1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_mac.h" 73 #include "opt_swap.h" 74 #include "opt_vm.h" 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/conf.h> 79 #include <sys/kernel.h> 80 #include <sys/priv.h> 81 #include <sys/proc.h> 82 #include <sys/bio.h> 83 #include <sys/buf.h> 84 #include <sys/disk.h> 85 #include <sys/fcntl.h> 86 #include <sys/mount.h> 87 #include <sys/namei.h> 88 #include <sys/vnode.h> 89 #include <sys/malloc.h> 90 #include <sys/sysctl.h> 91 #include <sys/sysproto.h> 92 #include <sys/blist.h> 93 #include <sys/lock.h> 94 #include <sys/sx.h> 95 #include <sys/vmmeter.h> 96 97 #include <security/mac/mac_framework.h> 98 99 #include <vm/vm.h> 100 #include <vm/pmap.h> 101 #include <vm/vm_map.h> 102 #include <vm/vm_kern.h> 103 #include <vm/vm_object.h> 104 #include <vm/vm_page.h> 105 #include <vm/vm_pager.h> 106 #include <vm/vm_pageout.h> 107 #include <vm/vm_param.h> 108 #include <vm/swap_pager.h> 109 #include <vm/vm_extern.h> 110 #include <vm/uma.h> 111 112 #include <geom/geom.h> 113 114 /* 115 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, or 16 116 * pages per allocation. We recommend you stick with the default of 8. 117 * The 16-page limit is due to the radix code (kern/subr_blist.c). 118 */ 119 #ifndef MAX_PAGEOUT_CLUSTER 120 #define MAX_PAGEOUT_CLUSTER 16 121 #endif 122 123 #if !defined(SWB_NPAGES) 124 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 125 #endif 126 127 /* 128 * Piecemeal swap metadata structure. Swap is stored in a radix tree. 129 * 130 * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix 131 * is basically 8. Assuming PAGE_SIZE == 4096, one tree level represents 132 * 32K worth of data, two levels represent 256K, three levels represent 133 * 2 MBytes. This is acceptable. 134 * 135 * Overall memory utilization is about the same as the old swap structure. 136 */ 137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 138 #define SWAP_META_PAGES (SWB_NPAGES * 2) 139 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 140 141 typedef int32_t swblk_t; /* 142 * swap offset. This is the type used to 143 * address the "virtual swap device" and 144 * therefore the maximum swap space is 145 * 2^32 pages. 146 */ 147 148 struct swdevt; 149 typedef void sw_strategy_t(struct buf *bp, struct swdevt *sw); 150 typedef void sw_close_t(struct thread *td, struct swdevt *sw); 151 152 /* 153 * Swap device table 154 */ 155 struct swdevt { 156 int sw_flags; 157 int sw_nblks; 158 int sw_used; 159 dev_t sw_dev; 160 struct vnode *sw_vp; 161 void *sw_id; 162 swblk_t sw_first; 163 swblk_t sw_end; 164 struct blist *sw_blist; 165 TAILQ_ENTRY(swdevt) sw_list; 166 sw_strategy_t *sw_strategy; 167 sw_close_t *sw_close; 168 }; 169 170 #define SW_CLOSING 0x04 171 172 struct swblock { 173 struct swblock *swb_hnext; 174 vm_object_t swb_object; 175 vm_pindex_t swb_index; 176 int swb_count; 177 daddr_t swb_pages[SWAP_META_PAGES]; 178 }; 179 180 static struct mtx sw_dev_mtx; 181 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 182 static struct swdevt *swdevhd; /* Allocate from here next */ 183 static int nswapdev; /* Number of swap devices */ 184 int swap_pager_avail; 185 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 186 187 static void swapdev_strategy(struct buf *, struct swdevt *sw); 188 189 #define SWM_FREE 0x02 /* free, period */ 190 #define SWM_POP 0x04 /* pop out */ 191 192 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 193 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 194 static int nsw_rcount; /* free read buffers */ 195 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 196 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 197 static int nsw_wcount_async_max;/* assigned maximum */ 198 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 199 200 static struct swblock **swhash; 201 static int swhash_mask; 202 static struct mtx swhash_mtx; 203 204 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 205 static struct sx sw_alloc_sx; 206 207 208 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 209 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 210 211 /* 212 * "named" and "unnamed" anon region objects. Try to reduce the overhead 213 * of searching a named list by hashing it just a little. 214 */ 215 216 #define NOBJLISTS 8 217 218 #define NOBJLIST(handle) \ 219 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 220 221 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 222 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 223 static uma_zone_t swap_zone; 224 static struct vm_object swap_zone_obj; 225 226 /* 227 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 228 * calls hooked from other parts of the VM system and do not appear here. 229 * (see vm/swap_pager.h). 230 */ 231 static vm_object_t 232 swap_pager_alloc(void *handle, vm_ooffset_t size, 233 vm_prot_t prot, vm_ooffset_t offset); 234 static void swap_pager_dealloc(vm_object_t object); 235 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 236 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 237 static boolean_t 238 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 239 static void swap_pager_init(void); 240 static void swap_pager_unswapped(vm_page_t); 241 static void swap_pager_swapoff(struct swdevt *sp); 242 243 struct pagerops swappagerops = { 244 .pgo_init = swap_pager_init, /* early system initialization of pager */ 245 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 246 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 247 .pgo_getpages = swap_pager_getpages, /* pagein */ 248 .pgo_putpages = swap_pager_putpages, /* pageout */ 249 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 250 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 251 }; 252 253 /* 254 * dmmax is in page-sized chunks with the new swap system. It was 255 * dev-bsized chunks in the old. dmmax is always a power of 2. 256 * 257 * swap_*() routines are externally accessible. swp_*() routines are 258 * internal. 259 */ 260 static int dmmax; 261 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 262 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 263 264 SYSCTL_INT(_vm, OID_AUTO, dmmax, 265 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 266 267 static void swp_sizecheck(void); 268 static void swp_pager_async_iodone(struct buf *bp); 269 static int swapongeom(struct thread *, struct vnode *); 270 static int swaponvp(struct thread *, struct vnode *, u_long); 271 static int swapoff_one(struct swdevt *sp, struct thread *td); 272 273 /* 274 * Swap bitmap functions 275 */ 276 static void swp_pager_freeswapspace(daddr_t blk, int npages); 277 static daddr_t swp_pager_getswapspace(int npages); 278 279 /* 280 * Metadata functions 281 */ 282 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 283 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 284 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 285 static void swp_pager_meta_free_all(vm_object_t); 286 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 287 288 /* 289 * SWP_SIZECHECK() - update swap_pager_full indication 290 * 291 * update the swap_pager_almost_full indication and warn when we are 292 * about to run out of swap space, using lowat/hiwat hysteresis. 293 * 294 * Clear swap_pager_full ( task killing ) indication when lowat is met. 295 * 296 * No restrictions on call 297 * This routine may not block. 298 * This routine must be called at splvm() 299 */ 300 static void 301 swp_sizecheck(void) 302 { 303 304 if (swap_pager_avail < nswap_lowat) { 305 if (swap_pager_almost_full == 0) { 306 printf("swap_pager: out of swap space\n"); 307 swap_pager_almost_full = 1; 308 } 309 } else { 310 swap_pager_full = 0; 311 if (swap_pager_avail > nswap_hiwat) 312 swap_pager_almost_full = 0; 313 } 314 } 315 316 /* 317 * SWP_PAGER_HASH() - hash swap meta data 318 * 319 * This is an helper function which hashes the swapblk given 320 * the object and page index. It returns a pointer to a pointer 321 * to the object, or a pointer to a NULL pointer if it could not 322 * find a swapblk. 323 * 324 * This routine must be called at splvm(). 325 */ 326 static struct swblock ** 327 swp_pager_hash(vm_object_t object, vm_pindex_t index) 328 { 329 struct swblock **pswap; 330 struct swblock *swap; 331 332 index &= ~(vm_pindex_t)SWAP_META_MASK; 333 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 334 while ((swap = *pswap) != NULL) { 335 if (swap->swb_object == object && 336 swap->swb_index == index 337 ) { 338 break; 339 } 340 pswap = &swap->swb_hnext; 341 } 342 return (pswap); 343 } 344 345 /* 346 * SWAP_PAGER_INIT() - initialize the swap pager! 347 * 348 * Expected to be started from system init. NOTE: This code is run 349 * before much else so be careful what you depend on. Most of the VM 350 * system has yet to be initialized at this point. 