xref: /freebsd/sys/vm/swap_pager.c (revision b00fe64f4acfe315181f65999af16e9a7bdc600b)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/sysctl.h>
94 #include <sys/sysproto.h>
95 #include <sys/blist.h>
96 #include <sys/lock.h>
97 #include <sys/sx.h>
98 #include <sys/vmmeter.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/vm.h>
103 #include <vm/pmap.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_param.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114 
115 #include <geom/geom.h>
116 
117 /*
118  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
119  * or 32 pages per allocation.
120  * The 32-page limit is due to the radix code (kern/subr_blist.c).
121  */
122 #ifndef MAX_PAGEOUT_CLUSTER
123 #define MAX_PAGEOUT_CLUSTER 16
124 #endif
125 
126 #if !defined(SWB_NPAGES)
127 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
128 #endif
129 
130 /*
131  * The swblock structure maps an object and a small, fixed-size range
132  * of page indices to disk addresses within a swap area.
133  * The collection of these mappings is implemented as a hash table.
134  * Unused disk addresses within a swap area are allocated and managed
135  * using a blist.
136  */
137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
139 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140 
141 struct swblock {
142 	struct swblock	*swb_hnext;
143 	vm_object_t	swb_object;
144 	vm_pindex_t	swb_index;
145 	int		swb_count;
146 	daddr_t		swb_pages[SWAP_META_PAGES];
147 };
148 
149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
156 
157 static vm_ooffset_t swap_total;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159     "Total amount of available swap storage.");
160 static vm_ooffset_t swap_reserved;
161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162     "Amount of swap storage needed to back all allocated anonymous memory.");
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165     "Configure virtual memory overcommit behavior. See tuning(7) "
166     "for details.");
167 static unsigned long swzone;
168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
169     "Actual size of swap metadata zone");
170 static unsigned long swap_maxpages;
171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
172     "Maximum amount of swap supported");
173 
174 /* bits from overcommit */
175 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
176 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
177 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
178 
179 int
180 swap_reserve(vm_ooffset_t incr)
181 {
182 
183 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
184 }
185 
186 int
187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
188 {
189 	vm_ooffset_t r, s;
190 	int res, error;
191 	static int curfail;
192 	static struct timeval lastfail;
193 	struct uidinfo *uip;
194 
195 	uip = cred->cr_ruidinfo;
196 
197 	if (incr & PAGE_MASK)
198 		panic("swap_reserve: & PAGE_MASK");
199 
200 #ifdef RACCT
201 	if (racct_enable) {
202 		PROC_LOCK(curproc);
203 		error = racct_add(curproc, RACCT_SWAP, incr);
204 		PROC_UNLOCK(curproc);
205 		if (error != 0)
206 			return (0);
207 	}
208 #endif
209 
210 	res = 0;
211 	mtx_lock(&sw_dev_mtx);
212 	r = swap_reserved + incr;
213 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
214 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
215 		s *= PAGE_SIZE;
216 	} else
217 		s = 0;
218 	s += swap_total;
219 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
220 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
221 		res = 1;
222 		swap_reserved = r;
223 	}
224 	mtx_unlock(&sw_dev_mtx);
225 
226 	if (res) {
227 		PROC_LOCK(curproc);
228 		UIDINFO_VMSIZE_LOCK(uip);
229 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
230 		    uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
231 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
232 			res = 0;
233 		else
234 			uip->ui_vmsize += incr;
235 		UIDINFO_VMSIZE_UNLOCK(uip);
236 		PROC_UNLOCK(curproc);
237 		if (!res) {
238 			mtx_lock(&sw_dev_mtx);
239 			swap_reserved -= incr;
240 			mtx_unlock(&sw_dev_mtx);
241 		}
242 	}
243 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
244 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
245 		    uip->ui_uid, curproc->p_pid, incr);
246 	}
247 
248 #ifdef RACCT
249 	if (!res) {
250 		PROC_LOCK(curproc);
251 		racct_sub(curproc, RACCT_SWAP, incr);
252 		PROC_UNLOCK(curproc);
253 	}
254 #endif
255 
256 	return (res);
257 }
258 
259 void
260 swap_reserve_force(vm_ooffset_t incr)
261 {
262 	struct uidinfo *uip;
263 
264 	mtx_lock(&sw_dev_mtx);
265 	swap_reserved += incr;
266 	mtx_unlock(&sw_dev_mtx);
267 
268 #ifdef RACCT
269 	PROC_LOCK(curproc);
270 	racct_add_force(curproc, RACCT_SWAP, incr);
271 	PROC_UNLOCK(curproc);
272 #endif
273 
274 	uip = curthread->td_ucred->cr_ruidinfo;
275 	PROC_LOCK(curproc);
276 	UIDINFO_VMSIZE_LOCK(uip);
277 	uip->ui_vmsize += incr;
278 	UIDINFO_VMSIZE_UNLOCK(uip);
279 	PROC_UNLOCK(curproc);
280 }
281 
282 void
283 swap_release(vm_ooffset_t decr)
284 {
285 	struct ucred *cred;
286 
287 	PROC_LOCK(curproc);
288 	cred = curthread->td_ucred;
289 	swap_release_by_cred(decr, cred);
290 	PROC_UNLOCK(curproc);
291 }
292 
293 void
294 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
295 {
296  	struct uidinfo *uip;
297 
298 	uip = cred->cr_ruidinfo;
299 
300 	if (decr & PAGE_MASK)
301 		panic("swap_release: & PAGE_MASK");
302 
303 	mtx_lock(&sw_dev_mtx);
304 	if (swap_reserved < decr)
305 		panic("swap_reserved < decr");
306 	swap_reserved -= decr;
307 	mtx_unlock(&sw_dev_mtx);
308 
309 	UIDINFO_VMSIZE_LOCK(uip);
310 	if (uip->ui_vmsize < decr)
311 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
312 	uip->ui_vmsize -= decr;
313 	UIDINFO_VMSIZE_UNLOCK(uip);
314 
315 	racct_sub_cred(cred, RACCT_SWAP, decr);
316 }
317 
318 static void swapdev_strategy(struct buf *, struct swdevt *sw);
319 
320 #define SWM_FREE	0x02	/* free, period			*/
321 #define SWM_POP		0x04	/* pop out			*/
322 
323 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
324 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
325 static int nsw_rcount;		/* free read buffers			*/
326 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
327 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
328 static int nsw_wcount_async_max;/* assigned maximum			*/
329 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
330 
331 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
332 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW,
333     NULL, 0, sysctl_swap_async_max, "I", "Maximum running async swap ops");
334 
335 static struct swblock **swhash;
336 static int swhash_mask;
337 static struct mtx swhash_mtx;
338 
339 static struct sx sw_alloc_sx;
340 
341 /*
342  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
343  * of searching a named list by hashing it just a little.
344  */
345 
346 #define NOBJLISTS		8
347 
348 #define NOBJLIST(handle)	\
349 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
350 
351 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
352 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
353 static uma_zone_t	swap_zone;
354 
355 /*
356  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
357  * calls hooked from other parts of the VM system and do not appear here.
358  * (see vm/swap_pager.h).
359  */
360 static vm_object_t
361 		swap_pager_alloc(void *handle, vm_ooffset_t size,
362 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
363 static void	swap_pager_dealloc(vm_object_t object);
364 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
365 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int,
366     pgo_getpages_iodone_t, void *);
367 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
368 static boolean_t
369 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
370 static void	swap_pager_init(void);
371 static void	swap_pager_unswapped(vm_page_t);
372 static void	swap_pager_swapoff(struct swdevt *sp);
373 
374 struct pagerops swappagerops = {
375 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
376 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
377 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
378 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
379 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
380 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
381 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
382 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
383 };
384 
385 /*
386  * dmmax is in page-sized chunks with the new swap system.  It was
387  * dev-bsized chunks in the old.  dmmax is always a power of 2.
388  *
389  * swap_*() routines are externally accessible.  swp_*() routines are
390  * internal.
391  */
392 static int dmmax;
393 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
394 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
395 
396 SYSCTL_INT(_vm, OID_AUTO, dmmax,
397 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
398 
399 static void	swp_sizecheck(void);
400 static void	swp_pager_async_iodone(struct buf *bp);
401 static int	swapongeom(struct thread *, struct vnode *);
402 static int	swaponvp(struct thread *, struct vnode *, u_long);
403 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
404 
405 /*
406  * Swap bitmap functions
407  */
408 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
409 static daddr_t	swp_pager_getswapspace(int npages);
410 
411 /*
412  * Metadata functions
413  */
414 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
415 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
416 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
417 static void swp_pager_meta_free_all(vm_object_t);
418 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
419 
420 static void
421 swp_pager_free_nrpage(vm_page_t m)
422 {
423 
424 	vm_page_lock(m);
425 	if (m->wire_count == 0)
426 		vm_page_free(m);
427 	vm_page_unlock(m);
428 }
429 
430 /*
431  * SWP_SIZECHECK() -	update swap_pager_full indication
432  *
433  *	update the swap_pager_almost_full indication and warn when we are
434  *	about to run out of swap space, using lowat/hiwat hysteresis.
