1 /* 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * 67 * $FreeBSD$ 68 */ 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/conf.h> 73 #include <sys/kernel.h> 74 #include <sys/proc.h> 75 #include <sys/buf.h> 76 #include <sys/vnode.h> 77 #include <sys/malloc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/sysctl.h> 80 #include <sys/blist.h> 81 #include <sys/lock.h> 82 83 #ifndef MAX_PAGEOUT_CLUSTER 84 #define MAX_PAGEOUT_CLUSTER 16 85 #endif 86 87 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 88 89 #include "opt_swap.h" 90 #include <vm/vm.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pager.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/swap_pager.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vm_zone.h> 98 99 #define SWM_FREE 0x02 /* free, period */ 100 #define SWM_POP 0x04 /* pop out */ 101 102 /* 103 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks 104 * in the old system. 105 */ 106 107 extern int vm_swap_size; /* number of free swap blocks, in pages */ 108 109 int swap_pager_full; /* swap space exhaustion (task killing) */ 110 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 111 static int nsw_rcount; /* free read buffers */ 112 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 113 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 114 static int nsw_wcount_async_max;/* assigned maximum */ 115 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 116 static int sw_alloc_interlock; /* swap pager allocation interlock */ 117 118 struct blist *swapblist; 119 static struct swblock **swhash; 120 static int swhash_mask; 121 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 122 123 extern struct vnode *swapdev_vp; /* from vm_swap.c */ 124 125 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 126 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 127 128 /* 129 * "named" and "unnamed" anon region objects. Try to reduce the overhead 130 * of searching a named list by hashing it just a little. 131 */ 132 133 #define NOBJLISTS 8 134 135 #define NOBJLIST(handle) \ 136 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 137 138 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 139 struct pagerlst swap_pager_un_object_list; 140 vm_zone_t swap_zone; 141 142 /* 143 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 144 * calls hooked from other parts of the VM system and do not appear here. 145 * (see vm/swap_pager.h). 146 */ 147 148 static vm_object_t 149 swap_pager_alloc __P((void *handle, vm_ooffset_t size, 150 vm_prot_t prot, vm_ooffset_t offset)); 151 static void swap_pager_dealloc __P((vm_object_t object)); 152 static int swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int)); 153 static void swap_pager_init __P((void)); 154 static void swap_pager_unswapped __P((vm_page_t)); 155 static void swap_pager_strategy __P((vm_object_t, struct buf *)); 156 157 struct pagerops swappagerops = { 158 swap_pager_init, /* early system initialization of pager */ 159 swap_pager_alloc, /* allocate an OBJT_SWAP object */ 160 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 161 swap_pager_getpages, /* pagein */ 162 swap_pager_putpages, /* pageout */ 163 swap_pager_haspage, /* get backing store status for page */ 164 swap_pager_unswapped, /* remove swap related to page */ 165 swap_pager_strategy /* pager strategy call */ 166 }; 167 168 /* 169 * dmmax is in page-sized chunks with the new swap system. It was 170 * dev-bsized chunks in the old. 171 * 172 * swap_*() routines are externally accessible. swp_*() routines are 173 * internal. 174 */ 175 176 int dmmax; 177 static int dmmax_mask; 178 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 179 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 180 181 static __inline void swp_sizecheck __P((void)); 182 static void swp_pager_sync_iodone __P((struct buf *bp)); 183 static void swp_pager_async_iodone __P((struct buf *bp)); 184 185 /* 186 * Swap bitmap functions 187 */ 188 189 static __inline void swp_pager_freeswapspace __P((daddr_t blk, int npages)); 190 static __inline daddr_t swp_pager_getswapspace __P((int npages)); 191 192 /* 193 * Metadata functions 194 */ 195 196 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t)); 197 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t)); 198 static void swp_pager_meta_free_all __P((vm_object_t)); 199 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int)); 200 201 /* 202 * SWP_SIZECHECK() - update swap_pager_full indication 203 * 204 * update the swap_pager_almost_full indication and warn when we are 205 * about to run out of swap space, using lowat/hiwat hysteresis. 206 * 207 * Clear swap_pager_full ( task killing ) indication when lowat is met. 208 * 209 * No restrictions on call 210 * This routine may not block. 211 * This routine must be called at splvm() 212 */ 213 214 static __inline void 215 swp_sizecheck() 216 { 217 if (vm_swap_size < nswap_lowat) { 218 if (swap_pager_almost_full == 0) { 219 printf("swap_pager: out of swap space\n"); 220 swap_pager_almost_full = 1; 221 } 222 } else { 223 swap_pager_full = 0; 224 if (vm_swap_size > nswap_hiwat) 225 swap_pager_almost_full = 0; 226 } 227 } 228 229 /* 230 * SWAP_PAGER_INIT() - initialize the swap pager! 231 * 232 * Expected to be started from system init. NOTE: This code is run 233 * before much else so be careful what you depend on. Most of the VM 234 * system has yet to be initialized at this point. 235 */ 236 237 static void 238 swap_pager_init() 239 { 240 /* 241 * Initialize object lists 242 */ 243 int i; 244 245 for (i = 0; i < NOBJLISTS; ++i) 246 TAILQ_INIT(&swap_pager_object_list[i]); 247 TAILQ_INIT(&swap_pager_un_object_list); 248 249 /* 250 * Device Stripe, in PAGE_SIZE'd blocks 251 */ 252 253 dmmax = SWB_NPAGES * 2; 254 dmmax_mask = ~(dmmax - 1); 255 } 256 257 /* 258 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 259 * 260 * Expected to be started from pageout process once, prior to entering 261 * its main loop. 262 */ 263 264 void 265 swap_pager_swap_init() 266 { 267 int n; 268 269 /* 270 * Number of in-transit swap bp operations. Don't 271 * exhaust the pbufs completely. Make sure we 272 * initialize workable values (0 will work for hysteresis 273 * but it isn't very efficient). 