xref: /freebsd/sys/vm/swap_pager.c (revision b7c60aadbbd5c846a250c05791fe7406d6d78bf4)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sysctl.h>
93 #include <sys/sysproto.h>
94 #include <sys/blist.h>
95 #include <sys/lock.h>
96 #include <sys/sx.h>
97 #include <sys/vmmeter.h>
98 
99 #include <security/mac/mac_framework.h>
100 
101 #include <vm/vm.h>
102 #include <vm/pmap.h>
103 #include <vm/vm_map.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_param.h>
110 #include <vm/swap_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/uma.h>
113 
114 #include <geom/geom.h>
115 
116 /*
117  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
118  * or 32 pages per allocation.
119  * The 32-page limit is due to the radix code (kern/subr_blist.c).
120  */
121 #ifndef MAX_PAGEOUT_CLUSTER
122 #define MAX_PAGEOUT_CLUSTER 16
123 #endif
124 
125 #if !defined(SWB_NPAGES)
126 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
127 #endif
128 
129 /*
130  * The swblock structure maps an object and a small, fixed-size range
131  * of page indices to disk addresses within a swap area.
132  * The collection of these mappings is implemented as a hash table.
133  * Unused disk addresses within a swap area are allocated and managed
134  * using a blist.
135  */
136 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
137 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
138 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
139 
140 struct swblock {
141 	struct swblock	*swb_hnext;
142 	vm_object_t	swb_object;
143 	vm_pindex_t	swb_index;
144 	int		swb_count;
145 	daddr_t		swb_pages[SWAP_META_PAGES];
146 };
147 
148 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
149 static struct mtx sw_dev_mtx;
150 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
151 static struct swdevt *swdevhd;	/* Allocate from here next */
152 static int nswapdev;		/* Number of swap devices */
153 int swap_pager_avail;
154 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
155 
156 static vm_ooffset_t swap_total;
157 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
158     "Total amount of available swap storage.");
159 static vm_ooffset_t swap_reserved;
160 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
161     "Amount of swap storage needed to back all allocated anonymous memory.");
162 static int overcommit = 0;
163 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
164     "Configure virtual memory overcommit behavior. See tuning(7) "
165     "for details.");
166 
167 /* bits from overcommit */
168 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
169 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
170 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
171 
172 int
173 swap_reserve(vm_ooffset_t incr)
174 {
175 
176 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
177 }
178 
179 int
180 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
181 {
182 	vm_ooffset_t r, s;
183 	int res, error;
184 	static int curfail;
185 	static struct timeval lastfail;
186 	struct uidinfo *uip;
187 
188 	uip = cred->cr_ruidinfo;
189 
190 	if (incr & PAGE_MASK)
191 		panic("swap_reserve: & PAGE_MASK");
192 
193 #ifdef RACCT
194 	PROC_LOCK(curproc);
195 	error = racct_add(curproc, RACCT_SWAP, incr);
196 	PROC_UNLOCK(curproc);
197 	if (error != 0)
198 		return (0);
199 #endif
200 
201 	res = 0;
202 	mtx_lock(&sw_dev_mtx);
203 	r = swap_reserved + incr;
204 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
205 		s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
206 		s *= PAGE_SIZE;
207 	} else
208 		s = 0;
209 	s += swap_total;
210 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
211 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
212 		res = 1;
213 		swap_reserved = r;
214 	}
215 	mtx_unlock(&sw_dev_mtx);
216 
217 	if (res) {
218 		PROC_LOCK(curproc);
219 		UIDINFO_VMSIZE_LOCK(uip);
220 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
221 		    uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
222 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
223 			res = 0;
224 		else
225 			uip->ui_vmsize += incr;
226 		UIDINFO_VMSIZE_UNLOCK(uip);
227 		PROC_UNLOCK(curproc);
228 		if (!res) {
229 			mtx_lock(&sw_dev_mtx);
230 			swap_reserved -= incr;
231 			mtx_unlock(&sw_dev_mtx);
232 		}
233 	}
234 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
235 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
236 		    uip->ui_uid, curproc->p_pid, incr);
237 	}
238 
239 #ifdef RACCT
240 	if (!res) {
241 		PROC_LOCK(curproc);
242 		racct_sub(curproc, RACCT_SWAP, incr);
243 		PROC_UNLOCK(curproc);
244 	}
245 #endif
246 
247 	return (res);
248 }
249 
250 void
251 swap_reserve_force(vm_ooffset_t incr)
252 {
253 	struct uidinfo *uip;
254 
255 	mtx_lock(&sw_dev_mtx);
256 	swap_reserved += incr;
257 	mtx_unlock(&sw_dev_mtx);
258 
259 #ifdef RACCT
260 	PROC_LOCK(curproc);
261 	racct_add_force(curproc, RACCT_SWAP, incr);
262 	PROC_UNLOCK(curproc);
263 #endif
264 
265 	uip = curthread->td_ucred->cr_ruidinfo;
266 	PROC_LOCK(curproc);
267 	UIDINFO_VMSIZE_LOCK(uip);
268 	uip->ui_vmsize += incr;
269 	UIDINFO_VMSIZE_UNLOCK(uip);
270 	PROC_UNLOCK(curproc);
271 }
272 
273 void
274 swap_release(vm_ooffset_t decr)
275 {
276 	struct ucred *cred;
277 
278 	PROC_LOCK(curproc);
279 	cred = curthread->td_ucred;
280 	swap_release_by_cred(decr, cred);
281 	PROC_UNLOCK(curproc);
282 }
283 
284 void
285 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
286 {
287  	struct uidinfo *uip;
288 
289 	uip = cred->cr_ruidinfo;
290 
291 	if (decr & PAGE_MASK)
292 		panic("swap_release: & PAGE_MASK");
293 
294 	mtx_lock(&sw_dev_mtx);
295 	if (swap_reserved < decr)
296 		panic("swap_reserved < decr");
297 	swap_reserved -= decr;
298 	mtx_unlock(&sw_dev_mtx);
299 
300 	UIDINFO_VMSIZE_LOCK(uip);
301 	if (uip->ui_vmsize < decr)
302 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
303 	uip->ui_vmsize -= decr;
304 	UIDINFO_VMSIZE_UNLOCK(uip);
305 
306 	racct_sub_cred(cred, RACCT_SWAP, decr);
307 }
308 
309 static void swapdev_strategy(struct buf *, struct swdevt *sw);
310 
311 #define SWM_FREE	0x02	/* free, period			*/
312 #define SWM_POP		0x04	/* pop out			*/
313 
314 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
315 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
316 static int nsw_rcount;		/* free read buffers			*/
317 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
318 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
319 static int nsw_wcount_async_max;/* assigned maximum			*/
320 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
321 
322 static struct swblock **swhash;
323 static int swhash_mask;
324 static struct mtx swhash_mtx;
325 
326 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
327 static struct sx sw_alloc_sx;
328 
329 
330 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
331         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
332 
333 /*
334  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
335  * of searching a named list by hashing it just a little.
336  */
337 
338 #define NOBJLISTS		8
339 
340 #define NOBJLIST(handle)	\
341 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
342 
343 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
344 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
345 static uma_zone_t	swap_zone;
346 static struct vm_object	swap_zone_obj;
347 
348 /*
349  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
350  * calls hooked from other parts of the VM system and do not appear here.
351  * (see vm/swap_pager.h).
352  */
353 static vm_object_t
354 		swap_pager_alloc(void *handle, vm_ooffset_t size,
355 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
356 static void	swap_pager_dealloc(vm_object_t object);
357 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
358 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
359 static boolean_t
360 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
361 static void	swap_pager_init(void);
362 static void	swap_pager_unswapped(vm_page_t);
363 static void	swap_pager_swapoff(struct swdevt *sp);
364 
365 struct pagerops swappagerops = {
366 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
367 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
368 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
369 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
370 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
371 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
372 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
373 };
374 
375 /*
376  * dmmax is in page-sized chunks with the new swap system.  It was
377  * dev-bsized chunks in the old.  dmmax is always a power of 2.
378  *
379  * swap_*() routines are externally accessible.  swp_*() routines are
380  * internal.
381  */
382 static int dmmax;
383 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
384 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
385 
386 SYSCTL_INT(_vm, OID_AUTO, dmmax,
387 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
388 
389 static void	swp_sizecheck(void);
390 static void	swp_pager_async_iodone(struct buf *bp);
391 static int	swapongeom(struct thread *, struct vnode *);
392 static int	swaponvp(struct thread *, struct vnode *, u_long);
393 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
394 
395 /*
396  * Swap bitmap functions
397  */
398 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
399 static daddr_t	swp_pager_getswapspace(int npages);
400 
401 /*
402  * Metadata functions
403  */
404 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
405 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
406 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
407 static void swp_pager_meta_free_all(vm_object_t);
408 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
409 
410 static void
411 swp_pager_free_nrpage(vm_page_t m)
412 {
413 
414 	vm_page_lock(m);
415 	if (m->wire_count == 0)
416 		vm_page_free(m);
417 	vm_page_unlock(m);
418 }
419 
420 /*
421  * SWP_SIZECHECK() -	update swap_pager_full indication
422  *
423  *	update the swap_pager_almost_full indication and warn when we are
424  *	about to run out of swap space, using lowat/hiwat hysteresis.
425  *
426  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
427  *
428  *	No restrictions on call
429  *	This routine may not block.
430  */
431 static void
432 swp_sizecheck(void)
433 {
434 
435 	if (swap_pager_avail < nswap_lowat) {
436 		if (swap_pager_almost_full == 0) {
437 			printf("swap_pager: out of swap space\n");
438 			swap_pager_almost_full = 1;
439 		}
440 	} else {
441 		swap_pager_full = 0;
442 		if (swap_pager_avail > nswap_hiwat)
443 			swap_pager_almost_full = 0;
444 	}
445 }
446 
447 /*
448  * SWP_PAGER_HASH() -	hash swap meta data
449  *
450  *	This is an helper function which hashes the swapblk given
451  *	the object and page index.  It returns a pointer to a pointer
452  *	to the object, or a pointer to a NULL pointer if it could not
453  *	find a swapblk.
