1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/racct.h> 90 #include <sys/resource.h> 91 #include <sys/resourcevar.h> 92 #include <sys/sysctl.h> 93 #include <sys/sysproto.h> 94 #include <sys/blist.h> 95 #include <sys/lock.h> 96 #include <sys/sx.h> 97 #include <sys/vmmeter.h> 98 99 #include <security/mac/mac_framework.h> 100 101 #include <vm/vm.h> 102 #include <vm/pmap.h> 103 #include <vm/vm_map.h> 104 #include <vm/vm_kern.h> 105 #include <vm/vm_object.h> 106 #include <vm/vm_page.h> 107 #include <vm/vm_pager.h> 108 #include <vm/vm_pageout.h> 109 #include <vm/vm_param.h> 110 #include <vm/swap_pager.h> 111 #include <vm/vm_extern.h> 112 #include <vm/uma.h> 113 114 #include <geom/geom.h> 115 116 /* 117 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, 16 118 * or 32 pages per allocation. 119 * The 32-page limit is due to the radix code (kern/subr_blist.c). 120 */ 121 #ifndef MAX_PAGEOUT_CLUSTER 122 #define MAX_PAGEOUT_CLUSTER 16 123 #endif 124 125 #if !defined(SWB_NPAGES) 126 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 127 #endif 128 129 /* 130 * The swblock structure maps an object and a small, fixed-size range 131 * of page indices to disk addresses within a swap area. 132 * The collection of these mappings is implemented as a hash table. 133 * Unused disk addresses within a swap area are allocated and managed 134 * using a blist. 135 */ 136 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 137 #define SWAP_META_PAGES (SWB_NPAGES * 2) 138 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 139 140 struct swblock { 141 struct swblock *swb_hnext; 142 vm_object_t swb_object; 143 vm_pindex_t swb_index; 144 int swb_count; 145 daddr_t swb_pages[SWAP_META_PAGES]; 146 }; 147 148 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 149 static struct mtx sw_dev_mtx; 150 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 151 static struct swdevt *swdevhd; /* Allocate from here next */ 152 static int nswapdev; /* Number of swap devices */ 153 int swap_pager_avail; 154 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 155 156 static vm_ooffset_t swap_total; 157 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 158 "Total amount of available swap storage."); 159 static vm_ooffset_t swap_reserved; 160 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 161 "Amount of swap storage needed to back all allocated anonymous memory."); 162 static int overcommit = 0; 163 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 164 "Configure virtual memory overcommit behavior. See tuning(7) " 165 "for details."); 166 167 /* bits from overcommit */ 168 #define SWAP_RESERVE_FORCE_ON (1 << 0) 169 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 170 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 171 172 int 173 swap_reserve(vm_ooffset_t incr) 174 { 175 176 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 177 } 178 179 int 180 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 181 { 182 vm_ooffset_t r, s; 183 int res, error; 184 static int curfail; 185 static struct timeval lastfail; 186 struct uidinfo *uip; 187 188 uip = cred->cr_ruidinfo; 189 190 if (incr & PAGE_MASK) 191 panic("swap_reserve: & PAGE_MASK"); 192 193 #ifdef RACCT 194 PROC_LOCK(curproc); 195 error = racct_add(curproc, RACCT_SWAP, incr); 196 PROC_UNLOCK(curproc); 197 if (error != 0) 198 return (0); 199 #endif 200 201 res = 0; 202 mtx_lock(&sw_dev_mtx); 203 r = swap_reserved + incr; 204 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 205 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count; 206 s *= PAGE_SIZE; 207 } else 208 s = 0; 209 s += swap_total; 210 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 211 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 212 res = 1; 213 swap_reserved = r; 214 } 215 mtx_unlock(&sw_dev_mtx); 216 217 if (res) { 218 PROC_LOCK(curproc); 219 UIDINFO_VMSIZE_LOCK(uip); 220 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 221 uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) && 222 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 223 res = 0; 224 else 225 uip->ui_vmsize += incr; 226 UIDINFO_VMSIZE_UNLOCK(uip); 227 PROC_UNLOCK(curproc); 228 if (!res) { 229 mtx_lock(&sw_dev_mtx); 230 swap_reserved -= incr; 231 mtx_unlock(&sw_dev_mtx); 232 } 233 } 234 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 235 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 236 uip->ui_uid, curproc->p_pid, incr); 237 } 238 239 #ifdef RACCT 240 if (!res) { 241 PROC_LOCK(curproc); 242 racct_sub(curproc, RACCT_SWAP, incr); 243 PROC_UNLOCK(curproc); 244 } 245 #endif 246 247 return (res); 248 } 249 250 void 251 swap_reserve_force(vm_ooffset_t incr) 252 { 253 struct uidinfo *uip; 254 255 mtx_lock(&sw_dev_mtx); 256 swap_reserved += incr; 257 mtx_unlock(&sw_dev_mtx); 258 259 #ifdef RACCT 260 PROC_LOCK(curproc); 261 racct_add_force(curproc, RACCT_SWAP, incr); 262 PROC_UNLOCK(curproc); 263 #endif 264 265 uip = curthread->td_ucred->cr_ruidinfo; 266 PROC_LOCK(curproc); 267 UIDINFO_VMSIZE_LOCK(uip); 268 uip->ui_vmsize += incr; 269 UIDINFO_VMSIZE_UNLOCK(uip); 270 PROC_UNLOCK(curproc); 271 } 272 273 void 274 swap_release(vm_ooffset_t decr) 275 { 276 struct ucred *cred; 277 278 PROC_LOCK(curproc); 279 cred = curthread->td_ucred; 280 swap_release_by_cred(decr, cred); 281 PROC_UNLOCK(curproc); 282 } 283 284 void 285 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 286 { 287 struct uidinfo *uip; 288 289 uip = cred->cr_ruidinfo; 290 291 if (decr & PAGE_MASK) 292 panic("swap_release: & PAGE_MASK"); 293 294 mtx_lock(&sw_dev_mtx); 295 if (swap_reserved < decr) 296 panic("swap_reserved < decr"); 297 swap_reserved -= decr; 298 mtx_unlock(&sw_dev_mtx); 299 300 UIDINFO_VMSIZE_LOCK(uip); 301 if (uip->ui_vmsize < decr) 302 printf("negative vmsize for uid = %d\n", uip->ui_uid); 303 uip->ui_vmsize -= decr; 304 UIDINFO_VMSIZE_UNLOCK(uip); 305 306 racct_sub_cred(cred, RACCT_SWAP, decr); 307 } 308 309 static void swapdev_strategy(struct buf *, struct swdevt *sw); 310 311 #define SWM_FREE 0x02 /* free, period */ 312 #define SWM_POP 0x04 /* pop out */ 313 314 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 315 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 316 static int nsw_rcount; /* free read buffers */ 317 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 318 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 319 static int nsw_wcount_async_max;/* assigned maximum */ 320 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 321 322 static struct swblock **swhash; 323 static int swhash_mask; 324 static struct mtx swhash_mtx; 325 326 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 327 static struct sx sw_alloc_sx; 328 329 330 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 331 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 332 333 /* 334 * "named" and "unnamed" anon region objects. Try to reduce the overhead 335 * of searching a named list by hashing it just a little. 336 */ 337 338 #define NOBJLISTS 8 339 340 #define NOBJLIST(handle) \ 341 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 342 343 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 344 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 345 static uma_zone_t swap_zone; 346 static struct vm_object swap_zone_obj; 347 348 /* 349 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 350 * calls hooked from other parts of the VM system and do not appear here. 351 * (see vm/swap_pager.h). 352 */ 353 static vm_object_t 354 swap_pager_alloc(void *handle, vm_ooffset_t size, 355 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 356 static void swap_pager_dealloc(vm_object_t object); 357 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 358 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 359 static boolean_t 360 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 361 static void swap_pager_init(void); 362 static void swap_pager_unswapped(vm_page_t); 363 static void swap_pager_swapoff(struct swdevt *sp); 364 365 struct pagerops swappagerops = { 366 .pgo_init = swap_pager_init, /* early system initialization of pager */ 367 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 368 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 369 .pgo_getpages = swap_pager_getpages, /* pagein */ 370 .pgo_putpages = swap_pager_putpages, /* pageout */ 371 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 372 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 373 }; 374 375 /* 376 * dmmax is in page-sized chunks with the new swap system. It was 377 * dev-bsized chunks in the old. dmmax is always a power of 2. 378 * 379 * swap_*() routines are externally accessible. swp_*() routines are 380 * internal. 