274 * 275 * The nsw_cluster_max is constrained by the bp->b_pages[] 276 * array (MAXPHYS/PAGE_SIZE) and our locally defined 277 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 278 * constrained by the swap device interleave stripe size. 279 * 280 * Currently we hardwire nsw_wcount_async to 4. This limit is 281 * designed to prevent other I/O from having high latencies due to 282 * our pageout I/O. The value 4 works well for one or two active swap 283 * devices but is probably a little low if you have more. Even so, 284 * a higher value would probably generate only a limited improvement 285 * with three or four active swap devices since the system does not 286 * typically have to pageout at extreme bandwidths. We will want 287 * at least 2 per swap devices, and 4 is a pretty good value if you 288 * have one NFS swap device due to the command/ack latency over NFS. 289 * So it all works out pretty well. 290 */ 291 292 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 293 294 nsw_rcount = (nswbuf + 1) / 2; 295 nsw_wcount_sync = (nswbuf + 3) / 4; 296 nsw_wcount_async = 4; 297 nsw_wcount_async_max = nsw_wcount_async; 298 299 /* 300 * Initialize our zone. Right now I'm just guessing on the number 301 * we need based on the number of pages in the system. Each swblock 302 * can hold 16 pages, so this is probably overkill. 303 */ 304 305 n = cnt.v_page_count * 2; 306 307 swap_zone = zinit( 308 "SWAPMETA", 309 sizeof(struct swblock), 310 n, 311 ZONE_INTERRUPT, 312 1 313 ); 314 315 /* 316 * Initialize our meta-data hash table. The swapper does not need to 317 * be quite as efficient as the VM system, so we do not use an 318 * oversized hash table. 319 * 320 * n: size of hash table, must be power of 2 321 * swhash_mask: hash table index mask 322 */ 323 324 for (n = 1; n < cnt.v_page_count / 4; n <<= 1) 325 ; 326 327 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK); 328 bzero(swhash, sizeof(struct swblock *) * n); 329 330 swhash_mask = n - 1; 331 } 332 333 /* 334 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 335 * its metadata structures. 336 * 337 * This routine is called from the mmap and fork code to create a new 338 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 339 * and then converting it with swp_pager_meta_build(). 340 * 341 * This routine may block in vm_object_allocate() and create a named 342 * object lookup race, so we must interlock. We must also run at 343 * splvm() for the object lookup to handle races with interrupts, but 344 * we do not have to maintain splvm() in between the lookup and the 345 * add because (I believe) it is not possible to attempt to create 346 * a new swap object w/handle when a default object with that handle 347 * already exists. 348 */ 349 350 static vm_object_t 351 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 352 vm_ooffset_t offset) 353 { 354 vm_object_t object; 355 356 if (handle) { 357 /* 358 * Reference existing named region or allocate new one. There 359 * should not be a race here against swp_pager_meta_build() 360 * as called from vm_page_remove() in regards to the lookup 361 * of the handle. 362 */ 363 364 while (sw_alloc_interlock) { 365 sw_alloc_interlock = -1; 366 tsleep(&sw_alloc_interlock, PVM, "swpalc", 0); 367 } 368 sw_alloc_interlock = 1; 369 370 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 371 372 if (object != NULL) { 373 vm_object_reference(object); 374 } else { 375 object = vm_object_allocate(OBJT_DEFAULT, 376 OFF_TO_IDX(offset + PAGE_MASK + size)); 377 object->handle = handle; 378 379 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 380 } 381 382 if (sw_alloc_interlock < 0) 383 wakeup(&sw_alloc_interlock); 384 385 sw_alloc_interlock = 0; 386 } else { 387 object = vm_object_allocate(OBJT_DEFAULT, 388 OFF_TO_IDX(offset + PAGE_MASK + size)); 389 390 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 391 } 392 393 return (object); 394 } 395 396 /* 397 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 398 * 399 * The swap backing for the object is destroyed. The code is 400 * designed such that we can reinstantiate it later, but this 401 * routine is typically called only when the entire object is 402 * about to be destroyed. 403 * 404 * This routine may block, but no longer does. 405 * 406 * The object must be locked or unreferenceable. 407 */ 408 409 static void 410 swap_pager_dealloc(object) 411 vm_object_t object; 412 { 413 int s; 414 415 /* 416 * Remove from list right away so lookups will fail if we block for 417 * pageout completion. 418 */ 419 420 if (object->handle == NULL) { 421 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list); 422 } else { 423 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 424 } 425 426 vm_object_pip_wait(object, "swpdea"); 427 428 /* 429 * Free all remaining metadata. We only bother to free it from 430 * the swap meta data. We do not attempt to free swapblk's still 431 * associated with vm_page_t's for this object. We do not care 432 * if paging is still in progress on some objects. 433 */ 434 s = splvm(); 435 swp_pager_meta_free_all(object); 436 splx(s); 437 } 438 439 /************************************************************************ 440 * SWAP PAGER BITMAP ROUTINES * 441 ************************************************************************/ 442 443 /* 444 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 445 * 446 * Allocate swap for the requested number of pages. The starting 447 * swap block number (a page index) is returned or SWAPBLK_NONE 448 * if the allocation failed. 449 * 450 * Also has the side effect of advising that somebody made a mistake 451 * when they configured swap and didn't configure enough. 452 * 453 * Must be called at splvm() to avoid races with bitmap frees from 454 * vm_page_remove() aka swap_pager_page_removed(). 455 * 456 * This routine may not block 457 * This routine must be called at splvm(). 458 */ 459 460 static __inline daddr_t 461 swp_pager_getswapspace(npages) 462 int npages; 463 { 464 daddr_t blk; 465 466 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) { 467 if (swap_pager_full != 2) { 468 printf("swap_pager_getswapspace: failed\n"); 469 swap_pager_full = 2; 470 swap_pager_almost_full = 1; 471 } 472 } else { 473 vm_swap_size -= npages; 474 swp_sizecheck(); 475 } 476 return(blk); 477 } 478 479 /* 480 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 481 * 482 * This routine returns the specified swap blocks back to the bitmap. 483 * 484 * Note: This routine may not block (it could in the old swap code), 485 * and through the use of the new blist routines it does not block. 