1 /* 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * 67 * $FreeBSD$ 68 */ 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/conf.h> 73 #include <sys/kernel.h> 74 #include <sys/proc.h> 75 #include <sys/bio.h> 76 #include <sys/buf.h> 77 #include <sys/vnode.h> 78 #include <sys/malloc.h> 79 #include <sys/vmmeter.h> 80 #include <sys/sysctl.h> 81 #include <sys/blist.h> 82 #include <sys/lock.h> 83 #include <sys/sx.h> 84 #include <sys/vmmeter.h> 85 86 #ifndef MAX_PAGEOUT_CLUSTER 87 #define MAX_PAGEOUT_CLUSTER 16 88 #endif 89 90 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 91 92 #include "opt_swap.h" 93 #include <vm/vm.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_object.h> 98 #include <vm/vm_page.h> 99 #include <vm/vm_pager.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/swap_pager.h> 102 #include <vm/vm_extern.h> 103 #include <vm/uma.h> 104 105 #define SWM_FREE 0x02 /* free, period */ 106 #define SWM_POP 0x04 /* pop out */ 107 108 /* 109 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks 110 * in the old system. 111 */ 112 extern int vm_swap_size; /* number of free swap blocks, in pages */ 113 114 int swap_pager_full; /* swap space exhaustion (task killing) */ 115 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 116 static int nsw_rcount; /* free read buffers */ 117 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 118 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 119 static int nsw_wcount_async_max;/* assigned maximum */ 120 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 121 122 struct blist *swapblist; 123 static struct swblock **swhash; 124 static int swhash_mask; 125 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 126 static struct sx sw_alloc_sx; 127 128 /* from vm_swap.c */ 129 extern struct vnode *swapdev_vp; 130 extern struct swdevt *swdevt; 131 extern int nswdev; 132 133 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 134 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 135 136 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0) 137 138 /* 139 * "named" and "unnamed" anon region objects. Try to reduce the overhead 140 * of searching a named list by hashing it just a little. 141 */ 142 143 #define NOBJLISTS 8 144 145 #define NOBJLIST(handle) \ 146 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 147 148 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 149 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 150 struct pagerlst swap_pager_un_object_list; 151 uma_zone_t swap_zone; 152 153 /* 154 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 155 * calls hooked from other parts of the VM system and do not appear here. 156 * (see vm/swap_pager.h). 157 */ 158 static vm_object_t 159 swap_pager_alloc(void *handle, vm_ooffset_t size, 160 vm_prot_t prot, vm_ooffset_t offset); 161 static void swap_pager_dealloc(vm_object_t object); 162 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 163 static void swap_pager_init(void); 164 static void swap_pager_unswapped(vm_page_t); 165 static void swap_pager_strategy(vm_object_t, struct bio *); 166 167 struct pagerops swappagerops = { 168 swap_pager_init, /* early system initialization of pager */ 169 swap_pager_alloc, /* allocate an OBJT_SWAP object */ 170 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 171 swap_pager_getpages, /* pagein */ 172 swap_pager_putpages, /* pageout */ 173 swap_pager_haspage, /* get backing store status for page */ 174 swap_pager_unswapped, /* remove swap related to page */ 175 swap_pager_strategy /* pager strategy call */ 176 }; 177 178 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags); 179 static void flushchainbuf(struct buf *nbp); 180 static void waitchainbuf(struct bio *bp, int count, int done); 181 182 /* 183 * dmmax is in page-sized chunks with the new swap system. It was 184 * dev-bsized chunks in the old. dmmax is always a power of 2. 185 * 186 * swap_*() routines are externally accessible. swp_*() routines are 187 * internal. 188 */ 189 int dmmax; 190 static int dmmax_mask; 191 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 192 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 193 194 SYSCTL_INT(_vm, OID_AUTO, dmmax, 195 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 196 197 static __inline void swp_sizecheck(void); 198 static void swp_pager_sync_iodone(struct buf *bp); 199 static void swp_pager_async_iodone(struct buf *bp); 200 201 /* 202 * Swap bitmap functions 203 */ 204 static __inline void swp_pager_freeswapspace(daddr_t blk, int npages); 205 static __inline daddr_t swp_pager_getswapspace(int npages); 206 207 /* 208 * Metadata functions 209 */ 210 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 211 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 212 static void swp_pager_meta_free_all(vm_object_t); 213 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 214 215 /* 216 * SWP_SIZECHECK() - update swap_pager_full indication 217 * 218 * update the swap_pager_almost_full indication and warn when we are 219 * about to run out of swap space, using lowat/hiwat hysteresis. 220 * 221 * Clear swap_pager_full ( task killing ) indication when lowat is met. 222 * 223 * No restrictions on call 224 * This routine may not block. 225 * This routine must be called at splvm() 226 */ 227 static __inline void 228 swp_sizecheck() 229 { 230 GIANT_REQUIRED; 231 232 if (vm_swap_size < nswap_lowat) { 233 if (swap_pager_almost_full == 0) { 234 printf("swap_pager: out of swap space\n"); 235 swap_pager_almost_full = 1; 236 } 237 } else { 238 swap_pager_full = 0; 239 if (vm_swap_size > nswap_hiwat) 240 swap_pager_almost_full = 0; 241 } 242 } 243 244 /* 245 * SWAP_PAGER_INIT() - initialize the swap pager! 246 * 247 * Expected to be started from system init. NOTE: This code is run 248 * before much else so be careful what you depend on. Most of the VM 249 * system has yet to be initialized at this point. 250 */ 251 static void 252 swap_pager_init() 253 { 254 /* 255 * Initialize object lists 256 */ 257 int i; 258 259 for (i = 0; i < NOBJLISTS; ++i) 260 TAILQ_INIT(&swap_pager_object_list[i]); 261 TAILQ_INIT(&swap_pager_un_object_list); 262 mtx_init(&sw_alloc_mtx, "swap_pager list", MTX_DEF); 263 264 /* 265 * Device Stripe, in PAGE_SIZE'd blocks 266 */ 267 dmmax = SWB_NPAGES * 2; 268 dmmax_mask = ~(dmmax - 1); 269 } 270 271 /* 272 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 273 * 274 * Expected to be started from pageout process once, prior to entering 275 * its main loop. 276 */ 277 void 278 swap_pager_swap_init() 279 { 280 int n, n2; 281 282 /* 283 * Number of in-transit swap bp operations. Don't 284 * exhaust the pbufs completely. Make sure we 285 * initialize workable values (0 will work for hysteresis 286 * but it isn't very efficient). 