1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_compat.h" 73 #include "opt_swap.h" 74 #include "opt_vm.h" 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/conf.h> 79 #include <sys/kernel.h> 80 #include <sys/priv.h> 81 #include <sys/proc.h> 82 #include <sys/bio.h> 83 #include <sys/buf.h> 84 #include <sys/disk.h> 85 #include <sys/fcntl.h> 86 #include <sys/mount.h> 87 #include <sys/namei.h> 88 #include <sys/vnode.h> 89 #include <sys/malloc.h> 90 #include <sys/racct.h> 91 #include <sys/resource.h> 92 #include <sys/resourcevar.h> 93 #include <sys/rwlock.h> 94 #include <sys/sysctl.h> 95 #include <sys/sysproto.h> 96 #include <sys/blist.h> 97 #include <sys/lock.h> 98 #include <sys/sx.h> 99 #include <sys/vmmeter.h> 100 101 #include <security/mac/mac_framework.h> 102 103 #include <vm/vm.h> 104 #include <vm/pmap.h> 105 #include <vm/vm_map.h> 106 #include <vm/vm_kern.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_page.h> 109 #include <vm/vm_pager.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_param.h> 112 #include <vm/swap_pager.h> 113 #include <vm/vm_extern.h> 114 #include <vm/uma.h> 115 116 #include <geom/geom.h> 117 118 /* 119 * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64. 120 * The 64-page limit is due to the radix code (kern/subr_blist.c). 121 */ 122 #ifndef MAX_PAGEOUT_CLUSTER 123 #define MAX_PAGEOUT_CLUSTER 16 124 #endif 125 126 #if !defined(SWB_NPAGES) 127 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 128 #endif 129 130 /* 131 * The swblock structure maps an object and a small, fixed-size range 132 * of page indices to disk addresses within a swap area. 133 * The collection of these mappings is implemented as a hash table. 134 * Unused disk addresses within a swap area are allocated and managed 135 * using a blist. 136 */ 137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 138 #define SWAP_META_PAGES (SWB_NPAGES * 2) 139 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 140 141 struct swblock { 142 struct swblock *swb_hnext; 143 vm_object_t swb_object; 144 vm_pindex_t swb_index; 145 int swb_count; 146 daddr_t swb_pages[SWAP_META_PAGES]; 147 }; 148 149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 150 static struct mtx sw_dev_mtx; 151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 152 static struct swdevt *swdevhd; /* Allocate from here next */ 153 static int nswapdev; /* Number of swap devices */ 154 int swap_pager_avail; 155 static struct sx swdev_syscall_lock; /* serialize swap(on|off) */ 156 157 static vm_ooffset_t swap_total; 158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 159 "Total amount of available swap storage."); 160 static vm_ooffset_t swap_reserved; 161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 162 "Amount of swap storage needed to back all allocated anonymous memory."); 163 static int overcommit = 0; 164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 165 "Configure virtual memory overcommit behavior. See tuning(7) " 166 "for details."); 167 static unsigned long swzone; 168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, 169 "Actual size of swap metadata zone"); 170 static unsigned long swap_maxpages; 171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, 172 "Maximum amount of swap supported"); 173 174 /* bits from overcommit */ 175 #define SWAP_RESERVE_FORCE_ON (1 << 0) 176 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 177 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 178 179 int 180 swap_reserve(vm_ooffset_t incr) 181 { 182 183 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 184 } 185 186 int 187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 188 { 189 vm_ooffset_t r, s; 190 int res, error; 191 static int curfail; 192 static struct timeval lastfail; 193 struct uidinfo *uip; 194 195 uip = cred->cr_ruidinfo; 196 197 if (incr & PAGE_MASK) 198 panic("swap_reserve: & PAGE_MASK"); 199 200 #ifdef RACCT 201 if (racct_enable) { 202 PROC_LOCK(curproc); 203 error = racct_add(curproc, RACCT_SWAP, incr); 204 PROC_UNLOCK(curproc); 205 if (error != 0) 206 return (0); 207 } 208 #endif 209 210 res = 0; 211 mtx_lock(&sw_dev_mtx); 212 r = swap_reserved + incr; 213 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 214 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count; 215 s *= PAGE_SIZE; 216 } else 217 s = 0; 218 s += swap_total; 219 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 220 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 221 res = 1; 222 swap_reserved = r; 223 } 224 mtx_unlock(&sw_dev_mtx); 225 226 if (res) { 227 UIDINFO_VMSIZE_LOCK(uip); 228 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 229 uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) && 230 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 231 res = 0; 232 else 233 uip->ui_vmsize += incr; 234 UIDINFO_VMSIZE_UNLOCK(uip); 235 if (!res) { 236 mtx_lock(&sw_dev_mtx); 237 swap_reserved -= incr; 238 mtx_unlock(&sw_dev_mtx); 239 } 240 } 241 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 242 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 243 uip->ui_uid, curproc->p_pid, incr); 244 } 245 246 #ifdef RACCT 247 if (!res) { 248 PROC_LOCK(curproc); 249 racct_sub(curproc, RACCT_SWAP, incr); 250 PROC_UNLOCK(curproc); 251 } 252 #endif 253 254 return (res); 255 } 256 257 void 258 swap_reserve_force(vm_ooffset_t incr) 259 { 260 struct uidinfo *uip; 261 262 mtx_lock(&sw_dev_mtx); 263 swap_reserved += incr; 264 mtx_unlock(&sw_dev_mtx); 265 266 #ifdef RACCT 267 PROC_LOCK(curproc); 268 racct_add_force(curproc, RACCT_SWAP, incr); 269 PROC_UNLOCK(curproc); 270 #endif 271 272 uip = curthread->td_ucred->cr_ruidinfo; 273 PROC_LOCK(curproc); 274 UIDINFO_VMSIZE_LOCK(uip); 275 uip->ui_vmsize += incr; 276 UIDINFO_VMSIZE_UNLOCK(uip); 277 PROC_UNLOCK(curproc); 278 } 279 280 void 281 swap_release(vm_ooffset_t decr) 282 { 283 struct ucred *cred; 284 285 PROC_LOCK(curproc); 286 cred = curthread->td_ucred; 287 swap_release_by_cred(decr, cred); 288 PROC_UNLOCK(curproc); 289 } 290 291 void 292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 293 { 294 struct uidinfo *uip; 295 296 uip = cred->cr_ruidinfo; 297 298 if (decr & PAGE_MASK) 299 panic("swap_release: & PAGE_MASK"); 300 301 mtx_lock(&sw_dev_mtx); 302 if (swap_reserved < decr) 303 panic("swap_reserved < decr"); 304 swap_reserved -= decr; 305 mtx_unlock(&sw_dev_mtx); 306 307 UIDINFO_VMSIZE_LOCK(uip); 308 if (uip->ui_vmsize < decr) 309 printf("negative vmsize for uid = %d\n", uip->ui_uid); 310 uip->ui_vmsize -= decr; 311 UIDINFO_VMSIZE_UNLOCK(uip); 312 313 racct_sub_cred(cred, RACCT_SWAP, decr); 314 } 315 316 #define SWM_FREE 0x02 /* free, period */ 317 #define SWM_POP 0x04 /* pop out */ 318 319 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 320 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 321 static int nsw_rcount; /* free read buffers */ 322 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 323 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 324 static int nsw_wcount_async_max;/* assigned maximum */ 325 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 326 327 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS); 328 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW | 329 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I", 330 "Maximum running async swap ops"); 331 332 static struct swblock **swhash; 333 static int swhash_mask; 334 static struct mtx swhash_mtx; 335 336 static struct sx sw_alloc_sx; 337 338 /* 339 * "named" and "unnamed" anon region objects. Try to reduce the overhead 340 * of searching a named list by hashing it just a little. 341 */ 342 343 #define NOBJLISTS 8 344 345 #define NOBJLIST(handle) \ 346 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 347 348 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 349 static uma_zone_t swap_zone; 350 351 /* 352 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 353 * calls hooked from other parts of the VM system and do not appear here. 354 * (see vm/swap_pager.h). 355 */ 356 static vm_object_t 357 swap_pager_alloc(void *handle, vm_ooffset_t size, 358 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 359 static void swap_pager_dealloc(vm_object_t object); 360 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *, 361 int *); 362 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 363 int *, pgo_getpages_iodone_t, void *); 364 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 365 static boolean_t 366 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 367 static void swap_pager_init(void); 368 static void swap_pager_unswapped(vm_page_t); 369 static void swap_pager_swapoff(struct swdevt *sp); 370 371 struct pagerops swappagerops = { 372 .pgo_init = swap_pager_init, /* early system initialization of pager */ 373 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 374 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 375 .pgo_getpages = swap_pager_getpages, /* pagein */ 376 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ 377 .pgo_putpages = swap_pager_putpages, /* pageout */ 378 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 379 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 380 }; 381 382 /* 383 * swap_*() routines are externally accessible. swp_*() routines are 384 * internal. 