xref: /freebsd/sys/vm/swap_pager.c (revision c36e54bb328697af1e6113812caecbd3bac89fe0)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/sysctl.h>
94 #include <sys/sysproto.h>
95 #include <sys/blist.h>
96 #include <sys/lock.h>
97 #include <sys/sx.h>
98 #include <sys/vmmeter.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/vm.h>
103 #include <vm/pmap.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_param.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114 
115 #include <geom/geom.h>
116 
117 /*
118  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
119  * or 32 pages per allocation.
120  * The 32-page limit is due to the radix code (kern/subr_blist.c).
121  */
122 #ifndef MAX_PAGEOUT_CLUSTER
123 #define MAX_PAGEOUT_CLUSTER 16
124 #endif
125 
126 #if !defined(SWB_NPAGES)
127 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
128 #endif
129 
130 /*
131  * The swblock structure maps an object and a small, fixed-size range
132  * of page indices to disk addresses within a swap area.
133  * The collection of these mappings is implemented as a hash table.
134  * Unused disk addresses within a swap area are allocated and managed
135  * using a blist.
136  */
137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
139 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140 
141 struct swblock {
142 	struct swblock	*swb_hnext;
143 	vm_object_t	swb_object;
144 	vm_pindex_t	swb_index;
145 	int		swb_count;
146 	daddr_t		swb_pages[SWAP_META_PAGES];
147 };
148 
149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
156 
157 static vm_ooffset_t swap_total;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159     "Total amount of available swap storage.");
160 static vm_ooffset_t swap_reserved;
161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162     "Amount of swap storage needed to back all allocated anonymous memory.");
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165     "Configure virtual memory overcommit behavior. See tuning(7) "
166     "for details.");
167 static unsigned long swzone;
168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
169     "Actual size of swap metadata zone");
170 static unsigned long swap_maxpages;
171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
172     "Maximum amount of swap supported");
173 
174 /* bits from overcommit */
175 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
176 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
177 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
178 
179 int
180 swap_reserve(vm_ooffset_t incr)
181 {
182 
183 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
184 }
185 
186 int
187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
188 {
189 	vm_ooffset_t r, s;
190 	int res, error;
191 	static int curfail;
192 	static struct timeval lastfail;
193 	struct uidinfo *uip;
194 
195 	uip = cred->cr_ruidinfo;
196 
197 	if (incr & PAGE_MASK)
198 		panic("swap_reserve: & PAGE_MASK");
199 
200 #ifdef RACCT
201 	if (racct_enable) {
202 		PROC_LOCK(curproc);
203 		error = racct_add(curproc, RACCT_SWAP, incr);
204 		PROC_UNLOCK(curproc);
205 		if (error != 0)
206 			return (0);
207 	}
208 #endif
209 
210 	res = 0;
211 	mtx_lock(&sw_dev_mtx);
212 	r = swap_reserved + incr;
213 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
214 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
215 		s *= PAGE_SIZE;
216 	} else
217 		s = 0;
218 	s += swap_total;
219 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
220 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
221 		res = 1;
222 		swap_reserved = r;
223 	}
224 	mtx_unlock(&sw_dev_mtx);
225 
226 	if (res) {
227 		UIDINFO_VMSIZE_LOCK(uip);
228 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
229 		    uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
230 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
231 			res = 0;
232 		else
233 			uip->ui_vmsize += incr;
234 		UIDINFO_VMSIZE_UNLOCK(uip);
235 		if (!res) {
236 			mtx_lock(&sw_dev_mtx);
237 			swap_reserved -= incr;
238 			mtx_unlock(&sw_dev_mtx);
239 		}
240 	}
241 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
242 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
243 		    uip->ui_uid, curproc->p_pid, incr);
244 	}
245 
246 #ifdef RACCT
247 	if (!res) {
248 		PROC_LOCK(curproc);
249 		racct_sub(curproc, RACCT_SWAP, incr);
250 		PROC_UNLOCK(curproc);
251 	}
252 #endif
253 
254 	return (res);
255 }
256 
257 void
258 swap_reserve_force(vm_ooffset_t incr)
259 {
260 	struct uidinfo *uip;
261 
262 	mtx_lock(&sw_dev_mtx);
263 	swap_reserved += incr;
264 	mtx_unlock(&sw_dev_mtx);
265 
266 #ifdef RACCT
267 	PROC_LOCK(curproc);
268 	racct_add_force(curproc, RACCT_SWAP, incr);
269 	PROC_UNLOCK(curproc);
270 #endif
271 
272 	uip = curthread->td_ucred->cr_ruidinfo;
273 	PROC_LOCK(curproc);
274 	UIDINFO_VMSIZE_LOCK(uip);
275 	uip->ui_vmsize += incr;
276 	UIDINFO_VMSIZE_UNLOCK(uip);
277 	PROC_UNLOCK(curproc);
278 }
279 
280 void
281 swap_release(vm_ooffset_t decr)
282 {
283 	struct ucred *cred;
284 
285 	PROC_LOCK(curproc);
286 	cred = curthread->td_ucred;
287 	swap_release_by_cred(decr, cred);
288 	PROC_UNLOCK(curproc);
289 }
290 
291 void
292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
293 {
294  	struct uidinfo *uip;
295 
296 	uip = cred->cr_ruidinfo;
297 
298 	if (decr & PAGE_MASK)
299 		panic("swap_release: & PAGE_MASK");
300 
301 	mtx_lock(&sw_dev_mtx);
302 	if (swap_reserved < decr)
303 		panic("swap_reserved < decr");
304 	swap_reserved -= decr;
305 	mtx_unlock(&sw_dev_mtx);
306 
307 	UIDINFO_VMSIZE_LOCK(uip);
308 	if (uip->ui_vmsize < decr)
309 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
310 	uip->ui_vmsize -= decr;
311 	UIDINFO_VMSIZE_UNLOCK(uip);
312 
313 	racct_sub_cred(cred, RACCT_SWAP, decr);
314 }
315 
316 static void swapdev_strategy(struct buf *, struct swdevt *sw);
317 
318 #define SWM_FREE	0x02	/* free, period			*/
319 #define SWM_POP		0x04	/* pop out			*/
320 
321 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
322 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
323 static int nsw_rcount;		/* free read buffers			*/
324 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
325 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
326 static int nsw_wcount_async_max;/* assigned maximum			*/
327 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
328 
329 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
330 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW,
331     NULL, 0, sysctl_swap_async_max, "I", "Maximum running async swap ops");
332 
333 static struct swblock **swhash;
334 static int swhash_mask;
335 static struct mtx swhash_mtx;
336 
337 static struct sx sw_alloc_sx;
338 
339 /*
340  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
341  * of searching a named list by hashing it just a little.
342  */
343 
344 #define NOBJLISTS		8
345 
346 #define NOBJLIST(handle)	\
347 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
348 
349 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
350 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
351 static uma_zone_t	swap_zone;
352 
353 /*
354  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
355  * calls hooked from other parts of the VM system and do not appear here.
356  * (see vm/swap_pager.h).
357  */
358 static vm_object_t
359 		swap_pager_alloc(void *handle, vm_ooffset_t size,
360 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
361 static void	swap_pager_dealloc(vm_object_t object);
362 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
363 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int,
364     pgo_getpages_iodone_t, void *);
365 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
366 static boolean_t
367 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
368 static void	swap_pager_init(void);
369 static void	swap_pager_unswapped(vm_page_t);
370 static void	swap_pager_swapoff(struct swdevt *sp);
371 
372 struct pagerops swappagerops = {
373 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
374 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
375 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
376 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
377 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
378 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
379 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
380 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
381 };
382 
383 /*
384  * dmmax is in page-sized chunks with the new swap system.  It was
385  * dev-bsized chunks in the old.  dmmax is always a power of 2.
386  *
387  * swap_*() routines are externally accessible.  swp_*() routines are
388  * internal.
389  */
390 static int dmmax;
391 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
392 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
393 
394 SYSCTL_INT(_vm, OID_AUTO, dmmax,
395 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
396 
397 static void	swp_sizecheck(void);
398 static void	swp_pager_async_iodone(struct buf *bp);
399 static int	swapongeom(struct thread *, struct vnode *);
400 static int	swaponvp(struct thread *, struct vnode *, u_long);
401 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
402 
403 /*
404  * Swap bitmap functions
405  */
406 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
407 static daddr_t	swp_pager_getswapspace(int npages);
408 
409 /*
410  * Metadata functions
411  */
412 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
413 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
414 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
415 static void swp_pager_meta_free_all(vm_object_t);
416 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
417 
418 static void
419 swp_pager_free_nrpage(vm_page_t m)
420 {
421 
422 	vm_page_lock(m);
423 	if (m->wire_count == 0)
424 		vm_page_free(m);
425 	vm_page_unlock(m);
426 }
427 
428 /*
429  * SWP_SIZECHECK() -	update swap_pager_full indication
430  *
431  *	update the swap_pager_almost_full indication and warn when we are
432  *	about to run out of swap space, using lowat/hiwat hysteresis.
433  *
434  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
435  *
436  *	No restrictions on call
437  *	This routine may not block.
438  */
439 static void
440 swp_sizecheck(void)
441 {
442 
443 	if (swap_pager_avail < nswap_lowat) {
444 		if (swap_pager_almost_full == 0) {
445 			printf("swap_pager: out of swap space\n");
446 			swap_pager_almost_full = 1;
447 		}
448 	} else {
449 		swap_pager_full = 0;
450 		if (swap_pager_avail > nswap_hiwat)
451 			swap_pager_almost_full = 0;
452 	}
453 }
454 
455 /*
456  * SWP_PAGER_HASH() -	hash swap meta data
457  *
458  *	This is an helper function which hashes the swapblk given
459  *	the object and page index.  It returns a pointer to a pointer
460  *	to the object, or a pointer to a NULL pointer if it could not
461  *	find a swapblk.
462  */
463 static struct swblock **
464 swp_pager_hash(vm_object_t object, vm_pindex_t index)
465 {
466 	struct swblock **pswap;
467 	struct swblock *swap;
468 
469 	index &= ~(vm_pindex_t)SWAP_META_MASK;
470 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
471 	while ((swap = *pswap) != NULL) {
472 		if (swap->swb_object == object &&
473 		    swap->swb_index == index
474 		) {
475 			break;
476 		}
477 		pswap = &swap->swb_hnext;
478 	}
479 	return (pswap);
480 }
481 
482 /*
483  * SWAP_PAGER_INIT() -	initialize the swap pager!
484  *
485  *	Expected to be started from system init.  NOTE:  This code is run
486  *	before much else so be careful what you depend on.  Most of the VM
487  *	system has yet to be initialized at this point.