381 */ 382 static int dmmax; 383 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 384 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 385 386 SYSCTL_INT(_vm, OID_AUTO, dmmax, 387 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 388 389 static void swp_sizecheck(void); 390 static void swp_pager_async_iodone(struct buf *bp); 391 static int swapongeom(struct thread *, struct vnode *); 392 static int swaponvp(struct thread *, struct vnode *, u_long); 393 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 394 395 /* 396 * Swap bitmap functions 397 */ 398 static void swp_pager_freeswapspace(daddr_t blk, int npages); 399 static daddr_t swp_pager_getswapspace(int npages); 400 401 /* 402 * Metadata functions 403 */ 404 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 405 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 406 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 407 static void swp_pager_meta_free_all(vm_object_t); 408 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 409 410 static void 411 swp_pager_free_nrpage(vm_page_t m) 412 { 413 414 vm_page_lock(m); 415 if (m->wire_count == 0) 416 vm_page_free(m); 417 vm_page_unlock(m); 418 } 419 420 /* 421 * SWP_SIZECHECK() - update swap_pager_full indication 422 * 423 * update the swap_pager_almost_full indication and warn when we are 424 * about to run out of swap space, using lowat/hiwat hysteresis. 425 * 426 * Clear swap_pager_full ( task killing ) indication when lowat is met. 427 * 428 * No restrictions on call 429 * This routine may not block. 430 */ 431 static void 432 swp_sizecheck(void) 433 { 434 435 if (swap_pager_avail < nswap_lowat) { 436 if (swap_pager_almost_full == 0) { 437 printf("swap_pager: out of swap space\n"); 438 swap_pager_almost_full = 1; 439 } 440 } else { 441 swap_pager_full = 0; 442 if (swap_pager_avail > nswap_hiwat) 443 swap_pager_almost_full = 0; 444 } 445 } 446 447 /* 448 * SWP_PAGER_HASH() - hash swap meta data 449 * 450 * This is an helper function which hashes the swapblk given 451 * the object and page index. It returns a pointer to a pointer 452 * to the object, or a pointer to a NULL pointer if it could not 453 * find a swapblk. 454 */ 455 static struct swblock ** 456 swp_pager_hash(vm_object_t object, vm_pindex_t index) 457 { 458 struct swblock **pswap; 459 struct swblock *swap; 460 461 index &= ~(vm_pindex_t)SWAP_META_MASK; 462 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 463 while ((swap = *pswap) != NULL) { 464 if (swap->swb_object == object && 465 swap->swb_index == index 466 ) { 467 break; 468 } 469 pswap = &swap->swb_hnext; 470 } 471 return (pswap); 472 } 473 474 /* 475 * SWAP_PAGER_INIT() - initialize the swap pager! 476 * 477 * Expected to be started from system init. NOTE: This code is run 478 * before much else so be careful what you depend on. Most of the VM 479 * system has yet to be initialized at this point. 480 */ 481 static void 482 swap_pager_init(void) 483 { 484 /* 485 * Initialize object lists 486 */ 487 int i; 488 489 for (i = 0; i < NOBJLISTS; ++i) 490 TAILQ_INIT(&swap_pager_object_list[i]); 491 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 492 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 493 494 /* 495 * Device Stripe, in PAGE_SIZE'd blocks 496 */ 497 dmmax = SWB_NPAGES * 2; 498 } 499 500 /* 501 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 502 * 503 * Expected to be started from pageout process once, prior to entering 504 * its main loop. 505 */ 506 void 507 swap_pager_swap_init(void) 508 { 509 int n, n2; 510 511 /* 512 * Number of in-transit swap bp operations. Don't 513 * exhaust the pbufs completely. Make sure we 514 * initialize workable values (0 will work for hysteresis 515 * but it isn't very efficient). 516 * 517 * The nsw_cluster_max is constrained by the bp->b_pages[] 518 * array (MAXPHYS/PAGE_SIZE) and our locally defined 519 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 520 * constrained by the swap device interleave stripe size. 521 * 522 * Currently we hardwire nsw_wcount_async to 4. This limit is 523 * designed to prevent other I/O from having high latencies due to 524 * our pageout I/O. The value 4 works well for one or two active swap 525 * devices but is probably a little low if you have more. Even so, 526 * a higher value would probably generate only a limited improvement 527 * with three or four active swap devices since the system does not 528 * typically have to pageout at extreme bandwidths. We will want 529 * at least 2 per swap devices, and 4 is a pretty good value if you 530 * have one NFS swap device due to the command/ack latency over NFS. 531 * So it all works out pretty well. 532 */ 533 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 534 535 mtx_lock(&pbuf_mtx); 536 nsw_rcount = (nswbuf + 1) / 2; 537 nsw_wcount_sync = (nswbuf + 3) / 4; 538 nsw_wcount_async = 4; 539 nsw_wcount_async_max = nsw_wcount_async; 540 mtx_unlock(&pbuf_mtx); 541 542 /* 543 * Initialize our zone. Right now I'm just guessing on the number 544 * we need based on the number of pages in the system. Each swblock 545 * can hold 16 pages, so this is probably overkill. This reservation 546 * is typically limited to around 32MB by default. 547 */ 548 n = cnt.v_page_count / 2; 549 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 550 n = maxswzone / sizeof(struct swblock); 551 n2 = n; 552 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 553 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 554 if (swap_zone == NULL) 555 panic("failed to create swap_zone."); 556 do { 557 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n)) 558 break; 559 /* 560 * if the allocation failed, try a zone two thirds the 561 * size of the previous attempt. 562 */ 563 n -= ((n + 2) / 3); 564 } while (n > 0); 565 if (n2 != n) 566 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 567 n2 = n; 568 569 /* 570 * Initialize our meta-data hash table. The swapper does not need to 571 * be quite as efficient as the VM system, so we do not use an 572 * oversized hash table. 573 * 574 * n: size of hash table, must be power of 2 575 * swhash_mask: hash table index mask 576 */ 577 for (n = 1; n < n2 / 8; n *= 2) 578 ; 579 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 580 swhash_mask = n - 1; 581 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 582 } 583 584 /* 585 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 586 * its metadata structures. 587 * 588 * This routine is called from the mmap and fork code to create a new 589 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 590 * and then converting it with swp_pager_meta_build(). 591 * 592 * This routine may block in vm_object_allocate() and create a named 593 * object lookup race, so we must interlock. 594 * 595 * MPSAFE 596 */ 597 static vm_object_t 598 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 599 vm_ooffset_t offset, struct ucred *cred) 600 { 601 vm_object_t object; 602 vm_pindex_t pindex; 603 604 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 605 if (handle) { 606 mtx_lock(&Giant); 607 /* 608 * Reference existing named region or allocate new one. There 609 * should not be a race here against swp_pager_meta_build() 610 * as called from vm_page_remove() in regards to the lookup 611 * of the handle. 612 */ 613 sx_xlock(&sw_alloc_sx); 614 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 615 if (object == NULL) { 616 if (cred != NULL) { 617 if (!swap_reserve_by_cred(size, cred)) { 618 sx_xunlock(&sw_alloc_sx); 619 mtx_unlock(&Giant); 620 return (NULL); 621 } 622 crhold(cred); 623 } 624 object = vm_object_allocate(OBJT_DEFAULT, pindex); 625 VM_OBJECT_LOCK(object); 626 object->handle = handle; 627 if (cred != NULL) { 628 object->cred = cred; 629 object->charge = size; 630 } 631 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 632 VM_OBJECT_UNLOCK(object); 633 } 634 sx_xunlock(&sw_alloc_sx); 635 mtx_unlock(&Giant); 636 } else { 637 if (cred != NULL) { 638 if (!swap_reserve_by_cred(size, cred)) 639 return (NULL); 640 crhold(cred); 641 } 642 object = vm_object_allocate(OBJT_DEFAULT, pindex); 643 VM_OBJECT_LOCK(object); 644 if (cred != NULL) { 645 object->cred = cred; 646 object->charge = size; 647 } 648 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 649 VM_OBJECT_UNLOCK(object); 650 } 651 return (object); 652 } 653 654 /* 655 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 656 * 657 * The swap backing for the object is destroyed. The code is 658 * designed such that we can reinstantiate it later, but this 659 * routine is typically called only when the entire object is 660 * about to be destroyed. 661 * 662 * The object must be locked. 663 */ 664 static void 665 swap_pager_dealloc(vm_object_t object) 666 { 667 668 /* 669 * Remove from list right away so lookups will fail if we block for 670 * pageout completion. 671 */ 672 if (object->handle != NULL) { 673 mtx_lock(&sw_alloc_mtx); 674 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 675 mtx_unlock(&sw_alloc_mtx); 676 } 677 678 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 679 vm_object_pip_wait(object, "swpdea"); 680 681 /* 682 * Free all remaining metadata. We only bother to free it from 683 * the swap meta data. We do not attempt to free swapblk's still 684 * associated with vm_page_t's for this object. We do not care 685 * if paging is still in progress on some objects. 