454  */
455 static struct swblock **
456 swp_pager_hash(vm_object_t object, vm_pindex_t index)
457 {
458 	struct swblock **pswap;
459 	struct swblock *swap;
460 
461 	index &= ~(vm_pindex_t)SWAP_META_MASK;
462 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
463 	while ((swap = *pswap) != NULL) {
464 		if (swap->swb_object == object &&
465 		    swap->swb_index == index
466 		) {
467 			break;
468 		}
469 		pswap = &swap->swb_hnext;
470 	}
471 	return (pswap);
472 }
473 
474 /*
475  * SWAP_PAGER_INIT() -	initialize the swap pager!
476  *
477  *	Expected to be started from system init.  NOTE:  This code is run
478  *	before much else so be careful what you depend on.  Most of the VM
479  *	system has yet to be initialized at this point.
480  */
481 static void
482 swap_pager_init(void)
483 {
484 	/*
485 	 * Initialize object lists
486 	 */
487 	int i;
488 
489 	for (i = 0; i < NOBJLISTS; ++i)
490 		TAILQ_INIT(&swap_pager_object_list[i]);
491 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
492 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
493 
494 	/*
495 	 * Device Stripe, in PAGE_SIZE'd blocks
496 	 */
497 	dmmax = SWB_NPAGES * 2;
498 }
499 
500 /*
501  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
502  *
503  *	Expected to be started from pageout process once, prior to entering
504  *	its main loop.
505  */
506 void
507 swap_pager_swap_init(void)
508 {
509 	int n, n2;
510 
511 	/*
512 	 * Number of in-transit swap bp operations.  Don't
513 	 * exhaust the pbufs completely.  Make sure we
514 	 * initialize workable values (0 will work for hysteresis
515 	 * but it isn't very efficient).
516 	 *
517 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
518 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
519 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
520 	 * constrained by the swap device interleave stripe size.
521 	 *
522 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
523 	 * designed to prevent other I/O from having high latencies due to
524 	 * our pageout I/O.  The value 4 works well for one or two active swap
525 	 * devices but is probably a little low if you have more.  Even so,
526 	 * a higher value would probably generate only a limited improvement
527 	 * with three or four active swap devices since the system does not
528 	 * typically have to pageout at extreme bandwidths.   We will want
529 	 * at least 2 per swap devices, and 4 is a pretty good value if you
530 	 * have one NFS swap device due to the command/ack latency over NFS.
531 	 * So it all works out pretty well.
532 	 */
533 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
534 
535 	mtx_lock(&pbuf_mtx);
536 	nsw_rcount = (nswbuf + 1) / 2;
537 	nsw_wcount_sync = (nswbuf + 3) / 4;
538 	nsw_wcount_async = 4;
539 	nsw_wcount_async_max = nsw_wcount_async;
540 	mtx_unlock(&pbuf_mtx);
541 
542 	/*
543 	 * Initialize our zone.  Right now I'm just guessing on the number
544 	 * we need based on the number of pages in the system.  Each swblock
545 	 * can hold 16 pages, so this is probably overkill.  This reservation
546 	 * is typically limited to around 32MB by default.
547 	 */
548 	n = cnt.v_page_count / 2;
549 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
550 		n = maxswzone / sizeof(struct swblock);
551 	n2 = n;
552 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
553 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
554 	if (swap_zone == NULL)
555 		panic("failed to create swap_zone.");
556 	do {
557 		if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
558 			break;
559 		/*
560 		 * if the allocation failed, try a zone two thirds the
561 		 * size of the previous attempt.
562 		 */
563 		n -= ((n + 2) / 3);
564 	} while (n > 0);
565 	if (n2 != n)
566 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
567 	n2 = n;
568 
569 	/*
570 	 * Initialize our meta-data hash table.  The swapper does not need to
571 	 * be quite as efficient as the VM system, so we do not use an
572 	 * oversized hash table.
573 	 *
574 	 * 	n: 		size of hash table, must be power of 2
575 	 *	swhash_mask:	hash table index mask
576 	 */
577 	for (n = 1; n < n2 / 8; n *= 2)
578 		;
579 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
580 	swhash_mask = n - 1;
581 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
582 }
583 
584 /*
585  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
586  *			its metadata structures.
587  *
588  *	This routine is called from the mmap and fork code to create a new
589  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
590  *	and then converting it with swp_pager_meta_build().
591  *
592  *	This routine may block in vm_object_allocate() and create a named
593  *	object lookup race, so we must interlock.
594  *
595  * MPSAFE
596  */
597 static vm_object_t
598 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
599     vm_ooffset_t offset, struct ucred *cred)
600 {
601 	vm_object_t object;
602 	vm_pindex_t pindex;
603 
604 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
605 	if (handle) {
606 		mtx_lock(&Giant);
607 		/*
608 		 * Reference existing named region or allocate new one.  There
609 		 * should not be a race here against swp_pager_meta_build()
610 		 * as called from vm_page_remove() in regards to the lookup
611 		 * of the handle.
612 		 */
613 		sx_xlock(&sw_alloc_sx);
614 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
615 		if (object == NULL) {
616 			if (cred != NULL) {
617 				if (!swap_reserve_by_cred(size, cred)) {
618 					sx_xunlock(&sw_alloc_sx);
619 					mtx_unlock(&Giant);
620 					return (NULL);
621 				}
622 				crhold(cred);
623 			}
624 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
625 			VM_OBJECT_LOCK(object);
626 			object->handle = handle;
627 			if (cred != NULL) {
628 				object->cred = cred;
629 				object->charge = size;
630 			}
631 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
632 			VM_OBJECT_UNLOCK(object);
633 		}
634 		sx_xunlock(&sw_alloc_sx);
635 		mtx_unlock(&Giant);
636 	} else {
637 		if (cred != NULL) {
638 			if (!swap_reserve_by_cred(size, cred))
639 				return (NULL);
640 			crhold(cred);
641 		}
642 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
643 		VM_OBJECT_LOCK(object);
644 		if (cred != NULL) {
645 			object->cred = cred;
646 			object->charge = size;
647 		}
648 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
649 		VM_OBJECT_UNLOCK(object);
650 	}
651 	return (object);
652 }
653 
654 /*
655  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
656  *
657  *	The swap backing for the object is destroyed.  The code is
658  *	designed such that we can reinstantiate it later, but this
659  *	routine is typically called only when the entire object is
660  *	about to be destroyed.
661  *
662  *	The object must be locked.
663  */
664 static void
665 swap_pager_dealloc(vm_object_t object)
666 {
667 
668 	/*
669 	 * Remove from list right away so lookups will fail if we block for
670 	 * pageout completion.
671 	 */
672 	if (object->handle != NULL) {
673 		mtx_lock(&sw_alloc_mtx);
674 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
675 		mtx_unlock(&sw_alloc_mtx);
676 	}
677 
678 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
679 	vm_object_pip_wait(object, "swpdea");
680 
681 	/*
682 	 * Free all remaining metadata.  We only bother to free it from
683 	 * the swap meta data.  We do not attempt to free swapblk's still
684 	 * associated with vm_page_t's for this object.  We do not care
685 	 * if paging is still in progress on some objects.
686 	 */
687 	swp_pager_meta_free_all(object);
688 }
689 
690 /************************************************************************
691  *			SWAP PAGER BITMAP ROUTINES			*
692  ************************************************************************/
693 
694 /*
695  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
696  *
697  *	Allocate swap for the requested number of pages.  The starting
698  *	swap block number (a page index) is returned or SWAPBLK_NONE
699  *	if the allocation failed.
700  *
701  *	Also has the side effect of advising that somebody made a mistake
702  *	when they configured swap and didn't configure enough.
703  *
704  *	This routine may not sleep.
705  *
706  *	We allocate in round-robin fashion from the configured devices.
707  */
708 static daddr_t
709 swp_pager_getswapspace(int npages)
710 {
711 	daddr_t blk;
712 	struct swdevt *sp;
713 	int i;
714 
715 	blk = SWAPBLK_NONE;
716 	mtx_lock(&sw_dev_mtx);
717 	sp = swdevhd;
718 	for (i = 0; i < nswapdev; i++) {
719 		if (sp == NULL)
720 			sp = TAILQ_FIRST(&swtailq);
721 		if (!(sp->sw_flags & SW_CLOSING)) {
722 			blk = blist_alloc(sp->sw_blist, npages);
723 			if (blk != SWAPBLK_NONE) {
724 				blk += sp->sw_first;
725 				sp->sw_used += npages;
726 				swap_pager_avail -= npages;
727 				swp_sizecheck();
728 				swdevhd = TAILQ_NEXT(sp, sw_list);
729 				goto done;
730 			}
731 		}
732 		sp = TAILQ_NEXT(sp, sw_list);
733 	}
734 	if (swap_pager_full != 2) {
735 		printf("swap_pager_getswapspace(%d): failed\n", npages);
736 		swap_pager_full = 2;
737 		swap_pager_almost_full = 1;
738 	}
739 	swdevhd = NULL;
740 done:
741 	mtx_unlock(&sw_dev_mtx);
742 	return (blk);
743 }
744 
745 static int
746 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
747 {
748 
749 	return (blk >= sp->sw_first && blk < sp->sw_end);
750 }
751 
752 static void
753 swp_pager_strategy(struct buf *bp)
754 {
755 	struct swdevt *sp;
756 
757 	mtx_lock(&sw_dev_mtx);
758 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
759 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
760 			mtx_unlock(&sw_dev_mtx);
761 			sp->sw_strategy(bp, sp);
762 			return;
763 		}
764 	}
765 	panic("Swapdev not found");
766 }
767 
768 
769 /*
770  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
771  *
772  *	This routine returns the specified swap blocks back to the bitmap.
773  *
774  *	This routine may not sleep.