435  *
436  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
437  *
438  *	No restrictions on call
439  *	This routine may not block.
440  */
441 static void
442 swp_sizecheck(void)
443 {
444 
445 	if (swap_pager_avail < nswap_lowat) {
446 		if (swap_pager_almost_full == 0) {
447 			printf("swap_pager: out of swap space\n");
448 			swap_pager_almost_full = 1;
449 		}
450 	} else {
451 		swap_pager_full = 0;
452 		if (swap_pager_avail > nswap_hiwat)
453 			swap_pager_almost_full = 0;
454 	}
455 }
456 
457 /*
458  * SWP_PAGER_HASH() -	hash swap meta data
459  *
460  *	This is an helper function which hashes the swapblk given
461  *	the object and page index.  It returns a pointer to a pointer
462  *	to the object, or a pointer to a NULL pointer if it could not
463  *	find a swapblk.
464  */
465 static struct swblock **
466 swp_pager_hash(vm_object_t object, vm_pindex_t index)
467 {
468 	struct swblock **pswap;
469 	struct swblock *swap;
470 
471 	index &= ~(vm_pindex_t)SWAP_META_MASK;
472 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
473 	while ((swap = *pswap) != NULL) {
474 		if (swap->swb_object == object &&
475 		    swap->swb_index == index
476 		) {
477 			break;
478 		}
479 		pswap = &swap->swb_hnext;
480 	}
481 	return (pswap);
482 }
483 
484 /*
485  * SWAP_PAGER_INIT() -	initialize the swap pager!
486  *
487  *	Expected to be started from system init.  NOTE:  This code is run
488  *	before much else so be careful what you depend on.  Most of the VM
489  *	system has yet to be initialized at this point.
490  */
491 static void
492 swap_pager_init(void)
493 {
494 	/*
495 	 * Initialize object lists
496 	 */
497 	int i;
498 
499 	for (i = 0; i < NOBJLISTS; ++i)
500 		TAILQ_INIT(&swap_pager_object_list[i]);
501 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
502 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
503 
504 	/*
505 	 * Device Stripe, in PAGE_SIZE'd blocks
506 	 */
507 	dmmax = SWB_NPAGES * 2;
508 }
509 
510 /*
511  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
512  *
513  *	Expected to be started from pageout process once, prior to entering
514  *	its main loop.
515  */
516 void
517 swap_pager_swap_init(void)
518 {
519 	unsigned long n, n2;
520 
521 	/*
522 	 * Number of in-transit swap bp operations.  Don't
523 	 * exhaust the pbufs completely.  Make sure we
524 	 * initialize workable values (0 will work for hysteresis
525 	 * but it isn't very efficient).
526 	 *
527 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
528 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
529 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
530 	 * constrained by the swap device interleave stripe size.
531 	 *
532 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
533 	 * designed to prevent other I/O from having high latencies due to
534 	 * our pageout I/O.  The value 4 works well for one or two active swap
535 	 * devices but is probably a little low if you have more.  Even so,
536 	 * a higher value would probably generate only a limited improvement
537 	 * with three or four active swap devices since the system does not
538 	 * typically have to pageout at extreme bandwidths.   We will want
539 	 * at least 2 per swap devices, and 4 is a pretty good value if you
540 	 * have one NFS swap device due to the command/ack latency over NFS.
541 	 * So it all works out pretty well.
542 	 */
543 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
544 
545 	mtx_lock(&pbuf_mtx);
546 	nsw_rcount = (nswbuf + 1) / 2;
547 	nsw_wcount_sync = (nswbuf + 3) / 4;
548 	nsw_wcount_async = 4;
549 	nsw_wcount_async_max = nsw_wcount_async;
550 	mtx_unlock(&pbuf_mtx);
551 
552 	/*
553 	 * Initialize our zone.  Right now I'm just guessing on the number
554 	 * we need based on the number of pages in the system.  Each swblock
555 	 * can hold 32 pages, so this is probably overkill.  This reservation
556 	 * is typically limited to around 32MB by default.
557 	 */
558 	n = vm_cnt.v_page_count / 2;
559 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
560 		n = maxswzone / sizeof(struct swblock);
561 	n2 = n;
562 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
563 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
564 	if (swap_zone == NULL)
565 		panic("failed to create swap_zone.");
566 	do {
567 		if (uma_zone_reserve_kva(swap_zone, n))
568 			break;
569 		/*
570 		 * if the allocation failed, try a zone two thirds the
571 		 * size of the previous attempt.
572 		 */
573 		n -= ((n + 2) / 3);
574 	} while (n > 0);
575 	if (n2 != n)
576 		printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
577 	swap_maxpages = n * SWAP_META_PAGES;
578 	swzone = n * sizeof(struct swblock);
579 	n2 = n;
580 
581 	/*
582 	 * Initialize our meta-data hash table.  The swapper does not need to
583 	 * be quite as efficient as the VM system, so we do not use an
584 	 * oversized hash table.
585 	 *
586 	 * 	n: 		size of hash table, must be power of 2
587 	 *	swhash_mask:	hash table index mask
588 	 */
589 	for (n = 1; n < n2 / 8; n *= 2)
590 		;
591 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
592 	swhash_mask = n - 1;
593 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
594 }
595 
596 /*
597  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
598  *			its metadata structures.
599  *
600  *	This routine is called from the mmap and fork code to create a new
601  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
602  *	and then converting it with swp_pager_meta_build().
603  *
604  *	This routine may block in vm_object_allocate() and create a named
605  *	object lookup race, so we must interlock.
606  *
607  * MPSAFE
608  */
609 static vm_object_t
610 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
611     vm_ooffset_t offset, struct ucred *cred)
612 {
613 	vm_object_t object;
614 	vm_pindex_t pindex;
615 
616 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
617 	if (handle) {
618 		mtx_lock(&Giant);
619 		/*
620 		 * Reference existing named region or allocate new one.  There
621 		 * should not be a race here against swp_pager_meta_build()
622 		 * as called from vm_page_remove() in regards to the lookup
623 		 * of the handle.
624 		 */
625 		sx_xlock(&sw_alloc_sx);
626 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
627 		if (object == NULL) {
628 			if (cred != NULL) {
629 				if (!swap_reserve_by_cred(size, cred)) {
630 					sx_xunlock(&sw_alloc_sx);
631 					mtx_unlock(&Giant);
632 					return (NULL);
633 				}
634 				crhold(cred);
635 			}
636 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
637 			VM_OBJECT_WLOCK(object);
638 			object->handle = handle;
639 			if (cred != NULL) {
640 				object->cred = cred;
641 				object->charge = size;
642 			}
643 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
644 			VM_OBJECT_WUNLOCK(object);
645 		}
646 		sx_xunlock(&sw_alloc_sx);
647 		mtx_unlock(&Giant);
648 	} else {
649 		if (cred != NULL) {
650 			if (!swap_reserve_by_cred(size, cred))
651 				return (NULL);
652 			crhold(cred);
653 		}
654 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
655 		VM_OBJECT_WLOCK(object);
656 		if (cred != NULL) {
657 			object->cred = cred;
658 			object->charge = size;
659 		}
660 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
661 		VM_OBJECT_WUNLOCK(object);
662 	}
663 	return (object);
664 }
665 
666 /*
667  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
668  *
669  *	The swap backing for the object is destroyed.  The code is
670  *	designed such that we can reinstantiate it later, but this
671  *	routine is typically called only when the entire object is
672  *	about to be destroyed.
673  *
674  *	The object must be locked.
675  */
676 static void
677 swap_pager_dealloc(vm_object_t object)
678 {
679 
680 	/*
681 	 * Remove from list right away so lookups will fail if we block for
682 	 * pageout completion.
683 	 */
684 	if (object->handle != NULL) {
685 		mtx_lock(&sw_alloc_mtx);
686 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
687 		mtx_unlock(&sw_alloc_mtx);
688 	}
689 
690 	VM_OBJECT_ASSERT_WLOCKED(object);
691 	vm_object_pip_wait(object, "swpdea");
692 
693 	/*
694 	 * Free all remaining metadata.  We only bother to free it from
695 	 * the swap meta data.  We do not attempt to free swapblk's still
696 	 * associated with vm_page_t's for this object.  We do not care
697 	 * if paging is still in progress on some objects.
698 	 */
699 	swp_pager_meta_free_all(object);
700 	object->handle = NULL;
701 	object->type = OBJT_DEAD;
702 }
703 
704 /************************************************************************
705  *			SWAP PAGER BITMAP ROUTINES			*
706  ************************************************************************/
707 
708 /*
709  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
710  *
711  *	Allocate swap for the requested number of pages.  The starting
712  *	swap block number (a page index) is returned or SWAPBLK_NONE
713  *	if the allocation failed.
714  *
715  *	Also has the side effect of advising that somebody made a mistake
716  *	when they configured swap and didn't configure enough.
717  *
718  *	This routine may not sleep.
719  *
720  *	We allocate in round-robin fashion from the configured devices.