287 * 288 * The nsw_cluster_max is constrained by the bp->b_pages[] 289 * array (MAXPHYS/PAGE_SIZE) and our locally defined 290 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 291 * constrained by the swap device interleave stripe size. 292 * 293 * Currently we hardwire nsw_wcount_async to 4. This limit is 294 * designed to prevent other I/O from having high latencies due to 295 * our pageout I/O. The value 4 works well for one or two active swap 296 * devices but is probably a little low if you have more. Even so, 297 * a higher value would probably generate only a limited improvement 298 * with three or four active swap devices since the system does not 299 * typically have to pageout at extreme bandwidths. We will want 300 * at least 2 per swap devices, and 4 is a pretty good value if you 301 * have one NFS swap device due to the command/ack latency over NFS. 302 * So it all works out pretty well. 303 */ 304 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 305 306 mtx_lock(&pbuf_mtx); 307 nsw_rcount = (nswbuf + 1) / 2; 308 nsw_wcount_sync = (nswbuf + 3) / 4; 309 nsw_wcount_async = 4; 310 nsw_wcount_async_max = nsw_wcount_async; 311 mtx_unlock(&pbuf_mtx); 312 313 /* 314 * Initialize our zone. Right now I'm just guessing on the number 315 * we need based on the number of pages in the system. Each swblock 316 * can hold 16 pages, so this is probably overkill. This reservation 317 * is typically limited to around 70MB by default. 318 */ 319 n = cnt.v_page_count; 320 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 321 n = maxswzone / sizeof(struct swblock); 322 n2 = n; 323 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 324 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 325 do { 326 if (uma_zone_set_obj(swap_zone, NULL, n)) 327 break; 328 /* 329 * if the allocation failed, try a zone two thirds the 330 * size of the previous attempt. 331 */ 332 n -= ((n + 2) / 3); 333 } while (n > 0); 334 if (swap_zone == NULL) 335 panic("failed to create swap_zone."); 336 if (n2 != n) 337 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 338 n2 = n; 339 340 /* 341 * Initialize our meta-data hash table. The swapper does not need to 342 * be quite as efficient as the VM system, so we do not use an 343 * oversized hash table. 344 * 345 * n: size of hash table, must be power of 2 346 * swhash_mask: hash table index mask 347 */ 348 for (n = 1; n < n2 / 8; n *= 2) 349 ; 350 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 351 swhash_mask = n - 1; 352 } 353 354 /* 355 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 356 * its metadata structures. 357 * 358 * This routine is called from the mmap and fork code to create a new 359 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 360 * and then converting it with swp_pager_meta_build(). 361 * 362 * This routine may block in vm_object_allocate() and create a named 363 * object lookup race, so we must interlock. We must also run at 364 * splvm() for the object lookup to handle races with interrupts, but 365 * we do not have to maintain splvm() in between the lookup and the 366 * add because (I believe) it is not possible to attempt to create 367 * a new swap object w/handle when a default object with that handle 368 * already exists. 369 */ 370 static vm_object_t 371 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 372 vm_ooffset_t offset) 373 { 374 vm_object_t object; 375 376 GIANT_REQUIRED; 377 378 if (handle) { 379 /* 380 * Reference existing named region or allocate new one. There 381 * should not be a race here against swp_pager_meta_build() 382 * as called from vm_page_remove() in regards to the lookup 383 * of the handle. 384 */ 385 sx_xlock(&sw_alloc_sx); 386 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 387 388 if (object != NULL) { 389 vm_object_reference(object); 390 } else { 391 object = vm_object_allocate(OBJT_DEFAULT, 392 OFF_TO_IDX(offset + PAGE_MASK + size)); 393 object->handle = handle; 394 395 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 396 } 397 sx_xunlock(&sw_alloc_sx); 398 } else { 399 object = vm_object_allocate(OBJT_DEFAULT, 400 OFF_TO_IDX(offset + PAGE_MASK + size)); 401 402 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 403 } 404 405 return (object); 406 } 407 408 /* 409 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 410 * 411 * The swap backing for the object is destroyed. The code is 412 * designed such that we can reinstantiate it later, but this 413 * routine is typically called only when the entire object is 414 * about to be destroyed. 415 * 416 * This routine may block, but no longer does. 417 * 418 * The object must be locked or unreferenceable. 419 */ 420 static void 421 swap_pager_dealloc(object) 422 vm_object_t object; 423 { 424 int s; 425 426 GIANT_REQUIRED; 427 428 /* 429 * Remove from list right away so lookups will fail if we block for 430 * pageout completion. 431 */ 432 mtx_lock(&sw_alloc_mtx); 433 if (object->handle == NULL) { 434 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list); 435 } else { 436 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 437 } 438 mtx_unlock(&sw_alloc_mtx); 439 440 vm_object_pip_wait(object, "swpdea"); 441 442 /* 443 * Free all remaining metadata. We only bother to free it from 444 * the swap meta data. We do not attempt to free swapblk's still 445 * associated with vm_page_t's for this object. We do not care 446 * if paging is still in progress on some objects. 447 */ 448 s = splvm(); 449 swp_pager_meta_free_all(object); 450 splx(s); 451 } 452 453 /************************************************************************ 454 * SWAP PAGER BITMAP ROUTINES * 455 ************************************************************************/ 456 457 /* 458 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 459 * 460 * Allocate swap for the requested number of pages. The starting 461 * swap block number (a page index) is returned or SWAPBLK_NONE 462 * if the allocation failed. 463 * 464 * Also has the side effect of advising that somebody made a mistake 465 * when they configured swap and didn't configure enough. 466 * 467 * Must be called at splvm() to avoid races with bitmap frees from 468 * vm_page_remove() aka swap_pager_page_removed(). 469 * 470 * This routine may not block 471 * This routine must be called at splvm(). 472 */ 473 static __inline daddr_t 474 swp_pager_getswapspace(npages) 475 int npages; 476 { 477 daddr_t blk; 478 479 GIANT_REQUIRED; 480 481 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) { 482 if (swap_pager_full != 2) { 483 printf("swap_pager_getswapspace: failed\n"); 484 swap_pager_full = 2; 485 swap_pager_almost_full = 1; 486 } 487 } else { 488 vm_swap_size -= npages; 489 /* per-swap area stats */ 490 swdevt[BLK2DEVIDX(blk)].sw_used += npages; 491 swp_sizecheck(); 492 } 493 return (blk); 494 } 495 496 /* 497 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 498 * 499 * This routine returns the specified swap blocks back to the bitmap. 