775  */
776 static void
777 swp_pager_freeswapspace(daddr_t blk, int npages)
778 {
779 	struct swdevt *sp;
780 
781 	mtx_lock(&sw_dev_mtx);
782 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
783 		if (blk >= sp->sw_first && blk < sp->sw_end) {
784 			sp->sw_used -= npages;
785 			/*
786 			 * If we are attempting to stop swapping on
787 			 * this device, we don't want to mark any
788 			 * blocks free lest they be reused.
789 			 */
790 			if ((sp->sw_flags & SW_CLOSING) == 0) {
791 				blist_free(sp->sw_blist, blk - sp->sw_first,
792 				    npages);
793 				swap_pager_avail += npages;
794 				swp_sizecheck();
795 			}
796 			mtx_unlock(&sw_dev_mtx);
797 			return;
798 		}
799 	}
800 	panic("Swapdev not found");
801 }
802 
803 /*
804  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
805  *				range within an object.
806  *
807  *	This is a globally accessible routine.
808  *
809  *	This routine removes swapblk assignments from swap metadata.
810  *
811  *	The external callers of this routine typically have already destroyed
812  *	or renamed vm_page_t's associated with this range in the object so
813  *	we should be ok.
814  */
815 void
816 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
817 {
818 
819 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
820 	swp_pager_meta_free(object, start, size);
821 }
822 
823 /*
824  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
825  *
826  *	Assigns swap blocks to the specified range within the object.  The
827  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
828  *
829  *	Returns 0 on success, -1 on failure.
830  */
831 int
832 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
833 {
834 	int n = 0;
835 	daddr_t blk = SWAPBLK_NONE;
836 	vm_pindex_t beg = start;	/* save start index */
837 
838 	VM_OBJECT_LOCK(object);
839 	while (size) {
840 		if (n == 0) {
841 			n = BLIST_MAX_ALLOC;
842 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
843 				n >>= 1;
844 				if (n == 0) {
845 					swp_pager_meta_free(object, beg, start - beg);
846 					VM_OBJECT_UNLOCK(object);
847 					return (-1);
848 				}
849 			}
850 		}
851 		swp_pager_meta_build(object, start, blk);
852 		--size;
853 		++start;
854 		++blk;
855 		--n;
856 	}
857 	swp_pager_meta_free(object, start, n);
858 	VM_OBJECT_UNLOCK(object);
859 	return (0);
860 }
861 
862 /*
863  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
864  *			and destroy the source.
865  *
866  *	Copy any valid swapblks from the source to the destination.  In
867  *	cases where both the source and destination have a valid swapblk,
868  *	we keep the destination's.
869  *
870  *	This routine is allowed to sleep.  It may sleep allocating metadata
871  *	indirectly through swp_pager_meta_build() or if paging is still in
872  *	progress on the source.
873  *
874  *	The source object contains no vm_page_t's (which is just as well)
875  *
876  *	The source object is of type OBJT_SWAP.
877  *
878  *	The source and destination objects must be locked.
879  *	Both object locks may temporarily be released.
880  */
881 void
882 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
883     vm_pindex_t offset, int destroysource)
884 {
885 	vm_pindex_t i;
886 
887 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
888 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
889 
890 	/*
891 	 * If destroysource is set, we remove the source object from the
892 	 * swap_pager internal queue now.
893 	 */
894 	if (destroysource) {
895 		if (srcobject->handle != NULL) {
896 			mtx_lock(&sw_alloc_mtx);
897 			TAILQ_REMOVE(
898 			    NOBJLIST(srcobject->handle),
899 			    srcobject,
900 			    pager_object_list
901 			);
902 			mtx_unlock(&sw_alloc_mtx);
903 		}
904 	}
905 
906 	/*
907 	 * transfer source to destination.
908 	 */
909 	for (i = 0; i < dstobject->size; ++i) {
910 		daddr_t dstaddr;
911 
912 		/*
913 		 * Locate (without changing) the swapblk on the destination,
914 		 * unless it is invalid in which case free it silently, or
915 		 * if the destination is a resident page, in which case the
916 		 * source is thrown away.
917 		 */
918 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
919 
920 		if (dstaddr == SWAPBLK_NONE) {
921 			/*
922 			 * Destination has no swapblk and is not resident,
923 			 * copy source.
924 			 */
925 			daddr_t srcaddr;
926 
927 			srcaddr = swp_pager_meta_ctl(
928 			    srcobject,
929 			    i + offset,
930 			    SWM_POP
931 			);
932 
933 			if (srcaddr != SWAPBLK_NONE) {
934 				/*
935 				 * swp_pager_meta_build() can sleep.
936 				 */
937 				vm_object_pip_add(srcobject, 1);
938 				VM_OBJECT_UNLOCK(srcobject);
939 				vm_object_pip_add(dstobject, 1);
940 				swp_pager_meta_build(dstobject, i, srcaddr);
941 				vm_object_pip_wakeup(dstobject);
942 				VM_OBJECT_LOCK(srcobject);
943 				vm_object_pip_wakeup(srcobject);
944 			}
945 		} else {
946 			/*
947 			 * Destination has valid swapblk or it is represented
948 			 * by a resident page.  We destroy the sourceblock.
949 			 */
950 
951 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
952 		}
953 	}
954 
955 	/*
956 	 * Free left over swap blocks in source.
957 	 *
958 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
959 	 * double-remove the object from the swap queues.
960 	 */
961 	if (destroysource) {
962 		swp_pager_meta_free_all(srcobject);
963 		/*
964 		 * Reverting the type is not necessary, the caller is going
965 		 * to destroy srcobject directly, but I'm doing it here
966 		 * for consistency since we've removed the object from its
967 		 * queues.
968 		 */
969 		srcobject->type = OBJT_DEFAULT;
970 	}
971 }
972 
973 /*
974  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
975  *				the requested page.
976  *
977  *	We determine whether good backing store exists for the requested
978  *	page and return TRUE if it does, FALSE if it doesn't.
979  *
980  *	If TRUE, we also try to determine how much valid, contiguous backing
981  *	store exists before and after the requested page within a reasonable
982  *	distance.  We do not try to restrict it to the swap device stripe
983  *	(that is handled in getpages/putpages).  It probably isn't worth
984  *	doing here.
985  */
986 static boolean_t
987 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
988 {
989 	daddr_t blk0;
990 
991 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
992 	/*
993 	 * do we have good backing store at the requested index ?
994 	 */
995 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
996 
997 	if (blk0 == SWAPBLK_NONE) {
998 		if (before)
999 			*before = 0;
1000 		if (after)
1001 			*after = 0;
1002 		return (FALSE);
1003 	}
1004 
1005 	/*
1006 	 * find backwards-looking contiguous good backing store
1007 	 */
1008 	if (before != NULL) {
1009 		int i;
1010 
1011 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1012 			daddr_t blk;
1013 
1014 			if (i > pindex)
1015 				break;
1016 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1017 			if (blk != blk0 - i)
1018 				break;
1019 		}
1020 		*before = (i - 1);
1021 	}
1022 
1023 	/*
1024 	 * find forward-looking contiguous good backing store
1025 	 */
1026 	if (after != NULL) {
1027 		int i;
1028 
1029 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1030 			daddr_t blk;
1031 
1032 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1033 			if (blk != blk0 + i)
1034 				break;
1035 		}
1036 		*after = (i - 1);
1037 	}
1038 	return (TRUE);
1039 }
1040 
1041 /*
1042  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1043  *
1044  *	This removes any associated swap backing store, whether valid or
1045  *	not, from the page.
1046  *
1047  *	This routine is typically called when a page is made dirty, at
1048  *	which point any associated swap can be freed.  MADV_FREE also
1049  *	calls us in a special-case situation
1050  *
1051  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1052  *	should make the page dirty before calling this routine.  This routine
1053  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1054  *	depends on it.
1055  *
1056  *	This routine may not sleep.
1057  */
1058 static void
1059 swap_pager_unswapped(vm_page_t m)
1060 {
1061 
1062 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1063 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1064 }
1065 
1066 /*
1067  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1068  *
1069  *	Attempt to retrieve (m, count) pages from backing store, but make
1070  *	sure we retrieve at least m[reqpage].  We try to load in as large
1071  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1072  *	belongs to the same object.
1073  *
1074  *	The code is designed for asynchronous operation and
1075  *	immediate-notification of 'reqpage' but tends not to be
1076  *	used that way.  Please do not optimize-out this algorithmic
1077  *	feature, I intend to improve on it in the future.
1078  *
1079  *	The parent has a single vm_object_pip_add() reference prior to
1080  *	calling us and we should return with the same.
1081  *
1082  *	The parent has BUSY'd the pages.  We should return with 'm'
1083  *	left busy, but the others adjusted.
1084  */
1085 static int
1086 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1087 {
1088 	struct buf *bp;
1089 	vm_page_t mreq;
1090 	int i;
1091 	int j;
1092 	daddr_t blk;
1093 
1094 	mreq = m[reqpage];
1095 
1096 	KASSERT(mreq->object == object,
1097 	    ("swap_pager_getpages: object mismatch %p/%p",
1098 	    object, mreq->object));
1099 
1100 	/*
1101 	 * Calculate range to retrieve.  The pages have already been assigned
1102 	 * their swapblks.  We require a *contiguous* range but we know it to
1103 	 * not span devices.   If we do not supply it, bad things
1104 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1105 	 * loops are set up such that the case(s) are handled implicitly.
1106 	 *
1107 	 * The swp_*() calls must be made with the object locked.
1108 	 */
1109 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1110 
1111 	for (i = reqpage - 1; i >= 0; --i) {
1112 		daddr_t iblk;
1113 
1114 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1115 		if (blk != iblk + (reqpage - i))
1116 			break;
1117 	}
1118 	++i;
1119 
1120 	for (j = reqpage + 1; j < count; ++j) {
1121 		daddr_t jblk;
1122 
1123 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1124 		if (blk != jblk - (j - reqpage))
1125 			break;
1126 	}
1127 
1128 	/*
1129 	 * free pages outside our collection range.   Note: we never free
1130 	 * mreq, it must remain busy throughout.