351 */ 352 static void 353 swap_pager_init(void) 354 { 355 /* 356 * Initialize object lists 357 */ 358 int i; 359 360 for (i = 0; i < NOBJLISTS; ++i) 361 TAILQ_INIT(&swap_pager_object_list[i]); 362 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 363 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 364 365 /* 366 * Device Stripe, in PAGE_SIZE'd blocks 367 */ 368 dmmax = SWB_NPAGES * 2; 369 } 370 371 /* 372 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 373 * 374 * Expected to be started from pageout process once, prior to entering 375 * its main loop. 376 */ 377 void 378 swap_pager_swap_init(void) 379 { 380 int n, n2; 381 382 /* 383 * Number of in-transit swap bp operations. Don't 384 * exhaust the pbufs completely. Make sure we 385 * initialize workable values (0 will work for hysteresis 386 * but it isn't very efficient). 387 * 388 * The nsw_cluster_max is constrained by the bp->b_pages[] 389 * array (MAXPHYS/PAGE_SIZE) and our locally defined 390 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 391 * constrained by the swap device interleave stripe size. 392 * 393 * Currently we hardwire nsw_wcount_async to 4. This limit is 394 * designed to prevent other I/O from having high latencies due to 395 * our pageout I/O. The value 4 works well for one or two active swap 396 * devices but is probably a little low if you have more. Even so, 397 * a higher value would probably generate only a limited improvement 398 * with three or four active swap devices since the system does not 399 * typically have to pageout at extreme bandwidths. We will want 400 * at least 2 per swap devices, and 4 is a pretty good value if you 401 * have one NFS swap device due to the command/ack latency over NFS. 402 * So it all works out pretty well. 403 */ 404 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 405 406 mtx_lock(&pbuf_mtx); 407 nsw_rcount = (nswbuf + 1) / 2; 408 nsw_wcount_sync = (nswbuf + 3) / 4; 409 nsw_wcount_async = 4; 410 nsw_wcount_async_max = nsw_wcount_async; 411 mtx_unlock(&pbuf_mtx); 412 413 /* 414 * Initialize our zone. Right now I'm just guessing on the number 415 * we need based on the number of pages in the system. Each swblock 416 * can hold 16 pages, so this is probably overkill. This reservation 417 * is typically limited to around 32MB by default. 418 */ 419 n = cnt.v_page_count / 2; 420 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 421 n = maxswzone / sizeof(struct swblock); 422 n2 = n; 423 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 424 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 425 if (swap_zone == NULL) 426 panic("failed to create swap_zone."); 427 do { 428 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n)) 429 break; 430 /* 431 * if the allocation failed, try a zone two thirds the 432 * size of the previous attempt. 433 */ 434 n -= ((n + 2) / 3); 435 } while (n > 0); 436 if (n2 != n) 437 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 438 n2 = n; 439 440 /* 441 * Initialize our meta-data hash table. The swapper does not need to 442 * be quite as efficient as the VM system, so we do not use an 443 * oversized hash table. 444 * 445 * n: size of hash table, must be power of 2 446 * swhash_mask: hash table index mask 447 */ 448 for (n = 1; n < n2 / 8; n *= 2) 449 ; 450 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 451 swhash_mask = n - 1; 452 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 453 } 454 455 /* 456 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 457 * its metadata structures. 458 * 459 * This routine is called from the mmap and fork code to create a new 460 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 461 * and then converting it with swp_pager_meta_build(). 462 * 463 * This routine may block in vm_object_allocate() and create a named 464 * object lookup race, so we must interlock. We must also run at 465 * splvm() for the object lookup to handle races with interrupts, but 466 * we do not have to maintain splvm() in between the lookup and the 467 * add because (I believe) it is not possible to attempt to create 468 * a new swap object w/handle when a default object with that handle 469 * already exists. 470 * 471 * MPSAFE 472 */ 473 static vm_object_t 474 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 475 vm_ooffset_t offset) 476 { 477 vm_object_t object; 478 vm_pindex_t pindex; 479 480 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 481 482 if (handle) { 483 mtx_lock(&Giant); 484 /* 485 * Reference existing named region or allocate new one. There 486 * should not be a race here against swp_pager_meta_build() 487 * as called from vm_page_remove() in regards to the lookup 488 * of the handle. 489 */ 490 sx_xlock(&sw_alloc_sx); 491 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 492 493 if (object != NULL) { 494 vm_object_reference(object); 495 } else { 496 object = vm_object_allocate(OBJT_DEFAULT, pindex); 497 object->handle = handle; 498 499 VM_OBJECT_LOCK(object); 500 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 501 VM_OBJECT_UNLOCK(object); 502 } 503 sx_xunlock(&sw_alloc_sx); 504 mtx_unlock(&Giant); 505 } else { 506 object = vm_object_allocate(OBJT_DEFAULT, pindex); 507 508 VM_OBJECT_LOCK(object); 509 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 510 VM_OBJECT_UNLOCK(object); 511 } 512 return (object); 513 } 514 515 /* 516 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 517 * 518 * The swap backing for the object is destroyed. The code is 519 * designed such that we can reinstantiate it later, but this 520 * routine is typically called only when the entire object is 521 * about to be destroyed. 522 * 523 * This routine may block, but no longer does. 524 * 525 * The object must be locked or unreferenceable. 526 */ 527 static void 528 swap_pager_dealloc(vm_object_t object) 529 { 530 531 /* 532 * Remove from list right away so lookups will fail if we block for 533 * pageout completion. 534 */ 535 if (object->handle != NULL) { 536 mtx_lock(&sw_alloc_mtx); 537 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 538 mtx_unlock(&sw_alloc_mtx); 539 } 540 541 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 542 vm_object_pip_wait(object, "swpdea"); 543 544 /* 545 * Free all remaining metadata. We only bother to free it from 546 * the swap meta data. We do not attempt to free swapblk's still 547 * associated with vm_page_t's for this object. We do not care 548 * if paging is still in progress on some objects. 549 */ 550 swp_pager_meta_free_all(object); 551 } 552 553 /************************************************************************ 554 * SWAP PAGER BITMAP ROUTINES * 555 ************************************************************************/ 556 557 /* 558 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 559 * 560 * Allocate swap for the requested number of pages. The starting 561 * swap block number (a page index) is returned or SWAPBLK_NONE 562 * if the allocation failed. 563 * 564 * Also has the side effect of advising that somebody made a mistake 565 * when they configured swap and didn't configure enough. 566 * 567 * Must be called at splvm() to avoid races with bitmap frees from 568 * vm_page_remove() aka swap_pager_page_removed(). 569 * 570 * This routine may not block 571 * This routine must be called at splvm(). 572 * 573 * We allocate in round-robin fashion from the configured devices. 574 */ 575 static daddr_t 576 swp_pager_getswapspace(int npages) 577 { 578 daddr_t blk; 579 struct swdevt *sp; 580 int i; 581 582 blk = SWAPBLK_NONE; 583 mtx_lock(&sw_dev_mtx); 584 sp = swdevhd; 585 for (i = 0; i < nswapdev; i++) { 586 if (sp == NULL) 587 sp = TAILQ_FIRST(&swtailq); 588 if (!(sp->sw_flags & SW_CLOSING)) { 589 blk = blist_alloc(sp->sw_blist, npages); 590 if (blk != SWAPBLK_NONE) { 591 blk += sp->sw_first; 592 sp->sw_used += npages; 593 swap_pager_avail -= npages; 594 swp_sizecheck(); 595 swdevhd = TAILQ_NEXT(sp, sw_list); 596 goto done; 597 } 598 } 599 sp = TAILQ_NEXT(sp, sw_list); 600 } 601 if (swap_pager_full != 2) { 602 printf("swap_pager_getswapspace(%d): failed\n", npages); 603 swap_pager_full = 2; 604 swap_pager_almost_full = 1; 605 } 606 swdevhd = NULL; 607 done: 608 mtx_unlock(&sw_dev_mtx); 609 return (blk); 610 } 611 612 static int 613 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 614 { 615 616 return (blk >= sp->sw_first && blk < sp->sw_end); 617 } 618 619 static void 620 swp_pager_strategy(struct buf *bp) 621 { 622 struct swdevt *sp; 623 624 mtx_lock(&sw_dev_mtx); 625 TAILQ_FOREACH(sp, &swtailq, sw_list) { 626 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 627 mtx_unlock(&sw_dev_mtx); 628 sp->sw_strategy(bp, sp); 629 return; 630 } 631 } 632 panic("Swapdev not found"); 633 } 634 635 636 /* 637 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 638 * 639 * This routine returns the specified swap blocks back to the bitmap. 