; 1111 vm_page_t mreq; 1112 int i; 1113 int j; 1114 daddr_t blk; 1115 1116 mreq = m[reqpage]; 1117 1118 /* 1119 * Calculate range to retrieve. The pages have already been assigned 1120 * their swapblks. We require a *contiguous* range but we know it to 1121 * not span devices. If we do not supply it, bad things 1122 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1123 * loops are set up such that the case(s) are handled implicitly. 1124 * 1125 * The swp_*() calls must be made with the object locked. 1126 */ 1127 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1128 1129 for (i = reqpage - 1; i >= 0; --i) { 1130 daddr_t iblk; 1131 1132 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1133 if (blk != iblk + (reqpage - i)) 1134 break; 1135 } 1136 ++i; 1137 1138 for (j = reqpage + 1; j < count; ++j) { 1139 daddr_t jblk; 1140 1141 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1142 if (blk != jblk - (j - reqpage)) 1143 break; 1144 } 1145 1146 /* 1147 * free pages outside our collection range. Note: we never free 1148 * mreq, it must remain busy throughout. 1149 */ 1150 if (0 < i || j < count) { 1151 int k; 1152 1153 for (k = 0; k < i; ++k) 1154 swp_pager_free_nrpage(m[k]); 1155 for (k = j; k < count; ++k) 1156 swp_pager_free_nrpage(m[k]); 1157 } 1158 1159 /* 1160 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1161 * still busy, but the others unbusied. 1162 */ 1163 if (blk == SWAPBLK_NONE) 1164 return (VM_PAGER_FAIL); 1165 1166 /* 1167 * Getpbuf() can sleep. 1168 */ 1169 VM_OBJECT_WUNLOCK(object); 1170 /* 1171 * Get a swap buffer header to perform the IO 1172 */ 1173 bp = getpbuf(&nsw_rcount); 1174 bp->b_flags |= B_PAGING; 1175 1176 bp->b_iocmd = BIO_READ; 1177 bp->b_iodone = swp_pager_async_iodone; 1178 bp->b_rcred = crhold(thread0.td_ucred); 1179 bp->b_wcred = crhold(thread0.td_ucred); 1180 bp->b_blkno = blk - (reqpage - i); 1181 bp->b_bcount = PAGE_SIZE * (j - i); 1182 bp->b_bufsize = PAGE_SIZE * (j - i); 1183 bp->b_pager.pg_reqpage = reqpage - i; 1184 1185 VM_OBJECT_WLOCK(object); 1186 { 1187 int k; 1188 1189 for (k = i; k < j; ++k) { 1190 bp->b_pages[k - i] = m[k]; 1191 m[k]->oflags |= VPO_SWAPINPROG; 1192 } 1193 } 1194 bp->b_npages = j - i; 1195 1196 PCPU_INC(cnt.v_swapin); 1197 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1198 1199 /* 1200 * We still hold the lock on mreq, and our automatic completion routine 1201 * does not remove it. 1202 */ 1203 vm_object_pip_add(object, bp->b_npages); 1204 VM_OBJECT_WUNLOCK(object); 1205 1206 /* 1207 * perform the I/O. NOTE!!! bp cannot be considered valid after 1208 * this point because we automatically release it on completion. 1209 * Instead, we look at the one page we are interested in which we 1210 * still hold a lock on even through the I/O completion. 1211 * 1212 * The other pages in our m[] array are also released on completion, 1213 * so we cannot assume they are valid anymore either. 1214 * 1215 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1216 */ 1217 BUF_KERNPROC(bp); 1218 swp_pager_strategy(bp); 1219 1220 /* 1221 * wait for the page we want to complete. VPO_SWAPINPROG is always 1222 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1223 * is set in the meta-data. 1224 */ 1225 VM_OBJECT_WLOCK(object); 1226 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1227 mreq->oflags |= VPO_SWAPSLEEP; 1228 PCPU_INC(cnt.v_intrans); 1229 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP, 1230 "swread", hz * 20)) { 1231 printf( 1232 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1233 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1234 } 1235 } 1236 1237 /* 1238 * mreq is left busied after completion, but all the other pages 1239 * are freed. If we had an unrecoverable read error the page will 1240 * not be valid. 1241 */ 1242 if (mreq->valid != VM_PAGE_BITS_ALL) { 1243 return (VM_PAGER_ERROR); 1244 } else { 1245 return (VM_PAGER_OK); 1246 } 1247 1248 /* 1249 * A final note: in a low swap situation, we cannot deallocate swap 1250 * and mark a page dirty here because the caller is likely to mark 1251 * the page clean when we return, causing the page to possibly revert 1252 * to all-zero's later. 1253 */ 1254 } 1255 1256 /* 1257 * swap_pager_getpages_async(): 1258 * 1259 * Right now this is emulation of asynchronous operation on top of 1260 * swap_pager_getpages(). 1261 */ 1262 static int 1263 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 1264 int reqpage, pgo_getpages_iodone_t iodone, void *arg) 1265 { 1266 int r, error; 1267 1268 r = swap_pager_getpages(object, m, count, reqpage); 1269 VM_OBJECT_WUNLOCK(object); 1270 switch (r) { 1271 case VM_PAGER_OK: 1272 error = 0; 1273 break; 1274 case VM_PAGER_ERROR: 1275 error = EIO; 1276 break; 1277 case VM_PAGER_FAIL: 1278 error = EINVAL; 1279 break; 1280 default: 1281 panic("unhandled swap_pager_getpages() error %d", r); 1282 } 1283 (iodone)(arg, m, count, error); 1284 VM_OBJECT_WLOCK(object); 1285 1286 return (r); 1287 } 1288 1289 /* 1290 * swap_pager_putpages: 1291 * 1292 * Assign swap (if necessary) and initiate I/O on the specified pages. 1293 * 1294 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1295 * are automatically converted to SWAP objects. 1296 * 1297 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1298 * vm_page reservation system coupled with properly written VFS devices 1299 * should ensure that no low-memory deadlock occurs. This is an area 1300 * which needs work. 1301 * 1302 * The parent has N vm_object_pip_add() references prior to 1303 * calling us and will remove references for rtvals[] that are 1304 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1305 * completion. 1306 * 1307 * The parent has soft-busy'd the pages it passes us and will unbusy 1308 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1309 * We need to unbusy the rest on I/O completion. 