500 * 501 * Note: This routine may not block (it could in the old swap code), 502 * and through the use of the new blist routines it does not block. 503 * 504 * We must be called at splvm() to avoid races with bitmap frees from 505 * vm_page_remove() aka swap_pager_page_removed(). 506 * 507 * This routine may not block 508 * This routine must be called at splvm(). 509 */ 510 static __inline void 511 swp_pager_freeswapspace(blk, npages) 512 daddr_t blk; 513 int npages; 514 { 515 GIANT_REQUIRED; 516 517 blist_free(swapblist, blk, npages); 518 vm_swap_size += npages; 519 /* per-swap area stats */ 520 swdevt[BLK2DEVIDX(blk)].sw_used -= npages; 521 swp_sizecheck(); 522 } 523 524 /* 525 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 526 * range within an object. 527 * 528 * This is a globally accessible routine. 529 * 530 * This routine removes swapblk assignments from swap metadata. 531 * 532 * The external callers of this routine typically have already destroyed 533 * or renamed vm_page_t's associated with this range in the object so 534 * we should be ok. 535 * 536 * This routine may be called at any spl. We up our spl to splvm temporarily 537 * in order to perform the metadata removal. 538 */ 539 void 540 swap_pager_freespace(object, start, size) 541 vm_object_t object; 542 vm_pindex_t start; 543 vm_size_t size; 544 { 545 int s = splvm(); 546 547 GIANT_REQUIRED; 548 swp_pager_meta_free(object, start, size); 549 splx(s); 550 } 551 552 /* 553 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 554 * 555 * Assigns swap blocks to the specified range within the object. The 556 * swap blocks are not zerod. Any previous swap assignment is destroyed. 557 * 558 * Returns 0 on success, -1 on failure. 559 */ 560 int 561 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 562 { 563 int s; 564 int n = 0; 565 daddr_t blk = SWAPBLK_NONE; 566 vm_pindex_t beg = start; /* save start index */ 567 568 s = splvm(); 569 while (size) { 570 if (n == 0) { 571 n = BLIST_MAX_ALLOC; 572 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 573 n >>= 1; 574 if (n == 0) { 575 swp_pager_meta_free(object, beg, start - beg); 576 splx(s); 577 return (-1); 578 } 579 } 580 } 581 swp_pager_meta_build(object, start, blk); 582 --size; 583 ++start; 584 ++blk; 585 --n; 586 } 587 swp_pager_meta_free(object, start, n); 588 splx(s); 589 return (0); 590 } 591 592 /* 593 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 594 * and destroy the source. 595 * 596 * Copy any valid swapblks from the source to the destination. In 597 * cases where both the source and destination have a valid swapblk, 598 * we keep the destination's. 599 * 600 * This routine is allowed to block. It may block allocating metadata 601 * indirectly through swp_pager_meta_build() or if paging is still in 602 * progress on the source. 603 * 604 * This routine can be called at any spl 605 * 606 * XXX vm_page_collapse() kinda expects us not to block because we 607 * supposedly do not need to allocate memory, but for the moment we 608 * *may* have to get a little memory from the zone allocator, but 609 * it is taken from the interrupt memory. We should be ok. 610 * 611 * The source object contains no vm_page_t's (which is just as well) 612 * 613 * The source object is of type OBJT_SWAP. 614 * 615 * The source and destination objects must be locked or 616 * inaccessible (XXX are they ?) 617 */ 618 void 619 swap_pager_copy(srcobject, dstobject, offset, destroysource) 620 vm_object_t srcobject; 621 vm_object_t dstobject; 622 vm_pindex_t offset; 623 int destroysource; 624 { 625 vm_pindex_t i; 626 int s; 627 628 GIANT_REQUIRED; 629 630 s = splvm(); 631 /* 632 * If destroysource is set, we remove the source object from the 633 * swap_pager internal queue now. 634 */ 635 if (destroysource) { 636 mtx_lock(&sw_alloc_mtx); 637 if (srcobject->handle == NULL) { 638 TAILQ_REMOVE( 639 &swap_pager_un_object_list, 640 srcobject, 641 pager_object_list 642 ); 643 } else { 644 TAILQ_REMOVE( 645 NOBJLIST(srcobject->handle), 646 srcobject, 647 pager_object_list 648 ); 649 } 650 mtx_unlock(&sw_alloc_mtx); 651 } 652 653 /* 654 * transfer source to destination. 655 */ 656 for (i = 0; i < dstobject->size; ++i) { 657 daddr_t dstaddr; 658 659 /* 660 * Locate (without changing) the swapblk on the destination, 661 * unless it is invalid in which case free it silently, or 662 * if the destination is a resident page, in which case the 663 * source is thrown away. 664 */ 665 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 666 667 if (dstaddr == SWAPBLK_NONE) { 668 /* 669 * Destination has no swapblk and is not resident, 670 * copy source. 671 */ 672 daddr_t srcaddr; 673 674 srcaddr = swp_pager_meta_ctl( 675 srcobject, 676 i + offset, 677 SWM_POP 678 ); 679 680 if (srcaddr != SWAPBLK_NONE) 681 swp_pager_meta_build(dstobject, i, srcaddr); 682 } else { 683 /* 684 * Destination has valid swapblk or it is represented 685 * by a resident page. We destroy the sourceblock. 686 */ 687 688 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 689 } 690 } 691 692 /* 693 * Free left over swap blocks in source. 694 * 695 * We have to revert the type to OBJT_DEFAULT so we do not accidently 696 * double-remove the object from the swap queues. 697 */ 698 if (destroysource) { 699 swp_pager_meta_free_all(srcobject); 700 /* 701 * Reverting the type is not necessary, the caller is going 702 * to destroy srcobject directly, but I'm doing it here 703 * for consistency since we've removed the object from its 704 * queues. 705 */ 706 srcobject->type = OBJT_DEFAULT; 707 } 708 splx(s); 709 } 710 711 /* 712 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 713 * the requested page. 714 * 715 * We determine whether good backing store exists for the requested 716 * page and return TRUE if it does, FALSE if it doesn't. 717 * 718 * If TRUE, we also try to determine how much valid, contiguous backing 719 * store exists before and after the requested page within a reasonable 720 * distance. We do not try to restrict it to the swap device stripe 721 * (that is handled in getpages/putpages). It probably isn't worth 722 * doing here. 723 */ 724 boolean_t 725 swap_pager_haspage(object, pindex, before, after) 726 vm_object_t object; 727 vm_pindex_t pindex; 728 int *before; 729 int *after; 730 { 731 daddr_t blk0; 732 int s; 733 734 /* 735 * do we have good backing store at the requested index ? 