488  */
489 static void
490 swap_pager_init(void)
491 {
492 	/*
493 	 * Initialize object lists
494 	 */
495 	int i;
496 
497 	for (i = 0; i < NOBJLISTS; ++i)
498 		TAILQ_INIT(&swap_pager_object_list[i]);
499 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
500 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
501 
502 	/*
503 	 * Device Stripe, in PAGE_SIZE'd blocks
504 	 */
505 	dmmax = SWB_NPAGES * 2;
506 }
507 
508 /*
509  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
510  *
511  *	Expected to be started from pageout process once, prior to entering
512  *	its main loop.
513  */
514 void
515 swap_pager_swap_init(void)
516 {
517 	unsigned long n, n2;
518 
519 	/*
520 	 * Number of in-transit swap bp operations.  Don't
521 	 * exhaust the pbufs completely.  Make sure we
522 	 * initialize workable values (0 will work for hysteresis
523 	 * but it isn't very efficient).
524 	 *
525 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
526 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
527 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
528 	 * constrained by the swap device interleave stripe size.
529 	 *
530 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
531 	 * designed to prevent other I/O from having high latencies due to
532 	 * our pageout I/O.  The value 4 works well for one or two active swap
533 	 * devices but is probably a little low if you have more.  Even so,
534 	 * a higher value would probably generate only a limited improvement
535 	 * with three or four active swap devices since the system does not
536 	 * typically have to pageout at extreme bandwidths.   We will want
537 	 * at least 2 per swap devices, and 4 is a pretty good value if you
538 	 * have one NFS swap device due to the command/ack latency over NFS.
539 	 * So it all works out pretty well.
540 	 */
541 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
542 
543 	mtx_lock(&pbuf_mtx);
544 	nsw_rcount = (nswbuf + 1) / 2;
545 	nsw_wcount_sync = (nswbuf + 3) / 4;
546 	nsw_wcount_async = 4;
547 	nsw_wcount_async_max = nsw_wcount_async;
548 	mtx_unlock(&pbuf_mtx);
549 
550 	/*
551 	 * Initialize our zone.  Right now I'm just guessing on the number
552 	 * we need based on the number of pages in the system.  Each swblock
553 	 * can hold 32 pages, so this is probably overkill.  This reservation
554 	 * is typically limited to around 32MB by default.
555 	 */
556 	n = vm_cnt.v_page_count / 2;
557 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
558 		n = maxswzone / sizeof(struct swblock);
559 	n2 = n;
560 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
561 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
562 	if (swap_zone == NULL)
563 		panic("failed to create swap_zone.");
564 	do {
565 		if (uma_zone_reserve_kva(swap_zone, n))
566 			break;
567 		/*
568 		 * if the allocation failed, try a zone two thirds the
569 		 * size of the previous attempt.
570 		 */
571 		n -= ((n + 2) / 3);
572 	} while (n > 0);
573 	if (n2 != n)
574 		printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
575 	swap_maxpages = n * SWAP_META_PAGES;
576 	swzone = n * sizeof(struct swblock);
577 	n2 = n;
578 
579 	/*
580 	 * Initialize our meta-data hash table.  The swapper does not need to
581 	 * be quite as efficient as the VM system, so we do not use an
582 	 * oversized hash table.
583 	 *
584 	 * 	n: 		size of hash table, must be power of 2
585 	 *	swhash_mask:	hash table index mask
586 	 */
587 	for (n = 1; n < n2 / 8; n *= 2)
588 		;
589 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
590 	swhash_mask = n - 1;
591 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
592 }
593 
594 /*
595  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
596  *			its metadata structures.
597  *
598  *	This routine is called from the mmap and fork code to create a new
599  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
600  *	and then converting it with swp_pager_meta_build().
601  *
602  *	This routine may block in vm_object_allocate() and create a named
603  *	object lookup race, so we must interlock.
604  *
605  * MPSAFE
606  */
607 static vm_object_t
608 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
609     vm_ooffset_t offset, struct ucred *cred)
610 {
611 	vm_object_t object;
612 	vm_pindex_t pindex;
613 
614 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
615 	if (handle) {
616 		mtx_lock(&Giant);
617 		/*
618 		 * Reference existing named region or allocate new one.  There
619 		 * should not be a race here against swp_pager_meta_build()
620 		 * as called from vm_page_remove() in regards to the lookup
621 		 * of the handle.
622 		 */
623 		sx_xlock(&sw_alloc_sx);
624 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
625 		if (object == NULL) {
626 			if (cred != NULL) {
627 				if (!swap_reserve_by_cred(size, cred)) {
628 					sx_xunlock(&sw_alloc_sx);
629 					mtx_unlock(&Giant);
630 					return (NULL);
631 				}
632 				crhold(cred);
633 			}
634 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
635 			VM_OBJECT_WLOCK(object);
636 			object->handle = handle;
637 			if (cred != NULL) {
638 				object->cred = cred;
639 				object->charge = size;
640 			}
641 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
642 			VM_OBJECT_WUNLOCK(object);
643 		}
644 		sx_xunlock(&sw_alloc_sx);
645 		mtx_unlock(&Giant);
646 	} else {
647 		if (cred != NULL) {
648 			if (!swap_reserve_by_cred(size, cred))
649 				return (NULL);
650 			crhold(cred);
651 		}
652 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
653 		VM_OBJECT_WLOCK(object);
654 		if (cred != NULL) {
655 			object->cred = cred;
656 			object->charge = size;
657 		}
658 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
659 		VM_OBJECT_WUNLOCK(object);
660 	}
661 	return (object);
662 }
663 
664 /*
665  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
666  *
667  *	The swap backing for the object is destroyed.  The code is
668  *	designed such that we can reinstantiate it later, but this
669  *	routine is typically called only when the entire object is
670  *	about to be destroyed.
671  *
672  *	The object must be locked.
673  */
674 static void
675 swap_pager_dealloc(vm_object_t object)
676 {
677 
678 	/*
679 	 * Remove from list right away so lookups will fail if we block for
680 	 * pageout completion.
681 	 */
682 	if (object->handle != NULL) {
683 		mtx_lock(&sw_alloc_mtx);
684 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
685 		mtx_unlock(&sw_alloc_mtx);
686 	}
687 
688 	VM_OBJECT_ASSERT_WLOCKED(object);
689 	vm_object_pip_wait(object, "swpdea");
690 
691 	/*
692 	 * Free all remaining metadata.  We only bother to free it from
693 	 * the swap meta data.  We do not attempt to free swapblk's still
694 	 * associated with vm_page_t's for this object.  We do not care
695 	 * if paging is still in progress on some objects.
696 	 */
697 	swp_pager_meta_free_all(object);
698 	object->handle = NULL;
699 	object->type = OBJT_DEAD;
700 }
701 
702 /************************************************************************
703  *			SWAP PAGER BITMAP ROUTINES			*
704  ************************************************************************/
705 
706 /*
707  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
708  *
709  *	Allocate swap for the requested number of pages.  The starting
710  *	swap block number (a page index) is returned or SWAPBLK_NONE
711  *	if the allocation failed.
712  *
713  *	Also has the side effect of advising that somebody made a mistake
714  *	when they configured swap and didn't configure enough.
715  *
716  *	This routine may not sleep.
717  *
718  *	We allocate in round-robin fashion from the configured devices.
719  */
720 static daddr_t
721 swp_pager_getswapspace(int npages)
722 {
723 	daddr_t blk;
724 	struct swdevt *sp;
725 	int i;
726 
727 	blk = SWAPBLK_NONE;
728 	mtx_lock(&sw_dev_mtx);
729 	sp = swdevhd;
730 	for (i = 0; i < nswapdev; i++) {
731 		if (sp == NULL)
732 			sp = TAILQ_FIRST(&swtailq);
733 		if (!(sp->sw_flags & SW_CLOSING)) {
734 			blk = blist_alloc(sp->sw_blist, npages);
735 			if (blk != SWAPBLK_NONE) {
736 				blk += sp->sw_first;
737 				sp->sw_used += npages;
738 				swap_pager_avail -= npages;
739 				swp_sizecheck();
740 				swdevhd = TAILQ_NEXT(sp, sw_list);
741 				goto done;
742 			}
743 		}
744 		sp = TAILQ_NEXT(sp, sw_list);
745 	}
746 	if (swap_pager_full != 2) {
747 		printf("swap_pager_getswapspace(%d): failed\n", npages);
748 		swap_pager_full = 2;
749 		swap_pager_almost_full = 1;
750 	}
751 	swdevhd = NULL;
752 done:
753 	mtx_unlock(&sw_dev_mtx);
754 	return (blk);
755 }
756 
757 static int
758 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
759 {
760 
761 	return (blk >= sp->sw_first && blk < sp->sw_end);
762 }
763 
764 static void
765 swp_pager_strategy(struct buf *bp)
766 {
767 	struct swdevt *sp;
768 
769 	mtx_lock(&sw_dev_mtx);
770 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
771 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
772 			mtx_unlock(&sw_dev_mtx);
773 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
774 			    unmapped_buf_allowed) {
775 				bp->b_kvaalloc = bp->b_data;
776 				bp->b_data = unmapped_buf;
777 				bp->b_kvabase = unmapped_buf;
778 				bp->b_offset = 0;
779 				bp->b_flags |= B_UNMAPPED;
780 			} else {
781 				pmap_qenter((vm_offset_t)bp->b_data,
782 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
783 			}
784 			sp->sw_strategy(bp, sp);
785 			return;
786 		}
787 	}
788 	panic("Swapdev not found");
789 }
790 
791 
792 /*
793  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
794  *
795  *	This routine returns the specified swap blocks back to the bitmap.
796  *
797  *	This routine may not sleep.
798  */
799 static void
800 swp_pager_freeswapspace(daddr_t blk, int npages)
801 {
802 	struct swdevt *sp;
803 
804 	mtx_lock(&sw_dev_mtx);
805 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
806 		if (blk >= sp->sw_first && blk < sp->sw_end) {
807 			sp->sw_used -= npages;
808 			/*
809 			 * If we are attempting to stop swapping on
810 			 * this device, we don't want to mark any
811 			 * blocks free lest they be reused.
812 			 */
813 			if ((sp->sw_flags & SW_CLOSING) == 0) {
814 				blist_free(sp->sw_blist, blk - sp->sw_first,
815 				    npages);
816 				swap_pager_avail += npages;
817 				swp_sizecheck();
818 			}
819 			mtx_unlock(&sw_dev_mtx);
820 			return;
821 		}
822 	}
823 	panic("Swapdev not found");
824 }
825 
826 /*
827  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
828  *				range within an object.
829  *
830  *	This is a globally accessible routine.
831  *
832  *	This routine removes swapblk assignments from swap metadata.