1310 */ 1311 void 1312 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1313 int flags, int *rtvals) 1314 { 1315 int i, n; 1316 boolean_t sync; 1317 1318 if (count && m[0]->object != object) { 1319 panic("swap_pager_putpages: object mismatch %p/%p", 1320 object, 1321 m[0]->object 1322 ); 1323 } 1324 1325 /* 1326 * Step 1 1327 * 1328 * Turn object into OBJT_SWAP 1329 * check for bogus sysops 1330 * force sync if not pageout process 1331 */ 1332 if (object->type != OBJT_SWAP) 1333 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1334 VM_OBJECT_WUNLOCK(object); 1335 1336 n = 0; 1337 if (curproc != pageproc) 1338 sync = TRUE; 1339 else 1340 sync = (flags & VM_PAGER_PUT_SYNC) != 0; 1341 1342 /* 1343 * Step 2 1344 * 1345 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1346 * The page is left dirty until the pageout operation completes 1347 * successfully. 1348 */ 1349 for (i = 0; i < count; i += n) { 1350 int j; 1351 struct buf *bp; 1352 daddr_t blk; 1353 1354 /* 1355 * Maximum I/O size is limited by a number of factors. 1356 */ 1357 n = min(BLIST_MAX_ALLOC, count - i); 1358 n = min(n, nsw_cluster_max); 1359 1360 /* 1361 * Get biggest block of swap we can. If we fail, fall 1362 * back and try to allocate a smaller block. Don't go 1363 * overboard trying to allocate space if it would overly 1364 * fragment swap. 1365 */ 1366 while ( 1367 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1368 n > 4 1369 ) { 1370 n >>= 1; 1371 } 1372 if (blk == SWAPBLK_NONE) { 1373 for (j = 0; j < n; ++j) 1374 rtvals[i+j] = VM_PAGER_FAIL; 1375 continue; 1376 } 1377 1378 /* 1379 * All I/O parameters have been satisfied, build the I/O 1380 * request and assign the swap space. 1381 */ 1382 if (sync == TRUE) { 1383 bp = getpbuf(&nsw_wcount_sync); 1384 } else { 1385 bp = getpbuf(&nsw_wcount_async); 1386 bp->b_flags = B_ASYNC; 1387 } 1388 bp->b_flags |= B_PAGING; 1389 bp->b_iocmd = BIO_WRITE; 1390 1391 bp->b_rcred = crhold(thread0.td_ucred); 1392 bp->b_wcred = crhold(thread0.td_ucred); 1393 bp->b_bcount = PAGE_SIZE * n; 1394 bp->b_bufsize = PAGE_SIZE * n; 1395 bp->b_blkno = blk; 1396 1397 VM_OBJECT_WLOCK(object); 1398 for (j = 0; j < n; ++j) { 1399 vm_page_t mreq = m[i+j]; 1400 1401 swp_pager_meta_build( 1402 mreq->object, 1403 mreq->pindex, 1404 blk + j 1405 ); 1406 vm_page_dirty(mreq); 1407 mreq->oflags |= VPO_SWAPINPROG; 1408 bp->b_pages[j] = mreq; 1409 } 1410 VM_OBJECT_WUNLOCK(object); 1411 bp->b_npages = n; 1412 /* 1413 * Must set dirty range for NFS to work. 1414 */ 1415 bp->b_dirtyoff = 0; 1416 bp->b_dirtyend = bp->b_bcount; 1417 1418 PCPU_INC(cnt.v_swapout); 1419 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1420 1421 /* 1422 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we 1423 * can call the async completion routine at the end of a 1424 * synchronous I/O operation. Otherwise, our caller would 1425 * perform duplicate unbusy and wakeup operations on the page 1426 * and object, respectively. 1427 */ 1428 for (j = 0; j < n; j++) 1429 rtvals[i + j] = VM_PAGER_PEND; 1430 1431 /* 1432 * asynchronous 1433 * 1434 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1435 */ 1436 if (sync == FALSE) { 1437 bp->b_iodone = swp_pager_async_iodone; 1438 BUF_KERNPROC(bp); 1439 swp_pager_strategy(bp); 1440 continue; 1441 } 1442 1443 /* 1444 * synchronous 1445 * 1446 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1447 */ 1448 bp->b_iodone = bdone; 1449 swp_pager_strategy(bp); 1450 1451 /* 1452 * Wait for the sync I/O to complete. 1453 */ 1454 bwait(bp, PVM, "swwrt"); 1455 1456 /* 1457 * Now that we are through with the bp, we can call the 1458 * normal async completion, which frees everything up. 1459 */ 1460 swp_pager_async_iodone(bp); 1461 } 1462 VM_OBJECT_WLOCK(object); 1463 } 1464 1465 /* 1466 * swp_pager_async_iodone: 1467 * 1468 * Completion routine for asynchronous reads and writes from/to swap. 1469 * Also called manually by synchronous code to finish up a bp. 1470 * 1471 * This routine may not sleep. 1472 */ 1473 static void 1474 swp_pager_async_iodone(struct buf *bp) 1475 { 1476 int i; 1477 vm_object_t object = NULL; 1478 1479 /* 1480 * report error 1481 */ 1482 if (bp->b_ioflags & BIO_ERROR) { 1483 printf( 1484 "swap_pager: I/O error - %s failed; blkno %ld," 1485 "size %ld, error %d\n", 1486 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1487 (long)bp->b_blkno, 1488 (long)bp->b_bcount, 1489 bp->b_error 1490 ); 1491 } 1492 1493 /* 1494 * remove the mapping for kernel virtual 1495 */ 1496 if (buf_mapped(bp)) 1497 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1498 else 1499 bp->b_data = bp->b_kvabase; 1500 1501 if (bp->b_npages) { 1502 object = bp->b_pages[0]->object; 1503 VM_OBJECT_WLOCK(object); 1504 } 1505 1506 /* 1507 * cleanup pages. If an error occurs writing to swap, we are in 1508 * very serious trouble. If it happens to be a disk error, though, 1509 * we may be able to recover by reassigning the swap later on. So 1510 * in this case we remove the m->swapblk assignment for the page 1511 * but do not free it in the rlist. The errornous block(s) are thus 1512 * never reallocated as swap. Redirty the page and continue. 1513 */ 1514 for (i = 0; i < bp->b_npages; ++i) { 1515 vm_page_t m = bp->b_pages[i]; 1516 1517 m->oflags &= ~VPO_SWAPINPROG; 1518 if (m->oflags & VPO_SWAPSLEEP) { 1519 m->oflags &= ~VPO_SWAPSLEEP; 1520 wakeup(&object->paging_in_progress); 1521 } 1522 1523 if (bp->b_ioflags & BIO_ERROR) { 1524 /* 1525 * If an error occurs I'd love to throw the swapblk 1526 * away without freeing it back to swapspace, so it 1527 * can never be used again. But I can't from an 1528 * interrupt. 1529 */ 1530 if (bp->b_iocmd == BIO_READ) { 1531 /* 1532 * When reading, reqpage needs to stay 1533 * locked for the parent, but all other 1534 * pages can be freed. We still want to 1535 * wakeup the parent waiting on the page, 1536 * though. ( also: pg_reqpage can be -1 and 1537 * not match anything ). 