1 /* 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 */ 67 68 #include <sys/cdefs.h> 69 __FBSDID("$FreeBSD$"); 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/conf.h> 74 #include <sys/kernel.h> 75 #include <sys/proc.h> 76 #include <sys/bio.h> 77 #include <sys/buf.h> 78 #include <sys/vnode.h> 79 #include <sys/malloc.h> 80 #include <sys/sysctl.h> 81 #include <sys/blist.h> 82 #include <sys/lock.h> 83 #include <sys/sx.h> 84 #include <sys/vmmeter.h> 85 86 #ifndef MAX_PAGEOUT_CLUSTER 87 #define MAX_PAGEOUT_CLUSTER 16 88 #endif 89 90 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 91 92 #include "opt_swap.h" 93 #include <vm/vm.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_object.h> 98 #include <vm/vm_page.h> 99 #include <vm/vm_pager.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/swap_pager.h> 102 #include <vm/vm_extern.h> 103 #include <vm/uma.h> 104 105 #define SWM_FREE 0x02 /* free, period */ 106 #define SWM_POP 0x04 /* pop out */ 107 108 int swap_pager_full; /* swap space exhaustion (task killing) */ 109 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 110 static int nsw_rcount; /* free read buffers */ 111 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 112 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 113 static int nsw_wcount_async_max;/* assigned maximum */ 114 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 115 116 struct blist *swapblist; 117 static struct swblock **swhash; 118 static int swhash_mask; 119 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 120 static struct sx sw_alloc_sx; 121 122 123 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 124 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 125 126 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0) 127 128 /* 129 * "named" and "unnamed" anon region objects. Try to reduce the overhead 130 * of searching a named list by hashing it just a little. 131 */ 132 133 #define NOBJLISTS 8 134 135 #define NOBJLIST(handle) \ 136 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 137 138 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 139 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 140 struct pagerlst swap_pager_un_object_list; 141 uma_zone_t swap_zone; 142 143 /* 144 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 145 * calls hooked from other parts of the VM system and do not appear here. 146 * (see vm/swap_pager.h). 147 */ 148 static vm_object_t 149 swap_pager_alloc(void *handle, vm_ooffset_t size, 150 vm_prot_t prot, vm_ooffset_t offset); 151 static void swap_pager_dealloc(vm_object_t object); 152 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 153 static boolean_t 154 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 155 static void swap_pager_init(void); 156 static void swap_pager_unswapped(vm_page_t); 157 static void swap_pager_strategy(vm_object_t, struct bio *); 158 159 struct pagerops swappagerops = { 160 swap_pager_init, /* early system initialization of pager */ 161 swap_pager_alloc, /* allocate an OBJT_SWAP object */ 162 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 163 swap_pager_getpages, /* pagein */ 164 swap_pager_putpages, /* pageout */ 165 swap_pager_haspage, /* get backing store status for page */ 166 swap_pager_unswapped, /* remove swap related to page */ 167 swap_pager_strategy /* pager strategy call */ 168 }; 169 170 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags); 171 static void flushchainbuf(struct buf *nbp); 172 static void waitchainbuf(struct bio *bp, int count, int done); 173 174 /* 175 * dmmax is in page-sized chunks with the new swap system. It was 176 * dev-bsized chunks in the old. dmmax is always a power of 2. 177 * 178 * swap_*() routines are externally accessible. swp_*() routines are 179 * internal. 180 */ 181 int dmmax, dmmax_mask; 182 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 183 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 184 185 SYSCTL_INT(_vm, OID_AUTO, dmmax, 186 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 187 188 static __inline void swp_sizecheck(void); 189 static void swp_pager_sync_iodone(struct buf *bp); 190 static void swp_pager_async_iodone(struct buf *bp); 191 192 /* 193 * Swap bitmap functions 194 */ 195 static __inline void swp_pager_freeswapspace(daddr_t blk, int npages); 196 static __inline daddr_t swp_pager_getswapspace(int npages); 197 198 /* 199 * Metadata functions 200 */ 201 static __inline struct swblock ** 202 swp_pager_hash(vm_object_t object, vm_pindex_t index); 203 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 204 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 205 static void swp_pager_meta_free_all(vm_object_t); 206 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 207 208 /* 209 * SWP_SIZECHECK() - update swap_pager_full indication 210 * 211 * update the swap_pager_almost_full indication and warn when we are 212 * about to run out of swap space, using lowat/hiwat hysteresis. 213 * 214 * Clear swap_pager_full ( task killing ) indication when lowat is met. 215 * 216 * No restrictions on call 217 * This routine may not block. 218 * This routine must be called at splvm() 219 */ 220 static __inline void 221 swp_sizecheck() 222 { 223 GIANT_REQUIRED; 224 225 if (vm_swap_size < nswap_lowat) { 226 if (swap_pager_almost_full == 0) { 227 printf("swap_pager: out of swap space\n"); 228 swap_pager_almost_full = 1; 229 } 230 } else { 231 swap_pager_full = 0; 232 if (vm_swap_size > nswap_hiwat) 233 swap_pager_almost_full = 0; 234 } 235 } 236 237 /* 238 * SWAP_PAGER_INIT() - initialize the swap pager! 239 * 240 * Expected to be started from system init. NOTE: This code is run 241 * before much else so be careful what you depend on. Most of the VM 242 * system has yet to be initialized at this point. 243 */ 244 static void 245 swap_pager_init() 246 { 247 /* 248 * Initialize object lists 249 */ 250 int i; 251 252 for (i = 0; i < NOBJLISTS; ++i) 253 TAILQ_INIT(&swap_pager_object_list[i]); 254 TAILQ_INIT(&swap_pager_un_object_list); 255 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 256 257 /* 258 * Device Stripe, in PAGE_SIZE'd blocks 259 */ 260 dmmax = SWB_NPAGES * 2; 261 dmmax_mask = ~(dmmax - 1); 262 } 263 264 /* 265 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 266 * 267 * Expected to be started from pageout process once, prior to entering 268 * its main loop. 269 */ 270 void 271 swap_pager_swap_init() 272 { 273 int n, n2; 274 275 /* 276 * Number of in-transit swap bp operations. Don't 277 * exhaust the pbufs completely. Make sure we 278 * initialize workable values (0 will work for hysteresis 279 * but it isn't very efficient). 280 * 281 * The nsw_cluster_max is constrained by the bp->b_pages[] 282 * array (MAXPHYS/PAGE_SIZE) and our locally defined 283 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 284 * constrained by the swap device interleave stripe size. 285 * 286 * Currently we hardwire nsw_wcount_async to 4. This limit is 287 * designed to prevent other I/O from having high latencies due to 288 * our pageout I/O. The value 4 works well for one or two active swap 289 * devices but is probably a little low if you have more. Even so, 290 * a higher value would probably generate only a limited improvement 291 * with three or four active swap devices since the system does not 292 * typically have to pageout at extreme bandwidths. We will want 293 * at least 2 per swap devices, and 4 is a pretty good value if you 294 * have one NFS swap device due to the command/ack latency over NFS. 295 * So it all works out pretty well. 296 */ 297 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 298 299 mtx_lock(&pbuf_mtx); 300 nsw_rcount = (nswbuf + 1) / 2; 301 nsw_wcount_sync = (nswbuf + 3) / 4; 302 nsw_wcount_async = 4; 303 nsw_wcount_async_max = nsw_wcount_async; 304 mtx_unlock(&pbuf_mtx); 305 306 /* 307 * Initialize our zone. Right now I'm just guessing on the number 308 * we need based on the number of pages in the system. Each swblock 309 * can hold 16 pages, so this is probably overkill. This reservation 310 * is typically limited to around 32MB by default. 