640 * 641 * Note: This routine may not block (it could in the old swap code), 642 * and through the use of the new blist routines it does not block. 643 * 644 * We must be called at splvm() to avoid races with bitmap frees from 645 * vm_page_remove() aka swap_pager_page_removed(). 646 * 647 * This routine may not block 648 * This routine must be called at splvm(). 649 */ 650 static void 651 swp_pager_freeswapspace(daddr_t blk, int npages) 652 { 653 struct swdevt *sp; 654 655 mtx_lock(&sw_dev_mtx); 656 TAILQ_FOREACH(sp, &swtailq, sw_list) { 657 if (blk >= sp->sw_first && blk < sp->sw_end) { 658 sp->sw_used -= npages; 659 /* 660 * If we are attempting to stop swapping on 661 * this device, we don't want to mark any 662 * blocks free lest they be reused. 663 */ 664 if ((sp->sw_flags & SW_CLOSING) == 0) { 665 blist_free(sp->sw_blist, blk - sp->sw_first, 666 npages); 667 swap_pager_avail += npages; 668 swp_sizecheck(); 669 } 670 mtx_unlock(&sw_dev_mtx); 671 return; 672 } 673 } 674 panic("Swapdev not found"); 675 } 676 677 /* 678 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 679 * range within an object. 680 * 681 * This is a globally accessible routine. 682 * 683 * This routine removes swapblk assignments from swap metadata. 684 * 685 * The external callers of this routine typically have already destroyed 686 * or renamed vm_page_t's associated with this range in the object so 687 * we should be ok. 688 * 689 * This routine may be called at any spl. We up our spl to splvm temporarily 690 * in order to perform the metadata removal. 691 */ 692 void 693 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 694 { 695 696 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 697 swp_pager_meta_free(object, start, size); 698 } 699 700 /* 701 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 702 * 703 * Assigns swap blocks to the specified range within the object. The 704 * swap blocks are not zerod. Any previous swap assignment is destroyed. 705 * 706 * Returns 0 on success, -1 on failure. 707 */ 708 int 709 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 710 { 711 int n = 0; 712 daddr_t blk = SWAPBLK_NONE; 713 vm_pindex_t beg = start; /* save start index */ 714 715 VM_OBJECT_LOCK(object); 716 while (size) { 717 if (n == 0) { 718 n = BLIST_MAX_ALLOC; 719 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 720 n >>= 1; 721 if (n == 0) { 722 swp_pager_meta_free(object, beg, start - beg); 723 VM_OBJECT_UNLOCK(object); 724 return (-1); 725 } 726 } 727 } 728 swp_pager_meta_build(object, start, blk); 729 --size; 730 ++start; 731 ++blk; 732 --n; 733 } 734 swp_pager_meta_free(object, start, n); 735 VM_OBJECT_UNLOCK(object); 736 return (0); 737 } 738 739 /* 740 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 741 * and destroy the source. 742 * 743 * Copy any valid swapblks from the source to the destination. In 744 * cases where both the source and destination have a valid swapblk, 745 * we keep the destination's. 746 * 747 * This routine is allowed to block. It may block allocating metadata 748 * indirectly through swp_pager_meta_build() or if paging is still in 749 * progress on the source. 750 * 751 * This routine can be called at any spl 752 * 753 * XXX vm_page_collapse() kinda expects us not to block because we 754 * supposedly do not need to allocate memory, but for the moment we 755 * *may* have to get a little memory from the zone allocator, but 756 * it is taken from the interrupt memory. We should be ok. 757 * 758 * The source object contains no vm_page_t's (which is just as well) 759 * 760 * The source object is of type OBJT_SWAP. 761 * 762 * The source and destination objects must be locked or 763 * inaccessible (XXX are they ?) 764 */ 765 void 766 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 767 vm_pindex_t offset, int destroysource) 768 { 769 vm_pindex_t i; 770 771 VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED); 772 VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED); 773 774 /* 775 * If destroysource is set, we remove the source object from the 776 * swap_pager internal queue now. 777 */ 778 if (destroysource) { 779 if (srcobject->handle != NULL) { 780 mtx_lock(&sw_alloc_mtx); 781 TAILQ_REMOVE( 782 NOBJLIST(srcobject->handle), 783 srcobject, 784 pager_object_list 785 ); 786 mtx_unlock(&sw_alloc_mtx); 787 } 788 } 789 790 /* 791 * transfer source to destination. 792 */ 793 for (i = 0; i < dstobject->size; ++i) { 794 daddr_t dstaddr; 795 796 /* 797 * Locate (without changing) the swapblk on the destination, 798 * unless it is invalid in which case free it silently, or 799 * if the destination is a resident page, in which case the 800 * source is thrown away. 801 */ 802 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 803 804 if (dstaddr == SWAPBLK_NONE) { 805 /* 806 * Destination has no swapblk and is not resident, 807 * copy source. 808 */ 809 daddr_t srcaddr; 810 811 srcaddr = swp_pager_meta_ctl( 812 srcobject, 813 i + offset, 814 SWM_POP 815 ); 816 817 if (srcaddr != SWAPBLK_NONE) { 818 /* 819 * swp_pager_meta_build() can sleep. 820 */ 821 vm_object_pip_add(srcobject, 1); 822 VM_OBJECT_UNLOCK(srcobject); 823 vm_object_pip_add(dstobject, 1); 824 swp_pager_meta_build(dstobject, i, srcaddr); 825 vm_object_pip_wakeup(dstobject); 826 VM_OBJECT_LOCK(srcobject); 827 vm_object_pip_wakeup(srcobject); 828 } 829 } else { 830 /* 831 * Destination has valid swapblk or it is represented 832 * by a resident page. We destroy the sourceblock. 833 */ 834 835 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 836 } 837 } 838 839 /* 840 * Free left over swap blocks in source. 841 * 842 * We have to revert the type to OBJT_DEFAULT so we do not accidently 843 * double-remove the object from the swap queues. 844 */ 845 if (destroysource) { 846 swp_pager_meta_free_all(srcobject); 847 /* 848 * Reverting the type is not necessary, the caller is going 849 * to destroy srcobject directly, but I'm doing it here 850 * for consistency since we've removed the object from its 851 * queues. 852 */ 853 srcobject->type = OBJT_DEFAULT; 854 } 855 } 856 857 /* 858 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 859 * the requested page. 860 * 861 * We determine whether good backing store exists for the requested 862 * page and return TRUE if it does, FALSE if it doesn't. 863 * 864 * If TRUE, we also try to determine how much valid, contiguous backing 865 * store exists before and after the requested page within a reasonable 866 * distance. We do not try to restrict it to the swap device stripe 867 * (that is handled in getpages/putpages). It probably isn't worth 868 * doing here. 869 */ 870 static boolean_t 871 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 872 { 873 daddr_t blk0; 874 875 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 876 /* 877 * do we have good backing store at the requested index ? 878 */ 879 blk0 = swp_pager_meta_ctl(object, pindex, 0); 880 881 if (blk0 == SWAPBLK_NONE) { 882 if (before) 883 *before = 0; 884 if (after) 885 *after = 0; 886 return (FALSE); 887 } 888 889 /* 890 * find backwards-looking contiguous good backing store 891 */ 892 if (before != NULL) { 893 int i; 894 895 for (i = 1; i < (SWB_NPAGES/2); ++i) { 896 daddr_t blk; 897 898 if (i > pindex) 899 break; 900 blk = swp_pager_meta_ctl(object, pindex - i, 0); 901 if (blk != blk0 - i) 902 break; 903 } 904 *before = (i - 1); 905 } 906 907 /* 908 * find forward-looking contiguous good backing store 909 */ 910 if (after != NULL) { 911 int i; 912 913 for (i = 1; i < (SWB_NPAGES/2); ++i) { 914 daddr_t blk; 915 916 blk = swp_pager_meta_ctl(object, pindex + i, 0); 917 if (blk != blk0 + i) 918 break; 919 } 920 *after = (i - 1); 921 } 922 return (TRUE); 923 } 924 925 /* 926 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 927 * 928 * This removes any associated swap backing store, whether valid or 929 * not, from the page. 930 * 931 * This routine is typically called when a page is made dirty, at 932 * which point any associated swap can be freed. MADV_FREE also 933 * calls us in a special-case situation 934 * 935 * NOTE!!! If the page is clean and the swap was valid, the caller 936 * should make the page dirty before calling this routine. This routine 937 * does NOT change the m->dirty status of the page. Also: MADV_FREE 938 * depends on it. 939 * 940 * This routine may not block 941 * This routine must be called at splvm() 942 */ 943 static void 944 swap_pager_unswapped(vm_page_t m) 945 { 946 947 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 948 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 949 } 950 951 /* 952 * SWAP_PAGER_GETPAGES() - bring pages in from swap 953 * 954 * Attempt to retrieve (m, count) pages from backing store, but make 955 * sure we retrieve at least m[reqpage]. We try to load in as large 956 * a chunk surrounding m[reqpage] as is contiguous in swap and which 957 * belongs to the same object. 