736 */ 737 s = splvm(); 738 blk0 = swp_pager_meta_ctl(object, pindex, 0); 739 740 if (blk0 == SWAPBLK_NONE) { 741 splx(s); 742 if (before) 743 *before = 0; 744 if (after) 745 *after = 0; 746 return (FALSE); 747 } 748 749 /* 750 * find backwards-looking contiguous good backing store 751 */ 752 if (before != NULL) { 753 int i; 754 755 for (i = 1; i < (SWB_NPAGES/2); ++i) { 756 daddr_t blk; 757 758 if (i > pindex) 759 break; 760 blk = swp_pager_meta_ctl(object, pindex - i, 0); 761 if (blk != blk0 - i) 762 break; 763 } 764 *before = (i - 1); 765 } 766 767 /* 768 * find forward-looking contiguous good backing store 769 */ 770 if (after != NULL) { 771 int i; 772 773 for (i = 1; i < (SWB_NPAGES/2); ++i) { 774 daddr_t blk; 775 776 blk = swp_pager_meta_ctl(object, pindex + i, 0); 777 if (blk != blk0 + i) 778 break; 779 } 780 *after = (i - 1); 781 } 782 splx(s); 783 return (TRUE); 784 } 785 786 /* 787 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 788 * 789 * This removes any associated swap backing store, whether valid or 790 * not, from the page. 791 * 792 * This routine is typically called when a page is made dirty, at 793 * which point any associated swap can be freed. MADV_FREE also 794 * calls us in a special-case situation 795 * 796 * NOTE!!! If the page is clean and the swap was valid, the caller 797 * should make the page dirty before calling this routine. This routine 798 * does NOT change the m->dirty status of the page. Also: MADV_FREE 799 * depends on it. 800 * 801 * This routine may not block 802 * This routine must be called at splvm() 803 */ 804 static void 805 swap_pager_unswapped(m) 806 vm_page_t m; 807 { 808 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 809 } 810 811 /* 812 * SWAP_PAGER_STRATEGY() - read, write, free blocks 813 * 814 * This implements the vm_pager_strategy() interface to swap and allows 815 * other parts of the system to directly access swap as backing store 816 * through vm_objects of type OBJT_SWAP. This is intended to be a 817 * cacheless interface ( i.e. caching occurs at higher levels ). 818 * Therefore we do not maintain any resident pages. All I/O goes 819 * directly to and from the swap device. 820 * 821 * Note that b_blkno is scaled for PAGE_SIZE 822 * 823 * We currently attempt to run I/O synchronously or asynchronously as 824 * the caller requests. This isn't perfect because we loose error 825 * sequencing when we run multiple ops in parallel to satisfy a request. 826 * But this is swap, so we let it all hang out. 827 */ 828 static void 829 swap_pager_strategy(vm_object_t object, struct bio *bp) 830 { 831 vm_pindex_t start; 832 int count; 833 int s; 834 char *data; 835 struct buf *nbp = NULL; 836 837 GIANT_REQUIRED; 838 839 /* XXX: KASSERT instead ? */ 840 if (bp->bio_bcount & PAGE_MASK) { 841 biofinish(bp, NULL, EINVAL); 842 printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount); 843 return; 844 } 845 846 /* 847 * Clear error indication, initialize page index, count, data pointer. 848 */ 849 bp->bio_error = 0; 850 bp->bio_flags &= ~BIO_ERROR; 851 bp->bio_resid = bp->bio_bcount; 852 *(u_int *) &bp->bio_driver1 = 0; 853 854 start = bp->bio_pblkno; 855 count = howmany(bp->bio_bcount, PAGE_SIZE); 856 data = bp->bio_data; 857 858 s = splvm(); 859 860 /* 861 * Deal with BIO_DELETE 862 */ 863 if (bp->bio_cmd == BIO_DELETE) { 864 /* 865 * FREE PAGE(s) - destroy underlying swap that is no longer 866 * needed. 867 */ 868 swp_pager_meta_free(object, start, count); 869 splx(s); 870 bp->bio_resid = 0; 871 biodone(bp); 872 return; 873 } 874 875 /* 876 * Execute read or write 877 */ 878 while (count > 0) { 879 daddr_t blk; 880 881 /* 882 * Obtain block. If block not found and writing, allocate a 883 * new block and build it into the object. 884 */ 885 886 blk = swp_pager_meta_ctl(object, start, 0); 887 if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) { 888 blk = swp_pager_getswapspace(1); 889 if (blk == SWAPBLK_NONE) { 890 bp->bio_error = ENOMEM; 891 bp->bio_flags |= BIO_ERROR; 892 break; 893 } 894 swp_pager_meta_build(object, start, blk); 895 } 896 897 /* 898 * Do we have to flush our current collection? Yes if: 899 * 900 * - no swap block at this index 901 * - swap block is not contiguous 902 * - we cross a physical disk boundry in the 903 * stripe. 904 */ 905 if ( 906 nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk || 907 ((nbp->b_blkno ^ blk) & dmmax_mask) 908 ) 909 ) { 910 splx(s); 911 if (bp->bio_cmd == BIO_READ) { 912 ++cnt.v_swapin; 913 cnt.v_swappgsin += btoc(nbp->b_bcount); 914 } else { 915 ++cnt.v_swapout; 916 cnt.v_swappgsout += btoc(nbp->b_bcount); 917 nbp->b_dirtyend = nbp->b_bcount; 918 } 919 flushchainbuf(nbp); 920 s = splvm(); 921 nbp = NULL; 922 } 923 924 /* 925 * Add new swapblk to nbp, instantiating nbp if necessary. 926 * Zero-fill reads are able to take a shortcut. 927 */ 928 if (blk == SWAPBLK_NONE) { 929 /* 930 * We can only get here if we are reading. Since 931 * we are at splvm() we can safely modify b_resid, 932 * even if chain ops are in progress. 933 */ 934 bzero(data, PAGE_SIZE); 935 bp->bio_resid -= PAGE_SIZE; 936 } else { 937 if (nbp == NULL) { 938 nbp = getchainbuf(bp, swapdev_vp, B_ASYNC); 939 nbp->b_blkno = blk; 940 nbp->b_bcount = 0; 941 nbp->b_data = data; 942 } 943 nbp->b_bcount += PAGE_SIZE; 944 } 945 --count; 946 ++start; 947 data += PAGE_SIZE; 948 } 949 950 /* 951 * Flush out last buffer 952 */ 953 splx(s); 954 955 if (nbp) { 956 if (nbp->b_iocmd == BIO_READ) { 957 ++cnt.v_swapin; 958 cnt.v_swappgsin += btoc(nbp->b_bcount); 959 } else { 960 ++cnt.v_swapout; 961 cnt.v_swappgsout += btoc(nbp->b_bcount); 962 nbp->b_dirtyend = nbp->b_bcount; 963 } 964 flushchainbuf(nbp); 965 /* nbp = NULL; */ 966 } 967 /* 968 * Wait for completion. 969 */ 970 waitchainbuf(bp, 0, 1); 971 } 972 973 /* 974 * SWAP_PAGER_GETPAGES() - bring pages in from swap 975 * 976 * Attempt to retrieve (m, count) pages from backing store, but make 977 * sure we retrieve at least m[reqpage]. We try to load in as large 978 * a chunk surrounding m[reqpage] as is contiguous in swap and which 979 * belongs to the same object. 980 * 981 * The code is designed for asynchronous operation and 982 * immediate-notification of 'reqpage' but tends not to be 983 * used that way. Please do not optimize-out this algorithmic 984 * feature, I intend to improve on it in the future. 985 * 986 * The parent has a single vm_object_pip_add() reference prior to 987 * calling us and we should return with the same. 988 * 989 * The parent has BUSY'd the pages. We should return with 'm' 990 * left busy, but the others adjusted. 991 */ 992 static int 993 swap_pager_getpages(object, m, count, reqpage) 994 vm_object_t object; 995 vm_page_t *m; 996 int count, reqpage; 997 { 998 struct buf *bp; 999 vm_page_t mreq; 1000 int s; 1001 int i; 1002 int j; 1003 daddr_t blk; 1004 vm_offset_t kva; 1005 vm_pindex_t lastpindex; 1006 1007 GIANT_REQUIRED; 1008 1009 mreq = m[reqpage]; 1010 1011 if (mreq->object != object) { 1012 panic("swap_pager_getpages: object mismatch %p/%p", 1013 object, 1014 mreq->object 1015 ); 1016 } 1017 /* 1018 * Calculate range to retrieve. The pages have already been assigned 1019 * their swapblks. We require a *contiguous* range that falls entirely 1020 * within a single device stripe. If we do not supply it, bad things 1021 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1022 * loops are set up such that the case(s) are handled implicitly. 