1131 	 */
1132 	if (0 < i || j < count) {
1133 		int k;
1134 
1135 		for (k = 0; k < i; ++k)
1136 			swp_pager_free_nrpage(m[k]);
1137 		for (k = j; k < count; ++k)
1138 			swp_pager_free_nrpage(m[k]);
1139 	}
1140 
1141 	/*
1142 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1143 	 * still busy, but the others unbusied.
1144 	 */
1145 	if (blk == SWAPBLK_NONE)
1146 		return (VM_PAGER_FAIL);
1147 
1148 	/*
1149 	 * Getpbuf() can sleep.
1150 	 */
1151 	VM_OBJECT_UNLOCK(object);
1152 	/*
1153 	 * Get a swap buffer header to perform the IO
1154 	 */
1155 	bp = getpbuf(&nsw_rcount);
1156 	bp->b_flags |= B_PAGING;
1157 
1158 	/*
1159 	 * map our page(s) into kva for input
1160 	 */
1161 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1162 
1163 	bp->b_iocmd = BIO_READ;
1164 	bp->b_iodone = swp_pager_async_iodone;
1165 	bp->b_rcred = crhold(thread0.td_ucred);
1166 	bp->b_wcred = crhold(thread0.td_ucred);
1167 	bp->b_blkno = blk - (reqpage - i);
1168 	bp->b_bcount = PAGE_SIZE * (j - i);
1169 	bp->b_bufsize = PAGE_SIZE * (j - i);
1170 	bp->b_pager.pg_reqpage = reqpage - i;
1171 
1172 	VM_OBJECT_LOCK(object);
1173 	{
1174 		int k;
1175 
1176 		for (k = i; k < j; ++k) {
1177 			bp->b_pages[k - i] = m[k];
1178 			m[k]->oflags |= VPO_SWAPINPROG;
1179 		}
1180 	}
1181 	bp->b_npages = j - i;
1182 
1183 	PCPU_INC(cnt.v_swapin);
1184 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1185 
1186 	/*
1187 	 * We still hold the lock on mreq, and our automatic completion routine
1188 	 * does not remove it.
1189 	 */
1190 	vm_object_pip_add(object, bp->b_npages);
1191 	VM_OBJECT_UNLOCK(object);
1192 
1193 	/*
1194 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1195 	 * this point because we automatically release it on completion.
1196 	 * Instead, we look at the one page we are interested in which we
1197 	 * still hold a lock on even through the I/O completion.
1198 	 *
1199 	 * The other pages in our m[] array are also released on completion,
1200 	 * so we cannot assume they are valid anymore either.
1201 	 *
1202 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1203 	 */
1204 	BUF_KERNPROC(bp);
1205 	swp_pager_strategy(bp);
1206 
1207 	/*
1208 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1209 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1210 	 * is set in the meta-data.
1211 	 */
1212 	VM_OBJECT_LOCK(object);
1213 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1214 		mreq->oflags |= VPO_WANTED;
1215 		PCPU_INC(cnt.v_intrans);
1216 		if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
1217 			printf(
1218 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1219 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * mreq is left busied after completion, but all the other pages
1225 	 * are freed.  If we had an unrecoverable read error the page will
1226 	 * not be valid.
1227 	 */
1228 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1229 		return (VM_PAGER_ERROR);
1230 	} else {
1231 		return (VM_PAGER_OK);
1232 	}
1233 
1234 	/*
1235 	 * A final note: in a low swap situation, we cannot deallocate swap
1236 	 * and mark a page dirty here because the caller is likely to mark
1237 	 * the page clean when we return, causing the page to possibly revert
1238 	 * to all-zero's later.
1239 	 */
1240 }
1241 
1242 /*
1243  *	swap_pager_putpages:
1244  *
1245  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1246  *
1247  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1248  *	are automatically converted to SWAP objects.
1249  *
1250  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1251  *	vm_page reservation system coupled with properly written VFS devices
1252  *	should ensure that no low-memory deadlock occurs.  This is an area
1253  *	which needs work.
1254  *
1255  *	The parent has N vm_object_pip_add() references prior to
1256  *	calling us and will remove references for rtvals[] that are
1257  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1258  *	completion.
1259  *
1260  *	The parent has soft-busy'd the pages it passes us and will unbusy
1261  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1262  *	We need to unbusy the rest on I/O completion.
1263  */
1264 void
1265 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1266     boolean_t sync, int *rtvals)
1267 {
1268 	int i;
1269 	int n = 0;
1270 
1271 	if (count && m[0]->object != object) {
1272 		panic("swap_pager_putpages: object mismatch %p/%p",
1273 		    object,
1274 		    m[0]->object
1275 		);
1276 	}
1277 
1278 	/*
1279 	 * Step 1
1280 	 *
1281 	 * Turn object into OBJT_SWAP
1282 	 * check for bogus sysops
1283 	 * force sync if not pageout process
1284 	 */
1285 	if (object->type != OBJT_SWAP)
1286 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1287 	VM_OBJECT_UNLOCK(object);
1288 
1289 	if (curproc != pageproc)
1290 		sync = TRUE;
1291 
1292 	/*
1293 	 * Step 2
1294 	 *
1295 	 * Update nsw parameters from swap_async_max sysctl values.
1296 	 * Do not let the sysop crash the machine with bogus numbers.
1297 	 */
1298 	mtx_lock(&pbuf_mtx);
1299 	if (swap_async_max != nsw_wcount_async_max) {
1300 		int n;
1301 
1302 		/*
1303 		 * limit range
1304 		 */
1305 		if ((n = swap_async_max) > nswbuf / 2)
1306 			n = nswbuf / 2;
1307 		if (n < 1)
1308 			n = 1;
1309 		swap_async_max = n;
1310 
1311 		/*
1312 		 * Adjust difference ( if possible ).  If the current async
1313 		 * count is too low, we may not be able to make the adjustment
1314 		 * at this time.
1315 		 */
1316 		n -= nsw_wcount_async_max;
1317 		if (nsw_wcount_async + n >= 0) {
1318 			nsw_wcount_async += n;
1319 			nsw_wcount_async_max += n;
1320 			wakeup(&nsw_wcount_async);
1321 		}
1322 	}
1323 	mtx_unlock(&pbuf_mtx);
1324 
1325 	/*
1326 	 * Step 3
1327 	 *
1328 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1329 	 * The page is left dirty until the pageout operation completes
1330 	 * successfully.
1331 	 */
1332 	for (i = 0; i < count; i += n) {
1333 		int j;
1334 		struct buf *bp;
1335 		daddr_t blk;
1336 
1337 		/*
1338 		 * Maximum I/O size is limited by a number of factors.
1339 		 */
1340 		n = min(BLIST_MAX_ALLOC, count - i);
1341 		n = min(n, nsw_cluster_max);
1342 
1343 		/*
1344 		 * Get biggest block of swap we can.  If we fail, fall
1345 		 * back and try to allocate a smaller block.  Don't go
1346 		 * overboard trying to allocate space if it would overly
1347 		 * fragment swap.
1348 		 */
1349 		while (
1350 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1351 		    n > 4
1352 		) {
1353 			n >>= 1;
1354 		}
1355 		if (blk == SWAPBLK_NONE) {
1356 			for (j = 0; j < n; ++j)
1357 				rtvals[i+j] = VM_PAGER_FAIL;
1358 			continue;
1359 		}
1360 
1361 		/*
1362 		 * All I/O parameters have been satisfied, build the I/O
1363 		 * request and assign the swap space.
1364 		 */
1365 		if (sync == TRUE) {
1366 			bp = getpbuf(&nsw_wcount_sync);
1367 		} else {
1368 			bp = getpbuf(&nsw_wcount_async);
1369 			bp->b_flags = B_ASYNC;
1370 		}
1371 		bp->b_flags |= B_PAGING;
1372 		bp->b_iocmd = BIO_WRITE;
1373 
1374 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1375 
1376 		bp->b_rcred = crhold(thread0.td_ucred);
1377 		bp->b_wcred = crhold(thread0.td_ucred);
1378 		bp->b_bcount = PAGE_SIZE * n;
1379 		bp->b_bufsize = PAGE_SIZE * n;
1380 		bp->b_blkno = blk;
1381 
1382 		VM_OBJECT_LOCK(object);
1383 		for (j = 0; j < n; ++j) {
1384 			vm_page_t mreq = m[i+j];
1385 
1386 			swp_pager_meta_build(
1387 			    mreq->object,
1388 			    mreq->pindex,
1389 			    blk + j
1390 			);
1391 			vm_page_dirty(mreq);
1392 			rtvals[i+j] = VM_PAGER_OK;
1393 
1394 			mreq->oflags |= VPO_SWAPINPROG;
1395 			bp->b_pages[j] = mreq;
1396 		}
1397 		VM_OBJECT_UNLOCK(object);
1398 		bp->b_npages = n;
1399 		/*
1400 		 * Must set dirty range for NFS to work.
1401 		 */
1402 		bp->b_dirtyoff = 0;
1403 		bp->b_dirtyend = bp->b_bcount;
1404 
1405 		PCPU_INC(cnt.v_swapout);
1406 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1407 
1408 		/*
1409 		 * asynchronous
1410 		 *
1411 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1412 		 */
1413 		if (sync == FALSE) {
1414 			bp->b_iodone = swp_pager_async_iodone;
1415 			BUF_KERNPROC(bp);
1416 			swp_pager_strategy(bp);
1417 
1418 			for (j = 0; j < n; ++j)
1419 				rtvals[i+j] = VM_PAGER_PEND;
1420 			/* restart outter loop */
1421 			continue;
1422 		}
1423 
1424 		/*
1425 		 * synchronous
1426 		 *
1427 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1428 		 */
1429 		bp->b_iodone = bdone;
1430 		swp_pager_strategy(bp);
1431 
1432 		/*
1433 		 * Wait for the sync I/O to complete, then update rtvals.
1434 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1435 		 * our async completion routine at the end, thus avoiding a
1436 		 * double-free.
1437 		 */
1438 		bwait(bp, PVM, "swwrt");
1439 		for (j = 0; j < n; ++j)
1440 			rtvals[i+j] = VM_PAGER_PEND;
1441 		/*
1442 		 * Now that we are through with the bp, we can call the
1443 		 * normal async completion, which frees everything up.