311 */ 312 n = cnt.v_page_count / 2; 313 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 314 n = maxswzone / sizeof(struct swblock); 315 n2 = n; 316 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 317 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 318 do { 319 if (uma_zone_set_obj(swap_zone, NULL, n)) 320 break; 321 /* 322 * if the allocation failed, try a zone two thirds the 323 * size of the previous attempt. 324 */ 325 n -= ((n + 2) / 3); 326 } while (n > 0); 327 if (swap_zone == NULL) 328 panic("failed to create swap_zone."); 329 if (n2 != n) 330 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 331 n2 = n; 332 333 /* 334 * Initialize our meta-data hash table. The swapper does not need to 335 * be quite as efficient as the VM system, so we do not use an 336 * oversized hash table. 337 * 338 * n: size of hash table, must be power of 2 339 * swhash_mask: hash table index mask 340 */ 341 for (n = 1; n < n2 / 8; n *= 2) 342 ; 343 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 344 swhash_mask = n - 1; 345 } 346 347 /* 348 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 349 * its metadata structures. 350 * 351 * This routine is called from the mmap and fork code to create a new 352 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 353 * and then converting it with swp_pager_meta_build(). 354 * 355 * This routine may block in vm_object_allocate() and create a named 356 * object lookup race, so we must interlock. We must also run at 357 * splvm() for the object lookup to handle races with interrupts, but 358 * we do not have to maintain splvm() in between the lookup and the 359 * add because (I believe) it is not possible to attempt to create 360 * a new swap object w/handle when a default object with that handle 361 * already exists. 362 * 363 * MPSAFE 364 */ 365 static vm_object_t 366 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 367 vm_ooffset_t offset) 368 { 369 vm_object_t object; 370 371 mtx_lock(&Giant); 372 if (handle) { 373 /* 374 * Reference existing named region or allocate new one. There 375 * should not be a race here against swp_pager_meta_build() 376 * as called from vm_page_remove() in regards to the lookup 377 * of the handle. 378 */ 379 sx_xlock(&sw_alloc_sx); 380 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 381 382 if (object != NULL) { 383 vm_object_reference(object); 384 } else { 385 object = vm_object_allocate(OBJT_DEFAULT, 386 OFF_TO_IDX(offset + PAGE_MASK + size)); 387 object->handle = handle; 388 389 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 390 } 391 sx_xunlock(&sw_alloc_sx); 392 } else { 393 object = vm_object_allocate(OBJT_DEFAULT, 394 OFF_TO_IDX(offset + PAGE_MASK + size)); 395 396 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 397 } 398 mtx_unlock(&Giant); 399 return (object); 400 } 401 402 /* 403 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 404 * 405 * The swap backing for the object is destroyed. The code is 406 * designed such that we can reinstantiate it later, but this 407 * routine is typically called only when the entire object is 408 * about to be destroyed. 409 * 410 * This routine may block, but no longer does. 411 * 412 * The object must be locked or unreferenceable. 413 */ 414 static void 415 swap_pager_dealloc(object) 416 vm_object_t object; 417 { 418 int s; 419 420 GIANT_REQUIRED; 421 422 /* 423 * Remove from list right away so lookups will fail if we block for 424 * pageout completion. 425 */ 426 mtx_lock(&sw_alloc_mtx); 427 if (object->handle == NULL) { 428 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list); 429 } else { 430 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 431 } 432 mtx_unlock(&sw_alloc_mtx); 433 434 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 435 vm_object_pip_wait(object, "swpdea"); 436 437 /* 438 * Free all remaining metadata. We only bother to free it from 439 * the swap meta data. We do not attempt to free swapblk's still 440 * associated with vm_page_t's for this object. We do not care 441 * if paging is still in progress on some objects. 442 */ 443 s = splvm(); 444 swp_pager_meta_free_all(object); 445 splx(s); 446 } 447 448 /************************************************************************ 449 * SWAP PAGER BITMAP ROUTINES * 450 ************************************************************************/ 451 452 /* 453 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 454 * 455 * Allocate swap for the requested number of pages. The starting 456 * swap block number (a page index) is returned or SWAPBLK_NONE 457 * if the allocation failed. 458 * 459 * Also has the side effect of advising that somebody made a mistake 460 * when they configured swap and didn't configure enough. 461 * 462 * Must be called at splvm() to avoid races with bitmap frees from 463 * vm_page_remove() aka swap_pager_page_removed(). 464 * 465 * This routine may not block 466 * This routine must be called at splvm(). 467 */ 468 static __inline daddr_t 469 swp_pager_getswapspace(npages) 470 int npages; 471 { 472 daddr_t blk; 473 474 GIANT_REQUIRED; 475 476 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) { 477 if (swap_pager_full != 2) { 478 printf("swap_pager_getswapspace: failed\n"); 479 swap_pager_full = 2; 480 swap_pager_almost_full = 1; 481 } 482 } else { 483 vm_swap_size -= npages; 484 /* per-swap area stats */ 485 swdevt[BLK2DEVIDX(blk)].sw_used += npages; 486 swp_sizecheck(); 487 } 488 return (blk); 489 } 490 491 /* 492 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 493 * 494 * This routine returns the specified swap blocks back to the bitmap. 495 * 496 * Note: This routine may not block (it could in the old swap code), 497 * and through the use of the new blist routines it does not block. 498 * 499 * We must be called at splvm() to avoid races with bitmap frees from 500 * vm_page_remove() aka swap_pager_page_removed(). 501 * 502 * This routine may not block 503 * This routine must be called at splvm(). 504 */ 505 static __inline void 506 swp_pager_freeswapspace(blk, npages) 507 daddr_t blk; 508 int npages; 509 { 510 struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)]; 511 512 GIANT_REQUIRED; 513 514 /* per-swap area stats */ 515 sp->sw_used -= npages; 516 517 /* 518 * If we are attempting to stop swapping on this device, we 519 * don't want to mark any blocks free lest they be reused. 520 */ 521 if (sp->sw_flags & SW_CLOSING) 522 return; 523 524 blist_free(swapblist, blk, npages); 525 vm_swap_size += npages; 526 swp_sizecheck(); 527 } 528 529 /* 530 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 531 * range within an object. 532 * 533 * This is a globally accessible routine. 534 * 535 * This routine removes swapblk assignments from swap metadata. 536 * 537 * The external callers of this routine typically have already destroyed 538 * or renamed vm_page_t's associated with this range in the object so 539 * we should be ok. 540 * 541 * This routine may be called at any spl. We up our spl to splvm temporarily 542 * in order to perform the metadata removal. 