686 */ 687 swp_pager_meta_free_all(object); 688 } 689 690 /************************************************************************ 691 * SWAP PAGER BITMAP ROUTINES * 692 ************************************************************************/ 693 694 /* 695 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 696 * 697 * Allocate swap for the requested number of pages. The starting 698 * swap block number (a page index) is returned or SWAPBLK_NONE 699 * if the allocation failed. 700 * 701 * Also has the side effect of advising that somebody made a mistake 702 * when they configured swap and didn't configure enough. 703 * 704 * This routine may not sleep. 705 * 706 * We allocate in round-robin fashion from the configured devices. 707 */ 708 static daddr_t 709 swp_pager_getswapspace(int npages) 710 { 711 daddr_t blk; 712 struct swdevt *sp; 713 int i; 714 715 blk = SWAPBLK_NONE; 716 mtx_lock(&sw_dev_mtx); 717 sp = swdevhd; 718 for (i = 0; i < nswapdev; i++) { 719 if (sp == NULL) 720 sp = TAILQ_FIRST(&swtailq); 721 if (!(sp->sw_flags & SW_CLOSING)) { 722 blk = blist_alloc(sp->sw_blist, npages); 723 if (blk != SWAPBLK_NONE) { 724 blk += sp->sw_first; 725 sp->sw_used += npages; 726 swap_pager_avail -= npages; 727 swp_sizecheck(); 728 swdevhd = TAILQ_NEXT(sp, sw_list); 729 goto done; 730 } 731 } 732 sp = TAILQ_NEXT(sp, sw_list); 733 } 734 if (swap_pager_full != 2) { 735 printf("swap_pager_getswapspace(%d): failed\n", npages); 736 swap_pager_full = 2; 737 swap_pager_almost_full = 1; 738 } 739 swdevhd = NULL; 740 done: 741 mtx_unlock(&sw_dev_mtx); 742 return (blk); 743 } 744 745 static int 746 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 747 { 748 749 return (blk >= sp->sw_first && blk < sp->sw_end); 750 } 751 752 static void 753 swp_pager_strategy(struct buf *bp) 754 { 755 struct swdevt *sp; 756 757 mtx_lock(&sw_dev_mtx); 758 TAILQ_FOREACH(sp, &swtailq, sw_list) { 759 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 760 mtx_unlock(&sw_dev_mtx); 761 sp->sw_strategy(bp, sp); 762 return; 763 } 764 } 765 panic("Swapdev not found"); 766 } 767 768 769 /* 770 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 771 * 772 * This routine returns the specified swap blocks back to the bitmap. 773 * 774 * This routine may not sleep. 775 */ 776 static void 777 swp_pager_freeswapspace(daddr_t blk, int npages) 778 { 779 struct swdevt *sp; 780 781 mtx_lock(&sw_dev_mtx); 782 TAILQ_FOREACH(sp, &swtailq, sw_list) { 783 if (blk >= sp->sw_first && blk < sp->sw_end) { 784 sp->sw_used -= npages; 785 /* 786 * If we are attempting to stop swapping on 787 * this device, we don't want to mark any 788 * blocks free lest they be reused. 789 */ 790 if ((sp->sw_flags & SW_CLOSING) == 0) { 791 blist_free(sp->sw_blist, blk - sp->sw_first, 792 npages); 793 swap_pager_avail += npages; 794 swp_sizecheck(); 795 } 796 mtx_unlock(&sw_dev_mtx); 797 return; 798 } 799 } 800 panic("Swapdev not found"); 801 } 802 803 /* 804 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 805 * range within an object. 806 * 807 * This is a globally accessible routine. 808 * 809 * This routine removes swapblk assignments from swap metadata. 810 * 811 * The external callers of this routine typically have already destroyed 812 * or renamed vm_page_t's associated with this range in the object so 813 * we should be ok. 814 */ 815 void 816 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 817 { 818 819 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 820 swp_pager_meta_free(object, start, size); 821 } 822 823 /* 824 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 825 * 826 * Assigns swap blocks to the specified range within the object. The 827 * swap blocks are not zerod. Any previous swap assignment is destroyed. 828 * 829 * Returns 0 on success, -1 on failure. 830 */ 831 int 832 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 833 { 834 int n = 0; 835 daddr_t blk = SWAPBLK_NONE; 836 vm_pindex_t beg = start; /* save start index */ 837 838 VM_OBJECT_LOCK(object); 839 while (size) { 840 if (n == 0) { 841 n = BLIST_MAX_ALLOC; 842 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 843 n >>= 1; 844 if (n == 0) { 845 swp_pager_meta_free(object, beg, start - beg); 846 VM_OBJECT_UNLOCK(object); 847 return (-1); 848 } 849 } 850 } 851 swp_pager_meta_build(object, start, blk); 852 --size; 853 ++start; 854 ++blk; 855 --n; 856 } 857 swp_pager_meta_free(object, start, n); 858 VM_OBJECT_UNLOCK(object); 859 return (0); 860 } 861 862 /* 863 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 864 * and destroy the source. 865 * 866 * Copy any valid swapblks from the source to the destination. In 867 * cases where both the source and destination have a valid swapblk, 868 * we keep the destination's. 869 * 870 * This routine is allowed to sleep. It may sleep allocating metadata 871 * indirectly through swp_pager_meta_build() or if paging is still in 872 * progress on the source. 873 * 874 * The source object contains no vm_page_t's (which is just as well) 875 * 876 * The source object is of type OBJT_SWAP. 877 * 878 * The source and destination objects must be locked. 879 * Both object locks may temporarily be released. 880 */ 881 void 882 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 883 vm_pindex_t offset, int destroysource) 884 { 885 vm_pindex_t i; 886 887 VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED); 888 VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED); 889 890 /* 891 * If destroysource is set, we remove the source object from the 892 * swap_pager internal queue now. 893 */ 894 if (destroysource) { 895 if (srcobject->handle != NULL) { 896 mtx_lock(&sw_alloc_mtx); 897 TAILQ_REMOVE( 898 NOBJLIST(srcobject->handle), 899 srcobject, 900 pager_object_list 901 ); 902 mtx_unlock(&sw_alloc_mtx); 903 } 904 } 905 906 /* 907 * transfer source to destination. 908 */ 909 for (i = 0; i < dstobject->size; ++i) { 910 daddr_t dstaddr; 911 912 /* 913 * Locate (without changing) the swapblk on the destination, 914 * unless it is invalid in which case free it silently, or 915 * if the destination is a resident page, in which case the 916 * source is thrown away. 917 */ 918 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 919 920 if (dstaddr == SWAPBLK_NONE) { 921 /* 922 * Destination has no swapblk and is not resident, 923 * copy source. 924 */ 925 daddr_t srcaddr; 926 927 srcaddr = swp_pager_meta_ctl( 928 srcobject, 929 i + offset, 930 SWM_POP 931 ); 932 933 if (srcaddr != SWAPBLK_NONE) { 934 /* 935 * swp_pager_meta_build() can sleep. 936 */ 937 vm_object_pip_add(srcobject, 1); 938 VM_OBJECT_UNLOCK(srcobject); 939 vm_object_pip_add(dstobject, 1); 940 swp_pager_meta_build(dstobject, i, srcaddr); 941 vm_object_pip_wakeup(dstobject); 942 VM_OBJECT_LOCK(srcobject); 943 vm_object_pip_wakeup(srcobject); 944 } 945 } else { 946 /* 947 * Destination has valid swapblk or it is represented 948 * by a resident page. We destroy the sourceblock. 949 */ 950 951 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 952 } 953 } 954 955 /* 956 * Free left over swap blocks in source. 957 * 958 * We have to revert the type to OBJT_DEFAULT so we do not accidently 959 * double-remove the object from the swap queues. 960 */ 961 if (destroysource) { 962 swp_pager_meta_free_all(srcobject); 963 /* 964 * Reverting the type is not necessary, the caller is going 965 * to destroy srcobject directly, but I'm doing it here 966 * for consistency since we've removed the object from its 967 * queues. 968 */ 969 srcobject->type = OBJT_DEFAULT; 970 } 971 } 972 973 /* 974 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 975 * the requested page. 976 * 977 * We determine whether good backing store exists for the requested 978 * page and return TRUE if it does, FALSE if it doesn't. 979 * 980 * If TRUE, we also try to determine how much valid, contiguous backing 981 * store exists before and after the requested page within a reasonable 982 * distance. We do not try to restrict it to the swap device stripe 983 * (that is handled in getpages/putpages). It probably isn't worth 984 * doing here. 985 */ 986 static boolean_t 987 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 988 { 989 daddr_t blk0; 990 991 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 992 /* 993 * do we have good backing store at the requested index ? 