1538 * 1539 * We have to wake specifically requested pages 1540 * up too because we cleared VPO_SWAPINPROG and 1541 * someone may be waiting for that. 1542 * 1543 * NOTE: for reads, m->dirty will probably 1544 * be overridden by the original caller of 1545 * getpages so don't play cute tricks here. 1546 */ 1547 m->valid = 0; 1548 if (i != bp->b_pager.pg_reqpage) 1549 swp_pager_free_nrpage(m); 1550 else { 1551 vm_page_lock(m); 1552 vm_page_flash(m); 1553 vm_page_unlock(m); 1554 } 1555 /* 1556 * If i == bp->b_pager.pg_reqpage, do not wake 1557 * the page up. The caller needs to. 1558 */ 1559 } else { 1560 /* 1561 * If a write error occurs, reactivate page 1562 * so it doesn't clog the inactive list, 1563 * then finish the I/O. 1564 */ 1565 vm_page_dirty(m); 1566 vm_page_lock(m); 1567 vm_page_activate(m); 1568 vm_page_unlock(m); 1569 vm_page_sunbusy(m); 1570 } 1571 } else if (bp->b_iocmd == BIO_READ) { 1572 /* 1573 * NOTE: for reads, m->dirty will probably be 1574 * overridden by the original caller of getpages so 1575 * we cannot set them in order to free the underlying 1576 * swap in a low-swap situation. I don't think we'd 1577 * want to do that anyway, but it was an optimization 1578 * that existed in the old swapper for a time before 1579 * it got ripped out due to precisely this problem. 1580 * 1581 * If not the requested page then deactivate it. 1582 * 1583 * Note that the requested page, reqpage, is left 1584 * busied, but we still have to wake it up. The 1585 * other pages are released (unbusied) by 1586 * vm_page_xunbusy(). 1587 */ 1588 KASSERT(!pmap_page_is_mapped(m), 1589 ("swp_pager_async_iodone: page %p is mapped", m)); 1590 m->valid = VM_PAGE_BITS_ALL; 1591 KASSERT(m->dirty == 0, 1592 ("swp_pager_async_iodone: page %p is dirty", m)); 1593 1594 /* 1595 * We have to wake specifically requested pages 1596 * up too because we cleared VPO_SWAPINPROG and 1597 * could be waiting for it in getpages. However, 1598 * be sure to not unbusy getpages specifically 1599 * requested page - getpages expects it to be 1600 * left busy. 1601 */ 1602 if (i != bp->b_pager.pg_reqpage) { 1603 vm_page_lock(m); 1604 vm_page_deactivate(m); 1605 vm_page_unlock(m); 1606 vm_page_xunbusy(m); 1607 } else { 1608 vm_page_lock(m); 1609 vm_page_flash(m); 1610 vm_page_unlock(m); 1611 } 1612 } else { 1613 /* 1614 * For write success, clear the dirty 1615 * status, then finish the I/O ( which decrements the 1616 * busy count and possibly wakes waiter's up ). 1617 */ 1618 KASSERT(!pmap_page_is_write_mapped(m), 1619 ("swp_pager_async_iodone: page %p is not write" 1620 " protected", m)); 1621 vm_page_undirty(m); 1622 vm_page_sunbusy(m); 1623 if (vm_page_count_severe()) { 1624 vm_page_lock(m); 1625 vm_page_try_to_cache(m); 1626 vm_page_unlock(m); 1627 } 1628 } 1629 } 1630 1631 /* 1632 * adjust pip. NOTE: the original parent may still have its own 1633 * pip refs on the object. 1634 */ 1635 if (object != NULL) { 1636 vm_object_pip_wakeupn(object, bp->b_npages); 1637 VM_OBJECT_WUNLOCK(object); 1638 } 1639 1640 /* 1641 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1642 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1643 * trigger a KASSERT in relpbuf(). 1644 */ 1645 if (bp->b_vp) { 1646 bp->b_vp = NULL; 1647 bp->b_bufobj = NULL; 1648 } 1649 /* 1650 * release the physical I/O buffer 1651 */ 1652 relpbuf( 1653 bp, 1654 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1655 ((bp->b_flags & B_ASYNC) ? 1656 &nsw_wcount_async : 1657 &nsw_wcount_sync 1658 ) 1659 ) 1660 ); 1661 } 1662 1663 /* 1664 * swap_pager_isswapped: 1665 * 1666 * Return 1 if at least one page in the given object is paged 1667 * out to the given swap device. 1668 * 1669 * This routine may not sleep. 1670 */ 1671 int 1672 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1673 { 1674 daddr_t index = 0; 1675 int bcount; 1676 int i; 1677 1678 VM_OBJECT_ASSERT_WLOCKED(object); 1679 if (object->type != OBJT_SWAP) 1680 return (0); 1681 1682 mtx_lock(&swhash_mtx); 1683 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1684 struct swblock *swap; 1685 1686 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1687 for (i = 0; i < SWAP_META_PAGES; ++i) { 1688 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1689 mtx_unlock(&swhash_mtx); 1690 return (1); 1691 } 1692 } 1693 } 1694 index += SWAP_META_PAGES; 1695 } 1696 mtx_unlock(&swhash_mtx); 1697 return (0); 1698 } 1699 1700 /* 1701 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1702 * 1703 * This routine dissociates the page at the given index within a 1704 * swap block from its backing store, paging it in if necessary. 1705 * If the page is paged in, it is placed in the inactive queue, 1706 * since it had its backing store ripped out from under it. 1707 * We also attempt to swap in all other pages in the swap block, 1708 * we only guarantee that the one at the specified index is 1709 * paged in. 1710 * 1711 * XXX - The code to page the whole block in doesn't work, so we 1712 * revert to the one-by-one behavior for now. Sigh. 1713 */ 1714 static inline void 1715 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1716 { 1717 vm_page_t m; 1718 1719 vm_object_pip_add(object, 1); 1720 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 1721 if (m->valid == VM_PAGE_BITS_ALL) { 1722 vm_object_pip_wakeup(object); 1723 vm_page_dirty(m); 1724 vm_page_lock(m); 1725 vm_page_activate(m); 1726 vm_page_unlock(m); 1727 vm_page_xunbusy(m); 1728 vm_pager_page_unswapped(m); 1729 return; 1730 } 1731 1732 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1733 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1734 vm_object_pip_wakeup(object); 1735 vm_page_dirty(m); 1736 vm_page_lock(m); 1737 vm_page_deactivate(m); 1738 vm_page_unlock(m); 1739 vm_page_xunbusy(m); 1740 vm_pager_page_unswapped(m); 1741 } 1742 1743 /* 1744 * swap_pager_swapoff: 1745 * 1746 * Page in all of the pages that have been paged out to the 1747 * given device. The corresponding blocks in the bitmap must be 1748 * marked as allocated and the device must be flagged SW_CLOSING. 