xref: /freebsd/sys/vm/swap_pager.c (revision c17d43407fe04133a94055b0dbc7ea8965654a9f)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD$
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/conf.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/bio.h>
76 #include <sys/buf.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sysctl.h>
81 #include <sys/blist.h>
82 #include <sys/lock.h>
83 #include <sys/sx.h>
84 #include <sys/vmmeter.h>
85 
86 #ifndef MAX_PAGEOUT_CLUSTER
87 #define MAX_PAGEOUT_CLUSTER 16
88 #endif
89 
90 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
91 
92 #include "opt_swap.h"
93 #include <vm/vm.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_extern.h>
103 #include <vm/uma.h>
104 
105 #define SWM_FREE	0x02	/* free, period			*/
106 #define SWM_POP		0x04	/* pop out			*/
107 
108 /*
109  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
110  * in the old system.
111  */
112 extern int vm_swap_size;	/* number of free swap blocks, in pages */
113 
114 int swap_pager_full;		/* swap space exhaustion (task killing) */
115 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
116 static int nsw_rcount;		/* free read buffers			*/
117 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
118 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
119 static int nsw_wcount_async_max;/* assigned maximum			*/
120 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
121 
122 struct blist *swapblist;
123 static struct swblock **swhash;
124 static int swhash_mask;
125 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
126 static struct sx sw_alloc_sx;
127 
128 /* from vm_swap.c */
129 extern struct vnode *swapdev_vp;
130 extern struct swdevt *swdevt;
131 extern int nswdev;
132 
133 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
134         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
135 
136 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
137 
138 /*
139  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
140  * of searching a named list by hashing it just a little.
141  */
142 
143 #define NOBJLISTS		8
144 
145 #define NOBJLIST(handle)	\
146 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
147 
148 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
149 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
150 struct pagerlst		swap_pager_un_object_list;
151 uma_zone_t		swap_zone;
152 
153 /*
154  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
155  * calls hooked from other parts of the VM system and do not appear here.
156  * (see vm/swap_pager.h).
157  */
158 static vm_object_t
159 		swap_pager_alloc(void *handle, vm_ooffset_t size,
160 				      vm_prot_t prot, vm_ooffset_t offset);
161 static void	swap_pager_dealloc(vm_object_t object);
162 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
163 static void	swap_pager_init(void);
164 static void	swap_pager_unswapped(vm_page_t);
165 static void	swap_pager_strategy(vm_object_t, struct bio *);
166 
167 struct pagerops swappagerops = {
168 	swap_pager_init,	/* early system initialization of pager	*/
169 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
170 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
171 	swap_pager_getpages,	/* pagein				*/
172 	swap_pager_putpages,	/* pageout				*/
173 	swap_pager_haspage,	/* get backing store status for page	*/
174 	swap_pager_unswapped,	/* remove swap related to page		*/
175 	swap_pager_strategy	/* pager strategy call			*/
176 };
177 
178 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags);
179 static void flushchainbuf(struct buf *nbp);
180 static void waitchainbuf(struct bio *bp, int count, int done);
181 
182 /*
183  * dmmax is in page-sized chunks with the new swap system.  It was
184  * dev-bsized chunks in the old.  dmmax is always a power of 2.
185  *
186  * swap_*() routines are externally accessible.  swp_*() routines are
187  * internal.
188  */
189 int dmmax;
190 static int dmmax_mask;
191 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
192 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
193 
194 SYSCTL_INT(_vm, OID_AUTO, dmmax,
195 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
196 
197 static __inline void	swp_sizecheck(void);
198 static void	swp_pager_sync_iodone(struct buf *bp);
199 static void	swp_pager_async_iodone(struct buf *bp);
200 
201 /*
202  * Swap bitmap functions
203  */
204 static __inline void	swp_pager_freeswapspace(daddr_t blk, int npages);
205 static __inline daddr_t	swp_pager_getswapspace(int npages);
206 
207 /*
208  * Metadata functions
209  */
210 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
211 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
212 static void swp_pager_meta_free_all(vm_object_t);
213 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
214 
215 /*
216  * SWP_SIZECHECK() -	update swap_pager_full indication
217  *
218  *	update the swap_pager_almost_full indication and warn when we are
219  *	about to run out of swap space, using lowat/hiwat hysteresis.
220  *
221  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
222  *
223  *	No restrictions on call
224  *	This routine may not block.
225  *	This routine must be called at splvm()
226  */
227 static __inline void
228 swp_sizecheck()
229 {
230 	GIANT_REQUIRED;
231 
232 	if (vm_swap_size < nswap_lowat) {
233 		if (swap_pager_almost_full == 0) {
234 			printf("swap_pager: out of swap space\n");
235 			swap_pager_almost_full = 1;
236 		}
237 	} else {
238 		swap_pager_full = 0;
239 		if (vm_swap_size > nswap_hiwat)
240 			swap_pager_almost_full = 0;
241 	}
242 }
243 
244 /*
245  * SWAP_PAGER_INIT() -	initialize the swap pager!
246  *
247  *	Expected to be started from system init.  NOTE:  This code is run
248  *	before much else so be careful what you depend on.  Most of the VM
249  *	system has yet to be initialized at this point.
250  */
251 static void
252 swap_pager_init()
253 {
254 	/*
255 	 * Initialize object lists
256 	 */
257 	int i;
258 
259 	for (i = 0; i < NOBJLISTS; ++i)
260 		TAILQ_INIT(&swap_pager_object_list[i]);
261 	TAILQ_INIT(&swap_pager_un_object_list);
262 	mtx_init(&sw_alloc_mtx, "swap_pager list", MTX_DEF);
263 
264 	/*
265 	 * Device Stripe, in PAGE_SIZE'd blocks
266 	 */
267 	dmmax = SWB_NPAGES * 2;
268 	dmmax_mask = ~(dmmax - 1);
269 }
270 
271 /*
272  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
273  *
274  *	Expected to be started from pageout process once, prior to entering
275  *	its main loop.
276  */
277 void
278 swap_pager_swap_init()
279 {
280 	int n, n2;
281 
282 	/*
283 	 * Number of in-transit swap bp operations.  Don't
284 	 * exhaust the pbufs completely.  Make sure we
285 	 * initialize workable values (0 will work for hysteresis
286 	 * but it isn't very efficient).
287 	 *
288 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
289 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
290 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
291 	 * constrained by the swap device interleave stripe size.
292 	 *
293 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
294 	 * designed to prevent other I/O from having high latencies due to
295 	 * our pageout I/O.  The value 4 works well for one or two active swap
296 	 * devices but is probably a little low if you have more.  Even so,
297 	 * a higher value would probably generate only a limited improvement
298 	 * with three or four active swap devices since the system does not
299 	 * typically have to pageout at extreme bandwidths.   We will want
300 	 * at least 2 per swap devices, and 4 is a pretty good value if you
301 	 * have one NFS swap device due to the command/ack latency over NFS.
302 	 * So it all works out pretty well.
303 	 */
304 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
305 
306 	mtx_lock(&pbuf_mtx);
307 	nsw_rcount = (nswbuf + 1) / 2;
308 	nsw_wcount_sync = (nswbuf + 3) / 4;
309 	nsw_wcount_async = 4;
310 	nsw_wcount_async_max = nsw_wcount_async;
311 	mtx_unlock(&pbuf_mtx);
312 
313 	/*
314 	 * Initialize our zone.  Right now I'm just guessing on the number
315 	 * we need based on the number of pages in the system.  Each swblock
316 	 * can hold 16 pages, so this is probably overkill.  This reservation
317 	 * is typically limited to around 70MB by default.
318 	 */
319 	n = cnt.v_page_count;
320 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
321 		n = maxswzone / sizeof(struct swblock);
322 	n2 = n;
323 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
324 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
325 	do {
326 		if (uma_zone_set_obj(swap_zone, NULL, n))
327 			break;
328 		/*
329 		 * if the allocation failed, try a zone two thirds the
330 		 * size of the previous attempt.