486 * 487 * We must be called at splvm() to avoid races with bitmap frees from 488 * vm_page_remove() aka swap_pager_page_removed(). 489 * 490 * This routine may not block 491 * This routine must be called at splvm(). 492 */ 493 494 static __inline void 495 swp_pager_freeswapspace(blk, npages) 496 daddr_t blk; 497 int npages; 498 { 499 blist_free(swapblist, blk, npages); 500 vm_swap_size += npages; 501 swp_sizecheck(); 502 } 503 504 /* 505 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 506 * range within an object. 507 * 508 * This is a globally accessible routine. 509 * 510 * This routine removes swapblk assignments from swap metadata. 511 * 512 * The external callers of this routine typically have already destroyed 513 * or renamed vm_page_t's associated with this range in the object so 514 * we should be ok. 515 * 516 * This routine may be called at any spl. We up our spl to splvm temporarily 517 * in order to perform the metadata removal. 518 */ 519 520 void 521 swap_pager_freespace(object, start, size) 522 vm_object_t object; 523 vm_pindex_t start; 524 vm_size_t size; 525 { 526 int s = splvm(); 527 swp_pager_meta_free(object, start, size); 528 splx(s); 529 } 530 531 /* 532 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 533 * 534 * Assigns swap blocks to the specified range within the object. The 535 * swap blocks are not zerod. Any previous swap assignment is destroyed. 536 * 537 * Returns 0 on success, -1 on failure. 538 */ 539 540 int 541 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 542 { 543 int s; 544 int n = 0; 545 daddr_t blk = SWAPBLK_NONE; 546 vm_pindex_t beg = start; /* save start index */ 547 548 s = splvm(); 549 while (size) { 550 if (n == 0) { 551 n = BLIST_MAX_ALLOC; 552 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 553 n >>= 1; 554 if (n == 0) { 555 swp_pager_meta_free(object, beg, start - beg); 556 splx(s); 557 return(-1); 558 } 559 } 560 } 561 swp_pager_meta_build(object, start, blk); 562 --size; 563 ++start; 564 ++blk; 565 --n; 566 } 567 swp_pager_meta_free(object, start, n); 568 splx(s); 569 return(0); 570 } 571 572 /* 573 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 574 * and destroy the source. 575 * 576 * Copy any valid swapblks from the source to the destination. In 577 * cases where both the source and destination have a valid swapblk, 578 * we keep the destination's. 579 * 580 * This routine is allowed to block. It may block allocating metadata 581 * indirectly through swp_pager_meta_build() or if paging is still in 582 * progress on the source. 583 * 584 * This routine can be called at any spl 585 * 586 * XXX vm_page_collapse() kinda expects us not to block because we 587 * supposedly do not need to allocate memory, but for the moment we 588 * *may* have to get a little memory from the zone allocator, but 589 * it is taken from the interrupt memory. We should be ok. 590 * 591 * The source object contains no vm_page_t's (which is just as well) 592 * 593 * The source object is of type OBJT_SWAP. 594 * 595 * The source and destination objects must be locked or 596 * inaccessible (XXX are they ?) 597 */ 598 599 void 600 swap_pager_copy(srcobject, dstobject, offset, destroysource) 601 vm_object_t srcobject; 602 vm_object_t dstobject; 603 vm_pindex_t offset; 604 int destroysource; 605 { 606 vm_pindex_t i; 607 int s; 608 609 s = splvm(); 610 611 /* 612 * If destroysource is set, we remove the source object from the 613 * swap_pager internal queue now. 614 */ 615 616 if (destroysource) { 617 if (srcobject->handle == NULL) { 618 TAILQ_REMOVE( 619 &swap_pager_un_object_list, 620 srcobject, 621 pager_object_list 622 ); 623 } else { 624 TAILQ_REMOVE( 625 NOBJLIST(srcobject->handle), 626 srcobject, 627 pager_object_list 628 ); 629 } 630 } 631 632 /* 633 * transfer source to destination. 634 */ 635 636 for (i = 0; i < dstobject->size; ++i) { 637 daddr_t dstaddr; 638 639 /* 640 * Locate (without changing) the swapblk on the destination, 641 * unless it is invalid in which case free it silently, or 642 * if the destination is a resident page, in which case the 643 * source is thrown away. 644 */ 645 646 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 647 648 if (dstaddr == SWAPBLK_NONE) { 649 /* 650 * Destination has no swapblk and is not resident, 651 * copy source. 652 */ 653 daddr_t srcaddr; 654 655 srcaddr = swp_pager_meta_ctl( 656 srcobject, 657 i + offset, 658 SWM_POP 659 ); 660 661 if (srcaddr != SWAPBLK_NONE) 662 swp_pager_meta_build(dstobject, i, srcaddr); 663 } else { 664 /* 665 * Destination has valid swapblk or it is represented 666 * by a resident page. We destroy the sourceblock. 667 */ 668 669 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 670 } 671 } 672 673 /* 674 * Free left over swap blocks in source. 675 * 676 * We have to revert the type to OBJT_DEFAULT so we do not accidently 677 * double-remove the object from the swap queues. 678 */ 679 680 if (destroysource) { 681 swp_pager_meta_free_all(srcobject); 682 /* 683 * Reverting the type is not necessary, the caller is going 684 * to destroy srcobject directly, but I'm doing it here 685 * for consistancy since we've removed the object from its 686 * queues. 687 */ 688 srcobject->type = OBJT_DEFAULT; 689 } 690 splx(s); 691 } 692 693 /* 694 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 695 * the requested page. 696 * 697 * We determine whether good backing store exists for the requested 698 * page and return TRUE if it does, FALSE if it doesn't. 699 * 700 * If TRUE, we also try to determine how much valid, contiguous backing 701 * store exists before and after the requested page within a reasonable 702 * distance. We do not try to restrict it to the swap device stripe 703 * (that is handled in getpages/putpages). It probably isn't worth 704 * doing here. 705 * 706 * This routine must be called at splvm(). 707 */ 708 709 boolean_t 710 swap_pager_haspage(object, pindex, before, after) 711 vm_object_t object; 712 vm_pindex_t pindex; 713 int *before; 714 int *after; 715 { 716 daddr_t blk0; 717 718 /* 719 * do we have good backing store at the requested index ? 