994 */ 995 blk0 = swp_pager_meta_ctl(object, pindex, 0); 996 997 if (blk0 == SWAPBLK_NONE) { 998 if (before) 999 *before = 0; 1000 if (after) 1001 *after = 0; 1002 return (FALSE); 1003 } 1004 1005 /* 1006 * find backwards-looking contiguous good backing store 1007 */ 1008 if (before != NULL) { 1009 int i; 1010 1011 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1012 daddr_t blk; 1013 1014 if (i > pindex) 1015 break; 1016 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1017 if (blk != blk0 - i) 1018 break; 1019 } 1020 *before = (i - 1); 1021 } 1022 1023 /* 1024 * find forward-looking contiguous good backing store 1025 */ 1026 if (after != NULL) { 1027 int i; 1028 1029 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1030 daddr_t blk; 1031 1032 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1033 if (blk != blk0 + i) 1034 break; 1035 } 1036 *after = (i - 1); 1037 } 1038 return (TRUE); 1039 } 1040 1041 /* 1042 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1043 * 1044 * This removes any associated swap backing store, whether valid or 1045 * not, from the page. 1046 * 1047 * This routine is typically called when a page is made dirty, at 1048 * which point any associated swap can be freed. MADV_FREE also 1049 * calls us in a special-case situation 1050 * 1051 * NOTE!!! If the page is clean and the swap was valid, the caller 1052 * should make the page dirty before calling this routine. This routine 1053 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1054 * depends on it. 1055 * 1056 * This routine may not sleep. 1057 */ 1058 static void 1059 swap_pager_unswapped(vm_page_t m) 1060 { 1061 1062 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1063 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1064 } 1065 1066 /* 1067 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1068 * 1069 * Attempt to retrieve (m, count) pages from backing store, but make 1070 * sure we retrieve at least m[reqpage]. We try to load in as large 1071 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1072 * belongs to the same object. 1073 * 1074 * The code is designed for asynchronous operation and 1075 * immediate-notification of 'reqpage' but tends not to be 1076 * used that way. Please do not optimize-out this algorithmic 1077 * feature, I intend to improve on it in the future. 1078 * 1079 * The parent has a single vm_object_pip_add() reference prior to 1080 * calling us and we should return with the same. 1081 * 1082 * The parent has BUSY'd the pages. We should return with 'm' 1083 * left busy, but the others adjusted. 1084 */ 1085 static int 1086 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1087 { 1088 struct buf *bp; 1089 vm_page_t mreq; 1090 int i; 1091 int j; 1092 daddr_t blk; 1093 1094 mreq = m[reqpage]; 1095 1096 KASSERT(mreq->object == object, 1097 ("swap_pager_getpages: object mismatch %p/%p", 1098 object, mreq->object)); 1099 1100 /* 1101 * Calculate range to retrieve. The pages have already been assigned 1102 * their swapblks. We require a *contiguous* range but we know it to 1103 * not span devices. If we do not supply it, bad things 1104 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1105 * loops are set up such that the case(s) are handled implicitly. 1106 * 1107 * The swp_*() calls must be made with the object locked. 1108 */ 1109 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1110 1111 for (i = reqpage - 1; i >= 0; --i) { 1112 daddr_t iblk; 1113 1114 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1115 if (blk != iblk + (reqpage - i)) 1116 break; 1117 } 1118 ++i; 1119 1120 for (j = reqpage + 1; j < count; ++j) { 1121 daddr_t jblk; 1122 1123 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1124 if (blk != jblk - (j - reqpage)) 1125 break; 1126 } 1127 1128 /* 1129 * free pages outside our collection range. Note: we never free 1130 * mreq, it must remain busy throughout. 1131 */ 1132 if (0 < i || j < count) { 1133 int k; 1134 1135 for (k = 0; k < i; ++k) 1136 swp_pager_free_nrpage(m[k]); 1137 for (k = j; k < count; ++k) 1138 swp_pager_free_nrpage(m[k]); 1139 } 1140 1141 /* 1142 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1143 * still busy, but the others unbusied. 1144 */ 1145 if (blk == SWAPBLK_NONE) 1146 return (VM_PAGER_FAIL); 1147 1148 /* 1149 * Getpbuf() can sleep. 1150 */ 1151 VM_OBJECT_UNLOCK(object); 1152 /* 1153 * Get a swap buffer header to perform the IO 1154 */ 1155 bp = getpbuf(&nsw_rcount); 1156 bp->b_flags |= B_PAGING; 1157 1158 /* 1159 * map our page(s) into kva for input 1160 */ 1161 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i); 1162 1163 bp->b_iocmd = BIO_READ; 1164 bp->b_iodone = swp_pager_async_iodone; 1165 bp->b_rcred = crhold(thread0.td_ucred); 1166 bp->b_wcred = crhold(thread0.td_ucred); 1167 bp->b_blkno = blk - (reqpage - i); 1168 bp->b_bcount = PAGE_SIZE * (j - i); 1169 bp->b_bufsize = PAGE_SIZE * (j - i); 1170 bp->b_pager.pg_reqpage = reqpage - i; 1171 1172 VM_OBJECT_LOCK(object); 1173 { 1174 int k; 1175 1176 for (k = i; k < j; ++k) { 1177 bp->b_pages[k - i] = m[k]; 1178 m[k]->oflags |= VPO_SWAPINPROG; 1179 } 1180 } 1181 bp->b_npages = j - i; 1182 1183 PCPU_INC(cnt.v_swapin); 1184 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1185 1186 /* 1187 * We still hold the lock on mreq, and our automatic completion routine 1188 * does not remove it. 1189 */ 1190 vm_object_pip_add(object, bp->b_npages); 1191 VM_OBJECT_UNLOCK(object); 1192 1193 /* 1194 * perform the I/O. NOTE!!! bp cannot be considered valid after 1195 * this point because we automatically release it on completion. 1196 * Instead, we look at the one page we are interested in which we 1197 * still hold a lock on even through the I/O completion. 1198 * 1199 * The other pages in our m[] array are also released on completion, 1200 * so we cannot assume they are valid anymore either. 1201 * 1202 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1203 */ 1204 BUF_KERNPROC(bp); 1205 swp_pager_strategy(bp); 1206 1207 /* 1208 * wait for the page we want to complete. VPO_SWAPINPROG is always 1209 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1210 * is set in the meta-data. 1211 */ 1212 VM_OBJECT_LOCK(object); 1213 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1214 mreq->oflags |= VPO_WANTED; 1215 PCPU_INC(cnt.v_intrans); 1216 if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) { 1217 printf( 1218 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1219 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1220 } 1221 } 1222 1223 /* 1224 * mreq is left busied after completion, but all the other pages 1225 * are freed. If we had an unrecoverable read error the page will 1226 * not be valid. 1227 */ 1228 if (mreq->valid != VM_PAGE_BITS_ALL) { 1229 return (VM_PAGER_ERROR); 1230 } else { 1231 return (VM_PAGER_OK); 1232 } 1233 1234 /* 1235 * A final note: in a low swap situation, we cannot deallocate swap 1236 * and mark a page dirty here because the caller is likely to mark 1237 * the page clean when we return, causing the page to possibly revert 1238 * to all-zero's later. 1239 */ 1240 } 1241 1242 /* 1243 * swap_pager_putpages: 1244 * 1245 * Assign swap (if necessary) and initiate I/O on the specified pages. 1246 * 1247 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1248 * are automatically converted to SWAP objects. 1249 * 1250 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1251 * vm_page reservation system coupled with properly written VFS devices 1252 * should ensure that no low-memory deadlock occurs. This is an area 1253 * which needs work. 1254 * 1255 * The parent has N vm_object_pip_add() references prior to 1256 * calling us and will remove references for rtvals[] that are 1257 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1258 * completion. 1259 * 1260 * The parent has soft-busy'd the pages it passes us and will unbusy 1261 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1262 * We need to unbusy the rest on I/O completion. 1263 */ 1264 void 1265 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1266 boolean_t sync, int *rtvals) 1267 { 1268 int i; 1269 int n = 0; 1270 1271 if (count && m[0]->object != object) { 1272 panic("swap_pager_putpages: object mismatch %p/%p", 1273 object, 1274 m[0]->object 1275 ); 1276 } 1277 1278 /* 1279 * Step 1 1280 * 1281 * Turn object into OBJT_SWAP 1282 * check for bogus sysops 1283 * force sync if not pageout process 1284 */ 1285 if (object->type != OBJT_SWAP) 1286 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1287 VM_OBJECT_UNLOCK(object); 1288 1289 if (curproc != pageproc) 1290 sync = TRUE; 1291 1292 /* 1293 * Step 2 1294 * 1295 * Update nsw parameters from swap_async_max sysctl values. 1296 * Do not let the sysop crash the machine with bogus numbers. 1297 */ 1298 mtx_lock(&pbuf_mtx); 1299 if (swap_async_max != nsw_wcount_async_max) { 1300 int n; 1301 1302 /* 1303 * limit range 1304 */ 1305 if ((n = swap_async_max) > nswbuf / 2) 1306 n = nswbuf / 2; 1307 if (n < 1) 1308 n = 1; 1309 swap_async_max = n; 1310 1311 /* 1312 * Adjust difference ( if possible ). If the current async 1313 * count is too low, we may not be able to make the adjustment 1314 * at this time. 1315 */ 1316 n -= nsw_wcount_async_max; 1317 if (nsw_wcount_async + n >= 0) { 1318 nsw_wcount_async += n; 1319 nsw_wcount_async_max += n; 1320 wakeup(&nsw_wcount_async); 1321 } 1322 } 1323 mtx_unlock(&pbuf_mtx); 1324 1325 /* 1326 * Step 3 1327 * 1328 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1329 * The page is left dirty until the pageout operation completes 1330 * successfully. 