331 		 */
332 		n -= ((n + 2) / 3);
333 	} while (n > 0);
334 	if (swap_zone == NULL)
335 		panic("failed to create swap_zone.");
336 	if (n2 != n)
337 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
338 	n2 = n;
339 
340 	/*
341 	 * Initialize our meta-data hash table.  The swapper does not need to
342 	 * be quite as efficient as the VM system, so we do not use an
343 	 * oversized hash table.
344 	 *
345 	 * 	n: 		size of hash table, must be power of 2
346 	 *	swhash_mask:	hash table index mask
347 	 */
348 	for (n = 1; n < n2 / 8; n *= 2)
349 		;
350 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
351 	swhash_mask = n - 1;
352 }
353 
354 /*
355  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
356  *			its metadata structures.
357  *
358  *	This routine is called from the mmap and fork code to create a new
359  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
360  *	and then converting it with swp_pager_meta_build().
361  *
362  *	This routine may block in vm_object_allocate() and create a named
363  *	object lookup race, so we must interlock.   We must also run at
364  *	splvm() for the object lookup to handle races with interrupts, but
365  *	we do not have to maintain splvm() in between the lookup and the
366  *	add because (I believe) it is not possible to attempt to create
367  *	a new swap object w/handle when a default object with that handle
368  *	already exists.
369  */
370 static vm_object_t
371 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
372 		 vm_ooffset_t offset)
373 {
374 	vm_object_t object;
375 
376 	GIANT_REQUIRED;
377 
378 	if (handle) {
379 		/*
380 		 * Reference existing named region or allocate new one.  There
381 		 * should not be a race here against swp_pager_meta_build()
382 		 * as called from vm_page_remove() in regards to the lookup
383 		 * of the handle.
384 		 */
385 		sx_xlock(&sw_alloc_sx);
386 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
387 
388 		if (object != NULL) {
389 			vm_object_reference(object);
390 		} else {
391 			object = vm_object_allocate(OBJT_DEFAULT,
392 				OFF_TO_IDX(offset + PAGE_MASK + size));
393 			object->handle = handle;
394 
395 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
396 		}
397 		sx_xunlock(&sw_alloc_sx);
398 	} else {
399 		object = vm_object_allocate(OBJT_DEFAULT,
400 			OFF_TO_IDX(offset + PAGE_MASK + size));
401 
402 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
403 	}
404 
405 	return (object);
406 }
407 
408 /*
409  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
410  *
411  *	The swap backing for the object is destroyed.  The code is
412  *	designed such that we can reinstantiate it later, but this
413  *	routine is typically called only when the entire object is
414  *	about to be destroyed.
415  *
416  *	This routine may block, but no longer does.
417  *
418  *	The object must be locked or unreferenceable.
419  */
420 static void
421 swap_pager_dealloc(object)
422 	vm_object_t object;
423 {
424 	int s;
425 
426 	GIANT_REQUIRED;
427 
428 	/*
429 	 * Remove from list right away so lookups will fail if we block for
430 	 * pageout completion.
431 	 */
432 	mtx_lock(&sw_alloc_mtx);
433 	if (object->handle == NULL) {
434 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
435 	} else {
436 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
437 	}
438 	mtx_unlock(&sw_alloc_mtx);
439 
440 	vm_object_pip_wait(object, "swpdea");
441 
442 	/*
443 	 * Free all remaining metadata.  We only bother to free it from
444 	 * the swap meta data.  We do not attempt to free swapblk's still
445 	 * associated with vm_page_t's for this object.  We do not care
446 	 * if paging is still in progress on some objects.
447 	 */
448 	s = splvm();
449 	swp_pager_meta_free_all(object);
450 	splx(s);
451 }
452 
453 /************************************************************************
454  *			SWAP PAGER BITMAP ROUTINES			*
455  ************************************************************************/
456 
457 /*
458  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
459  *
460  *	Allocate swap for the requested number of pages.  The starting
461  *	swap block number (a page index) is returned or SWAPBLK_NONE
462  *	if the allocation failed.
463  *
464  *	Also has the side effect of advising that somebody made a mistake
465  *	when they configured swap and didn't configure enough.
466  *
467  *	Must be called at splvm() to avoid races with bitmap frees from
468  *	vm_page_remove() aka swap_pager_page_removed().
469  *
470  *	This routine may not block
471  *	This routine must be called at splvm().
472  */
473 static __inline daddr_t
474 swp_pager_getswapspace(npages)
475 	int npages;
476 {
477 	daddr_t blk;
478 
479 	GIANT_REQUIRED;
480 
481 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
482 		if (swap_pager_full != 2) {
483 			printf("swap_pager_getswapspace: failed\n");
484 			swap_pager_full = 2;
485 			swap_pager_almost_full = 1;
486 		}
487 	} else {
488 		vm_swap_size -= npages;
489 		/* per-swap area stats */
490 		swdevt[BLK2DEVIDX(blk)].sw_used += npages;
491 		swp_sizecheck();
492 	}
493 	return (blk);
494 }
495 
496 /*
497  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
498  *
499  *	This routine returns the specified swap blocks back to the bitmap.
500  *
501  *	Note:  This routine may not block (it could in the old swap code),
502  *	and through the use of the new blist routines it does not block.
503  *
504  *	We must be called at splvm() to avoid races with bitmap frees from
505  *	vm_page_remove() aka swap_pager_page_removed().
506  *
507  *	This routine may not block
508  *	This routine must be called at splvm().
509  */
510 static __inline void
511 swp_pager_freeswapspace(blk, npages)
512 	daddr_t blk;
513 	int npages;
514 {
515 	GIANT_REQUIRED;
516 
517 	blist_free(swapblist, blk, npages);
518 	vm_swap_size += npages;
519 	/* per-swap area stats */
520 	swdevt[BLK2DEVIDX(blk)].sw_used -= npages;
521 	swp_sizecheck();
522 }
523 
524 /*
525  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
526  *				range within an object.
527  *
528  *	This is a globally accessible routine.
529  *
530  *	This routine removes swapblk assignments from swap metadata.
531  *
532  *	The external callers of this routine typically have already destroyed
533  *	or renamed vm_page_t's associated with this range in the object so
534  *	we should be ok.
535  *
536  *	This routine may be called at any spl.  We up our spl to splvm temporarily
537  *	in order to perform the metadata removal.
538  */
539 void
540 swap_pager_freespace(object, start, size)
541 	vm_object_t object;
542 	vm_pindex_t start;
543 	vm_size_t size;
544 {
545 	int s = splvm();
546 
547 	GIANT_REQUIRED;
548 	swp_pager_meta_free(object, start, size);
549 	splx(s);
550 }
551 
552 /*
553  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
554  *
555  *	Assigns swap blocks to the specified range within the object.  The
556  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
557  *
558  *	Returns 0 on success, -1 on failure.
559  */
560 int
561 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
562 {
563 	int s;
564 	int n = 0;
565 	daddr_t blk = SWAPBLK_NONE;
566 	vm_pindex_t beg = start;	/* save start index */
567 
568 	s = splvm();
569 	while (size) {
570 		if (n == 0) {
571 			n = BLIST_MAX_ALLOC;
572 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
573 				n >>= 1;
574 				if (n == 0) {
575 					swp_pager_meta_free(object, beg, start - beg);
576 					splx(s);
577 					return (-1);
578 				}
579 			}
580 		}
581 		swp_pager_meta_build(object, start, blk);
582 		--size;
583 		++start;
584 		++blk;
585 		--n;
586 	}
587 	swp_pager_meta_free(object, start, n);
588 	splx(s);
589 	return (0);
590 }
591 
592 /*
593  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
594  *			and destroy the source.
595  *
596  *	Copy any valid swapblks from the source to the destination.  In
597  *	cases where both the source and destination have a valid swapblk,
598  *	we keep the destination's.