721  */
722 static daddr_t
723 swp_pager_getswapspace(int npages)
724 {
725 	daddr_t blk;
726 	struct swdevt *sp;
727 	int i;
728 
729 	blk = SWAPBLK_NONE;
730 	mtx_lock(&sw_dev_mtx);
731 	sp = swdevhd;
732 	for (i = 0; i < nswapdev; i++) {
733 		if (sp == NULL)
734 			sp = TAILQ_FIRST(&swtailq);
735 		if (!(sp->sw_flags & SW_CLOSING)) {
736 			blk = blist_alloc(sp->sw_blist, npages);
737 			if (blk != SWAPBLK_NONE) {
738 				blk += sp->sw_first;
739 				sp->sw_used += npages;
740 				swap_pager_avail -= npages;
741 				swp_sizecheck();
742 				swdevhd = TAILQ_NEXT(sp, sw_list);
743 				goto done;
744 			}
745 		}
746 		sp = TAILQ_NEXT(sp, sw_list);
747 	}
748 	if (swap_pager_full != 2) {
749 		printf("swap_pager_getswapspace(%d): failed\n", npages);
750 		swap_pager_full = 2;
751 		swap_pager_almost_full = 1;
752 	}
753 	swdevhd = NULL;
754 done:
755 	mtx_unlock(&sw_dev_mtx);
756 	return (blk);
757 }
758 
759 static int
760 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
761 {
762 
763 	return (blk >= sp->sw_first && blk < sp->sw_end);
764 }
765 
766 static void
767 swp_pager_strategy(struct buf *bp)
768 {
769 	struct swdevt *sp;
770 
771 	mtx_lock(&sw_dev_mtx);
772 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
773 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
774 			mtx_unlock(&sw_dev_mtx);
775 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
776 			    unmapped_buf_allowed) {
777 				bp->b_kvaalloc = bp->b_data;
778 				bp->b_data = unmapped_buf;
779 				bp->b_kvabase = unmapped_buf;
780 				bp->b_offset = 0;
781 				bp->b_flags |= B_UNMAPPED;
782 			} else {
783 				pmap_qenter((vm_offset_t)bp->b_data,
784 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
785 			}
786 			sp->sw_strategy(bp, sp);
787 			return;
788 		}
789 	}
790 	panic("Swapdev not found");
791 }
792 
793 
794 /*
795  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
796  *
797  *	This routine returns the specified swap blocks back to the bitmap.
798  *
799  *	This routine may not sleep.
800  */
801 static void
802 swp_pager_freeswapspace(daddr_t blk, int npages)
803 {
804 	struct swdevt *sp;
805 
806 	mtx_lock(&sw_dev_mtx);
807 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
808 		if (blk >= sp->sw_first && blk < sp->sw_end) {
809 			sp->sw_used -= npages;
810 			/*
811 			 * If we are attempting to stop swapping on
812 			 * this device, we don't want to mark any
813 			 * blocks free lest they be reused.
814 			 */
815 			if ((sp->sw_flags & SW_CLOSING) == 0) {
816 				blist_free(sp->sw_blist, blk - sp->sw_first,
817 				    npages);
818 				swap_pager_avail += npages;
819 				swp_sizecheck();
820 			}
821 			mtx_unlock(&sw_dev_mtx);
822 			return;
823 		}
824 	}
825 	panic("Swapdev not found");
826 }
827 
828 /*
829  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
830  *				range within an object.
831  *
832  *	This is a globally accessible routine.
833  *
834  *	This routine removes swapblk assignments from swap metadata.
835  *
836  *	The external callers of this routine typically have already destroyed
837  *	or renamed vm_page_t's associated with this range in the object so
838  *	we should be ok.
839  *
840  *	The object must be locked.
841  */
842 void
843 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
844 {
845 
846 	swp_pager_meta_free(object, start, size);
847 }
848 
849 /*
850  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
851  *
852  *	Assigns swap blocks to the specified range within the object.  The
853  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
854  *
855  *	Returns 0 on success, -1 on failure.
856  */
857 int
858 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
859 {
860 	int n = 0;
861 	daddr_t blk = SWAPBLK_NONE;
862 	vm_pindex_t beg = start;	/* save start index */
863 
864 	VM_OBJECT_WLOCK(object);
865 	while (size) {
866 		if (n == 0) {
867 			n = BLIST_MAX_ALLOC;
868 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
869 				n >>= 1;
870 				if (n == 0) {
871 					swp_pager_meta_free(object, beg, start - beg);
872 					VM_OBJECT_WUNLOCK(object);
873 					return (-1);
874 				}
875 			}
876 		}
877 		swp_pager_meta_build(object, start, blk);
878 		--size;
879 		++start;
880 		++blk;
881 		--n;
882 	}
883 	swp_pager_meta_free(object, start, n);
884 	VM_OBJECT_WUNLOCK(object);
885 	return (0);
886 }
887 
888 /*
889  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
890  *			and destroy the source.
891  *
892  *	Copy any valid swapblks from the source to the destination.  In
893  *	cases where both the source and destination have a valid swapblk,
894  *	we keep the destination's.
895  *
896  *	This routine is allowed to sleep.  It may sleep allocating metadata
897  *	indirectly through swp_pager_meta_build() or if paging is still in
898  *	progress on the source.
899  *
900  *	The source object contains no vm_page_t's (which is just as well)
901  *
902  *	The source object is of type OBJT_SWAP.
903  *
904  *	The source and destination objects must be locked.
905  *	Both object locks may temporarily be released.
906  */
907 void
908 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
909     vm_pindex_t offset, int destroysource)
910 {
911 	vm_pindex_t i;
912 
913 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
914 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
915 
916 	/*
917 	 * If destroysource is set, we remove the source object from the
918 	 * swap_pager internal queue now.
919 	 */
920 	if (destroysource) {
921 		if (srcobject->handle != NULL) {
922 			mtx_lock(&sw_alloc_mtx);
923 			TAILQ_REMOVE(
924 			    NOBJLIST(srcobject->handle),
925 			    srcobject,
926 			    pager_object_list
927 			);
928 			mtx_unlock(&sw_alloc_mtx);
929 		}
930 	}
931 
932 	/*
933 	 * transfer source to destination.
934 	 */
935 	for (i = 0; i < dstobject->size; ++i) {
936 		daddr_t dstaddr;
937 
938 		/*
939 		 * Locate (without changing) the swapblk on the destination,
940 		 * unless it is invalid in which case free it silently, or
941 		 * if the destination is a resident page, in which case the
942 		 * source is thrown away.
943 		 */
944 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
945 
946 		if (dstaddr == SWAPBLK_NONE) {
947 			/*
948 			 * Destination has no swapblk and is not resident,
949 			 * copy source.
950 			 */
951 			daddr_t srcaddr;
952 
953 			srcaddr = swp_pager_meta_ctl(
954 			    srcobject,
955 			    i + offset,
956 			    SWM_POP
957 			);
958 
959 			if (srcaddr != SWAPBLK_NONE) {
960 				/*
961 				 * swp_pager_meta_build() can sleep.
962 				 */
963 				vm_object_pip_add(srcobject, 1);
964 				VM_OBJECT_WUNLOCK(srcobject);
965 				vm_object_pip_add(dstobject, 1);
966 				swp_pager_meta_build(dstobject, i, srcaddr);
967 				vm_object_pip_wakeup(dstobject);
968 				VM_OBJECT_WLOCK(srcobject);
969 				vm_object_pip_wakeup(srcobject);
970 			}
971 		} else {
972 			/*
973 			 * Destination has valid swapblk or it is represented
974 			 * by a resident page.  We destroy the sourceblock.
975 			 */
976 
977 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
978 		}
979 	}
980 
981 	/*
982 	 * Free left over swap blocks in source.
983 	 *
984 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
985 	 * double-remove the object from the swap queues.
986 	 */
987 	if (destroysource) {
988 		swp_pager_meta_free_all(srcobject);
989 		/*
990 		 * Reverting the type is not necessary, the caller is going
991 		 * to destroy srcobject directly, but I'm doing it here
992 		 * for consistency since we've removed the object from its
993 		 * queues.
994 		 */
995 		srcobject->type = OBJT_DEFAULT;
996 	}
997 }
998 
999 /*
1000  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1001  *				the requested page.
1002  *
1003  *	We determine whether good backing store exists for the requested
1004  *	page and return TRUE if it does, FALSE if it doesn't.
1005  *
1006  *	If TRUE, we also try to determine how much valid, contiguous backing
1007  *	store exists before and after the requested page within a reasonable
1008  *	distance.  We do not try to restrict it to the swap device stripe
1009  *	(that is handled in getpages/putpages).  It probably isn't worth
1010  *	doing here.
1011  */
1012 static boolean_t
1013 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
1014 {
1015 	daddr_t blk0;
1016 
1017 	VM_OBJECT_ASSERT_LOCKED(object);
1018 	/*
1019 	 * do we have good backing store at the requested index ?