385 */ 386 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 387 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 388 389 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0, 390 "Maximum size of a swap block in pages"); 391 392 static void swp_sizecheck(void); 393 static void swp_pager_async_iodone(struct buf *bp); 394 static int swapongeom(struct vnode *); 395 static int swaponvp(struct thread *, struct vnode *, u_long); 396 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 397 398 /* 399 * Swap bitmap functions 400 */ 401 static void swp_pager_freeswapspace(daddr_t blk, int npages); 402 static daddr_t swp_pager_getswapspace(int npages); 403 404 /* 405 * Metadata functions 406 */ 407 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 408 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 409 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t); 410 static void swp_pager_meta_free_all(vm_object_t); 411 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 412 413 /* 414 * SWP_SIZECHECK() - update swap_pager_full indication 415 * 416 * update the swap_pager_almost_full indication and warn when we are 417 * about to run out of swap space, using lowat/hiwat hysteresis. 418 * 419 * Clear swap_pager_full ( task killing ) indication when lowat is met. 420 * 421 * No restrictions on call 422 * This routine may not block. 423 */ 424 static void 425 swp_sizecheck(void) 426 { 427 428 if (swap_pager_avail < nswap_lowat) { 429 if (swap_pager_almost_full == 0) { 430 printf("swap_pager: out of swap space\n"); 431 swap_pager_almost_full = 1; 432 } 433 } else { 434 swap_pager_full = 0; 435 if (swap_pager_avail > nswap_hiwat) 436 swap_pager_almost_full = 0; 437 } 438 } 439 440 /* 441 * SWP_PAGER_HASH() - hash swap meta data 442 * 443 * This is an helper function which hashes the swapblk given 444 * the object and page index. It returns a pointer to a pointer 445 * to the object, or a pointer to a NULL pointer if it could not 446 * find a swapblk. 447 */ 448 static struct swblock ** 449 swp_pager_hash(vm_object_t object, vm_pindex_t index) 450 { 451 struct swblock **pswap; 452 struct swblock *swap; 453 454 index &= ~(vm_pindex_t)SWAP_META_MASK; 455 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 456 while ((swap = *pswap) != NULL) { 457 if (swap->swb_object == object && 458 swap->swb_index == index 459 ) { 460 break; 461 } 462 pswap = &swap->swb_hnext; 463 } 464 return (pswap); 465 } 466 467 /* 468 * SWAP_PAGER_INIT() - initialize the swap pager! 469 * 470 * Expected to be started from system init. NOTE: This code is run 471 * before much else so be careful what you depend on. Most of the VM 472 * system has yet to be initialized at this point. 473 */ 474 static void 475 swap_pager_init(void) 476 { 477 /* 478 * Initialize object lists 479 */ 480 int i; 481 482 for (i = 0; i < NOBJLISTS; ++i) 483 TAILQ_INIT(&swap_pager_object_list[i]); 484 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 485 sx_init(&sw_alloc_sx, "swspsx"); 486 sx_init(&swdev_syscall_lock, "swsysc"); 487 } 488 489 /* 490 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 491 * 492 * Expected to be started from pageout process once, prior to entering 493 * its main loop. 494 */ 495 void 496 swap_pager_swap_init(void) 497 { 498 unsigned long n, n2; 499 500 /* 501 * Number of in-transit swap bp operations. Don't 502 * exhaust the pbufs completely. Make sure we 503 * initialize workable values (0 will work for hysteresis 504 * but it isn't very efficient). 505 * 506 * The nsw_cluster_max is constrained by the bp->b_pages[] 507 * array (MAXPHYS/PAGE_SIZE) and our locally defined 508 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 509 * constrained by the swap device interleave stripe size. 510 * 511 * Currently we hardwire nsw_wcount_async to 4. This limit is 512 * designed to prevent other I/O from having high latencies due to 513 * our pageout I/O. The value 4 works well for one or two active swap 514 * devices but is probably a little low if you have more. Even so, 515 * a higher value would probably generate only a limited improvement 516 * with three or four active swap devices since the system does not 517 * typically have to pageout at extreme bandwidths. We will want 518 * at least 2 per swap devices, and 4 is a pretty good value if you 519 * have one NFS swap device due to the command/ack latency over NFS. 520 * So it all works out pretty well. 521 */ 522 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 523 524 mtx_lock(&pbuf_mtx); 525 nsw_rcount = (nswbuf + 1) / 2; 526 nsw_wcount_sync = (nswbuf + 3) / 4; 527 nsw_wcount_async = 4; 528 nsw_wcount_async_max = nsw_wcount_async; 529 mtx_unlock(&pbuf_mtx); 530 531 /* 532 * Initialize our zone. Right now I'm just guessing on the number 533 * we need based on the number of pages in the system. Each swblock 534 * can hold 32 pages, so this is probably overkill. This reservation 535 * is typically limited to around 32MB by default. 536 */ 537 n = vm_cnt.v_page_count / 2; 538 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 539 n = maxswzone / sizeof(struct swblock); 540 n2 = n; 541 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 542 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 543 if (swap_zone == NULL) 544 panic("failed to create swap_zone."); 545 do { 546 if (uma_zone_reserve_kva(swap_zone, n)) 547 break; 548 /* 549 * if the allocation failed, try a zone two thirds the 550 * size of the previous attempt. 551 */ 552 n -= ((n + 2) / 3); 553 } while (n > 0); 554 if (n2 != n) 555 printf("Swap zone entries reduced from %lu to %lu.\n", n2, n); 556 swap_maxpages = n * SWAP_META_PAGES; 557 swzone = n * sizeof(struct swblock); 558 n2 = n; 559 560 /* 561 * Initialize our meta-data hash table. The swapper does not need to 562 * be quite as efficient as the VM system, so we do not use an 563 * oversized hash table. 564 * 565 * n: size of hash table, must be power of 2 566 * swhash_mask: hash table index mask 567 */ 568 for (n = 1; n < n2 / 8; n *= 2) 569 ; 570 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 571 swhash_mask = n - 1; 572 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 573 } 574 575 static vm_object_t 576 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size, 577 vm_ooffset_t offset) 578 { 579 vm_object_t object; 580 581 if (cred != NULL) { 582 if (!swap_reserve_by_cred(size, cred)) 583 return (NULL); 584 crhold(cred); 585 } 586 object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset + 587 PAGE_MASK + size)); 588 object->handle = handle; 589 if (cred != NULL) { 590 object->cred = cred; 591 object->charge = size; 592 } 593 object->un_pager.swp.swp_bcount = 0; 594 return (object); 595 } 596 597 /* 598 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 599 * its metadata structures. 600 * 601 * This routine is called from the mmap and fork code to create a new 602 * OBJT_SWAP object. 603 * 604 * This routine must ensure that no live duplicate is created for 605 * the named object request, which is protected against by 606 * holding the sw_alloc_sx lock in case handle != NULL. 607 */ 608 static vm_object_t 609 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 610 vm_ooffset_t offset, struct ucred *cred) 611 { 612 vm_object_t object; 613 614 if (handle != NULL) { 615 /* 616 * Reference existing named region or allocate new one. There 617 * should not be a race here against swp_pager_meta_build() 618 * as called from vm_page_remove() in regards to the lookup 619 * of the handle. 620 */ 621 sx_xlock(&sw_alloc_sx); 622 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 623 if (object == NULL) { 624 object = swap_pager_alloc_init(handle, cred, size, 625 offset); 626 if (object != NULL) { 627 TAILQ_INSERT_TAIL(NOBJLIST(object->handle), 628 object, pager_object_list); 629 } 630 } 631 sx_xunlock(&sw_alloc_sx); 632 } else { 633 object = swap_pager_alloc_init(handle, cred, size, offset); 634 } 635 return (object); 636 } 637 638 /* 639 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 640 * 641 * The swap backing for the object is destroyed. The code is 642 * designed such that we can reinstantiate it later, but this 643 * routine is typically called only when the entire object is 644 * about to be destroyed. 645 * 646 * The object must be locked. 647 */ 648 static void 649 swap_pager_dealloc(vm_object_t object) 650 { 651 652 VM_OBJECT_ASSERT_WLOCKED(object); 653 KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj")); 654 655 /* 656 * Remove from list right away so lookups will fail if we block for 657 * pageout completion. 658 */ 659 if (object->handle != NULL) { 660 VM_OBJECT_WUNLOCK(object); 661 sx_xlock(&sw_alloc_sx); 662 TAILQ_REMOVE(NOBJLIST(object->handle), object, 663 pager_object_list); 664 sx_xunlock(&sw_alloc_sx); 665 VM_OBJECT_WLOCK(object); 666 } 667 668 vm_object_pip_wait(object, "swpdea"); 669 670 /* 671 * Free all remaining metadata. We only bother to free it from 672 * the swap meta data. We do not attempt to free swapblk's still 673 * associated with vm_page_t's for this object. We do not care 674 * if paging is still in progress on some objects. 675 */ 676 swp_pager_meta_free_all(object); 677 object->handle = NULL; 678 object->type = OBJT_DEAD; 679 } 680 681 /************************************************************************ 682 * SWAP PAGER BITMAP ROUTINES * 683 ************************************************************************/ 684 685 /* 686 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 687 * 688 * Allocate swap for the requested number of pages. The starting 689 * swap block number (a page index) is returned or SWAPBLK_NONE 690 * if the allocation failed. 691 * 692 * Also has the side effect of advising that somebody made a mistake 693 * when they configured swap and didn't configure enough. 694 * 695 * This routine may not sleep. 696 * 697 * We allocate in round-robin fashion from the configured devices. 