1749 * There may be no processes swapped out to the device. 1750 * 1751 * This routine may block. 1752 */ 1753 static void 1754 swap_pager_swapoff(struct swdevt *sp) 1755 { 1756 struct swblock *swap; 1757 int i, j, retries; 1758 1759 GIANT_REQUIRED; 1760 1761 retries = 0; 1762 full_rescan: 1763 mtx_lock(&swhash_mtx); 1764 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1765 restart: 1766 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1767 vm_object_t object = swap->swb_object; 1768 vm_pindex_t pindex = swap->swb_index; 1769 for (j = 0; j < SWAP_META_PAGES; ++j) { 1770 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1771 /* avoid deadlock */ 1772 if (!VM_OBJECT_TRYWLOCK(object)) { 1773 break; 1774 } else { 1775 mtx_unlock(&swhash_mtx); 1776 swp_pager_force_pagein(object, 1777 pindex + j); 1778 VM_OBJECT_WUNLOCK(object); 1779 mtx_lock(&swhash_mtx); 1780 goto restart; 1781 } 1782 } 1783 } 1784 } 1785 } 1786 mtx_unlock(&swhash_mtx); 1787 if (sp->sw_used) { 1788 /* 1789 * Objects may be locked or paging to the device being 1790 * removed, so we will miss their pages and need to 1791 * make another pass. We have marked this device as 1792 * SW_CLOSING, so the activity should finish soon. 1793 */ 1794 retries++; 1795 if (retries > 100) { 1796 panic("swapoff: failed to locate %d swap blocks", 1797 sp->sw_used); 1798 } 1799 pause("swpoff", hz / 20); 1800 goto full_rescan; 1801 } 1802 } 1803 1804 /************************************************************************ 1805 * SWAP META DATA * 1806 ************************************************************************ 1807 * 1808 * These routines manipulate the swap metadata stored in the 1809 * OBJT_SWAP object. 1810 * 1811 * Swap metadata is implemented with a global hash and not directly 1812 * linked into the object. Instead the object simply contains 1813 * appropriate tracking counters. 1814 */ 1815 1816 /* 1817 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1818 * 1819 * We first convert the object to a swap object if it is a default 1820 * object. 1821 * 1822 * The specified swapblk is added to the object's swap metadata. If 1823 * the swapblk is not valid, it is freed instead. Any previously 1824 * assigned swapblk is freed. 1825 */ 1826 static void 1827 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1828 { 1829 static volatile int exhausted; 1830 struct swblock *swap; 1831 struct swblock **pswap; 1832 int idx; 1833 1834 VM_OBJECT_ASSERT_WLOCKED(object); 1835 /* 1836 * Convert default object to swap object if necessary 1837 */ 1838 if (object->type != OBJT_SWAP) { 1839 object->type = OBJT_SWAP; 1840 object->un_pager.swp.swp_bcount = 0; 1841 1842 if (object->handle != NULL) { 1843 mtx_lock(&sw_alloc_mtx); 1844 TAILQ_INSERT_TAIL( 1845 NOBJLIST(object->handle), 1846 object, 1847 pager_object_list 1848 ); 1849 mtx_unlock(&sw_alloc_mtx); 1850 } 1851 } 1852 1853 /* 1854 * Locate hash entry. If not found create, but if we aren't adding 1855 * anything just return. If we run out of space in the map we wait 1856 * and, since the hash table may have changed, retry. 1857 */ 1858 retry: 1859 mtx_lock(&swhash_mtx); 1860 pswap = swp_pager_hash(object, pindex); 1861 1862 if ((swap = *pswap) == NULL) { 1863 int i; 1864 1865 if (swapblk == SWAPBLK_NONE) 1866 goto done; 1867 1868 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT | 1869 (curproc == pageproc ? M_USE_RESERVE : 0)); 1870 if (swap == NULL) { 1871 mtx_unlock(&swhash_mtx); 1872 VM_OBJECT_WUNLOCK(object); 1873 if (uma_zone_exhausted(swap_zone)) { 1874 if (atomic_cmpset_int(&exhausted, 0, 1)) 1875 printf("swap zone exhausted, " 1876 "increase kern.maxswzone\n"); 1877 vm_pageout_oom(VM_OOM_SWAPZ); 1878 pause("swzonex", 10); 1879 } else 1880 VM_WAIT; 1881 VM_OBJECT_WLOCK(object); 1882 goto retry; 1883 } 1884 1885 if (atomic_cmpset_int(&exhausted, 1, 0)) 1886 printf("swap zone ok\n"); 1887 1888 swap->swb_hnext = NULL; 1889 swap->swb_object = object; 1890 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1891 swap->swb_count = 0; 1892 1893 ++object->un_pager.swp.swp_bcount; 1894 1895 for (i = 0; i < SWAP_META_PAGES; ++i) 1896 swap->swb_pages[i] = SWAPBLK_NONE; 1897 } 1898 1899 /* 1900 * Delete prior contents of metadata 1901 */ 1902 idx = pindex & SWAP_META_MASK; 1903 1904 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1905 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1906 --swap->swb_count; 1907 } 1908 1909 /* 1910 * Enter block into metadata 1911 */ 1912 swap->swb_pages[idx] = swapblk; 1913 if (swapblk != SWAPBLK_NONE) 1914 ++swap->swb_count; 1915 done: 1916 mtx_unlock(&swhash_mtx); 1917 } 1918 1919 /* 1920 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1921 * 1922 * The requested range of blocks is freed, with any associated swap 1923 * returned to the swap bitmap. 1924 * 1925 * This routine will free swap metadata structures as they are cleaned 1926 * out. This routine does *NOT* operate on swap metadata associated 1927 * with resident pages. 1928 */ 1929 static void 1930 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1931 { 1932 1933 VM_OBJECT_ASSERT_LOCKED(object); 1934 if (object->type != OBJT_SWAP) 1935 return; 1936 1937 while (count > 0) { 1938 struct swblock **pswap; 1939 struct swblock *swap; 1940 1941 mtx_lock(&swhash_mtx); 1942 pswap = swp_pager_hash(object, index); 1943 1944 if ((swap = *pswap) != NULL) { 1945 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1946 1947 if (v != SWAPBLK_NONE) { 1948 swp_pager_freeswapspace(v, 1); 1949 swap->swb_pages[index & SWAP_META_MASK] = 1950 SWAPBLK_NONE; 1951 if (--swap->swb_count == 0) { 1952 *pswap = swap->swb_hnext; 1953 uma_zfree(swap_zone, swap); 1954 --object->un_pager.swp.swp_bcount; 1955 } 1956 } 1957 --count; 1958 ++index; 1959 } else { 1960 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1961 count -= n; 1962 index += n; 1963 } 1964 mtx_unlock(&swhash_mtx); 1965 } 1966 } 1967 1968 /* 1969 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1970 * 1971 * This routine locates and destroys all swap metadata associated with 1972 * an object. 