1331 */ 1332 for (i = 0; i < count; i += n) { 1333 int j; 1334 struct buf *bp; 1335 daddr_t blk; 1336 1337 /* 1338 * Maximum I/O size is limited by a number of factors. 1339 */ 1340 n = min(BLIST_MAX_ALLOC, count - i); 1341 n = min(n, nsw_cluster_max); 1342 1343 /* 1344 * Get biggest block of swap we can. If we fail, fall 1345 * back and try to allocate a smaller block. Don't go 1346 * overboard trying to allocate space if it would overly 1347 * fragment swap. 1348 */ 1349 while ( 1350 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1351 n > 4 1352 ) { 1353 n >>= 1; 1354 } 1355 if (blk == SWAPBLK_NONE) { 1356 for (j = 0; j < n; ++j) 1357 rtvals[i+j] = VM_PAGER_FAIL; 1358 continue; 1359 } 1360 1361 /* 1362 * All I/O parameters have been satisfied, build the I/O 1363 * request and assign the swap space. 1364 */ 1365 if (sync == TRUE) { 1366 bp = getpbuf(&nsw_wcount_sync); 1367 } else { 1368 bp = getpbuf(&nsw_wcount_async); 1369 bp->b_flags = B_ASYNC; 1370 } 1371 bp->b_flags |= B_PAGING; 1372 bp->b_iocmd = BIO_WRITE; 1373 1374 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1375 1376 bp->b_rcred = crhold(thread0.td_ucred); 1377 bp->b_wcred = crhold(thread0.td_ucred); 1378 bp->b_bcount = PAGE_SIZE * n; 1379 bp->b_bufsize = PAGE_SIZE * n; 1380 bp->b_blkno = blk; 1381 1382 VM_OBJECT_LOCK(object); 1383 for (j = 0; j < n; ++j) { 1384 vm_page_t mreq = m[i+j]; 1385 1386 swp_pager_meta_build( 1387 mreq->object, 1388 mreq->pindex, 1389 blk + j 1390 ); 1391 vm_page_dirty(mreq); 1392 rtvals[i+j] = VM_PAGER_OK; 1393 1394 mreq->oflags |= VPO_SWAPINPROG; 1395 bp->b_pages[j] = mreq; 1396 } 1397 VM_OBJECT_UNLOCK(object); 1398 bp->b_npages = n; 1399 /* 1400 * Must set dirty range for NFS to work. 1401 */ 1402 bp->b_dirtyoff = 0; 1403 bp->b_dirtyend = bp->b_bcount; 1404 1405 PCPU_INC(cnt.v_swapout); 1406 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1407 1408 /* 1409 * asynchronous 1410 * 1411 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1412 */ 1413 if (sync == FALSE) { 1414 bp->b_iodone = swp_pager_async_iodone; 1415 BUF_KERNPROC(bp); 1416 swp_pager_strategy(bp); 1417 1418 for (j = 0; j < n; ++j) 1419 rtvals[i+j] = VM_PAGER_PEND; 1420 /* restart outter loop */ 1421 continue; 1422 } 1423 1424 /* 1425 * synchronous 1426 * 1427 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1428 */ 1429 bp->b_iodone = bdone; 1430 swp_pager_strategy(bp); 1431 1432 /* 1433 * Wait for the sync I/O to complete, then update rtvals. 1434 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1435 * our async completion routine at the end, thus avoiding a 1436 * double-free. 1437 */ 1438 bwait(bp, PVM, "swwrt"); 1439 for (j = 0; j < n; ++j) 1440 rtvals[i+j] = VM_PAGER_PEND; 1441 /* 1442 * Now that we are through with the bp, we can call the 1443 * normal async completion, which frees everything up. 1444 */ 1445 swp_pager_async_iodone(bp); 1446 } 1447 VM_OBJECT_LOCK(object); 1448 } 1449 1450 /* 1451 * swp_pager_async_iodone: 1452 * 1453 * Completion routine for asynchronous reads and writes from/to swap. 1454 * Also called manually by synchronous code to finish up a bp. 1455 * 1456 * For READ operations, the pages are VPO_BUSY'd. For WRITE operations, 1457 * the pages are vm_page_t->busy'd. For READ operations, we VPO_BUSY 1458 * unbusy all pages except the 'main' request page. For WRITE 1459 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1460 * because we marked them all VM_PAGER_PEND on return from putpages ). 1461 * 1462 * This routine may not sleep. 1463 */ 1464 static void 1465 swp_pager_async_iodone(struct buf *bp) 1466 { 1467 int i; 1468 vm_object_t object = NULL; 1469 1470 /* 1471 * report error 1472 */ 1473 if (bp->b_ioflags & BIO_ERROR) { 1474 printf( 1475 "swap_pager: I/O error - %s failed; blkno %ld," 1476 "size %ld, error %d\n", 1477 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1478 (long)bp->b_blkno, 1479 (long)bp->b_bcount, 1480 bp->b_error 1481 ); 1482 } 1483 1484 /* 1485 * remove the mapping for kernel virtual 1486 */ 1487 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1488 1489 if (bp->b_npages) { 1490 object = bp->b_pages[0]->object; 1491 VM_OBJECT_LOCK(object); 1492 } 1493 1494 /* 1495 * cleanup pages. If an error occurs writing to swap, we are in 1496 * very serious trouble. If it happens to be a disk error, though, 1497 * we may be able to recover by reassigning the swap later on. So 1498 * in this case we remove the m->swapblk assignment for the page 1499 * but do not free it in the rlist. The errornous block(s) are thus 1500 * never reallocated as swap. Redirty the page and continue. 1501 */ 1502 for (i = 0; i < bp->b_npages; ++i) { 1503 vm_page_t m = bp->b_pages[i]; 1504 1505 m->oflags &= ~VPO_SWAPINPROG; 1506 1507 if (bp->b_ioflags & BIO_ERROR) { 1508 /* 1509 * If an error occurs I'd love to throw the swapblk 1510 * away without freeing it back to swapspace, so it 1511 * can never be used again. But I can't from an 1512 * interrupt. 1513 */ 1514 if (bp->b_iocmd == BIO_READ) { 1515 /* 1516 * When reading, reqpage needs to stay 1517 * locked for the parent, but all other 1518 * pages can be freed. We still want to 1519 * wakeup the parent waiting on the page, 1520 * though. ( also: pg_reqpage can be -1 and 1521 * not match anything ). 1522 * 1523 * We have to wake specifically requested pages 1524 * up too because we cleared VPO_SWAPINPROG and 1525 * someone may be waiting for that. 1526 * 1527 * NOTE: for reads, m->dirty will probably 1528 * be overridden by the original caller of 1529 * getpages so don't play cute tricks here. 1530 */ 1531 m->valid = 0; 1532 if (i != bp->b_pager.pg_reqpage) 1533 swp_pager_free_nrpage(m); 1534 else 1535 vm_page_flash(m); 1536 /* 1537 * If i == bp->b_pager.pg_reqpage, do not wake 1538 * the page up. The caller needs to. 1539 */ 1540 } else { 1541 /* 1542 * If a write error occurs, reactivate page 1543 * so it doesn't clog the inactive list, 1544 * then finish the I/O. 1545 */ 1546 vm_page_dirty(m); 1547 vm_page_lock(m); 1548 vm_page_activate(m); 1549 vm_page_unlock(m); 1550 vm_page_io_finish(m); 1551 } 1552 } else if (bp->b_iocmd == BIO_READ) { 1553 /* 1554 * NOTE: for reads, m->dirty will probably be 1555 * overridden by the original caller of getpages so 1556 * we cannot set them in order to free the underlying 1557 * swap in a low-swap situation. I don't think we'd 1558 * want to do that anyway, but it was an optimization 1559 * that existed in the old swapper for a time before 1560 * it got ripped out due to precisely this problem. 1561 * 1562 * If not the requested page then deactivate it. 1563 * 1564 * Note that the requested page, reqpage, is left 1565 * busied, but we still have to wake it up. The 1566 * other pages are released (unbusied) by 1567 * vm_page_wakeup(). 1568 */ 1569 KASSERT(!pmap_page_is_mapped(m), 1570 ("swp_pager_async_iodone: page %p is mapped", m)); 1571 m->valid = VM_PAGE_BITS_ALL; 1572 KASSERT(m->dirty == 0, 1573 ("swp_pager_async_iodone: page %p is dirty", m)); 1574 1575 /* 1576 * We have to wake specifically requested pages 1577 * up too because we cleared VPO_SWAPINPROG and 1578 * could be waiting for it in getpages. However, 1579 * be sure to not unbusy getpages specifically 1580 * requested page - getpages expects it to be 1581 * left busy. 1582 */ 1583 if (i != bp->b_pager.pg_reqpage) { 1584 vm_page_lock(m); 1585 vm_page_deactivate(m); 1586 vm_page_unlock(m); 1587 vm_page_wakeup(m); 1588 } else 1589 vm_page_flash(m); 1590 } else { 1591 /* 1592 * For write success, clear the dirty 1593 * status, then finish the I/O ( which decrements the 1594 * busy count and possibly wakes waiter's up ). 1595 */ 1596 KASSERT((m->aflags & PGA_WRITEABLE) == 0, 1597 ("swp_pager_async_iodone: page %p is not write" 1598 " protected", m)); 1599 vm_page_undirty(m); 1600 vm_page_io_finish(m); 1601 if (vm_page_count_severe()) { 1602 vm_page_lock(m); 1603 vm_page_try_to_cache(m); 1604 vm_page_unlock(m); 1605 } 1606 } 1607 } 1608 1609 /* 1610 * adjust pip. NOTE: the original parent may still have its own 1611 * pip refs on the object. 1612 */ 1613 if (object != NULL) { 1614 vm_object_pip_wakeupn(object, bp->b_npages); 1615 VM_OBJECT_UNLOCK(object); 1616 } 1617 1618 /* 1619 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1620 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1621 * trigger a KASSERT in relpbuf(). 1622 */ 1623 if (bp->b_vp) { 1624 bp->b_vp = NULL; 1625 bp->b_bufobj = NULL; 1626 } 1627 /* 1628 * release the physical I/O buffer 1629 */ 1630 relpbuf( 1631 bp, 1632 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1633 ((bp->b_flags & B_ASYNC) ? 1634 &nsw_wcount_async : 1635 &nsw_wcount_sync 1636 ) 1637 ) 1638 ); 1639 } 1640 1641 /* 1642 * swap_pager_isswapped: 1643 * 1644 * Return 1 if at least one page in the given object is paged 1645 * out to the given swap device. 1646 * 1647 * This routine may not sleep. 