599  *
600  *	This routine is allowed to block.  It may block allocating metadata
601  *	indirectly through swp_pager_meta_build() or if paging is still in
602  *	progress on the source.
603  *
604  *	This routine can be called at any spl
605  *
606  *	XXX vm_page_collapse() kinda expects us not to block because we
607  *	supposedly do not need to allocate memory, but for the moment we
608  *	*may* have to get a little memory from the zone allocator, but
609  *	it is taken from the interrupt memory.  We should be ok.
610  *
611  *	The source object contains no vm_page_t's (which is just as well)
612  *
613  *	The source object is of type OBJT_SWAP.
614  *
615  *	The source and destination objects must be locked or
616  *	inaccessible (XXX are they ?)
617  */
618 void
619 swap_pager_copy(srcobject, dstobject, offset, destroysource)
620 	vm_object_t srcobject;
621 	vm_object_t dstobject;
622 	vm_pindex_t offset;
623 	int destroysource;
624 {
625 	vm_pindex_t i;
626 	int s;
627 
628 	GIANT_REQUIRED;
629 
630 	s = splvm();
631 	/*
632 	 * If destroysource is set, we remove the source object from the
633 	 * swap_pager internal queue now.
634 	 */
635 	if (destroysource) {
636 		mtx_lock(&sw_alloc_mtx);
637 		if (srcobject->handle == NULL) {
638 			TAILQ_REMOVE(
639 			    &swap_pager_un_object_list,
640 			    srcobject,
641 			    pager_object_list
642 			);
643 		} else {
644 			TAILQ_REMOVE(
645 			    NOBJLIST(srcobject->handle),
646 			    srcobject,
647 			    pager_object_list
648 			);
649 		}
650 		mtx_unlock(&sw_alloc_mtx);
651 	}
652 
653 	/*
654 	 * transfer source to destination.
655 	 */
656 	for (i = 0; i < dstobject->size; ++i) {
657 		daddr_t dstaddr;
658 
659 		/*
660 		 * Locate (without changing) the swapblk on the destination,
661 		 * unless it is invalid in which case free it silently, or
662 		 * if the destination is a resident page, in which case the
663 		 * source is thrown away.
664 		 */
665 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
666 
667 		if (dstaddr == SWAPBLK_NONE) {
668 			/*
669 			 * Destination has no swapblk and is not resident,
670 			 * copy source.
671 			 */
672 			daddr_t srcaddr;
673 
674 			srcaddr = swp_pager_meta_ctl(
675 			    srcobject,
676 			    i + offset,
677 			    SWM_POP
678 			);
679 
680 			if (srcaddr != SWAPBLK_NONE)
681 				swp_pager_meta_build(dstobject, i, srcaddr);
682 		} else {
683 			/*
684 			 * Destination has valid swapblk or it is represented
685 			 * by a resident page.  We destroy the sourceblock.
686 			 */
687 
688 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
689 		}
690 	}
691 
692 	/*
693 	 * Free left over swap blocks in source.
694 	 *
695 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
696 	 * double-remove the object from the swap queues.
697 	 */
698 	if (destroysource) {
699 		swp_pager_meta_free_all(srcobject);
700 		/*
701 		 * Reverting the type is not necessary, the caller is going
702 		 * to destroy srcobject directly, but I'm doing it here
703 		 * for consistency since we've removed the object from its
704 		 * queues.
705 		 */
706 		srcobject->type = OBJT_DEFAULT;
707 	}
708 	splx(s);
709 }
710 
711 /*
712  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
713  *				the requested page.
714  *
715  *	We determine whether good backing store exists for the requested
716  *	page and return TRUE if it does, FALSE if it doesn't.
717  *
718  *	If TRUE, we also try to determine how much valid, contiguous backing
719  *	store exists before and after the requested page within a reasonable
720  *	distance.  We do not try to restrict it to the swap device stripe
721  *	(that is handled in getpages/putpages).  It probably isn't worth
722  *	doing here.
723  */
724 boolean_t
725 swap_pager_haspage(object, pindex, before, after)
726 	vm_object_t object;
727 	vm_pindex_t pindex;
728 	int *before;
729 	int *after;
730 {
731 	daddr_t blk0;
732 	int s;
733 
734 	/*
735 	 * do we have good backing store at the requested index ?
736 	 */
737 	s = splvm();
738 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
739 
740 	if (blk0 == SWAPBLK_NONE) {
741 		splx(s);
742 		if (before)
743 			*before = 0;
744 		if (after)
745 			*after = 0;
746 		return (FALSE);
747 	}
748 
749 	/*
750 	 * find backwards-looking contiguous good backing store
751 	 */
752 	if (before != NULL) {
753 		int i;
754 
755 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
756 			daddr_t blk;
757 
758 			if (i > pindex)
759 				break;
760 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
761 			if (blk != blk0 - i)
762 				break;
763 		}
764 		*before = (i - 1);
765 	}
766 
767 	/*
768 	 * find forward-looking contiguous good backing store
769 	 */
770 	if (after != NULL) {
771 		int i;
772 
773 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
774 			daddr_t blk;
775 
776 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
777 			if (blk != blk0 + i)
778 				break;
779 		}
780 		*after = (i - 1);
781 	}
782 	splx(s);
783 	return (TRUE);
784 }
785 
786 /*
787  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
788  *
789  *	This removes any associated swap backing store, whether valid or
790  *	not, from the page.
791  *
792  *	This routine is typically called when a page is made dirty, at
793  *	which point any associated swap can be freed.  MADV_FREE also
794  *	calls us in a special-case situation
795  *
796  *	NOTE!!!  If the page is clean and the swap was valid, the caller
797  *	should make the page dirty before calling this routine.  This routine
798  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
799  *	depends on it.
800  *
801  *	This routine may not block
802  *	This routine must be called at splvm()
803  */
804 static void
805 swap_pager_unswapped(m)
806 	vm_page_t m;
807 {
808 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
809 }
810 
811 /*
812  * SWAP_PAGER_STRATEGY() - read, write, free blocks
813  *
814  *	This implements the vm_pager_strategy() interface to swap and allows
815  *	other parts of the system to directly access swap as backing store
816  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
817  *	cacheless interface ( i.e. caching occurs at higher levels ).
818  *	Therefore we do not maintain any resident pages.  All I/O goes
819  *	directly to and from the swap device.
820  *
821  *	Note that b_blkno is scaled for PAGE_SIZE
822  *
823  *	We currently attempt to run I/O synchronously or asynchronously as
824  *	the caller requests.  This isn't perfect because we loose error
825  *	sequencing when we run multiple ops in parallel to satisfy a request.
826  *	But this is swap, so we let it all hang out.
827  */
828 static void
829 swap_pager_strategy(vm_object_t object, struct bio *bp)
830 {
831 	vm_pindex_t start;
832 	int count;
833 	int s;
834 	char *data;
835 	struct buf *nbp = NULL;
836 
837 	GIANT_REQUIRED;
838 
839 	/* XXX: KASSERT instead ? */
840 	if (bp->bio_bcount & PAGE_MASK) {
841 		biofinish(bp, NULL, EINVAL);
842 		printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount);
843 		return;
844 	}
845 
846 	/*
847 	 * Clear error indication, initialize page index, count, data pointer.
848 	 */
849 	bp->bio_error = 0;
850 	bp->bio_flags &= ~BIO_ERROR;
851 	bp->bio_resid = bp->bio_bcount;
852 	*(u_int *) &bp->bio_driver1 = 0;
853 
854 	start = bp->bio_pblkno;
855 	count = howmany(bp->bio_bcount, PAGE_SIZE);
856 	data = bp->bio_data;
857 
858 	s = splvm();
859 
860 	/*
861 	 * Deal with BIO_DELETE
862 	 */
863 	if (bp->bio_cmd == BIO_DELETE) {
864 		/*
865 		 * FREE PAGE(s) - destroy underlying swap that is no longer
866 		 *		  needed.