698 */ 699 static daddr_t 700 swp_pager_getswapspace(int npages) 701 { 702 daddr_t blk; 703 struct swdevt *sp; 704 int i; 705 706 blk = SWAPBLK_NONE; 707 mtx_lock(&sw_dev_mtx); 708 sp = swdevhd; 709 for (i = 0; i < nswapdev; i++) { 710 if (sp == NULL) 711 sp = TAILQ_FIRST(&swtailq); 712 if (!(sp->sw_flags & SW_CLOSING)) { 713 blk = blist_alloc(sp->sw_blist, npages); 714 if (blk != SWAPBLK_NONE) { 715 blk += sp->sw_first; 716 sp->sw_used += npages; 717 swap_pager_avail -= npages; 718 swp_sizecheck(); 719 swdevhd = TAILQ_NEXT(sp, sw_list); 720 goto done; 721 } 722 } 723 sp = TAILQ_NEXT(sp, sw_list); 724 } 725 if (swap_pager_full != 2) { 726 printf("swap_pager_getswapspace(%d): failed\n", npages); 727 swap_pager_full = 2; 728 swap_pager_almost_full = 1; 729 } 730 swdevhd = NULL; 731 done: 732 mtx_unlock(&sw_dev_mtx); 733 return (blk); 734 } 735 736 static int 737 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 738 { 739 740 return (blk >= sp->sw_first && blk < sp->sw_end); 741 } 742 743 static void 744 swp_pager_strategy(struct buf *bp) 745 { 746 struct swdevt *sp; 747 748 mtx_lock(&sw_dev_mtx); 749 TAILQ_FOREACH(sp, &swtailq, sw_list) { 750 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 751 mtx_unlock(&sw_dev_mtx); 752 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 753 unmapped_buf_allowed) { 754 bp->b_data = unmapped_buf; 755 bp->b_offset = 0; 756 } else { 757 pmap_qenter((vm_offset_t)bp->b_data, 758 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 759 } 760 sp->sw_strategy(bp, sp); 761 return; 762 } 763 } 764 panic("Swapdev not found"); 765 } 766 767 768 /* 769 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 770 * 771 * This routine returns the specified swap blocks back to the bitmap. 772 * 773 * This routine may not sleep. 774 */ 775 static void 776 swp_pager_freeswapspace(daddr_t blk, int npages) 777 { 778 struct swdevt *sp; 779 780 mtx_lock(&sw_dev_mtx); 781 TAILQ_FOREACH(sp, &swtailq, sw_list) { 782 if (blk >= sp->sw_first && blk < sp->sw_end) { 783 sp->sw_used -= npages; 784 /* 785 * If we are attempting to stop swapping on 786 * this device, we don't want to mark any 787 * blocks free lest they be reused. 788 */ 789 if ((sp->sw_flags & SW_CLOSING) == 0) { 790 blist_free(sp->sw_blist, blk - sp->sw_first, 791 npages); 792 swap_pager_avail += npages; 793 swp_sizecheck(); 794 } 795 mtx_unlock(&sw_dev_mtx); 796 return; 797 } 798 } 799 panic("Swapdev not found"); 800 } 801 802 /* 803 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 804 * range within an object. 805 * 806 * This is a globally accessible routine. 807 * 808 * This routine removes swapblk assignments from swap metadata. 809 * 810 * The external callers of this routine typically have already destroyed 811 * or renamed vm_page_t's associated with this range in the object so 812 * we should be ok. 813 * 814 * The object must be locked. 815 */ 816 void 817 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 818 { 819 820 swp_pager_meta_free(object, start, size); 821 } 822 823 /* 824 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 825 * 826 * Assigns swap blocks to the specified range within the object. The 827 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 828 * 829 * Returns 0 on success, -1 on failure. 830 */ 831 int 832 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 833 { 834 int n = 0; 835 daddr_t blk = SWAPBLK_NONE; 836 vm_pindex_t beg = start; /* save start index */ 837 838 VM_OBJECT_WLOCK(object); 839 while (size) { 840 if (n == 0) { 841 n = BLIST_MAX_ALLOC; 842 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 843 n >>= 1; 844 if (n == 0) { 845 swp_pager_meta_free(object, beg, start - beg); 846 VM_OBJECT_WUNLOCK(object); 847 return (-1); 848 } 849 } 850 } 851 swp_pager_meta_build(object, start, blk); 852 --size; 853 ++start; 854 ++blk; 855 --n; 856 } 857 swp_pager_meta_free(object, start, n); 858 VM_OBJECT_WUNLOCK(object); 859 return (0); 860 } 861 862 /* 863 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 864 * and destroy the source. 865 * 866 * Copy any valid swapblks from the source to the destination. In 867 * cases where both the source and destination have a valid swapblk, 868 * we keep the destination's. 869 * 870 * This routine is allowed to sleep. It may sleep allocating metadata 871 * indirectly through swp_pager_meta_build() or if paging is still in 872 * progress on the source. 873 * 874 * The source object contains no vm_page_t's (which is just as well) 875 * 876 * The source object is of type OBJT_SWAP. 877 * 878 * The source and destination objects must be locked. 879 * Both object locks may temporarily be released. 880 */ 881 void 882 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 883 vm_pindex_t offset, int destroysource) 884 { 885 vm_pindex_t i; 886 887 VM_OBJECT_ASSERT_WLOCKED(srcobject); 888 VM_OBJECT_ASSERT_WLOCKED(dstobject); 889 890 /* 891 * If destroysource is set, we remove the source object from the 892 * swap_pager internal queue now. 893 */ 894 if (destroysource && srcobject->handle != NULL) { 895 vm_object_pip_add(srcobject, 1); 896 VM_OBJECT_WUNLOCK(srcobject); 897 vm_object_pip_add(dstobject, 1); 898 VM_OBJECT_WUNLOCK(dstobject); 899 sx_xlock(&sw_alloc_sx); 900 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject, 901 pager_object_list); 902 sx_xunlock(&sw_alloc_sx); 903 VM_OBJECT_WLOCK(dstobject); 904 vm_object_pip_wakeup(dstobject); 905 VM_OBJECT_WLOCK(srcobject); 906 vm_object_pip_wakeup(srcobject); 907 } 908 909 /* 910 * transfer source to destination. 911 */ 912 for (i = 0; i < dstobject->size; ++i) { 913 daddr_t dstaddr; 914 915 /* 916 * Locate (without changing) the swapblk on the destination, 917 * unless it is invalid in which case free it silently, or 918 * if the destination is a resident page, in which case the 919 * source is thrown away. 920 */ 921 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 922 923 if (dstaddr == SWAPBLK_NONE) { 924 /* 925 * Destination has no swapblk and is not resident, 926 * copy source. 927 */ 928 daddr_t srcaddr; 929 930 srcaddr = swp_pager_meta_ctl( 931 srcobject, 932 i + offset, 933 SWM_POP 934 ); 935 936 if (srcaddr != SWAPBLK_NONE) { 937 /* 938 * swp_pager_meta_build() can sleep. 939 */ 940 vm_object_pip_add(srcobject, 1); 941 VM_OBJECT_WUNLOCK(srcobject); 942 vm_object_pip_add(dstobject, 1); 943 swp_pager_meta_build(dstobject, i, srcaddr); 944 vm_object_pip_wakeup(dstobject); 945 VM_OBJECT_WLOCK(srcobject); 946 vm_object_pip_wakeup(srcobject); 947 } 948 } else { 949 /* 950 * Destination has valid swapblk or it is represented 951 * by a resident page. We destroy the sourceblock. 952 */ 953 954 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 955 } 956 } 957 958 /* 959 * Free left over swap blocks in source. 960 * 961 * We have to revert the type to OBJT_DEFAULT so we do not accidentally 962 * double-remove the object from the swap queues. 963 */ 964 if (destroysource) { 965 swp_pager_meta_free_all(srcobject); 966 /* 967 * Reverting the type is not necessary, the caller is going 968 * to destroy srcobject directly, but I'm doing it here 969 * for consistency since we've removed the object from its 970 * queues. 971 */ 972 srcobject->type = OBJT_DEFAULT; 973 } 974 } 975 976 /* 977 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 978 * the requested page. 979 * 980 * We determine whether good backing store exists for the requested 981 * page and return TRUE if it does, FALSE if it doesn't. 982 * 983 * If TRUE, we also try to determine how much valid, contiguous backing 984 * store exists before and after the requested page. 985 */ 986 static boolean_t 987 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 988 int *after) 989 { 990 daddr_t blk, blk0; 991 int i; 992 993 VM_OBJECT_ASSERT_LOCKED(object); 994 995 /* 996 * do we have good backing store at the requested index ? 997 */ 998 blk0 = swp_pager_meta_ctl(object, pindex, 0); 999 if (blk0 == SWAPBLK_NONE) { 1000 if (before) 1001 *before = 0; 1002 if (after) 1003 *after = 0; 1004 return (FALSE); 1005 } 1006 1007 /* 1008 * find backwards-looking contiguous good backing store 1009 */ 1010 if (before != NULL) { 1011 for (i = 1; i < SWB_NPAGES; i++) { 1012 if (i > pindex) 1013 break; 1014 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1015 if (blk != blk0 - i) 1016 break; 1017 } 1018 *before = i - 1; 1019 } 1020 1021 /* 1022 * find forward-looking contiguous good backing store 1023 */ 1024 if (after != NULL) { 1025 for (i = 1; i < SWB_NPAGES; i++) { 1026 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1027 if (blk != blk0 + i) 1028 break; 1029 } 1030 *after = i - 1; 1031 } 1032 return (TRUE); 1033 } 1034 1035 /* 1036 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1037 * 1038 * This removes any associated swap backing store, whether valid or 1039 * not, from the page. 1040 * 1041 * This routine is typically called when a page is made dirty, at 1042 * which point any associated swap can be freed. MADV_FREE also 1043 * calls us in a special-case situation 1044 * 1045 * NOTE!!! If the page is clean and the swap was valid, the caller 1046 * should make the page dirty before calling this routine. This routine 1047 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1048 * depends on it. 1049 * 1050 * This routine may not sleep. 1051 * 1052 * The object containing the page must be locked. 1053 */ 1054 static void 1055 swap_pager_unswapped(vm_page_t m) 1056 { 1057 1058 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1059 } 1060 1061 /* 1062 * swap_pager_getpages() - bring pages in from swap 1063 * 1064 * Attempt to page in the pages in array "m" of length "count". The caller 1065 * may optionally specify that additional pages preceding and succeeding 1066 * the specified range be paged in. The number of such pages is returned 1067 * in the "rbehind" and "rahead" parameters, and they will be in the 1068 * inactive queue upon return. 