1648 */ 1649 int 1650 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1651 { 1652 daddr_t index = 0; 1653 int bcount; 1654 int i; 1655 1656 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1657 if (object->type != OBJT_SWAP) 1658 return (0); 1659 1660 mtx_lock(&swhash_mtx); 1661 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1662 struct swblock *swap; 1663 1664 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1665 for (i = 0; i < SWAP_META_PAGES; ++i) { 1666 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1667 mtx_unlock(&swhash_mtx); 1668 return (1); 1669 } 1670 } 1671 } 1672 index += SWAP_META_PAGES; 1673 } 1674 mtx_unlock(&swhash_mtx); 1675 return (0); 1676 } 1677 1678 /* 1679 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1680 * 1681 * This routine dissociates the page at the given index within a 1682 * swap block from its backing store, paging it in if necessary. 1683 * If the page is paged in, it is placed in the inactive queue, 1684 * since it had its backing store ripped out from under it. 1685 * We also attempt to swap in all other pages in the swap block, 1686 * we only guarantee that the one at the specified index is 1687 * paged in. 1688 * 1689 * XXX - The code to page the whole block in doesn't work, so we 1690 * revert to the one-by-one behavior for now. Sigh. 1691 */ 1692 static inline void 1693 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1694 { 1695 vm_page_t m; 1696 1697 vm_object_pip_add(object, 1); 1698 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1699 if (m->valid == VM_PAGE_BITS_ALL) { 1700 vm_object_pip_subtract(object, 1); 1701 vm_page_dirty(m); 1702 vm_page_lock(m); 1703 vm_page_activate(m); 1704 vm_page_unlock(m); 1705 vm_page_wakeup(m); 1706 vm_pager_page_unswapped(m); 1707 return; 1708 } 1709 1710 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1711 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1712 vm_object_pip_subtract(object, 1); 1713 vm_page_dirty(m); 1714 vm_page_lock(m); 1715 vm_page_deactivate(m); 1716 vm_page_unlock(m); 1717 vm_page_wakeup(m); 1718 vm_pager_page_unswapped(m); 1719 } 1720 1721 /* 1722 * swap_pager_swapoff: 1723 * 1724 * Page in all of the pages that have been paged out to the 1725 * given device. The corresponding blocks in the bitmap must be 1726 * marked as allocated and the device must be flagged SW_CLOSING. 1727 * There may be no processes swapped out to the device. 1728 * 1729 * This routine may block. 1730 */ 1731 static void 1732 swap_pager_swapoff(struct swdevt *sp) 1733 { 1734 struct swblock *swap; 1735 int i, j, retries; 1736 1737 GIANT_REQUIRED; 1738 1739 retries = 0; 1740 full_rescan: 1741 mtx_lock(&swhash_mtx); 1742 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1743 restart: 1744 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1745 vm_object_t object = swap->swb_object; 1746 vm_pindex_t pindex = swap->swb_index; 1747 for (j = 0; j < SWAP_META_PAGES; ++j) { 1748 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1749 /* avoid deadlock */ 1750 if (!VM_OBJECT_TRYLOCK(object)) { 1751 break; 1752 } else { 1753 mtx_unlock(&swhash_mtx); 1754 swp_pager_force_pagein(object, 1755 pindex + j); 1756 VM_OBJECT_UNLOCK(object); 1757 mtx_lock(&swhash_mtx); 1758 goto restart; 1759 } 1760 } 1761 } 1762 } 1763 } 1764 mtx_unlock(&swhash_mtx); 1765 if (sp->sw_used) { 1766 /* 1767 * Objects may be locked or paging to the device being 1768 * removed, so we will miss their pages and need to 1769 * make another pass. We have marked this device as 1770 * SW_CLOSING, so the activity should finish soon. 1771 */ 1772 retries++; 1773 if (retries > 100) { 1774 panic("swapoff: failed to locate %d swap blocks", 1775 sp->sw_used); 1776 } 1777 pause("swpoff", hz / 20); 1778 goto full_rescan; 1779 } 1780 } 1781 1782 /************************************************************************ 1783 * SWAP META DATA * 1784 ************************************************************************ 1785 * 1786 * These routines manipulate the swap metadata stored in the 1787 * OBJT_SWAP object. 1788 * 1789 * Swap metadata is implemented with a global hash and not directly 1790 * linked into the object. Instead the object simply contains 1791 * appropriate tracking counters. 1792 */ 1793 1794 /* 1795 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1796 * 1797 * We first convert the object to a swap object if it is a default 1798 * object. 1799 * 1800 * The specified swapblk is added to the object's swap metadata. If 1801 * the swapblk is not valid, it is freed instead. Any previously 1802 * assigned swapblk is freed. 1803 */ 1804 static void 1805 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1806 { 1807 struct swblock *swap; 1808 struct swblock **pswap; 1809 int idx; 1810 1811 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1812 /* 1813 * Convert default object to swap object if necessary 1814 */ 1815 if (object->type != OBJT_SWAP) { 1816 object->type = OBJT_SWAP; 1817 object->un_pager.swp.swp_bcount = 0; 1818 1819 if (object->handle != NULL) { 1820 mtx_lock(&sw_alloc_mtx); 1821 TAILQ_INSERT_TAIL( 1822 NOBJLIST(object->handle), 1823 object, 1824 pager_object_list 1825 ); 1826 mtx_unlock(&sw_alloc_mtx); 1827 } 1828 } 1829 1830 /* 1831 * Locate hash entry. If not found create, but if we aren't adding 1832 * anything just return. If we run out of space in the map we wait 1833 * and, since the hash table may have changed, retry. 1834 */ 1835 retry: 1836 mtx_lock(&swhash_mtx); 1837 pswap = swp_pager_hash(object, pindex); 1838 1839 if ((swap = *pswap) == NULL) { 1840 int i; 1841 1842 if (swapblk == SWAPBLK_NONE) 1843 goto done; 1844 1845 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1846 if (swap == NULL) { 1847 mtx_unlock(&swhash_mtx); 1848 VM_OBJECT_UNLOCK(object); 1849 if (uma_zone_exhausted(swap_zone)) { 1850 printf("swap zone exhausted, increase kern.maxswzone\n"); 1851 vm_pageout_oom(VM_OOM_SWAPZ); 1852 pause("swzonex", 10); 1853 } else 1854 VM_WAIT; 1855 VM_OBJECT_LOCK(object); 1856 goto retry; 1857 } 1858 1859 swap->swb_hnext = NULL; 1860 swap->swb_object = object; 1861 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1862 swap->swb_count = 0; 1863 1864 ++object->un_pager.swp.swp_bcount; 1865 1866 for (i = 0; i < SWAP_META_PAGES; ++i) 1867 swap->swb_pages[i] = SWAPBLK_NONE; 1868 } 1869 1870 /* 1871 * Delete prior contents of metadata 1872 */ 1873 idx = pindex & SWAP_META_MASK; 1874 1875 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1876 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1877 --swap->swb_count; 1878 } 1879 1880 /* 1881 * Enter block into metadata 1882 */ 1883 swap->swb_pages[idx] = swapblk; 1884 if (swapblk != SWAPBLK_NONE) 1885 ++swap->swb_count; 1886 done: 1887 mtx_unlock(&swhash_mtx); 1888 } 1889 1890 /* 1891 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1892 * 1893 * The requested range of blocks is freed, with any associated swap 1894 * returned to the swap bitmap. 1895 * 1896 * This routine will free swap metadata structures as they are cleaned 1897 * out. This routine does *NOT* operate on swap metadata associated 1898 * with resident pages. 1899 */ 1900 static void 1901 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1902 { 1903 1904 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1905 if (object->type != OBJT_SWAP) 1906 return; 1907 1908 while (count > 0) { 1909 struct swblock **pswap; 1910 struct swblock *swap; 1911 1912 mtx_lock(&swhash_mtx); 1913 pswap = swp_pager_hash(object, index); 1914 1915 if ((swap = *pswap) != NULL) { 1916 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1917 1918 if (v != SWAPBLK_NONE) { 1919 swp_pager_freeswapspace(v, 1); 1920 swap->swb_pages[index & SWAP_META_MASK] = 1921 SWAPBLK_NONE; 1922 if (--swap->swb_count == 0) { 1923 *pswap = swap->swb_hnext; 1924 uma_zfree(swap_zone, swap); 1925 --object->un_pager.swp.swp_bcount; 1926 } 1927 } 1928 --count; 1929 ++index; 1930 } else { 1931 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1932 count -= n; 1933 index += n; 1934 } 1935 mtx_unlock(&swhash_mtx); 1936 } 1937 } 1938 1939 /* 1940 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1941 * 1942 * This routine locates and destroys all swap metadata associated with 1943 * an object. 1944 */ 1945 static void 1946 swp_pager_meta_free_all(vm_object_t object) 1947 { 1948 daddr_t index = 0; 1949 1950 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1951 if (object->type != OBJT_SWAP) 1952 return; 1953 1954 while (object->un_pager.swp.swp_bcount) { 1955 struct swblock **pswap; 1956 struct swblock *swap; 1957 1958 mtx_lock(&swhash_mtx); 1959 pswap = swp_pager_hash(object, index); 1960 if ((swap = *pswap) != NULL) { 1961 int i; 1962 1963 for (i = 0; i < SWAP_META_PAGES; ++i) { 1964 daddr_t v = swap->swb_pages[i]; 1965 if (v != SWAPBLK_NONE) { 1966 --swap->swb_count; 1967 swp_pager_freeswapspace(v, 1); 1968 } 1969 } 1970 if (swap->swb_count != 0) 1971 panic("swap_pager_meta_free_all: swb_count != 0"); 1972 *pswap = swap->swb_hnext; 1973 uma_zfree(swap_zone, swap); 1974 --object->un_pager.swp.swp_bcount; 1975 } 1976 mtx_unlock(&swhash_mtx); 1977 index += SWAP_META_PAGES; 1978 } 1979 } 1980 1981 /* 1982 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1983 * 1984 * This routine is capable of looking up, popping, or freeing 1985 * swapblk assignments in the swap meta data or in the vm_page_t. 1986 * The routine typically returns the swapblk being looked-up, or popped, 1987 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1988 * was invalid. This routine will automatically free any invalid 1989 * meta-data swapblks. 