543 */ 544 void 545 swap_pager_freespace(object, start, size) 546 vm_object_t object; 547 vm_pindex_t start; 548 vm_size_t size; 549 { 550 int s = splvm(); 551 552 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 553 swp_pager_meta_free(object, start, size); 554 splx(s); 555 } 556 557 /* 558 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 559 * 560 * Assigns swap blocks to the specified range within the object. The 561 * swap blocks are not zerod. Any previous swap assignment is destroyed. 562 * 563 * Returns 0 on success, -1 on failure. 564 */ 565 int 566 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 567 { 568 int s; 569 int n = 0; 570 daddr_t blk = SWAPBLK_NONE; 571 vm_pindex_t beg = start; /* save start index */ 572 573 s = splvm(); 574 while (size) { 575 if (n == 0) { 576 n = BLIST_MAX_ALLOC; 577 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 578 n >>= 1; 579 if (n == 0) { 580 swp_pager_meta_free(object, beg, start - beg); 581 splx(s); 582 return (-1); 583 } 584 } 585 } 586 swp_pager_meta_build(object, start, blk); 587 --size; 588 ++start; 589 ++blk; 590 --n; 591 } 592 swp_pager_meta_free(object, start, n); 593 splx(s); 594 return (0); 595 } 596 597 /* 598 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 599 * and destroy the source. 600 * 601 * Copy any valid swapblks from the source to the destination. In 602 * cases where both the source and destination have a valid swapblk, 603 * we keep the destination's. 604 * 605 * This routine is allowed to block. It may block allocating metadata 606 * indirectly through swp_pager_meta_build() or if paging is still in 607 * progress on the source. 608 * 609 * This routine can be called at any spl 610 * 611 * XXX vm_page_collapse() kinda expects us not to block because we 612 * supposedly do not need to allocate memory, but for the moment we 613 * *may* have to get a little memory from the zone allocator, but 614 * it is taken from the interrupt memory. We should be ok. 615 * 616 * The source object contains no vm_page_t's (which is just as well) 617 * 618 * The source object is of type OBJT_SWAP. 619 * 620 * The source and destination objects must be locked or 621 * inaccessible (XXX are they ?) 622 */ 623 void 624 swap_pager_copy(srcobject, dstobject, offset, destroysource) 625 vm_object_t srcobject; 626 vm_object_t dstobject; 627 vm_pindex_t offset; 628 int destroysource; 629 { 630 vm_pindex_t i; 631 int s; 632 633 GIANT_REQUIRED; 634 635 s = splvm(); 636 /* 637 * If destroysource is set, we remove the source object from the 638 * swap_pager internal queue now. 639 */ 640 if (destroysource) { 641 mtx_lock(&sw_alloc_mtx); 642 if (srcobject->handle == NULL) { 643 TAILQ_REMOVE( 644 &swap_pager_un_object_list, 645 srcobject, 646 pager_object_list 647 ); 648 } else { 649 TAILQ_REMOVE( 650 NOBJLIST(srcobject->handle), 651 srcobject, 652 pager_object_list 653 ); 654 } 655 mtx_unlock(&sw_alloc_mtx); 656 } 657 658 /* 659 * transfer source to destination. 660 */ 661 for (i = 0; i < dstobject->size; ++i) { 662 daddr_t dstaddr; 663 664 /* 665 * Locate (without changing) the swapblk on the destination, 666 * unless it is invalid in which case free it silently, or 667 * if the destination is a resident page, in which case the 668 * source is thrown away. 669 */ 670 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 671 672 if (dstaddr == SWAPBLK_NONE) { 673 /* 674 * Destination has no swapblk and is not resident, 675 * copy source. 676 */ 677 daddr_t srcaddr; 678 679 srcaddr = swp_pager_meta_ctl( 680 srcobject, 681 i + offset, 682 SWM_POP 683 ); 684 685 if (srcaddr != SWAPBLK_NONE) 686 swp_pager_meta_build(dstobject, i, srcaddr); 687 } else { 688 /* 689 * Destination has valid swapblk or it is represented 690 * by a resident page. We destroy the sourceblock. 691 */ 692 693 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 694 } 695 } 696 697 /* 698 * Free left over swap blocks in source. 699 * 700 * We have to revert the type to OBJT_DEFAULT so we do not accidently 701 * double-remove the object from the swap queues. 702 */ 703 if (destroysource) { 704 swp_pager_meta_free_all(srcobject); 705 /* 706 * Reverting the type is not necessary, the caller is going 707 * to destroy srcobject directly, but I'm doing it here 708 * for consistency since we've removed the object from its 709 * queues. 710 */ 711 srcobject->type = OBJT_DEFAULT; 712 } 713 splx(s); 714 } 715 716 /* 717 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 718 * the requested page. 719 * 720 * We determine whether good backing store exists for the requested 721 * page and return TRUE if it does, FALSE if it doesn't. 722 * 723 * If TRUE, we also try to determine how much valid, contiguous backing 724 * store exists before and after the requested page within a reasonable 725 * distance. We do not try to restrict it to the swap device stripe 726 * (that is handled in getpages/putpages). It probably isn't worth 727 * doing here. 728 */ 729 static boolean_t 730 swap_pager_haspage(object, pindex, before, after) 731 vm_object_t object; 732 vm_pindex_t pindex; 733 int *before; 734 int *after; 735 { 736 daddr_t blk0; 737 int s; 738 739 /* 740 * do we have good backing store at the requested index ? 741 */ 742 s = splvm(); 743 blk0 = swp_pager_meta_ctl(object, pindex, 0); 744 745 if (blk0 == SWAPBLK_NONE) { 746 splx(s); 747 if (before) 748 *before = 0; 749 if (after) 750 *after = 0; 751 return (FALSE); 752 } 753 754 /* 755 * find backwards-looking contiguous good backing store 756 */ 757 if (before != NULL) { 758 int i; 759 760 for (i = 1; i < (SWB_NPAGES/2); ++i) { 761 daddr_t blk; 762 763 if (i > pindex) 764 break; 765 blk = swp_pager_meta_ctl(object, pindex - i, 0); 766 if (blk != blk0 - i) 767 break; 768 } 769 *before = (i - 1); 770 } 771 772 /* 773 * find forward-looking contiguous good backing store 774 */ 775 if (after != NULL) { 776 int i; 777 778 for (i = 1; i < (SWB_NPAGES/2); ++i) { 779 daddr_t blk; 780 781 blk = swp_pager_meta_ctl(object, pindex + i, 0); 782 if (blk != blk0 + i) 783 break; 784 } 785 *after = (i - 1); 786 } 787 splx(s); 788 return (TRUE); 789 } 790 791 /* 792 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 793 * 794 * This removes any associated swap backing store, whether valid or 795 * not, from the page. 796 * 797 * This routine is typically called when a page is made dirty, at 798 * which point any associated swap can be freed. MADV_FREE also 799 * calls us in a special-case situation 800 * 801 * NOTE!!! If the page is clean and the swap was valid, the caller 802 * should make the page dirty before calling this routine. This routine 803 * does NOT change the m->dirty status of the page. Also: MADV_FREE 804 * depends on it. 805 * 806 * This routine may not block 807 * This routine must be called at splvm() 808 */ 809 static void 810 swap_pager_unswapped(m) 811 vm_page_t m; 812 { 813 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 814 } 815 816 /* 817 * SWAP_PAGER_STRATEGY() - read, write, free blocks 818 * 819 * This implements the vm_pager_strategy() interface to swap and allows 820 * other parts of the system to directly access swap as backing store 821 * through vm_objects of type OBJT_SWAP. This is intended to be a 822 * cacheless interface ( i.e. caching occurs at higher levels ). 823 * Therefore we do not maintain any resident pages. All I/O goes 824 * directly to and from the swap device. 