833  *
834  *	The external callers of this routine typically have already destroyed
835  *	or renamed vm_page_t's associated with this range in the object so
836  *	we should be ok.
837  *
838  *	The object must be locked.
839  */
840 void
841 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
842 {
843 
844 	swp_pager_meta_free(object, start, size);
845 }
846 
847 /*
848  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
849  *
850  *	Assigns swap blocks to the specified range within the object.  The
851  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
852  *
853  *	Returns 0 on success, -1 on failure.
854  */
855 int
856 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
857 {
858 	int n = 0;
859 	daddr_t blk = SWAPBLK_NONE;
860 	vm_pindex_t beg = start;	/* save start index */
861 
862 	VM_OBJECT_WLOCK(object);
863 	while (size) {
864 		if (n == 0) {
865 			n = BLIST_MAX_ALLOC;
866 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
867 				n >>= 1;
868 				if (n == 0) {
869 					swp_pager_meta_free(object, beg, start - beg);
870 					VM_OBJECT_WUNLOCK(object);
871 					return (-1);
872 				}
873 			}
874 		}
875 		swp_pager_meta_build(object, start, blk);
876 		--size;
877 		++start;
878 		++blk;
879 		--n;
880 	}
881 	swp_pager_meta_free(object, start, n);
882 	VM_OBJECT_WUNLOCK(object);
883 	return (0);
884 }
885 
886 /*
887  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
888  *			and destroy the source.
889  *
890  *	Copy any valid swapblks from the source to the destination.  In
891  *	cases where both the source and destination have a valid swapblk,
892  *	we keep the destination's.
893  *
894  *	This routine is allowed to sleep.  It may sleep allocating metadata
895  *	indirectly through swp_pager_meta_build() or if paging is still in
896  *	progress on the source.
897  *
898  *	The source object contains no vm_page_t's (which is just as well)
899  *
900  *	The source object is of type OBJT_SWAP.
901  *
902  *	The source and destination objects must be locked.
903  *	Both object locks may temporarily be released.
904  */
905 void
906 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
907     vm_pindex_t offset, int destroysource)
908 {
909 	vm_pindex_t i;
910 
911 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
912 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
913 
914 	/*
915 	 * If destroysource is set, we remove the source object from the
916 	 * swap_pager internal queue now.
917 	 */
918 	if (destroysource) {
919 		if (srcobject->handle != NULL) {
920 			mtx_lock(&sw_alloc_mtx);
921 			TAILQ_REMOVE(
922 			    NOBJLIST(srcobject->handle),
923 			    srcobject,
924 			    pager_object_list
925 			);
926 			mtx_unlock(&sw_alloc_mtx);
927 		}
928 	}
929 
930 	/*
931 	 * transfer source to destination.
932 	 */
933 	for (i = 0; i < dstobject->size; ++i) {
934 		daddr_t dstaddr;
935 
936 		/*
937 		 * Locate (without changing) the swapblk on the destination,
938 		 * unless it is invalid in which case free it silently, or
939 		 * if the destination is a resident page, in which case the
940 		 * source is thrown away.
941 		 */
942 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
943 
944 		if (dstaddr == SWAPBLK_NONE) {
945 			/*
946 			 * Destination has no swapblk and is not resident,
947 			 * copy source.
948 			 */
949 			daddr_t srcaddr;
950 
951 			srcaddr = swp_pager_meta_ctl(
952 			    srcobject,
953 			    i + offset,
954 			    SWM_POP
955 			);
956 
957 			if (srcaddr != SWAPBLK_NONE) {
958 				/*
959 				 * swp_pager_meta_build() can sleep.
960 				 */
961 				vm_object_pip_add(srcobject, 1);
962 				VM_OBJECT_WUNLOCK(srcobject);
963 				vm_object_pip_add(dstobject, 1);
964 				swp_pager_meta_build(dstobject, i, srcaddr);
965 				vm_object_pip_wakeup(dstobject);
966 				VM_OBJECT_WLOCK(srcobject);
967 				vm_object_pip_wakeup(srcobject);
968 			}
969 		} else {
970 			/*
971 			 * Destination has valid swapblk or it is represented
972 			 * by a resident page.  We destroy the sourceblock.
973 			 */
974 
975 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
976 		}
977 	}
978 
979 	/*
980 	 * Free left over swap blocks in source.
981 	 *
982 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
983 	 * double-remove the object from the swap queues.
984 	 */
985 	if (destroysource) {
986 		swp_pager_meta_free_all(srcobject);
987 		/*
988 		 * Reverting the type is not necessary, the caller is going
989 		 * to destroy srcobject directly, but I'm doing it here
990 		 * for consistency since we've removed the object from its
991 		 * queues.
992 		 */
993 		srcobject->type = OBJT_DEFAULT;
994 	}
995 }
996 
997 /*
998  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
999  *				the requested page.
1000  *
1001  *	We determine whether good backing store exists for the requested
1002  *	page and return TRUE if it does, FALSE if it doesn't.
1003  *
1004  *	If TRUE, we also try to determine how much valid, contiguous backing
1005  *	store exists before and after the requested page within a reasonable
1006  *	distance.  We do not try to restrict it to the swap device stripe
1007  *	(that is handled in getpages/putpages).  It probably isn't worth
1008  *	doing here.
1009  */
1010 static boolean_t
1011 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
1012 {
1013 	daddr_t blk0;
1014 
1015 	VM_OBJECT_ASSERT_LOCKED(object);
1016 	/*
1017 	 * do we have good backing store at the requested index ?
1018 	 */
1019 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1020 
1021 	if (blk0 == SWAPBLK_NONE) {
1022 		if (before)
1023 			*before = 0;
1024 		if (after)
1025 			*after = 0;
1026 		return (FALSE);
1027 	}
1028 
1029 	/*
1030 	 * find backwards-looking contiguous good backing store
1031 	 */
1032 	if (before != NULL) {
1033 		int i;
1034 
1035 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1036 			daddr_t blk;
1037 
1038 			if (i > pindex)
1039 				break;
1040 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1041 			if (blk != blk0 - i)
1042 				break;
1043 		}
1044 		*before = (i - 1);
1045 	}
1046 
1047 	/*
1048 	 * find forward-looking contiguous good backing store
1049 	 */
1050 	if (after != NULL) {
1051 		int i;
1052 
1053 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1054 			daddr_t blk;
1055 
1056 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1057 			if (blk != blk0 + i)
1058 				break;
1059 		}
1060 		*after = (i - 1);
1061 	}
1062 	return (TRUE);
1063 }
1064 
1065 /*
1066  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1067  *
1068  *	This removes any associated swap backing store, whether valid or
1069  *	not, from the page.
1070  *
1071  *	This routine is typically called when a page is made dirty, at
1072  *	which point any associated swap can be freed.  MADV_FREE also
1073  *	calls us in a special-case situation
1074  *
1075  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1076  *	should make the page dirty before calling this routine.  This routine
1077  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1078  *	depends on it.
1079  *
1080  *	This routine may not sleep.
1081  *
1082  *	The object containing the page must be locked.
1083  */
1084 static void
1085 swap_pager_unswapped(vm_page_t m)
1086 {
1087 
1088 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1089 }
1090 
1091 /*
1092  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1093  *
1094  *	Attempt to retrieve (m, count) pages from backing store, but make
1095  *	sure we retrieve at least m[reqpage].  We try to load in as large
1096  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1097  *	belongs to the same object.
1098  *
1099  *	The code is designed for asynchronous operation and
1100  *	immediate-notification of 'reqpage' but tends not to be
1101  *	used that way.  Please do not optimize-out this algorithmic
1102  *	feature, I intend to improve on it in the future.
1103  *
1104  *	The parent has a single vm_object_pip_add() reference prior to
1105  *	calling us and we should return with the same.
1106  *
1107  *	The parent has BUSY'd the pages.  We should return with 'm'
1108  *	left busy, but the others adjusted.
1109  */
1110 static int
1111 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1112 {
1113 	struct buf *bp;
1114 	vm_page_t mreq;
1115 	int i;
1116 	int j;
1117 	daddr_t blk;
1118 
1119 	mreq = m[reqpage];
1120 
1121 	/*
1122 	 * Calculate range to retrieve.  The pages have already been assigned
1123 	 * their swapblks.  We require a *contiguous* range but we know it to
1124 	 * not span devices.   If we do not supply it, bad things
1125 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1126 	 * loops are set up such that the case(s) are handled implicitly.
1127 	 *
1128 	 * The swp_*() calls must be made with the object locked.
1129 	 */
1130 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1131 
1132 	for (i = reqpage - 1; i >= 0; --i) {
1133 		daddr_t iblk;
1134 
1135 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1136 		if (blk != iblk + (reqpage - i))
1137 			break;
1138 	}
1139 	++i;
1140 
1141 	for (j = reqpage + 1; j < count; ++j) {
1142 		daddr_t jblk;
1143 
1144 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1145 		if (blk != jblk - (j - reqpage))
1146 			break;
1147 	}
1148 
1149 	/*
1150 	 * free pages outside our collection range.   Note: we never free
1151 	 * mreq, it must remain busy throughout.
1152 	 */
1153 	if (0 < i || j < count) {
1154 		int k;
1155 
1156 		for (k = 0; k < i; ++k)
1157 			swp_pager_free_nrpage(m[k]);
1158 		for (k = j; k < count; ++k)
1159 			swp_pager_free_nrpage(m[k]);
1160 	}
1161 
1162 	/*
1163 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1164 	 * still busy, but the others unbusied.
1165 	 */
1166 	if (blk == SWAPBLK_NONE)
1167 		return (VM_PAGER_FAIL);
1168 
1169 	/*
1170 	 * Getpbuf() can sleep.
1171 	 */
1172 	VM_OBJECT_WUNLOCK(object);
1173 	/*
1174 	 * Get a swap buffer header to perform the IO
1175 	 */
1176 	bp = getpbuf(&nsw_rcount);
1177 	bp->b_flags |= B_PAGING;
1178 
1179 	bp->b_iocmd = BIO_READ;
1180 	bp->b_iodone = swp_pager_async_iodone;
1181 	bp->b_rcred = crhold(thread0.td_ucred);
1182 	bp->b_wcred = crhold(thread0.td_ucred);
1183 	bp->b_blkno = blk - (reqpage - i);
1184 	bp->b_bcount = PAGE_SIZE * (j - i);
1185 	bp->b_bufsize = PAGE_SIZE * (j - i);
1186 	bp->b_pager.pg_reqpage = reqpage - i;
1187 
1188 	VM_OBJECT_WLOCK(object);
1189 	{
1190 		int k;
1191 
1192 		for (k = i; k < j; ++k) {
1193 			bp->b_pages[k - i] = m[k];
1194 			m[k]->oflags |= VPO_SWAPINPROG;
1195 		}
1196 	}
1197 	bp->b_npages = j - i;
1198 
1199 	PCPU_INC(cnt.v_swapin);
1200 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1201 
1202 	/*
1203 	 * We still hold the lock on mreq, and our automatic completion routine
1204 	 * does not remove it.