1023 * 1024 * The swp_*() calls must be made at splvm(). vm_page_free() does 1025 * not need to be, but it will go a little faster if it is. 1026 */ 1027 s = splvm(); 1028 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1029 1030 for (i = reqpage - 1; i >= 0; --i) { 1031 daddr_t iblk; 1032 1033 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1034 if (blk != iblk + (reqpage - i)) 1035 break; 1036 if ((blk ^ iblk) & dmmax_mask) 1037 break; 1038 } 1039 ++i; 1040 1041 for (j = reqpage + 1; j < count; ++j) { 1042 daddr_t jblk; 1043 1044 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1045 if (blk != jblk - (j - reqpage)) 1046 break; 1047 if ((blk ^ jblk) & dmmax_mask) 1048 break; 1049 } 1050 1051 /* 1052 * free pages outside our collection range. Note: we never free 1053 * mreq, it must remain busy throughout. 1054 */ 1055 { 1056 int k; 1057 1058 for (k = 0; k < i; ++k) 1059 vm_page_free(m[k]); 1060 for (k = j; k < count; ++k) 1061 vm_page_free(m[k]); 1062 } 1063 splx(s); 1064 1065 1066 /* 1067 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1068 * still busy, but the others unbusied. 1069 */ 1070 if (blk == SWAPBLK_NONE) 1071 return (VM_PAGER_FAIL); 1072 1073 /* 1074 * Get a swap buffer header to perform the IO 1075 */ 1076 bp = getpbuf(&nsw_rcount); 1077 kva = (vm_offset_t) bp->b_data; 1078 1079 /* 1080 * map our page(s) into kva for input 1081 * 1082 * NOTE: B_PAGING is set by pbgetvp() 1083 */ 1084 pmap_qenter(kva, m + i, j - i); 1085 1086 bp->b_iocmd = BIO_READ; 1087 bp->b_iodone = swp_pager_async_iodone; 1088 bp->b_rcred = crhold(thread0.td_ucred); 1089 bp->b_wcred = crhold(thread0.td_ucred); 1090 bp->b_data = (caddr_t) kva; 1091 bp->b_blkno = blk - (reqpage - i); 1092 bp->b_bcount = PAGE_SIZE * (j - i); 1093 bp->b_bufsize = PAGE_SIZE * (j - i); 1094 bp->b_pager.pg_reqpage = reqpage - i; 1095 1096 { 1097 int k; 1098 1099 for (k = i; k < j; ++k) { 1100 bp->b_pages[k - i] = m[k]; 1101 vm_page_flag_set(m[k], PG_SWAPINPROG); 1102 } 1103 } 1104 bp->b_npages = j - i; 1105 1106 pbgetvp(swapdev_vp, bp); 1107 1108 cnt.v_swapin++; 1109 cnt.v_swappgsin += bp->b_npages; 1110 1111 /* 1112 * We still hold the lock on mreq, and our automatic completion routine 1113 * does not remove it. 1114 */ 1115 vm_object_pip_add(mreq->object, bp->b_npages); 1116 lastpindex = m[j-1]->pindex; 1117 1118 /* 1119 * perform the I/O. NOTE!!! bp cannot be considered valid after 1120 * this point because we automatically release it on completion. 1121 * Instead, we look at the one page we are interested in which we 1122 * still hold a lock on even through the I/O completion. 1123 * 1124 * The other pages in our m[] array are also released on completion, 1125 * so we cannot assume they are valid anymore either. 1126 * 1127 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1128 */ 1129 BUF_KERNPROC(bp); 1130 BUF_STRATEGY(bp); 1131 1132 /* 1133 * wait for the page we want to complete. PG_SWAPINPROG is always 1134 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1135 * is set in the meta-data. 1136 */ 1137 s = splvm(); 1138 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1139 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1140 cnt.v_intrans++; 1141 if (tsleep(mreq, PSWP, "swread", hz*20)) { 1142 printf( 1143 "swap_pager: indefinite wait buffer: device:" 1144 " %s, blkno: %ld, size: %ld\n", 1145 devtoname(bp->b_dev), (long)bp->b_blkno, 1146 bp->b_bcount 1147 ); 1148 } 1149 } 1150 splx(s); 1151 1152 /* 1153 * mreq is left busied after completion, but all the other pages 1154 * are freed. If we had an unrecoverable read error the page will 1155 * not be valid. 1156 */ 1157 if (mreq->valid != VM_PAGE_BITS_ALL) { 1158 return (VM_PAGER_ERROR); 1159 } else { 1160 return (VM_PAGER_OK); 1161 } 1162 1163 /* 1164 * A final note: in a low swap situation, we cannot deallocate swap 1165 * and mark a page dirty here because the caller is likely to mark 1166 * the page clean when we return, causing the page to possibly revert 1167 * to all-zero's later. 1168 */ 1169 } 1170 1171 /* 1172 * swap_pager_putpages: 1173 * 1174 * Assign swap (if necessary) and initiate I/O on the specified pages. 1175 * 1176 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1177 * are automatically converted to SWAP objects. 1178 * 1179 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1180 * vm_page reservation system coupled with properly written VFS devices 1181 * should ensure that no low-memory deadlock occurs. This is an area 1182 * which needs work. 1183 * 1184 * The parent has N vm_object_pip_add() references prior to 1185 * calling us and will remove references for rtvals[] that are 1186 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1187 * completion. 1188 * 1189 * The parent has soft-busy'd the pages it passes us and will unbusy 1190 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1191 * We need to unbusy the rest on I/O completion. 1192 */ 1193 void 1194 swap_pager_putpages(object, m, count, sync, rtvals) 1195 vm_object_t object; 1196 vm_page_t *m; 1197 int count; 1198 boolean_t sync; 1199 int *rtvals; 1200 { 1201 int i; 1202 int n = 0; 1203 1204 GIANT_REQUIRED; 1205 if (count && m[0]->object != object) { 1206 panic("swap_pager_getpages: object mismatch %p/%p", 1207 object, 1208 m[0]->object 1209 ); 1210 } 1211 /* 1212 * Step 1 1213 * 1214 * Turn object into OBJT_SWAP 1215 * check for bogus sysops 1216 * force sync if not pageout process 1217 */ 1218 if (object->type != OBJT_SWAP) 1219 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1220 1221 if (curproc != pageproc) 1222 sync = TRUE; 1223 1224 /* 1225 * Step 2 1226 * 1227 * Update nsw parameters from swap_async_max sysctl values. 1228 * Do not let the sysop crash the machine with bogus numbers. 1229 */ 1230 mtx_lock(&pbuf_mtx); 1231 if (swap_async_max != nsw_wcount_async_max) { 1232 int n; 1233 int s; 1234 1235 /* 1236 * limit range 1237 */ 1238 if ((n = swap_async_max) > nswbuf / 2) 1239 n = nswbuf / 2; 1240 if (n < 1) 1241 n = 1; 1242 swap_async_max = n; 1243 1244 /* 1245 * Adjust difference ( if possible ). If the current async 1246 * count is too low, we may not be able to make the adjustment 1247 * at this time. 1248 */ 1249 s = splvm(); 1250 n -= nsw_wcount_async_max; 1251 if (nsw_wcount_async + n >= 0) { 1252 nsw_wcount_async += n; 1253 nsw_wcount_async_max += n; 1254 wakeup(&nsw_wcount_async); 1255 } 1256 splx(s); 1257 } 1258 mtx_unlock(&pbuf_mtx); 1259 1260 /* 1261 * Step 3 1262 * 1263 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1264 * The page is left dirty until the pageout operation completes 1265 * successfully. 1266 */ 1267 for (i = 0; i < count; i += n) { 1268 int s; 1269 int j; 1270 struct buf *bp; 1271 daddr_t blk; 1272 1273 /* 1274 * Maximum I/O size is limited by a number of factors. 