825 * 826 * Note that b_blkno is scaled for PAGE_SIZE 827 * 828 * We currently attempt to run I/O synchronously or asynchronously as 829 * the caller requests. This isn't perfect because we loose error 830 * sequencing when we run multiple ops in parallel to satisfy a request. 831 * But this is swap, so we let it all hang out. 832 */ 833 static void 834 swap_pager_strategy(vm_object_t object, struct bio *bp) 835 { 836 vm_pindex_t start; 837 int count; 838 int s; 839 char *data; 840 struct buf *nbp = NULL; 841 842 GIANT_REQUIRED; 843 844 /* XXX: KASSERT instead ? */ 845 if (bp->bio_bcount & PAGE_MASK) { 846 biofinish(bp, NULL, EINVAL); 847 printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount); 848 return; 849 } 850 851 /* 852 * Clear error indication, initialize page index, count, data pointer. 853 */ 854 bp->bio_error = 0; 855 bp->bio_flags &= ~BIO_ERROR; 856 bp->bio_resid = bp->bio_bcount; 857 *(u_int *) &bp->bio_driver1 = 0; 858 859 start = bp->bio_pblkno; 860 count = howmany(bp->bio_bcount, PAGE_SIZE); 861 data = bp->bio_data; 862 863 s = splvm(); 864 865 /* 866 * Deal with BIO_DELETE 867 */ 868 if (bp->bio_cmd == BIO_DELETE) { 869 /* 870 * FREE PAGE(s) - destroy underlying swap that is no longer 871 * needed. 872 */ 873 swp_pager_meta_free(object, start, count); 874 splx(s); 875 bp->bio_resid = 0; 876 biodone(bp); 877 return; 878 } 879 880 /* 881 * Execute read or write 882 */ 883 while (count > 0) { 884 daddr_t blk; 885 886 /* 887 * Obtain block. If block not found and writing, allocate a 888 * new block and build it into the object. 889 */ 890 891 blk = swp_pager_meta_ctl(object, start, 0); 892 if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) { 893 blk = swp_pager_getswapspace(1); 894 if (blk == SWAPBLK_NONE) { 895 bp->bio_error = ENOMEM; 896 bp->bio_flags |= BIO_ERROR; 897 break; 898 } 899 swp_pager_meta_build(object, start, blk); 900 } 901 902 /* 903 * Do we have to flush our current collection? Yes if: 904 * 905 * - no swap block at this index 906 * - swap block is not contiguous 907 * - we cross a physical disk boundry in the 908 * stripe. 909 */ 910 if ( 911 nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk || 912 ((nbp->b_blkno ^ blk) & dmmax_mask) 913 ) 914 ) { 915 splx(s); 916 if (bp->bio_cmd == BIO_READ) { 917 ++cnt.v_swapin; 918 cnt.v_swappgsin += btoc(nbp->b_bcount); 919 } else { 920 ++cnt.v_swapout; 921 cnt.v_swappgsout += btoc(nbp->b_bcount); 922 nbp->b_dirtyend = nbp->b_bcount; 923 } 924 flushchainbuf(nbp); 925 s = splvm(); 926 nbp = NULL; 927 } 928 929 /* 930 * Add new swapblk to nbp, instantiating nbp if necessary. 931 * Zero-fill reads are able to take a shortcut. 932 */ 933 if (blk == SWAPBLK_NONE) { 934 /* 935 * We can only get here if we are reading. Since 936 * we are at splvm() we can safely modify b_resid, 937 * even if chain ops are in progress. 938 */ 939 bzero(data, PAGE_SIZE); 940 bp->bio_resid -= PAGE_SIZE; 941 } else { 942 if (nbp == NULL) { 943 nbp = getchainbuf(bp, swapdev_vp, B_ASYNC); 944 nbp->b_blkno = blk; 945 nbp->b_bcount = 0; 946 nbp->b_data = data; 947 } 948 nbp->b_bcount += PAGE_SIZE; 949 } 950 --count; 951 ++start; 952 data += PAGE_SIZE; 953 } 954 955 /* 956 * Flush out last buffer 957 */ 958 splx(s); 959 960 if (nbp) { 961 if (nbp->b_iocmd == BIO_READ) { 962 ++cnt.v_swapin; 963 cnt.v_swappgsin += btoc(nbp->b_bcount); 964 } else { 965 ++cnt.v_swapout; 966 cnt.v_swappgsout += btoc(nbp->b_bcount); 967 nbp->b_dirtyend = nbp->b_bcount; 968 } 969 flushchainbuf(nbp); 970 /* nbp = NULL; */ 971 } 972 /* 973 * Wait for completion. 974 */ 975 waitchainbuf(bp, 0, 1); 976 } 977 978 /* 979 * SWAP_PAGER_GETPAGES() - bring pages in from swap 980 * 981 * Attempt to retrieve (m, count) pages from backing store, but make 982 * sure we retrieve at least m[reqpage]. We try to load in as large 983 * a chunk surrounding m[reqpage] as is contiguous in swap and which 984 * belongs to the same object. 985 * 986 * The code is designed for asynchronous operation and 987 * immediate-notification of 'reqpage' but tends not to be 988 * used that way. Please do not optimize-out this algorithmic 989 * feature, I intend to improve on it in the future. 990 * 991 * The parent has a single vm_object_pip_add() reference prior to 992 * calling us and we should return with the same. 993 * 994 * The parent has BUSY'd the pages. We should return with 'm' 995 * left busy, but the others adjusted. 996 */ 997 static int 998 swap_pager_getpages(object, m, count, reqpage) 999 vm_object_t object; 1000 vm_page_t *m; 1001 int count, reqpage; 1002 { 1003 struct buf *bp; 1004 vm_page_t mreq; 1005 int s; 1006 int i; 1007 int j; 1008 daddr_t blk; 1009 vm_pindex_t lastpindex; 1010 1011 mreq = m[reqpage]; 1012 1013 if (mreq->object != object) { 1014 panic("swap_pager_getpages: object mismatch %p/%p", 1015 object, 1016 mreq->object 1017 ); 1018 } 1019 /* 1020 * Calculate range to retrieve. The pages have already been assigned 1021 * their swapblks. We require a *contiguous* range that falls entirely 1022 * within a single device stripe. If we do not supply it, bad things 1023 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1024 * loops are set up such that the case(s) are handled implicitly. 1025 * 1026 * The swp_*() calls must be made at splvm(). vm_page_free() does 1027 * not need to be, but it will go a little faster if it is. 1028 */ 1029 s = splvm(); 1030 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1031 1032 for (i = reqpage - 1; i >= 0; --i) { 1033 daddr_t iblk; 1034 1035 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1036 if (blk != iblk + (reqpage - i)) 1037 break; 1038 if ((blk ^ iblk) & dmmax_mask) 1039 break; 1040 } 1041 ++i; 1042 1043 for (j = reqpage + 1; j < count; ++j) { 1044 daddr_t jblk; 1045 1046 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1047 if (blk != jblk - (j - reqpage)) 1048 break; 1049 if ((blk ^ jblk) & dmmax_mask) 1050 break; 1051 } 1052 1053 /* 1054 * free pages outside our collection range. Note: we never free 1055 * mreq, it must remain busy throughout. 1056 */ 1057 vm_page_lock_queues(); 1058 { 1059 int k; 1060 1061 for (k = 0; k < i; ++k) 1062 vm_page_free(m[k]); 1063 for (k = j; k < count; ++k) 1064 vm_page_free(m[k]); 1065 } 1066 vm_page_unlock_queues(); 1067 splx(s); 1068 1069 1070 /* 1071 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1072 * still busy, but the others unbusied. 1073 */ 1074 if (blk == SWAPBLK_NONE) 1075 return (VM_PAGER_FAIL); 1076 1077 /* 1078 * Getpbuf() can sleep. 1079 */ 1080 VM_OBJECT_UNLOCK(object); 1081 /* 1082 * Get a swap buffer header to perform the IO 1083 */ 1084 bp = getpbuf(&nsw_rcount); 1085 1086 /* 1087 * map our page(s) into kva for input 1088 * 1089 * NOTE: B_PAGING is set by pbgetvp() 1090 */ 1091 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i); 1092 1093 bp->b_iocmd = BIO_READ; 1094 bp->b_iodone = swp_pager_async_iodone; 1095 bp->b_rcred = crhold(thread0.td_ucred); 1096 bp->b_wcred = crhold(thread0.td_ucred); 1097 bp->b_blkno = blk - (reqpage - i); 1098 bp->b_bcount = PAGE_SIZE * (j - i); 1099 bp->b_bufsize = PAGE_SIZE * (j - i); 1100 bp->b_pager.pg_reqpage = reqpage - i; 1101 1102 VM_OBJECT_LOCK(object); 1103 vm_page_lock_queues(); 1104 { 1105 int k; 1106 1107 for (k = i; k < j; ++k) { 1108 bp->b_pages[k - i] = m[k]; 1109 vm_page_flag_set(m[k], PG_SWAPINPROG); 1110 } 1111 } 1112 vm_page_unlock_queues(); 1113 VM_OBJECT_UNLOCK(object); 1114 bp->b_npages = j - i; 1115 1116 pbgetvp(swapdev_vp, bp); 1117 1118 cnt.v_swapin++; 1119 cnt.v_swappgsin += bp->b_npages; 1120 1121 /* 1122 * We still hold the lock on mreq, and our automatic completion routine 1123 * does not remove it. 1124 */ 1125 VM_OBJECT_LOCK(mreq->object); 1126 vm_object_pip_add(mreq->object, bp->b_npages); 1127 VM_OBJECT_UNLOCK(mreq->object); 1128 lastpindex = m[j-1]->pindex; 1129 1130 /* 1131 * perform the I/O. NOTE!!! bp cannot be considered valid after 1132 * this point because we automatically release it on completion. 