867 		 */
868 		swp_pager_meta_free(object, start, count);
869 		splx(s);
870 		bp->bio_resid = 0;
871 		biodone(bp);
872 		return;
873 	}
874 
875 	/*
876 	 * Execute read or write
877 	 */
878 	while (count > 0) {
879 		daddr_t blk;
880 
881 		/*
882 		 * Obtain block.  If block not found and writing, allocate a
883 		 * new block and build it into the object.
884 		 */
885 
886 		blk = swp_pager_meta_ctl(object, start, 0);
887 		if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) {
888 			blk = swp_pager_getswapspace(1);
889 			if (blk == SWAPBLK_NONE) {
890 				bp->bio_error = ENOMEM;
891 				bp->bio_flags |= BIO_ERROR;
892 				break;
893 			}
894 			swp_pager_meta_build(object, start, blk);
895 		}
896 
897 		/*
898 		 * Do we have to flush our current collection?  Yes if:
899 		 *
900 		 *	- no swap block at this index
901 		 *	- swap block is not contiguous
902 		 *	- we cross a physical disk boundry in the
903 		 *	  stripe.
904 		 */
905 		if (
906 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
907 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
908 		    )
909 		) {
910 			splx(s);
911 			if (bp->bio_cmd == BIO_READ) {
912 				++cnt.v_swapin;
913 				cnt.v_swappgsin += btoc(nbp->b_bcount);
914 			} else {
915 				++cnt.v_swapout;
916 				cnt.v_swappgsout += btoc(nbp->b_bcount);
917 				nbp->b_dirtyend = nbp->b_bcount;
918 			}
919 			flushchainbuf(nbp);
920 			s = splvm();
921 			nbp = NULL;
922 		}
923 
924 		/*
925 		 * Add new swapblk to nbp, instantiating nbp if necessary.
926 		 * Zero-fill reads are able to take a shortcut.
927 		 */
928 		if (blk == SWAPBLK_NONE) {
929 			/*
930 			 * We can only get here if we are reading.  Since
931 			 * we are at splvm() we can safely modify b_resid,
932 			 * even if chain ops are in progress.
933 			 */
934 			bzero(data, PAGE_SIZE);
935 			bp->bio_resid -= PAGE_SIZE;
936 		} else {
937 			if (nbp == NULL) {
938 				nbp = getchainbuf(bp, swapdev_vp, B_ASYNC);
939 				nbp->b_blkno = blk;
940 				nbp->b_bcount = 0;
941 				nbp->b_data = data;
942 			}
943 			nbp->b_bcount += PAGE_SIZE;
944 		}
945 		--count;
946 		++start;
947 		data += PAGE_SIZE;
948 	}
949 
950 	/*
951 	 *  Flush out last buffer
952 	 */
953 	splx(s);
954 
955 	if (nbp) {
956 		if (nbp->b_iocmd == BIO_READ) {
957 			++cnt.v_swapin;
958 			cnt.v_swappgsin += btoc(nbp->b_bcount);
959 		} else {
960 			++cnt.v_swapout;
961 			cnt.v_swappgsout += btoc(nbp->b_bcount);
962 			nbp->b_dirtyend = nbp->b_bcount;
963 		}
964 		flushchainbuf(nbp);
965 		/* nbp = NULL; */
966 	}
967 	/*
968 	 * Wait for completion.
969 	 */
970 	waitchainbuf(bp, 0, 1);
971 }
972 
973 /*
974  * SWAP_PAGER_GETPAGES() - bring pages in from swap
975  *
976  *	Attempt to retrieve (m, count) pages from backing store, but make
977  *	sure we retrieve at least m[reqpage].  We try to load in as large
978  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
979  *	belongs to the same object.
980  *
981  *	The code is designed for asynchronous operation and
982  *	immediate-notification of 'reqpage' but tends not to be
983  *	used that way.  Please do not optimize-out this algorithmic
984  *	feature, I intend to improve on it in the future.
985  *
986  *	The parent has a single vm_object_pip_add() reference prior to
987  *	calling us and we should return with the same.
988  *
989  *	The parent has BUSY'd the pages.  We should return with 'm'
990  *	left busy, but the others adjusted.
991  */
992 static int
993 swap_pager_getpages(object, m, count, reqpage)
994 	vm_object_t object;
995 	vm_page_t *m;
996 	int count, reqpage;
997 {
998 	struct buf *bp;
999 	vm_page_t mreq;
1000 	int s;
1001 	int i;
1002 	int j;
1003 	daddr_t blk;
1004 	vm_offset_t kva;
1005 	vm_pindex_t lastpindex;
1006 
1007 	GIANT_REQUIRED;
1008 
1009 	mreq = m[reqpage];
1010 
1011 	if (mreq->object != object) {
1012 		panic("swap_pager_getpages: object mismatch %p/%p",
1013 		    object,
1014 		    mreq->object
1015 		);
1016 	}
1017 	/*
1018 	 * Calculate range to retrieve.  The pages have already been assigned
1019 	 * their swapblks.  We require a *contiguous* range that falls entirely
1020 	 * within a single device stripe.   If we do not supply it, bad things
1021 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1022 	 * loops are set up such that the case(s) are handled implicitly.
1023 	 *
1024 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1025 	 * not need to be, but it will go a little faster if it is.
1026 	 */
1027 	s = splvm();
1028 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1029 
1030 	for (i = reqpage - 1; i >= 0; --i) {
1031 		daddr_t iblk;
1032 
1033 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1034 		if (blk != iblk + (reqpage - i))
1035 			break;
1036 		if ((blk ^ iblk) & dmmax_mask)
1037 			break;
1038 	}
1039 	++i;
1040 
1041 	for (j = reqpage + 1; j < count; ++j) {
1042 		daddr_t jblk;
1043 
1044 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1045 		if (blk != jblk - (j - reqpage))
1046 			break;
1047 		if ((blk ^ jblk) & dmmax_mask)
1048 			break;
1049 	}
1050 
1051 	/*
1052 	 * free pages outside our collection range.   Note: we never free
1053 	 * mreq, it must remain busy throughout.
1054 	 */
1055 	{
1056 		int k;
1057 
1058 		for (k = 0; k < i; ++k)
1059 			vm_page_free(m[k]);
1060 		for (k = j; k < count; ++k)
1061 			vm_page_free(m[k]);
1062 	}
1063 	splx(s);
1064 
1065 
1066 	/*
1067 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1068 	 * still busy, but the others unbusied.
1069 	 */
1070 	if (blk == SWAPBLK_NONE)
1071 		return (VM_PAGER_FAIL);
1072 
1073 	/*
1074 	 * Get a swap buffer header to perform the IO
1075 	 */
1076 	bp = getpbuf(&nsw_rcount);
1077 	kva = (vm_offset_t) bp->b_data;
1078 
1079 	/*
1080 	 * map our page(s) into kva for input
1081 	 *
1082 	 * NOTE: B_PAGING is set by pbgetvp()
1083 	 */
1084 	pmap_qenter(kva, m + i, j - i);
1085 
1086 	bp->b_iocmd = BIO_READ;
1087 	bp->b_iodone = swp_pager_async_iodone;
1088 	bp->b_rcred = crhold(thread0.td_ucred);
1089 	bp->b_wcred = crhold(thread0.td_ucred);
1090 	bp->b_data = (caddr_t) kva;
1091 	bp->b_blkno = blk - (reqpage - i);
1092 	bp->b_bcount = PAGE_SIZE * (j - i);
1093 	bp->b_bufsize = PAGE_SIZE * (j - i);
1094 	bp->b_pager.pg_reqpage = reqpage - i;
1095 
1096 	{
1097 		int k;
1098 
1099 		for (k = i; k < j; ++k) {
1100 			bp->b_pages[k - i] = m[k];
1101 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1102 		}
1103 	}
1104 	bp->b_npages = j - i;
1105 
1106 	pbgetvp(swapdev_vp, bp);
1107 
1108 	cnt.v_swapin++;
1109 	cnt.v_swappgsin += bp->b_npages;
1110 
1111 	/*
1112 	 * We still hold the lock on mreq, and our automatic completion routine
1113 	 * does not remove it.