958 * 959 * The code is designed for asynchronous operation and 960 * immediate-notification of 'reqpage' but tends not to be 961 * used that way. Please do not optimize-out this algorithmic 962 * feature, I intend to improve on it in the future. 963 * 964 * The parent has a single vm_object_pip_add() reference prior to 965 * calling us and we should return with the same. 966 * 967 * The parent has BUSY'd the pages. We should return with 'm' 968 * left busy, but the others adjusted. 969 */ 970 static int 971 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 972 { 973 struct buf *bp; 974 vm_page_t mreq; 975 int i; 976 int j; 977 daddr_t blk; 978 979 mreq = m[reqpage]; 980 981 KASSERT(mreq->object == object, 982 ("swap_pager_getpages: object mismatch %p/%p", 983 object, mreq->object)); 984 985 /* 986 * Calculate range to retrieve. The pages have already been assigned 987 * their swapblks. We require a *contiguous* range but we know it to 988 * not span devices. If we do not supply it, bad things 989 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 990 * loops are set up such that the case(s) are handled implicitly. 991 * 992 * The swp_*() calls must be made at splvm(). vm_page_free() does 993 * not need to be, but it will go a little faster if it is. 994 */ 995 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 996 997 for (i = reqpage - 1; i >= 0; --i) { 998 daddr_t iblk; 999 1000 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1001 if (blk != iblk + (reqpage - i)) 1002 break; 1003 } 1004 ++i; 1005 1006 for (j = reqpage + 1; j < count; ++j) { 1007 daddr_t jblk; 1008 1009 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1010 if (blk != jblk - (j - reqpage)) 1011 break; 1012 } 1013 1014 /* 1015 * free pages outside our collection range. Note: we never free 1016 * mreq, it must remain busy throughout. 1017 */ 1018 if (0 < i || j < count) { 1019 int k; 1020 1021 vm_page_lock_queues(); 1022 for (k = 0; k < i; ++k) 1023 vm_page_free(m[k]); 1024 for (k = j; k < count; ++k) 1025 vm_page_free(m[k]); 1026 vm_page_unlock_queues(); 1027 } 1028 1029 /* 1030 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1031 * still busy, but the others unbusied. 1032 */ 1033 if (blk == SWAPBLK_NONE) 1034 return (VM_PAGER_FAIL); 1035 1036 /* 1037 * Getpbuf() can sleep. 1038 */ 1039 VM_OBJECT_UNLOCK(object); 1040 /* 1041 * Get a swap buffer header to perform the IO 1042 */ 1043 bp = getpbuf(&nsw_rcount); 1044 bp->b_flags |= B_PAGING; 1045 1046 /* 1047 * map our page(s) into kva for input 1048 */ 1049 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i); 1050 1051 bp->b_iocmd = BIO_READ; 1052 bp->b_iodone = swp_pager_async_iodone; 1053 bp->b_rcred = crhold(thread0.td_ucred); 1054 bp->b_wcred = crhold(thread0.td_ucred); 1055 bp->b_blkno = blk - (reqpage - i); 1056 bp->b_bcount = PAGE_SIZE * (j - i); 1057 bp->b_bufsize = PAGE_SIZE * (j - i); 1058 bp->b_pager.pg_reqpage = reqpage - i; 1059 1060 VM_OBJECT_LOCK(object); 1061 { 1062 int k; 1063 1064 for (k = i; k < j; ++k) { 1065 bp->b_pages[k - i] = m[k]; 1066 m[k]->oflags |= VPO_SWAPINPROG; 1067 } 1068 } 1069 bp->b_npages = j - i; 1070 1071 cnt.v_swapin++; 1072 cnt.v_swappgsin += bp->b_npages; 1073 1074 /* 1075 * We still hold the lock on mreq, and our automatic completion routine 1076 * does not remove it. 1077 */ 1078 vm_object_pip_add(object, bp->b_npages); 1079 VM_OBJECT_UNLOCK(object); 1080 1081 /* 1082 * perform the I/O. NOTE!!! bp cannot be considered valid after 1083 * this point because we automatically release it on completion. 1084 * Instead, we look at the one page we are interested in which we 1085 * still hold a lock on even through the I/O completion. 1086 * 1087 * The other pages in our m[] array are also released on completion, 1088 * so we cannot assume they are valid anymore either. 1089 * 1090 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1091 */ 1092 BUF_KERNPROC(bp); 1093 swp_pager_strategy(bp); 1094 1095 /* 1096 * wait for the page we want to complete. VPO_SWAPINPROG is always 1097 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1098 * is set in the meta-data. 1099 */ 1100 VM_OBJECT_LOCK(object); 1101 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1102 mreq->oflags |= VPO_WANTED; 1103 vm_page_lock_queues(); 1104 vm_page_flag_set(mreq, PG_REFERENCED); 1105 vm_page_unlock_queues(); 1106 cnt.v_intrans++; 1107 if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) { 1108 printf( 1109 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1110 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1111 } 1112 } 1113 1114 /* 1115 * mreq is left busied after completion, but all the other pages 1116 * are freed. If we had an unrecoverable read error the page will 1117 * not be valid. 1118 */ 1119 if (mreq->valid != VM_PAGE_BITS_ALL) { 1120 return (VM_PAGER_ERROR); 1121 } else { 1122 return (VM_PAGER_OK); 1123 } 1124 1125 /* 1126 * A final note: in a low swap situation, we cannot deallocate swap 1127 * and mark a page dirty here because the caller is likely to mark 1128 * the page clean when we return, causing the page to possibly revert 1129 * to all-zero's later. 1130 */ 1131 } 1132 1133 /* 1134 * swap_pager_putpages: 1135 * 1136 * Assign swap (if necessary) and initiate I/O on the specified pages. 1137 * 1138 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1139 * are automatically converted to SWAP objects. 1140 * 1141 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1142 * vm_page reservation system coupled with properly written VFS devices 1143 * should ensure that no low-memory deadlock occurs. This is an area 1144 * which needs work. 1145 * 1146 * The parent has N vm_object_pip_add() references prior to 1147 * calling us and will remove references for rtvals[] that are 1148 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1149 * completion. 1150 * 1151 * The parent has soft-busy'd the pages it passes us and will unbusy 1152 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1153 * We need to unbusy the rest on I/O completion. 1154 */ 1155 void 1156 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1157 boolean_t sync, int *rtvals) 1158 { 1159 int i; 1160 int n = 0; 1161 1162 GIANT_REQUIRED; 1163 if (count && m[0]->object != object) { 1164 panic("swap_pager_getpages: object mismatch %p/%p", 1165 object, 1166 m[0]->object 1167 ); 1168 } 1169 1170 /* 1171 * Step 1 1172 * 1173 * Turn object into OBJT_SWAP 1174 * check for bogus sysops 1175 * force sync if not pageout process 1176 */ 1177 if (object->type != OBJT_SWAP) 1178 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1179 VM_OBJECT_UNLOCK(object); 1180 1181 if (curproc != pageproc) 1182 sync = TRUE; 1183 1184 /* 1185 * Step 2 1186 * 1187 * Update nsw parameters from swap_async_max sysctl values. 1188 * Do not let the sysop crash the machine with bogus numbers. 1189 */ 1190 mtx_lock(&pbuf_mtx); 1191 if (swap_async_max != nsw_wcount_async_max) { 1192 int n; 1193 1194 /* 1195 * limit range 1196 */ 1197 if ((n = swap_async_max) > nswbuf / 2) 1198 n = nswbuf / 2; 1199 if (n < 1) 1200 n = 1; 1201 swap_async_max = n; 1202 1203 /* 1204 * Adjust difference ( if possible ). If the current async 1205 * count is too low, we may not be able to make the adjustment 1206 * at this time. 1207 */ 1208 n -= nsw_wcount_async_max; 1209 if (nsw_wcount_async + n >= 0) { 1210 nsw_wcount_async += n; 1211 nsw_wcount_async_max += n; 1212 wakeup(&nsw_wcount_async); 1213 } 1214 } 1215 mtx_unlock(&pbuf_mtx); 1216 1217 /* 1218 * Step 3 1219 * 1220 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1221 * The page is left dirty until the pageout operation completes 1222 * successfully. 1223 */ 1224 for (i = 0; i < count; i += n) { 1225 int j; 1226 struct buf *bp; 1227 daddr_t blk; 1228 1229 /* 1230 * Maximum I/O size is limited by a number of factors. 1231 */ 1232 n = min(BLIST_MAX_ALLOC, count - i); 1233 n = min(n, nsw_cluster_max); 1234 1235 /* 1236 * Get biggest block of swap we can. If we fail, fall 1237 * back and try to allocate a smaller block. Don't go 1238 * overboard trying to allocate space if it would overly 1239 * fragment swap. 1240 */ 1241 while ( 1242 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1243 n > 4 1244 ) { 1245 n >>= 1; 1246 } 1247 if (blk == SWAPBLK_NONE) { 1248 for (j = 0; j < n; ++j) 1249 rtvals[i+j] = VM_PAGER_FAIL; 1250 continue; 1251 } 1252 1253 /* 1254 * All I/O parameters have been satisfied, build the I/O 1255 * request and assign the swap space. 