1133 * Instead, we look at the one page we are interested in which we 1134 * still hold a lock on even through the I/O completion. 1135 * 1136 * The other pages in our m[] array are also released on completion, 1137 * so we cannot assume they are valid anymore either. 1138 * 1139 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1140 */ 1141 BUF_KERNPROC(bp); 1142 VOP_STRATEGY(bp->b_vp, bp); 1143 1144 /* 1145 * wait for the page we want to complete. PG_SWAPINPROG is always 1146 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1147 * is set in the meta-data. 1148 */ 1149 s = splvm(); 1150 vm_page_lock_queues(); 1151 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1152 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1153 cnt.v_intrans++; 1154 if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) { 1155 printf( 1156 "swap_pager: indefinite wait buffer: device:" 1157 " %s, blkno: %ld, size: %ld\n", 1158 devtoname(bp->b_dev), (long)bp->b_blkno, 1159 bp->b_bcount 1160 ); 1161 } 1162 } 1163 vm_page_unlock_queues(); 1164 splx(s); 1165 1166 VM_OBJECT_LOCK(mreq->object); 1167 /* 1168 * mreq is left busied after completion, but all the other pages 1169 * are freed. If we had an unrecoverable read error the page will 1170 * not be valid. 1171 */ 1172 if (mreq->valid != VM_PAGE_BITS_ALL) { 1173 return (VM_PAGER_ERROR); 1174 } else { 1175 return (VM_PAGER_OK); 1176 } 1177 1178 /* 1179 * A final note: in a low swap situation, we cannot deallocate swap 1180 * and mark a page dirty here because the caller is likely to mark 1181 * the page clean when we return, causing the page to possibly revert 1182 * to all-zero's later. 1183 */ 1184 } 1185 1186 /* 1187 * swap_pager_putpages: 1188 * 1189 * Assign swap (if necessary) and initiate I/O on the specified pages. 1190 * 1191 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1192 * are automatically converted to SWAP objects. 1193 * 1194 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1195 * vm_page reservation system coupled with properly written VFS devices 1196 * should ensure that no low-memory deadlock occurs. This is an area 1197 * which needs work. 1198 * 1199 * The parent has N vm_object_pip_add() references prior to 1200 * calling us and will remove references for rtvals[] that are 1201 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1202 * completion. 1203 * 1204 * The parent has soft-busy'd the pages it passes us and will unbusy 1205 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1206 * We need to unbusy the rest on I/O completion. 1207 */ 1208 void 1209 swap_pager_putpages(object, m, count, sync, rtvals) 1210 vm_object_t object; 1211 vm_page_t *m; 1212 int count; 1213 boolean_t sync; 1214 int *rtvals; 1215 { 1216 int i; 1217 int n = 0; 1218 1219 GIANT_REQUIRED; 1220 if (count && m[0]->object != object) { 1221 panic("swap_pager_getpages: object mismatch %p/%p", 1222 object, 1223 m[0]->object 1224 ); 1225 } 1226 /* 1227 * Step 1 1228 * 1229 * Turn object into OBJT_SWAP 1230 * check for bogus sysops 1231 * force sync if not pageout process 1232 */ 1233 if (object->type != OBJT_SWAP) 1234 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1235 1236 if (curproc != pageproc) 1237 sync = TRUE; 1238 1239 /* 1240 * Step 2 1241 * 1242 * Update nsw parameters from swap_async_max sysctl values. 1243 * Do not let the sysop crash the machine with bogus numbers. 1244 */ 1245 mtx_lock(&pbuf_mtx); 1246 if (swap_async_max != nsw_wcount_async_max) { 1247 int n; 1248 int s; 1249 1250 /* 1251 * limit range 1252 */ 1253 if ((n = swap_async_max) > nswbuf / 2) 1254 n = nswbuf / 2; 1255 if (n < 1) 1256 n = 1; 1257 swap_async_max = n; 1258 1259 /* 1260 * Adjust difference ( if possible ). If the current async 1261 * count is too low, we may not be able to make the adjustment 1262 * at this time. 1263 */ 1264 s = splvm(); 1265 n -= nsw_wcount_async_max; 1266 if (nsw_wcount_async + n >= 0) { 1267 nsw_wcount_async += n; 1268 nsw_wcount_async_max += n; 1269 wakeup(&nsw_wcount_async); 1270 } 1271 splx(s); 1272 } 1273 mtx_unlock(&pbuf_mtx); 1274 1275 /* 1276 * Step 3 1277 * 1278 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1279 * The page is left dirty until the pageout operation completes 1280 * successfully. 1281 */ 1282 for (i = 0; i < count; i += n) { 1283 int s; 1284 int j; 1285 struct buf *bp; 1286 daddr_t blk; 1287 1288 /* 1289 * Maximum I/O size is limited by a number of factors. 1290 */ 1291 n = min(BLIST_MAX_ALLOC, count - i); 1292 n = min(n, nsw_cluster_max); 1293 1294 s = splvm(); 1295 1296 /* 1297 * Get biggest block of swap we can. If we fail, fall 1298 * back and try to allocate a smaller block. Don't go 1299 * overboard trying to allocate space if it would overly 1300 * fragment swap. 1301 */ 1302 while ( 1303 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1304 n > 4 1305 ) { 1306 n >>= 1; 1307 } 1308 if (blk == SWAPBLK_NONE) { 1309 for (j = 0; j < n; ++j) 1310 rtvals[i+j] = VM_PAGER_FAIL; 1311 splx(s); 1312 continue; 1313 } 1314 1315 /* 1316 * The I/O we are constructing cannot cross a physical 1317 * disk boundry in the swap stripe. Note: we are still 1318 * at splvm(). 1319 */ 1320 if ((blk ^ (blk + n)) & dmmax_mask) { 1321 j = ((blk + dmmax) & dmmax_mask) - blk; 1322 swp_pager_freeswapspace(blk + j, n - j); 1323 n = j; 1324 } 1325 1326 /* 1327 * All I/O parameters have been satisfied, build the I/O 1328 * request and assign the swap space. 1329 * 1330 * NOTE: B_PAGING is set by pbgetvp() 1331 */ 1332 if (sync == TRUE) { 1333 bp = getpbuf(&nsw_wcount_sync); 1334 } else { 1335 bp = getpbuf(&nsw_wcount_async); 1336 bp->b_flags = B_ASYNC; 1337 } 1338 bp->b_iocmd = BIO_WRITE; 1339 1340 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1341 1342 bp->b_rcred = crhold(thread0.td_ucred); 1343 bp->b_wcred = crhold(thread0.td_ucred); 1344 bp->b_bcount = PAGE_SIZE * n; 1345 bp->b_bufsize = PAGE_SIZE * n; 1346 bp->b_blkno = blk; 1347 1348 pbgetvp(swapdev_vp, bp); 1349 1350 for (j = 0; j < n; ++j) { 1351 vm_page_t mreq = m[i+j]; 1352 1353 swp_pager_meta_build( 1354 mreq->object, 1355 mreq->pindex, 1356 blk + j 1357 ); 1358 vm_page_dirty(mreq); 1359 rtvals[i+j] = VM_PAGER_OK; 1360 1361 vm_page_lock_queues(); 1362 vm_page_flag_set(mreq, PG_SWAPINPROG); 1363 vm_page_unlock_queues(); 1364 bp->b_pages[j] = mreq; 1365 } 1366 bp->b_npages = n; 1367 /* 1368 * Must set dirty range for NFS to work. 1369 */ 1370 bp->b_dirtyoff = 0; 1371 bp->b_dirtyend = bp->b_bcount; 1372 1373 cnt.v_swapout++; 1374 cnt.v_swappgsout += bp->b_npages; 1375 VI_LOCK(swapdev_vp); 1376 swapdev_vp->v_numoutput++; 1377 VI_UNLOCK(swapdev_vp); 1378 1379 splx(s); 1380 1381 /* 1382 * asynchronous 1383 * 1384 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1385 */ 1386 if (sync == FALSE) { 1387 bp->b_iodone = swp_pager_async_iodone; 1388 BUF_KERNPROC(bp); 1389 VOP_STRATEGY(bp->b_vp, bp); 1390 1391 for (j = 0; j < n; ++j) 1392 rtvals[i+j] = VM_PAGER_PEND; 1393 /* restart outter loop */ 1394 continue; 1395 } 1396 1397 /* 1398 * synchronous 1399 * 1400 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1401 */ 1402 bp->b_iodone = swp_pager_sync_iodone; 1403 VOP_STRATEGY(bp->b_vp, bp); 1404 1405 /* 1406 * Wait for the sync I/O to complete, then update rtvals. 