1114 	 */
1115 	vm_object_pip_add(mreq->object, bp->b_npages);
1116 	lastpindex = m[j-1]->pindex;
1117 
1118 	/*
1119 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1120 	 * this point because we automatically release it on completion.
1121 	 * Instead, we look at the one page we are interested in which we
1122 	 * still hold a lock on even through the I/O completion.
1123 	 *
1124 	 * The other pages in our m[] array are also released on completion,
1125 	 * so we cannot assume they are valid anymore either.
1126 	 *
1127 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1128 	 */
1129 	BUF_KERNPROC(bp);
1130 	BUF_STRATEGY(bp);
1131 
1132 	/*
1133 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1134 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1135 	 * is set in the meta-data.
1136 	 */
1137 	s = splvm();
1138 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1139 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1140 		cnt.v_intrans++;
1141 		if (tsleep(mreq, PSWP, "swread", hz*20)) {
1142 			printf(
1143 			    "swap_pager: indefinite wait buffer: device:"
1144 				" %s, blkno: %ld, size: %ld\n",
1145 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1146 			    bp->b_bcount
1147 			);
1148 		}
1149 	}
1150 	splx(s);
1151 
1152 	/*
1153 	 * mreq is left busied after completion, but all the other pages
1154 	 * are freed.  If we had an unrecoverable read error the page will
1155 	 * not be valid.
1156 	 */
1157 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1158 		return (VM_PAGER_ERROR);
1159 	} else {
1160 		return (VM_PAGER_OK);
1161 	}
1162 
1163 	/*
1164 	 * A final note: in a low swap situation, we cannot deallocate swap
1165 	 * and mark a page dirty here because the caller is likely to mark
1166 	 * the page clean when we return, causing the page to possibly revert
1167 	 * to all-zero's later.
1168 	 */
1169 }
1170 
1171 /*
1172  *	swap_pager_putpages:
1173  *
1174  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1175  *
1176  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1177  *	are automatically converted to SWAP objects.
1178  *
1179  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1180  *	vm_page reservation system coupled with properly written VFS devices
1181  *	should ensure that no low-memory deadlock occurs.  This is an area
1182  *	which needs work.
1183  *
1184  *	The parent has N vm_object_pip_add() references prior to
1185  *	calling us and will remove references for rtvals[] that are
1186  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1187  *	completion.
1188  *
1189  *	The parent has soft-busy'd the pages it passes us and will unbusy
1190  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1191  *	We need to unbusy the rest on I/O completion.
1192  */
1193 void
1194 swap_pager_putpages(object, m, count, sync, rtvals)
1195 	vm_object_t object;
1196 	vm_page_t *m;
1197 	int count;
1198 	boolean_t sync;
1199 	int *rtvals;
1200 {
1201 	int i;
1202 	int n = 0;
1203 
1204 	GIANT_REQUIRED;
1205 	if (count && m[0]->object != object) {
1206 		panic("swap_pager_getpages: object mismatch %p/%p",
1207 		    object,
1208 		    m[0]->object
1209 		);
1210 	}
1211 	/*
1212 	 * Step 1
1213 	 *
1214 	 * Turn object into OBJT_SWAP
1215 	 * check for bogus sysops
1216 	 * force sync if not pageout process
1217 	 */
1218 	if (object->type != OBJT_SWAP)
1219 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1220 
1221 	if (curproc != pageproc)
1222 		sync = TRUE;
1223 
1224 	/*
1225 	 * Step 2
1226 	 *
1227 	 * Update nsw parameters from swap_async_max sysctl values.
1228 	 * Do not let the sysop crash the machine with bogus numbers.
1229 	 */
1230 	mtx_lock(&pbuf_mtx);
1231 	if (swap_async_max != nsw_wcount_async_max) {
1232 		int n;
1233 		int s;
1234 
1235 		/*
1236 		 * limit range
1237 		 */
1238 		if ((n = swap_async_max) > nswbuf / 2)
1239 			n = nswbuf / 2;
1240 		if (n < 1)
1241 			n = 1;
1242 		swap_async_max = n;
1243 
1244 		/*
1245 		 * Adjust difference ( if possible ).  If the current async
1246 		 * count is too low, we may not be able to make the adjustment
1247 		 * at this time.
1248 		 */
1249 		s = splvm();
1250 		n -= nsw_wcount_async_max;
1251 		if (nsw_wcount_async + n >= 0) {
1252 			nsw_wcount_async += n;
1253 			nsw_wcount_async_max += n;
1254 			wakeup(&nsw_wcount_async);
1255 		}
1256 		splx(s);
1257 	}
1258 	mtx_unlock(&pbuf_mtx);
1259 
1260 	/*
1261 	 * Step 3
1262 	 *
1263 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1264 	 * The page is left dirty until the pageout operation completes
1265 	 * successfully.
1266 	 */
1267 	for (i = 0; i < count; i += n) {
1268 		int s;
1269 		int j;
1270 		struct buf *bp;
1271 		daddr_t blk;
1272 
1273 		/*
1274 		 * Maximum I/O size is limited by a number of factors.
1275 		 */
1276 		n = min(BLIST_MAX_ALLOC, count - i);
1277 		n = min(n, nsw_cluster_max);
1278 
1279 		s = splvm();
1280 
1281 		/*
1282 		 * Get biggest block of swap we can.  If we fail, fall
1283 		 * back and try to allocate a smaller block.  Don't go
1284 		 * overboard trying to allocate space if it would overly
1285 		 * fragment swap.
1286 		 */
1287 		while (
1288 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1289 		    n > 4
1290 		) {
1291 			n >>= 1;
1292 		}
1293 		if (blk == SWAPBLK_NONE) {
1294 			for (j = 0; j < n; ++j)
1295 				rtvals[i+j] = VM_PAGER_FAIL;
1296 			splx(s);
1297 			continue;
1298 		}
1299 
1300 		/*
1301 		 * The I/O we are constructing cannot cross a physical
1302 		 * disk boundry in the swap stripe.  Note: we are still
1303 		 * at splvm().
1304 		 */
1305 		if ((blk ^ (blk + n)) & dmmax_mask) {
1306 			j = ((blk + dmmax) & dmmax_mask) - blk;
1307 			swp_pager_freeswapspace(blk + j, n - j);
1308 			n = j;
1309 		}
1310 
1311 		/*
1312 		 * All I/O parameters have been satisfied, build the I/O
1313 		 * request and assign the swap space.
1314 		 *
1315 		 * NOTE: B_PAGING is set by pbgetvp()
1316 		 */
1317 		if (sync == TRUE) {
1318 			bp = getpbuf(&nsw_wcount_sync);
1319 		} else {
1320 			bp = getpbuf(&nsw_wcount_async);
1321 			bp->b_flags = B_ASYNC;
1322 		}
1323 		bp->b_iocmd = BIO_WRITE;
1324 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1325 
1326 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1327 
1328 		bp->b_rcred = crhold(thread0.td_ucred);
1329 		bp->b_wcred = crhold(thread0.td_ucred);
1330 		bp->b_bcount = PAGE_SIZE * n;
1331 		bp->b_bufsize = PAGE_SIZE * n;
1332 		bp->b_blkno = blk;
1333 
1334 		pbgetvp(swapdev_vp, bp);
1335 
1336 		for (j = 0; j < n; ++j) {
1337 			vm_page_t mreq = m[i+j];
1338 
1339 			swp_pager_meta_build(
1340 			    mreq->object,
1341 			    mreq->pindex,
1342 			    blk + j
1343 			);
1344 			vm_page_dirty(mreq);
1345 			rtvals[i+j] = VM_PAGER_OK;
1346 
1347 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1348 			bp->b_pages[j] = mreq;
1349 		}
1350 		bp->b_npages = n;
1351 		/*
1352 		 * Must set dirty range for NFS to work.