1205 	 */
1206 	vm_object_pip_add(object, bp->b_npages);
1207 	VM_OBJECT_WUNLOCK(object);
1208 
1209 	/*
1210 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1211 	 * this point because we automatically release it on completion.
1212 	 * Instead, we look at the one page we are interested in which we
1213 	 * still hold a lock on even through the I/O completion.
1214 	 *
1215 	 * The other pages in our m[] array are also released on completion,
1216 	 * so we cannot assume they are valid anymore either.
1217 	 *
1218 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1219 	 */
1220 	BUF_KERNPROC(bp);
1221 	swp_pager_strategy(bp);
1222 
1223 	/*
1224 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1225 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1226 	 * is set in the meta-data.
1227 	 */
1228 	VM_OBJECT_WLOCK(object);
1229 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1230 		mreq->oflags |= VPO_SWAPSLEEP;
1231 		PCPU_INC(cnt.v_intrans);
1232 		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1233 		    "swread", hz * 20)) {
1234 			printf(
1235 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1236 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1237 		}
1238 	}
1239 
1240 	/*
1241 	 * mreq is left busied after completion, but all the other pages
1242 	 * are freed.  If we had an unrecoverable read error the page will
1243 	 * not be valid.
1244 	 */
1245 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1246 		return (VM_PAGER_ERROR);
1247 	} else {
1248 		return (VM_PAGER_OK);
1249 	}
1250 
1251 	/*
1252 	 * A final note: in a low swap situation, we cannot deallocate swap
1253 	 * and mark a page dirty here because the caller is likely to mark
1254 	 * the page clean when we return, causing the page to possibly revert
1255 	 * to all-zero's later.
1256 	 */
1257 }
1258 
1259 /*
1260  * 	swap_pager_getpages_async():
1261  *
1262  *	Right now this is emulation of asynchronous operation on top of
1263  *	swap_pager_getpages().
1264  */
1265 static int
1266 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
1267     int reqpage, pgo_getpages_iodone_t iodone, void *arg)
1268 {
1269 	int r, error;
1270 
1271 	r = swap_pager_getpages(object, m, count, reqpage);
1272 	VM_OBJECT_WUNLOCK(object);
1273 	switch (r) {
1274 	case VM_PAGER_OK:
1275 		error = 0;
1276 		break;
1277 	case VM_PAGER_ERROR:
1278 		error = EIO;
1279 		break;
1280 	case VM_PAGER_FAIL:
1281 		error = EINVAL;
1282 		break;
1283 	default:
1284 		panic("unhandled swap_pager_getpages() error %d", r);
1285 	}
1286 	(iodone)(arg, m, count, error);
1287 	VM_OBJECT_WLOCK(object);
1288 
1289 	return (r);
1290 }
1291 
1292 /*
1293  *	swap_pager_putpages:
1294  *
1295  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1296  *
1297  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1298  *	are automatically converted to SWAP objects.
1299  *
1300  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1301  *	vm_page reservation system coupled with properly written VFS devices
1302  *	should ensure that no low-memory deadlock occurs.  This is an area
1303  *	which needs work.
1304  *
1305  *	The parent has N vm_object_pip_add() references prior to
1306  *	calling us and will remove references for rtvals[] that are
1307  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1308  *	completion.
1309  *
1310  *	The parent has soft-busy'd the pages it passes us and will unbusy
1311  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1312  *	We need to unbusy the rest on I/O completion.
1313  */
1314 void
1315 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1316     int flags, int *rtvals)
1317 {
1318 	int i, n;
1319 	boolean_t sync;
1320 
1321 	if (count && m[0]->object != object) {
1322 		panic("swap_pager_putpages: object mismatch %p/%p",
1323 		    object,
1324 		    m[0]->object
1325 		);
1326 	}
1327 
1328 	/*
1329 	 * Step 1
1330 	 *
1331 	 * Turn object into OBJT_SWAP
1332 	 * check for bogus sysops
1333 	 * force sync if not pageout process
1334 	 */
1335 	if (object->type != OBJT_SWAP)
1336 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1337 	VM_OBJECT_WUNLOCK(object);
1338 
1339 	n = 0;
1340 	if (curproc != pageproc)
1341 		sync = TRUE;
1342 	else
1343 		sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1344 
1345 	/*
1346 	 * Step 2
1347 	 *
1348 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1349 	 * The page is left dirty until the pageout operation completes
1350 	 * successfully.
1351 	 */
1352 	for (i = 0; i < count; i += n) {
1353 		int j;
1354 		struct buf *bp;
1355 		daddr_t blk;
1356 
1357 		/*
1358 		 * Maximum I/O size is limited by a number of factors.
1359 		 */
1360 		n = min(BLIST_MAX_ALLOC, count - i);
1361 		n = min(n, nsw_cluster_max);
1362 
1363 		/*
1364 		 * Get biggest block of swap we can.  If we fail, fall
1365 		 * back and try to allocate a smaller block.  Don't go
1366 		 * overboard trying to allocate space if it would overly
1367 		 * fragment swap.
1368 		 */
1369 		while (
1370 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1371 		    n > 4
1372 		) {
1373 			n >>= 1;
1374 		}
1375 		if (blk == SWAPBLK_NONE) {
1376 			for (j = 0; j < n; ++j)
1377 				rtvals[i+j] = VM_PAGER_FAIL;
1378 			continue;
1379 		}
1380 
1381 		/*
1382 		 * All I/O parameters have been satisfied, build the I/O
1383 		 * request and assign the swap space.
1384 		 */
1385 		if (sync == TRUE) {
1386 			bp = getpbuf(&nsw_wcount_sync);
1387 		} else {
1388 			bp = getpbuf(&nsw_wcount_async);
1389 			bp->b_flags = B_ASYNC;
1390 		}
1391 		bp->b_flags |= B_PAGING;
1392 		bp->b_iocmd = BIO_WRITE;
1393 
1394 		bp->b_rcred = crhold(thread0.td_ucred);
1395 		bp->b_wcred = crhold(thread0.td_ucred);
1396 		bp->b_bcount = PAGE_SIZE * n;
1397 		bp->b_bufsize = PAGE_SIZE * n;
1398 		bp->b_blkno = blk;
1399 
1400 		VM_OBJECT_WLOCK(object);
1401 		for (j = 0; j < n; ++j) {
1402 			vm_page_t mreq = m[i+j];
1403 
1404 			swp_pager_meta_build(
1405 			    mreq->object,
1406 			    mreq->pindex,
1407 			    blk + j
1408 			);
1409 			vm_page_dirty(mreq);
1410 			rtvals[i+j] = VM_PAGER_OK;
1411 
1412 			mreq->oflags |= VPO_SWAPINPROG;
1413 			bp->b_pages[j] = mreq;
1414 		}
1415 		VM_OBJECT_WUNLOCK(object);
1416 		bp->b_npages = n;
1417 		/*
1418 		 * Must set dirty range for NFS to work.
1419 		 */
1420 		bp->b_dirtyoff = 0;
1421 		bp->b_dirtyend = bp->b_bcount;
1422 
1423 		PCPU_INC(cnt.v_swapout);
1424 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1425 
1426 		/*
1427 		 * asynchronous
1428 		 *
1429 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1430 		 */
1431 		if (sync == FALSE) {
1432 			bp->b_iodone = swp_pager_async_iodone;
1433 			BUF_KERNPROC(bp);
1434 			swp_pager_strategy(bp);
1435 
1436 			for (j = 0; j < n; ++j)
1437 				rtvals[i+j] = VM_PAGER_PEND;
1438 			/* restart outter loop */
1439 			continue;
1440 		}
1441 
1442 		/*
1443 		 * synchronous
1444 		 *
1445 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1446 		 */
1447 		bp->b_iodone = bdone;
1448 		swp_pager_strategy(bp);
1449 
1450 		/*
1451 		 * Wait for the sync I/O to complete, then update rtvals.
1452 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1453 		 * our async completion routine at the end, thus avoiding a
1454 		 * double-free.
1455 		 */
1456 		bwait(bp, PVM, "swwrt");
1457 		for (j = 0; j < n; ++j)
1458 			rtvals[i+j] = VM_PAGER_PEND;
1459 		/*
1460 		 * Now that we are through with the bp, we can call the
1461 		 * normal async completion, which frees everything up.
1462 		 */
1463 		swp_pager_async_iodone(bp);
1464 	}
1465 	VM_OBJECT_WLOCK(object);
1466 }
1467 
1468 /*
1469  *	swp_pager_async_iodone:
1470  *
1471  *	Completion routine for asynchronous reads and writes from/to swap.
1472  *	Also called manually by synchronous code to finish up a bp.
1473  *
1474  *	This routine may not sleep.
1475  */
1476 static void
1477 swp_pager_async_iodone(struct buf *bp)
1478 {
1479 	int i;
1480 	vm_object_t object = NULL;
1481 
1482 	/*
1483 	 * report error
1484 	 */
1485 	if (bp->b_ioflags & BIO_ERROR) {
1486 		printf(
1487 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1488 			"size %ld, error %d\n",
1489 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1490 		    (long)bp->b_blkno,
1491 		    (long)bp->b_bcount,
1492 		    bp->b_error
1493 		);
1494 	}
1495 
1496 	/*
1497 	 * remove the mapping for kernel virtual
1498 	 */
1499 	if ((bp->b_flags & B_UNMAPPED) != 0) {
1500 		bp->b_data = bp->b_kvaalloc;
1501 		bp->b_kvabase = bp->b_kvaalloc;
1502 		bp->b_flags &= ~B_UNMAPPED;
1503 	} else
1504 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1505 
1506 	if (bp->b_npages) {
1507 		object = bp->b_pages[0]->object;
1508 		VM_OBJECT_WLOCK(object);
1509 	}
1510 
1511 	/*
1512 	 * cleanup pages.  If an error occurs writing to swap, we are in
1513 	 * very serious trouble.  If it happens to be a disk error, though,
1514 	 * we may be able to recover by reassigning the swap later on.  So
1515 	 * in this case we remove the m->swapblk assignment for the page
1516 	 * but do not free it in the rlist.  The errornous block(s) are thus
1517 	 * never reallocated as swap.  Redirty the page and continue.