1444 		 */
1445 		swp_pager_async_iodone(bp);
1446 	}
1447 	VM_OBJECT_LOCK(object);
1448 }
1449 
1450 /*
1451  *	swp_pager_async_iodone:
1452  *
1453  *	Completion routine for asynchronous reads and writes from/to swap.
1454  *	Also called manually by synchronous code to finish up a bp.
1455  *
1456  *	For READ operations, the pages are VPO_BUSY'd.  For WRITE operations,
1457  *	the pages are vm_page_t->busy'd.  For READ operations, we VPO_BUSY
1458  *	unbusy all pages except the 'main' request page.  For WRITE
1459  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1460  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1461  *
1462  *	This routine may not sleep.
1463  */
1464 static void
1465 swp_pager_async_iodone(struct buf *bp)
1466 {
1467 	int i;
1468 	vm_object_t object = NULL;
1469 
1470 	/*
1471 	 * report error
1472 	 */
1473 	if (bp->b_ioflags & BIO_ERROR) {
1474 		printf(
1475 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1476 			"size %ld, error %d\n",
1477 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1478 		    (long)bp->b_blkno,
1479 		    (long)bp->b_bcount,
1480 		    bp->b_error
1481 		);
1482 	}
1483 
1484 	/*
1485 	 * remove the mapping for kernel virtual
1486 	 */
1487 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1488 
1489 	if (bp->b_npages) {
1490 		object = bp->b_pages[0]->object;
1491 		VM_OBJECT_LOCK(object);
1492 	}
1493 
1494 	/*
1495 	 * cleanup pages.  If an error occurs writing to swap, we are in
1496 	 * very serious trouble.  If it happens to be a disk error, though,
1497 	 * we may be able to recover by reassigning the swap later on.  So
1498 	 * in this case we remove the m->swapblk assignment for the page
1499 	 * but do not free it in the rlist.  The errornous block(s) are thus
1500 	 * never reallocated as swap.  Redirty the page and continue.
1501 	 */
1502 	for (i = 0; i < bp->b_npages; ++i) {
1503 		vm_page_t m = bp->b_pages[i];
1504 
1505 		m->oflags &= ~VPO_SWAPINPROG;
1506 
1507 		if (bp->b_ioflags & BIO_ERROR) {
1508 			/*
1509 			 * If an error occurs I'd love to throw the swapblk
1510 			 * away without freeing it back to swapspace, so it
1511 			 * can never be used again.  But I can't from an
1512 			 * interrupt.
1513 			 */
1514 			if (bp->b_iocmd == BIO_READ) {
1515 				/*
1516 				 * When reading, reqpage needs to stay
1517 				 * locked for the parent, but all other
1518 				 * pages can be freed.  We still want to
1519 				 * wakeup the parent waiting on the page,
1520 				 * though.  ( also: pg_reqpage can be -1 and
1521 				 * not match anything ).
1522 				 *
1523 				 * We have to wake specifically requested pages
1524 				 * up too because we cleared VPO_SWAPINPROG and
1525 				 * someone may be waiting for that.
1526 				 *
1527 				 * NOTE: for reads, m->dirty will probably
1528 				 * be overridden by the original caller of
1529 				 * getpages so don't play cute tricks here.
1530 				 */
1531 				m->valid = 0;
1532 				if (i != bp->b_pager.pg_reqpage)
1533 					swp_pager_free_nrpage(m);
1534 				else
1535 					vm_page_flash(m);
1536 				/*
1537 				 * If i == bp->b_pager.pg_reqpage, do not wake
1538 				 * the page up.  The caller needs to.
1539 				 */
1540 			} else {
1541 				/*
1542 				 * If a write error occurs, reactivate page
1543 				 * so it doesn't clog the inactive list,
1544 				 * then finish the I/O.
1545 				 */
1546 				vm_page_dirty(m);
1547 				vm_page_lock(m);
1548 				vm_page_activate(m);
1549 				vm_page_unlock(m);
1550 				vm_page_io_finish(m);
1551 			}
1552 		} else if (bp->b_iocmd == BIO_READ) {
1553 			/*
1554 			 * NOTE: for reads, m->dirty will probably be
1555 			 * overridden by the original caller of getpages so
1556 			 * we cannot set them in order to free the underlying
1557 			 * swap in a low-swap situation.  I don't think we'd
1558 			 * want to do that anyway, but it was an optimization
1559 			 * that existed in the old swapper for a time before
1560 			 * it got ripped out due to precisely this problem.
1561 			 *
1562 			 * If not the requested page then deactivate it.
1563 			 *
1564 			 * Note that the requested page, reqpage, is left
1565 			 * busied, but we still have to wake it up.  The
1566 			 * other pages are released (unbusied) by
1567 			 * vm_page_wakeup().
1568 			 */
1569 			KASSERT(!pmap_page_is_mapped(m),
1570 			    ("swp_pager_async_iodone: page %p is mapped", m));
1571 			m->valid = VM_PAGE_BITS_ALL;
1572 			KASSERT(m->dirty == 0,
1573 			    ("swp_pager_async_iodone: page %p is dirty", m));
1574 
1575 			/*
1576 			 * We have to wake specifically requested pages
1577 			 * up too because we cleared VPO_SWAPINPROG and
1578 			 * could be waiting for it in getpages.  However,
1579 			 * be sure to not unbusy getpages specifically
1580 			 * requested page - getpages expects it to be
1581 			 * left busy.
1582 			 */
1583 			if (i != bp->b_pager.pg_reqpage) {
1584 				vm_page_lock(m);
1585 				vm_page_deactivate(m);
1586 				vm_page_unlock(m);
1587 				vm_page_wakeup(m);
1588 			} else
1589 				vm_page_flash(m);
1590 		} else {
1591 			/*
1592 			 * For write success, clear the dirty
1593 			 * status, then finish the I/O ( which decrements the
1594 			 * busy count and possibly wakes waiter's up ).
1595 			 */
1596 			KASSERT((m->aflags & PGA_WRITEABLE) == 0,
1597 			    ("swp_pager_async_iodone: page %p is not write"
1598 			    " protected", m));
1599 			vm_page_undirty(m);
1600 			vm_page_io_finish(m);
1601 			if (vm_page_count_severe()) {
1602 				vm_page_lock(m);
1603 				vm_page_try_to_cache(m);
1604 				vm_page_unlock(m);
1605 			}
1606 		}
1607 	}
1608 
1609 	/*
1610 	 * adjust pip.  NOTE: the original parent may still have its own
1611 	 * pip refs on the object.
1612 	 */
1613 	if (object != NULL) {
1614 		vm_object_pip_wakeupn(object, bp->b_npages);
1615 		VM_OBJECT_UNLOCK(object);
1616 	}
1617 
1618 	/*
1619 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1620 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1621 	 * trigger a KASSERT in relpbuf().
1622 	 */
1623 	if (bp->b_vp) {
1624 		    bp->b_vp = NULL;
1625 		    bp->b_bufobj = NULL;
1626 	}
1627 	/*
1628 	 * release the physical I/O buffer
1629 	 */
1630 	relpbuf(
1631 	    bp,
1632 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1633 		((bp->b_flags & B_ASYNC) ?
1634 		    &nsw_wcount_async :
1635 		    &nsw_wcount_sync
1636 		)
1637 	    )
1638 	);
1639 }
1640 
1641 /*
1642  *	swap_pager_isswapped:
1643  *
1644  *	Return 1 if at least one page in the given object is paged
1645  *	out to the given swap device.
1646  *
1647  *	This routine may not sleep.
1648  */
1649 int
1650 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1651 {
1652 	daddr_t index = 0;
1653 	int bcount;
1654 	int i;
1655 
1656 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1657 	if (object->type != OBJT_SWAP)
1658 		return (0);
1659 
1660 	mtx_lock(&swhash_mtx);
1661 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1662 		struct swblock *swap;
1663 
1664 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1665 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1666 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1667 					mtx_unlock(&swhash_mtx);
1668 					return (1);
1669 				}
1670 			}
1671 		}
1672 		index += SWAP_META_PAGES;
1673 	}
1674 	mtx_unlock(&swhash_mtx);
1675 	return (0);
1676 }
1677 
1678 /*
1679  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1680  *
1681  *	This routine dissociates the page at the given index within a
1682  *	swap block from its backing store, paging it in if necessary.
1683  *	If the page is paged in, it is placed in the inactive queue,
1684  *	since it had its backing store ripped out from under it.
1685  *	We also attempt to swap in all other pages in the swap block,
1686  *	we only guarantee that the one at the specified index is
1687  *	paged in.
1688  *
1689  *	XXX - The code to page the whole block in doesn't work, so we
1690  *	      revert to the one-by-one behavior for now.  Sigh.
1691  */
1692 static inline void
1693 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1694 {
1695 	vm_page_t m;
1696 
1697 	vm_object_pip_add(object, 1);
1698 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1699 	if (m->valid == VM_PAGE_BITS_ALL) {
1700 		vm_object_pip_subtract(object, 1);
1701 		vm_page_dirty(m);
1702 		vm_page_lock(m);
1703 		vm_page_activate(m);
1704 		vm_page_unlock(m);
1705 		vm_page_wakeup(m);
1706 		vm_pager_page_unswapped(m);
1707 		return;
1708 	}
1709 
1710 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1711 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1712 	vm_object_pip_subtract(object, 1);
1713 	vm_page_dirty(m);
1714 	vm_page_lock(m);
1715 	vm_page_deactivate(m);
1716 	vm_page_unlock(m);
1717 	vm_page_wakeup(m);
1718 	vm_pager_page_unswapped(m);
1719 }
1720 
1721 /*
1722  *	swap_pager_swapoff:
1723  *
1724  *	Page in all of the pages that have been paged out to the
1725  *	given device.  The corresponding blocks in the bitmap must be
1726  *	marked as allocated and the device must be flagged SW_CLOSING.