1973 */ 1974 static void 1975 swp_pager_meta_free_all(vm_object_t object) 1976 { 1977 daddr_t index = 0; 1978 1979 VM_OBJECT_ASSERT_WLOCKED(object); 1980 if (object->type != OBJT_SWAP) 1981 return; 1982 1983 while (object->un_pager.swp.swp_bcount) { 1984 struct swblock **pswap; 1985 struct swblock *swap; 1986 1987 mtx_lock(&swhash_mtx); 1988 pswap = swp_pager_hash(object, index); 1989 if ((swap = *pswap) != NULL) { 1990 int i; 1991 1992 for (i = 0; i < SWAP_META_PAGES; ++i) { 1993 daddr_t v = swap->swb_pages[i]; 1994 if (v != SWAPBLK_NONE) { 1995 --swap->swb_count; 1996 swp_pager_freeswapspace(v, 1); 1997 } 1998 } 1999 if (swap->swb_count != 0) 2000 panic("swap_pager_meta_free_all: swb_count != 0"); 2001 *pswap = swap->swb_hnext; 2002 uma_zfree(swap_zone, swap); 2003 --object->un_pager.swp.swp_bcount; 2004 } 2005 mtx_unlock(&swhash_mtx); 2006 index += SWAP_META_PAGES; 2007 } 2008 } 2009 2010 /* 2011 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2012 * 2013 * This routine is capable of looking up, popping, or freeing 2014 * swapblk assignments in the swap meta data or in the vm_page_t. 2015 * The routine typically returns the swapblk being looked-up, or popped, 2016 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2017 * was invalid. This routine will automatically free any invalid 2018 * meta-data swapblks. 2019 * 2020 * It is not possible to store invalid swapblks in the swap meta data 2021 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2022 * 2023 * When acting on a busy resident page and paging is in progress, we 2024 * have to wait until paging is complete but otherwise can act on the 2025 * busy page. 2026 * 2027 * SWM_FREE remove and free swap block from metadata 2028 * SWM_POP remove from meta data but do not free.. pop it out 2029 */ 2030 static daddr_t 2031 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2032 { 2033 struct swblock **pswap; 2034 struct swblock *swap; 2035 daddr_t r1; 2036 int idx; 2037 2038 VM_OBJECT_ASSERT_LOCKED(object); 2039 /* 2040 * The meta data only exists of the object is OBJT_SWAP 2041 * and even then might not be allocated yet. 2042 */ 2043 if (object->type != OBJT_SWAP) 2044 return (SWAPBLK_NONE); 2045 2046 r1 = SWAPBLK_NONE; 2047 mtx_lock(&swhash_mtx); 2048 pswap = swp_pager_hash(object, pindex); 2049 2050 if ((swap = *pswap) != NULL) { 2051 idx = pindex & SWAP_META_MASK; 2052 r1 = swap->swb_pages[idx]; 2053 2054 if (r1 != SWAPBLK_NONE) { 2055 if (flags & SWM_FREE) { 2056 swp_pager_freeswapspace(r1, 1); 2057 r1 = SWAPBLK_NONE; 2058 } 2059 if (flags & (SWM_FREE|SWM_POP)) { 2060 swap->swb_pages[idx] = SWAPBLK_NONE; 2061 if (--swap->swb_count == 0) { 2062 *pswap = swap->swb_hnext; 2063 uma_zfree(swap_zone, swap); 2064 --object->un_pager.swp.swp_bcount; 2065 } 2066 } 2067 } 2068 } 2069 mtx_unlock(&swhash_mtx); 2070 return (r1); 2071 } 2072 2073 /* 2074 * System call swapon(name) enables swapping on device name, 2075 * which must be in the swdevsw. Return EBUSY 2076 * if already swapping on this device. 2077 */ 2078 #ifndef _SYS_SYSPROTO_H_ 2079 struct swapon_args { 2080 char *name; 2081 }; 2082 #endif 2083 2084 /* 2085 * MPSAFE 2086 */ 2087 /* ARGSUSED */ 2088 int 2089 sys_swapon(struct thread *td, struct swapon_args *uap) 2090 { 2091 struct vattr attr; 2092 struct vnode *vp; 2093 struct nameidata nd; 2094 int error; 2095 2096 error = priv_check(td, PRIV_SWAPON); 2097 if (error) 2098 return (error); 2099 2100 mtx_lock(&Giant); 2101 while (swdev_syscall_active) 2102 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2103 swdev_syscall_active = 1; 2104 2105 /* 2106 * Swap metadata may not fit in the KVM if we have physical 2107 * memory of >1GB. 2108 */ 2109 if (swap_zone == NULL) { 2110 error = ENOMEM; 2111 goto done; 2112 } 2113 2114 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2115 uap->name, td); 2116 error = namei(&nd); 2117 if (error) 2118 goto done; 2119 2120 NDFREE(&nd, NDF_ONLY_PNBUF); 2121 vp = nd.ni_vp; 2122 2123 if (vn_isdisk(vp, &error)) { 2124 error = swapongeom(td, vp); 2125 } else if (vp->v_type == VREG && 2126 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2127 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2128 /* 2129 * Allow direct swapping to NFS regular files in the same 2130 * way that nfs_mountroot() sets up diskless swapping. 2131 */ 2132 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2133 } 2134 2135 if (error) 2136 vrele(vp); 2137 done: 2138 swdev_syscall_active = 0; 2139 wakeup_one(&swdev_syscall_active); 2140 mtx_unlock(&Giant); 2141 return (error); 2142 } 2143 2144 /* 2145 * Check that the total amount of swap currently configured does not 2146 * exceed half the theoretical maximum. If it does, print a warning 2147 * message and return -1; otherwise, return 0. 2148 */ 2149 static int 2150 swapon_check_swzone(unsigned long npages) 2151 { 2152 unsigned long maxpages; 2153 2154 /* absolute maximum we can handle assuming 100% efficiency */ 2155 maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES; 2156 2157 /* recommend using no more than half that amount */ 2158 if (npages > maxpages / 2) { 2159 printf("warning: total configured swap (%lu pages) " 2160 "exceeds maximum recommended amount (%lu pages).\n", 2161 npages, maxpages / 2); 2162 printf("warning: increase kern.maxswzone " 2163 "or reduce amount of swap.