1407 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1408 * our async completion routine at the end, thus avoiding a 1409 * double-free. 1410 */ 1411 s = splbio(); 1412 while ((bp->b_flags & B_DONE) == 0) { 1413 tsleep(bp, PVM, "swwrt", 0); 1414 } 1415 for (j = 0; j < n; ++j) 1416 rtvals[i+j] = VM_PAGER_PEND; 1417 /* 1418 * Now that we are through with the bp, we can call the 1419 * normal async completion, which frees everything up. 1420 */ 1421 swp_pager_async_iodone(bp); 1422 splx(s); 1423 } 1424 } 1425 1426 /* 1427 * swap_pager_sync_iodone: 1428 * 1429 * Completion routine for synchronous reads and writes from/to swap. 1430 * We just mark the bp is complete and wake up anyone waiting on it. 1431 * 1432 * This routine may not block. This routine is called at splbio() or better. 1433 */ 1434 static void 1435 swp_pager_sync_iodone(bp) 1436 struct buf *bp; 1437 { 1438 bp->b_flags |= B_DONE; 1439 bp->b_flags &= ~B_ASYNC; 1440 wakeup(bp); 1441 } 1442 1443 /* 1444 * swp_pager_async_iodone: 1445 * 1446 * Completion routine for asynchronous reads and writes from/to swap. 1447 * Also called manually by synchronous code to finish up a bp. 1448 * 1449 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1450 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1451 * unbusy all pages except the 'main' request page. For WRITE 1452 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1453 * because we marked them all VM_PAGER_PEND on return from putpages ). 1454 * 1455 * This routine may not block. 1456 * This routine is called at splbio() or better 1457 * 1458 * We up ourselves to splvm() as required for various vm_page related 1459 * calls. 1460 */ 1461 static void 1462 swp_pager_async_iodone(bp) 1463 struct buf *bp; 1464 { 1465 int s; 1466 int i; 1467 vm_object_t object = NULL; 1468 1469 GIANT_REQUIRED; 1470 bp->b_flags |= B_DONE; 1471 1472 /* 1473 * report error 1474 */ 1475 if (bp->b_ioflags & BIO_ERROR) { 1476 printf( 1477 "swap_pager: I/O error - %s failed; blkno %ld," 1478 "size %ld, error %d\n", 1479 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1480 (long)bp->b_blkno, 1481 (long)bp->b_bcount, 1482 bp->b_error 1483 ); 1484 } 1485 1486 /* 1487 * set object, raise to splvm(). 1488 */ 1489 s = splvm(); 1490 1491 /* 1492 * remove the mapping for kernel virtual 1493 */ 1494 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1495 1496 if (bp->b_npages) { 1497 object = bp->b_pages[0]->object; 1498 VM_OBJECT_LOCK(object); 1499 } 1500 vm_page_lock_queues(); 1501 /* 1502 * cleanup pages. If an error occurs writing to swap, we are in 1503 * very serious trouble. If it happens to be a disk error, though, 1504 * we may be able to recover by reassigning the swap later on. So 1505 * in this case we remove the m->swapblk assignment for the page 1506 * but do not free it in the rlist. The errornous block(s) are thus 1507 * never reallocated as swap. Redirty the page and continue. 1508 */ 1509 for (i = 0; i < bp->b_npages; ++i) { 1510 vm_page_t m = bp->b_pages[i]; 1511 1512 vm_page_flag_clear(m, PG_SWAPINPROG); 1513 1514 if (bp->b_ioflags & BIO_ERROR) { 1515 /* 1516 * If an error occurs I'd love to throw the swapblk 1517 * away without freeing it back to swapspace, so it 1518 * can never be used again. But I can't from an 1519 * interrupt. 1520 */ 1521 if (bp->b_iocmd == BIO_READ) { 1522 /* 1523 * When reading, reqpage needs to stay 1524 * locked for the parent, but all other 1525 * pages can be freed. We still want to 1526 * wakeup the parent waiting on the page, 1527 * though. ( also: pg_reqpage can be -1 and 1528 * not match anything ). 1529 * 1530 * We have to wake specifically requested pages 1531 * up too because we cleared PG_SWAPINPROG and 1532 * someone may be waiting for that. 1533 * 1534 * NOTE: for reads, m->dirty will probably 1535 * be overridden by the original caller of 1536 * getpages so don't play cute tricks here. 1537 * 1538 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE 1539 * AS THIS MESSES WITH object->memq, and it is 1540 * not legal to mess with object->memq from an 1541 * interrupt. 1542 */ 1543 m->valid = 0; 1544 vm_page_flag_clear(m, PG_ZERO); 1545 if (i != bp->b_pager.pg_reqpage) 1546 vm_page_free(m); 1547 else 1548 vm_page_flash(m); 1549 /* 1550 * If i == bp->b_pager.pg_reqpage, do not wake 1551 * the page up. The caller needs to. 1552 */ 1553 } else { 1554 /* 1555 * If a write error occurs, reactivate page 1556 * so it doesn't clog the inactive list, 1557 * then finish the I/O. 1558 */ 1559 vm_page_dirty(m); 1560 vm_page_activate(m); 1561 vm_page_io_finish(m); 1562 } 1563 } else if (bp->b_iocmd == BIO_READ) { 1564 /* 1565 * For read success, clear dirty bits. Nobody should 1566 * have this page mapped but don't take any chances, 1567 * make sure the pmap modify bits are also cleared. 1568 * 1569 * NOTE: for reads, m->dirty will probably be 1570 * overridden by the original caller of getpages so 1571 * we cannot set them in order to free the underlying 1572 * swap in a low-swap situation. I don't think we'd 1573 * want to do that anyway, but it was an optimization 1574 * that existed in the old swapper for a time before 1575 * it got ripped out due to precisely this problem. 1576 * 1577 * clear PG_ZERO in page. 1578 * 1579 * If not the requested page then deactivate it. 1580 * 1581 * Note that the requested page, reqpage, is left 1582 * busied, but we still have to wake it up. The 1583 * other pages are released (unbusied) by 1584 * vm_page_wakeup(). We do not set reqpage's 1585 * valid bits here, it is up to the caller. 1586 */ 1587 pmap_clear_modify(m); 1588 m->valid = VM_PAGE_BITS_ALL; 1589 vm_page_undirty(m); 1590 vm_page_flag_clear(m, PG_ZERO); 1591 1592 /* 1593 * We have to wake specifically requested pages 1594 * up too because we cleared PG_SWAPINPROG and 1595 * could be waiting for it in getpages. However, 1596 * be sure to not unbusy getpages specifically 1597 * requested page - getpages expects it to be 1598 * left busy. 1599 */ 1600 if (i != bp->b_pager.pg_reqpage) { 1601 vm_page_deactivate(m); 1602 vm_page_wakeup(m); 1603 } else { 1604 vm_page_flash(m); 1605 } 1606 } else { 1607 /* 1608 * For write success, clear the modify and dirty 1609 * status, then finish the I/O ( which decrements the 1610 * busy count and possibly wakes waiter's up ). 1611 */ 1612 pmap_clear_modify(m); 1613 vm_page_undirty(m); 1614 vm_page_io_finish(m); 1615 if (!vm_page_count_severe() || !vm_page_try_to_cache(m)) 1616 pmap_page_protect(m, VM_PROT_READ); 1617 } 1618 } 1619 vm_page_unlock_queues(); 1620 1621 /* 1622 * adjust pip. NOTE: the original parent may still have its own 1623 * pip refs on the object. 1624 */ 1625 if (object != NULL) { 1626 vm_object_pip_wakeupn(object, bp->b_npages); 1627 VM_OBJECT_UNLOCK(object); 1628 } 1629 1630 /* 1631 * release the physical I/O buffer 1632 */ 1633 relpbuf( 1634 bp, 1635 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1636 ((bp->b_flags & B_ASYNC) ? 1637 &nsw_wcount_async : 1638 &nsw_wcount_sync 1639 ) 1640 ) 1641 ); 1642 splx(s); 1643 } 1644 1645 /* 1646 * swap_pager_isswapped: 1647 * 1648 * Return 1 if at least one page in the given object is paged 1649 * out to the given swap device. 1650 * 1651 * This routine may not block. 