1518 	 */
1519 	for (i = 0; i < bp->b_npages; ++i) {
1520 		vm_page_t m = bp->b_pages[i];
1521 
1522 		m->oflags &= ~VPO_SWAPINPROG;
1523 		if (m->oflags & VPO_SWAPSLEEP) {
1524 			m->oflags &= ~VPO_SWAPSLEEP;
1525 			wakeup(&object->paging_in_progress);
1526 		}
1527 
1528 		if (bp->b_ioflags & BIO_ERROR) {
1529 			/*
1530 			 * If an error occurs I'd love to throw the swapblk
1531 			 * away without freeing it back to swapspace, so it
1532 			 * can never be used again.  But I can't from an
1533 			 * interrupt.
1534 			 */
1535 			if (bp->b_iocmd == BIO_READ) {
1536 				/*
1537 				 * When reading, reqpage needs to stay
1538 				 * locked for the parent, but all other
1539 				 * pages can be freed.  We still want to
1540 				 * wakeup the parent waiting on the page,
1541 				 * though.  ( also: pg_reqpage can be -1 and
1542 				 * not match anything ).
1543 				 *
1544 				 * We have to wake specifically requested pages
1545 				 * up too because we cleared VPO_SWAPINPROG and
1546 				 * someone may be waiting for that.
1547 				 *
1548 				 * NOTE: for reads, m->dirty will probably
1549 				 * be overridden by the original caller of
1550 				 * getpages so don't play cute tricks here.
1551 				 */
1552 				m->valid = 0;
1553 				if (i != bp->b_pager.pg_reqpage)
1554 					swp_pager_free_nrpage(m);
1555 				else {
1556 					vm_page_lock(m);
1557 					vm_page_flash(m);
1558 					vm_page_unlock(m);
1559 				}
1560 				/*
1561 				 * If i == bp->b_pager.pg_reqpage, do not wake
1562 				 * the page up.  The caller needs to.
1563 				 */
1564 			} else {
1565 				/*
1566 				 * If a write error occurs, reactivate page
1567 				 * so it doesn't clog the inactive list,
1568 				 * then finish the I/O.
1569 				 */
1570 				vm_page_dirty(m);
1571 				vm_page_lock(m);
1572 				vm_page_activate(m);
1573 				vm_page_unlock(m);
1574 				vm_page_sunbusy(m);
1575 			}
1576 		} else if (bp->b_iocmd == BIO_READ) {
1577 			/*
1578 			 * NOTE: for reads, m->dirty will probably be
1579 			 * overridden by the original caller of getpages so
1580 			 * we cannot set them in order to free the underlying
1581 			 * swap in a low-swap situation.  I don't think we'd
1582 			 * want to do that anyway, but it was an optimization
1583 			 * that existed in the old swapper for a time before
1584 			 * it got ripped out due to precisely this problem.
1585 			 *
1586 			 * If not the requested page then deactivate it.
1587 			 *
1588 			 * Note that the requested page, reqpage, is left
1589 			 * busied, but we still have to wake it up.  The
1590 			 * other pages are released (unbusied) by
1591 			 * vm_page_xunbusy().
1592 			 */
1593 			KASSERT(!pmap_page_is_mapped(m),
1594 			    ("swp_pager_async_iodone: page %p is mapped", m));
1595 			m->valid = VM_PAGE_BITS_ALL;
1596 			KASSERT(m->dirty == 0,
1597 			    ("swp_pager_async_iodone: page %p is dirty", m));
1598 
1599 			/*
1600 			 * We have to wake specifically requested pages
1601 			 * up too because we cleared VPO_SWAPINPROG and
1602 			 * could be waiting for it in getpages.  However,
1603 			 * be sure to not unbusy getpages specifically
1604 			 * requested page - getpages expects it to be
1605 			 * left busy.
1606 			 */
1607 			if (i != bp->b_pager.pg_reqpage) {
1608 				vm_page_lock(m);
1609 				vm_page_deactivate(m);
1610 				vm_page_unlock(m);
1611 				vm_page_xunbusy(m);
1612 			} else {
1613 				vm_page_lock(m);
1614 				vm_page_flash(m);
1615 				vm_page_unlock(m);
1616 			}
1617 		} else {
1618 			/*
1619 			 * For write success, clear the dirty
1620 			 * status, then finish the I/O ( which decrements the
1621 			 * busy count and possibly wakes waiter's up ).
1622 			 */
1623 			KASSERT(!pmap_page_is_write_mapped(m),
1624 			    ("swp_pager_async_iodone: page %p is not write"
1625 			    " protected", m));
1626 			vm_page_undirty(m);
1627 			vm_page_sunbusy(m);
1628 			if (vm_page_count_severe()) {
1629 				vm_page_lock(m);
1630 				vm_page_try_to_cache(m);
1631 				vm_page_unlock(m);
1632 			}
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * adjust pip.  NOTE: the original parent may still have its own
1638 	 * pip refs on the object.
1639 	 */
1640 	if (object != NULL) {
1641 		vm_object_pip_wakeupn(object, bp->b_npages);
1642 		VM_OBJECT_WUNLOCK(object);
1643 	}
1644 
1645 	/*
1646 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1647 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1648 	 * trigger a KASSERT in relpbuf().
1649 	 */
1650 	if (bp->b_vp) {
1651 		    bp->b_vp = NULL;
1652 		    bp->b_bufobj = NULL;
1653 	}
1654 	/*
1655 	 * release the physical I/O buffer
1656 	 */
1657 	relpbuf(
1658 	    bp,
1659 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1660 		((bp->b_flags & B_ASYNC) ?
1661 		    &nsw_wcount_async :
1662 		    &nsw_wcount_sync
1663 		)
1664 	    )
1665 	);
1666 }
1667 
1668 /*
1669  *	swap_pager_isswapped:
1670  *
1671  *	Return 1 if at least one page in the given object is paged
1672  *	out to the given swap device.
1673  *
1674  *	This routine may not sleep.
1675  */
1676 int
1677 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1678 {
1679 	daddr_t index = 0;
1680 	int bcount;
1681 	int i;
1682 
1683 	VM_OBJECT_ASSERT_WLOCKED(object);
1684 	if (object->type != OBJT_SWAP)
1685 		return (0);
1686 
1687 	mtx_lock(&swhash_mtx);
1688 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1689 		struct swblock *swap;
1690 
1691 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1692 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1693 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1694 					mtx_unlock(&swhash_mtx);
1695 					return (1);
1696 				}
1697 			}
1698 		}
1699 		index += SWAP_META_PAGES;
1700 	}
1701 	mtx_unlock(&swhash_mtx);
1702 	return (0);
1703 }
1704 
1705 /*
1706  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1707  *
1708  *	This routine dissociates the page at the given index within a
1709  *	swap block from its backing store, paging it in if necessary.
1710  *	If the page is paged in, it is placed in the inactive queue,
1711  *	since it had its backing store ripped out from under it.
1712  *	We also attempt to swap in all other pages in the swap block,
1713  *	we only guarantee that the one at the specified index is
1714  *	paged in.
1715  *
1716  *	XXX - The code to page the whole block in doesn't work, so we
1717  *	      revert to the one-by-one behavior for now.  Sigh.
1718  */
1719 static inline void
1720 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1721 {
1722 	vm_page_t m;
1723 
1724 	vm_object_pip_add(object, 1);
1725 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1726 	if (m->valid == VM_PAGE_BITS_ALL) {
1727 		vm_object_pip_wakeup(object);
1728 		vm_page_dirty(m);
1729 		vm_page_lock(m);
1730 		vm_page_activate(m);
1731 		vm_page_unlock(m);
1732 		vm_page_xunbusy(m);
1733 		vm_pager_page_unswapped(m);
1734 		return;
1735 	}
1736 
1737 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1738 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1739 	vm_object_pip_wakeup(object);
1740 	vm_page_dirty(m);
1741 	vm_page_lock(m);
1742 	vm_page_deactivate(m);
1743 	vm_page_unlock(m);
1744 	vm_page_xunbusy(m);
1745 	vm_pager_page_unswapped(m);
1746 }
1747 
1748 /*
1749  *	swap_pager_swapoff:
1750  *
1751  *	Page in all of the pages that have been paged out to the
1752  *	given device.  The corresponding blocks in the bitmap must be
1753  *	marked as allocated and the device must be flagged SW_CLOSING.
1754  *	There may be no processes swapped out to the device.
1755  *
1756  *	This routine may block.
1757  */
1758 static void
1759 swap_pager_swapoff(struct swdevt *sp)
1760 {
1761 	struct swblock *swap;
1762 	int i, j, retries;
1763 
1764 	GIANT_REQUIRED;
1765 
1766 	retries = 0;
1767 full_rescan:
1768 	mtx_lock(&swhash_mtx);
1769 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1770 restart:
1771 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1772 			vm_object_t object = swap->swb_object;
1773 			vm_pindex_t pindex = swap->swb_index;
1774 			for (j = 0; j < SWAP_META_PAGES; ++j) {
1775 				if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1776 					/* avoid deadlock */
1777 					if (!VM_OBJECT_TRYWLOCK(object)) {
1778 						break;
1779 					} else {
1780 						mtx_unlock(&swhash_mtx);
1781 						swp_pager_force_pagein(object,
1782 						    pindex + j);
1783 						VM_OBJECT_WUNLOCK(object);
1784 						mtx_lock(&swhash_mtx);
1785 						goto restart;
1786 					}
1787 				}
1788 			}
1789 		}
1790 	}
1791 	mtx_unlock(&swhash_mtx);
1792 	if (sp->sw_used) {
1793 		/*
1794 		 * Objects may be locked or paging to the device being
1795 		 * removed, so we will miss their pages and need to
1796 		 * make another pass.  We have marked this device as
1797 		 * SW_CLOSING, so the activity should finish soon.
1798 		 */
1799 		retries++;
1800 		if (retries > 100) {
1801 			panic("swapoff: failed to locate %d swap blocks",
1802 			    sp->sw_used);
1803 		}
1804 		pause("swpoff", hz / 20);
1805 		goto full_rescan;
1806 	}
1807 }
1808 
1809 /************************************************************************
1810  *				SWAP META DATA 				*
1811  ************************************************************************
1812  *
1813  *	These routines manipulate the swap metadata stored in the
1814  *	OBJT_SWAP object.
1815  *
1816  *	Swap metadata is implemented with a global hash and not directly
1817  *	linked into the object.  Instead the object simply contains
1818  *	appropriate tracking counters.
1819  */
1820 
1821 /*
1822  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1823  *
1824  *	We first convert the object to a swap object if it is a default
1825  *	object.
1826  *
1827  *	The specified swapblk is added to the object's swap metadata.  If
1828  *	the swapblk is not valid, it is freed instead.  Any previously
1829  *	assigned swapblk is freed.