1020 	 */
1021 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1022 
1023 	if (blk0 == SWAPBLK_NONE) {
1024 		if (before)
1025 			*before = 0;
1026 		if (after)
1027 			*after = 0;
1028 		return (FALSE);
1029 	}
1030 
1031 	/*
1032 	 * find backwards-looking contiguous good backing store
1033 	 */
1034 	if (before != NULL) {
1035 		int i;
1036 
1037 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1038 			daddr_t blk;
1039 
1040 			if (i > pindex)
1041 				break;
1042 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1043 			if (blk != blk0 - i)
1044 				break;
1045 		}
1046 		*before = (i - 1);
1047 	}
1048 
1049 	/*
1050 	 * find forward-looking contiguous good backing store
1051 	 */
1052 	if (after != NULL) {
1053 		int i;
1054 
1055 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1056 			daddr_t blk;
1057 
1058 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1059 			if (blk != blk0 + i)
1060 				break;
1061 		}
1062 		*after = (i - 1);
1063 	}
1064 	return (TRUE);
1065 }
1066 
1067 /*
1068  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1069  *
1070  *	This removes any associated swap backing store, whether valid or
1071  *	not, from the page.
1072  *
1073  *	This routine is typically called when a page is made dirty, at
1074  *	which point any associated swap can be freed.  MADV_FREE also
1075  *	calls us in a special-case situation
1076  *
1077  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1078  *	should make the page dirty before calling this routine.  This routine
1079  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1080  *	depends on it.
1081  *
1082  *	This routine may not sleep.
1083  *
1084  *	The object containing the page must be locked.
1085  */
1086 static void
1087 swap_pager_unswapped(vm_page_t m)
1088 {
1089 
1090 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1091 }
1092 
1093 /*
1094  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1095  *
1096  *	Attempt to retrieve (m, count) pages from backing store, but make
1097  *	sure we retrieve at least m[reqpage].  We try to load in as large
1098  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1099  *	belongs to the same object.
1100  *
1101  *	The code is designed for asynchronous operation and
1102  *	immediate-notification of 'reqpage' but tends not to be
1103  *	used that way.  Please do not optimize-out this algorithmic
1104  *	feature, I intend to improve on it in the future.
1105  *
1106  *	The parent has a single vm_object_pip_add() reference prior to
1107  *	calling us and we should return with the same.
1108  *
1109  *	The parent has BUSY'd the pages.  We should return with 'm'
1110  *	left busy, but the others adjusted.
1111  */
1112 static int
1113 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1114 {
1115 	struct buf *bp;
1116 	vm_page_t mreq;
1117 	int i;
1118 	int j;
1119 	daddr_t blk;
1120 
1121 	mreq = m[reqpage];
1122 
1123 	KASSERT(mreq->object == object,
1124 	    ("swap_pager_getpages: object mismatch %p/%p",
1125 	    object, mreq->object));
1126 
1127 	/*
1128 	 * Calculate range to retrieve.  The pages have already been assigned
1129 	 * their swapblks.  We require a *contiguous* range but we know it to
1130 	 * not span devices.   If we do not supply it, bad things
1131 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1132 	 * loops are set up such that the case(s) are handled implicitly.
1133 	 *
1134 	 * The swp_*() calls must be made with the object locked.
1135 	 */
1136 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1137 
1138 	for (i = reqpage - 1; i >= 0; --i) {
1139 		daddr_t iblk;
1140 
1141 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1142 		if (blk != iblk + (reqpage - i))
1143 			break;
1144 	}
1145 	++i;
1146 
1147 	for (j = reqpage + 1; j < count; ++j) {
1148 		daddr_t jblk;
1149 
1150 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1151 		if (blk != jblk - (j - reqpage))
1152 			break;
1153 	}
1154 
1155 	/*
1156 	 * free pages outside our collection range.   Note: we never free
1157 	 * mreq, it must remain busy throughout.
1158 	 */
1159 	if (0 < i || j < count) {
1160 		int k;
1161 
1162 		for (k = 0; k < i; ++k)
1163 			swp_pager_free_nrpage(m[k]);
1164 		for (k = j; k < count; ++k)
1165 			swp_pager_free_nrpage(m[k]);
1166 	}
1167 
1168 	/*
1169 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1170 	 * still busy, but the others unbusied.
1171 	 */
1172 	if (blk == SWAPBLK_NONE)
1173 		return (VM_PAGER_FAIL);
1174 
1175 	/*
1176 	 * Getpbuf() can sleep.
1177 	 */
1178 	VM_OBJECT_WUNLOCK(object);
1179 	/*
1180 	 * Get a swap buffer header to perform the IO
1181 	 */
1182 	bp = getpbuf(&nsw_rcount);
1183 	bp->b_flags |= B_PAGING;
1184 
1185 	bp->b_iocmd = BIO_READ;
1186 	bp->b_iodone = swp_pager_async_iodone;
1187 	bp->b_rcred = crhold(thread0.td_ucred);
1188 	bp->b_wcred = crhold(thread0.td_ucred);
1189 	bp->b_blkno = blk - (reqpage - i);
1190 	bp->b_bcount = PAGE_SIZE * (j - i);
1191 	bp->b_bufsize = PAGE_SIZE * (j - i);
1192 	bp->b_pager.pg_reqpage = reqpage - i;
1193 
1194 	VM_OBJECT_WLOCK(object);
1195 	{
1196 		int k;
1197 
1198 		for (k = i; k < j; ++k) {
1199 			bp->b_pages[k - i] = m[k];
1200 			m[k]->oflags |= VPO_SWAPINPROG;
1201 		}
1202 	}
1203 	bp->b_npages = j - i;
1204 
1205 	PCPU_INC(cnt.v_swapin);
1206 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1207 
1208 	/*
1209 	 * We still hold the lock on mreq, and our automatic completion routine
1210 	 * does not remove it.
1211 	 */
1212 	vm_object_pip_add(object, bp->b_npages);
1213 	VM_OBJECT_WUNLOCK(object);
1214 
1215 	/*
1216 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1217 	 * this point because we automatically release it on completion.
1218 	 * Instead, we look at the one page we are interested in which we
1219 	 * still hold a lock on even through the I/O completion.
1220 	 *
1221 	 * The other pages in our m[] array are also released on completion,
1222 	 * so we cannot assume they are valid anymore either.
1223 	 *
1224 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1225 	 */
1226 	BUF_KERNPROC(bp);
1227 	swp_pager_strategy(bp);
1228 
1229 	/*
1230 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1231 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1232 	 * is set in the meta-data.
1233 	 */
1234 	VM_OBJECT_WLOCK(object);
1235 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1236 		mreq->oflags |= VPO_SWAPSLEEP;
1237 		PCPU_INC(cnt.v_intrans);
1238 		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1239 		    "swread", hz * 20)) {
1240 			printf(
1241 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1242 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1243 		}
1244 	}
1245 
1246 	/*
1247 	 * mreq is left busied after completion, but all the other pages
1248 	 * are freed.  If we had an unrecoverable read error the page will
1249 	 * not be valid.
1250 	 */
1251 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1252 		return (VM_PAGER_ERROR);
1253 	} else {
1254 		return (VM_PAGER_OK);
1255 	}
1256 
1257 	/*
1258 	 * A final note: in a low swap situation, we cannot deallocate swap
1259 	 * and mark a page dirty here because the caller is likely to mark
1260 	 * the page clean when we return, causing the page to possibly revert
1261 	 * to all-zero's later.
1262 	 */
1263 }
1264 
1265 /*
1266  * 	swap_pager_getpages_async():
1267  *
1268  *	Right now this is emulation of asynchronous operation on top of
1269  *	swap_pager_getpages().
1270  */
1271 static int
1272 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
1273     int reqpage, pgo_getpages_iodone_t iodone, void *arg)
1274 {
1275 	int r, error;
1276 
1277 	r = swap_pager_getpages(object, m, count, reqpage);
1278 	VM_OBJECT_WUNLOCK(object);
1279 	switch (r) {
1280 	case VM_PAGER_OK:
1281 		error = 0;
1282 		break;
1283 	case VM_PAGER_ERROR:
1284 		error = EIO;
1285 		break;
1286 	case VM_PAGER_FAIL:
1287 		error = EINVAL;
1288 		break;
1289 	default:
1290 		panic("unhandled swap_pager_getpages() error %d", r);
1291 	}
1292 	(iodone)(arg, m, count, error);
1293 	VM_OBJECT_WLOCK(object);
1294 
1295 	return (r);
1296 }
1297 
1298 /*
1299  *	swap_pager_putpages:
1300  *
1301  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1302  *
1303  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1304  *	are automatically converted to SWAP objects.
1305  *
1306  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1307  *	vm_page reservation system coupled with properly written VFS devices
1308  *	should ensure that no low-memory deadlock occurs.  This is an area
1309  *	which needs work.
1310  *
1311  *	The parent has N vm_object_pip_add() references prior to
1312  *	calling us and will remove references for rtvals[] that are
1313  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1314  *	completion.
1315  *
1316  *	The parent has soft-busy'd the pages it passes us and will unbusy
1317  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1318  *	We need to unbusy the rest on I/O completion.