1069 * 1070 * The pages in "m" must be busied and will remain busied upon return. 1071 */ 1072 static int 1073 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, 1074 int *rahead) 1075 { 1076 struct buf *bp; 1077 vm_page_t mpred, msucc, p; 1078 vm_pindex_t pindex; 1079 daddr_t blk; 1080 int i, j, maxahead, maxbehind, reqcount, shift; 1081 1082 reqcount = count; 1083 1084 VM_OBJECT_WUNLOCK(object); 1085 bp = getpbuf(&nsw_rcount); 1086 VM_OBJECT_WLOCK(object); 1087 1088 if (!swap_pager_haspage(object, m[0]->pindex, &maxbehind, &maxahead)) { 1089 relpbuf(bp, &nsw_rcount); 1090 return (VM_PAGER_FAIL); 1091 } 1092 1093 /* 1094 * Clip the readahead and readbehind ranges to exclude resident pages. 1095 */ 1096 if (rahead != NULL) { 1097 KASSERT(reqcount - 1 <= maxahead, 1098 ("page count %d extends beyond swap block", reqcount)); 1099 *rahead = imin(*rahead, maxahead - (reqcount - 1)); 1100 pindex = m[reqcount - 1]->pindex; 1101 msucc = TAILQ_NEXT(m[reqcount - 1], listq); 1102 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead) 1103 *rahead = msucc->pindex - pindex - 1; 1104 } 1105 if (rbehind != NULL) { 1106 *rbehind = imin(*rbehind, maxbehind); 1107 pindex = m[0]->pindex; 1108 mpred = TAILQ_PREV(m[0], pglist, listq); 1109 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind) 1110 *rbehind = pindex - mpred->pindex - 1; 1111 } 1112 1113 /* 1114 * Allocate readahead and readbehind pages. 1115 */ 1116 shift = rbehind != NULL ? *rbehind : 0; 1117 if (shift != 0) { 1118 for (i = 1; i <= shift; i++) { 1119 p = vm_page_alloc(object, m[0]->pindex - i, 1120 VM_ALLOC_NORMAL); 1121 if (p == NULL) { 1122 /* Shift allocated pages to the left. */ 1123 for (j = 0; j < i - 1; j++) 1124 bp->b_pages[j] = 1125 bp->b_pages[j + shift - i + 1]; 1126 break; 1127 } 1128 bp->b_pages[shift - i] = p; 1129 } 1130 shift = i - 1; 1131 *rbehind = shift; 1132 } 1133 for (i = 0; i < reqcount; i++) 1134 bp->b_pages[i + shift] = m[i]; 1135 if (rahead != NULL) { 1136 for (i = 0; i < *rahead; i++) { 1137 p = vm_page_alloc(object, 1138 m[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL); 1139 if (p == NULL) 1140 break; 1141 bp->b_pages[shift + reqcount + i] = p; 1142 } 1143 *rahead = i; 1144 } 1145 if (rbehind != NULL) 1146 count += *rbehind; 1147 if (rahead != NULL) 1148 count += *rahead; 1149 1150 vm_object_pip_add(object, count); 1151 1152 for (i = 0; i < count; i++) 1153 bp->b_pages[i]->oflags |= VPO_SWAPINPROG; 1154 1155 pindex = bp->b_pages[0]->pindex; 1156 blk = swp_pager_meta_ctl(object, pindex, 0); 1157 KASSERT(blk != SWAPBLK_NONE, 1158 ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex)); 1159 1160 VM_OBJECT_WUNLOCK(object); 1161 1162 bp->b_flags |= B_PAGING; 1163 bp->b_iocmd = BIO_READ; 1164 bp->b_iodone = swp_pager_async_iodone; 1165 bp->b_rcred = crhold(thread0.td_ucred); 1166 bp->b_wcred = crhold(thread0.td_ucred); 1167 bp->b_blkno = blk; 1168 bp->b_bcount = PAGE_SIZE * count; 1169 bp->b_bufsize = PAGE_SIZE * count; 1170 bp->b_npages = count; 1171 bp->b_pgbefore = rbehind != NULL ? *rbehind : 0; 1172 bp->b_pgafter = rahead != NULL ? *rahead : 0; 1173 1174 VM_CNT_INC(v_swapin); 1175 VM_CNT_ADD(v_swappgsin, count); 1176 1177 /* 1178 * perform the I/O. NOTE!!! bp cannot be considered valid after 1179 * this point because we automatically release it on completion. 1180 * Instead, we look at the one page we are interested in which we 1181 * still hold a lock on even through the I/O completion. 1182 * 1183 * The other pages in our m[] array are also released on completion, 1184 * so we cannot assume they are valid anymore either. 1185 * 1186 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1187 */ 1188 BUF_KERNPROC(bp); 1189 swp_pager_strategy(bp); 1190 1191 /* 1192 * Wait for the pages we want to complete. VPO_SWAPINPROG is always 1193 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1194 * is set in the metadata for each page in the request. 1195 */ 1196 VM_OBJECT_WLOCK(object); 1197 while ((m[0]->oflags & VPO_SWAPINPROG) != 0) { 1198 m[0]->oflags |= VPO_SWAPSLEEP; 1199 VM_CNT_INC(v_intrans); 1200 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP, 1201 "swread", hz * 20)) { 1202 printf( 1203 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1204 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1205 } 1206 } 1207 1208 /* 1209 * If we had an unrecoverable read error pages will not be valid. 1210 */ 1211 for (i = 0; i < reqcount; i++) 1212 if (m[i]->valid != VM_PAGE_BITS_ALL) 1213 return (VM_PAGER_ERROR); 1214 1215 return (VM_PAGER_OK); 1216 1217 /* 1218 * A final note: in a low swap situation, we cannot deallocate swap 1219 * and mark a page dirty here because the caller is likely to mark 1220 * the page clean when we return, causing the page to possibly revert 1221 * to all-zero's later. 1222 */ 1223 } 1224 1225 /* 1226 * swap_pager_getpages_async(): 1227 * 1228 * Right now this is emulation of asynchronous operation on top of 1229 * swap_pager_getpages(). 1230 */ 1231 static int 1232 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 1233 int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg) 1234 { 1235 int r, error; 1236 1237 r = swap_pager_getpages(object, m, count, rbehind, rahead); 1238 VM_OBJECT_WUNLOCK(object); 1239 switch (r) { 1240 case VM_PAGER_OK: 1241 error = 0; 1242 break; 1243 case VM_PAGER_ERROR: 1244 error = EIO; 1245 break; 1246 case VM_PAGER_FAIL: 1247 error = EINVAL; 1248 break; 1249 default: 1250 panic("unhandled swap_pager_getpages() error %d", r); 1251 } 1252 (iodone)(arg, m, count, error); 1253 VM_OBJECT_WLOCK(object); 1254 1255 return (r); 1256 } 1257 1258 /* 1259 * swap_pager_putpages: 1260 * 1261 * Assign swap (if necessary) and initiate I/O on the specified pages. 1262 * 1263 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1264 * are automatically converted to SWAP objects. 1265 * 1266 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1267 * vm_page reservation system coupled with properly written VFS devices 1268 * should ensure that no low-memory deadlock occurs. This is an area 1269 * which needs work. 1270 * 1271 * The parent has N vm_object_pip_add() references prior to 1272 * calling us and will remove references for rtvals[] that are 1273 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1274 * completion. 1275 * 1276 * The parent has soft-busy'd the pages it passes us and will unbusy 1277 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1278 * We need to unbusy the rest on I/O completion. 1279 */ 1280 static void 1281 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1282 int flags, int *rtvals) 1283 { 1284 int i, n; 1285 boolean_t sync; 1286 1287 if (count && m[0]->object != object) { 1288 panic("swap_pager_putpages: object mismatch %p/%p", 1289 object, 1290 m[0]->object 1291 ); 1292 } 1293 1294 /* 1295 * Step 1 1296 * 1297 * Turn object into OBJT_SWAP 1298 * check for bogus sysops 1299 * force sync if not pageout process 1300 */ 1301 if (object->type != OBJT_SWAP) 1302 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1303 VM_OBJECT_WUNLOCK(object); 1304 1305 n = 0; 1306 if (curproc != pageproc) 1307 sync = TRUE; 1308 else 1309 sync = (flags & VM_PAGER_PUT_SYNC) != 0; 1310 1311 /* 1312 * Step 2 1313 * 1314 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1315 * The page is left dirty until the pageout operation completes 1316 * successfully. 1317 */ 1318 for (i = 0; i < count; i += n) { 1319 int j; 1320 struct buf *bp; 1321 daddr_t blk; 1322 1323 /* 1324 * Maximum I/O size is limited by a number of factors. 1325 */ 1326 n = min(BLIST_MAX_ALLOC, count - i); 1327 n = min(n, nsw_cluster_max); 1328 1329 /* 1330 * Get biggest block of swap we can. If we fail, fall 1331 * back and try to allocate a smaller block. Don't go 1332 * overboard trying to allocate space if it would overly 1333 * fragment swap. 1334 */ 1335 while ( 1336 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1337 n > 4 1338 ) { 1339 n >>= 1; 1340 } 1341 if (blk == SWAPBLK_NONE) { 1342 for (j = 0; j < n; ++j) 1343 rtvals[i+j] = VM_PAGER_FAIL; 1344 continue; 1345 } 1346 1347 /* 1348 * All I/O parameters have been satisfied, build the I/O 1349 * request and assign the swap space. 1350 */ 1351 if (sync == TRUE) { 1352 bp = getpbuf(&nsw_wcount_sync); 1353 } else { 1354 bp = getpbuf(&nsw_wcount_async); 1355 bp->b_flags = B_ASYNC; 1356 } 1357 bp->b_flags |= B_PAGING; 1358 bp->b_iocmd = BIO_WRITE; 1359 1360 bp->b_rcred = crhold(thread0.td_ucred); 1361 bp->b_wcred = crhold(thread0.td_ucred); 1362 bp->b_bcount = PAGE_SIZE * n; 1363 bp->b_bufsize = PAGE_SIZE * n; 1364 bp->b_blkno = blk; 1365 1366 VM_OBJECT_WLOCK(object); 1367 for (j = 0; j < n; ++j) { 1368 vm_page_t mreq = m[i+j]; 1369 1370 swp_pager_meta_build( 1371 mreq->object, 1372 mreq->pindex, 1373 blk + j 1374 ); 1375 MPASS(mreq->dirty == VM_PAGE_BITS_ALL); 1376 mreq->oflags |= VPO_SWAPINPROG; 1377 bp->b_pages[j] = mreq; 1378 } 1379 VM_OBJECT_WUNLOCK(object); 1380 bp->b_npages = n; 1381 /* 1382 * Must set dirty range for NFS to work. 1383 */ 1384 bp->b_dirtyoff = 0; 1385 bp->b_dirtyend = bp->b_bcount; 1386 1387 VM_CNT_INC(v_swapout); 1388 VM_CNT_ADD(v_swappgsout, bp->b_npages); 1389 1390 /* 1391 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we 1392 * can call the async completion routine at the end of a 1393 * synchronous I/O operation. Otherwise, our caller would 1394 * perform duplicate unbusy and wakeup operations on the page 1395 * and object, respectively. 