1256 */ 1257 if (sync == TRUE) { 1258 bp = getpbuf(&nsw_wcount_sync); 1259 } else { 1260 bp = getpbuf(&nsw_wcount_async); 1261 bp->b_flags = B_ASYNC; 1262 } 1263 bp->b_flags |= B_PAGING; 1264 bp->b_iocmd = BIO_WRITE; 1265 1266 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1267 1268 bp->b_rcred = crhold(thread0.td_ucred); 1269 bp->b_wcred = crhold(thread0.td_ucred); 1270 bp->b_bcount = PAGE_SIZE * n; 1271 bp->b_bufsize = PAGE_SIZE * n; 1272 bp->b_blkno = blk; 1273 1274 VM_OBJECT_LOCK(object); 1275 for (j = 0; j < n; ++j) { 1276 vm_page_t mreq = m[i+j]; 1277 1278 swp_pager_meta_build( 1279 mreq->object, 1280 mreq->pindex, 1281 blk + j 1282 ); 1283 vm_page_dirty(mreq); 1284 rtvals[i+j] = VM_PAGER_OK; 1285 1286 mreq->oflags |= VPO_SWAPINPROG; 1287 bp->b_pages[j] = mreq; 1288 } 1289 VM_OBJECT_UNLOCK(object); 1290 bp->b_npages = n; 1291 /* 1292 * Must set dirty range for NFS to work. 1293 */ 1294 bp->b_dirtyoff = 0; 1295 bp->b_dirtyend = bp->b_bcount; 1296 1297 cnt.v_swapout++; 1298 cnt.v_swappgsout += bp->b_npages; 1299 1300 /* 1301 * asynchronous 1302 * 1303 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1304 */ 1305 if (sync == FALSE) { 1306 bp->b_iodone = swp_pager_async_iodone; 1307 BUF_KERNPROC(bp); 1308 swp_pager_strategy(bp); 1309 1310 for (j = 0; j < n; ++j) 1311 rtvals[i+j] = VM_PAGER_PEND; 1312 /* restart outter loop */ 1313 continue; 1314 } 1315 1316 /* 1317 * synchronous 1318 * 1319 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1320 */ 1321 bp->b_iodone = bdone; 1322 swp_pager_strategy(bp); 1323 1324 /* 1325 * Wait for the sync I/O to complete, then update rtvals. 1326 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1327 * our async completion routine at the end, thus avoiding a 1328 * double-free. 1329 */ 1330 bwait(bp, PVM, "swwrt"); 1331 for (j = 0; j < n; ++j) 1332 rtvals[i+j] = VM_PAGER_PEND; 1333 /* 1334 * Now that we are through with the bp, we can call the 1335 * normal async completion, which frees everything up. 1336 */ 1337 swp_pager_async_iodone(bp); 1338 } 1339 VM_OBJECT_LOCK(object); 1340 } 1341 1342 /* 1343 * swp_pager_async_iodone: 1344 * 1345 * Completion routine for asynchronous reads and writes from/to swap. 1346 * Also called manually by synchronous code to finish up a bp. 1347 * 1348 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1349 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1350 * unbusy all pages except the 'main' request page. For WRITE 1351 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1352 * because we marked them all VM_PAGER_PEND on return from putpages ). 1353 * 1354 * This routine may not block. 1355 * This routine is called at splbio() or better 1356 * 1357 * We up ourselves to splvm() as required for various vm_page related 1358 * calls. 1359 */ 1360 static void 1361 swp_pager_async_iodone(struct buf *bp) 1362 { 1363 int i; 1364 vm_object_t object = NULL; 1365 1366 /* 1367 * report error 1368 */ 1369 if (bp->b_ioflags & BIO_ERROR) { 1370 printf( 1371 "swap_pager: I/O error - %s failed; blkno %ld," 1372 "size %ld, error %d\n", 1373 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1374 (long)bp->b_blkno, 1375 (long)bp->b_bcount, 1376 bp->b_error 1377 ); 1378 } 1379 1380 /* 1381 * remove the mapping for kernel virtual 1382 */ 1383 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1384 1385 if (bp->b_npages) { 1386 object = bp->b_pages[0]->object; 1387 VM_OBJECT_LOCK(object); 1388 } 1389 vm_page_lock_queues(); 1390 /* 1391 * cleanup pages. If an error occurs writing to swap, we are in 1392 * very serious trouble. If it happens to be a disk error, though, 1393 * we may be able to recover by reassigning the swap later on. So 1394 * in this case we remove the m->swapblk assignment for the page 1395 * but do not free it in the rlist. The errornous block(s) are thus 1396 * never reallocated as swap. Redirty the page and continue. 1397 */ 1398 for (i = 0; i < bp->b_npages; ++i) { 1399 vm_page_t m = bp->b_pages[i]; 1400 1401 m->oflags &= ~VPO_SWAPINPROG; 1402 1403 if (bp->b_ioflags & BIO_ERROR) { 1404 /* 1405 * If an error occurs I'd love to throw the swapblk 1406 * away without freeing it back to swapspace, so it 1407 * can never be used again. But I can't from an 1408 * interrupt. 1409 */ 1410 if (bp->b_iocmd == BIO_READ) { 1411 /* 1412 * When reading, reqpage needs to stay 1413 * locked for the parent, but all other 1414 * pages can be freed. We still want to 1415 * wakeup the parent waiting on the page, 1416 * though. ( also: pg_reqpage can be -1 and 1417 * not match anything ). 1418 * 1419 * We have to wake specifically requested pages 1420 * up too because we cleared VPO_SWAPINPROG and 1421 * someone may be waiting for that. 1422 * 1423 * NOTE: for reads, m->dirty will probably 1424 * be overridden by the original caller of 1425 * getpages so don't play cute tricks here. 1426 */ 1427 m->valid = 0; 1428 if (i != bp->b_pager.pg_reqpage) 1429 vm_page_free(m); 1430 else 1431 vm_page_flash(m); 1432 /* 1433 * If i == bp->b_pager.pg_reqpage, do not wake 1434 * the page up. The caller needs to. 1435 */ 1436 } else { 1437 /* 1438 * If a write error occurs, reactivate page 1439 * so it doesn't clog the inactive list, 1440 * then finish the I/O. 1441 */ 1442 vm_page_dirty(m); 1443 vm_page_activate(m); 1444 vm_page_io_finish(m); 1445 } 1446 } else if (bp->b_iocmd == BIO_READ) { 1447 /* 1448 * For read success, clear dirty bits. Nobody should 1449 * have this page mapped but don't take any chances, 1450 * make sure the pmap modify bits are also cleared. 1451 * 1452 * NOTE: for reads, m->dirty will probably be 1453 * overridden by the original caller of getpages so 1454 * we cannot set them in order to free the underlying 1455 * swap in a low-swap situation. I don't think we'd 1456 * want to do that anyway, but it was an optimization 1457 * that existed in the old swapper for a time before 1458 * it got ripped out due to precisely this problem. 1459 * 1460 * If not the requested page then deactivate it. 1461 * 1462 * Note that the requested page, reqpage, is left 1463 * busied, but we still have to wake it up. The 1464 * other pages are released (unbusied) by 1465 * vm_page_wakeup(). We do not set reqpage's 1466 * valid bits here, it is up to the caller. 1467 */ 1468 pmap_clear_modify(m); 1469 m->valid = VM_PAGE_BITS_ALL; 1470 vm_page_undirty(m); 1471 1472 /* 1473 * We have to wake specifically requested pages 1474 * up too because we cleared VPO_SWAPINPROG and 1475 * could be waiting for it in getpages. However, 1476 * be sure to not unbusy getpages specifically 1477 * requested page - getpages expects it to be 1478 * left busy. 1479 */ 1480 if (i != bp->b_pager.pg_reqpage) { 1481 vm_page_deactivate(m); 1482 vm_page_wakeup(m); 1483 } else { 1484 vm_page_flash(m); 1485 } 1486 } else { 1487 /* 1488 * For write success, clear the modify and dirty 1489 * status, then finish the I/O ( which decrements the 1490 * busy count and possibly wakes waiter's up ). 1491 */ 1492 pmap_clear_modify(m); 1493 vm_page_undirty(m); 1494 vm_page_io_finish(m); 1495 if (vm_page_count_severe()) 1496 vm_page_try_to_cache(m); 1497 } 1498 } 1499 vm_page_unlock_queues(); 1500 1501 /* 1502 * adjust pip. NOTE: the original parent may still have its own 1503 * pip refs on the object. 1504 */ 1505 if (object != NULL) { 1506 vm_object_pip_wakeupn(object, bp->b_npages); 1507 VM_OBJECT_UNLOCK(object); 1508 } 1509 1510 /* 1511 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1512 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1513 * trigger a KASSERT in relpbuf(). 1514 */ 1515 if (bp->b_vp) { 1516 bp->b_vp = NULL; 1517 bp->b_bufobj = NULL; 1518 } 1519 /* 1520 * release the physical I/O buffer 1521 */ 1522 relpbuf( 1523 bp, 1524 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1525 ((bp->b_flags & B_ASYNC) ? 1526 &nsw_wcount_async : 1527 &nsw_wcount_sync 1528 ) 1529 ) 1530 ); 1531 } 1532 1533 /* 1534 * swap_pager_isswapped: 1535 * 1536 * Return 1 if at least one page in the given object is paged 1537 * out to the given swap device. 1538 * 1539 * This routine may not block. 1540 */ 1541 int 1542 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1543 { 1544 daddr_t index = 0; 1545 int bcount; 1546 int i; 1547 1548 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1549 if (object->type != OBJT_SWAP) 1550 return (0); 1551 1552 mtx_lock(&swhash_mtx); 1553 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1554 struct swblock *swap; 1555 1556 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1557 for (i = 0; i < SWAP_META_PAGES; ++i) { 1558 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1559 mtx_unlock(&swhash_mtx); 1560 return (1); 1561 } 1562 } 1563 } 1564 index += SWAP_META_PAGES; 1565 if (index > 0x20000000) 1566 panic("swap_pager_isswapped: failed to locate all swap meta blocks"); 1567 } 1568 mtx_unlock(&swhash_mtx); 1569 return (0); 1570 } 1571 1572 /* 1573 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1574 * 1575 * This routine dissociates the page at the given index within a 1576 * swap block from its backing store, paging it in if necessary. 