1319  */
1320 void
1321 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1322     int flags, int *rtvals)
1323 {
1324 	int i, n;
1325 	boolean_t sync;
1326 
1327 	if (count && m[0]->object != object) {
1328 		panic("swap_pager_putpages: object mismatch %p/%p",
1329 		    object,
1330 		    m[0]->object
1331 		);
1332 	}
1333 
1334 	/*
1335 	 * Step 1
1336 	 *
1337 	 * Turn object into OBJT_SWAP
1338 	 * check for bogus sysops
1339 	 * force sync if not pageout process
1340 	 */
1341 	if (object->type != OBJT_SWAP)
1342 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1343 	VM_OBJECT_WUNLOCK(object);
1344 
1345 	n = 0;
1346 	if (curproc != pageproc)
1347 		sync = TRUE;
1348 	else
1349 		sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1350 
1351 	/*
1352 	 * Step 2
1353 	 *
1354 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1355 	 * The page is left dirty until the pageout operation completes
1356 	 * successfully.
1357 	 */
1358 	for (i = 0; i < count; i += n) {
1359 		int j;
1360 		struct buf *bp;
1361 		daddr_t blk;
1362 
1363 		/*
1364 		 * Maximum I/O size is limited by a number of factors.
1365 		 */
1366 		n = min(BLIST_MAX_ALLOC, count - i);
1367 		n = min(n, nsw_cluster_max);
1368 
1369 		/*
1370 		 * Get biggest block of swap we can.  If we fail, fall
1371 		 * back and try to allocate a smaller block.  Don't go
1372 		 * overboard trying to allocate space if it would overly
1373 		 * fragment swap.
1374 		 */
1375 		while (
1376 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1377 		    n > 4
1378 		) {
1379 			n >>= 1;
1380 		}
1381 		if (blk == SWAPBLK_NONE) {
1382 			for (j = 0; j < n; ++j)
1383 				rtvals[i+j] = VM_PAGER_FAIL;
1384 			continue;
1385 		}
1386 
1387 		/*
1388 		 * All I/O parameters have been satisfied, build the I/O
1389 		 * request and assign the swap space.
1390 		 */
1391 		if (sync == TRUE) {
1392 			bp = getpbuf(&nsw_wcount_sync);
1393 		} else {
1394 			bp = getpbuf(&nsw_wcount_async);
1395 			bp->b_flags = B_ASYNC;
1396 		}
1397 		bp->b_flags |= B_PAGING;
1398 		bp->b_iocmd = BIO_WRITE;
1399 
1400 		bp->b_rcred = crhold(thread0.td_ucred);
1401 		bp->b_wcred = crhold(thread0.td_ucred);
1402 		bp->b_bcount = PAGE_SIZE * n;
1403 		bp->b_bufsize = PAGE_SIZE * n;
1404 		bp->b_blkno = blk;
1405 
1406 		VM_OBJECT_WLOCK(object);
1407 		for (j = 0; j < n; ++j) {
1408 			vm_page_t mreq = m[i+j];
1409 
1410 			swp_pager_meta_build(
1411 			    mreq->object,
1412 			    mreq->pindex,
1413 			    blk + j
1414 			);
1415 			vm_page_dirty(mreq);
1416 			rtvals[i+j] = VM_PAGER_OK;
1417 
1418 			mreq->oflags |= VPO_SWAPINPROG;
1419 			bp->b_pages[j] = mreq;
1420 		}
1421 		VM_OBJECT_WUNLOCK(object);
1422 		bp->b_npages = n;
1423 		/*
1424 		 * Must set dirty range for NFS to work.
1425 		 */
1426 		bp->b_dirtyoff = 0;
1427 		bp->b_dirtyend = bp->b_bcount;
1428 
1429 		PCPU_INC(cnt.v_swapout);
1430 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1431 
1432 		/*
1433 		 * asynchronous
1434 		 *
1435 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1436 		 */
1437 		if (sync == FALSE) {
1438 			bp->b_iodone = swp_pager_async_iodone;
1439 			BUF_KERNPROC(bp);
1440 			swp_pager_strategy(bp);
1441 
1442 			for (j = 0; j < n; ++j)
1443 				rtvals[i+j] = VM_PAGER_PEND;
1444 			/* restart outter loop */
1445 			continue;
1446 		}
1447 
1448 		/*
1449 		 * synchronous
1450 		 *
1451 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1452 		 */
1453 		bp->b_iodone = bdone;
1454 		swp_pager_strategy(bp);
1455 
1456 		/*
1457 		 * Wait for the sync I/O to complete, then update rtvals.
1458 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1459 		 * our async completion routine at the end, thus avoiding a
1460 		 * double-free.
1461 		 */
1462 		bwait(bp, PVM, "swwrt");
1463 		for (j = 0; j < n; ++j)
1464 			rtvals[i+j] = VM_PAGER_PEND;
1465 		/*
1466 		 * Now that we are through with the bp, we can call the
1467 		 * normal async completion, which frees everything up.
1468 		 */
1469 		swp_pager_async_iodone(bp);
1470 	}
1471 	VM_OBJECT_WLOCK(object);
1472 }
1473 
1474 /*
1475  *	swp_pager_async_iodone:
1476  *
1477  *	Completion routine for asynchronous reads and writes from/to swap.
1478  *	Also called manually by synchronous code to finish up a bp.
1479  *
1480  *	This routine may not sleep.
1481  */
1482 static void
1483 swp_pager_async_iodone(struct buf *bp)
1484 {
1485 	int i;
1486 	vm_object_t object = NULL;
1487 
1488 	/*
1489 	 * report error
1490 	 */
1491 	if (bp->b_ioflags & BIO_ERROR) {
1492 		printf(
1493 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1494 			"size %ld, error %d\n",
1495 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1496 		    (long)bp->b_blkno,
1497 		    (long)bp->b_bcount,
1498 		    bp->b_error
1499 		);
1500 	}
1501 
1502 	/*
1503 	 * remove the mapping for kernel virtual
1504 	 */
1505 	if ((bp->b_flags & B_UNMAPPED) != 0) {
1506 		bp->b_data = bp->b_kvaalloc;
1507 		bp->b_kvabase = bp->b_kvaalloc;
1508 		bp->b_flags &= ~B_UNMAPPED;
1509 	} else
1510 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1511 
1512 	if (bp->b_npages) {
1513 		object = bp->b_pages[0]->object;
1514 		VM_OBJECT_WLOCK(object);
1515 	}
1516 
1517 	/*
1518 	 * cleanup pages.  If an error occurs writing to swap, we are in
1519 	 * very serious trouble.  If it happens to be a disk error, though,
1520 	 * we may be able to recover by reassigning the swap later on.  So
1521 	 * in this case we remove the m->swapblk assignment for the page
1522 	 * but do not free it in the rlist.  The errornous block(s) are thus
1523 	 * never reallocated as swap.  Redirty the page and continue.
1524 	 */
1525 	for (i = 0; i < bp->b_npages; ++i) {
1526 		vm_page_t m = bp->b_pages[i];
1527 
1528 		m->oflags &= ~VPO_SWAPINPROG;
1529 		if (m->oflags & VPO_SWAPSLEEP) {
1530 			m->oflags &= ~VPO_SWAPSLEEP;
1531 			wakeup(&object->paging_in_progress);
1532 		}
1533 
1534 		if (bp->b_ioflags & BIO_ERROR) {
1535 			/*
1536 			 * If an error occurs I'd love to throw the swapblk
1537 			 * away without freeing it back to swapspace, so it
1538 			 * can never be used again.  But I can't from an
1539 			 * interrupt.
1540 			 */
1541 			if (bp->b_iocmd == BIO_READ) {
1542 				/*
1543 				 * When reading, reqpage needs to stay
1544 				 * locked for the parent, but all other
1545 				 * pages can be freed.  We still want to
1546 				 * wakeup the parent waiting on the page,
1547 				 * though.  ( also: pg_reqpage can be -1 and
1548 				 * not match anything ).
1549 				 *
1550 				 * We have to wake specifically requested pages
1551 				 * up too because we cleared VPO_SWAPINPROG and
1552 				 * someone may be waiting for that.
1553 				 *
1554 				 * NOTE: for reads, m->dirty will probably
1555 				 * be overridden by the original caller of
1556 				 * getpages so don't play cute tricks here.
1557 				 */
1558 				m->valid = 0;
1559 				if (i != bp->b_pager.pg_reqpage)
1560 					swp_pager_free_nrpage(m);
1561 				else {
1562 					vm_page_lock(m);
1563 					vm_page_flash(m);
1564 					vm_page_unlock(m);
1565 				}
1566 				/*
1567 				 * If i == bp->b_pager.pg_reqpage, do not wake
1568 				 * the page up.  The caller needs to.
1569 				 */
1570 			} else {
1571 				/*
1572 				 * If a write error occurs, reactivate page
1573 				 * so it doesn't clog the inactive list,
1574 				 * then finish the I/O.