1353 		 */
1354 		bp->b_dirtyoff = 0;
1355 		bp->b_dirtyend = bp->b_bcount;
1356 
1357 		cnt.v_swapout++;
1358 		cnt.v_swappgsout += bp->b_npages;
1359 		swapdev_vp->v_numoutput++;
1360 
1361 		splx(s);
1362 
1363 		/*
1364 		 * asynchronous
1365 		 *
1366 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1367 		 */
1368 		if (sync == FALSE) {
1369 			bp->b_iodone = swp_pager_async_iodone;
1370 			BUF_KERNPROC(bp);
1371 			BUF_STRATEGY(bp);
1372 
1373 			for (j = 0; j < n; ++j)
1374 				rtvals[i+j] = VM_PAGER_PEND;
1375 			/* restart outter loop */
1376 			continue;
1377 		}
1378 
1379 		/*
1380 		 * synchronous
1381 		 *
1382 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1383 		 */
1384 		bp->b_iodone = swp_pager_sync_iodone;
1385 		BUF_STRATEGY(bp);
1386 
1387 		/*
1388 		 * Wait for the sync I/O to complete, then update rtvals.
1389 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1390 		 * our async completion routine at the end, thus avoiding a
1391 		 * double-free.
1392 		 */
1393 		s = splbio();
1394 		while ((bp->b_flags & B_DONE) == 0) {
1395 			tsleep(bp, PVM, "swwrt", 0);
1396 		}
1397 		for (j = 0; j < n; ++j)
1398 			rtvals[i+j] = VM_PAGER_PEND;
1399 		/*
1400 		 * Now that we are through with the bp, we can call the
1401 		 * normal async completion, which frees everything up.
1402 		 */
1403 		swp_pager_async_iodone(bp);
1404 		splx(s);
1405 	}
1406 }
1407 
1408 /*
1409  *	swap_pager_sync_iodone:
1410  *
1411  *	Completion routine for synchronous reads and writes from/to swap.
1412  *	We just mark the bp is complete and wake up anyone waiting on it.
1413  *
1414  *	This routine may not block.  This routine is called at splbio() or better.
1415  */
1416 static void
1417 swp_pager_sync_iodone(bp)
1418 	struct buf *bp;
1419 {
1420 	bp->b_flags |= B_DONE;
1421 	bp->b_flags &= ~B_ASYNC;
1422 	wakeup(bp);
1423 }
1424 
1425 /*
1426  *	swp_pager_async_iodone:
1427  *
1428  *	Completion routine for asynchronous reads and writes from/to swap.
1429  *	Also called manually by synchronous code to finish up a bp.
1430  *
1431  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1432  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1433  *	unbusy all pages except the 'main' request page.  For WRITE
1434  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1435  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1436  *
1437  *	This routine may not block.
1438  *	This routine is called at splbio() or better
1439  *
1440  *	We up ourselves to splvm() as required for various vm_page related
1441  *	calls.
1442  */
1443 static void
1444 swp_pager_async_iodone(bp)
1445 	struct buf *bp;
1446 {
1447 	int s;
1448 	int i;
1449 	vm_object_t object = NULL;
1450 
1451 	GIANT_REQUIRED;
1452 	bp->b_flags |= B_DONE;
1453 
1454 	/*
1455 	 * report error
1456 	 */
1457 	if (bp->b_ioflags & BIO_ERROR) {
1458 		printf(
1459 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1460 			"size %ld, error %d\n",
1461 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1462 		    (long)bp->b_blkno,
1463 		    (long)bp->b_bcount,
1464 		    bp->b_error
1465 		);
1466 	}
1467 
1468 	/*
1469 	 * set object, raise to splvm().
1470 	 */
1471 	if (bp->b_npages)
1472 		object = bp->b_pages[0]->object;
1473 	s = splvm();
1474 
1475 	/*
1476 	 * remove the mapping for kernel virtual
1477 	 */
1478 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1479 
1480 	/*
1481 	 * cleanup pages.  If an error occurs writing to swap, we are in
1482 	 * very serious trouble.  If it happens to be a disk error, though,
1483 	 * we may be able to recover by reassigning the swap later on.  So
1484 	 * in this case we remove the m->swapblk assignment for the page
1485 	 * but do not free it in the rlist.  The errornous block(s) are thus
1486 	 * never reallocated as swap.  Redirty the page and continue.
1487 	 */
1488 	for (i = 0; i < bp->b_npages; ++i) {
1489 		vm_page_t m = bp->b_pages[i];
1490 
1491 		vm_page_flag_clear(m, PG_SWAPINPROG);
1492 
1493 		if (bp->b_ioflags & BIO_ERROR) {
1494 			/*
1495 			 * If an error occurs I'd love to throw the swapblk
1496 			 * away without freeing it back to swapspace, so it
1497 			 * can never be used again.  But I can't from an
1498 			 * interrupt.
1499 			 */
1500 			if (bp->b_iocmd == BIO_READ) {
1501 				/*
1502 				 * When reading, reqpage needs to stay
1503 				 * locked for the parent, but all other
1504 				 * pages can be freed.  We still want to
1505 				 * wakeup the parent waiting on the page,
1506 				 * though.  ( also: pg_reqpage can be -1 and
1507 				 * not match anything ).
1508 				 *
1509 				 * We have to wake specifically requested pages
1510 				 * up too because we cleared PG_SWAPINPROG and
1511 				 * someone may be waiting for that.
1512 				 *
1513 				 * NOTE: for reads, m->dirty will probably
1514 				 * be overridden by the original caller of
1515 				 * getpages so don't play cute tricks here.
1516 				 *
1517 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1518 				 * AS THIS MESSES WITH object->memq, and it is
1519 				 * not legal to mess with object->memq from an
1520 				 * interrupt.
1521 				 */
1522 				m->valid = 0;
1523 				vm_page_flag_clear(m, PG_ZERO);
1524 				if (i != bp->b_pager.pg_reqpage)
1525 					vm_page_free(m);
1526 				else
1527 					vm_page_flash(m);
1528 				/*
1529 				 * If i == bp->b_pager.pg_reqpage, do not wake
1530 				 * the page up.  The caller needs to.
1531 				 */
1532 			} else {
1533 				/*
1534 				 * If a write error occurs, reactivate page
1535 				 * so it doesn't clog the inactive list,
1536 				 * then finish the I/O.
1537 				 */
1538 				vm_page_dirty(m);
1539 				vm_page_activate(m);
1540 				vm_page_io_finish(m);
1541 			}
1542 		} else if (bp->b_iocmd == BIO_READ) {
1543 			/*
1544 			 * For read success, clear dirty bits.  Nobody should
1545 			 * have this page mapped but don't take any chances,
1546 			 * make sure the pmap modify bits are also cleared.
1547 			 *
1548 			 * NOTE: for reads, m->dirty will probably be
1549 			 * overridden by the original caller of getpages so
1550 			 * we cannot set them in order to free the underlying
1551 			 * swap in a low-swap situation.  I don't think we'd
1552 			 * want to do that anyway, but it was an optimization
1553 			 * that existed in the old swapper for a time before
1554 			 * it got ripped out due to precisely this problem.
1555 			 *
1556 			 * clear PG_ZERO in page.
1557 			 *
1558 			 * If not the requested page then deactivate it.
1559 			 *
1560 			 * Note that the requested page, reqpage, is left
1561 			 * busied, but we still have to wake it up.  The
1562 			 * other pages are released (unbusied) by
1563 			 * vm_page_wakeup().  We do not set reqpage's
1564 			 * valid bits here, it is up to the caller.