1396 */ 1397 for (j = 0; j < n; j++) 1398 rtvals[i + j] = VM_PAGER_PEND; 1399 1400 /* 1401 * asynchronous 1402 * 1403 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1404 */ 1405 if (sync == FALSE) { 1406 bp->b_iodone = swp_pager_async_iodone; 1407 BUF_KERNPROC(bp); 1408 swp_pager_strategy(bp); 1409 continue; 1410 } 1411 1412 /* 1413 * synchronous 1414 * 1415 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1416 */ 1417 bp->b_iodone = bdone; 1418 swp_pager_strategy(bp); 1419 1420 /* 1421 * Wait for the sync I/O to complete. 1422 */ 1423 bwait(bp, PVM, "swwrt"); 1424 1425 /* 1426 * Now that we are through with the bp, we can call the 1427 * normal async completion, which frees everything up. 1428 */ 1429 swp_pager_async_iodone(bp); 1430 } 1431 VM_OBJECT_WLOCK(object); 1432 } 1433 1434 /* 1435 * swp_pager_async_iodone: 1436 * 1437 * Completion routine for asynchronous reads and writes from/to swap. 1438 * Also called manually by synchronous code to finish up a bp. 1439 * 1440 * This routine may not sleep. 1441 */ 1442 static void 1443 swp_pager_async_iodone(struct buf *bp) 1444 { 1445 int i; 1446 vm_object_t object = NULL; 1447 1448 /* 1449 * report error 1450 */ 1451 if (bp->b_ioflags & BIO_ERROR) { 1452 printf( 1453 "swap_pager: I/O error - %s failed; blkno %ld," 1454 "size %ld, error %d\n", 1455 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1456 (long)bp->b_blkno, 1457 (long)bp->b_bcount, 1458 bp->b_error 1459 ); 1460 } 1461 1462 /* 1463 * remove the mapping for kernel virtual 1464 */ 1465 if (buf_mapped(bp)) 1466 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1467 else 1468 bp->b_data = bp->b_kvabase; 1469 1470 if (bp->b_npages) { 1471 object = bp->b_pages[0]->object; 1472 VM_OBJECT_WLOCK(object); 1473 } 1474 1475 /* 1476 * cleanup pages. If an error occurs writing to swap, we are in 1477 * very serious trouble. If it happens to be a disk error, though, 1478 * we may be able to recover by reassigning the swap later on. So 1479 * in this case we remove the m->swapblk assignment for the page 1480 * but do not free it in the rlist. The errornous block(s) are thus 1481 * never reallocated as swap. Redirty the page and continue. 1482 */ 1483 for (i = 0; i < bp->b_npages; ++i) { 1484 vm_page_t m = bp->b_pages[i]; 1485 1486 m->oflags &= ~VPO_SWAPINPROG; 1487 if (m->oflags & VPO_SWAPSLEEP) { 1488 m->oflags &= ~VPO_SWAPSLEEP; 1489 wakeup(&object->paging_in_progress); 1490 } 1491 1492 if (bp->b_ioflags & BIO_ERROR) { 1493 /* 1494 * If an error occurs I'd love to throw the swapblk 1495 * away without freeing it back to swapspace, so it 1496 * can never be used again. But I can't from an 1497 * interrupt. 1498 */ 1499 if (bp->b_iocmd == BIO_READ) { 1500 /* 1501 * NOTE: for reads, m->dirty will probably 1502 * be overridden by the original caller of 1503 * getpages so don't play cute tricks here. 1504 */ 1505 m->valid = 0; 1506 } else { 1507 /* 1508 * If a write error occurs, reactivate page 1509 * so it doesn't clog the inactive list, 1510 * then finish the I/O. 1511 */ 1512 vm_page_dirty(m); 1513 vm_page_lock(m); 1514 vm_page_activate(m); 1515 vm_page_unlock(m); 1516 vm_page_sunbusy(m); 1517 } 1518 } else if (bp->b_iocmd == BIO_READ) { 1519 /* 1520 * NOTE: for reads, m->dirty will probably be 1521 * overridden by the original caller of getpages so 1522 * we cannot set them in order to free the underlying 1523 * swap in a low-swap situation. I don't think we'd 1524 * want to do that anyway, but it was an optimization 1525 * that existed in the old swapper for a time before 1526 * it got ripped out due to precisely this problem. 1527 */ 1528 KASSERT(!pmap_page_is_mapped(m), 1529 ("swp_pager_async_iodone: page %p is mapped", m)); 1530 KASSERT(m->dirty == 0, 1531 ("swp_pager_async_iodone: page %p is dirty", m)); 1532 1533 m->valid = VM_PAGE_BITS_ALL; 1534 if (i < bp->b_pgbefore || 1535 i >= bp->b_npages - bp->b_pgafter) 1536 vm_page_readahead_finish(m); 1537 } else { 1538 /* 1539 * For write success, clear the dirty 1540 * status, then finish the I/O ( which decrements the 1541 * busy count and possibly wakes waiter's up ). 1542 * A page is only written to swap after a period of 1543 * inactivity. Therefore, we do not expect it to be 1544 * reused. 1545 */ 1546 KASSERT(!pmap_page_is_write_mapped(m), 1547 ("swp_pager_async_iodone: page %p is not write" 1548 " protected", m)); 1549 vm_page_undirty(m); 1550 vm_page_lock(m); 1551 vm_page_deactivate_noreuse(m); 1552 vm_page_unlock(m); 1553 vm_page_sunbusy(m); 1554 } 1555 } 1556 1557 /* 1558 * adjust pip. NOTE: the original parent may still have its own 1559 * pip refs on the object. 1560 */ 1561 if (object != NULL) { 1562 vm_object_pip_wakeupn(object, bp->b_npages); 1563 VM_OBJECT_WUNLOCK(object); 1564 } 1565 1566 /* 1567 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1568 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1569 * trigger a KASSERT in relpbuf(). 1570 */ 1571 if (bp->b_vp) { 1572 bp->b_vp = NULL; 1573 bp->b_bufobj = NULL; 1574 } 1575 /* 1576 * release the physical I/O buffer 1577 */ 1578 relpbuf( 1579 bp, 1580 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1581 ((bp->b_flags & B_ASYNC) ? 1582 &nsw_wcount_async : 1583 &nsw_wcount_sync 1584 ) 1585 ) 1586 ); 1587 } 1588 1589 /* 1590 * swap_pager_isswapped: 1591 * 1592 * Return 1 if at least one page in the given object is paged 1593 * out to the given swap device. 1594 * 1595 * This routine may not sleep. 1596 */ 1597 int 1598 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1599 { 1600 daddr_t index = 0; 1601 int bcount; 1602 int i; 1603 1604 VM_OBJECT_ASSERT_WLOCKED(object); 1605 if (object->type != OBJT_SWAP) 1606 return (0); 1607 1608 mtx_lock(&swhash_mtx); 1609 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1610 struct swblock *swap; 1611 1612 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1613 for (i = 0; i < SWAP_META_PAGES; ++i) { 1614 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1615 mtx_unlock(&swhash_mtx); 1616 return (1); 1617 } 1618 } 1619 } 1620 index += SWAP_META_PAGES; 1621 } 1622 mtx_unlock(&swhash_mtx); 1623 return (0); 1624 } 1625 1626 int 1627 swap_pager_nswapdev(void) 1628 { 1629 1630 return (nswapdev); 1631 } 1632 1633 /* 1634 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1635 * 1636 * This routine dissociates the page at the given index within an object 1637 * from its backing store, paging it in if it does not reside in memory. 1638 * If the page is paged in, it is marked dirty and placed in the laundry 1639 * queue. The page is marked dirty because it no longer has backing 1640 * store. It is placed in the laundry queue because it has not been 1641 * accessed recently. Otherwise, it would already reside in memory. 1642 * 1643 * We also attempt to swap in all other pages in the swap block. 1644 * However, we only guarantee that the one at the specified index is 1645 * paged in. 1646 * 1647 * XXX - The code to page the whole block in doesn't work, so we 1648 * revert to the one-by-one behavior for now. Sigh. 1649 */ 1650 static inline void 1651 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1652 { 1653 vm_page_t m; 1654 1655 vm_object_pip_add(object, 1); 1656 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 1657 if (m->valid == VM_PAGE_BITS_ALL) { 1658 vm_object_pip_wakeup(object); 1659 vm_page_dirty(m); 1660 vm_page_lock(m); 1661 vm_page_activate(m); 1662 vm_page_unlock(m); 1663 vm_page_xunbusy(m); 1664 vm_pager_page_unswapped(m); 1665 return; 1666 } 1667 1668 if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK) 1669 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1670 vm_object_pip_wakeup(object); 1671 vm_page_dirty(m); 1672 vm_page_lock(m); 1673 vm_page_launder(m); 1674 vm_page_unlock(m); 1675 vm_page_xunbusy(m); 1676 vm_pager_page_unswapped(m); 1677 } 1678 1679 /* 1680 * swap_pager_swapoff: 1681 * 1682 * Page in all of the pages that have been paged out to the 1683 * given device. The corresponding blocks in the bitmap must be 1684 * marked as allocated and the device must be flagged SW_CLOSING. 1685 * There may be no processes swapped out to the device. 1686 * 1687 * This routine may block. 1688 */ 1689 static void 1690 swap_pager_swapoff(struct swdevt *sp) 1691 { 1692 struct swblock *swap; 1693 vm_object_t locked_obj, object; 1694 vm_pindex_t pindex; 1695 int i, j, retries; 1696 1697 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 1698 1699 retries = 0; 1700 locked_obj = NULL; 1701 full_rescan: 1702 mtx_lock(&swhash_mtx); 1703 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1704 restart: 1705 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1706 object = swap->swb_object; 1707 pindex = swap->swb_index; 1708 for (j = 0; j < SWAP_META_PAGES; ++j) { 1709 if (!swp_pager_isondev(swap->swb_pages[j], sp)) 1710 continue; 1711 if (locked_obj != object) { 1712 if (locked_obj != NULL) 1713 VM_OBJECT_WUNLOCK(locked_obj); 1714 locked_obj = object; 1715 if (!VM_OBJECT_TRYWLOCK(object)) { 1716 mtx_unlock(&swhash_mtx); 1717 /* Depends on type-stability. */ 1718 VM_OBJECT_WLOCK(object); 1719 mtx_lock(&swhash_mtx); 1720 goto restart; 1721 } 1722 } 1723 MPASS(locked_obj == object); 1724 mtx_unlock(&swhash_mtx); 1725 swp_pager_force_pagein(object, pindex + j); 1726 mtx_lock(&swhash_mtx); 1727 goto restart; 1728 } 1729 } 1730 } 1731 mtx_unlock(&swhash_mtx); 1732 if (locked_obj != NULL) { 1733 VM_OBJECT_WUNLOCK(locked_obj); 1734 locked_obj = NULL; 1735 } 1736 if (sp->sw_used) { 1737 /* 1738 * Objects may be locked or paging to the device being 1739 * removed, so we will miss their pages and need to 1740 * make another pass. We have marked this device as 1741 * SW_CLOSING, so the activity should finish soon. 1742 */ 1743 retries++; 1744 if (retries > 100) { 1745 panic("swapoff: failed to locate %d swap blocks", 1746 sp->sw_used); 1747 } 1748 pause("swpoff", hz / 20); 1749 goto full_rescan; 1750 } 1751 EVENTHANDLER_INVOKE(swapoff, sp); 1752 } 1753 1754 /************************************************************************ 1755 * SWAP META DATA * 1756 ************************************************************************ 1757 * 1758 * These routines manipulate the swap metadata stored in the 1759 * OBJT_SWAP object. 