1575 				 */
1576 				vm_page_dirty(m);
1577 				vm_page_lock(m);
1578 				vm_page_activate(m);
1579 				vm_page_unlock(m);
1580 				vm_page_sunbusy(m);
1581 			}
1582 		} else if (bp->b_iocmd == BIO_READ) {
1583 			/*
1584 			 * NOTE: for reads, m->dirty will probably be
1585 			 * overridden by the original caller of getpages so
1586 			 * we cannot set them in order to free the underlying
1587 			 * swap in a low-swap situation.  I don't think we'd
1588 			 * want to do that anyway, but it was an optimization
1589 			 * that existed in the old swapper for a time before
1590 			 * it got ripped out due to precisely this problem.
1591 			 *
1592 			 * If not the requested page then deactivate it.
1593 			 *
1594 			 * Note that the requested page, reqpage, is left
1595 			 * busied, but we still have to wake it up.  The
1596 			 * other pages are released (unbusied) by
1597 			 * vm_page_xunbusy().
1598 			 */
1599 			KASSERT(!pmap_page_is_mapped(m),
1600 			    ("swp_pager_async_iodone: page %p is mapped", m));
1601 			m->valid = VM_PAGE_BITS_ALL;
1602 			KASSERT(m->dirty == 0,
1603 			    ("swp_pager_async_iodone: page %p is dirty", m));
1604 
1605 			/*
1606 			 * We have to wake specifically requested pages
1607 			 * up too because we cleared VPO_SWAPINPROG and
1608 			 * could be waiting for it in getpages.  However,
1609 			 * be sure to not unbusy getpages specifically
1610 			 * requested page - getpages expects it to be
1611 			 * left busy.
1612 			 */
1613 			if (i != bp->b_pager.pg_reqpage) {
1614 				vm_page_lock(m);
1615 				vm_page_deactivate(m);
1616 				vm_page_unlock(m);
1617 				vm_page_xunbusy(m);
1618 			} else {
1619 				vm_page_lock(m);
1620 				vm_page_flash(m);
1621 				vm_page_unlock(m);
1622 			}
1623 		} else {
1624 			/*
1625 			 * For write success, clear the dirty
1626 			 * status, then finish the I/O ( which decrements the
1627 			 * busy count and possibly wakes waiter's up ).
1628 			 */
1629 			KASSERT(!pmap_page_is_write_mapped(m),
1630 			    ("swp_pager_async_iodone: page %p is not write"
1631 			    " protected", m));
1632 			vm_page_undirty(m);
1633 			vm_page_sunbusy(m);
1634 			if (vm_page_count_severe()) {
1635 				vm_page_lock(m);
1636 				vm_page_try_to_cache(m);
1637 				vm_page_unlock(m);
1638 			}
1639 		}
1640 	}
1641 
1642 	/*
1643 	 * adjust pip.  NOTE: the original parent may still have its own
1644 	 * pip refs on the object.
1645 	 */
1646 	if (object != NULL) {
1647 		vm_object_pip_wakeupn(object, bp->b_npages);
1648 		VM_OBJECT_WUNLOCK(object);
1649 	}
1650 
1651 	/*
1652 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1653 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1654 	 * trigger a KASSERT in relpbuf().
1655 	 */
1656 	if (bp->b_vp) {
1657 		    bp->b_vp = NULL;
1658 		    bp->b_bufobj = NULL;
1659 	}
1660 	/*
1661 	 * release the physical I/O buffer
1662 	 */
1663 	relpbuf(
1664 	    bp,
1665 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1666 		((bp->b_flags & B_ASYNC) ?
1667 		    &nsw_wcount_async :
1668 		    &nsw_wcount_sync
1669 		)
1670 	    )
1671 	);
1672 }
1673 
1674 /*
1675  *	swap_pager_isswapped:
1676  *
1677  *	Return 1 if at least one page in the given object is paged
1678  *	out to the given swap device.
1679  *
1680  *	This routine may not sleep.
1681  */
1682 int
1683 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1684 {
1685 	daddr_t index = 0;
1686 	int bcount;
1687 	int i;
1688 
1689 	VM_OBJECT_ASSERT_WLOCKED(object);
1690 	if (object->type != OBJT_SWAP)
1691 		return (0);
1692 
1693 	mtx_lock(&swhash_mtx);
1694 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1695 		struct swblock *swap;
1696 
1697 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1698 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1699 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1700 					mtx_unlock(&swhash_mtx);
1701 					return (1);
1702 				}
1703 			}
1704 		}
1705 		index += SWAP_META_PAGES;
1706 	}
1707 	mtx_unlock(&swhash_mtx);
1708 	return (0);
1709 }
1710 
1711 /*
1712  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1713  *
1714  *	This routine dissociates the page at the given index within a
1715  *	swap block from its backing store, paging it in if necessary.
1716  *	If the page is paged in, it is placed in the inactive queue,
1717  *	since it had its backing store ripped out from under it.
1718  *	We also attempt to swap in all other pages in the swap block,
1719  *	we only guarantee that the one at the specified index is
1720  *	paged in.
1721  *
1722  *	XXX - The code to page the whole block in doesn't work, so we
1723  *	      revert to the one-by-one behavior for now.  Sigh.
1724  */
1725 static inline void
1726 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1727 {
1728 	vm_page_t m;
1729 
1730 	vm_object_pip_add(object, 1);
1731 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1732 	if (m->valid == VM_PAGE_BITS_ALL) {
1733 		vm_object_pip_wakeup(object);
1734 		vm_page_dirty(m);
1735 		vm_page_lock(m);
1736 		vm_page_activate(m);
1737 		vm_page_unlock(m);
1738 		vm_page_xunbusy(m);
1739 		vm_pager_page_unswapped(m);
1740 		return;
1741 	}
1742 
1743 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1744 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1745 	vm_object_pip_wakeup(object);
1746 	vm_page_dirty(m);
1747 	vm_page_lock(m);
1748 	vm_page_deactivate(m);
1749 	vm_page_unlock(m);
1750 	vm_page_xunbusy(m);
1751 	vm_pager_page_unswapped(m);
1752 }
1753 
1754 /*
1755  *	swap_pager_swapoff:
1756  *
1757  *	Page in all of the pages that have been paged out to the
1758  *	given device.  The corresponding blocks in the bitmap must be
1759  *	marked as allocated and the device must be flagged SW_CLOSING.
1760  *	There may be no processes swapped out to the device.
1761  *
1762  *	This routine may block.
1763  */
1764 static void
1765 swap_pager_swapoff(struct swdevt *sp)
1766 {
1767 	struct swblock *swap;
1768 	int i, j, retries;
1769 
1770 	GIANT_REQUIRED;
1771 
1772 	retries = 0;
1773 full_rescan:
1774 	mtx_lock(&swhash_mtx);
1775 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1776 restart:
1777 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1778 			vm_object_t object = swap->swb_object;
1779 			vm_pindex_t pindex = swap->swb_index;
1780 			for (j = 0; j < SWAP_META_PAGES; ++j) {
1781 				if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1782 					/* avoid deadlock */
1783 					if (!VM_OBJECT_TRYWLOCK(object)) {
1784 						break;
1785 					} else {
1786 						mtx_unlock(&swhash_mtx);
1787 						swp_pager_force_pagein(object,
1788 						    pindex + j);
1789 						VM_OBJECT_WUNLOCK(object);
1790 						mtx_lock(&swhash_mtx);
1791 						goto restart;
1792 					}
1793 				}
1794 			}
1795 		}
1796 	}
1797 	mtx_unlock(&swhash_mtx);
1798 	if (sp->sw_used) {
1799 		/*
1800 		 * Objects may be locked or paging to the device being
1801 		 * removed, so we will miss their pages and need to
1802 		 * make another pass.  We have marked this device as
1803 		 * SW_CLOSING, so the activity should finish soon.
1804 		 */
1805 		retries++;
1806 		if (retries > 100) {
1807 			panic("swapoff: failed to locate %d swap blocks",
1808 			    sp->sw_used);
1809 		}
1810 		pause("swpoff", hz / 20);
1811 		goto full_rescan;
1812 	}
1813 }
1814 
1815 /************************************************************************
1816  *				SWAP META DATA 				*
1817  ************************************************************************
1818  *
1819  *	These routines manipulate the swap metadata stored in the
1820  *	OBJT_SWAP object.
1821  *
1822  *	Swap metadata is implemented with a global hash and not directly
1823  *	linked into the object.  Instead the object simply contains
1824  *	appropriate tracking counters.
1825  */
1826 
1827 /*
1828  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1829  *
1830  *	We first convert the object to a swap object if it is a default
1831  *	object.
1832  *
1833  *	The specified swapblk is added to the object's swap metadata.  If
1834  *	the swapblk is not valid, it is freed instead.  Any previously
1835  *	assigned swapblk is freed.