720 */ 721 722 blk0 = swp_pager_meta_ctl(object, pindex, 0); 723 724 if (blk0 == SWAPBLK_NONE) { 725 if (before) 726 *before = 0; 727 if (after) 728 *after = 0; 729 return (FALSE); 730 } 731 732 /* 733 * find backwards-looking contiguous good backing store 734 */ 735 736 if (before != NULL) { 737 int i; 738 739 for (i = 1; i < (SWB_NPAGES/2); ++i) { 740 daddr_t blk; 741 742 if (i > pindex) 743 break; 744 blk = swp_pager_meta_ctl(object, pindex - i, 0); 745 if (blk != blk0 - i) 746 break; 747 } 748 *before = (i - 1); 749 } 750 751 /* 752 * find forward-looking contiguous good backing store 753 */ 754 755 if (after != NULL) { 756 int i; 757 758 for (i = 1; i < (SWB_NPAGES/2); ++i) { 759 daddr_t blk; 760 761 blk = swp_pager_meta_ctl(object, pindex + i, 0); 762 if (blk != blk0 + i) 763 break; 764 } 765 *after = (i - 1); 766 } 767 768 return (TRUE); 769 } 770 771 /* 772 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 773 * 774 * This removes any associated swap backing store, whether valid or 775 * not, from the page. 776 * 777 * This routine is typically called when a page is made dirty, at 778 * which point any associated swap can be freed. MADV_FREE also 779 * calls us in a special-case situation 780 * 781 * NOTE!!! If the page is clean and the swap was valid, the caller 782 * should make the page dirty before calling this routine. This routine 783 * does NOT change the m->dirty status of the page. Also: MADV_FREE 784 * depends on it. 785 * 786 * This routine may not block 787 * This routine must be called at splvm() 788 */ 789 790 static void 791 swap_pager_unswapped(m) 792 vm_page_t m; 793 { 794 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 795 } 796 797 /* 798 * SWAP_PAGER_STRATEGY() - read, write, free blocks 799 * 800 * This implements the vm_pager_strategy() interface to swap and allows 801 * other parts of the system to directly access swap as backing store 802 * through vm_objects of type OBJT_SWAP. This is intended to be a 803 * cacheless interface ( i.e. caching occurs at higher levels ). 804 * Therefore we do not maintain any resident pages. All I/O goes 805 * directly to and from the swap device. 806 * 807 * Note that b_blkno is scaled for PAGE_SIZE 808 * 809 * We currently attempt to run I/O synchronously or asynchronously as 810 * the caller requests. This isn't perfect because we loose error 811 * sequencing when we run multiple ops in parallel to satisfy a request. 812 * But this is swap, so we let it all hang out. 813 */ 814 815 static void 816 swap_pager_strategy(vm_object_t object, struct buf *bp) 817 { 818 vm_pindex_t start; 819 int count; 820 int s; 821 char *data; 822 struct buf *nbp = NULL; 823 824 if (bp->b_bcount & PAGE_MASK) { 825 bp->b_error = EINVAL; 826 bp->b_flags |= B_ERROR | B_INVAL; 827 biodone(bp); 828 printf("swap_pager_strategy: bp %p b_vp %p blk %d size %d, not page bounded\n", bp, bp->b_vp, (int)bp->b_pblkno, (int)bp->b_bcount); 829 return; 830 } 831 832 /* 833 * Clear error indication, initialize page index, count, data pointer. 834 */ 835 836 bp->b_error = 0; 837 bp->b_flags &= ~B_ERROR; 838 bp->b_resid = bp->b_bcount; 839 840 start = bp->b_pblkno; 841 count = howmany(bp->b_bcount, PAGE_SIZE); 842 data = bp->b_data; 843 844 s = splvm(); 845 846 /* 847 * Deal with B_FREEBUF 848 */ 849 850 if (bp->b_flags & B_FREEBUF) { 851 /* 852 * FREE PAGE(s) - destroy underlying swap that is no longer 853 * needed. 854 */ 855 swp_pager_meta_free(object, start, count); 856 splx(s); 857 bp->b_resid = 0; 858 biodone(bp); 859 return; 860 } 861 862 /* 863 * Execute read or write 864 */ 865 866 while (count > 0) { 867 daddr_t blk; 868 869 /* 870 * Obtain block. If block not found and writing, allocate a 871 * new block and build it into the object. 872 */ 873 874 blk = swp_pager_meta_ctl(object, start, 0); 875 if ((blk == SWAPBLK_NONE) && (bp->b_flags & B_READ) == 0) { 876 blk = swp_pager_getswapspace(1); 877 if (blk == SWAPBLK_NONE) { 878 bp->b_error = ENOMEM; 879 bp->b_flags |= B_ERROR; 880 break; 881 } 882 swp_pager_meta_build(object, start, blk); 883 } 884 885 /* 886 * Do we have to flush our current collection? Yes if: 887 * 888 * - no swap block at this index 889 * - swap block is not contiguous 890 * - we cross a physical disk boundry in the 891 * stripe. 892 */ 893 894 if ( 895 nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk || 896 ((nbp->b_blkno ^ blk) & dmmax_mask) 897 ) 898 ) { 899 splx(s); 900 if (bp->b_flags & B_READ) { 901 ++cnt.v_swapin; 902 cnt.v_swappgsin += btoc(nbp->b_bcount); 903 } else { 904 ++cnt.v_swapout; 905 cnt.v_swappgsout += btoc(nbp->b_bcount); 906 nbp->b_dirtyend = nbp->b_bcount; 907 } 908 flushchainbuf(nbp); 909 s = splvm(); 910 nbp = NULL; 911 } 912 913 /* 914 * Add new swapblk to nbp, instantiating nbp if necessary. 915 * Zero-fill reads are able to take a shortcut. 916 */ 917 918 if (blk == SWAPBLK_NONE) { 919 /* 920 * We can only get here if we are reading. Since 921 * we are at splvm() we can safely modify b_resid, 922 * even if chain ops are in progress. 923 */ 924 bzero(data, PAGE_SIZE); 925 bp->b_resid -= PAGE_SIZE; 926 } else { 927 if (nbp == NULL) { 928 nbp = getchainbuf(bp, swapdev_vp, (bp->b_flags & B_READ) | B_ASYNC); 929 nbp->b_blkno = blk; 930 nbp->b_bcount = 0; 931 nbp->b_data = data; 932 } 933 nbp->b_bcount += PAGE_SIZE; 934 } 935 --count; 936 ++start; 937 data += PAGE_SIZE; 938 } 939 940 /* 941 * Flush out last buffer 942 */ 943 944 splx(s); 945 946 if (nbp) { 947 if ((bp->b_flags & B_ASYNC) == 0) 948 nbp->b_flags &= ~B_ASYNC; 949 if (nbp->b_flags & B_READ) { 950 ++cnt.v_swapin; 951 cnt.v_swappgsin += btoc(nbp->b_bcount); 952 } else { 953 ++cnt.v_swapout; 954 cnt.v_swappgsout += btoc(nbp->b_bcount); 955 nbp->b_dirtyend = nbp->b_bcount; 956 } 957 flushchainbuf(nbp); 958 /* nbp = NULL; */ 959 } 960 961 /* 962 * Wait for completion. 963 */ 964 965 if (bp->b_flags & B_ASYNC) { 966 autochaindone(bp); 967 } else { 968 waitchainbuf(bp, 0, 1); 969 } 970 } 971 972 /* 973 * SWAP_PAGER_GETPAGES() - bring pages in from swap 974 * 975 * Attempt to retrieve (m, count) pages from backing store, but make 976 * sure we retrieve at least m[reqpage]. We try to load in as large 977 * a chunk surrounding m[reqpage] as is contiguous in swap and which 978 * belongs to the same object. 979 * 980 * The code is designed for asynchronous operation and 981 * immediate-notification of 'reqpage' but tends not to be 982 * used that way. Please do not optimize-out this algorithmic 983 * feature, I intend to improve on it in the future. 984 * 985 * The parent has a single vm_object_pip_add() reference prior to 986 * calling us and we should return with the same. 987 * 988 * The parent has BUSY'd the pages. We should return with 'm' 989 * left busy, but the others adjusted. 