1760 * 1761 * Swap metadata is implemented with a global hash and not directly 1762 * linked into the object. Instead the object simply contains 1763 * appropriate tracking counters. 1764 */ 1765 1766 /* 1767 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1768 * 1769 * We first convert the object to a swap object if it is a default 1770 * object. 1771 * 1772 * The specified swapblk is added to the object's swap metadata. If 1773 * the swapblk is not valid, it is freed instead. Any previously 1774 * assigned swapblk is freed. 1775 */ 1776 static void 1777 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1778 { 1779 static volatile int exhausted; 1780 struct swblock *swap; 1781 struct swblock **pswap; 1782 int idx; 1783 1784 VM_OBJECT_ASSERT_WLOCKED(object); 1785 /* 1786 * Convert default object to swap object if necessary 1787 */ 1788 if (object->type != OBJT_SWAP) { 1789 object->type = OBJT_SWAP; 1790 object->un_pager.swp.swp_bcount = 0; 1791 KASSERT(object->handle == NULL, ("default pager with handle")); 1792 } 1793 1794 /* 1795 * Locate hash entry. If not found create, but if we aren't adding 1796 * anything just return. If we run out of space in the map we wait 1797 * and, since the hash table may have changed, retry. 1798 */ 1799 retry: 1800 mtx_lock(&swhash_mtx); 1801 pswap = swp_pager_hash(object, pindex); 1802 1803 if ((swap = *pswap) == NULL) { 1804 int i; 1805 1806 if (swapblk == SWAPBLK_NONE) 1807 goto done; 1808 1809 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT | 1810 (curproc == pageproc ? M_USE_RESERVE : 0)); 1811 if (swap == NULL) { 1812 mtx_unlock(&swhash_mtx); 1813 VM_OBJECT_WUNLOCK(object); 1814 if (uma_zone_exhausted(swap_zone)) { 1815 if (atomic_cmpset_int(&exhausted, 0, 1)) 1816 printf("swap zone exhausted, " 1817 "increase kern.maxswzone\n"); 1818 vm_pageout_oom(VM_OOM_SWAPZ); 1819 pause("swzonex", 10); 1820 } else 1821 VM_WAIT; 1822 VM_OBJECT_WLOCK(object); 1823 goto retry; 1824 } 1825 1826 if (atomic_cmpset_int(&exhausted, 1, 0)) 1827 printf("swap zone ok\n"); 1828 1829 swap->swb_hnext = NULL; 1830 swap->swb_object = object; 1831 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1832 swap->swb_count = 0; 1833 1834 ++object->un_pager.swp.swp_bcount; 1835 1836 for (i = 0; i < SWAP_META_PAGES; ++i) 1837 swap->swb_pages[i] = SWAPBLK_NONE; 1838 } 1839 1840 /* 1841 * Delete prior contents of metadata 1842 */ 1843 idx = pindex & SWAP_META_MASK; 1844 1845 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1846 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1847 --swap->swb_count; 1848 } 1849 1850 /* 1851 * Enter block into metadata 1852 */ 1853 swap->swb_pages[idx] = swapblk; 1854 if (swapblk != SWAPBLK_NONE) 1855 ++swap->swb_count; 1856 done: 1857 mtx_unlock(&swhash_mtx); 1858 } 1859 1860 /* 1861 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1862 * 1863 * The requested range of blocks is freed, with any associated swap 1864 * returned to the swap bitmap. 1865 * 1866 * This routine will free swap metadata structures as they are cleaned 1867 * out. This routine does *NOT* operate on swap metadata associated 1868 * with resident pages. 1869 */ 1870 static void 1871 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count) 1872 { 1873 struct swblock **pswap, *swap; 1874 vm_pindex_t c; 1875 daddr_t v; 1876 int n, sidx; 1877 1878 VM_OBJECT_ASSERT_LOCKED(object); 1879 if (object->type != OBJT_SWAP || count == 0) 1880 return; 1881 1882 mtx_lock(&swhash_mtx); 1883 for (c = 0; c < count;) { 1884 pswap = swp_pager_hash(object, index); 1885 sidx = index & SWAP_META_MASK; 1886 n = SWAP_META_PAGES - sidx; 1887 index += n; 1888 if ((swap = *pswap) == NULL) { 1889 c += n; 1890 continue; 1891 } 1892 for (; c < count && sidx < SWAP_META_PAGES; ++c, ++sidx) { 1893 if ((v = swap->swb_pages[sidx]) == SWAPBLK_NONE) 1894 continue; 1895 swp_pager_freeswapspace(v, 1); 1896 swap->swb_pages[sidx] = SWAPBLK_NONE; 1897 if (--swap->swb_count == 0) { 1898 *pswap = swap->swb_hnext; 1899 uma_zfree(swap_zone, swap); 1900 --object->un_pager.swp.swp_bcount; 1901 c += SWAP_META_PAGES - sidx; 1902 break; 1903 } 1904 } 1905 } 1906 mtx_unlock(&swhash_mtx); 1907 } 1908 1909 /* 1910 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1911 * 1912 * This routine locates and destroys all swap metadata associated with 1913 * an object. 1914 */ 1915 static void 1916 swp_pager_meta_free_all(vm_object_t object) 1917 { 1918 struct swblock **pswap, *swap; 1919 vm_pindex_t index; 1920 daddr_t v; 1921 int i; 1922 1923 VM_OBJECT_ASSERT_WLOCKED(object); 1924 if (object->type != OBJT_SWAP) 1925 return; 1926 1927 index = 0; 1928 while (object->un_pager.swp.swp_bcount != 0) { 1929 mtx_lock(&swhash_mtx); 1930 pswap = swp_pager_hash(object, index); 1931 if ((swap = *pswap) != NULL) { 1932 for (i = 0; i < SWAP_META_PAGES; ++i) { 1933 v = swap->swb_pages[i]; 1934 if (v != SWAPBLK_NONE) { 1935 --swap->swb_count; 1936 swp_pager_freeswapspace(v, 1); 1937 } 1938 } 1939 if (swap->swb_count != 0) 1940 panic( 1941 "swap_pager_meta_free_all: swb_count != 0"); 1942 *pswap = swap->swb_hnext; 1943 uma_zfree(swap_zone, swap); 1944 --object->un_pager.swp.swp_bcount; 1945 } 1946 mtx_unlock(&swhash_mtx); 1947 index += SWAP_META_PAGES; 1948 } 1949 } 1950 1951 /* 1952 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1953 * 1954 * This routine is capable of looking up, popping, or freeing 1955 * swapblk assignments in the swap meta data or in the vm_page_t. 1956 * The routine typically returns the swapblk being looked-up, or popped, 1957 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1958 * was invalid. This routine will automatically free any invalid 1959 * meta-data swapblks. 1960 * 1961 * It is not possible to store invalid swapblks in the swap meta data 1962 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1963 * 1964 * When acting on a busy resident page and paging is in progress, we 1965 * have to wait until paging is complete but otherwise can act on the 1966 * busy page. 1967 * 1968 * SWM_FREE remove and free swap block from metadata 1969 * SWM_POP remove from meta data but do not free.. pop it out 1970 */ 1971 static daddr_t 1972 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 1973 { 1974 struct swblock **pswap; 1975 struct swblock *swap; 1976 daddr_t r1; 1977 int idx; 1978 1979 VM_OBJECT_ASSERT_LOCKED(object); 1980 /* 1981 * The meta data only exists of the object is OBJT_SWAP 1982 * and even then might not be allocated yet. 1983 */ 1984 if (object->type != OBJT_SWAP) 1985 return (SWAPBLK_NONE); 1986 1987 r1 = SWAPBLK_NONE; 1988 mtx_lock(&swhash_mtx); 1989 pswap = swp_pager_hash(object, pindex); 1990 1991 if ((swap = *pswap) != NULL) { 1992 idx = pindex & SWAP_META_MASK; 1993 r1 = swap->swb_pages[idx]; 1994 1995 if (r1 != SWAPBLK_NONE) { 1996 if (flags & SWM_FREE) { 1997 swp_pager_freeswapspace(r1, 1); 1998 r1 = SWAPBLK_NONE; 1999 } 2000 if (flags & (SWM_FREE|SWM_POP)) { 2001 swap->swb_pages[idx] = SWAPBLK_NONE; 2002 if (--swap->swb_count == 0) { 2003 *pswap = swap->swb_hnext; 2004 uma_zfree(swap_zone, swap); 2005 --object->un_pager.swp.swp_bcount; 2006 } 2007 } 2008 } 2009 } 2010 mtx_unlock(&swhash_mtx); 2011 return (r1); 2012 } 2013 2014 /* 2015 * Returns the least page index which is greater than or equal to the 2016 * parameter pindex and for which there is a swap block allocated. 2017 * Returns object's size if the object's type is not swap or if there 2018 * are no allocated swap blocks for the object after the requested 2019 * pindex. 2020 */ 2021 vm_pindex_t 2022 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex) 2023 { 2024 struct swblock **pswap, *swap; 2025 vm_pindex_t i, j, lim; 2026 int idx; 2027 2028 VM_OBJECT_ASSERT_LOCKED(object); 2029 if (object->type != OBJT_SWAP || object->un_pager.swp.swp_bcount == 0) 2030 return (object->size); 2031 2032 mtx_lock(&swhash_mtx); 2033 for (j = pindex; j < object->size; j = lim) { 2034 pswap = swp_pager_hash(object, j); 2035 lim = rounddown2(j + SWAP_META_PAGES, SWAP_META_PAGES); 2036 if (lim > object->size) 2037 lim = object->size; 2038 if ((swap = *pswap) != NULL) { 2039 for (idx = j & SWAP_META_MASK, i = j; i < lim; 2040 i++, idx++) { 2041 if (swap->swb_pages[idx] != SWAPBLK_NONE) 2042 goto found; 2043 } 2044 } 2045 } 2046 i = object->size; 2047 found: 2048 mtx_unlock(&swhash_mtx); 2049 return (i); 2050 } 2051 2052 /* 2053 * System call swapon(name) enables swapping on device name, 2054 * which must be in the swdevsw. Return EBUSY 2055 * if already swapping on this device. 2056 */ 2057 #ifndef _SYS_SYSPROTO_H_ 2058 struct swapon_args { 2059 char *name; 2060 }; 2061 #endif 2062 2063 /* 2064 * MPSAFE 2065 */ 2066 /* ARGSUSED */ 2067 int 2068 sys_swapon(struct thread *td, struct swapon_args *uap) 2069 { 2070 struct vattr attr; 2071 struct vnode *vp; 2072 struct nameidata nd; 2073 int error; 2074 2075 error = priv_check(td, PRIV_SWAPON); 2076 if (error) 2077 return (error); 2078 2079 sx_xlock(&swdev_syscall_lock); 2080 2081 /* 2082 * Swap metadata may not fit in the KVM if we have physical 2083 * memory of >1GB. 2084 */ 2085 if (swap_zone == NULL) { 2086 error = ENOMEM; 2087 goto done; 2088 } 2089 2090 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2091 uap->name, td); 2092 error = namei(&nd); 2093 if (error) 2094 goto done; 2095 2096 NDFREE(&nd, NDF_ONLY_PNBUF); 2097 vp = nd.ni_vp; 2098 2099 if (vn_isdisk(vp, &error)) { 2100 error = swapongeom(vp); 2101 } else if (vp->v_type == VREG && 2102 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2103 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2104 /* 2105 * Allow direct swapping to NFS regular files in the same 2106 * way that nfs_mountroot() sets up diskless swapping. 