1577 * If the page is paged in, it is placed in the inactive queue, 1578 * since it had its backing store ripped out from under it. 1579 * We also attempt to swap in all other pages in the swap block, 1580 * we only guarantee that the one at the specified index is 1581 * paged in. 1582 * 1583 * XXX - The code to page the whole block in doesn't work, so we 1584 * revert to the one-by-one behavior for now. Sigh. 1585 */ 1586 static inline void 1587 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1588 { 1589 vm_page_t m; 1590 1591 vm_object_pip_add(object, 1); 1592 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1593 if (m->valid == VM_PAGE_BITS_ALL) { 1594 vm_object_pip_subtract(object, 1); 1595 vm_page_lock_queues(); 1596 vm_page_activate(m); 1597 vm_page_dirty(m); 1598 vm_page_unlock_queues(); 1599 vm_page_wakeup(m); 1600 vm_pager_page_unswapped(m); 1601 return; 1602 } 1603 1604 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1605 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1606 vm_object_pip_subtract(object, 1); 1607 vm_page_lock_queues(); 1608 vm_page_dirty(m); 1609 vm_page_dontneed(m); 1610 vm_page_unlock_queues(); 1611 vm_page_wakeup(m); 1612 vm_pager_page_unswapped(m); 1613 } 1614 1615 /* 1616 * swap_pager_swapoff: 1617 * 1618 * Page in all of the pages that have been paged out to the 1619 * given device. The corresponding blocks in the bitmap must be 1620 * marked as allocated and the device must be flagged SW_CLOSING. 1621 * There may be no processes swapped out to the device. 1622 * 1623 * This routine may block. 1624 */ 1625 static void 1626 swap_pager_swapoff(struct swdevt *sp) 1627 { 1628 struct swblock *swap; 1629 int i, j, retries; 1630 1631 GIANT_REQUIRED; 1632 1633 retries = 0; 1634 full_rescan: 1635 mtx_lock(&swhash_mtx); 1636 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1637 restart: 1638 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1639 vm_object_t object = swap->swb_object; 1640 vm_pindex_t pindex = swap->swb_index; 1641 for (j = 0; j < SWAP_META_PAGES; ++j) { 1642 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1643 /* avoid deadlock */ 1644 if (!VM_OBJECT_TRYLOCK(object)) { 1645 break; 1646 } else { 1647 mtx_unlock(&swhash_mtx); 1648 swp_pager_force_pagein(object, 1649 pindex + j); 1650 VM_OBJECT_UNLOCK(object); 1651 mtx_lock(&swhash_mtx); 1652 goto restart; 1653 } 1654 } 1655 } 1656 } 1657 } 1658 mtx_unlock(&swhash_mtx); 1659 if (sp->sw_used) { 1660 int dummy; 1661 /* 1662 * Objects may be locked or paging to the device being 1663 * removed, so we will miss their pages and need to 1664 * make another pass. We have marked this device as 1665 * SW_CLOSING, so the activity should finish soon. 1666 */ 1667 retries++; 1668 if (retries > 100) { 1669 panic("swapoff: failed to locate %d swap blocks", 1670 sp->sw_used); 1671 } 1672 tsleep(&dummy, PVM, "swpoff", hz / 20); 1673 goto full_rescan; 1674 } 1675 } 1676 1677 /************************************************************************ 1678 * SWAP META DATA * 1679 ************************************************************************ 1680 * 1681 * These routines manipulate the swap metadata stored in the 1682 * OBJT_SWAP object. All swp_*() routines must be called at 1683 * splvm() because swap can be freed up by the low level vm_page 1684 * code which might be called from interrupts beyond what splbio() covers. 1685 * 1686 * Swap metadata is implemented with a global hash and not directly 1687 * linked into the object. Instead the object simply contains 1688 * appropriate tracking counters. 1689 */ 1690 1691 /* 1692 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1693 * 1694 * We first convert the object to a swap object if it is a default 1695 * object. 1696 * 1697 * The specified swapblk is added to the object's swap metadata. If 1698 * the swapblk is not valid, it is freed instead. Any previously 1699 * assigned swapblk is freed. 1700 * 1701 * This routine must be called at splvm(), except when used to convert 1702 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1703 */ 1704 static void 1705 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1706 { 1707 struct swblock *swap; 1708 struct swblock **pswap; 1709 int idx; 1710 1711 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1712 /* 1713 * Convert default object to swap object if necessary 1714 */ 1715 if (object->type != OBJT_SWAP) { 1716 object->type = OBJT_SWAP; 1717 object->un_pager.swp.swp_bcount = 0; 1718 1719 if (object->handle != NULL) { 1720 mtx_lock(&sw_alloc_mtx); 1721 TAILQ_INSERT_TAIL( 1722 NOBJLIST(object->handle), 1723 object, 1724 pager_object_list 1725 ); 1726 mtx_unlock(&sw_alloc_mtx); 1727 } 1728 } 1729 1730 /* 1731 * Locate hash entry. If not found create, but if we aren't adding 1732 * anything just return. If we run out of space in the map we wait 1733 * and, since the hash table may have changed, retry. 1734 */ 1735 retry: 1736 mtx_lock(&swhash_mtx); 1737 pswap = swp_pager_hash(object, pindex); 1738 1739 if ((swap = *pswap) == NULL) { 1740 int i; 1741 1742 if (swapblk == SWAPBLK_NONE) 1743 goto done; 1744 1745 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1746 if (swap == NULL) { 1747 mtx_unlock(&swhash_mtx); 1748 VM_OBJECT_UNLOCK(object); 1749 if (uma_zone_exhausted(swap_zone)) 1750 printf("swap zone exhausted, increase kern.maxswzone\n"); 1751 VM_WAIT; 1752 VM_OBJECT_LOCK(object); 1753 goto retry; 1754 } 1755 1756 swap->swb_hnext = NULL; 1757 swap->swb_object = object; 1758 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1759 swap->swb_count = 0; 1760 1761 ++object->un_pager.swp.swp_bcount; 1762 1763 for (i = 0; i < SWAP_META_PAGES; ++i) 1764 swap->swb_pages[i] = SWAPBLK_NONE; 1765 } 1766 1767 /* 1768 * Delete prior contents of metadata 1769 */ 1770 idx = pindex & SWAP_META_MASK; 1771 1772 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1773 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1774 --swap->swb_count; 1775 } 1776 1777 /* 1778 * Enter block into metadata 1779 */ 1780 swap->swb_pages[idx] = swapblk; 1781 if (swapblk != SWAPBLK_NONE) 1782 ++swap->swb_count; 1783 done: 1784 mtx_unlock(&swhash_mtx); 1785 } 1786 1787 /* 1788 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1789 * 1790 * The requested range of blocks is freed, with any associated swap 1791 * returned to the swap bitmap. 1792 * 1793 * This routine will free swap metadata structures as they are cleaned 1794 * out. This routine does *NOT* operate on swap metadata associated 1795 * with resident pages. 1796 * 1797 * This routine must be called at splvm() 1798 */ 1799 static void 1800 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1801 { 1802 1803 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1804 if (object->type != OBJT_SWAP) 1805 return; 1806 1807 while (count > 0) { 1808 struct swblock **pswap; 1809 struct swblock *swap; 1810 1811 mtx_lock(&swhash_mtx); 1812 pswap = swp_pager_hash(object, index); 1813 1814 if ((swap = *pswap) != NULL) { 1815 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1816 1817 if (v != SWAPBLK_NONE) { 1818 swp_pager_freeswapspace(v, 1); 1819 swap->swb_pages[index & SWAP_META_MASK] = 1820 SWAPBLK_NONE; 1821 if (--swap->swb_count == 0) { 1822 *pswap = swap->swb_hnext; 1823 uma_zfree(swap_zone, swap); 1824 --object->un_pager.swp.swp_bcount; 1825 } 1826 } 1827 --count; 1828 ++index; 1829 } else { 1830 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1831 count -= n; 1832 index += n; 1833 } 1834 mtx_unlock(&swhash_mtx); 1835 } 1836 } 1837 1838 /* 1839 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1840 * 1841 * This routine locates and destroys all swap metadata associated with 1842 * an object. 1843 * 1844 * This routine must be called at splvm() 1845 */ 1846 static void 1847 swp_pager_meta_free_all(vm_object_t object) 1848 { 1849 daddr_t index = 0; 1850 1851 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1852 if (object->type != OBJT_SWAP) 1853 return; 1854 1855 while (object->un_pager.swp.swp_bcount) { 1856 struct swblock **pswap; 1857 struct swblock *swap; 1858 1859 mtx_lock(&swhash_mtx); 1860 pswap = swp_pager_hash(object, index); 1861 if ((swap = *pswap) != NULL) { 1862 int i; 1863 1864 for (i = 0; i < SWAP_META_PAGES; ++i) { 1865 daddr_t v = swap->swb_pages[i]; 1866 if (v != SWAPBLK_NONE) { 1867 --swap->swb_count; 1868 swp_pager_freeswapspace(v, 1); 1869 } 1870 } 1871 if (swap->swb_count != 0) 1872 panic("swap_pager_meta_free_all: swb_count != 0"); 1873 *pswap = swap->swb_hnext; 1874 uma_zfree(swap_zone, swap); 1875 --object->un_pager.swp.swp_bcount; 1876 } 1877 mtx_unlock(&swhash_mtx); 1878 index += SWAP_META_PAGES; 1879 if (index > 0x20000000) 1880 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1881 } 1882 } 1883 1884 /* 1885 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1886 * 1887 * This routine is capable of looking up, popping, or freeing 1888 * swapblk assignments in the swap meta data or in the vm_page_t. 1889 * The routine typically returns the swapblk being looked-up, or popped, 1890 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1891 * was invalid. This routine will automatically free any invalid 1892 * meta-data swapblks. 