1727  *	There may be no processes swapped out to the device.
1728  *
1729  *	This routine may block.
1730  */
1731 static void
1732 swap_pager_swapoff(struct swdevt *sp)
1733 {
1734 	struct swblock *swap;
1735 	int i, j, retries;
1736 
1737 	GIANT_REQUIRED;
1738 
1739 	retries = 0;
1740 full_rescan:
1741 	mtx_lock(&swhash_mtx);
1742 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1743 restart:
1744 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1745 			vm_object_t object = swap->swb_object;
1746 			vm_pindex_t pindex = swap->swb_index;
1747                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1748                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1749 					/* avoid deadlock */
1750 					if (!VM_OBJECT_TRYLOCK(object)) {
1751 						break;
1752 					} else {
1753 						mtx_unlock(&swhash_mtx);
1754 						swp_pager_force_pagein(object,
1755 						    pindex + j);
1756 						VM_OBJECT_UNLOCK(object);
1757 						mtx_lock(&swhash_mtx);
1758 						goto restart;
1759 					}
1760 				}
1761                         }
1762 		}
1763 	}
1764 	mtx_unlock(&swhash_mtx);
1765 	if (sp->sw_used) {
1766 		/*
1767 		 * Objects may be locked or paging to the device being
1768 		 * removed, so we will miss their pages and need to
1769 		 * make another pass.  We have marked this device as
1770 		 * SW_CLOSING, so the activity should finish soon.
1771 		 */
1772 		retries++;
1773 		if (retries > 100) {
1774 			panic("swapoff: failed to locate %d swap blocks",
1775 			    sp->sw_used);
1776 		}
1777 		pause("swpoff", hz / 20);
1778 		goto full_rescan;
1779 	}
1780 }
1781 
1782 /************************************************************************
1783  *				SWAP META DATA 				*
1784  ************************************************************************
1785  *
1786  *	These routines manipulate the swap metadata stored in the
1787  *	OBJT_SWAP object.
1788  *
1789  *	Swap metadata is implemented with a global hash and not directly
1790  *	linked into the object.  Instead the object simply contains
1791  *	appropriate tracking counters.
1792  */
1793 
1794 /*
1795  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1796  *
1797  *	We first convert the object to a swap object if it is a default
1798  *	object.
1799  *
1800  *	The specified swapblk is added to the object's swap metadata.  If
1801  *	the swapblk is not valid, it is freed instead.  Any previously
1802  *	assigned swapblk is freed.
1803  */
1804 static void
1805 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1806 {
1807 	struct swblock *swap;
1808 	struct swblock **pswap;
1809 	int idx;
1810 
1811 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1812 	/*
1813 	 * Convert default object to swap object if necessary
1814 	 */
1815 	if (object->type != OBJT_SWAP) {
1816 		object->type = OBJT_SWAP;
1817 		object->un_pager.swp.swp_bcount = 0;
1818 
1819 		if (object->handle != NULL) {
1820 			mtx_lock(&sw_alloc_mtx);
1821 			TAILQ_INSERT_TAIL(
1822 			    NOBJLIST(object->handle),
1823 			    object,
1824 			    pager_object_list
1825 			);
1826 			mtx_unlock(&sw_alloc_mtx);
1827 		}
1828 	}
1829 
1830 	/*
1831 	 * Locate hash entry.  If not found create, but if we aren't adding
1832 	 * anything just return.  If we run out of space in the map we wait
1833 	 * and, since the hash table may have changed, retry.
1834 	 */
1835 retry:
1836 	mtx_lock(&swhash_mtx);
1837 	pswap = swp_pager_hash(object, pindex);
1838 
1839 	if ((swap = *pswap) == NULL) {
1840 		int i;
1841 
1842 		if (swapblk == SWAPBLK_NONE)
1843 			goto done;
1844 
1845 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1846 		if (swap == NULL) {
1847 			mtx_unlock(&swhash_mtx);
1848 			VM_OBJECT_UNLOCK(object);
1849 			if (uma_zone_exhausted(swap_zone)) {
1850 				printf("swap zone exhausted, increase kern.maxswzone\n");
1851 				vm_pageout_oom(VM_OOM_SWAPZ);
1852 				pause("swzonex", 10);
1853 			} else
1854 				VM_WAIT;
1855 			VM_OBJECT_LOCK(object);
1856 			goto retry;
1857 		}
1858 
1859 		swap->swb_hnext = NULL;
1860 		swap->swb_object = object;
1861 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1862 		swap->swb_count = 0;
1863 
1864 		++object->un_pager.swp.swp_bcount;
1865 
1866 		for (i = 0; i < SWAP_META_PAGES; ++i)
1867 			swap->swb_pages[i] = SWAPBLK_NONE;
1868 	}
1869 
1870 	/*
1871 	 * Delete prior contents of metadata
1872 	 */
1873 	idx = pindex & SWAP_META_MASK;
1874 
1875 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1876 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1877 		--swap->swb_count;
1878 	}
1879 
1880 	/*
1881 	 * Enter block into metadata
1882 	 */
1883 	swap->swb_pages[idx] = swapblk;
1884 	if (swapblk != SWAPBLK_NONE)
1885 		++swap->swb_count;
1886 done:
1887 	mtx_unlock(&swhash_mtx);
1888 }
1889 
1890 /*
1891  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1892  *
1893  *	The requested range of blocks is freed, with any associated swap
1894  *	returned to the swap bitmap.
1895  *
1896  *	This routine will free swap metadata structures as they are cleaned
1897  *	out.  This routine does *NOT* operate on swap metadata associated
1898  *	with resident pages.
1899  */
1900 static void
1901 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1902 {
1903 
1904 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1905 	if (object->type != OBJT_SWAP)
1906 		return;
1907 
1908 	while (count > 0) {
1909 		struct swblock **pswap;
1910 		struct swblock *swap;
1911 
1912 		mtx_lock(&swhash_mtx);
1913 		pswap = swp_pager_hash(object, index);
1914 
1915 		if ((swap = *pswap) != NULL) {
1916 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1917 
1918 			if (v != SWAPBLK_NONE) {
1919 				swp_pager_freeswapspace(v, 1);
1920 				swap->swb_pages[index & SWAP_META_MASK] =
1921 					SWAPBLK_NONE;
1922 				if (--swap->swb_count == 0) {
1923 					*pswap = swap->swb_hnext;
1924 					uma_zfree(swap_zone, swap);
1925 					--object->un_pager.swp.swp_bcount;
1926 				}
1927 			}
1928 			--count;
1929 			++index;
1930 		} else {
1931 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1932 			count -= n;
1933 			index += n;
1934 		}
1935 		mtx_unlock(&swhash_mtx);
1936 	}
1937 }
1938 
1939 /*
1940  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1941  *
1942  *	This routine locates and destroys all swap metadata associated with
1943  *	an object.
1944  */
1945 static void
1946 swp_pager_meta_free_all(vm_object_t object)
1947 {
1948 	daddr_t index = 0;
1949 
1950 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1951 	if (object->type != OBJT_SWAP)
1952 		return;
1953 
1954 	while (object->un_pager.swp.swp_bcount) {
1955 		struct swblock **pswap;
1956 		struct swblock *swap;
1957 
1958 		mtx_lock(&swhash_mtx);
1959 		pswap = swp_pager_hash(object, index);
1960 		if ((swap = *pswap) != NULL) {
1961 			int i;
1962 
1963 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1964 				daddr_t v = swap->swb_pages[i];
1965 				if (v != SWAPBLK_NONE) {
1966 					--swap->swb_count;
1967 					swp_pager_freeswapspace(v, 1);
1968 				}
1969 			}
1970 			if (swap->swb_count != 0)
1971 				panic("swap_pager_meta_free_all: swb_count != 0");
1972 			*pswap = swap->swb_hnext;
1973 			uma_zfree(swap_zone, swap);
1974 			--object->un_pager.swp.swp_bcount;
1975 		}
1976 		mtx_unlock(&swhash_mtx);
1977 		index += SWAP_META_PAGES;
1978 	}
1979 }
1980 
1981 /*
1982  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1983  *
1984  *	This routine is capable of looking up, popping, or freeing
1985  *	swapblk assignments in the swap meta data or in the vm_page_t.
1986  *	The routine typically returns the swapblk being looked-up, or popped,
1987  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1988  *	was invalid.  This routine will automatically free any invalid
1989  *	meta-data swapblks.
1990  *
1991  *	It is not possible to store invalid swapblks in the swap meta data
1992  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1993  *
1994  *	When acting on a busy resident page and paging is in progress, we
1995  *	have to wait until paging is complete but otherwise can act on the
1996  *	busy page.
1997  *
1998  *	SWM_FREE	remove and free swap block from metadata
1999  *	SWM_POP		remove from meta data but do not free.. pop it out
2000  */
2001 static daddr_t
2002 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2003 {
2004 	struct swblock **pswap;
2005 	struct swblock *swap;
2006 	daddr_t r1;
2007 	int idx;
2008 
2009 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2010 	/*
2011 	 * The meta data only exists of the object is OBJT_SWAP
2012 	 * and even then might not be allocated yet.
2013 	 */
2014 	if (object->type != OBJT_SWAP)
2015 		return (SWAPBLK_NONE);
2016 
2017 	r1 = SWAPBLK_NONE;
2018 	mtx_lock(&swhash_mtx);
2019 	pswap = swp_pager_hash(object, pindex);
2020 
2021 	if ((swap = *pswap) != NULL) {
2022 		idx = pindex & SWAP_META_MASK;
2023 		r1 = swap->swb_pages[idx];
2024 
2025 		if (r1 != SWAPBLK_NONE) {
2026 			if (flags & SWM_FREE) {
2027 				swp_pager_freeswapspace(r1, 1);
2028 				r1 = SWAPBLK_NONE;
2029 			}
2030 			if (flags & (SWM_FREE|SWM_POP)) {
2031 				swap->swb_pages[idx] = SWAPBLK_NONE;
2032 				if (--swap->swb_count == 0) {
2033 					*pswap = swap->swb_hnext;
2034 					uma_zfree(swap_zone, swap);
2035 					--object->un_pager.swp.swp_bcount;
2036 				}
2037 			}
2038 		}
2039 	}
2040 	mtx_unlock(&swhash_mtx);
2041 	return (r1);
2042 }
2043 
2044 /*
2045  * System call swapon(name) enables swapping on device name,
2046  * which must be in the swdevsw.  Return EBUSY
2047  * if already swapping on this device.