\n"); 2164 return (-1); 2165 } 2166 return (0); 2167 } 2168 2169 static void 2170 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2171 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2172 { 2173 struct swdevt *sp, *tsp; 2174 swblk_t dvbase; 2175 u_long mblocks; 2176 2177 /* 2178 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2179 * First chop nblks off to page-align it, then convert. 2180 * 2181 * sw->sw_nblks is in page-sized chunks now too. 2182 */ 2183 nblks &= ~(ctodb(1) - 1); 2184 nblks = dbtoc(nblks); 2185 2186 /* 2187 * If we go beyond this, we get overflows in the radix 2188 * tree bitmap code. 2189 */ 2190 mblocks = 0x40000000 / BLIST_META_RADIX; 2191 if (nblks > mblocks) { 2192 printf( 2193 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2194 mblocks / 1024 / 1024 * PAGE_SIZE); 2195 nblks = mblocks; 2196 } 2197 2198 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2199 sp->sw_vp = vp; 2200 sp->sw_id = id; 2201 sp->sw_dev = dev; 2202 sp->sw_flags = 0; 2203 sp->sw_nblks = nblks; 2204 sp->sw_used = 0; 2205 sp->sw_strategy = strategy; 2206 sp->sw_close = close; 2207 sp->sw_flags = flags; 2208 2209 sp->sw_blist = blist_create(nblks, M_WAITOK); 2210 /* 2211 * Do not free the first two block in order to avoid overwriting 2212 * any bsd label at the front of the partition 2213 */ 2214 blist_free(sp->sw_blist, 2, nblks - 2); 2215 2216 dvbase = 0; 2217 mtx_lock(&sw_dev_mtx); 2218 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2219 if (tsp->sw_end >= dvbase) { 2220 /* 2221 * We put one uncovered page between the devices 2222 * in order to definitively prevent any cross-device 2223 * I/O requests 2224 */ 2225 dvbase = tsp->sw_end + 1; 2226 } 2227 } 2228 sp->sw_first = dvbase; 2229 sp->sw_end = dvbase + nblks; 2230 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2231 nswapdev++; 2232 swap_pager_avail += nblks; 2233 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2234 swapon_check_swzone(swap_total / PAGE_SIZE); 2235 swp_sizecheck(); 2236 mtx_unlock(&sw_dev_mtx); 2237 } 2238 2239 /* 2240 * SYSCALL: swapoff(devname) 2241 * 2242 * Disable swapping on the given device. 2243 * 2244 * XXX: Badly designed system call: it should use a device index 2245 * rather than filename as specification. We keep sw_vp around 2246 * only to make this work. 2247 */ 2248 #ifndef _SYS_SYSPROTO_H_ 2249 struct swapoff_args { 2250 char *name; 2251 }; 2252 #endif 2253 2254 /* 2255 * MPSAFE 2256 */ 2257 /* ARGSUSED */ 2258 int 2259 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2260 { 2261 struct vnode *vp; 2262 struct nameidata nd; 2263 struct swdevt *sp; 2264 int error; 2265 2266 error = priv_check(td, PRIV_SWAPOFF); 2267 if (error) 2268 return (error); 2269 2270 mtx_lock(&Giant); 2271 while (swdev_syscall_active) 2272 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2273 swdev_syscall_active = 1; 2274 2275 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2276 td); 2277 error = namei(&nd); 2278 if (error) 2279 goto done; 2280 NDFREE(&nd, NDF_ONLY_PNBUF); 2281 vp = nd.ni_vp; 2282 2283 mtx_lock(&sw_dev_mtx); 2284 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2285 if (sp->sw_vp == vp) 2286 break; 2287 } 2288 mtx_unlock(&sw_dev_mtx); 2289 if (sp == NULL) { 2290 error = EINVAL; 2291 goto done; 2292 } 2293 error = swapoff_one(sp, td->td_ucred); 2294 done: 2295 swdev_syscall_active = 0; 2296 wakeup_one(&swdev_syscall_active); 2297 mtx_unlock(&Giant); 2298 return (error); 2299 } 2300 2301 static int 2302 swapoff_one(struct swdevt *sp, struct ucred *cred) 2303 { 2304 u_long nblks, dvbase; 2305 #ifdef MAC 2306 int error; 2307 #endif 2308 2309 mtx_assert(&Giant, MA_OWNED); 2310 #ifdef MAC 2311 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2312 error = mac_system_check_swapoff(cred, sp->sw_vp); 2313 (void) VOP_UNLOCK(sp->sw_vp, 0); 2314 if (error != 0) 2315 return (error); 2316 #endif 2317 nblks = sp->sw_nblks; 2318 2319 /* 2320 * We can turn off this swap device safely only if the 2321 * available virtual memory in the system will fit the amount 2322 * of data we will have to page back in, plus an epsilon so 2323 * the system doesn't become critically low on swap space. 2324 */ 2325 if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail < 2326 nblks + nswap_lowat) { 2327 return (ENOMEM); 2328 } 2329 2330 /* 2331 * Prevent further allocations on this device. 2332 */ 2333 mtx_lock(&sw_dev_mtx); 2334 sp->sw_flags |= SW_CLOSING; 2335 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2336 swap_pager_avail -= blist_fill(sp->sw_blist, 2337 dvbase, dmmax); 2338 } 2339 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2340 mtx_unlock(&sw_dev_mtx); 2341 2342 /* 2343 * Page in the contents of the device and close it. 2344 */ 2345 swap_pager_swapoff(sp); 2346 2347 sp->sw_close(curthread, sp); 2348 mtx_lock(&sw_dev_mtx); 2349 sp->sw_id = NULL; 2350 TAILQ_REMOVE(&swtailq, sp, sw_list); 2351 nswapdev--; 2352 if (nswapdev == 0) { 2353 swap_pager_full = 2; 2354 swap_pager_almost_full = 1; 2355 } 2356 if (swdevhd == sp) 2357 swdevhd = NULL; 2358 mtx_unlock(&sw_dev_mtx); 2359 blist_destroy(sp->sw_blist); 2360 free(sp, M_VMPGDATA); 2361 return (0); 2362 } 2363 2364 void 2365 swapoff_all(void) 2366 { 2367 struct swdevt *sp, *spt; 2368 const char *devname; 2369 int error; 2370 2371 mtx_lock(&Giant); 2372 while (swdev_syscall_active) 2373 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2374 swdev_syscall_active = 1; 2375 2376 mtx_lock(&sw_dev_mtx); 2377 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2378 mtx_unlock(&sw_dev_mtx); 2379 if (vn_isdisk(sp->sw_vp, NULL)) 2380 devname = devtoname(sp->sw_vp->v_rdev); 2381 else 2382 devname = "[file]"; 2383 error = swapoff_one(sp, thread0.td_ucred); 2384 if (error != 0) { 2385 printf("Cannot remove swap device %s (error=%d), " 2386 "skipping.\n", devname, error); 2387 } else if (bootverbose) { 2388 printf("Swap device %s removed.