2107 */ 2108 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2109 } 2110 2111 if (error) 2112 vrele(vp); 2113 done: 2114 sx_xunlock(&swdev_syscall_lock); 2115 return (error); 2116 } 2117 2118 /* 2119 * Check that the total amount of swap currently configured does not 2120 * exceed half the theoretical maximum. If it does, print a warning 2121 * message and return -1; otherwise, return 0. 2122 */ 2123 static int 2124 swapon_check_swzone(unsigned long npages) 2125 { 2126 unsigned long maxpages; 2127 2128 /* absolute maximum we can handle assuming 100% efficiency */ 2129 maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES; 2130 2131 /* recommend using no more than half that amount */ 2132 if (npages > maxpages / 2) { 2133 printf("warning: total configured swap (%lu pages) " 2134 "exceeds maximum recommended amount (%lu pages).\n", 2135 npages, maxpages / 2); 2136 printf("warning: increase kern.maxswzone " 2137 "or reduce amount of swap.\n"); 2138 return (-1); 2139 } 2140 return (0); 2141 } 2142 2143 static void 2144 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2145 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2146 { 2147 struct swdevt *sp, *tsp; 2148 swblk_t dvbase; 2149 u_long mblocks; 2150 2151 /* 2152 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2153 * First chop nblks off to page-align it, then convert. 2154 * 2155 * sw->sw_nblks is in page-sized chunks now too. 2156 */ 2157 nblks &= ~(ctodb(1) - 1); 2158 nblks = dbtoc(nblks); 2159 2160 /* 2161 * If we go beyond this, we get overflows in the radix 2162 * tree bitmap code. 2163 */ 2164 mblocks = 0x40000000 / BLIST_META_RADIX; 2165 if (nblks > mblocks) { 2166 printf( 2167 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2168 mblocks / 1024 / 1024 * PAGE_SIZE); 2169 nblks = mblocks; 2170 } 2171 2172 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2173 sp->sw_vp = vp; 2174 sp->sw_id = id; 2175 sp->sw_dev = dev; 2176 sp->sw_flags = 0; 2177 sp->sw_nblks = nblks; 2178 sp->sw_used = 0; 2179 sp->sw_strategy = strategy; 2180 sp->sw_close = close; 2181 sp->sw_flags = flags; 2182 2183 sp->sw_blist = blist_create(nblks, M_WAITOK); 2184 /* 2185 * Do not free the first two block in order to avoid overwriting 2186 * any bsd label at the front of the partition 2187 */ 2188 blist_free(sp->sw_blist, 2, nblks - 2); 2189 2190 dvbase = 0; 2191 mtx_lock(&sw_dev_mtx); 2192 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2193 if (tsp->sw_end >= dvbase) { 2194 /* 2195 * We put one uncovered page between the devices 2196 * in order to definitively prevent any cross-device 2197 * I/O requests 2198 */ 2199 dvbase = tsp->sw_end + 1; 2200 } 2201 } 2202 sp->sw_first = dvbase; 2203 sp->sw_end = dvbase + nblks; 2204 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2205 nswapdev++; 2206 swap_pager_avail += nblks - 2; 2207 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2208 swapon_check_swzone(swap_total / PAGE_SIZE); 2209 swp_sizecheck(); 2210 mtx_unlock(&sw_dev_mtx); 2211 EVENTHANDLER_INVOKE(swapon, sp); 2212 } 2213 2214 /* 2215 * SYSCALL: swapoff(devname) 2216 * 2217 * Disable swapping on the given device. 2218 * 2219 * XXX: Badly designed system call: it should use a device index 2220 * rather than filename as specification. We keep sw_vp around 2221 * only to make this work. 2222 */ 2223 #ifndef _SYS_SYSPROTO_H_ 2224 struct swapoff_args { 2225 char *name; 2226 }; 2227 #endif 2228 2229 /* 2230 * MPSAFE 2231 */ 2232 /* ARGSUSED */ 2233 int 2234 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2235 { 2236 struct vnode *vp; 2237 struct nameidata nd; 2238 struct swdevt *sp; 2239 int error; 2240 2241 error = priv_check(td, PRIV_SWAPOFF); 2242 if (error) 2243 return (error); 2244 2245 sx_xlock(&swdev_syscall_lock); 2246 2247 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2248 td); 2249 error = namei(&nd); 2250 if (error) 2251 goto done; 2252 NDFREE(&nd, NDF_ONLY_PNBUF); 2253 vp = nd.ni_vp; 2254 2255 mtx_lock(&sw_dev_mtx); 2256 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2257 if (sp->sw_vp == vp) 2258 break; 2259 } 2260 mtx_unlock(&sw_dev_mtx); 2261 if (sp == NULL) { 2262 error = EINVAL; 2263 goto done; 2264 } 2265 error = swapoff_one(sp, td->td_ucred); 2266 done: 2267 sx_xunlock(&swdev_syscall_lock); 2268 return (error); 2269 } 2270 2271 static int 2272 swapoff_one(struct swdevt *sp, struct ucred *cred) 2273 { 2274 u_long nblks; 2275 #ifdef MAC 2276 int error; 2277 #endif 2278 2279 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 2280 #ifdef MAC 2281 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2282 error = mac_system_check_swapoff(cred, sp->sw_vp); 2283 (void) VOP_UNLOCK(sp->sw_vp, 0); 2284 if (error != 0) 2285 return (error); 2286 #endif 2287 nblks = sp->sw_nblks; 2288 2289 /* 2290 * We can turn off this swap device safely only if the 2291 * available virtual memory in the system will fit the amount 2292 * of data we will have to page back in, plus an epsilon so 2293 * the system doesn't become critically low on swap space. 2294 */ 2295 if (vm_cnt.v_free_count + swap_pager_avail < nblks + nswap_lowat) 2296 return (ENOMEM); 2297 2298 /* 2299 * Prevent further allocations on this device. 2300 */ 2301 mtx_lock(&sw_dev_mtx); 2302 sp->sw_flags |= SW_CLOSING; 2303 swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks); 2304 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2305 mtx_unlock(&sw_dev_mtx); 2306 2307 /* 2308 * Page in the contents of the device and close it. 2309 */ 2310 swap_pager_swapoff(sp); 2311 2312 sp->sw_close(curthread, sp); 2313 mtx_lock(&sw_dev_mtx); 2314 sp->sw_id = NULL; 2315 TAILQ_REMOVE(&swtailq, sp, sw_list); 2316 nswapdev--; 2317 if (nswapdev == 0) { 2318 swap_pager_full = 2; 2319 swap_pager_almost_full = 1; 2320 } 2321 if (swdevhd == sp) 2322 swdevhd = NULL; 2323 mtx_unlock(&sw_dev_mtx); 2324 blist_destroy(sp->sw_blist); 2325 free(sp, M_VMPGDATA); 2326 return (0); 2327 } 2328 2329 void 2330 swapoff_all(void) 2331 { 2332 struct swdevt *sp, *spt; 2333 const char *devname; 2334 int error; 2335 2336 sx_xlock(&swdev_syscall_lock); 2337 2338 mtx_lock(&sw_dev_mtx); 2339 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2340 mtx_unlock(&sw_dev_mtx); 2341 if (vn_isdisk(sp->sw_vp, NULL)) 2342 devname = devtoname(sp->sw_vp->v_rdev); 2343 else 2344 devname = "[file]"; 2345 error = swapoff_one(sp, thread0.td_ucred); 2346 if (error != 0) { 2347 printf("Cannot remove swap device %s (error=%d), " 2348 "skipping.\n", devname, error); 2349 } else if (bootverbose) { 2350 printf("Swap device %s removed.\n", devname); 2351 } 2352 mtx_lock(&sw_dev_mtx); 2353 } 2354 mtx_unlock(&sw_dev_mtx); 2355 2356 sx_xunlock(&swdev_syscall_lock); 2357 } 2358 2359 void 2360 swap_pager_status(int *total, int *used) 2361 { 2362 struct swdevt *sp; 2363 2364 *total = 0; 2365 *used = 0; 2366 mtx_lock(&sw_dev_mtx); 2367 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2368 *total += sp->sw_nblks; 2369 *used += sp->sw_used; 2370 } 2371 mtx_unlock(&sw_dev_mtx); 2372 } 2373 2374 int 2375 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2376 { 2377 struct swdevt *sp; 2378 const char *tmp_devname; 2379 int error, n; 2380 2381 n = 0; 2382 error = ENOENT; 2383 mtx_lock(&sw_dev_mtx); 2384 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2385 if (n != name) { 2386 n++; 2387 continue; 2388 } 2389 xs->xsw_version = XSWDEV_VERSION; 2390 xs->xsw_dev = sp->sw_dev; 2391 xs->xsw_flags = sp->sw_flags; 2392 xs->xsw_nblks = sp->sw_nblks; 2393 xs->xsw_used = sp->sw_used; 2394 if (devname != NULL) { 2395 if (vn_isdisk(sp->sw_vp, NULL)) 2396 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2397 else 2398 tmp_devname = "[file]"; 2399 strncpy(devname, tmp_devname, len); 2400 } 2401 error = 0; 2402 break; 2403 } 2404 mtx_unlock(&sw_dev_mtx); 2405 return (error); 2406 } 2407 2408 #if defined(COMPAT_FREEBSD11) 2409 #define XSWDEV_VERSION_11 1 2410 struct xswdev11 { 2411 u_int xsw_version; 2412 uint32_t xsw_dev; 2413 int xsw_flags; 2414 int xsw_nblks; 2415 int xsw_used; 2416 }; 2417 #endif 2418 2419 static int 2420 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2421 { 2422 struct xswdev xs; 2423 #if defined(COMPAT_FREEBSD11) 2424 struct xswdev11 xs11; 2425 #endif 2426 int error; 2427 2428 if (arg2 != 1) /* name length */ 2429 return (EINVAL); 2430 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2431 if (error != 0) 2432 return (error); 2433 #if defined(COMPAT_FREEBSD11) 2434 if (req->oldlen == sizeof(xs11)) { 2435 xs11.xsw_version = XSWDEV_VERSION_11; 2436 xs11.xsw_dev = xs.xsw_dev; /* truncation */ 2437 xs11.xsw_flags = xs.xsw_flags; 2438 xs11.xsw_nblks = xs.xsw_nblks; 2439 xs11.xsw_used = xs.xsw_used; 2440 error = SYSCTL_OUT(req, &xs11, sizeof(xs11)); 2441 } else 2442 #endif 2443 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2444 return (error); 2445 } 2446 2447 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2448 "Number of swap devices"); 2449 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE, 2450 sysctl_vm_swap_info, 2451 "Swap statistics by device"); 2452 2453 /* 2454 * vmspace_swap_count() - count the approximate swap usage in pages for a 2455 * vmspace. 2456 * 2457 * The map must be locked. 