1565 			 */
1566 			pmap_clear_modify(m);
1567 			m->valid = VM_PAGE_BITS_ALL;
1568 			vm_page_undirty(m);
1569 			vm_page_flag_clear(m, PG_ZERO);
1570 
1571 			/*
1572 			 * We have to wake specifically requested pages
1573 			 * up too because we cleared PG_SWAPINPROG and
1574 			 * could be waiting for it in getpages.  However,
1575 			 * be sure to not unbusy getpages specifically
1576 			 * requested page - getpages expects it to be
1577 			 * left busy.
1578 			 */
1579 			if (i != bp->b_pager.pg_reqpage) {
1580 				vm_page_deactivate(m);
1581 				vm_page_wakeup(m);
1582 			} else {
1583 				vm_page_flash(m);
1584 			}
1585 		} else {
1586 			/*
1587 			 * For write success, clear the modify and dirty
1588 			 * status, then finish the I/O ( which decrements the
1589 			 * busy count and possibly wakes waiter's up ).
1590 			 */
1591 			pmap_clear_modify(m);
1592 			vm_page_undirty(m);
1593 			vm_page_io_finish(m);
1594 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1595 				vm_page_protect(m, VM_PROT_READ);
1596 		}
1597 	}
1598 
1599 	/*
1600 	 * adjust pip.  NOTE: the original parent may still have its own
1601 	 * pip refs on the object.
1602 	 */
1603 	if (object)
1604 		vm_object_pip_wakeupn(object, bp->b_npages);
1605 
1606 	/*
1607 	 * release the physical I/O buffer
1608 	 */
1609 	relpbuf(
1610 	    bp,
1611 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1612 		((bp->b_flags & B_ASYNC) ?
1613 		    &nsw_wcount_async :
1614 		    &nsw_wcount_sync
1615 		)
1616 	    )
1617 	);
1618 	splx(s);
1619 }
1620 
1621 /************************************************************************
1622  *				SWAP META DATA 				*
1623  ************************************************************************
1624  *
1625  *	These routines manipulate the swap metadata stored in the
1626  *	OBJT_SWAP object.  All swp_*() routines must be called at
1627  *	splvm() because swap can be freed up by the low level vm_page
1628  *	code which might be called from interrupts beyond what splbio() covers.
1629  *
1630  *	Swap metadata is implemented with a global hash and not directly
1631  *	linked into the object.  Instead the object simply contains
1632  *	appropriate tracking counters.
1633  */
1634 
1635 /*
1636  * SWP_PAGER_HASH() -	hash swap meta data
1637  *
1638  *	This is an inline helper function which hashes the swapblk given
1639  *	the object and page index.  It returns a pointer to a pointer
1640  *	to the object, or a pointer to a NULL pointer if it could not
1641  *	find a swapblk.
1642  *
1643  *	This routine must be called at splvm().
1644  */
1645 static __inline struct swblock **
1646 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1647 {
1648 	struct swblock **pswap;
1649 	struct swblock *swap;
1650 
1651 	index &= ~SWAP_META_MASK;
1652 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1653 	while ((swap = *pswap) != NULL) {
1654 		if (swap->swb_object == object &&
1655 		    swap->swb_index == index
1656 		) {
1657 			break;
1658 		}
1659 		pswap = &swap->swb_hnext;
1660 	}
1661 	return (pswap);
1662 }
1663 
1664 /*
1665  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1666  *
1667  *	We first convert the object to a swap object if it is a default
1668  *	object.
1669  *
1670  *	The specified swapblk is added to the object's swap metadata.  If
1671  *	the swapblk is not valid, it is freed instead.  Any previously
1672  *	assigned swapblk is freed.
1673  *
1674  *	This routine must be called at splvm(), except when used to convert
1675  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1676  */
1677 static void
1678 swp_pager_meta_build(
1679 	vm_object_t object,
1680 	vm_pindex_t index,
1681 	daddr_t swapblk
1682 ) {
1683 	struct swblock *swap;
1684 	struct swblock **pswap;
1685 
1686 	GIANT_REQUIRED;
1687 	/*
1688 	 * Convert default object to swap object if necessary
1689 	 */
1690 	if (object->type != OBJT_SWAP) {
1691 		object->type = OBJT_SWAP;
1692 		object->un_pager.swp.swp_bcount = 0;
1693 
1694 		mtx_lock(&sw_alloc_mtx);
1695 		if (object->handle != NULL) {
1696 			TAILQ_INSERT_TAIL(
1697 			    NOBJLIST(object->handle),
1698 			    object,
1699 			    pager_object_list
1700 			);
1701 		} else {
1702 			TAILQ_INSERT_TAIL(
1703 			    &swap_pager_un_object_list,
1704 			    object,
1705 			    pager_object_list
1706 			);
1707 		}
1708 		mtx_unlock(&sw_alloc_mtx);
1709 	}
1710 
1711 	/*
1712 	 * Locate hash entry.  If not found create, but if we aren't adding
1713 	 * anything just return.  If we run out of space in the map we wait
1714 	 * and, since the hash table may have changed, retry.
1715 	 */
1716 retry:
1717 	pswap = swp_pager_hash(object, index);
1718 
1719 	if ((swap = *pswap) == NULL) {
1720 		int i;
1721 
1722 		if (swapblk == SWAPBLK_NONE)
1723 			return;
1724 
1725 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1726 		if (swap == NULL) {
1727 			VM_WAIT;
1728 			goto retry;
1729 		}
1730 
1731 		swap->swb_hnext = NULL;
1732 		swap->swb_object = object;
1733 		swap->swb_index = index & ~SWAP_META_MASK;
1734 		swap->swb_count = 0;
1735 
1736 		++object->un_pager.swp.swp_bcount;
1737 
1738 		for (i = 0; i < SWAP_META_PAGES; ++i)
1739 			swap->swb_pages[i] = SWAPBLK_NONE;
1740 	}
1741 
1742 	/*
1743 	 * Delete prior contents of metadata
1744 	 */
1745 	index &= SWAP_META_MASK;
1746 
1747 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1748 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1749 		--swap->swb_count;
1750 	}
1751 
1752 	/*
1753 	 * Enter block into metadata
1754 	 */
1755 	swap->swb_pages[index] = swapblk;
1756 	if (swapblk != SWAPBLK_NONE)
1757 		++swap->swb_count;
1758 }
1759 
1760 /*
1761  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1762  *
1763  *	The requested range of blocks is freed, with any associated swap
1764  *	returned to the swap bitmap.
1765  *
1766  *	This routine will free swap metadata structures as they are cleaned
1767  *	out.  This routine does *NOT* operate on swap metadata associated
1768  *	with resident pages.
1769  *
1770  *	This routine must be called at splvm()
1771  */
1772 static void
1773 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1774 {
1775 	GIANT_REQUIRED;
1776 
1777 	if (object->type != OBJT_SWAP)
1778 		return;
1779 
1780 	while (count > 0) {
1781 		struct swblock **pswap;
1782 		struct swblock *swap;
1783 
1784 		pswap = swp_pager_hash(object, index);
1785 
1786 		if ((swap = *pswap) != NULL) {
1787 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1788 
1789 			if (v != SWAPBLK_NONE) {
1790 				swp_pager_freeswapspace(v, 1);
1791 				swap->swb_pages[index & SWAP_META_MASK] =
1792 					SWAPBLK_NONE;
1793 				if (--swap->swb_count == 0) {
1794 					*pswap = swap->swb_hnext;
1795 					uma_zfree(swap_zone, swap);
1796 					--object->un_pager.swp.swp_bcount;
1797 				}
1798 			}
1799 			--count;
1800 			++index;
1801 		} else {
1802 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1803 			count -= n;
1804 			index += n;
1805 		}
1806 	}
1807 }
1808 
1809 /*
1810  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1811  *
1812  *	This routine locates and destroys all swap metadata associated with
1813  *	an object.