1893 * 1894 * It is not possible to store invalid swapblks in the swap meta data 1895 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1896 * 1897 * When acting on a busy resident page and paging is in progress, we 1898 * have to wait until paging is complete but otherwise can act on the 1899 * busy page. 1900 * 1901 * This routine must be called at splvm(). 1902 * 1903 * SWM_FREE remove and free swap block from metadata 1904 * SWM_POP remove from meta data but do not free.. pop it out 1905 */ 1906 static daddr_t 1907 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 1908 { 1909 struct swblock **pswap; 1910 struct swblock *swap; 1911 daddr_t r1; 1912 int idx; 1913 1914 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1915 /* 1916 * The meta data only exists of the object is OBJT_SWAP 1917 * and even then might not be allocated yet. 1918 */ 1919 if (object->type != OBJT_SWAP) 1920 return (SWAPBLK_NONE); 1921 1922 r1 = SWAPBLK_NONE; 1923 mtx_lock(&swhash_mtx); 1924 pswap = swp_pager_hash(object, pindex); 1925 1926 if ((swap = *pswap) != NULL) { 1927 idx = pindex & SWAP_META_MASK; 1928 r1 = swap->swb_pages[idx]; 1929 1930 if (r1 != SWAPBLK_NONE) { 1931 if (flags & SWM_FREE) { 1932 swp_pager_freeswapspace(r1, 1); 1933 r1 = SWAPBLK_NONE; 1934 } 1935 if (flags & (SWM_FREE|SWM_POP)) { 1936 swap->swb_pages[idx] = SWAPBLK_NONE; 1937 if (--swap->swb_count == 0) { 1938 *pswap = swap->swb_hnext; 1939 uma_zfree(swap_zone, swap); 1940 --object->un_pager.swp.swp_bcount; 1941 } 1942 } 1943 } 1944 } 1945 mtx_unlock(&swhash_mtx); 1946 return (r1); 1947 } 1948 1949 /* 1950 * System call swapon(name) enables swapping on device name, 1951 * which must be in the swdevsw. Return EBUSY 1952 * if already swapping on this device. 1953 */ 1954 #ifndef _SYS_SYSPROTO_H_ 1955 struct swapon_args { 1956 char *name; 1957 }; 1958 #endif 1959 1960 /* 1961 * MPSAFE 1962 */ 1963 /* ARGSUSED */ 1964 int 1965 swapon(struct thread *td, struct swapon_args *uap) 1966 { 1967 struct vattr attr; 1968 struct vnode *vp; 1969 struct nameidata nd; 1970 int error; 1971 1972 error = priv_check(td, PRIV_SWAPON); 1973 if (error) 1974 return (error); 1975 1976 mtx_lock(&Giant); 1977 while (swdev_syscall_active) 1978 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 1979 swdev_syscall_active = 1; 1980 1981 /* 1982 * Swap metadata may not fit in the KVM if we have physical 1983 * memory of >1GB. 1984 */ 1985 if (swap_zone == NULL) { 1986 error = ENOMEM; 1987 goto done; 1988 } 1989 1990 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW, UIO_USERSPACE, uap->name, td); 1991 error = namei(&nd); 1992 if (error) 1993 goto done; 1994 1995 NDFREE(&nd, NDF_ONLY_PNBUF); 1996 vp = nd.ni_vp; 1997 1998 if (vn_isdisk(vp, &error)) { 1999 error = swapongeom(td, vp); 2000 } else if (vp->v_type == VREG && 2001 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2002 (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) { 2003 /* 2004 * Allow direct swapping to NFS regular files in the same 2005 * way that nfs_mountroot() sets up diskless swapping. 2006 */ 2007 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2008 } 2009 2010 if (error) 2011 vrele(vp); 2012 done: 2013 swdev_syscall_active = 0; 2014 wakeup_one(&swdev_syscall_active); 2015 mtx_unlock(&Giant); 2016 return (error); 2017 } 2018 2019 static void 2020 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev) 2021 { 2022 struct swdevt *sp, *tsp; 2023 swblk_t dvbase; 2024 u_long mblocks; 2025 2026 /* 2027 * If we go beyond this, we get overflows in the radix 2028 * tree bitmap code. 2029 */ 2030 mblocks = 0x40000000 / BLIST_META_RADIX; 2031 if (nblks > mblocks) { 2032 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n", 2033 mblocks); 2034 nblks = mblocks; 2035 } 2036 /* 2037 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2038 * First chop nblks off to page-align it, then convert. 2039 * 2040 * sw->sw_nblks is in page-sized chunks now too. 2041 */ 2042 nblks &= ~(ctodb(1) - 1); 2043 nblks = dbtoc(nblks); 2044 2045 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2046 sp->sw_vp = vp; 2047 sp->sw_id = id; 2048 sp->sw_dev = dev; 2049 sp->sw_flags = 0; 2050 sp->sw_nblks = nblks; 2051 sp->sw_used = 0; 2052 sp->sw_strategy = strategy; 2053 sp->sw_close = close; 2054 2055 sp->sw_blist = blist_create(nblks); 2056 /* 2057 * Do not free the first two block in order to avoid overwriting 2058 * any bsd label at the front of the partition 2059 */ 2060 blist_free(sp->sw_blist, 2, nblks - 2); 2061 2062 dvbase = 0; 2063 mtx_lock(&sw_dev_mtx); 2064 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2065 if (tsp->sw_end >= dvbase) { 2066 /* 2067 * We put one uncovered page between the devices 2068 * in order to definitively prevent any cross-device 2069 * I/O requests 2070 */ 2071 dvbase = tsp->sw_end + 1; 2072 } 2073 } 2074 sp->sw_first = dvbase; 2075 sp->sw_end = dvbase + nblks; 2076 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2077 nswapdev++; 2078 swap_pager_avail += nblks; 2079 swp_sizecheck(); 2080 mtx_unlock(&sw_dev_mtx); 2081 } 2082 2083 /* 2084 * SYSCALL: swapoff(devname) 2085 * 2086 * Disable swapping on the given device. 2087 * 2088 * XXX: Badly designed system call: it should use a device index 2089 * rather than filename as specification. We keep sw_vp around 2090 * only to make this work. 2091 */ 2092 #ifndef _SYS_SYSPROTO_H_ 2093 struct swapoff_args { 2094 char *name; 2095 }; 2096 #endif 2097 2098 /* 2099 * MPSAFE 2100 */ 2101 /* ARGSUSED */ 2102 int 2103 swapoff(struct thread *td, struct swapoff_args *uap) 2104 { 2105 struct vnode *vp; 2106 struct nameidata nd; 2107 struct swdevt *sp; 2108 int error; 2109 2110 error = priv_check(td, PRIV_SWAPOFF); 2111 if (error) 2112 return (error); 2113 2114 mtx_lock(&Giant); 2115 while (swdev_syscall_active) 2116 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2117 swdev_syscall_active = 1; 2118 2119 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td); 2120 error = namei(&nd); 2121 if (error) 2122 goto done; 2123 NDFREE(&nd, NDF_ONLY_PNBUF); 2124 vp = nd.ni_vp; 2125 2126 mtx_lock(&sw_dev_mtx); 2127 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2128 if (sp->sw_vp == vp) 2129 break; 2130 } 2131 mtx_unlock(&sw_dev_mtx); 2132 if (sp == NULL) { 2133 error = EINVAL; 2134 goto done; 2135 } 2136 error = swapoff_one(sp, td); 2137 done: 2138 swdev_syscall_active = 0; 2139 wakeup_one(&swdev_syscall_active); 2140 mtx_unlock(&Giant); 2141 return (error); 2142 } 2143 2144 static int 2145 swapoff_one(struct swdevt *sp, struct thread *td) 2146 { 2147 u_long nblks, dvbase; 2148 #ifdef MAC 2149 int error; 2150 #endif 2151 2152 mtx_assert(&Giant, MA_OWNED); 2153 #ifdef MAC 2154 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY, td); 2155 error = mac_check_system_swapoff(td->td_ucred, sp->sw_vp); 2156 (void) VOP_UNLOCK(sp->sw_vp, 0, td); 2157 if (error != 0) 2158 return (error); 2159 #endif 2160 nblks = sp->sw_nblks; 2161 2162 /* 2163 * We can turn off this swap device safely only if the 2164 * available virtual memory in the system will fit the amount 2165 * of data we will have to page back in, plus an epsilon so 2166 * the system doesn't become critically low on swap space. 2167 */ 2168 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2169 nblks + nswap_lowat) { 2170 return (ENOMEM); 2171 } 2172 2173 /* 2174 * Prevent further allocations on this device. 2175 */ 2176 mtx_lock(&sw_dev_mtx); 2177 sp->sw_flags |= SW_CLOSING; 2178 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2179 swap_pager_avail -= blist_fill(sp->sw_blist, 2180 dvbase, dmmax); 2181 } 2182 mtx_unlock(&sw_dev_mtx); 2183 2184 /* 2185 * Page in the contents of the device and close it. 2186 */ 2187 swap_pager_swapoff(sp); 2188 2189 sp->sw_close(td, sp); 2190 sp->sw_id = NULL; 2191 mtx_lock(&sw_dev_mtx); 2192 TAILQ_REMOVE(&swtailq, sp, sw_list); 2193 nswapdev--; 2194 if (nswapdev == 0) { 2195 swap_pager_full = 2; 2196 swap_pager_almost_full = 1; 2197 } 2198 if (swdevhd == sp) 2199 swdevhd = NULL; 2200 mtx_unlock(&sw_dev_mtx); 2201 blist_destroy(sp->sw_blist); 2202 free(sp, M_VMPGDATA); 2203 return (0); 2204 } 2205 2206 void 2207 swapoff_all(void) 2208 { 2209 struct swdevt *sp, *spt; 2210 const char *devname; 2211 int error; 2212 2213 mtx_lock(&Giant); 2214 while (swdev_syscall_active) 2215 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2216 swdev_syscall_active = 1; 2217 2218 mtx_lock(&sw_dev_mtx); 2219 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2220 mtx_unlock(&sw_dev_mtx); 2221 if (vn_isdisk(sp->sw_vp, NULL)) 2222 devname = sp->sw_vp->v_rdev->si_name; 2223 else 2224 devname = "[file]"; 2225 error = swapoff_one(sp, &thread0); 2226 if (error != 0) { 2227 printf("Cannot remove swap device %s (error=%d), " 2228 "skipping.