1652 */ 1653 int swap_pager_isswapped(vm_object_t object, int devidx) { 1654 daddr_t index = 0; 1655 int bcount; 1656 int i; 1657 1658 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1659 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1660 struct swblock *swap; 1661 1662 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1663 for (i = 0; i < SWAP_META_PAGES; ++i) { 1664 daddr_t v = swap->swb_pages[i]; 1665 if (v != SWAPBLK_NONE && 1666 BLK2DEVIDX(v) == devidx) 1667 return 1; 1668 } 1669 } 1670 1671 index += SWAP_META_PAGES; 1672 if (index > 0x20000000) 1673 panic("swap_pager_isswapped: failed to locate all swap meta blocks"); 1674 } 1675 return 0; 1676 } 1677 1678 /* 1679 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1680 * 1681 * This routine dissociates the page at the given index within a 1682 * swap block from its backing store, paging it in if necessary. 1683 * If the page is paged in, it is placed in the inactive queue, 1684 * since it had its backing store ripped out from under it. 1685 * We also attempt to swap in all other pages in the swap block, 1686 * we only guarantee that the one at the specified index is 1687 * paged in. 1688 * 1689 * XXX - The code to page the whole block in doesn't work, so we 1690 * revert to the one-by-one behavior for now. Sigh. 1691 */ 1692 static __inline void 1693 swp_pager_force_pagein(struct swblock *swap, int idx) 1694 { 1695 vm_object_t object; 1696 vm_page_t m; 1697 vm_pindex_t pindex; 1698 1699 object = swap->swb_object; 1700 pindex = swap->swb_index; 1701 1702 VM_OBJECT_LOCK(object); 1703 vm_object_pip_add(object, 1); 1704 m = vm_page_grab(object, pindex + idx, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1705 if (m->valid == VM_PAGE_BITS_ALL) { 1706 vm_object_pip_subtract(object, 1); 1707 VM_OBJECT_UNLOCK(object); 1708 vm_page_lock_queues(); 1709 vm_page_activate(m); 1710 vm_page_dirty(m); 1711 vm_page_wakeup(m); 1712 vm_page_unlock_queues(); 1713 vm_pager_page_unswapped(m); 1714 return; 1715 } 1716 1717 if (swap_pager_getpages(object, &m, 1, 0) != 1718 VM_PAGER_OK) 1719 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1720 vm_object_pip_subtract(object, 1); 1721 VM_OBJECT_UNLOCK(object); 1722 1723 vm_page_lock_queues(); 1724 vm_page_dirty(m); 1725 vm_page_dontneed(m); 1726 vm_page_wakeup(m); 1727 vm_page_unlock_queues(); 1728 vm_pager_page_unswapped(m); 1729 } 1730 1731 1732 /* 1733 * swap_pager_swapoff: 1734 * 1735 * Page in all of the pages that have been paged out to the 1736 * given device. The corresponding blocks in the bitmap must be 1737 * marked as allocated and the device must be flagged SW_CLOSING. 1738 * There may be no processes swapped out to the device. 1739 * 1740 * The sw_used parameter points to the field in the swdev structure 1741 * that contains a count of the number of blocks still allocated 1742 * on the device. If we encounter objects with a nonzero pip count 1743 * in our scan, we use this number to determine if we're really done. 1744 * 1745 * This routine may block. 1746 */ 1747 void 1748 swap_pager_swapoff(int devidx, int *sw_used) 1749 { 1750 struct swblock **pswap; 1751 struct swblock *swap; 1752 vm_object_t waitobj; 1753 daddr_t v; 1754 int i, j; 1755 1756 GIANT_REQUIRED; 1757 1758 full_rescan: 1759 waitobj = NULL; 1760 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1761 restart: 1762 pswap = &swhash[i]; 1763 while ((swap = *pswap) != NULL) { 1764 for (j = 0; j < SWAP_META_PAGES; ++j) { 1765 v = swap->swb_pages[j]; 1766 if (v != SWAPBLK_NONE && 1767 BLK2DEVIDX(v) == devidx) 1768 break; 1769 } 1770 if (j < SWAP_META_PAGES) { 1771 swp_pager_force_pagein(swap, j); 1772 goto restart; 1773 } else if (swap->swb_object->paging_in_progress) { 1774 if (!waitobj) 1775 waitobj = swap->swb_object; 1776 } 1777 pswap = &swap->swb_hnext; 1778 } 1779 } 1780 if (waitobj && *sw_used) { 1781 /* 1782 * We wait on an arbitrary object to clock our rescans 1783 * to the rate of paging completion. 1784 */ 1785 VM_OBJECT_LOCK(waitobj); 1786 vm_object_pip_wait(waitobj, "swpoff"); 1787 VM_OBJECT_UNLOCK(waitobj); 1788 goto full_rescan; 1789 } 1790 if (*sw_used) 1791 panic("swapoff: failed to locate %d swap blocks", *sw_used); 1792 } 1793 1794 /************************************************************************ 1795 * SWAP META DATA * 1796 ************************************************************************ 1797 * 1798 * These routines manipulate the swap metadata stored in the 1799 * OBJT_SWAP object. All swp_*() routines must be called at 1800 * splvm() because swap can be freed up by the low level vm_page 1801 * code which might be called from interrupts beyond what splbio() covers. 1802 * 1803 * Swap metadata is implemented with a global hash and not directly 1804 * linked into the object. Instead the object simply contains 1805 * appropriate tracking counters. 1806 */ 1807 1808 /* 1809 * SWP_PAGER_HASH() - hash swap meta data 1810 * 1811 * This is an inline helper function which hashes the swapblk given 1812 * the object and page index. It returns a pointer to a pointer 1813 * to the object, or a pointer to a NULL pointer if it could not 1814 * find a swapblk. 1815 * 1816 * This routine must be called at splvm(). 1817 */ 1818 static __inline struct swblock ** 1819 swp_pager_hash(vm_object_t object, vm_pindex_t index) 1820 { 1821 struct swblock **pswap; 1822 struct swblock *swap; 1823 1824 index &= ~(vm_pindex_t)SWAP_META_MASK; 1825 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 1826 while ((swap = *pswap) != NULL) { 1827 if (swap->swb_object == object && 1828 swap->swb_index == index 1829 ) { 1830 break; 1831 } 1832 pswap = &swap->swb_hnext; 1833 } 1834 return (pswap); 1835 } 1836 1837 /* 1838 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1839 * 1840 * We first convert the object to a swap object if it is a default 1841 * object. 1842 * 1843 * The specified swapblk is added to the object's swap metadata. If 1844 * the swapblk is not valid, it is freed instead. Any previously 1845 * assigned swapblk is freed. 1846 * 1847 * This routine must be called at splvm(), except when used to convert 1848 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1849 */ 1850 static void 1851 swp_pager_meta_build( 1852 vm_object_t object, 1853 vm_pindex_t pindex, 1854 daddr_t swapblk 1855 ) { 1856 struct swblock *swap; 1857 struct swblock **pswap; 1858 int idx; 1859 1860 GIANT_REQUIRED; 1861 /* 1862 * Convert default object to swap object if necessary 1863 */ 1864 if (object->type != OBJT_SWAP) { 1865 object->type = OBJT_SWAP; 1866 object->un_pager.swp.swp_bcount = 0; 1867 1868 mtx_lock(&sw_alloc_mtx); 1869 if (object->handle != NULL) { 1870 TAILQ_INSERT_TAIL( 1871 NOBJLIST(object->handle), 1872 object, 1873 pager_object_list 1874 ); 1875 } else { 1876 TAILQ_INSERT_TAIL( 1877 &swap_pager_un_object_list, 1878 object, 1879 pager_object_list 1880 ); 1881 } 1882 mtx_unlock(&sw_alloc_mtx); 1883 } 1884 1885 /* 1886 * Locate hash entry. If not found create, but if we aren't adding 1887 * anything just return. If we run out of space in the map we wait 1888 * and, since the hash table may have changed, retry. 1889 */ 1890 retry: 1891 pswap = swp_pager_hash(object, pindex); 1892 1893 if ((swap = *pswap) == NULL) { 1894 int i; 1895 1896 if (swapblk == SWAPBLK_NONE) 1897 return; 1898 1899 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1900 if (swap == NULL) { 1901 VM_WAIT; 1902 goto retry; 1903 } 1904 1905 swap->swb_hnext = NULL; 1906 swap->swb_object = object; 1907 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1908 swap->swb_count = 0; 1909 1910 ++object->un_pager.swp.swp_bcount; 1911 1912 for (i = 0; i < SWAP_META_PAGES; ++i) 1913 swap->swb_pages[i] = SWAPBLK_NONE; 1914 } 1915 1916 /* 1917 * Delete prior contents of metadata 1918 */ 1919 idx = pindex & SWAP_META_MASK; 1920 1921 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1922 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1923 --swap->swb_count; 1924 } 1925 1926 /* 1927 * Enter block into metadata 1928 */ 1929 swap->swb_pages[idx] = swapblk; 1930 if (swapblk != SWAPBLK_NONE) 1931 ++swap->swb_count; 1932 } 1933 1934 /* 1935 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1936 * 1937 * The requested range of blocks is freed, with any associated swap 1938 * returned to the swap bitmap. 