990 */ 991 992 static int 993 swap_pager_getpages(object, m, count, reqpage) 994 vm_object_t object; 995 vm_page_t *m; 996 int count, reqpage; 997 { 998 struct buf *bp; 999 vm_page_t mreq; 1000 int s; 1001 int i; 1002 int j; 1003 daddr_t blk; 1004 vm_offset_t kva; 1005 vm_pindex_t lastpindex; 1006 1007 mreq = m[reqpage]; 1008 1009 #if !defined(MAX_PERF) 1010 if (mreq->object != object) { 1011 panic("swap_pager_getpages: object mismatch %p/%p", 1012 object, 1013 mreq->object 1014 ); 1015 } 1016 #endif 1017 /* 1018 * Calculate range to retrieve. The pages have already been assigned 1019 * their swapblks. We require a *contiguous* range that falls entirely 1020 * within a single device stripe. If we do not supply it, bad things 1021 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1022 * loops are set up such that the case(s) are handled implicitly. 1023 * 1024 * The swp_*() calls must be made at splvm(). vm_page_free() does 1025 * not need to be, but it will go a little faster if it is. 1026 */ 1027 1028 s = splvm(); 1029 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1030 1031 for (i = reqpage - 1; i >= 0; --i) { 1032 daddr_t iblk; 1033 1034 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1035 if (blk != iblk + (reqpage - i)) 1036 break; 1037 if ((blk ^ iblk) & dmmax_mask) 1038 break; 1039 } 1040 ++i; 1041 1042 for (j = reqpage + 1; j < count; ++j) { 1043 daddr_t jblk; 1044 1045 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1046 if (blk != jblk - (j - reqpage)) 1047 break; 1048 if ((blk ^ jblk) & dmmax_mask) 1049 break; 1050 } 1051 1052 /* 1053 * free pages outside our collection range. Note: we never free 1054 * mreq, it must remain busy throughout. 1055 */ 1056 1057 { 1058 int k; 1059 1060 for (k = 0; k < i; ++k) 1061 vm_page_free(m[k]); 1062 for (k = j; k < count; ++k) 1063 vm_page_free(m[k]); 1064 } 1065 splx(s); 1066 1067 1068 /* 1069 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1070 * still busy, but the others unbusied. 1071 */ 1072 1073 if (blk == SWAPBLK_NONE) 1074 return(VM_PAGER_FAIL); 1075 1076 /* 1077 * Get a swap buffer header to perform the IO 1078 */ 1079 1080 bp = getpbuf(&nsw_rcount); 1081 kva = (vm_offset_t) bp->b_data; 1082 1083 /* 1084 * map our page(s) into kva for input 1085 * 1086 * NOTE: B_PAGING is set by pbgetvp() 1087 */ 1088 1089 pmap_qenter(kva, m + i, j - i); 1090 1091 bp->b_flags = B_READ | B_CALL; 1092 bp->b_iodone = swp_pager_async_iodone; 1093 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1094 bp->b_data = (caddr_t) kva; 1095 crhold(bp->b_rcred); 1096 crhold(bp->b_wcred); 1097 bp->b_blkno = blk - (reqpage - i); 1098 bp->b_bcount = PAGE_SIZE * (j - i); 1099 bp->b_bufsize = PAGE_SIZE * (j - i); 1100 bp->b_pager.pg_reqpage = reqpage - i; 1101 1102 { 1103 int k; 1104 1105 for (k = i; k < j; ++k) { 1106 bp->b_pages[k - i] = m[k]; 1107 vm_page_flag_set(m[k], PG_SWAPINPROG); 1108 } 1109 } 1110 bp->b_npages = j - i; 1111 1112 pbgetvp(swapdev_vp, bp); 1113 1114 cnt.v_swapin++; 1115 cnt.v_swappgsin += bp->b_npages; 1116 1117 /* 1118 * We still hold the lock on mreq, and our automatic completion routine 1119 * does not remove it. 1120 */ 1121 1122 vm_object_pip_add(mreq->object, bp->b_npages); 1123 lastpindex = m[j-1]->pindex; 1124 1125 /* 1126 * perform the I/O. NOTE!!! bp cannot be considered valid after 1127 * this point because we automatically release it on completion. 1128 * Instead, we look at the one page we are interested in which we 1129 * still hold a lock on even through the I/O completion. 1130 * 1131 * The other pages in our m[] array are also released on completion, 1132 * so we cannot assume they are valid anymore either. 1133 * 1134 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1135 */ 1136 1137 BUF_KERNPROC(bp); 1138 VOP_STRATEGY(bp->b_vp, bp); 1139 1140 /* 1141 * wait for the page we want to complete. PG_SWAPINPROG is always 1142 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1143 * is set in the meta-data. 1144 */ 1145 1146 s = splvm(); 1147 1148 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1149 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1150 cnt.v_intrans++; 1151 if (tsleep(mreq, PSWP, "swread", hz*20)) { 1152 printf( 1153 "swap_pager: indefinite wait buffer: device:" 1154 " %s, blkno: %ld, size: %ld\n", 1155 devtoname(bp->b_dev), (long)bp->b_blkno, 1156 bp->b_bcount 1157 ); 1158 } 1159 } 1160 1161 splx(s); 1162 1163 /* 1164 * mreq is left bussied after completion, but all the other pages 1165 * are freed. If we had an unrecoverable read error the page will 1166 * not be valid. 1167 */ 1168 1169 if (mreq->valid != VM_PAGE_BITS_ALL) { 1170 return(VM_PAGER_ERROR); 1171 } else { 1172 return(VM_PAGER_OK); 1173 } 1174 1175 /* 1176 * A final note: in a low swap situation, we cannot deallocate swap 1177 * and mark a page dirty here because the caller is likely to mark 1178 * the page clean when we return, causing the page to possibly revert 1179 * to all-zero's later. 1180 */ 1181 } 1182 1183 /* 1184 * swap_pager_putpages: 1185 * 1186 * Assign swap (if necessary) and initiate I/O on the specified pages. 1187 * 1188 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1189 * are automatically converted to SWAP objects. 1190 * 1191 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1192 * vm_page reservation system coupled with properly written VFS devices 1193 * should ensure that no low-memory deadlock occurs. This is an area 1194 * which needs work. 1195 * 1196 * The parent has N vm_object_pip_add() references prior to 1197 * calling us and will remove references for rtvals[] that are 1198 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1199 * completion. 1200 * 1201 * The parent has soft-busy'd the pages it passes us and will unbusy 1202 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1203 * We need to unbusy the rest on I/O completion. 1204 */ 1205 1206 void 1207 swap_pager_putpages(object, m, count, sync, rtvals) 1208 vm_object_t object; 1209 vm_page_t *m; 1210 int count; 1211 boolean_t sync; 1212 int *rtvals; 1213 { 1214 int i; 1215 int n = 0; 1216 1217 #if !defined(MAX_PERF) 1218 if (count && m[0]->object != object) { 1219 panic("swap_pager_getpages: object mismatch %p/%p", 1220 object, 1221 m[0]->object 1222 ); 1223 } 1224 #endif 1225 /* 1226 * Step 1 1227 * 1228 * Turn object into OBJT_SWAP 1229 * check for bogus sysops 1230 * force sync if not pageout process 1231 */ 1232 1233 if (object->type != OBJT_SWAP) 1234 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1235 1236 if (curproc != pageproc) 1237 sync = TRUE; 1238 1239 /* 1240 * Step 2 1241 * 1242 * Update nsw parameters from swap_async_max sysctl values. 