\n", devname, error); 2229 } else if (bootverbose) { 2230 printf("Swap device %s removed.\n", devname); 2231 } 2232 mtx_lock(&sw_dev_mtx); 2233 } 2234 mtx_unlock(&sw_dev_mtx); 2235 2236 swdev_syscall_active = 0; 2237 wakeup_one(&swdev_syscall_active); 2238 mtx_unlock(&Giant); 2239 } 2240 2241 void 2242 swap_pager_status(int *total, int *used) 2243 { 2244 struct swdevt *sp; 2245 2246 *total = 0; 2247 *used = 0; 2248 mtx_lock(&sw_dev_mtx); 2249 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2250 *total += sp->sw_nblks; 2251 *used += sp->sw_used; 2252 } 2253 mtx_unlock(&sw_dev_mtx); 2254 } 2255 2256 static int 2257 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2258 { 2259 int *name = (int *)arg1; 2260 int error, n; 2261 struct xswdev xs; 2262 struct swdevt *sp; 2263 2264 if (arg2 != 1) /* name length */ 2265 return (EINVAL); 2266 2267 n = 0; 2268 mtx_lock(&sw_dev_mtx); 2269 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2270 if (n == *name) { 2271 mtx_unlock(&sw_dev_mtx); 2272 xs.xsw_version = XSWDEV_VERSION; 2273 xs.xsw_dev = sp->sw_dev; 2274 xs.xsw_flags = sp->sw_flags; 2275 xs.xsw_nblks = sp->sw_nblks; 2276 xs.xsw_used = sp->sw_used; 2277 2278 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2279 return (error); 2280 } 2281 n++; 2282 } 2283 mtx_unlock(&sw_dev_mtx); 2284 return (ENOENT); 2285 } 2286 2287 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2288 "Number of swap devices"); 2289 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2290 "Swap statistics by device"); 2291 2292 /* 2293 * vmspace_swap_count() - count the approximate swap useage in pages for a 2294 * vmspace. 2295 * 2296 * The map must be locked. 2297 * 2298 * Swap useage is determined by taking the proportional swap used by 2299 * VM objects backing the VM map. To make up for fractional losses, 2300 * if the VM object has any swap use at all the associated map entries 2301 * count for at least 1 swap page. 2302 */ 2303 int 2304 vmspace_swap_count(struct vmspace *vmspace) 2305 { 2306 vm_map_t map = &vmspace->vm_map; 2307 vm_map_entry_t cur; 2308 int count = 0; 2309 2310 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2311 vm_object_t object; 2312 2313 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2314 (object = cur->object.vm_object) != NULL) { 2315 VM_OBJECT_LOCK(object); 2316 if (object->type == OBJT_SWAP && 2317 object->un_pager.swp.swp_bcount != 0) { 2318 int n = (cur->end - cur->start) / PAGE_SIZE; 2319 2320 count += object->un_pager.swp.swp_bcount * 2321 SWAP_META_PAGES * n / object->size + 1; 2322 } 2323 VM_OBJECT_UNLOCK(object); 2324 } 2325 } 2326 return (count); 2327 } 2328 2329 /* 2330 * GEOM backend 2331 * 2332 * Swapping onto disk devices. 2333 * 2334 */ 2335 2336 static g_orphan_t swapgeom_orphan; 2337 2338 static struct g_class g_swap_class = { 2339 .name = "SWAP", 2340 .version = G_VERSION, 2341 .orphan = swapgeom_orphan, 2342 }; 2343 2344 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2345 2346 2347 static void 2348 swapgeom_done(struct bio *bp2) 2349 { 2350 struct buf *bp; 2351 2352 bp = bp2->bio_caller2; 2353 bp->b_ioflags = bp2->bio_flags; 2354 if (bp2->bio_error) 2355 bp->b_ioflags |= BIO_ERROR; 2356 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2357 bp->b_error = bp2->bio_error; 2358 bufdone(bp); 2359 g_destroy_bio(bp2); 2360 } 2361 2362 static void 2363 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2364 { 2365 struct bio *bio; 2366 struct g_consumer *cp; 2367 2368 cp = sp->sw_id; 2369 if (cp == NULL) { 2370 bp->b_error = ENXIO; 2371 bp->b_ioflags |= BIO_ERROR; 2372 bufdone(bp); 2373 return; 2374 } 2375 bio = g_alloc_bio(); 2376 #if 0 2377 /* 2378 * XXX: We shouldn't really sleep here when we run out of buffers 2379 * XXX: but the alternative is worse right now. 2380 */ 2381 if (bio == NULL) { 2382 bp->b_error = ENOMEM; 2383 bp->b_ioflags |= BIO_ERROR; 2384 bufdone(bp); 2385 return; 2386 } 2387 #endif 2388 bio->bio_caller2 = bp; 2389 bio->bio_cmd = bp->b_iocmd; 2390 bio->bio_data = bp->b_data; 2391 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2392 bio->bio_length = bp->b_bcount; 2393 bio->bio_done = swapgeom_done; 2394 g_io_request(bio, cp); 2395 return; 2396 } 2397 2398 static void 2399 swapgeom_orphan(struct g_consumer *cp) 2400 { 2401 struct swdevt *sp; 2402 2403 mtx_lock(&sw_dev_mtx); 2404 TAILQ_FOREACH(sp, &swtailq, sw_list) 2405 if (sp->sw_id == cp) 2406 sp->sw_id = NULL; 2407 mtx_unlock(&sw_dev_mtx); 2408 } 2409 2410 static void 2411 swapgeom_close_ev(void *arg, int flags) 2412 { 2413 struct g_consumer *cp; 2414 2415 cp = arg; 2416 g_access(cp, -1, -1, 0); 2417 g_detach(cp); 2418 g_destroy_consumer(cp); 2419 } 2420 2421 static void 2422 swapgeom_close(struct thread *td, struct swdevt *sw) 2423 { 2424 2425 /* XXX: direct call when Giant untangled */ 2426 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2427 } 2428 2429 2430 struct swh0h0 { 2431 struct cdev *dev; 2432 struct vnode *vp; 2433 int error; 2434 }; 2435 2436 static void 2437 swapongeom_ev(void *arg, int flags) 2438 { 2439 struct swh0h0 *swh; 2440 struct g_provider *pp; 2441 struct g_consumer *cp; 2442 static struct g_geom *gp; 2443 struct swdevt *sp; 2444 u_long nblks; 2445 int error; 2446 2447 swh = arg; 2448 swh->error = 0; 2449 pp = g_dev_getprovider(swh->dev); 2450 if (pp == NULL) { 2451 swh->error = ENODEV; 2452 return; 2453 } 2454 mtx_lock(&sw_dev_mtx); 2455 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2456 cp = sp->sw_id; 2457 if (cp != NULL && cp->provider == pp) { 2458 mtx_unlock(&sw_dev_mtx); 2459 swh->error = EBUSY; 2460 return; 2461 } 2462 } 2463 mtx_unlock(&sw_dev_mtx); 2464 if (gp == NULL) 2465 gp = g_new_geomf(&g_swap_class, "swap", NULL); 2466 cp = g_new_consumer(gp); 2467 g_attach(cp, pp); 2468 /* 2469 * XXX: Everytime you think you can improve the margin for 2470 * footshooting, somebody depends on the ability to do so: 2471 * savecore(8) wants to write to our swapdev so we cannot 2472 * set an exclusive count :-( 2473 */ 2474 error = g_access(cp, 1, 1, 0); 2475 if (error) { 2476 g_detach(cp); 2477 g_destroy_consumer(cp); 2478 swh->error = error; 2479 return; 2480 } 2481 nblks = pp->mediasize / DEV_BSIZE; 2482 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2483 swapgeom_close, dev2udev(swh->dev)); 2484 swh->error = 0; 2485 return; 2486 } 2487 2488 static int 2489 swapongeom(struct thread *td, struct vnode *vp) 2490 { 2491 int error; 2492 struct swh0h0 swh; 2493 2494 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 2495 2496 swh.dev = vp->v_rdev; 2497 swh.vp = vp; 2498 swh.error = 0; 2499 /* XXX: direct call when Giant untangled */ 2500 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2501 if (!error) 2502 error = swh.error; 2503 VOP_UNLOCK(vp, 0, td); 2504 return (error); 2505 } 2506 2507 /* 2508 * VNODE backend 2509 * 2510 * This is used mainly for network filesystem (read: probably only tested 2511 * with NFS) swapfiles. 2512 * 2513 */ 2514 2515 static void 2516 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2517 { 2518 struct vnode *vp2; 2519 2520 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2521 2522 vp2 = sp->sw_id; 2523 vhold(vp2); 2524 if (bp->b_iocmd == BIO_WRITE) { 2525 if (bp->b_bufobj) 2526 bufobj_wdrop(bp->b_bufobj); 2527 bufobj_wref(&vp2->v_bufobj); 2528 } 2529 if (bp->b_bufobj != &vp2->v_bufobj) 2530 bp->b_bufobj = &vp2->v_bufobj; 2531 bp->b_vp = vp2; 2532 bp->b_iooffset = dbtob(bp->b_blkno); 2533 bstrategy(bp); 2534 return; 2535 } 2536 2537 static void 2538 swapdev_close(struct thread *td, struct swdevt *sp) 2539 { 2540 2541 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2542 vrele(sp->sw_vp); 2543 } 2544 2545 2546 static int 2547 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2548 { 2549 struct swdevt *sp; 2550 int error; 2551 2552 if (nblks == 0) 2553 return (ENXIO); 2554 mtx_lock(&sw_dev_mtx); 2555 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2556 if (sp->sw_id == vp) { 2557 mtx_unlock(&sw_dev_mtx); 2558 return (EBUSY); 2559 } 2560 } 2561 mtx_unlock(&sw_dev_mtx); 2562 2563 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 2564 #ifdef MAC 2565 error = mac_check_system_swapon(td->td_ucred, vp); 2566 if (error == 0) 2567 #endif 2568 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, -1); 2569 (void) VOP_UNLOCK(vp, 0, td); 2570 if (error) 2571 return (error); 2572 2573 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2574 NODEV); 2575 return (0); 2576 } 2577