1275 */ 1276 n = min(BLIST_MAX_ALLOC, count - i); 1277 n = min(n, nsw_cluster_max); 1278 1279 s = splvm(); 1280 1281 /* 1282 * Get biggest block of swap we can. If we fail, fall 1283 * back and try to allocate a smaller block. Don't go 1284 * overboard trying to allocate space if it would overly 1285 * fragment swap. 1286 */ 1287 while ( 1288 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1289 n > 4 1290 ) { 1291 n >>= 1; 1292 } 1293 if (blk == SWAPBLK_NONE) { 1294 for (j = 0; j < n; ++j) 1295 rtvals[i+j] = VM_PAGER_FAIL; 1296 splx(s); 1297 continue; 1298 } 1299 1300 /* 1301 * The I/O we are constructing cannot cross a physical 1302 * disk boundry in the swap stripe. Note: we are still 1303 * at splvm(). 1304 */ 1305 if ((blk ^ (blk + n)) & dmmax_mask) { 1306 j = ((blk + dmmax) & dmmax_mask) - blk; 1307 swp_pager_freeswapspace(blk + j, n - j); 1308 n = j; 1309 } 1310 1311 /* 1312 * All I/O parameters have been satisfied, build the I/O 1313 * request and assign the swap space. 1314 * 1315 * NOTE: B_PAGING is set by pbgetvp() 1316 */ 1317 if (sync == TRUE) { 1318 bp = getpbuf(&nsw_wcount_sync); 1319 } else { 1320 bp = getpbuf(&nsw_wcount_async); 1321 bp->b_flags = B_ASYNC; 1322 } 1323 bp->b_iocmd = BIO_WRITE; 1324 bp->b_spc = NULL; /* not used, but NULL-out anyway */ 1325 1326 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1327 1328 bp->b_rcred = crhold(thread0.td_ucred); 1329 bp->b_wcred = crhold(thread0.td_ucred); 1330 bp->b_bcount = PAGE_SIZE * n; 1331 bp->b_bufsize = PAGE_SIZE * n; 1332 bp->b_blkno = blk; 1333 1334 pbgetvp(swapdev_vp, bp); 1335 1336 for (j = 0; j < n; ++j) { 1337 vm_page_t mreq = m[i+j]; 1338 1339 swp_pager_meta_build( 1340 mreq->object, 1341 mreq->pindex, 1342 blk + j 1343 ); 1344 vm_page_dirty(mreq); 1345 rtvals[i+j] = VM_PAGER_OK; 1346 1347 vm_page_flag_set(mreq, PG_SWAPINPROG); 1348 bp->b_pages[j] = mreq; 1349 } 1350 bp->b_npages = n; 1351 /* 1352 * Must set dirty range for NFS to work. 1353 */ 1354 bp->b_dirtyoff = 0; 1355 bp->b_dirtyend = bp->b_bcount; 1356 1357 cnt.v_swapout++; 1358 cnt.v_swappgsout += bp->b_npages; 1359 swapdev_vp->v_numoutput++; 1360 1361 splx(s); 1362 1363 /* 1364 * asynchronous 1365 * 1366 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1367 */ 1368 if (sync == FALSE) { 1369 bp->b_iodone = swp_pager_async_iodone; 1370 BUF_KERNPROC(bp); 1371 BUF_STRATEGY(bp); 1372 1373 for (j = 0; j < n; ++j) 1374 rtvals[i+j] = VM_PAGER_PEND; 1375 /* restart outter loop */ 1376 continue; 1377 } 1378 1379 /* 1380 * synchronous 1381 * 1382 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1383 */ 1384 bp->b_iodone = swp_pager_sync_iodone; 1385 BUF_STRATEGY(bp); 1386 1387 /* 1388 * Wait for the sync I/O to complete, then update rtvals. 1389 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1390 * our async completion routine at the end, thus avoiding a 1391 * double-free. 1392 */ 1393 s = splbio(); 1394 while ((bp->b_flags & B_DONE) == 0) { 1395 tsleep(bp, PVM, "swwrt", 0); 1396 } 1397 for (j = 0; j < n; ++j) 1398 rtvals[i+j] = VM_PAGER_PEND; 1399 /* 1400 * Now that we are through with the bp, we can call the 1401 * normal async completion, which frees everything up. 1402 */ 1403 swp_pager_async_iodone(bp); 1404 splx(s); 1405 } 1406 } 1407 1408 /* 1409 * swap_pager_sync_iodone: 1410 * 1411 * Completion routine for synchronous reads and writes from/to swap. 1412 * We just mark the bp is complete and wake up anyone waiting on it. 1413 * 1414 * This routine may not block. This routine is called at splbio() or better. 1415 */ 1416 static void 1417 swp_pager_sync_iodone(bp) 1418 struct buf *bp; 1419 { 1420 bp->b_flags |= B_DONE; 1421 bp->b_flags &= ~B_ASYNC; 1422 wakeup(bp); 1423 } 1424 1425 /* 1426 * swp_pager_async_iodone: 1427 * 1428 * Completion routine for asynchronous reads and writes from/to swap. 1429 * Also called manually by synchronous code to finish up a bp. 1430 * 1431 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1432 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1433 * unbusy all pages except the 'main' request page. For WRITE 1434 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1435 * because we marked them all VM_PAGER_PEND on return from putpages ). 1436 * 1437 * This routine may not block. 1438 * This routine is called at splbio() or better 1439 * 1440 * We up ourselves to splvm() as required for various vm_page related 1441 * calls. 1442 */ 1443 static void 1444 swp_pager_async_iodone(bp) 1445 struct buf *bp; 1446 { 1447 int s; 1448 int i; 1449 vm_object_t object = NULL; 1450 1451 GIANT_REQUIRED; 1452 bp->b_flags |= B_DONE; 1453 1454 /* 1455 * report error 1456 */ 1457 if (bp->b_ioflags & BIO_ERROR) { 1458 printf( 1459 "swap_pager: I/O error - %s failed; blkno %ld," 1460 "size %ld, error %d\n", 1461 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1462 (long)bp->b_blkno, 1463 (long)bp->b_bcount, 1464 bp->b_error 1465 ); 1466 } 1467 1468 /* 1469 * set object, raise to splvm(). 1470 */ 1471 if (bp->b_npages) 1472 object = bp->b_pages[0]->object; 1473 s = splvm(); 1474 1475 /* 1476 * remove the mapping for kernel virtual 1477 */ 1478 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1479 1480 /* 1481 * cleanup pages. If an error occurs writing to swap, we are in 1482 * very serious trouble. If it happens to be a disk error, though, 1483 * we may be able to recover by reassigning the swap later on. So 1484 * in this case we remove the m->swapblk assignment for the page 1485 * but do not free it in the rlist. The errornous block(s) are thus 1486 * never reallocated as swap. Redirty the page and continue. 1487 */ 1488 for (i = 0; i < bp->b_npages; ++i) { 1489 vm_page_t m = bp->b_pages[i]; 1490 1491 vm_page_flag_clear(m, PG_SWAPINPROG); 1492 1493 if (bp->b_ioflags & BIO_ERROR) { 1494 /* 1495 * If an error occurs I'd love to throw the swapblk 1496 * away without freeing it back to swapspace, so it 1497 * can never be used again. But I can't from an 1498 * interrupt. 1499 */ 1500 if (bp->b_iocmd == BIO_READ) { 1501 /* 1502 * When reading, reqpage needs to stay 1503 * locked for the parent, but all other 1504 * pages can be freed. We still want to 1505 * wakeup the parent waiting on the page, 1506 * though. ( also: pg_reqpage can be -1 and 1507 * not match anything ). 1508 * 1509 * We have to wake specifically requested pages 1510 * up too because we cleared PG_SWAPINPROG and 1511 * someone may be waiting for that. 1512 * 1513 * NOTE: for reads, m->dirty will probably 1514 * be overridden by the original caller of 1515 * getpages so don't play cute tricks here. 1516 * 1517 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE 1518 * AS THIS MESSES WITH object->memq, and it is 1519 * not legal to mess with object->memq from an 1520 * interrupt. 