2048  */
2049 #ifndef _SYS_SYSPROTO_H_
2050 struct swapon_args {
2051 	char *name;
2052 };
2053 #endif
2054 
2055 /*
2056  * MPSAFE
2057  */
2058 /* ARGSUSED */
2059 int
2060 sys_swapon(struct thread *td, struct swapon_args *uap)
2061 {
2062 	struct vattr attr;
2063 	struct vnode *vp;
2064 	struct nameidata nd;
2065 	int error;
2066 
2067 	error = priv_check(td, PRIV_SWAPON);
2068 	if (error)
2069 		return (error);
2070 
2071 	mtx_lock(&Giant);
2072 	while (swdev_syscall_active)
2073 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2074 	swdev_syscall_active = 1;
2075 
2076 	/*
2077 	 * Swap metadata may not fit in the KVM if we have physical
2078 	 * memory of >1GB.
2079 	 */
2080 	if (swap_zone == NULL) {
2081 		error = ENOMEM;
2082 		goto done;
2083 	}
2084 
2085 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2086 	    uap->name, td);
2087 	error = namei(&nd);
2088 	if (error)
2089 		goto done;
2090 
2091 	NDFREE(&nd, NDF_ONLY_PNBUF);
2092 	vp = nd.ni_vp;
2093 
2094 	if (vn_isdisk(vp, &error)) {
2095 		error = swapongeom(td, vp);
2096 	} else if (vp->v_type == VREG &&
2097 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2098 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2099 		/*
2100 		 * Allow direct swapping to NFS regular files in the same
2101 		 * way that nfs_mountroot() sets up diskless swapping.
2102 		 */
2103 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2104 	}
2105 
2106 	if (error)
2107 		vrele(vp);
2108 done:
2109 	swdev_syscall_active = 0;
2110 	wakeup_one(&swdev_syscall_active);
2111 	mtx_unlock(&Giant);
2112 	return (error);
2113 }
2114 
2115 static void
2116 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
2117 {
2118 	struct swdevt *sp, *tsp;
2119 	swblk_t dvbase;
2120 	u_long mblocks;
2121 
2122 	/*
2123 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2124 	 * First chop nblks off to page-align it, then convert.
2125 	 *
2126 	 * sw->sw_nblks is in page-sized chunks now too.
2127 	 */
2128 	nblks &= ~(ctodb(1) - 1);
2129 	nblks = dbtoc(nblks);
2130 
2131 	/*
2132 	 * If we go beyond this, we get overflows in the radix
2133 	 * tree bitmap code.
2134 	 */
2135 	mblocks = 0x40000000 / BLIST_META_RADIX;
2136 	if (nblks > mblocks) {
2137 		printf(
2138     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2139 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2140 		nblks = mblocks;
2141 	}
2142 
2143 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2144 	sp->sw_vp = vp;
2145 	sp->sw_id = id;
2146 	sp->sw_dev = dev;
2147 	sp->sw_flags = 0;
2148 	sp->sw_nblks = nblks;
2149 	sp->sw_used = 0;
2150 	sp->sw_strategy = strategy;
2151 	sp->sw_close = close;
2152 
2153 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2154 	/*
2155 	 * Do not free the first two block in order to avoid overwriting
2156 	 * any bsd label at the front of the partition
2157 	 */
2158 	blist_free(sp->sw_blist, 2, nblks - 2);
2159 
2160 	dvbase = 0;
2161 	mtx_lock(&sw_dev_mtx);
2162 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2163 		if (tsp->sw_end >= dvbase) {
2164 			/*
2165 			 * We put one uncovered page between the devices
2166 			 * in order to definitively prevent any cross-device
2167 			 * I/O requests
2168 			 */
2169 			dvbase = tsp->sw_end + 1;
2170 		}
2171 	}
2172 	sp->sw_first = dvbase;
2173 	sp->sw_end = dvbase + nblks;
2174 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2175 	nswapdev++;
2176 	swap_pager_avail += nblks;
2177 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2178 	swp_sizecheck();
2179 	mtx_unlock(&sw_dev_mtx);
2180 }
2181 
2182 /*
2183  * SYSCALL: swapoff(devname)
2184  *
2185  * Disable swapping on the given device.
2186  *
2187  * XXX: Badly designed system call: it should use a device index
2188  * rather than filename as specification.  We keep sw_vp around
2189  * only to make this work.
2190  */
2191 #ifndef _SYS_SYSPROTO_H_
2192 struct swapoff_args {
2193 	char *name;
2194 };
2195 #endif
2196 
2197 /*
2198  * MPSAFE
2199  */
2200 /* ARGSUSED */
2201 int
2202 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2203 {
2204 	struct vnode *vp;
2205 	struct nameidata nd;
2206 	struct swdevt *sp;
2207 	int error;
2208 
2209 	error = priv_check(td, PRIV_SWAPOFF);
2210 	if (error)
2211 		return (error);
2212 
2213 	mtx_lock(&Giant);
2214 	while (swdev_syscall_active)
2215 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2216 	swdev_syscall_active = 1;
2217 
2218 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2219 	    td);
2220 	error = namei(&nd);
2221 	if (error)
2222 		goto done;
2223 	NDFREE(&nd, NDF_ONLY_PNBUF);
2224 	vp = nd.ni_vp;
2225 
2226 	mtx_lock(&sw_dev_mtx);
2227 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2228 		if (sp->sw_vp == vp)
2229 			break;
2230 	}
2231 	mtx_unlock(&sw_dev_mtx);
2232 	if (sp == NULL) {
2233 		error = EINVAL;
2234 		goto done;
2235 	}
2236 	error = swapoff_one(sp, td->td_ucred);
2237 done:
2238 	swdev_syscall_active = 0;
2239 	wakeup_one(&swdev_syscall_active);
2240 	mtx_unlock(&Giant);
2241 	return (error);
2242 }
2243 
2244 static int
2245 swapoff_one(struct swdevt *sp, struct ucred *cred)
2246 {
2247 	u_long nblks, dvbase;
2248 #ifdef MAC
2249 	int error;
2250 #endif
2251 
2252 	mtx_assert(&Giant, MA_OWNED);
2253 #ifdef MAC
2254 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2255 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2256 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2257 	if (error != 0)
2258 		return (error);
2259 #endif
2260 	nblks = sp->sw_nblks;
2261 
2262 	/*
2263 	 * We can turn off this swap device safely only if the
2264 	 * available virtual memory in the system will fit the amount
2265 	 * of data we will have to page back in, plus an epsilon so
2266 	 * the system doesn't become critically low on swap space.
2267 	 */
2268 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2269 	    nblks + nswap_lowat) {
2270 		return (ENOMEM);
2271 	}
2272 
2273 	/*
2274 	 * Prevent further allocations on this device.
2275 	 */
2276 	mtx_lock(&sw_dev_mtx);
2277 	sp->sw_flags |= SW_CLOSING;
2278 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2279 		swap_pager_avail -= blist_fill(sp->sw_blist,
2280 		     dvbase, dmmax);
2281 	}
2282 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2283 	mtx_unlock(&sw_dev_mtx);
2284 
2285 	/*
2286 	 * Page in the contents of the device and close it.
2287 	 */
2288 	swap_pager_swapoff(sp);
2289 
2290 	sp->sw_close(curthread, sp);
2291 	sp->sw_id = NULL;
2292 	mtx_lock(&sw_dev_mtx);
2293 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2294 	nswapdev--;
2295 	if (nswapdev == 0) {
2296 		swap_pager_full = 2;
2297 		swap_pager_almost_full = 1;
2298 	}
2299 	if (swdevhd == sp)
2300 		swdevhd = NULL;
2301 	mtx_unlock(&sw_dev_mtx);
2302 	blist_destroy(sp->sw_blist);
2303 	free(sp, M_VMPGDATA);
2304 	return (0);
2305 }
2306 
2307 void
2308 swapoff_all(void)
2309 {
2310 	struct swdevt *sp, *spt;
2311 	const char *devname;
2312 	int error;
2313 
2314 	mtx_lock(&Giant);
2315 	while (swdev_syscall_active)
2316 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2317 	swdev_syscall_active = 1;
2318 
2319 	mtx_lock(&sw_dev_mtx);
2320 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2321 		mtx_unlock(&sw_dev_mtx);
2322 		if (vn_isdisk(sp->sw_vp, NULL))
2323 			devname = sp->sw_vp->v_rdev->si_name;
2324 		else
2325 			devname = "[file]";
2326 		error = swapoff_one(sp, thread0.td_ucred);
2327 		if (error != 0) {
2328 			printf("Cannot remove swap device %s (error=%d), "
2329 			    "skipping.\n", devname, error);
2330 		} else if (bootverbose) {
2331 			printf("Swap device %s removed.\n", devname);
2332 		}
2333 		mtx_lock(&sw_dev_mtx);
2334 	}
2335 	mtx_unlock(&sw_dev_mtx);
2336 
2337 	swdev_syscall_active = 0;
2338 	wakeup_one(&swdev_syscall_active);
2339 	mtx_unlock(&Giant);
2340 }
2341 
2342 void
2343 swap_pager_status(int *total, int *used)
2344 {
2345 	struct swdevt *sp;
2346 
2347 	*total = 0;
2348 	*used = 0;
2349 	mtx_lock(&sw_dev_mtx);
2350 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2351 		*total += sp->sw_nblks;
2352 		*used += sp->sw_used;
2353 	}
2354 	mtx_unlock(&sw_dev_mtx);
2355 }
2356 
2357 int
2358 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2359 {
2360 	struct swdevt *sp;
2361 	char *tmp_devname;
2362 	int error, n;
2363 
2364 	n = 0;
2365 	error = ENOENT;
2366 	mtx_lock(&sw_dev_mtx);
2367 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2368 		if (n != name) {
2369 			n++;
2370 			continue;
2371 		}
2372 		xs->xsw_version = XSWDEV_VERSION;
2373 		xs->xsw_dev = sp->sw_dev;
2374 		xs->xsw_flags = sp->sw_flags;
2375 		xs->xsw_nblks = sp->sw_nblks;
2376 		xs->xsw_used = sp->sw_used;
2377 		if (devname != NULL) {
2378 			if (vn_isdisk(sp->sw_vp, NULL))
2379 				tmp_devname = sp->sw_vp->v_rdev->si_name;
2380 			else
2381 				tmp_devname = "[file]";
2382 			strncpy(devname, tmp_devname, len);
2383 		}
2384 		error = 0;
2385 		break;
2386 	}
2387 	mtx_unlock(&sw_dev_mtx);
2388 	return (error);
2389 }
2390 
2391 static int
2392 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2393 {
2394 	struct xswdev xs;
2395 	int error;
2396 
2397 	if (arg2 != 1)			/* name length */
2398 		return (EINVAL);
2399 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2400 	if (error != 0)
2401 		return (error);
2402 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2403 	return (error);
2404 }
2405 
2406 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2407     "Number of swap devices");
2408 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2409     "Swap statistics by device");
2410 
2411 /*
2412  * vmspace_swap_count() - count the approximate swap usage in pages for a
2413  *			  vmspace.