1836  */
1837 static void
1838 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1839 {
1840 	static volatile int exhausted;
1841 	struct swblock *swap;
1842 	struct swblock **pswap;
1843 	int idx;
1844 
1845 	VM_OBJECT_ASSERT_WLOCKED(object);
1846 	/*
1847 	 * Convert default object to swap object if necessary
1848 	 */
1849 	if (object->type != OBJT_SWAP) {
1850 		object->type = OBJT_SWAP;
1851 		object->un_pager.swp.swp_bcount = 0;
1852 
1853 		if (object->handle != NULL) {
1854 			mtx_lock(&sw_alloc_mtx);
1855 			TAILQ_INSERT_TAIL(
1856 			    NOBJLIST(object->handle),
1857 			    object,
1858 			    pager_object_list
1859 			);
1860 			mtx_unlock(&sw_alloc_mtx);
1861 		}
1862 	}
1863 
1864 	/*
1865 	 * Locate hash entry.  If not found create, but if we aren't adding
1866 	 * anything just return.  If we run out of space in the map we wait
1867 	 * and, since the hash table may have changed, retry.
1868 	 */
1869 retry:
1870 	mtx_lock(&swhash_mtx);
1871 	pswap = swp_pager_hash(object, pindex);
1872 
1873 	if ((swap = *pswap) == NULL) {
1874 		int i;
1875 
1876 		if (swapblk == SWAPBLK_NONE)
1877 			goto done;
1878 
1879 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
1880 		    (curproc == pageproc ? M_USE_RESERVE : 0));
1881 		if (swap == NULL) {
1882 			mtx_unlock(&swhash_mtx);
1883 			VM_OBJECT_WUNLOCK(object);
1884 			if (uma_zone_exhausted(swap_zone)) {
1885 				if (atomic_cmpset_int(&exhausted, 0, 1))
1886 					printf("swap zone exhausted, "
1887 					    "increase kern.maxswzone\n");
1888 				vm_pageout_oom(VM_OOM_SWAPZ);
1889 				pause("swzonex", 10);
1890 			} else
1891 				VM_WAIT;
1892 			VM_OBJECT_WLOCK(object);
1893 			goto retry;
1894 		}
1895 
1896 		if (atomic_cmpset_int(&exhausted, 1, 0))
1897 			printf("swap zone ok\n");
1898 
1899 		swap->swb_hnext = NULL;
1900 		swap->swb_object = object;
1901 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1902 		swap->swb_count = 0;
1903 
1904 		++object->un_pager.swp.swp_bcount;
1905 
1906 		for (i = 0; i < SWAP_META_PAGES; ++i)
1907 			swap->swb_pages[i] = SWAPBLK_NONE;
1908 	}
1909 
1910 	/*
1911 	 * Delete prior contents of metadata
1912 	 */
1913 	idx = pindex & SWAP_META_MASK;
1914 
1915 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1916 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1917 		--swap->swb_count;
1918 	}
1919 
1920 	/*
1921 	 * Enter block into metadata
1922 	 */
1923 	swap->swb_pages[idx] = swapblk;
1924 	if (swapblk != SWAPBLK_NONE)
1925 		++swap->swb_count;
1926 done:
1927 	mtx_unlock(&swhash_mtx);
1928 }
1929 
1930 /*
1931  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1932  *
1933  *	The requested range of blocks is freed, with any associated swap
1934  *	returned to the swap bitmap.
1935  *
1936  *	This routine will free swap metadata structures as they are cleaned
1937  *	out.  This routine does *NOT* operate on swap metadata associated
1938  *	with resident pages.
1939  */
1940 static void
1941 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1942 {
1943 
1944 	VM_OBJECT_ASSERT_LOCKED(object);
1945 	if (object->type != OBJT_SWAP)
1946 		return;
1947 
1948 	while (count > 0) {
1949 		struct swblock **pswap;
1950 		struct swblock *swap;
1951 
1952 		mtx_lock(&swhash_mtx);
1953 		pswap = swp_pager_hash(object, index);
1954 
1955 		if ((swap = *pswap) != NULL) {
1956 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1957 
1958 			if (v != SWAPBLK_NONE) {
1959 				swp_pager_freeswapspace(v, 1);
1960 				swap->swb_pages[index & SWAP_META_MASK] =
1961 					SWAPBLK_NONE;
1962 				if (--swap->swb_count == 0) {
1963 					*pswap = swap->swb_hnext;
1964 					uma_zfree(swap_zone, swap);
1965 					--object->un_pager.swp.swp_bcount;
1966 				}
1967 			}
1968 			--count;
1969 			++index;
1970 		} else {
1971 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1972 			count -= n;
1973 			index += n;
1974 		}
1975 		mtx_unlock(&swhash_mtx);
1976 	}
1977 }
1978 
1979 /*
1980  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1981  *
1982  *	This routine locates and destroys all swap metadata associated with
1983  *	an object.
1984  */
1985 static void
1986 swp_pager_meta_free_all(vm_object_t object)
1987 {
1988 	daddr_t index = 0;
1989 
1990 	VM_OBJECT_ASSERT_WLOCKED(object);
1991 	if (object->type != OBJT_SWAP)
1992 		return;
1993 
1994 	while (object->un_pager.swp.swp_bcount) {
1995 		struct swblock **pswap;
1996 		struct swblock *swap;
1997 
1998 		mtx_lock(&swhash_mtx);
1999 		pswap = swp_pager_hash(object, index);
2000 		if ((swap = *pswap) != NULL) {
2001 			int i;
2002 
2003 			for (i = 0; i < SWAP_META_PAGES; ++i) {
2004 				daddr_t v = swap->swb_pages[i];
2005 				if (v != SWAPBLK_NONE) {
2006 					--swap->swb_count;
2007 					swp_pager_freeswapspace(v, 1);
2008 				}
2009 			}
2010 			if (swap->swb_count != 0)
2011 				panic("swap_pager_meta_free_all: swb_count != 0");
2012 			*pswap = swap->swb_hnext;
2013 			uma_zfree(swap_zone, swap);
2014 			--object->un_pager.swp.swp_bcount;
2015 		}
2016 		mtx_unlock(&swhash_mtx);
2017 		index += SWAP_META_PAGES;
2018 	}
2019 }
2020 
2021 /*
2022  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2023  *
2024  *	This routine is capable of looking up, popping, or freeing
2025  *	swapblk assignments in the swap meta data or in the vm_page_t.
2026  *	The routine typically returns the swapblk being looked-up, or popped,
2027  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2028  *	was invalid.  This routine will automatically free any invalid
2029  *	meta-data swapblks.
2030  *
2031  *	It is not possible to store invalid swapblks in the swap meta data
2032  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2033  *
2034  *	When acting on a busy resident page and paging is in progress, we
2035  *	have to wait until paging is complete but otherwise can act on the
2036  *	busy page.
2037  *
2038  *	SWM_FREE	remove and free swap block from metadata
2039  *	SWM_POP		remove from meta data but do not free.. pop it out
2040  */
2041 static daddr_t
2042 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2043 {
2044 	struct swblock **pswap;
2045 	struct swblock *swap;
2046 	daddr_t r1;
2047 	int idx;
2048 
2049 	VM_OBJECT_ASSERT_LOCKED(object);
2050 	/*
2051 	 * The meta data only exists of the object is OBJT_SWAP
2052 	 * and even then might not be allocated yet.
2053 	 */
2054 	if (object->type != OBJT_SWAP)
2055 		return (SWAPBLK_NONE);
2056 
2057 	r1 = SWAPBLK_NONE;
2058 	mtx_lock(&swhash_mtx);
2059 	pswap = swp_pager_hash(object, pindex);
2060 
2061 	if ((swap = *pswap) != NULL) {
2062 		idx = pindex & SWAP_META_MASK;
2063 		r1 = swap->swb_pages[idx];
2064 
2065 		if (r1 != SWAPBLK_NONE) {
2066 			if (flags & SWM_FREE) {
2067 				swp_pager_freeswapspace(r1, 1);
2068 				r1 = SWAPBLK_NONE;
2069 			}
2070 			if (flags & (SWM_FREE|SWM_POP)) {
2071 				swap->swb_pages[idx] = SWAPBLK_NONE;
2072 				if (--swap->swb_count == 0) {
2073 					*pswap = swap->swb_hnext;
2074 					uma_zfree(swap_zone, swap);
2075 					--object->un_pager.swp.swp_bcount;
2076 				}
2077 			}
2078 		}
2079 	}
2080 	mtx_unlock(&swhash_mtx);
2081 	return (r1);
2082 }
2083 
2084 /*
2085  * System call swapon(name) enables swapping on device name,
2086  * which must be in the swdevsw.  Return EBUSY
2087  * if already swapping on this device.
2088  */
2089 #ifndef _SYS_SYSPROTO_H_
2090 struct swapon_args {
2091 	char *name;
2092 };
2093 #endif
2094 
2095 /*
2096  * MPSAFE
2097  */
2098 /* ARGSUSED */
2099 int
2100 sys_swapon(struct thread *td, struct swapon_args *uap)
2101 {
2102 	struct vattr attr;
2103 	struct vnode *vp;
2104 	struct nameidata nd;
2105 	int error;
2106 
2107 	error = priv_check(td, PRIV_SWAPON);
2108 	if (error)
2109 		return (error);
2110 
2111 	mtx_lock(&Giant);
2112 	while (swdev_syscall_active)
2113 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2114 	swdev_syscall_active = 1;
2115 
2116 	/*
2117 	 * Swap metadata may not fit in the KVM if we have physical
2118 	 * memory of >1GB.