1939 * 1940 * This routine will free swap metadata structures as they are cleaned 1941 * out. This routine does *NOT* operate on swap metadata associated 1942 * with resident pages. 1943 * 1944 * This routine must be called at splvm() 1945 */ 1946 static void 1947 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1948 { 1949 GIANT_REQUIRED; 1950 1951 if (object->type != OBJT_SWAP) 1952 return; 1953 1954 while (count > 0) { 1955 struct swblock **pswap; 1956 struct swblock *swap; 1957 1958 pswap = swp_pager_hash(object, index); 1959 1960 if ((swap = *pswap) != NULL) { 1961 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1962 1963 if (v != SWAPBLK_NONE) { 1964 swp_pager_freeswapspace(v, 1); 1965 swap->swb_pages[index & SWAP_META_MASK] = 1966 SWAPBLK_NONE; 1967 if (--swap->swb_count == 0) { 1968 *pswap = swap->swb_hnext; 1969 uma_zfree(swap_zone, swap); 1970 --object->un_pager.swp.swp_bcount; 1971 } 1972 } 1973 --count; 1974 ++index; 1975 } else { 1976 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1977 count -= n; 1978 index += n; 1979 } 1980 } 1981 } 1982 1983 /* 1984 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1985 * 1986 * This routine locates and destroys all swap metadata associated with 1987 * an object. 1988 * 1989 * This routine must be called at splvm() 1990 */ 1991 static void 1992 swp_pager_meta_free_all(vm_object_t object) 1993 { 1994 daddr_t index = 0; 1995 1996 GIANT_REQUIRED; 1997 1998 if (object->type != OBJT_SWAP) 1999 return; 2000 2001 while (object->un_pager.swp.swp_bcount) { 2002 struct swblock **pswap; 2003 struct swblock *swap; 2004 2005 pswap = swp_pager_hash(object, index); 2006 if ((swap = *pswap) != NULL) { 2007 int i; 2008 2009 for (i = 0; i < SWAP_META_PAGES; ++i) { 2010 daddr_t v = swap->swb_pages[i]; 2011 if (v != SWAPBLK_NONE) { 2012 --swap->swb_count; 2013 swp_pager_freeswapspace(v, 1); 2014 } 2015 } 2016 if (swap->swb_count != 0) 2017 panic("swap_pager_meta_free_all: swb_count != 0"); 2018 *pswap = swap->swb_hnext; 2019 uma_zfree(swap_zone, swap); 2020 --object->un_pager.swp.swp_bcount; 2021 } 2022 index += SWAP_META_PAGES; 2023 if (index > 0x20000000) 2024 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 2025 } 2026 } 2027 2028 /* 2029 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2030 * 2031 * This routine is capable of looking up, popping, or freeing 2032 * swapblk assignments in the swap meta data or in the vm_page_t. 2033 * The routine typically returns the swapblk being looked-up, or popped, 2034 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2035 * was invalid. This routine will automatically free any invalid 2036 * meta-data swapblks. 2037 * 2038 * It is not possible to store invalid swapblks in the swap meta data 2039 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2040 * 2041 * When acting on a busy resident page and paging is in progress, we 2042 * have to wait until paging is complete but otherwise can act on the 2043 * busy page. 2044 * 2045 * This routine must be called at splvm(). 2046 * 2047 * SWM_FREE remove and free swap block from metadata 2048 * SWM_POP remove from meta data but do not free.. pop it out 2049 */ 2050 static daddr_t 2051 swp_pager_meta_ctl( 2052 vm_object_t object, 2053 vm_pindex_t pindex, 2054 int flags 2055 ) { 2056 struct swblock **pswap; 2057 struct swblock *swap; 2058 daddr_t r1; 2059 int idx; 2060 2061 GIANT_REQUIRED; 2062 /* 2063 * The meta data only exists of the object is OBJT_SWAP 2064 * and even then might not be allocated yet. 2065 */ 2066 if (object->type != OBJT_SWAP) 2067 return (SWAPBLK_NONE); 2068 2069 r1 = SWAPBLK_NONE; 2070 pswap = swp_pager_hash(object, pindex); 2071 2072 if ((swap = *pswap) != NULL) { 2073 idx = pindex & SWAP_META_MASK; 2074 r1 = swap->swb_pages[idx]; 2075 2076 if (r1 != SWAPBLK_NONE) { 2077 if (flags & SWM_FREE) { 2078 swp_pager_freeswapspace(r1, 1); 2079 r1 = SWAPBLK_NONE; 2080 } 2081 if (flags & (SWM_FREE|SWM_POP)) { 2082 swap->swb_pages[idx] = SWAPBLK_NONE; 2083 if (--swap->swb_count == 0) { 2084 *pswap = swap->swb_hnext; 2085 uma_zfree(swap_zone, swap); 2086 --object->un_pager.swp.swp_bcount; 2087 } 2088 } 2089 } 2090 } 2091 return (r1); 2092 } 2093 2094 /******************************************************** 2095 * CHAINING FUNCTIONS * 2096 ******************************************************** 2097 * 2098 * These functions support recursion of I/O operations 2099 * on bp's, typically by chaining one or more 'child' bp's 2100 * to the parent. Synchronous, asynchronous, and semi-synchronous 2101 * chaining is possible. 2102 */ 2103 2104 /* 2105 * vm_pager_chain_iodone: 2106 * 2107 * io completion routine for child bp. Currently we fudge a bit 2108 * on dealing with b_resid. Since users of these routines may issue 2109 * multiple children simultaneously, sequencing of the error can be lost. 2110 */ 2111 static void 2112 vm_pager_chain_iodone(struct buf *nbp) 2113 { 2114 struct bio *bp; 2115 u_int *count; 2116 2117 bp = nbp->b_caller1; 2118 count = (u_int *)&(bp->bio_driver1); 2119 if (bp != NULL) { 2120 if (nbp->b_ioflags & BIO_ERROR) { 2121 bp->bio_flags |= BIO_ERROR; 2122 bp->bio_error = nbp->b_error; 2123 } else if (nbp->b_resid != 0) { 2124 bp->bio_flags |= BIO_ERROR; 2125 bp->bio_error = EINVAL; 2126 } else { 2127 bp->bio_resid -= nbp->b_bcount; 2128 } 2129 nbp->b_caller1 = NULL; 2130 --(*count); 2131 if (bp->bio_flags & BIO_FLAG1) { 2132 bp->bio_flags &= ~BIO_FLAG1; 2133 wakeup(bp); 2134 } 2135 } 2136 nbp->b_flags |= B_DONE; 2137 nbp->b_flags &= ~B_ASYNC; 2138 relpbuf(nbp, NULL); 2139 } 2140 2141 /* 2142 * getchainbuf: 2143 * 2144 * Obtain a physical buffer and chain it to its parent buffer. When 2145 * I/O completes, the parent buffer will be B_SIGNAL'd. Errors are 2146 * automatically propagated to the parent 2147 */ 2148 static struct buf * 2149 getchainbuf(struct bio *bp, struct vnode *vp, int flags) 2150 { 2151 struct buf *nbp; 2152 u_int *count; 2153 2154 GIANT_REQUIRED; 2155 nbp = getpbuf(NULL); 2156 count = (u_int *)&(bp->bio_driver1); 2157 2158 nbp->b_caller1 = bp; 2159 ++(*count); 2160 2161 if (*count > 4) 2162 waitchainbuf(bp, 4, 0); 2163 2164 nbp->b_iocmd = bp->bio_cmd; 2165 nbp->b_ioflags = 0; 2166 nbp->b_flags = flags; 2167 nbp->b_rcred = crhold(thread0.td_ucred); 2168 nbp->b_wcred = crhold(thread0.td_ucred); 2169 nbp->b_iodone = vm_pager_chain_iodone; 2170 2171 if (vp) 2172 pbgetvp(vp, nbp); 2173 return (nbp); 2174 } 2175 2176 static void 2177 flushchainbuf(struct buf *nbp) 2178 { 2179 GIANT_REQUIRED; 2180 if (nbp->b_bcount) { 2181 nbp->b_bufsize = nbp->b_bcount; 2182 if (nbp->b_iocmd == BIO_WRITE) 2183 nbp->b_dirtyend = nbp->b_bcount; 2184 BUF_KERNPROC(nbp); 2185 VOP_STRATEGY(nbp->b_vp, nbp); 2186 } else { 2187 bufdone(nbp); 2188 } 2189 } 2190 2191 static void 2192 waitchainbuf(struct bio *bp, int limit, int done) 2193 { 2194 int s; 2195 u_int *count; 2196 2197 GIANT_REQUIRED; 2198 count = (u_int *)&(bp->bio_driver1); 2199 s = splbio(); 2200 while (*count > limit) { 2201 bp->bio_flags |= BIO_FLAG1; 2202 tsleep(bp, PRIBIO + 4, "bpchain", 0); 2203 } 2204 if (done) { 2205 if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) { 2206 bp->bio_flags |= BIO_ERROR; 2207 bp->bio_error = EINVAL; 2208 } 2209 biodone(bp); 2210 } 2211 splx(s); 2212 } 2213 2214