1243 * Do not let the sysop crash the machine with bogus numbers. 1244 */ 1245 1246 if (swap_async_max != nsw_wcount_async_max) { 1247 int n; 1248 int s; 1249 1250 /* 1251 * limit range 1252 */ 1253 if ((n = swap_async_max) > nswbuf / 2) 1254 n = nswbuf / 2; 1255 if (n < 1) 1256 n = 1; 1257 swap_async_max = n; 1258 1259 /* 1260 * Adjust difference ( if possible ). If the current async 1261 * count is too low, we may not be able to make the adjustment 1262 * at this time. 1263 */ 1264 s = splvm(); 1265 n -= nsw_wcount_async_max; 1266 if (nsw_wcount_async + n >= 0) { 1267 nsw_wcount_async += n; 1268 nsw_wcount_async_max += n; 1269 wakeup(&nsw_wcount_async); 1270 } 1271 splx(s); 1272 } 1273 1274 /* 1275 * Step 3 1276 * 1277 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1278 * The page is left dirty until the pageout operation completes 1279 * successfully. 1280 */ 1281 1282 for (i = 0; i < count; i += n) { 1283 int s; 1284 int j; 1285 struct buf *bp; 1286 daddr_t blk; 1287 1288 /* 1289 * Maximum I/O size is limited by a number of factors. 1290 */ 1291 1292 n = min(BLIST_MAX_ALLOC, count - i); 1293 n = min(n, nsw_cluster_max); 1294 1295 s = splvm(); 1296 1297 /* 1298 * Get biggest block of swap we can. If we fail, fall 1299 * back and try to allocate a smaller block. Don't go 1300 * overboard trying to allocate space if it would overly 1301 * fragment swap. 1302 */ 1303 while ( 1304 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1305 n > 4 1306 ) { 1307 n >>= 1; 1308 } 1309 if (blk == SWAPBLK_NONE) { 1310 for (j = 0; j < n; ++j) 1311 rtvals[i+j] = VM_PAGER_FAIL; 1312 splx(s); 1313 continue; 1314 } 1315 1316 /* 1317 * The I/O we are constructing cannot cross a physical 1318 * disk boundry in the swap stripe. Note: we are still 1319 * at splvm(). 1320 */ 1321 if ((blk ^ (blk + n)) & dmmax_mask) { 1322 j = ((blk + dmmax) & dmmax_mask) - blk; 1323 swp_pager_freeswapspace(blk + j, n - j); 1324 n = j; 1325 } 1326 1327 /* 1328 * All I/O parameters have been satisfied, build the I/O 1329 * request and assign the swap space. 1330 * 1331 * NOTE: B_PAGING is set by pbgetvp() 1332 */ 1333 1334 if (sync == TRUE) { 1335 bp = getpbuf(&nsw_wcount_sync); 1336 bp->b_flags = B_CALL; 1337 } else { 1338 bp = getpbuf(&nsw_wcount_async); 1339 bp->b_flags = B_CALL | B_ASYNC; 1340 } 1341 bp->b_spc = NULL; /* not used, but NULL-out anyway */ 1342 1343 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1344 1345 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1346 bp->b_bcount = PAGE_SIZE * n; 1347 bp->b_bufsize = PAGE_SIZE * n; 1348 bp->b_blkno = blk; 1349 1350 crhold(bp->b_rcred); 1351 crhold(bp->b_wcred); 1352 1353 pbgetvp(swapdev_vp, bp); 1354 1355 for (j = 0; j < n; ++j) { 1356 vm_page_t mreq = m[i+j]; 1357 1358 swp_pager_meta_build( 1359 mreq->object, 1360 mreq->pindex, 1361 blk + j 1362 ); 1363 vm_page_dirty(mreq); 1364 rtvals[i+j] = VM_PAGER_OK; 1365 1366 vm_page_flag_set(mreq, PG_SWAPINPROG); 1367 bp->b_pages[j] = mreq; 1368 } 1369 bp->b_npages = n; 1370 /* 1371 * Must set dirty range for NFS to work. 1372 */ 1373 bp->b_dirtyoff = 0; 1374 bp->b_dirtyend = bp->b_bcount; 1375 1376 cnt.v_swapout++; 1377 cnt.v_swappgsout += bp->b_npages; 1378 swapdev_vp->v_numoutput++; 1379 1380 splx(s); 1381 1382 /* 1383 * asynchronous 1384 * 1385 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1386 */ 1387 1388 if (sync == FALSE) { 1389 bp->b_iodone = swp_pager_async_iodone; 1390 BUF_KERNPROC(bp); 1391 VOP_STRATEGY(bp->b_vp, bp); 1392 1393 for (j = 0; j < n; ++j) 1394 rtvals[i+j] = VM_PAGER_PEND; 1395 continue; 1396 } 1397 1398 /* 1399 * synchronous 1400 * 1401 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1402 */ 1403 1404 bp->b_iodone = swp_pager_sync_iodone; 1405 VOP_STRATEGY(bp->b_vp, bp); 1406 1407 /* 1408 * Wait for the sync I/O to complete, then update rtvals. 1409 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1410 * our async completion routine at the end, thus avoiding a 1411 * double-free. 1412 */ 1413 s = splbio(); 1414 1415 while ((bp->b_flags & B_DONE) == 0) { 1416 tsleep(bp, PVM, "swwrt", 0); 1417 } 1418 1419 for (j = 0; j < n; ++j) 1420 rtvals[i+j] = VM_PAGER_PEND; 1421 1422 /* 1423 * Now that we are through with the bp, we can call the 1424 * normal async completion, which frees everything up. 1425 */ 1426 1427 swp_pager_async_iodone(bp); 1428 1429 splx(s); 1430 } 1431 } 1432 1433 /* 1434 * swap_pager_sync_iodone: 1435 * 1436 * Completion routine for synchronous reads and writes from/to swap. 1437 * We just mark the bp is complete and wake up anyone waiting on it. 1438 * 1439 * This routine may not block. This routine is called at splbio() or better. 1440 */ 1441 1442 static void 1443 swp_pager_sync_iodone(bp) 1444 struct buf *bp; 1445 { 1446 bp->b_flags |= B_DONE; 1447 bp->b_flags &= ~B_ASYNC; 1448 wakeup(bp); 1449 } 1450 1451 /* 1452 * swp_pager_async_iodone: 1453 * 1454 * Completion routine for asynchronous reads and writes from/to swap. 1455 * Also called manually by synchronous code to finish up a bp. 1456 * 1457 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1458 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1459 * unbusy all pages except the 'main' request page. For WRITE 1460 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1461 * because we marked them all VM_PAGER_PEND on return from putpages ). 1462 * 1463 * This routine may not block. 1464 * This routine is called at splbio() or better 1465 * 1466 * We up ourselves to splvm() as required for various vm_page related 1467 * calls. 1468 */ 1469 1470 static void 1471 swp_pager_async_iodone(bp) 1472 register struct buf *bp; 1473 { 1474 int s; 1475 int i; 1476 vm_object_t object = NULL; 1477 1478 bp->b_flags |= B_DONE; 1479 1480 /* 1481 * report error 1482 */ 1483 1484 if (bp->b_flags & B_ERROR) { 1485 printf( 1486 "swap_pager: I/O error - %s failed; blkno %ld," 1487 "size %ld, error %d\n", 1488 ((bp->b_flags & B_READ) ? "pagein" : "pageout"), 1489 (long)bp->b_blkno, 1490 (long)bp->b_bcount, 1491 bp->b_error 1492 ); 1493 } 1494 1495 /* 1496 * set object, raise to splvm(). 