1830  */
1831 static void
1832 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1833 {
1834 	static volatile int exhausted;
1835 	struct swblock *swap;
1836 	struct swblock **pswap;
1837 	int idx;
1838 
1839 	VM_OBJECT_ASSERT_WLOCKED(object);
1840 	/*
1841 	 * Convert default object to swap object if necessary
1842 	 */
1843 	if (object->type != OBJT_SWAP) {
1844 		object->type = OBJT_SWAP;
1845 		object->un_pager.swp.swp_bcount = 0;
1846 
1847 		if (object->handle != NULL) {
1848 			mtx_lock(&sw_alloc_mtx);
1849 			TAILQ_INSERT_TAIL(
1850 			    NOBJLIST(object->handle),
1851 			    object,
1852 			    pager_object_list
1853 			);
1854 			mtx_unlock(&sw_alloc_mtx);
1855 		}
1856 	}
1857 
1858 	/*
1859 	 * Locate hash entry.  If not found create, but if we aren't adding
1860 	 * anything just return.  If we run out of space in the map we wait
1861 	 * and, since the hash table may have changed, retry.
1862 	 */
1863 retry:
1864 	mtx_lock(&swhash_mtx);
1865 	pswap = swp_pager_hash(object, pindex);
1866 
1867 	if ((swap = *pswap) == NULL) {
1868 		int i;
1869 
1870 		if (swapblk == SWAPBLK_NONE)
1871 			goto done;
1872 
1873 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
1874 		    (curproc == pageproc ? M_USE_RESERVE : 0));
1875 		if (swap == NULL) {
1876 			mtx_unlock(&swhash_mtx);
1877 			VM_OBJECT_WUNLOCK(object);
1878 			if (uma_zone_exhausted(swap_zone)) {
1879 				if (atomic_cmpset_int(&exhausted, 0, 1))
1880 					printf("swap zone exhausted, "
1881 					    "increase kern.maxswzone\n");
1882 				vm_pageout_oom(VM_OOM_SWAPZ);
1883 				pause("swzonex", 10);
1884 			} else
1885 				VM_WAIT;
1886 			VM_OBJECT_WLOCK(object);
1887 			goto retry;
1888 		}
1889 
1890 		if (atomic_cmpset_int(&exhausted, 1, 0))
1891 			printf("swap zone ok\n");
1892 
1893 		swap->swb_hnext = NULL;
1894 		swap->swb_object = object;
1895 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1896 		swap->swb_count = 0;
1897 
1898 		++object->un_pager.swp.swp_bcount;
1899 
1900 		for (i = 0; i < SWAP_META_PAGES; ++i)
1901 			swap->swb_pages[i] = SWAPBLK_NONE;
1902 	}
1903 
1904 	/*
1905 	 * Delete prior contents of metadata
1906 	 */
1907 	idx = pindex & SWAP_META_MASK;
1908 
1909 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1910 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1911 		--swap->swb_count;
1912 	}
1913 
1914 	/*
1915 	 * Enter block into metadata
1916 	 */
1917 	swap->swb_pages[idx] = swapblk;
1918 	if (swapblk != SWAPBLK_NONE)
1919 		++swap->swb_count;
1920 done:
1921 	mtx_unlock(&swhash_mtx);
1922 }
1923 
1924 /*
1925  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1926  *
1927  *	The requested range of blocks is freed, with any associated swap
1928  *	returned to the swap bitmap.
1929  *
1930  *	This routine will free swap metadata structures as they are cleaned
1931  *	out.  This routine does *NOT* operate on swap metadata associated
1932  *	with resident pages.
1933  */
1934 static void
1935 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1936 {
1937 
1938 	VM_OBJECT_ASSERT_LOCKED(object);
1939 	if (object->type != OBJT_SWAP)
1940 		return;
1941 
1942 	while (count > 0) {
1943 		struct swblock **pswap;
1944 		struct swblock *swap;
1945 
1946 		mtx_lock(&swhash_mtx);
1947 		pswap = swp_pager_hash(object, index);
1948 
1949 		if ((swap = *pswap) != NULL) {
1950 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1951 
1952 			if (v != SWAPBLK_NONE) {
1953 				swp_pager_freeswapspace(v, 1);
1954 				swap->swb_pages[index & SWAP_META_MASK] =
1955 					SWAPBLK_NONE;
1956 				if (--swap->swb_count == 0) {
1957 					*pswap = swap->swb_hnext;
1958 					uma_zfree(swap_zone, swap);
1959 					--object->un_pager.swp.swp_bcount;
1960 				}
1961 			}
1962 			--count;
1963 			++index;
1964 		} else {
1965 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1966 			count -= n;
1967 			index += n;
1968 		}
1969 		mtx_unlock(&swhash_mtx);
1970 	}
1971 }
1972 
1973 /*
1974  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1975  *
1976  *	This routine locates and destroys all swap metadata associated with
1977  *	an object.
1978  */
1979 static void
1980 swp_pager_meta_free_all(vm_object_t object)
1981 {
1982 	daddr_t index = 0;
1983 
1984 	VM_OBJECT_ASSERT_WLOCKED(object);
1985 	if (object->type != OBJT_SWAP)
1986 		return;
1987 
1988 	while (object->un_pager.swp.swp_bcount) {
1989 		struct swblock **pswap;
1990 		struct swblock *swap;
1991 
1992 		mtx_lock(&swhash_mtx);
1993 		pswap = swp_pager_hash(object, index);
1994 		if ((swap = *pswap) != NULL) {
1995 			int i;
1996 
1997 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1998 				daddr_t v = swap->swb_pages[i];
1999 				if (v != SWAPBLK_NONE) {
2000 					--swap->swb_count;
2001 					swp_pager_freeswapspace(v, 1);
2002 				}
2003 			}
2004 			if (swap->swb_count != 0)
2005 				panic("swap_pager_meta_free_all: swb_count != 0");
2006 			*pswap = swap->swb_hnext;
2007 			uma_zfree(swap_zone, swap);
2008 			--object->un_pager.swp.swp_bcount;
2009 		}
2010 		mtx_unlock(&swhash_mtx);
2011 		index += SWAP_META_PAGES;
2012 	}
2013 }
2014 
2015 /*
2016  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2017  *
2018  *	This routine is capable of looking up, popping, or freeing
2019  *	swapblk assignments in the swap meta data or in the vm_page_t.
2020  *	The routine typically returns the swapblk being looked-up, or popped,
2021  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2022  *	was invalid.  This routine will automatically free any invalid
2023  *	meta-data swapblks.
2024  *
2025  *	It is not possible to store invalid swapblks in the swap meta data
2026  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2027  *
2028  *	When acting on a busy resident page and paging is in progress, we
2029  *	have to wait until paging is complete but otherwise can act on the
2030  *	busy page.
2031  *
2032  *	SWM_FREE	remove and free swap block from metadata
2033  *	SWM_POP		remove from meta data but do not free.. pop it out
2034  */
2035 static daddr_t
2036 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2037 {
2038 	struct swblock **pswap;
2039 	struct swblock *swap;
2040 	daddr_t r1;
2041 	int idx;
2042 
2043 	VM_OBJECT_ASSERT_LOCKED(object);
2044 	/*
2045 	 * The meta data only exists of the object is OBJT_SWAP
2046 	 * and even then might not be allocated yet.
2047 	 */
2048 	if (object->type != OBJT_SWAP)
2049 		return (SWAPBLK_NONE);
2050 
2051 	r1 = SWAPBLK_NONE;
2052 	mtx_lock(&swhash_mtx);
2053 	pswap = swp_pager_hash(object, pindex);
2054 
2055 	if ((swap = *pswap) != NULL) {
2056 		idx = pindex & SWAP_META_MASK;
2057 		r1 = swap->swb_pages[idx];
2058 
2059 		if (r1 != SWAPBLK_NONE) {
2060 			if (flags & SWM_FREE) {
2061 				swp_pager_freeswapspace(r1, 1);
2062 				r1 = SWAPBLK_NONE;
2063 			}
2064 			if (flags & (SWM_FREE|SWM_POP)) {
2065 				swap->swb_pages[idx] = SWAPBLK_NONE;
2066 				if (--swap->swb_count == 0) {
2067 					*pswap = swap->swb_hnext;
2068 					uma_zfree(swap_zone, swap);
2069 					--object->un_pager.swp.swp_bcount;
2070 				}
2071 			}
2072 		}
2073 	}
2074 	mtx_unlock(&swhash_mtx);
2075 	return (r1);
2076 }
2077 
2078 /*
2079  * System call swapon(name) enables swapping on device name,
2080  * which must be in the swdevsw.  Return EBUSY
2081  * if already swapping on this device.
2082  */
2083 #ifndef _SYS_SYSPROTO_H_
2084 struct swapon_args {
2085 	char *name;
2086 };
2087 #endif
2088 
2089 /*
2090  * MPSAFE
2091  */
2092 /* ARGSUSED */
2093 int
2094 sys_swapon(struct thread *td, struct swapon_args *uap)
2095 {
2096 	struct vattr attr;
2097 	struct vnode *vp;
2098 	struct nameidata nd;
2099 	int error;
2100 
2101 	error = priv_check(td, PRIV_SWAPON);
2102 	if (error)
2103 		return (error);
2104 
2105 	mtx_lock(&Giant);
2106 	while (swdev_syscall_active)
2107 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2108 	swdev_syscall_active = 1;
2109 
2110 	/*
2111 	 * Swap metadata may not fit in the KVM if we have physical
2112 	 * memory of >1GB.
2113 	 */
2114 	if (swap_zone == NULL) {
2115 		error = ENOMEM;
2116 		goto done;
2117 	}
2118 
2119 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2120 	    uap->name, td);
2121 	error = namei(&nd);
2122 	if (error)
2123 		goto done;
2124 
2125 	NDFREE(&nd, NDF_ONLY_PNBUF);
2126 	vp = nd.ni_vp;
2127 
2128 	if (vn_isdisk(vp, &error)) {
2129 		error = swapongeom(td, vp);
2130 	} else if (vp->v_type == VREG &&
2131 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2132 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2133 		/*
2134 		 * Allow direct swapping to NFS regular files in the same
2135 		 * way that nfs_mountroot() sets up diskless swapping.
2136 		 */
2137 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2138 	}
2139 
2140 	if (error)
2141 		vrele(vp);
2142 done:
2143 	swdev_syscall_active = 0;
2144 	wakeup_one(&swdev_syscall_active);
2145 	mtx_unlock(&Giant);
2146 	return (error);
2147 }
2148 
2149 /*
2150  * Check that the total amount of swap currently configured does not
2151  * exceed half the theoretical maximum.  If it does, print a warning
2152  * message and return -1; otherwise, return 0.