1521 */ 1522 m->valid = 0; 1523 vm_page_flag_clear(m, PG_ZERO); 1524 if (i != bp->b_pager.pg_reqpage) 1525 vm_page_free(m); 1526 else 1527 vm_page_flash(m); 1528 /* 1529 * If i == bp->b_pager.pg_reqpage, do not wake 1530 * the page up. The caller needs to. 1531 */ 1532 } else { 1533 /* 1534 * If a write error occurs, reactivate page 1535 * so it doesn't clog the inactive list, 1536 * then finish the I/O. 1537 */ 1538 vm_page_dirty(m); 1539 vm_page_activate(m); 1540 vm_page_io_finish(m); 1541 } 1542 } else if (bp->b_iocmd == BIO_READ) { 1543 /* 1544 * For read success, clear dirty bits. Nobody should 1545 * have this page mapped but don't take any chances, 1546 * make sure the pmap modify bits are also cleared. 1547 * 1548 * NOTE: for reads, m->dirty will probably be 1549 * overridden by the original caller of getpages so 1550 * we cannot set them in order to free the underlying 1551 * swap in a low-swap situation. I don't think we'd 1552 * want to do that anyway, but it was an optimization 1553 * that existed in the old swapper for a time before 1554 * it got ripped out due to precisely this problem. 1555 * 1556 * clear PG_ZERO in page. 1557 * 1558 * If not the requested page then deactivate it. 1559 * 1560 * Note that the requested page, reqpage, is left 1561 * busied, but we still have to wake it up. The 1562 * other pages are released (unbusied) by 1563 * vm_page_wakeup(). We do not set reqpage's 1564 * valid bits here, it is up to the caller. 1565 */ 1566 pmap_clear_modify(m); 1567 m->valid = VM_PAGE_BITS_ALL; 1568 vm_page_undirty(m); 1569 vm_page_flag_clear(m, PG_ZERO); 1570 1571 /* 1572 * We have to wake specifically requested pages 1573 * up too because we cleared PG_SWAPINPROG and 1574 * could be waiting for it in getpages. However, 1575 * be sure to not unbusy getpages specifically 1576 * requested page - getpages expects it to be 1577 * left busy. 1578 */ 1579 if (i != bp->b_pager.pg_reqpage) { 1580 vm_page_deactivate(m); 1581 vm_page_wakeup(m); 1582 } else { 1583 vm_page_flash(m); 1584 } 1585 } else { 1586 /* 1587 * For write success, clear the modify and dirty 1588 * status, then finish the I/O ( which decrements the 1589 * busy count and possibly wakes waiter's up ). 1590 */ 1591 pmap_clear_modify(m); 1592 vm_page_undirty(m); 1593 vm_page_io_finish(m); 1594 if (!vm_page_count_severe() || !vm_page_try_to_cache(m)) 1595 vm_page_protect(m, VM_PROT_READ); 1596 } 1597 } 1598 1599 /* 1600 * adjust pip. NOTE: the original parent may still have its own 1601 * pip refs on the object. 1602 */ 1603 if (object) 1604 vm_object_pip_wakeupn(object, bp->b_npages); 1605 1606 /* 1607 * release the physical I/O buffer 1608 */ 1609 relpbuf( 1610 bp, 1611 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1612 ((bp->b_flags & B_ASYNC) ? 1613 &nsw_wcount_async : 1614 &nsw_wcount_sync 1615 ) 1616 ) 1617 ); 1618 splx(s); 1619 } 1620 1621 /************************************************************************ 1622 * SWAP META DATA * 1623 ************************************************************************ 1624 * 1625 * These routines manipulate the swap metadata stored in the 1626 * OBJT_SWAP object. All swp_*() routines must be called at 1627 * splvm() because swap can be freed up by the low level vm_page 1628 * code which might be called from interrupts beyond what splbio() covers. 1629 * 1630 * Swap metadata is implemented with a global hash and not directly 1631 * linked into the object. Instead the object simply contains 1632 * appropriate tracking counters. 1633 */ 1634 1635 /* 1636 * SWP_PAGER_HASH() - hash swap meta data 1637 * 1638 * This is an inline helper function which hashes the swapblk given 1639 * the object and page index. It returns a pointer to a pointer 1640 * to the object, or a pointer to a NULL pointer if it could not 1641 * find a swapblk. 1642 * 1643 * This routine must be called at splvm(). 1644 */ 1645 static __inline struct swblock ** 1646 swp_pager_hash(vm_object_t object, vm_pindex_t index) 1647 { 1648 struct swblock **pswap; 1649 struct swblock *swap; 1650 1651 index &= ~SWAP_META_MASK; 1652 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 1653 while ((swap = *pswap) != NULL) { 1654 if (swap->swb_object == object && 1655 swap->swb_index == index 1656 ) { 1657 break; 1658 } 1659 pswap = &swap->swb_hnext; 1660 } 1661 return (pswap); 1662 } 1663 1664 /* 1665 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1666 * 1667 * We first convert the object to a swap object if it is a default 1668 * object. 1669 * 1670 * The specified swapblk is added to the object's swap metadata. If 1671 * the swapblk is not valid, it is freed instead. Any previously 1672 * assigned swapblk is freed. 1673 * 1674 * This routine must be called at splvm(), except when used to convert 1675 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1676 */ 1677 static void 1678 swp_pager_meta_build( 1679 vm_object_t object, 1680 vm_pindex_t index, 1681 daddr_t swapblk 1682 ) { 1683 struct swblock *swap; 1684 struct swblock **pswap; 1685 1686 GIANT_REQUIRED; 1687 /* 1688 * Convert default object to swap object if necessary 1689 */ 1690 if (object->type != OBJT_SWAP) { 1691 object->type = OBJT_SWAP; 1692 object->un_pager.swp.swp_bcount = 0; 1693 1694 mtx_lock(&sw_alloc_mtx); 1695 if (object->handle != NULL) { 1696 TAILQ_INSERT_TAIL( 1697 NOBJLIST(object->handle), 1698 object, 1699 pager_object_list 1700 ); 1701 } else { 1702 TAILQ_INSERT_TAIL( 1703 &swap_pager_un_object_list, 1704 object, 1705 pager_object_list 1706 ); 1707 } 1708 mtx_unlock(&sw_alloc_mtx); 1709 } 1710 1711 /* 1712 * Locate hash entry. If not found create, but if we aren't adding 1713 * anything just return. If we run out of space in the map we wait 1714 * and, since the hash table may have changed, retry. 1715 */ 1716 retry: 1717 pswap = swp_pager_hash(object, index); 1718 1719 if ((swap = *pswap) == NULL) { 1720 int i; 1721 1722 if (swapblk == SWAPBLK_NONE) 1723 return; 1724 1725 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1726 if (swap == NULL) { 1727 VM_WAIT; 1728 goto retry; 1729 } 1730 1731 swap->swb_hnext = NULL; 1732 swap->swb_object = object; 1733 swap->swb_index = index & ~SWAP_META_MASK; 1734 swap->swb_count = 0; 1735 1736 ++object->un_pager.swp.swp_bcount; 1737 1738 for (i = 0; i < SWAP_META_PAGES; ++i) 1739 swap->swb_pages[i] = SWAPBLK_NONE; 1740 } 1741 1742 /* 1743 * Delete prior contents of metadata 1744 */ 1745 index &= SWAP_META_MASK; 1746 1747 if (swap->swb_pages[index] != SWAPBLK_NONE) { 1748 swp_pager_freeswapspace(swap->swb_pages[index], 1); 1749 --swap->swb_count; 1750 } 1751 1752 /* 1753 * Enter block into metadata 1754 */ 1755 swap->swb_pages[index] = swapblk; 1756 if (swapblk != SWAPBLK_NONE) 1757 ++swap->swb_count; 1758 } 1759 1760 /* 1761 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1762 * 1763 * The requested range of blocks is freed, with any associated swap 1764 * returned to the swap bitmap. 1765 * 1766 * This routine will free swap metadata structures as they are cleaned 1767 * out. This routine does *NOT* operate on swap metadata associated 1768 * with resident pages. 