\n", devname); 2389 } 2390 mtx_lock(&sw_dev_mtx); 2391 } 2392 mtx_unlock(&sw_dev_mtx); 2393 2394 swdev_syscall_active = 0; 2395 wakeup_one(&swdev_syscall_active); 2396 mtx_unlock(&Giant); 2397 } 2398 2399 void 2400 swap_pager_status(int *total, int *used) 2401 { 2402 struct swdevt *sp; 2403 2404 *total = 0; 2405 *used = 0; 2406 mtx_lock(&sw_dev_mtx); 2407 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2408 *total += sp->sw_nblks; 2409 *used += sp->sw_used; 2410 } 2411 mtx_unlock(&sw_dev_mtx); 2412 } 2413 2414 int 2415 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2416 { 2417 struct swdevt *sp; 2418 const char *tmp_devname; 2419 int error, n; 2420 2421 n = 0; 2422 error = ENOENT; 2423 mtx_lock(&sw_dev_mtx); 2424 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2425 if (n != name) { 2426 n++; 2427 continue; 2428 } 2429 xs->xsw_version = XSWDEV_VERSION; 2430 xs->xsw_dev = sp->sw_dev; 2431 xs->xsw_flags = sp->sw_flags; 2432 xs->xsw_nblks = sp->sw_nblks; 2433 xs->xsw_used = sp->sw_used; 2434 if (devname != NULL) { 2435 if (vn_isdisk(sp->sw_vp, NULL)) 2436 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2437 else 2438 tmp_devname = "[file]"; 2439 strncpy(devname, tmp_devname, len); 2440 } 2441 error = 0; 2442 break; 2443 } 2444 mtx_unlock(&sw_dev_mtx); 2445 return (error); 2446 } 2447 2448 static int 2449 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2450 { 2451 struct xswdev xs; 2452 int error; 2453 2454 if (arg2 != 1) /* name length */ 2455 return (EINVAL); 2456 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2457 if (error != 0) 2458 return (error); 2459 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2460 return (error); 2461 } 2462 2463 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2464 "Number of swap devices"); 2465 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2466 "Swap statistics by device"); 2467 2468 /* 2469 * vmspace_swap_count() - count the approximate swap usage in pages for a 2470 * vmspace. 2471 * 2472 * The map must be locked. 2473 * 2474 * Swap usage is determined by taking the proportional swap used by 2475 * VM objects backing the VM map. To make up for fractional losses, 2476 * if the VM object has any swap use at all the associated map entries 2477 * count for at least 1 swap page. 2478 */ 2479 long 2480 vmspace_swap_count(struct vmspace *vmspace) 2481 { 2482 vm_map_t map; 2483 vm_map_entry_t cur; 2484 vm_object_t object; 2485 long count, n; 2486 2487 map = &vmspace->vm_map; 2488 count = 0; 2489 2490 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2491 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2492 (object = cur->object.vm_object) != NULL) { 2493 VM_OBJECT_WLOCK(object); 2494 if (object->type == OBJT_SWAP && 2495 object->un_pager.swp.swp_bcount != 0) { 2496 n = (cur->end - cur->start) / PAGE_SIZE; 2497 count += object->un_pager.swp.swp_bcount * 2498 SWAP_META_PAGES * n / object->size + 1; 2499 } 2500 VM_OBJECT_WUNLOCK(object); 2501 } 2502 } 2503 return (count); 2504 } 2505 2506 /* 2507 * GEOM backend 2508 * 2509 * Swapping onto disk devices. 2510 * 2511 */ 2512 2513 static g_orphan_t swapgeom_orphan; 2514 2515 static struct g_class g_swap_class = { 2516 .name = "SWAP", 2517 .version = G_VERSION, 2518 .orphan = swapgeom_orphan, 2519 }; 2520 2521 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2522 2523 2524 static void 2525 swapgeom_close_ev(void *arg, int flags) 2526 { 2527 struct g_consumer *cp; 2528 2529 cp = arg; 2530 g_access(cp, -1, -1, 0); 2531 g_detach(cp); 2532 g_destroy_consumer(cp); 2533 } 2534 2535 /* 2536 * Add a reference to the g_consumer for an inflight transaction. 2537 */ 2538 static void 2539 swapgeom_acquire(struct g_consumer *cp) 2540 { 2541 2542 mtx_assert(&sw_dev_mtx, MA_OWNED); 2543 cp->index++; 2544 } 2545 2546 /* 2547 * Remove a reference from the g_consumer. Post a close event if 2548 * all referneces go away. 2549 */ 2550 static void 2551 swapgeom_release(struct g_consumer *cp, struct swdevt *sp) 2552 { 2553 2554 mtx_assert(&sw_dev_mtx, MA_OWNED); 2555 cp->index--; 2556 if (cp->index == 0) { 2557 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) 2558 sp->sw_id = NULL; 2559 } 2560 } 2561 2562 static void 2563 swapgeom_done(struct bio *bp2) 2564 { 2565 struct swdevt *sp; 2566 struct buf *bp; 2567 struct g_consumer *cp; 2568 2569 bp = bp2->bio_caller2; 2570 cp = bp2->bio_from; 2571 bp->b_ioflags = bp2->bio_flags; 2572 if (bp2->bio_error) 2573 bp->b_ioflags |= BIO_ERROR; 2574 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2575 bp->b_error = bp2->bio_error; 2576 bufdone(bp); 2577 sp = bp2->bio_caller1; 2578 mtx_lock(&sw_dev_mtx); 2579 swapgeom_release(cp, sp); 2580 mtx_unlock(&sw_dev_mtx); 2581 g_destroy_bio(bp2); 2582 } 2583 2584 static void 2585 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2586 { 2587 struct bio *bio; 2588 struct g_consumer *cp; 2589 2590 mtx_lock(&sw_dev_mtx); 2591 cp = sp->sw_id; 2592 if (cp == NULL) { 2593 mtx_unlock(&sw_dev_mtx); 2594 bp->b_error = ENXIO; 2595 bp->b_ioflags |= BIO_ERROR; 2596 bufdone(bp); 2597 return; 2598 } 2599 swapgeom_acquire(cp); 2600 mtx_unlock(&sw_dev_mtx); 2601 if (bp->b_iocmd == BIO_WRITE) 2602 bio = g_new_bio(); 2603 else 2604 bio = g_alloc_bio(); 2605 if (bio == NULL) { 2606 mtx_lock(&sw_dev_mtx); 2607 swapgeom_release(cp, sp); 2608 mtx_unlock(&sw_dev_mtx); 2609 bp->b_error = ENOMEM; 2610 bp->b_ioflags |= BIO_ERROR; 2611 bufdone(bp); 2612 return; 2613 } 2614 2615 bio->bio_caller1 = sp; 2616 bio->bio_caller2 = bp; 2617 bio->bio_cmd = bp->b_iocmd; 2618 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2619 bio->bio_length = bp->b_bcount; 2620 bio->bio_done = swapgeom_done; 2621 if (!buf_mapped(bp)) { 2622 bio->bio_ma = bp->b_pages; 2623 bio->bio_data = unmapped_buf; 2624 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2625 bio->bio_ma_n = bp->b_npages; 2626 bio->bio_flags |= BIO_UNMAPPED; 2627 } else { 2628 bio->bio_data = bp->b_data; 2629 bio->bio_ma = NULL; 2630 } 2631 g_io_request(bio, cp); 2632 return; 2633 } 2634 2635 static void 2636 swapgeom_orphan(struct g_consumer *cp) 2637 { 2638 struct swdevt *sp; 2639 int destroy; 2640 2641 mtx_lock(&sw_dev_mtx); 2642 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2643 if (sp->sw_id == cp) { 2644 sp->sw_flags |= SW_CLOSING; 2645 break; 2646 } 2647 } 2648 /* 2649 * Drop reference we were created with. Do directly since we're in a 2650 * special context where we don't have to queue the call to 2651 * swapgeom_close_ev(). 