1990 * 1991 * It is not possible to store invalid swapblks in the swap meta data 1992 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1993 * 1994 * When acting on a busy resident page and paging is in progress, we 1995 * have to wait until paging is complete but otherwise can act on the 1996 * busy page. 1997 * 1998 * SWM_FREE remove and free swap block from metadata 1999 * SWM_POP remove from meta data but do not free.. pop it out 2000 */ 2001 static daddr_t 2002 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2003 { 2004 struct swblock **pswap; 2005 struct swblock *swap; 2006 daddr_t r1; 2007 int idx; 2008 2009 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2010 /* 2011 * The meta data only exists of the object is OBJT_SWAP 2012 * and even then might not be allocated yet. 2013 */ 2014 if (object->type != OBJT_SWAP) 2015 return (SWAPBLK_NONE); 2016 2017 r1 = SWAPBLK_NONE; 2018 mtx_lock(&swhash_mtx); 2019 pswap = swp_pager_hash(object, pindex); 2020 2021 if ((swap = *pswap) != NULL) { 2022 idx = pindex & SWAP_META_MASK; 2023 r1 = swap->swb_pages[idx]; 2024 2025 if (r1 != SWAPBLK_NONE) { 2026 if (flags & SWM_FREE) { 2027 swp_pager_freeswapspace(r1, 1); 2028 r1 = SWAPBLK_NONE; 2029 } 2030 if (flags & (SWM_FREE|SWM_POP)) { 2031 swap->swb_pages[idx] = SWAPBLK_NONE; 2032 if (--swap->swb_count == 0) { 2033 *pswap = swap->swb_hnext; 2034 uma_zfree(swap_zone, swap); 2035 --object->un_pager.swp.swp_bcount; 2036 } 2037 } 2038 } 2039 } 2040 mtx_unlock(&swhash_mtx); 2041 return (r1); 2042 } 2043 2044 /* 2045 * System call swapon(name) enables swapping on device name, 2046 * which must be in the swdevsw. Return EBUSY 2047 * if already swapping on this device. 2048 */ 2049 #ifndef _SYS_SYSPROTO_H_ 2050 struct swapon_args { 2051 char *name; 2052 }; 2053 #endif 2054 2055 /* 2056 * MPSAFE 2057 */ 2058 /* ARGSUSED */ 2059 int 2060 sys_swapon(struct thread *td, struct swapon_args *uap) 2061 { 2062 struct vattr attr; 2063 struct vnode *vp; 2064 struct nameidata nd; 2065 int error; 2066 2067 error = priv_check(td, PRIV_SWAPON); 2068 if (error) 2069 return (error); 2070 2071 mtx_lock(&Giant); 2072 while (swdev_syscall_active) 2073 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2074 swdev_syscall_active = 1; 2075 2076 /* 2077 * Swap metadata may not fit in the KVM if we have physical 2078 * memory of >1GB. 2079 */ 2080 if (swap_zone == NULL) { 2081 error = ENOMEM; 2082 goto done; 2083 } 2084 2085 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2086 uap->name, td); 2087 error = namei(&nd); 2088 if (error) 2089 goto done; 2090 2091 NDFREE(&nd, NDF_ONLY_PNBUF); 2092 vp = nd.ni_vp; 2093 2094 if (vn_isdisk(vp, &error)) { 2095 error = swapongeom(td, vp); 2096 } else if (vp->v_type == VREG && 2097 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2098 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2099 /* 2100 * Allow direct swapping to NFS regular files in the same 2101 * way that nfs_mountroot() sets up diskless swapping. 2102 */ 2103 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2104 } 2105 2106 if (error) 2107 vrele(vp); 2108 done: 2109 swdev_syscall_active = 0; 2110 wakeup_one(&swdev_syscall_active); 2111 mtx_unlock(&Giant); 2112 return (error); 2113 } 2114 2115 static void 2116 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev) 2117 { 2118 struct swdevt *sp, *tsp; 2119 swblk_t dvbase; 2120 u_long mblocks; 2121 2122 /* 2123 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2124 * First chop nblks off to page-align it, then convert. 2125 * 2126 * sw->sw_nblks is in page-sized chunks now too. 2127 */ 2128 nblks &= ~(ctodb(1) - 1); 2129 nblks = dbtoc(nblks); 2130 2131 /* 2132 * If we go beyond this, we get overflows in the radix 2133 * tree bitmap code. 2134 */ 2135 mblocks = 0x40000000 / BLIST_META_RADIX; 2136 if (nblks > mblocks) { 2137 printf( 2138 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2139 mblocks / 1024 / 1024 * PAGE_SIZE); 2140 nblks = mblocks; 2141 } 2142 2143 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2144 sp->sw_vp = vp; 2145 sp->sw_id = id; 2146 sp->sw_dev = dev; 2147 sp->sw_flags = 0; 2148 sp->sw_nblks = nblks; 2149 sp->sw_used = 0; 2150 sp->sw_strategy = strategy; 2151 sp->sw_close = close; 2152 2153 sp->sw_blist = blist_create(nblks, M_WAITOK); 2154 /* 2155 * Do not free the first two block in order to avoid overwriting 2156 * any bsd label at the front of the partition 2157 */ 2158 blist_free(sp->sw_blist, 2, nblks - 2); 2159 2160 dvbase = 0; 2161 mtx_lock(&sw_dev_mtx); 2162 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2163 if (tsp->sw_end >= dvbase) { 2164 /* 2165 * We put one uncovered page between the devices 2166 * in order to definitively prevent any cross-device 2167 * I/O requests 2168 */ 2169 dvbase = tsp->sw_end + 1; 2170 } 2171 } 2172 sp->sw_first = dvbase; 2173 sp->sw_end = dvbase + nblks; 2174 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2175 nswapdev++; 2176 swap_pager_avail += nblks; 2177 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2178 swp_sizecheck(); 2179 mtx_unlock(&sw_dev_mtx); 2180 } 2181 2182 /* 2183 * SYSCALL: swapoff(devname) 2184 * 2185 * Disable swapping on the given device. 2186 * 2187 * XXX: Badly designed system call: it should use a device index 2188 * rather than filename as specification. We keep sw_vp around 2189 * only to make this work. 2190 */ 2191 #ifndef _SYS_SYSPROTO_H_ 2192 struct swapoff_args { 2193 char *name; 2194 }; 2195 #endif 2196 2197 /* 2198 * MPSAFE 2199 */ 2200 /* ARGSUSED */ 2201 int 2202 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2203 { 2204 struct vnode *vp; 2205 struct nameidata nd; 2206 struct swdevt *sp; 2207 int error; 2208 2209 error = priv_check(td, PRIV_SWAPOFF); 2210 if (error) 2211 return (error); 2212 2213 mtx_lock(&Giant); 2214 while (swdev_syscall_active) 2215 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2216 swdev_syscall_active = 1; 2217 2218 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2219 td); 2220 error = namei(&nd); 2221 if (error) 2222 goto done; 2223 NDFREE(&nd, NDF_ONLY_PNBUF); 2224 vp = nd.ni_vp; 2225 2226 mtx_lock(&sw_dev_mtx); 2227 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2228 if (sp->sw_vp == vp) 2229 break; 2230 } 2231 mtx_unlock(&sw_dev_mtx); 2232 if (sp == NULL) { 2233 error = EINVAL; 2234 goto done; 2235 } 2236 error = swapoff_one(sp, td->td_ucred); 2237 done: 2238 swdev_syscall_active = 0; 2239 wakeup_one(&swdev_syscall_active); 2240 mtx_unlock(&Giant); 2241 return (error); 2242 } 2243 2244 static int 2245 swapoff_one(struct swdevt *sp, struct ucred *cred) 2246 { 2247 u_long nblks, dvbase; 2248 #ifdef MAC 2249 int error; 2250 #endif 2251 2252 mtx_assert(&Giant, MA_OWNED); 2253 #ifdef MAC 2254 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2255 error = mac_system_check_swapoff(cred, sp->sw_vp); 2256 (void) VOP_UNLOCK(sp->sw_vp, 0); 2257 if (error != 0) 2258 return (error); 2259 #endif 2260 nblks = sp->sw_nblks; 2261 2262 /* 2263 * We can turn off this swap device safely only if the 2264 * available virtual memory in the system will fit the amount 2265 * of data we will have to page back in, plus an epsilon so 2266 * the system doesn't become critically low on swap space. 2267 */ 2268 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2269 nblks + nswap_lowat) { 2270 return (ENOMEM); 2271 } 2272 2273 /* 2274 * Prevent further allocations on this device. 2275 */ 2276 mtx_lock(&sw_dev_mtx); 2277 sp->sw_flags |= SW_CLOSING; 2278 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2279 swap_pager_avail -= blist_fill(sp->sw_blist, 2280 dvbase, dmmax); 2281 } 2282 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2283 mtx_unlock(&sw_dev_mtx); 2284 2285 /* 2286 * Page in the contents of the device and close it. 2287 */ 2288 swap_pager_swapoff(sp); 2289 2290 sp->sw_close(curthread, sp); 2291 sp->sw_id = NULL; 2292 mtx_lock(&sw_dev_mtx); 2293 TAILQ_REMOVE(&swtailq, sp, sw_list); 2294 nswapdev--; 2295 if (nswapdev == 0) { 2296 swap_pager_full = 2; 2297 swap_pager_almost_full = 1; 2298 } 2299 if (swdevhd == sp) 2300 swdevhd = NULL; 2301 mtx_unlock(&sw_dev_mtx); 2302 blist_destroy(sp->sw_blist); 2303 free(sp, M_VMPGDATA); 2304 return (0); 2305 } 2306 2307 void 2308 swapoff_all(void) 2309 { 2310 struct swdevt *sp, *spt; 2311 const char *devname; 2312 int error; 2313 2314 mtx_lock(&Giant); 2315 while (swdev_syscall_active) 2316 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2317 swdev_syscall_active = 1; 2318 2319 mtx_lock(&sw_dev_mtx); 2320 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2321 mtx_unlock(&sw_dev_mtx); 2322 if (vn_isdisk(sp->sw_vp, NULL)) 2323 devname = sp->sw_vp->v_rdev->si_name; 2324 else 2325 devname = "[file]"; 2326 error = swapoff_one(sp, thread0.td_ucred); 2327 if (error != 0) { 2328 printf("Cannot remove swap device %s (error=%d), " 2329 "skipping.