1497 */ 1498 1499 if (bp->b_npages) 1500 object = bp->b_pages[0]->object; 1501 s = splvm(); 1502 1503 /* 1504 * remove the mapping for kernel virtual 1505 */ 1506 1507 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1508 1509 /* 1510 * cleanup pages. If an error occurs writing to swap, we are in 1511 * very serious trouble. If it happens to be a disk error, though, 1512 * we may be able to recover by reassigning the swap later on. So 1513 * in this case we remove the m->swapblk assignment for the page 1514 * but do not free it in the rlist. The errornous block(s) are thus 1515 * never reallocated as swap. Redirty the page and continue. 1516 */ 1517 1518 for (i = 0; i < bp->b_npages; ++i) { 1519 vm_page_t m = bp->b_pages[i]; 1520 1521 vm_page_flag_clear(m, PG_SWAPINPROG); 1522 1523 if (bp->b_flags & B_ERROR) { 1524 /* 1525 * If an error occurs I'd love to throw the swapblk 1526 * away without freeing it back to swapspace, so it 1527 * can never be used again. But I can't from an 1528 * interrupt. 1529 */ 1530 1531 if (bp->b_flags & B_READ) { 1532 /* 1533 * When reading, reqpage needs to stay 1534 * locked for the parent, but all other 1535 * pages can be freed. We still want to 1536 * wakeup the parent waiting on the page, 1537 * though. ( also: pg_reqpage can be -1 and 1538 * not match anything ). 1539 * 1540 * We have to wake specifically requested pages 1541 * up too because we cleared PG_SWAPINPROG and 1542 * someone may be waiting for that. 1543 * 1544 * NOTE: for reads, m->dirty will probably 1545 * be overriden by the original caller of 1546 * getpages so don't play cute tricks here. 1547 * 1548 * XXX it may not be legal to free the page 1549 * here as this messes with the object->memq's. 1550 */ 1551 1552 m->valid = 0; 1553 vm_page_flag_clear(m, PG_ZERO); 1554 1555 if (i != bp->b_pager.pg_reqpage) 1556 vm_page_free(m); 1557 else 1558 vm_page_flash(m); 1559 /* 1560 * If i == bp->b_pager.pg_reqpage, do not wake 1561 * the page up. The caller needs to. 1562 */ 1563 } else { 1564 /* 1565 * If a write error occurs, reactivate page 1566 * so it doesn't clog the inactive list, 1567 * then finish the I/O. 1568 */ 1569 vm_page_dirty(m); 1570 vm_page_activate(m); 1571 vm_page_io_finish(m); 1572 } 1573 } else if (bp->b_flags & B_READ) { 1574 /* 1575 * For read success, clear dirty bits. Nobody should 1576 * have this page mapped but don't take any chances, 1577 * make sure the pmap modify bits are also cleared. 1578 * 1579 * NOTE: for reads, m->dirty will probably be 1580 * overriden by the original caller of getpages so 1581 * we cannot set them in order to free the underlying 1582 * swap in a low-swap situation. I don't think we'd 1583 * want to do that anyway, but it was an optimization 1584 * that existed in the old swapper for a time before 1585 * it got ripped out due to precisely this problem. 1586 * 1587 * clear PG_ZERO in page. 1588 * 1589 * If not the requested page then deactivate it. 1590 * 1591 * Note that the requested page, reqpage, is left 1592 * busied, but we still have to wake it up. The 1593 * other pages are released (unbusied) by 1594 * vm_page_wakeup(). We do not set reqpage's 1595 * valid bits here, it is up to the caller. 1596 */ 1597 1598 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 1599 m->valid = VM_PAGE_BITS_ALL; 1600 vm_page_undirty(m); 1601 vm_page_flag_clear(m, PG_ZERO); 1602 1603 /* 1604 * We have to wake specifically requested pages 1605 * up too because we cleared PG_SWAPINPROG and 1606 * could be waiting for it in getpages. However, 1607 * be sure to not unbusy getpages specifically 1608 * requested page - getpages expects it to be 1609 * left busy. 1610 */ 1611 if (i != bp->b_pager.pg_reqpage) { 1612 vm_page_deactivate(m); 1613 vm_page_wakeup(m); 1614 } else { 1615 vm_page_flash(m); 1616 } 1617 } else { 1618 /* 1619 * For write success, clear the modify and dirty 1620 * status, then finish the I/O ( which decrements the 1621 * busy count and possibly wakes waiter's up ). 1622 */ 1623 vm_page_protect(m, VM_PROT_READ); 1624 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 1625 vm_page_undirty(m); 1626 vm_page_io_finish(m); 1627 } 1628 } 1629 1630 /* 1631 * adjust pip. NOTE: the original parent may still have its own 1632 * pip refs on the object. 1633 */ 1634 1635 if (object) 1636 vm_object_pip_wakeupn(object, bp->b_npages); 1637 1638 /* 1639 * release the physical I/O buffer 1640 */ 1641 1642 relpbuf( 1643 bp, 1644 ((bp->b_flags & B_READ) ? &nsw_rcount : 1645 ((bp->b_flags & B_ASYNC) ? 1646 &nsw_wcount_async : 1647 &nsw_wcount_sync 1648 ) 1649 ) 1650 ); 1651 splx(s); 1652 } 1653 1654 /************************************************************************ 1655 * SWAP META DATA * 1656 ************************************************************************ 1657 * 1658 * These routines manipulate the swap metadata stored in the 1659 * OBJT_SWAP object. All swp_*() routines must be called at 1660 * splvm() because swap can be freed up by the low level vm_page 1661 * code which might be called from interrupts beyond what splbio() covers. 1662 * 1663 * Swap metadata is implemented with a global hash and not directly 1664 * linked into the object. Instead the object simply contains 1665 * appropriate tracking counters. 1666 */ 1667 1668 /* 1669 * SWP_PAGER_HASH() - hash swap meta data 1670 * 1671 * This is an inline helper function which hashes the swapblk given 1672 * the object and page index. It returns a pointer to a pointer 1673 * to the object, or a pointer to a NULL pointer if it could not 1674 * find a swapblk. 1675 * 1676 * This routine must be called at splvm(). 1677 */ 1678 1679 static __inline struct swblock ** 1680 swp_pager_hash(vm_object_t object, vm_pindex_t index) 1681 { 1682 struct swblock **pswap; 1683 struct swblock *swap; 1684 1685 index &= ~SWAP_META_MASK; 1686 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 1687 1688 while ((swap = *pswap) != NULL) { 1689 if (swap->swb_object == object && 1690 swap->swb_index == index 1691 ) { 1692 break; 1693 } 1694 pswap = &swap->swb_hnext; 1695 } 1696 return(pswap); 1697 } 1698 1699 /* 1700 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1701 * 1702 * We first convert the object to a swap object if it is a default 1703 * object. 1704 * 1705 * The specified swapblk is added to the object's swap metadata. If 1706 * the swapblk is not valid, it is freed instead. Any previously 1707 * assigned swapblk is freed. 