2153  */
2154 static int
2155 swapon_check_swzone(unsigned long npages)
2156 {
2157 	unsigned long maxpages;
2158 
2159 	/* absolute maximum we can handle assuming 100% efficiency */
2160 	maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2161 
2162 	/* recommend using no more than half that amount */
2163 	if (npages > maxpages / 2) {
2164 		printf("warning: total configured swap (%lu pages) "
2165 		    "exceeds maximum recommended amount (%lu pages).\n",
2166 		    npages, maxpages / 2);
2167 		printf("warning: increase kern.maxswzone "
2168 		    "or reduce amount of swap.\n");
2169 		return (-1);
2170 	}
2171 	return (0);
2172 }
2173 
2174 static void
2175 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2176     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2177 {
2178 	struct swdevt *sp, *tsp;
2179 	swblk_t dvbase;
2180 	u_long mblocks;
2181 
2182 	/*
2183 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2184 	 * First chop nblks off to page-align it, then convert.
2185 	 *
2186 	 * sw->sw_nblks is in page-sized chunks now too.
2187 	 */
2188 	nblks &= ~(ctodb(1) - 1);
2189 	nblks = dbtoc(nblks);
2190 
2191 	/*
2192 	 * If we go beyond this, we get overflows in the radix
2193 	 * tree bitmap code.
2194 	 */
2195 	mblocks = 0x40000000 / BLIST_META_RADIX;
2196 	if (nblks > mblocks) {
2197 		printf(
2198     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2199 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2200 		nblks = mblocks;
2201 	}
2202 
2203 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2204 	sp->sw_vp = vp;
2205 	sp->sw_id = id;
2206 	sp->sw_dev = dev;
2207 	sp->sw_flags = 0;
2208 	sp->sw_nblks = nblks;
2209 	sp->sw_used = 0;
2210 	sp->sw_strategy = strategy;
2211 	sp->sw_close = close;
2212 	sp->sw_flags = flags;
2213 
2214 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2215 	/*
2216 	 * Do not free the first two block in order to avoid overwriting
2217 	 * any bsd label at the front of the partition
2218 	 */
2219 	blist_free(sp->sw_blist, 2, nblks - 2);
2220 
2221 	dvbase = 0;
2222 	mtx_lock(&sw_dev_mtx);
2223 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2224 		if (tsp->sw_end >= dvbase) {
2225 			/*
2226 			 * We put one uncovered page between the devices
2227 			 * in order to definitively prevent any cross-device
2228 			 * I/O requests
2229 			 */
2230 			dvbase = tsp->sw_end + 1;
2231 		}
2232 	}
2233 	sp->sw_first = dvbase;
2234 	sp->sw_end = dvbase + nblks;
2235 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2236 	nswapdev++;
2237 	swap_pager_avail += nblks;
2238 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2239 	swapon_check_swzone(swap_total / PAGE_SIZE);
2240 	swp_sizecheck();
2241 	mtx_unlock(&sw_dev_mtx);
2242 }
2243 
2244 /*
2245  * SYSCALL: swapoff(devname)
2246  *
2247  * Disable swapping on the given device.
2248  *
2249  * XXX: Badly designed system call: it should use a device index
2250  * rather than filename as specification.  We keep sw_vp around
2251  * only to make this work.
2252  */
2253 #ifndef _SYS_SYSPROTO_H_
2254 struct swapoff_args {
2255 	char *name;
2256 };
2257 #endif
2258 
2259 /*
2260  * MPSAFE
2261  */
2262 /* ARGSUSED */
2263 int
2264 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2265 {
2266 	struct vnode *vp;
2267 	struct nameidata nd;
2268 	struct swdevt *sp;
2269 	int error;
2270 
2271 	error = priv_check(td, PRIV_SWAPOFF);
2272 	if (error)
2273 		return (error);
2274 
2275 	mtx_lock(&Giant);
2276 	while (swdev_syscall_active)
2277 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2278 	swdev_syscall_active = 1;
2279 
2280 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2281 	    td);
2282 	error = namei(&nd);
2283 	if (error)
2284 		goto done;
2285 	NDFREE(&nd, NDF_ONLY_PNBUF);
2286 	vp = nd.ni_vp;
2287 
2288 	mtx_lock(&sw_dev_mtx);
2289 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2290 		if (sp->sw_vp == vp)
2291 			break;
2292 	}
2293 	mtx_unlock(&sw_dev_mtx);
2294 	if (sp == NULL) {
2295 		error = EINVAL;
2296 		goto done;
2297 	}
2298 	error = swapoff_one(sp, td->td_ucred);
2299 done:
2300 	swdev_syscall_active = 0;
2301 	wakeup_one(&swdev_syscall_active);
2302 	mtx_unlock(&Giant);
2303 	return (error);
2304 }
2305 
2306 static int
2307 swapoff_one(struct swdevt *sp, struct ucred *cred)
2308 {
2309 	u_long nblks, dvbase;
2310 #ifdef MAC
2311 	int error;
2312 #endif
2313 
2314 	mtx_assert(&Giant, MA_OWNED);
2315 #ifdef MAC
2316 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2317 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2318 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2319 	if (error != 0)
2320 		return (error);
2321 #endif
2322 	nblks = sp->sw_nblks;
2323 
2324 	/*
2325 	 * We can turn off this swap device safely only if the
2326 	 * available virtual memory in the system will fit the amount
2327 	 * of data we will have to page back in, plus an epsilon so
2328 	 * the system doesn't become critically low on swap space.
2329 	 */
2330 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail <
2331 	    nblks + nswap_lowat) {
2332 		return (ENOMEM);
2333 	}
2334 
2335 	/*
2336 	 * Prevent further allocations on this device.
2337 	 */
2338 	mtx_lock(&sw_dev_mtx);
2339 	sp->sw_flags |= SW_CLOSING;
2340 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2341 		swap_pager_avail -= blist_fill(sp->sw_blist,
2342 		     dvbase, dmmax);
2343 	}
2344 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2345 	mtx_unlock(&sw_dev_mtx);
2346 
2347 	/*
2348 	 * Page in the contents of the device and close it.
2349 	 */
2350 	swap_pager_swapoff(sp);
2351 
2352 	sp->sw_close(curthread, sp);
2353 	sp->sw_id = NULL;
2354 	mtx_lock(&sw_dev_mtx);
2355 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2356 	nswapdev--;
2357 	if (nswapdev == 0) {
2358 		swap_pager_full = 2;
2359 		swap_pager_almost_full = 1;
2360 	}
2361 	if (swdevhd == sp)
2362 		swdevhd = NULL;
2363 	mtx_unlock(&sw_dev_mtx);
2364 	blist_destroy(sp->sw_blist);
2365 	free(sp, M_VMPGDATA);
2366 	return (0);
2367 }
2368 
2369 void
2370 swapoff_all(void)
2371 {
2372 	struct swdevt *sp, *spt;
2373 	const char *devname;
2374 	int error;
2375 
2376 	mtx_lock(&Giant);
2377 	while (swdev_syscall_active)
2378 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2379 	swdev_syscall_active = 1;
2380 
2381 	mtx_lock(&sw_dev_mtx);
2382 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2383 		mtx_unlock(&sw_dev_mtx);
2384 		if (vn_isdisk(sp->sw_vp, NULL))
2385 			devname = devtoname(sp->sw_vp->v_rdev);
2386 		else
2387 			devname = "[file]";
2388 		error = swapoff_one(sp, thread0.td_ucred);
2389 		if (error != 0) {
2390 			printf("Cannot remove swap device %s (error=%d), "
2391 			    "skipping.\n", devname, error);
2392 		} else if (bootverbose) {
2393 			printf("Swap device %s removed.\n", devname);
2394 		}
2395 		mtx_lock(&sw_dev_mtx);
2396 	}
2397 	mtx_unlock(&sw_dev_mtx);
2398 
2399 	swdev_syscall_active = 0;
2400 	wakeup_one(&swdev_syscall_active);
2401 	mtx_unlock(&Giant);
2402 }
2403 
2404 void
2405 swap_pager_status(int *total, int *used)
2406 {
2407 	struct swdevt *sp;
2408 
2409 	*total = 0;
2410 	*used = 0;
2411 	mtx_lock(&sw_dev_mtx);
2412 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2413 		*total += sp->sw_nblks;
2414 		*used += sp->sw_used;
2415 	}
2416 	mtx_unlock(&sw_dev_mtx);
2417 }
2418 
2419 int
2420 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2421 {
2422 	struct swdevt *sp;
2423 	const char *tmp_devname;
2424 	int error, n;
2425 
2426 	n = 0;
2427 	error = ENOENT;
2428 	mtx_lock(&sw_dev_mtx);
2429 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2430 		if (n != name) {
2431 			n++;
2432 			continue;
2433 		}
2434 		xs->xsw_version = XSWDEV_VERSION;
2435 		xs->xsw_dev = sp->sw_dev;
2436 		xs->xsw_flags = sp->sw_flags;
2437 		xs->xsw_nblks = sp->sw_nblks;
2438 		xs->xsw_used = sp->sw_used;
2439 		if (devname != NULL) {
2440 			if (vn_isdisk(sp->sw_vp, NULL))
2441 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2442 			else
2443 				tmp_devname = "[file]";
2444 			strncpy(devname, tmp_devname, len);
2445 		}
2446 		error = 0;
2447 		break;
2448 	}
2449 	mtx_unlock(&sw_dev_mtx);
2450 	return (error);
2451 }
2452 
2453 static int
2454 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2455 {
2456 	struct xswdev xs;
2457 	int error;
2458 
2459 	if (arg2 != 1)			/* name length */
2460 		return (EINVAL);
2461 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2462 	if (error != 0)
2463 		return (error);
2464 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2465 	return (error);
2466 }
2467 
2468 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2469     "Number of swap devices");
2470 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2471     "Swap statistics by device");
2472 
2473 /*
2474  * vmspace_swap_count() - count the approximate swap usage in pages for a
2475  *			  vmspace.
2476  *
2477  *	The map must be locked.
2478  *
2479  *	Swap usage is determined by taking the proportional swap used by
2480  *	VM objects backing the VM map.  To make up for fractional losses,
2481  *	if the VM object has any swap use at all the associated map entries
2482  *	count for at least 1 swap page.
2483  */
2484 long
2485 vmspace_swap_count(struct vmspace *vmspace)
2486 {
2487 	vm_map_t map;
2488 	vm_map_entry_t cur;
2489 	vm_object_t object;
2490 	long count, n;
2491 
2492 	map = &vmspace->vm_map;
2493 	count = 0;
2494 
2495 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2496 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2497 		    (object = cur->object.vm_object) != NULL) {
2498 			VM_OBJECT_WLOCK(object);
2499 			if (object->type == OBJT_SWAP &&
2500 			    object->un_pager.swp.swp_bcount != 0) {
2501 				n = (cur->end - cur->start) / PAGE_SIZE;
2502 				count += object->un_pager.swp.swp_bcount *
2503 				    SWAP_META_PAGES * n / object->size + 1;
2504 			}
2505 			VM_OBJECT_WUNLOCK(object);
2506 		}
2507 	}
2508 	return (count);
2509 }
2510 
2511 /*
2512  * GEOM backend
2513  *
2514  * Swapping onto disk devices.