1814  *
1815  *	This routine must be called at splvm()
1816  */
1817 static void
1818 swp_pager_meta_free_all(vm_object_t object)
1819 {
1820 	daddr_t index = 0;
1821 
1822 	GIANT_REQUIRED;
1823 
1824 	if (object->type != OBJT_SWAP)
1825 		return;
1826 
1827 	while (object->un_pager.swp.swp_bcount) {
1828 		struct swblock **pswap;
1829 		struct swblock *swap;
1830 
1831 		pswap = swp_pager_hash(object, index);
1832 		if ((swap = *pswap) != NULL) {
1833 			int i;
1834 
1835 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1836 				daddr_t v = swap->swb_pages[i];
1837 				if (v != SWAPBLK_NONE) {
1838 					--swap->swb_count;
1839 					swp_pager_freeswapspace(v, 1);
1840 				}
1841 			}
1842 			if (swap->swb_count != 0)
1843 				panic("swap_pager_meta_free_all: swb_count != 0");
1844 			*pswap = swap->swb_hnext;
1845 			uma_zfree(swap_zone, swap);
1846 			--object->un_pager.swp.swp_bcount;
1847 		}
1848 		index += SWAP_META_PAGES;
1849 		if (index > 0x20000000)
1850 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1851 	}
1852 }
1853 
1854 /*
1855  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1856  *
1857  *	This routine is capable of looking up, popping, or freeing
1858  *	swapblk assignments in the swap meta data or in the vm_page_t.
1859  *	The routine typically returns the swapblk being looked-up, or popped,
1860  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1861  *	was invalid.  This routine will automatically free any invalid
1862  *	meta-data swapblks.
1863  *
1864  *	It is not possible to store invalid swapblks in the swap meta data
1865  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1866  *
1867  *	When acting on a busy resident page and paging is in progress, we
1868  *	have to wait until paging is complete but otherwise can act on the
1869  *	busy page.
1870  *
1871  *	This routine must be called at splvm().
1872  *
1873  *	SWM_FREE	remove and free swap block from metadata
1874  *	SWM_POP		remove from meta data but do not free.. pop it out
1875  */
1876 static daddr_t
1877 swp_pager_meta_ctl(
1878 	vm_object_t object,
1879 	vm_pindex_t index,
1880 	int flags
1881 ) {
1882 	struct swblock **pswap;
1883 	struct swblock *swap;
1884 	daddr_t r1;
1885 
1886 	GIANT_REQUIRED;
1887 	/*
1888 	 * The meta data only exists of the object is OBJT_SWAP
1889 	 * and even then might not be allocated yet.
1890 	 */
1891 	if (object->type != OBJT_SWAP)
1892 		return (SWAPBLK_NONE);
1893 
1894 	r1 = SWAPBLK_NONE;
1895 	pswap = swp_pager_hash(object, index);
1896 
1897 	if ((swap = *pswap) != NULL) {
1898 		index &= SWAP_META_MASK;
1899 		r1 = swap->swb_pages[index];
1900 
1901 		if (r1 != SWAPBLK_NONE) {
1902 			if (flags & SWM_FREE) {
1903 				swp_pager_freeswapspace(r1, 1);
1904 				r1 = SWAPBLK_NONE;
1905 			}
1906 			if (flags & (SWM_FREE|SWM_POP)) {
1907 				swap->swb_pages[index] = SWAPBLK_NONE;
1908 				if (--swap->swb_count == 0) {
1909 					*pswap = swap->swb_hnext;
1910 					uma_zfree(swap_zone, swap);
1911 					--object->un_pager.swp.swp_bcount;
1912 				}
1913 			}
1914 		}
1915 	}
1916 	return (r1);
1917 }
1918 
1919 /********************************************************
1920  *		CHAINING FUNCTIONS			*
1921  ********************************************************
1922  *
1923  *	These functions support recursion of I/O operations
1924  *	on bp's, typically by chaining one or more 'child' bp's
1925  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
1926  *	chaining is possible.
1927  */
1928 
1929 /*
1930  *	vm_pager_chain_iodone:
1931  *
1932  *	io completion routine for child bp.  Currently we fudge a bit
1933  *	on dealing with b_resid.   Since users of these routines may issue
1934  *	multiple children simultaneously, sequencing of the error can be lost.
1935  */
1936 static void
1937 vm_pager_chain_iodone(struct buf *nbp)
1938 {
1939 	struct bio *bp;
1940 	u_int *count;
1941 
1942 	bp = nbp->b_caller1;
1943 	count = (u_int *)&(bp->bio_driver1);
1944 	if (bp != NULL) {
1945 		if (nbp->b_ioflags & BIO_ERROR) {
1946 			bp->bio_flags |= BIO_ERROR;
1947 			bp->bio_error = nbp->b_error;
1948 		} else if (nbp->b_resid != 0) {
1949 			bp->bio_flags |= BIO_ERROR;
1950 			bp->bio_error = EINVAL;
1951 		} else {
1952 			bp->bio_resid -= nbp->b_bcount;
1953 		}
1954 		nbp->b_caller1 = NULL;
1955 		--(*count);
1956 		if (bp->bio_flags & BIO_FLAG1) {
1957 			bp->bio_flags &= ~BIO_FLAG1;
1958 			wakeup(bp);
1959 		}
1960 	}
1961 	nbp->b_flags |= B_DONE;
1962 	nbp->b_flags &= ~B_ASYNC;
1963 	relpbuf(nbp, NULL);
1964 }
1965 
1966 /*
1967  *	getchainbuf:
1968  *
1969  *	Obtain a physical buffer and chain it to its parent buffer.  When
1970  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
1971  *	automatically propagated to the parent
1972  */
1973 struct buf *
1974 getchainbuf(struct bio *bp, struct vnode *vp, int flags)
1975 {
1976 	struct buf *nbp;
1977 	u_int *count;
1978 
1979 	GIANT_REQUIRED;
1980 	nbp = getpbuf(NULL);
1981 	count = (u_int *)&(bp->bio_driver1);
1982 
1983 	nbp->b_caller1 = bp;
1984 	++(*count);
1985 
1986 	if (*count > 4)
1987 		waitchainbuf(bp, 4, 0);
1988 
1989 	nbp->b_iocmd = bp->bio_cmd;
1990 	nbp->b_ioflags = 0;
1991 	nbp->b_flags = flags;
1992 	nbp->b_rcred = crhold(thread0.td_ucred);
1993 	nbp->b_wcred = crhold(thread0.td_ucred);
1994 	nbp->b_iodone = vm_pager_chain_iodone;
1995 
1996 	if (vp)
1997 		pbgetvp(vp, nbp);
1998 	return (nbp);
1999 }
2000 
2001 void
2002 flushchainbuf(struct buf *nbp)
2003 {
2004 	GIANT_REQUIRED;
2005 	if (nbp->b_bcount) {
2006 		nbp->b_bufsize = nbp->b_bcount;
2007 		if (nbp->b_iocmd == BIO_WRITE)
2008 			nbp->b_dirtyend = nbp->b_bcount;
2009 		BUF_KERNPROC(nbp);
2010 		BUF_STRATEGY(nbp);
2011 	} else {
2012 		bufdone(nbp);
2013 	}
2014 }
2015 
2016 static void
2017 waitchainbuf(struct bio *bp, int limit, int done)
2018 {
2019  	int s;
2020 	u_int *count;
2021 
2022 	GIANT_REQUIRED;
2023 	count = (u_int *)&(bp->bio_driver1);
2024 	s = splbio();
2025 	while (*count > limit) {
2026 		bp->bio_flags |= BIO_FLAG1;
2027 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
2028 	}
2029 	if (done) {
2030 		if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) {
2031 			bp->bio_flags |= BIO_ERROR;
2032 			bp->bio_error = EINVAL;
2033 		}
2034 		biodone(bp);
2035 	}
2036 	splx(s);
2037 }
2038 
2039