2458 * 2459 * Swap usage is determined by taking the proportional swap used by 2460 * VM objects backing the VM map. To make up for fractional losses, 2461 * if the VM object has any swap use at all the associated map entries 2462 * count for at least 1 swap page. 2463 */ 2464 long 2465 vmspace_swap_count(struct vmspace *vmspace) 2466 { 2467 vm_map_t map; 2468 vm_map_entry_t cur; 2469 vm_object_t object; 2470 long count, n; 2471 2472 map = &vmspace->vm_map; 2473 count = 0; 2474 2475 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2476 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2477 (object = cur->object.vm_object) != NULL) { 2478 VM_OBJECT_WLOCK(object); 2479 if (object->type == OBJT_SWAP && 2480 object->un_pager.swp.swp_bcount != 0) { 2481 n = (cur->end - cur->start) / PAGE_SIZE; 2482 count += object->un_pager.swp.swp_bcount * 2483 SWAP_META_PAGES * n / object->size + 1; 2484 } 2485 VM_OBJECT_WUNLOCK(object); 2486 } 2487 } 2488 return (count); 2489 } 2490 2491 /* 2492 * GEOM backend 2493 * 2494 * Swapping onto disk devices. 2495 * 2496 */ 2497 2498 static g_orphan_t swapgeom_orphan; 2499 2500 static struct g_class g_swap_class = { 2501 .name = "SWAP", 2502 .version = G_VERSION, 2503 .orphan = swapgeom_orphan, 2504 }; 2505 2506 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2507 2508 2509 static void 2510 swapgeom_close_ev(void *arg, int flags) 2511 { 2512 struct g_consumer *cp; 2513 2514 cp = arg; 2515 g_access(cp, -1, -1, 0); 2516 g_detach(cp); 2517 g_destroy_consumer(cp); 2518 } 2519 2520 /* 2521 * Add a reference to the g_consumer for an inflight transaction. 2522 */ 2523 static void 2524 swapgeom_acquire(struct g_consumer *cp) 2525 { 2526 2527 mtx_assert(&sw_dev_mtx, MA_OWNED); 2528 cp->index++; 2529 } 2530 2531 /* 2532 * Remove a reference from the g_consumer. Post a close event if all 2533 * references go away, since the function might be called from the 2534 * biodone context. 2535 */ 2536 static void 2537 swapgeom_release(struct g_consumer *cp, struct swdevt *sp) 2538 { 2539 2540 mtx_assert(&sw_dev_mtx, MA_OWNED); 2541 cp->index--; 2542 if (cp->index == 0) { 2543 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) 2544 sp->sw_id = NULL; 2545 } 2546 } 2547 2548 static void 2549 swapgeom_done(struct bio *bp2) 2550 { 2551 struct swdevt *sp; 2552 struct buf *bp; 2553 struct g_consumer *cp; 2554 2555 bp = bp2->bio_caller2; 2556 cp = bp2->bio_from; 2557 bp->b_ioflags = bp2->bio_flags; 2558 if (bp2->bio_error) 2559 bp->b_ioflags |= BIO_ERROR; 2560 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2561 bp->b_error = bp2->bio_error; 2562 bufdone(bp); 2563 sp = bp2->bio_caller1; 2564 mtx_lock(&sw_dev_mtx); 2565 swapgeom_release(cp, sp); 2566 mtx_unlock(&sw_dev_mtx); 2567 g_destroy_bio(bp2); 2568 } 2569 2570 static void 2571 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2572 { 2573 struct bio *bio; 2574 struct g_consumer *cp; 2575 2576 mtx_lock(&sw_dev_mtx); 2577 cp = sp->sw_id; 2578 if (cp == NULL) { 2579 mtx_unlock(&sw_dev_mtx); 2580 bp->b_error = ENXIO; 2581 bp->b_ioflags |= BIO_ERROR; 2582 bufdone(bp); 2583 return; 2584 } 2585 swapgeom_acquire(cp); 2586 mtx_unlock(&sw_dev_mtx); 2587 if (bp->b_iocmd == BIO_WRITE) 2588 bio = g_new_bio(); 2589 else 2590 bio = g_alloc_bio(); 2591 if (bio == NULL) { 2592 mtx_lock(&sw_dev_mtx); 2593 swapgeom_release(cp, sp); 2594 mtx_unlock(&sw_dev_mtx); 2595 bp->b_error = ENOMEM; 2596 bp->b_ioflags |= BIO_ERROR; 2597 bufdone(bp); 2598 return; 2599 } 2600 2601 bio->bio_caller1 = sp; 2602 bio->bio_caller2 = bp; 2603 bio->bio_cmd = bp->b_iocmd; 2604 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2605 bio->bio_length = bp->b_bcount; 2606 bio->bio_done = swapgeom_done; 2607 if (!buf_mapped(bp)) { 2608 bio->bio_ma = bp->b_pages; 2609 bio->bio_data = unmapped_buf; 2610 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2611 bio->bio_ma_n = bp->b_npages; 2612 bio->bio_flags |= BIO_UNMAPPED; 2613 } else { 2614 bio->bio_data = bp->b_data; 2615 bio->bio_ma = NULL; 2616 } 2617 g_io_request(bio, cp); 2618 return; 2619 } 2620 2621 static void 2622 swapgeom_orphan(struct g_consumer *cp) 2623 { 2624 struct swdevt *sp; 2625 int destroy; 2626 2627 mtx_lock(&sw_dev_mtx); 2628 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2629 if (sp->sw_id == cp) { 2630 sp->sw_flags |= SW_CLOSING; 2631 break; 2632 } 2633 } 2634 /* 2635 * Drop reference we were created with. Do directly since we're in a 2636 * special context where we don't have to queue the call to 2637 * swapgeom_close_ev(). 2638 */ 2639 cp->index--; 2640 destroy = ((sp != NULL) && (cp->index == 0)); 2641 if (destroy) 2642 sp->sw_id = NULL; 2643 mtx_unlock(&sw_dev_mtx); 2644 if (destroy) 2645 swapgeom_close_ev(cp, 0); 2646 } 2647 2648 static void 2649 swapgeom_close(struct thread *td, struct swdevt *sw) 2650 { 2651 struct g_consumer *cp; 2652 2653 mtx_lock(&sw_dev_mtx); 2654 cp = sw->sw_id; 2655 sw->sw_id = NULL; 2656 mtx_unlock(&sw_dev_mtx); 2657 2658 /* 2659 * swapgeom_close() may be called from the biodone context, 2660 * where we cannot perform topology changes. Delegate the 2661 * work to the events thread. 2662 */ 2663 if (cp != NULL) 2664 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL); 2665 } 2666 2667 static int 2668 swapongeom_locked(struct cdev *dev, struct vnode *vp) 2669 { 2670 struct g_provider *pp; 2671 struct g_consumer *cp; 2672 static struct g_geom *gp; 2673 struct swdevt *sp; 2674 u_long nblks; 2675 int error; 2676 2677 pp = g_dev_getprovider(dev); 2678 if (pp == NULL) 2679 return (ENODEV); 2680 mtx_lock(&sw_dev_mtx); 2681 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2682 cp = sp->sw_id; 2683 if (cp != NULL && cp->provider == pp) { 2684 mtx_unlock(&sw_dev_mtx); 2685 return (EBUSY); 2686 } 2687 } 2688 mtx_unlock(&sw_dev_mtx); 2689 if (gp == NULL) 2690 gp = g_new_geomf(&g_swap_class, "swap"); 2691 cp = g_new_consumer(gp); 2692 cp->index = 1; /* Number of active I/Os, plus one for being active. */ 2693 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 2694 g_attach(cp, pp); 2695 /* 2696 * XXX: Every time you think you can improve the margin for 2697 * footshooting, somebody depends on the ability to do so: 2698 * savecore(8) wants to write to our swapdev so we cannot 2699 * set an exclusive count :-( 2700 */ 2701 error = g_access(cp, 1, 1, 0); 2702 if (error != 0) { 2703 g_detach(cp); 2704 g_destroy_consumer(cp); 2705 return (error); 2706 } 2707 nblks = pp->mediasize / DEV_BSIZE; 2708 swaponsomething(vp, cp, nblks, swapgeom_strategy, 2709 swapgeom_close, dev2udev(dev), 2710 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2711 return (0); 2712 } 2713 2714 static int 2715 swapongeom(struct vnode *vp) 2716 { 2717 int error; 2718 2719 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2720 if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) { 2721 error = ENOENT; 2722 } else { 2723 g_topology_lock(); 2724 error = swapongeom_locked(vp->v_rdev, vp); 2725 g_topology_unlock(); 2726 } 2727 VOP_UNLOCK(vp, 0); 2728 return (error); 2729 } 2730 2731 /* 2732 * VNODE backend 2733 * 2734 * This is used mainly for network filesystem (read: probably only tested 2735 * with NFS) swapfiles. 2736 * 2737 */ 2738 2739 static void 2740 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2741 { 2742 struct vnode *vp2; 2743 2744 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2745 2746 vp2 = sp->sw_id; 2747 vhold(vp2); 2748 if (bp->b_iocmd == BIO_WRITE) { 2749 if (bp->b_bufobj) 2750 bufobj_wdrop(bp->b_bufobj); 2751 bufobj_wref(&vp2->v_bufobj); 2752 } 2753 if (bp->b_bufobj != &vp2->v_bufobj) 2754 bp->b_bufobj = &vp2->v_bufobj; 2755 bp->b_vp = vp2; 2756 bp->b_iooffset = dbtob(bp->b_blkno); 2757 bstrategy(bp); 2758 return; 2759 } 2760 2761 static void 2762 swapdev_close(struct thread *td, struct swdevt *sp) 2763 { 2764 2765 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2766 vrele(sp->sw_vp); 2767 } 2768 2769 2770 static int 2771 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2772 { 2773 struct swdevt *sp; 2774 int error; 2775 2776 if (nblks == 0) 2777 return (ENXIO); 2778 mtx_lock(&sw_dev_mtx); 2779 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2780 if (sp->sw_id == vp) { 2781 mtx_unlock(&sw_dev_mtx); 2782 return (EBUSY); 2783 } 2784 } 2785 mtx_unlock(&sw_dev_mtx); 2786 2787 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2788 #ifdef MAC 2789 error = mac_system_check_swapon(td->td_ucred, vp); 2790 if (error == 0) 2791 #endif 2792 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2793 (void) VOP_UNLOCK(vp, 0); 2794 if (error) 2795 return (error); 2796 2797 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2798 NODEV, 0); 2799 return (0); 2800 } 2801 2802 static int 2803 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS) 2804 { 2805 int error, new, n; 2806 2807 new = nsw_wcount_async_max; 2808 error = sysctl_handle_int(oidp, &new, 0, req); 2809 if (error != 0 || req->newptr == NULL) 2810 return (error); 2811 2812 if (new > nswbuf / 2 || new < 1) 2813 return (EINVAL); 2814 2815 mtx_lock(&pbuf_mtx); 2816 while (nsw_wcount_async_max != new) { 2817 /* 2818 * Adjust difference. If the current async count is too low, 2819 * we will need to sqeeze our update slowly in. Sleep with a 2820 * higher priority than getpbuf() to finish faster. 2821 */ 2822 n = new - nsw_wcount_async_max; 2823 if (nsw_wcount_async + n >= 0) { 2824 nsw_wcount_async += n; 2825 nsw_wcount_async_max += n; 2826 wakeup(&nsw_wcount_async); 2827 } else { 2828 nsw_wcount_async_max -= nsw_wcount_async; 2829 nsw_wcount_async = 0; 2830 msleep(&nsw_wcount_async, &pbuf_mtx, PSWP, 2831 "swpsysctl", 0); 2832 } 2833 } 2834 mtx_unlock(&pbuf_mtx); 2835 2836 return (0); 2837 } 2838