\n", devname, error); 2330 } else if (bootverbose) { 2331 printf("Swap device %s removed.\n", devname); 2332 } 2333 mtx_lock(&sw_dev_mtx); 2334 } 2335 mtx_unlock(&sw_dev_mtx); 2336 2337 swdev_syscall_active = 0; 2338 wakeup_one(&swdev_syscall_active); 2339 mtx_unlock(&Giant); 2340 } 2341 2342 void 2343 swap_pager_status(int *total, int *used) 2344 { 2345 struct swdevt *sp; 2346 2347 *total = 0; 2348 *used = 0; 2349 mtx_lock(&sw_dev_mtx); 2350 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2351 *total += sp->sw_nblks; 2352 *used += sp->sw_used; 2353 } 2354 mtx_unlock(&sw_dev_mtx); 2355 } 2356 2357 int 2358 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2359 { 2360 struct swdevt *sp; 2361 char *tmp_devname; 2362 int error, n; 2363 2364 n = 0; 2365 error = ENOENT; 2366 mtx_lock(&sw_dev_mtx); 2367 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2368 if (n != name) { 2369 n++; 2370 continue; 2371 } 2372 xs->xsw_version = XSWDEV_VERSION; 2373 xs->xsw_dev = sp->sw_dev; 2374 xs->xsw_flags = sp->sw_flags; 2375 xs->xsw_nblks = sp->sw_nblks; 2376 xs->xsw_used = sp->sw_used; 2377 if (devname != NULL) { 2378 if (vn_isdisk(sp->sw_vp, NULL)) 2379 tmp_devname = sp->sw_vp->v_rdev->si_name; 2380 else 2381 tmp_devname = "[file]"; 2382 strncpy(devname, tmp_devname, len); 2383 } 2384 error = 0; 2385 break; 2386 } 2387 mtx_unlock(&sw_dev_mtx); 2388 return (error); 2389 } 2390 2391 static int 2392 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2393 { 2394 struct xswdev xs; 2395 int error; 2396 2397 if (arg2 != 1) /* name length */ 2398 return (EINVAL); 2399 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2400 if (error != 0) 2401 return (error); 2402 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2403 return (error); 2404 } 2405 2406 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2407 "Number of swap devices"); 2408 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2409 "Swap statistics by device"); 2410 2411 /* 2412 * vmspace_swap_count() - count the approximate swap usage in pages for a 2413 * vmspace. 2414 * 2415 * The map must be locked. 2416 * 2417 * Swap usage is determined by taking the proportional swap used by 2418 * VM objects backing the VM map. To make up for fractional losses, 2419 * if the VM object has any swap use at all the associated map entries 2420 * count for at least 1 swap page. 2421 */ 2422 long 2423 vmspace_swap_count(struct vmspace *vmspace) 2424 { 2425 vm_map_t map; 2426 vm_map_entry_t cur; 2427 vm_object_t object; 2428 long count, n; 2429 2430 map = &vmspace->vm_map; 2431 count = 0; 2432 2433 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2434 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2435 (object = cur->object.vm_object) != NULL) { 2436 VM_OBJECT_LOCK(object); 2437 if (object->type == OBJT_SWAP && 2438 object->un_pager.swp.swp_bcount != 0) { 2439 n = (cur->end - cur->start) / PAGE_SIZE; 2440 count += object->un_pager.swp.swp_bcount * 2441 SWAP_META_PAGES * n / object->size + 1; 2442 } 2443 VM_OBJECT_UNLOCK(object); 2444 } 2445 } 2446 return (count); 2447 } 2448 2449 /* 2450 * GEOM backend 2451 * 2452 * Swapping onto disk devices. 2453 * 2454 */ 2455 2456 static g_orphan_t swapgeom_orphan; 2457 2458 static struct g_class g_swap_class = { 2459 .name = "SWAP", 2460 .version = G_VERSION, 2461 .orphan = swapgeom_orphan, 2462 }; 2463 2464 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2465 2466 2467 static void 2468 swapgeom_done(struct bio *bp2) 2469 { 2470 struct buf *bp; 2471 2472 bp = bp2->bio_caller2; 2473 bp->b_ioflags = bp2->bio_flags; 2474 if (bp2->bio_error) 2475 bp->b_ioflags |= BIO_ERROR; 2476 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2477 bp->b_error = bp2->bio_error; 2478 bufdone(bp); 2479 g_destroy_bio(bp2); 2480 } 2481 2482 static void 2483 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2484 { 2485 struct bio *bio; 2486 struct g_consumer *cp; 2487 2488 cp = sp->sw_id; 2489 if (cp == NULL) { 2490 bp->b_error = ENXIO; 2491 bp->b_ioflags |= BIO_ERROR; 2492 bufdone(bp); 2493 return; 2494 } 2495 if (bp->b_iocmd == BIO_WRITE) 2496 bio = g_new_bio(); 2497 else 2498 bio = g_alloc_bio(); 2499 if (bio == NULL) { 2500 bp->b_error = ENOMEM; 2501 bp->b_ioflags |= BIO_ERROR; 2502 bufdone(bp); 2503 return; 2504 } 2505 2506 bio->bio_caller2 = bp; 2507 bio->bio_cmd = bp->b_iocmd; 2508 bio->bio_data = bp->b_data; 2509 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2510 bio->bio_length = bp->b_bcount; 2511 bio->bio_done = swapgeom_done; 2512 g_io_request(bio, cp); 2513 return; 2514 } 2515 2516 static void 2517 swapgeom_orphan(struct g_consumer *cp) 2518 { 2519 struct swdevt *sp; 2520 2521 mtx_lock(&sw_dev_mtx); 2522 TAILQ_FOREACH(sp, &swtailq, sw_list) 2523 if (sp->sw_id == cp) 2524 sp->sw_flags |= SW_CLOSING; 2525 mtx_unlock(&sw_dev_mtx); 2526 } 2527 2528 static void 2529 swapgeom_close_ev(void *arg, int flags) 2530 { 2531 struct g_consumer *cp; 2532 2533 cp = arg; 2534 g_access(cp, -1, -1, 0); 2535 g_detach(cp); 2536 g_destroy_consumer(cp); 2537 } 2538 2539 static void 2540 swapgeom_close(struct thread *td, struct swdevt *sw) 2541 { 2542 2543 /* XXX: direct call when Giant untangled */ 2544 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2545 } 2546 2547 2548 struct swh0h0 { 2549 struct cdev *dev; 2550 struct vnode *vp; 2551 int error; 2552 }; 2553 2554 static void 2555 swapongeom_ev(void *arg, int flags) 2556 { 2557 struct swh0h0 *swh; 2558 struct g_provider *pp; 2559 struct g_consumer *cp; 2560 static struct g_geom *gp; 2561 struct swdevt *sp; 2562 u_long nblks; 2563 int error; 2564 2565 swh = arg; 2566 swh->error = 0; 2567 pp = g_dev_getprovider(swh->dev); 2568 if (pp == NULL) { 2569 swh->error = ENODEV; 2570 return; 2571 } 2572 mtx_lock(&sw_dev_mtx); 2573 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2574 cp = sp->sw_id; 2575 if (cp != NULL && cp->provider == pp) { 2576 mtx_unlock(&sw_dev_mtx); 2577 swh->error = EBUSY; 2578 return; 2579 } 2580 } 2581 mtx_unlock(&sw_dev_mtx); 2582 if (gp == NULL) 2583 gp = g_new_geomf(&g_swap_class, "swap", NULL); 2584 cp = g_new_consumer(gp); 2585 g_attach(cp, pp); 2586 /* 2587 * XXX: Everytime you think you can improve the margin for 2588 * footshooting, somebody depends on the ability to do so: 2589 * savecore(8) wants to write to our swapdev so we cannot 2590 * set an exclusive count :-( 2591 */ 2592 error = g_access(cp, 1, 1, 0); 2593 if (error) { 2594 g_detach(cp); 2595 g_destroy_consumer(cp); 2596 swh->error = error; 2597 return; 2598 } 2599 nblks = pp->mediasize / DEV_BSIZE; 2600 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2601 swapgeom_close, dev2udev(swh->dev)); 2602 swh->error = 0; 2603 return; 2604 } 2605 2606 static int 2607 swapongeom(struct thread *td, struct vnode *vp) 2608 { 2609 int error; 2610 struct swh0h0 swh; 2611 2612 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2613 2614 swh.dev = vp->v_rdev; 2615 swh.vp = vp; 2616 swh.error = 0; 2617 /* XXX: direct call when Giant untangled */ 2618 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2619 if (!error) 2620 error = swh.error; 2621 VOP_UNLOCK(vp, 0); 2622 return (error); 2623 } 2624 2625 /* 2626 * VNODE backend 2627 * 2628 * This is used mainly for network filesystem (read: probably only tested 2629 * with NFS) swapfiles. 2630 * 2631 */ 2632 2633 static void 2634 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2635 { 2636 struct vnode *vp2; 2637 2638 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2639 2640 vp2 = sp->sw_id; 2641 vhold(vp2); 2642 if (bp->b_iocmd == BIO_WRITE) { 2643 if (bp->b_bufobj) 2644 bufobj_wdrop(bp->b_bufobj); 2645 bufobj_wref(&vp2->v_bufobj); 2646 } 2647 if (bp->b_bufobj != &vp2->v_bufobj) 2648 bp->b_bufobj = &vp2->v_bufobj; 2649 bp->b_vp = vp2; 2650 bp->b_iooffset = dbtob(bp->b_blkno); 2651 bstrategy(bp); 2652 return; 2653 } 2654 2655 static void 2656 swapdev_close(struct thread *td, struct swdevt *sp) 2657 { 2658 2659 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2660 vrele(sp->sw_vp); 2661 } 2662 2663 2664 static int 2665 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2666 { 2667 struct swdevt *sp; 2668 int error; 2669 2670 if (nblks == 0) 2671 return (ENXIO); 2672 mtx_lock(&sw_dev_mtx); 2673 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2674 if (sp->sw_id == vp) { 2675 mtx_unlock(&sw_dev_mtx); 2676 return (EBUSY); 2677 } 2678 } 2679 mtx_unlock(&sw_dev_mtx); 2680 2681 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2682 #ifdef MAC 2683 error = mac_system_check_swapon(td->td_ucred, vp); 2684 if (error == 0) 2685 #endif 2686 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2687 (void) VOP_UNLOCK(vp, 0); 2688 if (error) 2689 return (error); 2690 2691 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2692 NODEV); 2693 return (0); 2694 } 2695