2515  *
2516  */
2517 
2518 static g_orphan_t swapgeom_orphan;
2519 
2520 static struct g_class g_swap_class = {
2521 	.name = "SWAP",
2522 	.version = G_VERSION,
2523 	.orphan = swapgeom_orphan,
2524 };
2525 
2526 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2527 
2528 
2529 static void
2530 swapgeom_close_ev(void *arg, int flags)
2531 {
2532 	struct g_consumer *cp;
2533 
2534 	cp = arg;
2535 	g_access(cp, -1, -1, 0);
2536 	g_detach(cp);
2537 	g_destroy_consumer(cp);
2538 }
2539 
2540 static void
2541 swapgeom_done(struct bio *bp2)
2542 {
2543 	struct swdevt *sp;
2544 	struct buf *bp;
2545 	struct g_consumer *cp;
2546 
2547 	bp = bp2->bio_caller2;
2548 	cp = bp2->bio_from;
2549 	bp->b_ioflags = bp2->bio_flags;
2550 	if (bp2->bio_error)
2551 		bp->b_ioflags |= BIO_ERROR;
2552 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2553 	bp->b_error = bp2->bio_error;
2554 	bufdone(bp);
2555 	mtx_lock(&sw_dev_mtx);
2556 	if ((--cp->index) == 0 && cp->private) {
2557 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) {
2558 			sp = bp2->bio_caller1;
2559 			sp->sw_id = NULL;
2560 		}
2561 	}
2562 	mtx_unlock(&sw_dev_mtx);
2563 	g_destroy_bio(bp2);
2564 }
2565 
2566 static void
2567 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2568 {
2569 	struct bio *bio;
2570 	struct g_consumer *cp;
2571 
2572 	mtx_lock(&sw_dev_mtx);
2573 	cp = sp->sw_id;
2574 	if (cp == NULL) {
2575 		mtx_unlock(&sw_dev_mtx);
2576 		bp->b_error = ENXIO;
2577 		bp->b_ioflags |= BIO_ERROR;
2578 		bufdone(bp);
2579 		return;
2580 	}
2581 	cp->index++;
2582 	mtx_unlock(&sw_dev_mtx);
2583 	if (bp->b_iocmd == BIO_WRITE)
2584 		bio = g_new_bio();
2585 	else
2586 		bio = g_alloc_bio();
2587 	if (bio == NULL) {
2588 		bp->b_error = ENOMEM;
2589 		bp->b_ioflags |= BIO_ERROR;
2590 		bufdone(bp);
2591 		return;
2592 	}
2593 
2594 	bio->bio_caller1 = sp;
2595 	bio->bio_caller2 = bp;
2596 	bio->bio_cmd = bp->b_iocmd;
2597 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2598 	bio->bio_length = bp->b_bcount;
2599 	bio->bio_done = swapgeom_done;
2600 	if ((bp->b_flags & B_UNMAPPED) != 0) {
2601 		bio->bio_ma = bp->b_pages;
2602 		bio->bio_data = unmapped_buf;
2603 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2604 		bio->bio_ma_n = bp->b_npages;
2605 		bio->bio_flags |= BIO_UNMAPPED;
2606 	} else {
2607 		bio->bio_data = bp->b_data;
2608 		bio->bio_ma = NULL;
2609 	}
2610 	g_io_request(bio, cp);
2611 	return;
2612 }
2613 
2614 static void
2615 swapgeom_orphan(struct g_consumer *cp)
2616 {
2617 	struct swdevt *sp;
2618 	int destroy;
2619 
2620 	mtx_lock(&sw_dev_mtx);
2621 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2622 		if (sp->sw_id == cp) {
2623 			sp->sw_flags |= SW_CLOSING;
2624 			break;
2625 		}
2626 	}
2627 	cp->private = (void *)(uintptr_t)1;
2628 	destroy = ((sp != NULL) && (cp->index == 0));
2629 	if (destroy)
2630 		sp->sw_id = NULL;
2631 	mtx_unlock(&sw_dev_mtx);
2632 	if (destroy)
2633 		swapgeom_close_ev(cp, 0);
2634 }
2635 
2636 static void
2637 swapgeom_close(struct thread *td, struct swdevt *sw)
2638 {
2639 	struct g_consumer *cp;
2640 
2641 	mtx_lock(&sw_dev_mtx);
2642 	cp = sw->sw_id;
2643 	sw->sw_id = NULL;
2644 	mtx_unlock(&sw_dev_mtx);
2645 	/* XXX: direct call when Giant untangled */
2646 	if (cp != NULL)
2647 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2648 }
2649 
2650 
2651 struct swh0h0 {
2652 	struct cdev *dev;
2653 	struct vnode *vp;
2654 	int	error;
2655 };
2656 
2657 static void
2658 swapongeom_ev(void *arg, int flags)
2659 {
2660 	struct swh0h0 *swh;
2661 	struct g_provider *pp;
2662 	struct g_consumer *cp;
2663 	static struct g_geom *gp;
2664 	struct swdevt *sp;
2665 	u_long nblks;
2666 	int error;
2667 
2668 	swh = arg;
2669 	swh->error = 0;
2670 	pp = g_dev_getprovider(swh->dev);
2671 	if (pp == NULL) {
2672 		swh->error = ENODEV;
2673 		return;
2674 	}
2675 	mtx_lock(&sw_dev_mtx);
2676 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2677 		cp = sp->sw_id;
2678 		if (cp != NULL && cp->provider == pp) {
2679 			mtx_unlock(&sw_dev_mtx);
2680 			swh->error = EBUSY;
2681 			return;
2682 		}
2683 	}
2684 	mtx_unlock(&sw_dev_mtx);
2685 	if (gp == NULL)
2686 		gp = g_new_geomf(&g_swap_class, "swap");
2687 	cp = g_new_consumer(gp);
2688 	cp->index = 0;		/* Number of active I/Os. */
2689 	cp->private = NULL;	/* Orphanization flag */
2690 	g_attach(cp, pp);
2691 	/*
2692 	 * XXX: Everytime you think you can improve the margin for
2693 	 * footshooting, somebody depends on the ability to do so:
2694 	 * savecore(8) wants to write to our swapdev so we cannot
2695 	 * set an exclusive count :-(
2696 	 */
2697 	error = g_access(cp, 1, 1, 0);
2698 	if (error) {
2699 		g_detach(cp);
2700 		g_destroy_consumer(cp);
2701 		swh->error = error;
2702 		return;
2703 	}
2704 	nblks = pp->mediasize / DEV_BSIZE;
2705 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2706 	    swapgeom_close, dev2udev(swh->dev),
2707 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2708 	swh->error = 0;
2709 }
2710 
2711 static int
2712 swapongeom(struct thread *td, struct vnode *vp)
2713 {
2714 	int error;
2715 	struct swh0h0 swh;
2716 
2717 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2718 
2719 	swh.dev = vp->v_rdev;
2720 	swh.vp = vp;
2721 	swh.error = 0;
2722 	/* XXX: direct call when Giant untangled */
2723 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2724 	if (!error)
2725 		error = swh.error;
2726 	VOP_UNLOCK(vp, 0);
2727 	return (error);
2728 }
2729 
2730 /*
2731  * VNODE backend
2732  *
2733  * This is used mainly for network filesystem (read: probably only tested
2734  * with NFS) swapfiles.
2735  *
2736  */
2737 
2738 static void
2739 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2740 {
2741 	struct vnode *vp2;
2742 
2743 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2744 
2745 	vp2 = sp->sw_id;
2746 	vhold(vp2);
2747 	if (bp->b_iocmd == BIO_WRITE) {
2748 		if (bp->b_bufobj)
2749 			bufobj_wdrop(bp->b_bufobj);
2750 		bufobj_wref(&vp2->v_bufobj);
2751 	}
2752 	if (bp->b_bufobj != &vp2->v_bufobj)
2753 		bp->b_bufobj = &vp2->v_bufobj;
2754 	bp->b_vp = vp2;
2755 	bp->b_iooffset = dbtob(bp->b_blkno);
2756 	bstrategy(bp);
2757 	return;
2758 }
2759 
2760 static void
2761 swapdev_close(struct thread *td, struct swdevt *sp)
2762 {
2763 
2764 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2765 	vrele(sp->sw_vp);
2766 }
2767 
2768 
2769 static int
2770 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2771 {
2772 	struct swdevt *sp;
2773 	int error;
2774 
2775 	if (nblks == 0)
2776 		return (ENXIO);
2777 	mtx_lock(&sw_dev_mtx);
2778 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2779 		if (sp->sw_id == vp) {
2780 			mtx_unlock(&sw_dev_mtx);
2781 			return (EBUSY);
2782 		}
2783 	}
2784 	mtx_unlock(&sw_dev_mtx);
2785 
2786 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2787 #ifdef MAC
2788 	error = mac_system_check_swapon(td->td_ucred, vp);
2789 	if (error == 0)
2790 #endif
2791 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2792 	(void) VOP_UNLOCK(vp, 0);
2793 	if (error)
2794 		return (error);
2795 
2796 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2797 	    NODEV, 0);
2798 	return (0);
2799 }
2800 
2801 static int
2802 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2803 {
2804 	int error, new, n;
2805 
2806 	new = nsw_wcount_async_max;
2807 	error = sysctl_handle_int(oidp, &new, 0, req);
2808 	if (error != 0 || req->newptr == NULL)
2809 		return (error);
2810 
2811 	if (new > nswbuf / 2 || new < 1)
2812 		return (EINVAL);
2813 
2814 	mtx_lock(&pbuf_mtx);
2815 	while (nsw_wcount_async_max != new) {
2816 		/*
2817 		 * Adjust difference.  If the current async count is too low,
2818 		 * we will need to sqeeze our update slowly in.  Sleep with a
2819 		 * higher priority than getpbuf() to finish faster.
2820 		 */
2821 		n = new - nsw_wcount_async_max;
2822 		if (nsw_wcount_async + n >= 0) {
2823 			nsw_wcount_async += n;
2824 			nsw_wcount_async_max += n;
2825 			wakeup(&nsw_wcount_async);
2826 		} else {
2827 			nsw_wcount_async_max -= nsw_wcount_async;
2828 			nsw_wcount_async = 0;
2829 			msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2830 			    "swpsysctl", 0);
2831 		}
2832 	}
2833 	mtx_unlock(&pbuf_mtx);
2834 
2835 	return (0);
2836 }
2837