1708 * 1709 * This routine must be called at splvm(), except when used to convert 1710 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1711 1712 */ 1713 1714 static void 1715 swp_pager_meta_build( 1716 vm_object_t object, 1717 vm_pindex_t index, 1718 daddr_t swapblk 1719 ) { 1720 struct swblock *swap; 1721 struct swblock **pswap; 1722 1723 /* 1724 * Convert default object to swap object if necessary 1725 */ 1726 1727 if (object->type != OBJT_SWAP) { 1728 object->type = OBJT_SWAP; 1729 object->un_pager.swp.swp_bcount = 0; 1730 1731 if (object->handle != NULL) { 1732 TAILQ_INSERT_TAIL( 1733 NOBJLIST(object->handle), 1734 object, 1735 pager_object_list 1736 ); 1737 } else { 1738 TAILQ_INSERT_TAIL( 1739 &swap_pager_un_object_list, 1740 object, 1741 pager_object_list 1742 ); 1743 } 1744 } 1745 1746 /* 1747 * Locate hash entry. If not found create, but if we aren't adding 1748 * anything just return. If we run out of space in the map we wait 1749 * and, since the hash table may have changed, retry. 1750 */ 1751 1752 retry: 1753 pswap = swp_pager_hash(object, index); 1754 1755 if ((swap = *pswap) == NULL) { 1756 int i; 1757 1758 if (swapblk == SWAPBLK_NONE) 1759 return; 1760 1761 swap = *pswap = zalloc(swap_zone); 1762 if (swap == NULL) { 1763 VM_WAIT; 1764 goto retry; 1765 } 1766 swap->swb_hnext = NULL; 1767 swap->swb_object = object; 1768 swap->swb_index = index & ~SWAP_META_MASK; 1769 swap->swb_count = 0; 1770 1771 ++object->un_pager.swp.swp_bcount; 1772 1773 for (i = 0; i < SWAP_META_PAGES; ++i) 1774 swap->swb_pages[i] = SWAPBLK_NONE; 1775 } 1776 1777 /* 1778 * Delete prior contents of metadata 1779 */ 1780 1781 index &= SWAP_META_MASK; 1782 1783 if (swap->swb_pages[index] != SWAPBLK_NONE) { 1784 swp_pager_freeswapspace(swap->swb_pages[index], 1); 1785 --swap->swb_count; 1786 } 1787 1788 /* 1789 * Enter block into metadata 1790 */ 1791 1792 swap->swb_pages[index] = swapblk; 1793 if (swapblk != SWAPBLK_NONE) 1794 ++swap->swb_count; 1795 } 1796 1797 /* 1798 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1799 * 1800 * The requested range of blocks is freed, with any associated swap 1801 * returned to the swap bitmap. 1802 * 1803 * This routine will free swap metadata structures as they are cleaned 1804 * out. This routine does *NOT* operate on swap metadata associated 1805 * with resident pages. 1806 * 1807 * This routine must be called at splvm() 1808 */ 1809 1810 static void 1811 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1812 { 1813 if (object->type != OBJT_SWAP) 1814 return; 1815 1816 while (count > 0) { 1817 struct swblock **pswap; 1818 struct swblock *swap; 1819 1820 pswap = swp_pager_hash(object, index); 1821 1822 if ((swap = *pswap) != NULL) { 1823 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1824 1825 if (v != SWAPBLK_NONE) { 1826 swp_pager_freeswapspace(v, 1); 1827 swap->swb_pages[index & SWAP_META_MASK] = 1828 SWAPBLK_NONE; 1829 if (--swap->swb_count == 0) { 1830 *pswap = swap->swb_hnext; 1831 zfree(swap_zone, swap); 1832 --object->un_pager.swp.swp_bcount; 1833 } 1834 } 1835 --count; 1836 ++index; 1837 } else { 1838 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1839 count -= n; 1840 index += n; 1841 } 1842 } 1843 } 1844 1845 /* 1846 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1847 * 1848 * This routine locates and destroys all swap metadata associated with 1849 * an object. 1850 * 1851 * This routine must be called at splvm() 1852 */ 1853 1854 static void 1855 swp_pager_meta_free_all(vm_object_t object) 1856 { 1857 daddr_t index = 0; 1858 1859 if (object->type != OBJT_SWAP) 1860 return; 1861 1862 while (object->un_pager.swp.swp_bcount) { 1863 struct swblock **pswap; 1864 struct swblock *swap; 1865 1866 pswap = swp_pager_hash(object, index); 1867 if ((swap = *pswap) != NULL) { 1868 int i; 1869 1870 for (i = 0; i < SWAP_META_PAGES; ++i) { 1871 daddr_t v = swap->swb_pages[i]; 1872 if (v != SWAPBLK_NONE) { 1873 #if !defined(MAX_PERF) 1874 --swap->swb_count; 1875 #endif 1876 swp_pager_freeswapspace(v, 1); 1877 } 1878 } 1879 #if !defined(MAX_PERF) 1880 if (swap->swb_count != 0) 1881 panic("swap_pager_meta_free_all: swb_count != 0"); 1882 #endif 1883 *pswap = swap->swb_hnext; 1884 zfree(swap_zone, swap); 1885 --object->un_pager.swp.swp_bcount; 1886 } 1887 index += SWAP_META_PAGES; 1888 #if !defined(MAX_PERF) 1889 if (index > 0x20000000) 1890 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1891 #endif 1892 } 1893 } 1894 1895 /* 1896 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1897 * 1898 * This routine is capable of looking up, popping, or freeing 1899 * swapblk assignments in the swap meta data or in the vm_page_t. 1900 * The routine typically returns the swapblk being looked-up, or popped, 1901 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1902 * was invalid. This routine will automatically free any invalid 1903 * meta-data swapblks. 1904 * 1905 * It is not possible to store invalid swapblks in the swap meta data 1906 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1907 * 1908 * When acting on a busy resident page and paging is in progress, we 1909 * have to wait until paging is complete but otherwise can act on the 1910 * busy page. 1911 * 1912 * This routine must be called at splvm(). 1913 * 1914 * SWM_FREE remove and free swap block from metadata 1915 * SWM_POP remove from meta data but do not free.. pop it out 1916 */ 1917 1918 static daddr_t 1919 swp_pager_meta_ctl( 1920 vm_object_t object, 1921 vm_pindex_t index, 1922 int flags 1923 ) { 1924 struct swblock **pswap; 1925 struct swblock *swap; 1926 daddr_t r1; 1927 1928 /* 1929 * The meta data only exists of the object is OBJT_SWAP 1930 * and even then might not be allocated yet. 1931 */ 1932 1933 if (object->type != OBJT_SWAP) 1934 return(SWAPBLK_NONE); 1935 1936 r1 = SWAPBLK_NONE; 1937 pswap = swp_pager_hash(object, index); 1938 1939 if ((swap = *pswap) != NULL) { 1940 index &= SWAP_META_MASK; 1941 r1 = swap->swb_pages[index]; 1942 1943 if (r1 != SWAPBLK_NONE) { 1944 if (flags & SWM_FREE) { 1945 swp_pager_freeswapspace(r1, 1); 1946 r1 = SWAPBLK_NONE; 1947 } 1948 if (flags & (SWM_FREE|SWM_POP)) { 1949 swap->swb_pages[index] = SWAPBLK_NONE; 1950 if (--swap->swb_count == 0) { 1951 *pswap = swap->swb_hnext; 1952 zfree(swap_zone, swap); 1953 --object->un_pager.swp.swp_bcount; 1954 } 1955 } 1956 } 1957 } 1958 return(r1); 1959 } 1960 1961