2652 */ 2653 cp->index--; 2654 destroy = ((sp != NULL) && (cp->index == 0)); 2655 if (destroy) 2656 sp->sw_id = NULL; 2657 mtx_unlock(&sw_dev_mtx); 2658 if (destroy) 2659 swapgeom_close_ev(cp, 0); 2660 } 2661 2662 static void 2663 swapgeom_close(struct thread *td, struct swdevt *sw) 2664 { 2665 struct g_consumer *cp; 2666 2667 mtx_lock(&sw_dev_mtx); 2668 cp = sw->sw_id; 2669 sw->sw_id = NULL; 2670 mtx_unlock(&sw_dev_mtx); 2671 /* XXX: direct call when Giant untangled */ 2672 if (cp != NULL) 2673 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL); 2674 } 2675 2676 2677 struct swh0h0 { 2678 struct cdev *dev; 2679 struct vnode *vp; 2680 int error; 2681 }; 2682 2683 static void 2684 swapongeom_ev(void *arg, int flags) 2685 { 2686 struct swh0h0 *swh; 2687 struct g_provider *pp; 2688 struct g_consumer *cp; 2689 static struct g_geom *gp; 2690 struct swdevt *sp; 2691 u_long nblks; 2692 int error; 2693 2694 swh = arg; 2695 swh->error = 0; 2696 pp = g_dev_getprovider(swh->dev); 2697 if (pp == NULL) { 2698 swh->error = ENODEV; 2699 return; 2700 } 2701 mtx_lock(&sw_dev_mtx); 2702 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2703 cp = sp->sw_id; 2704 if (cp != NULL && cp->provider == pp) { 2705 mtx_unlock(&sw_dev_mtx); 2706 swh->error = EBUSY; 2707 return; 2708 } 2709 } 2710 mtx_unlock(&sw_dev_mtx); 2711 if (gp == NULL) 2712 gp = g_new_geomf(&g_swap_class, "swap"); 2713 cp = g_new_consumer(gp); 2714 cp->index = 1; /* Number of active I/Os, plus one for being active. */ 2715 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 2716 g_attach(cp, pp); 2717 /* 2718 * XXX: Everytime you think you can improve the margin for 2719 * footshooting, somebody depends on the ability to do so: 2720 * savecore(8) wants to write to our swapdev so we cannot 2721 * set an exclusive count :-( 2722 */ 2723 error = g_access(cp, 1, 1, 0); 2724 if (error) { 2725 g_detach(cp); 2726 g_destroy_consumer(cp); 2727 swh->error = error; 2728 return; 2729 } 2730 nblks = pp->mediasize / DEV_BSIZE; 2731 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2732 swapgeom_close, dev2udev(swh->dev), 2733 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2734 swh->error = 0; 2735 } 2736 2737 static int 2738 swapongeom(struct thread *td, struct vnode *vp) 2739 { 2740 int error; 2741 struct swh0h0 swh; 2742 2743 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2744 2745 swh.dev = vp->v_rdev; 2746 swh.vp = vp; 2747 swh.error = 0; 2748 /* XXX: direct call when Giant untangled */ 2749 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2750 if (!error) 2751 error = swh.error; 2752 VOP_UNLOCK(vp, 0); 2753 return (error); 2754 } 2755 2756 /* 2757 * VNODE backend 2758 * 2759 * This is used mainly for network filesystem (read: probably only tested 2760 * with NFS) swapfiles. 2761 * 2762 */ 2763 2764 static void 2765 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2766 { 2767 struct vnode *vp2; 2768 2769 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2770 2771 vp2 = sp->sw_id; 2772 vhold(vp2); 2773 if (bp->b_iocmd == BIO_WRITE) { 2774 if (bp->b_bufobj) 2775 bufobj_wdrop(bp->b_bufobj); 2776 bufobj_wref(&vp2->v_bufobj); 2777 } 2778 if (bp->b_bufobj != &vp2->v_bufobj) 2779 bp->b_bufobj = &vp2->v_bufobj; 2780 bp->b_vp = vp2; 2781 bp->b_iooffset = dbtob(bp->b_blkno); 2782 bstrategy(bp); 2783 return; 2784 } 2785 2786 static void 2787 swapdev_close(struct thread *td, struct swdevt *sp) 2788 { 2789 2790 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2791 vrele(sp->sw_vp); 2792 } 2793 2794 2795 static int 2796 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2797 { 2798 struct swdevt *sp; 2799 int error; 2800 2801 if (nblks == 0) 2802 return (ENXIO); 2803 mtx_lock(&sw_dev_mtx); 2804 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2805 if (sp->sw_id == vp) { 2806 mtx_unlock(&sw_dev_mtx); 2807 return (EBUSY); 2808 } 2809 } 2810 mtx_unlock(&sw_dev_mtx); 2811 2812 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2813 #ifdef MAC 2814 error = mac_system_check_swapon(td->td_ucred, vp); 2815 if (error == 0) 2816 #endif 2817 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2818 (void) VOP_UNLOCK(vp, 0); 2819 if (error) 2820 return (error); 2821 2822 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2823 NODEV, 0); 2824 return (0); 2825 } 2826 2827 static int 2828 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS) 2829 { 2830 int error, new, n; 2831 2832 new = nsw_wcount_async_max; 2833 error = sysctl_handle_int(oidp, &new, 0, req); 2834 if (error != 0 || req->newptr == NULL) 2835 return (error); 2836 2837 if (new > nswbuf / 2 || new < 1) 2838 return (EINVAL); 2839 2840 mtx_lock(&pbuf_mtx); 2841 while (nsw_wcount_async_max != new) { 2842 /* 2843 * Adjust difference. If the current async count is too low, 2844 * we will need to sqeeze our update slowly in. Sleep with a 2845 * higher priority than getpbuf() to finish faster. 2846 */ 2847 n = new - nsw_wcount_async_max; 2848 if (nsw_wcount_async + n >= 0) { 2849 nsw_wcount_async += n; 2850 nsw_wcount_async_max += n; 2851 wakeup(&nsw_wcount_async); 2852 } else { 2853 nsw_wcount_async_max -= nsw_wcount_async; 2854 nsw_wcount_async = 0; 2855 msleep(&nsw_wcount_async, &pbuf_mtx, PSWP, 2856 "swpsysctl", 0); 2857 } 2858 } 2859 mtx_unlock(&pbuf_mtx); 2860 2861 return (0); 2862 } 2863