2414  *
2415  *	The map must be locked.
2416  *
2417  *	Swap usage is determined by taking the proportional swap used by
2418  *	VM objects backing the VM map.  To make up for fractional losses,
2419  *	if the VM object has any swap use at all the associated map entries
2420  *	count for at least 1 swap page.
2421  */
2422 long
2423 vmspace_swap_count(struct vmspace *vmspace)
2424 {
2425 	vm_map_t map;
2426 	vm_map_entry_t cur;
2427 	vm_object_t object;
2428 	long count, n;
2429 
2430 	map = &vmspace->vm_map;
2431 	count = 0;
2432 
2433 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2434 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2435 		    (object = cur->object.vm_object) != NULL) {
2436 			VM_OBJECT_LOCK(object);
2437 			if (object->type == OBJT_SWAP &&
2438 			    object->un_pager.swp.swp_bcount != 0) {
2439 				n = (cur->end - cur->start) / PAGE_SIZE;
2440 				count += object->un_pager.swp.swp_bcount *
2441 				    SWAP_META_PAGES * n / object->size + 1;
2442 			}
2443 			VM_OBJECT_UNLOCK(object);
2444 		}
2445 	}
2446 	return (count);
2447 }
2448 
2449 /*
2450  * GEOM backend
2451  *
2452  * Swapping onto disk devices.
2453  *
2454  */
2455 
2456 static g_orphan_t swapgeom_orphan;
2457 
2458 static struct g_class g_swap_class = {
2459 	.name = "SWAP",
2460 	.version = G_VERSION,
2461 	.orphan = swapgeom_orphan,
2462 };
2463 
2464 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2465 
2466 
2467 static void
2468 swapgeom_done(struct bio *bp2)
2469 {
2470 	struct buf *bp;
2471 
2472 	bp = bp2->bio_caller2;
2473 	bp->b_ioflags = bp2->bio_flags;
2474 	if (bp2->bio_error)
2475 		bp->b_ioflags |= BIO_ERROR;
2476 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2477 	bp->b_error = bp2->bio_error;
2478 	bufdone(bp);
2479 	g_destroy_bio(bp2);
2480 }
2481 
2482 static void
2483 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2484 {
2485 	struct bio *bio;
2486 	struct g_consumer *cp;
2487 
2488 	cp = sp->sw_id;
2489 	if (cp == NULL) {
2490 		bp->b_error = ENXIO;
2491 		bp->b_ioflags |= BIO_ERROR;
2492 		bufdone(bp);
2493 		return;
2494 	}
2495 	if (bp->b_iocmd == BIO_WRITE)
2496 		bio = g_new_bio();
2497 	else
2498 		bio = g_alloc_bio();
2499 	if (bio == NULL) {
2500 		bp->b_error = ENOMEM;
2501 		bp->b_ioflags |= BIO_ERROR;
2502 		bufdone(bp);
2503 		return;
2504 	}
2505 
2506 	bio->bio_caller2 = bp;
2507 	bio->bio_cmd = bp->b_iocmd;
2508 	bio->bio_data = bp->b_data;
2509 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2510 	bio->bio_length = bp->b_bcount;
2511 	bio->bio_done = swapgeom_done;
2512 	g_io_request(bio, cp);
2513 	return;
2514 }
2515 
2516 static void
2517 swapgeom_orphan(struct g_consumer *cp)
2518 {
2519 	struct swdevt *sp;
2520 
2521 	mtx_lock(&sw_dev_mtx);
2522 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2523 		if (sp->sw_id == cp)
2524 			sp->sw_flags |= SW_CLOSING;
2525 	mtx_unlock(&sw_dev_mtx);
2526 }
2527 
2528 static void
2529 swapgeom_close_ev(void *arg, int flags)
2530 {
2531 	struct g_consumer *cp;
2532 
2533 	cp = arg;
2534 	g_access(cp, -1, -1, 0);
2535 	g_detach(cp);
2536 	g_destroy_consumer(cp);
2537 }
2538 
2539 static void
2540 swapgeom_close(struct thread *td, struct swdevt *sw)
2541 {
2542 
2543 	/* XXX: direct call when Giant untangled */
2544 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2545 }
2546 
2547 
2548 struct swh0h0 {
2549 	struct cdev *dev;
2550 	struct vnode *vp;
2551 	int	error;
2552 };
2553 
2554 static void
2555 swapongeom_ev(void *arg, int flags)
2556 {
2557 	struct swh0h0 *swh;
2558 	struct g_provider *pp;
2559 	struct g_consumer *cp;
2560 	static struct g_geom *gp;
2561 	struct swdevt *sp;
2562 	u_long nblks;
2563 	int error;
2564 
2565 	swh = arg;
2566 	swh->error = 0;
2567 	pp = g_dev_getprovider(swh->dev);
2568 	if (pp == NULL) {
2569 		swh->error = ENODEV;
2570 		return;
2571 	}
2572 	mtx_lock(&sw_dev_mtx);
2573 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2574 		cp = sp->sw_id;
2575 		if (cp != NULL && cp->provider == pp) {
2576 			mtx_unlock(&sw_dev_mtx);
2577 			swh->error = EBUSY;
2578 			return;
2579 		}
2580 	}
2581 	mtx_unlock(&sw_dev_mtx);
2582 	if (gp == NULL)
2583 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2584 	cp = g_new_consumer(gp);
2585 	g_attach(cp, pp);
2586 	/*
2587 	 * XXX: Everytime you think you can improve the margin for
2588 	 * footshooting, somebody depends on the ability to do so:
2589 	 * savecore(8) wants to write to our swapdev so we cannot
2590 	 * set an exclusive count :-(
2591 	 */
2592 	error = g_access(cp, 1, 1, 0);
2593 	if (error) {
2594 		g_detach(cp);
2595 		g_destroy_consumer(cp);
2596 		swh->error = error;
2597 		return;
2598 	}
2599 	nblks = pp->mediasize / DEV_BSIZE;
2600 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2601 	    swapgeom_close, dev2udev(swh->dev));
2602 	swh->error = 0;
2603 	return;
2604 }
2605 
2606 static int
2607 swapongeom(struct thread *td, struct vnode *vp)
2608 {
2609 	int error;
2610 	struct swh0h0 swh;
2611 
2612 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2613 
2614 	swh.dev = vp->v_rdev;
2615 	swh.vp = vp;
2616 	swh.error = 0;
2617 	/* XXX: direct call when Giant untangled */
2618 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2619 	if (!error)
2620 		error = swh.error;
2621 	VOP_UNLOCK(vp, 0);
2622 	return (error);
2623 }
2624 
2625 /*
2626  * VNODE backend
2627  *
2628  * This is used mainly for network filesystem (read: probably only tested
2629  * with NFS) swapfiles.
2630  *
2631  */
2632 
2633 static void
2634 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2635 {
2636 	struct vnode *vp2;
2637 
2638 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2639 
2640 	vp2 = sp->sw_id;
2641 	vhold(vp2);
2642 	if (bp->b_iocmd == BIO_WRITE) {
2643 		if (bp->b_bufobj)
2644 			bufobj_wdrop(bp->b_bufobj);
2645 		bufobj_wref(&vp2->v_bufobj);
2646 	}
2647 	if (bp->b_bufobj != &vp2->v_bufobj)
2648 		bp->b_bufobj = &vp2->v_bufobj;
2649 	bp->b_vp = vp2;
2650 	bp->b_iooffset = dbtob(bp->b_blkno);
2651 	bstrategy(bp);
2652 	return;
2653 }
2654 
2655 static void
2656 swapdev_close(struct thread *td, struct swdevt *sp)
2657 {
2658 
2659 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2660 	vrele(sp->sw_vp);
2661 }
2662 
2663 
2664 static int
2665 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2666 {
2667 	struct swdevt *sp;
2668 	int error;
2669 
2670 	if (nblks == 0)
2671 		return (ENXIO);
2672 	mtx_lock(&sw_dev_mtx);
2673 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2674 		if (sp->sw_id == vp) {
2675 			mtx_unlock(&sw_dev_mtx);
2676 			return (EBUSY);
2677 		}
2678 	}
2679 	mtx_unlock(&sw_dev_mtx);
2680 
2681 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2682 #ifdef MAC
2683 	error = mac_system_check_swapon(td->td_ucred, vp);
2684 	if (error == 0)
2685 #endif
2686 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2687 	(void) VOP_UNLOCK(vp, 0);
2688 	if (error)
2689 		return (error);
2690 
2691 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2692 	    NODEV);
2693 	return (0);
2694 }
2695