1769 * 1770 * This routine must be called at splvm() 1771 */ 1772 static void 1773 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1774 { 1775 GIANT_REQUIRED; 1776 1777 if (object->type != OBJT_SWAP) 1778 return; 1779 1780 while (count > 0) { 1781 struct swblock **pswap; 1782 struct swblock *swap; 1783 1784 pswap = swp_pager_hash(object, index); 1785 1786 if ((swap = *pswap) != NULL) { 1787 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1788 1789 if (v != SWAPBLK_NONE) { 1790 swp_pager_freeswapspace(v, 1); 1791 swap->swb_pages[index & SWAP_META_MASK] = 1792 SWAPBLK_NONE; 1793 if (--swap->swb_count == 0) { 1794 *pswap = swap->swb_hnext; 1795 uma_zfree(swap_zone, swap); 1796 --object->un_pager.swp.swp_bcount; 1797 } 1798 } 1799 --count; 1800 ++index; 1801 } else { 1802 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1803 count -= n; 1804 index += n; 1805 } 1806 } 1807 } 1808 1809 /* 1810 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1811 * 1812 * This routine locates and destroys all swap metadata associated with 1813 * an object. 1814 * 1815 * This routine must be called at splvm() 1816 */ 1817 static void 1818 swp_pager_meta_free_all(vm_object_t object) 1819 { 1820 daddr_t index = 0; 1821 1822 GIANT_REQUIRED; 1823 1824 if (object->type != OBJT_SWAP) 1825 return; 1826 1827 while (object->un_pager.swp.swp_bcount) { 1828 struct swblock **pswap; 1829 struct swblock *swap; 1830 1831 pswap = swp_pager_hash(object, index); 1832 if ((swap = *pswap) != NULL) { 1833 int i; 1834 1835 for (i = 0; i < SWAP_META_PAGES; ++i) { 1836 daddr_t v = swap->swb_pages[i]; 1837 if (v != SWAPBLK_NONE) { 1838 --swap->swb_count; 1839 swp_pager_freeswapspace(v, 1); 1840 } 1841 } 1842 if (swap->swb_count != 0) 1843 panic("swap_pager_meta_free_all: swb_count != 0"); 1844 *pswap = swap->swb_hnext; 1845 uma_zfree(swap_zone, swap); 1846 --object->un_pager.swp.swp_bcount; 1847 } 1848 index += SWAP_META_PAGES; 1849 if (index > 0x20000000) 1850 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1851 } 1852 } 1853 1854 /* 1855 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1856 * 1857 * This routine is capable of looking up, popping, or freeing 1858 * swapblk assignments in the swap meta data or in the vm_page_t. 1859 * The routine typically returns the swapblk being looked-up, or popped, 1860 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1861 * was invalid. This routine will automatically free any invalid 1862 * meta-data swapblks. 1863 * 1864 * It is not possible to store invalid swapblks in the swap meta data 1865 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1866 * 1867 * When acting on a busy resident page and paging is in progress, we 1868 * have to wait until paging is complete but otherwise can act on the 1869 * busy page. 1870 * 1871 * This routine must be called at splvm(). 1872 * 1873 * SWM_FREE remove and free swap block from metadata 1874 * SWM_POP remove from meta data but do not free.. pop it out 1875 */ 1876 static daddr_t 1877 swp_pager_meta_ctl( 1878 vm_object_t object, 1879 vm_pindex_t index, 1880 int flags 1881 ) { 1882 struct swblock **pswap; 1883 struct swblock *swap; 1884 daddr_t r1; 1885 1886 GIANT_REQUIRED; 1887 /* 1888 * The meta data only exists of the object is OBJT_SWAP 1889 * and even then might not be allocated yet. 1890 */ 1891 if (object->type != OBJT_SWAP) 1892 return (SWAPBLK_NONE); 1893 1894 r1 = SWAPBLK_NONE; 1895 pswap = swp_pager_hash(object, index); 1896 1897 if ((swap = *pswap) != NULL) { 1898 index &= SWAP_META_MASK; 1899 r1 = swap->swb_pages[index]; 1900 1901 if (r1 != SWAPBLK_NONE) { 1902 if (flags & SWM_FREE) { 1903 swp_pager_freeswapspace(r1, 1); 1904 r1 = SWAPBLK_NONE; 1905 } 1906 if (flags & (SWM_FREE|SWM_POP)) { 1907 swap->swb_pages[index] = SWAPBLK_NONE; 1908 if (--swap->swb_count == 0) { 1909 *pswap = swap->swb_hnext; 1910 uma_zfree(swap_zone, swap); 1911 --object->un_pager.swp.swp_bcount; 1912 } 1913 } 1914 } 1915 } 1916 return (r1); 1917 } 1918 1919 /******************************************************** 1920 * CHAINING FUNCTIONS * 1921 ******************************************************** 1922 * 1923 * These functions support recursion of I/O operations 1924 * on bp's, typically by chaining one or more 'child' bp's 1925 * to the parent. Synchronous, asynchronous, and semi-synchronous 1926 * chaining is possible. 1927 */ 1928 1929 /* 1930 * vm_pager_chain_iodone: 1931 * 1932 * io completion routine for child bp. Currently we fudge a bit 1933 * on dealing with b_resid. Since users of these routines may issue 1934 * multiple children simultaneously, sequencing of the error can be lost. 1935 */ 1936 static void 1937 vm_pager_chain_iodone(struct buf *nbp) 1938 { 1939 struct bio *bp; 1940 u_int *count; 1941 1942 bp = nbp->b_caller1; 1943 count = (u_int *)&(bp->bio_driver1); 1944 if (bp != NULL) { 1945 if (nbp->b_ioflags & BIO_ERROR) { 1946 bp->bio_flags |= BIO_ERROR; 1947 bp->bio_error = nbp->b_error; 1948 } else if (nbp->b_resid != 0) { 1949 bp->bio_flags |= BIO_ERROR; 1950 bp->bio_error = EINVAL; 1951 } else { 1952 bp->bio_resid -= nbp->b_bcount; 1953 } 1954 nbp->b_caller1 = NULL; 1955 --(*count); 1956 if (bp->bio_flags & BIO_FLAG1) { 1957 bp->bio_flags &= ~BIO_FLAG1; 1958 wakeup(bp); 1959 } 1960 } 1961 nbp->b_flags |= B_DONE; 1962 nbp->b_flags &= ~B_ASYNC; 1963 relpbuf(nbp, NULL); 1964 } 1965 1966 /* 1967 * getchainbuf: 1968 * 1969 * Obtain a physical buffer and chain it to its parent buffer. When 1970 * I/O completes, the parent buffer will be B_SIGNAL'd. Errors are 1971 * automatically propagated to the parent 1972 */ 1973 struct buf * 1974 getchainbuf(struct bio *bp, struct vnode *vp, int flags) 1975 { 1976 struct buf *nbp; 1977 u_int *count; 1978 1979 GIANT_REQUIRED; 1980 nbp = getpbuf(NULL); 1981 count = (u_int *)&(bp->bio_driver1); 1982 1983 nbp->b_caller1 = bp; 1984 ++(*count); 1985 1986 if (*count > 4) 1987 waitchainbuf(bp, 4, 0); 1988 1989 nbp->b_iocmd = bp->bio_cmd; 1990 nbp->b_ioflags = 0; 1991 nbp->b_flags = flags; 1992 nbp->b_rcred = crhold(thread0.td_ucred); 1993 nbp->b_wcred = crhold(thread0.td_ucred); 1994 nbp->b_iodone = vm_pager_chain_iodone; 1995 1996 if (vp) 1997 pbgetvp(vp, nbp); 1998 return (nbp); 1999 } 2000 2001 void 2002 flushchainbuf(struct buf *nbp) 2003 { 2004 GIANT_REQUIRED; 2005 if (nbp->b_bcount) { 2006 nbp->b_bufsize = nbp->b_bcount; 2007 if (nbp->b_iocmd == BIO_WRITE) 2008 nbp->b_dirtyend = nbp->b_bcount; 2009 BUF_KERNPROC(nbp); 2010 BUF_STRATEGY(nbp); 2011 } else { 2012 bufdone(nbp); 2013 } 2014 } 2015 2016 static void 2017 waitchainbuf(struct bio *bp, int limit, int done) 2018 { 2019 int s; 2020 u_int *count; 2021 2022 GIANT_REQUIRED; 2023 count = (u_int *)&(bp->bio_driver1); 2024 s = splbio(); 2025 while (*count > limit) { 2026 bp->bio_flags |= BIO_FLAG1; 2027 tsleep(bp, PRIBIO + 4, "bpchain", 0); 2028 } 2029 if (done) { 2030 if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) { 2031 bp->bio_flags |= BIO_ERROR; 2032 bp->bio_error = EINVAL; 2033 } 2034 biodone(bp); 2035 } 2036 splx(s); 2037 } 2038 2039