2119 	 */
2120 	if (swap_zone == NULL) {
2121 		error = ENOMEM;
2122 		goto done;
2123 	}
2124 
2125 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2126 	    uap->name, td);
2127 	error = namei(&nd);
2128 	if (error)
2129 		goto done;
2130 
2131 	NDFREE(&nd, NDF_ONLY_PNBUF);
2132 	vp = nd.ni_vp;
2133 
2134 	if (vn_isdisk(vp, &error)) {
2135 		error = swapongeom(td, vp);
2136 	} else if (vp->v_type == VREG &&
2137 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2138 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2139 		/*
2140 		 * Allow direct swapping to NFS regular files in the same
2141 		 * way that nfs_mountroot() sets up diskless swapping.
2142 		 */
2143 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2144 	}
2145 
2146 	if (error)
2147 		vrele(vp);
2148 done:
2149 	swdev_syscall_active = 0;
2150 	wakeup_one(&swdev_syscall_active);
2151 	mtx_unlock(&Giant);
2152 	return (error);
2153 }
2154 
2155 /*
2156  * Check that the total amount of swap currently configured does not
2157  * exceed half the theoretical maximum.  If it does, print a warning
2158  * message and return -1; otherwise, return 0.
2159  */
2160 static int
2161 swapon_check_swzone(unsigned long npages)
2162 {
2163 	unsigned long maxpages;
2164 
2165 	/* absolute maximum we can handle assuming 100% efficiency */
2166 	maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2167 
2168 	/* recommend using no more than half that amount */
2169 	if (npages > maxpages / 2) {
2170 		printf("warning: total configured swap (%lu pages) "
2171 		    "exceeds maximum recommended amount (%lu pages).\n",
2172 		    npages, maxpages / 2);
2173 		printf("warning: increase kern.maxswzone "
2174 		    "or reduce amount of swap.\n");
2175 		return (-1);
2176 	}
2177 	return (0);
2178 }
2179 
2180 static void
2181 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2182     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2183 {
2184 	struct swdevt *sp, *tsp;
2185 	swblk_t dvbase;
2186 	u_long mblocks;
2187 
2188 	/*
2189 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2190 	 * First chop nblks off to page-align it, then convert.
2191 	 *
2192 	 * sw->sw_nblks is in page-sized chunks now too.
2193 	 */
2194 	nblks &= ~(ctodb(1) - 1);
2195 	nblks = dbtoc(nblks);
2196 
2197 	/*
2198 	 * If we go beyond this, we get overflows in the radix
2199 	 * tree bitmap code.
2200 	 */
2201 	mblocks = 0x40000000 / BLIST_META_RADIX;
2202 	if (nblks > mblocks) {
2203 		printf(
2204     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2205 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2206 		nblks = mblocks;
2207 	}
2208 
2209 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2210 	sp->sw_vp = vp;
2211 	sp->sw_id = id;
2212 	sp->sw_dev = dev;
2213 	sp->sw_flags = 0;
2214 	sp->sw_nblks = nblks;
2215 	sp->sw_used = 0;
2216 	sp->sw_strategy = strategy;
2217 	sp->sw_close = close;
2218 	sp->sw_flags = flags;
2219 
2220 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2221 	/*
2222 	 * Do not free the first two block in order to avoid overwriting
2223 	 * any bsd label at the front of the partition
2224 	 */
2225 	blist_free(sp->sw_blist, 2, nblks - 2);
2226 
2227 	dvbase = 0;
2228 	mtx_lock(&sw_dev_mtx);
2229 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2230 		if (tsp->sw_end >= dvbase) {
2231 			/*
2232 			 * We put one uncovered page between the devices
2233 			 * in order to definitively prevent any cross-device
2234 			 * I/O requests
2235 			 */
2236 			dvbase = tsp->sw_end + 1;
2237 		}
2238 	}
2239 	sp->sw_first = dvbase;
2240 	sp->sw_end = dvbase + nblks;
2241 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2242 	nswapdev++;
2243 	swap_pager_avail += nblks;
2244 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2245 	swapon_check_swzone(swap_total / PAGE_SIZE);
2246 	swp_sizecheck();
2247 	mtx_unlock(&sw_dev_mtx);
2248 }
2249 
2250 /*
2251  * SYSCALL: swapoff(devname)
2252  *
2253  * Disable swapping on the given device.
2254  *
2255  * XXX: Badly designed system call: it should use a device index
2256  * rather than filename as specification.  We keep sw_vp around
2257  * only to make this work.
2258  */
2259 #ifndef _SYS_SYSPROTO_H_
2260 struct swapoff_args {
2261 	char *name;
2262 };
2263 #endif
2264 
2265 /*
2266  * MPSAFE
2267  */
2268 /* ARGSUSED */
2269 int
2270 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2271 {
2272 	struct vnode *vp;
2273 	struct nameidata nd;
2274 	struct swdevt *sp;
2275 	int error;
2276 
2277 	error = priv_check(td, PRIV_SWAPOFF);
2278 	if (error)
2279 		return (error);
2280 
2281 	mtx_lock(&Giant);
2282 	while (swdev_syscall_active)
2283 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2284 	swdev_syscall_active = 1;
2285 
2286 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2287 	    td);
2288 	error = namei(&nd);
2289 	if (error)
2290 		goto done;
2291 	NDFREE(&nd, NDF_ONLY_PNBUF);
2292 	vp = nd.ni_vp;
2293 
2294 	mtx_lock(&sw_dev_mtx);
2295 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2296 		if (sp->sw_vp == vp)
2297 			break;
2298 	}
2299 	mtx_unlock(&sw_dev_mtx);
2300 	if (sp == NULL) {
2301 		error = EINVAL;
2302 		goto done;
2303 	}
2304 	error = swapoff_one(sp, td->td_ucred);
2305 done:
2306 	swdev_syscall_active = 0;
2307 	wakeup_one(&swdev_syscall_active);
2308 	mtx_unlock(&Giant);
2309 	return (error);
2310 }
2311 
2312 static int
2313 swapoff_one(struct swdevt *sp, struct ucred *cred)
2314 {
2315 	u_long nblks, dvbase;
2316 #ifdef MAC
2317 	int error;
2318 #endif
2319 
2320 	mtx_assert(&Giant, MA_OWNED);
2321 #ifdef MAC
2322 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2323 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2324 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2325 	if (error != 0)
2326 		return (error);
2327 #endif
2328 	nblks = sp->sw_nblks;
2329 
2330 	/*
2331 	 * We can turn off this swap device safely only if the
2332 	 * available virtual memory in the system will fit the amount
2333 	 * of data we will have to page back in, plus an epsilon so
2334 	 * the system doesn't become critically low on swap space.
2335 	 */
2336 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail <
2337 	    nblks + nswap_lowat) {
2338 		return (ENOMEM);
2339 	}
2340 
2341 	/*
2342 	 * Prevent further allocations on this device.
2343 	 */
2344 	mtx_lock(&sw_dev_mtx);
2345 	sp->sw_flags |= SW_CLOSING;
2346 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2347 		swap_pager_avail -= blist_fill(sp->sw_blist,
2348 		     dvbase, dmmax);
2349 	}
2350 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2351 	mtx_unlock(&sw_dev_mtx);
2352 
2353 	/*
2354 	 * Page in the contents of the device and close it.
2355 	 */
2356 	swap_pager_swapoff(sp);
2357 
2358 	sp->sw_close(curthread, sp);
2359 	sp->sw_id = NULL;
2360 	mtx_lock(&sw_dev_mtx);
2361 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2362 	nswapdev--;
2363 	if (nswapdev == 0) {
2364 		swap_pager_full = 2;
2365 		swap_pager_almost_full = 1;
2366 	}
2367 	if (swdevhd == sp)
2368 		swdevhd = NULL;
2369 	mtx_unlock(&sw_dev_mtx);
2370 	blist_destroy(sp->sw_blist);
2371 	free(sp, M_VMPGDATA);
2372 	return (0);
2373 }
2374 
2375 void
2376 swapoff_all(void)
2377 {
2378 	struct swdevt *sp, *spt;
2379 	const char *devname;
2380 	int error;
2381 
2382 	mtx_lock(&Giant);
2383 	while (swdev_syscall_active)
2384 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2385 	swdev_syscall_active = 1;
2386 
2387 	mtx_lock(&sw_dev_mtx);
2388 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2389 		mtx_unlock(&sw_dev_mtx);
2390 		if (vn_isdisk(sp->sw_vp, NULL))
2391 			devname = devtoname(sp->sw_vp->v_rdev);
2392 		else
2393 			devname = "[file]";
2394 		error = swapoff_one(sp, thread0.td_ucred);
2395 		if (error != 0) {
2396 			printf("Cannot remove swap device %s (error=%d), "
2397 			    "skipping.\n", devname, error);
2398 		} else if (bootverbose) {
2399 			printf("Swap device %s removed.\n", devname);
2400 		}
2401 		mtx_lock(&sw_dev_mtx);
2402 	}
2403 	mtx_unlock(&sw_dev_mtx);
2404 
2405 	swdev_syscall_active = 0;
2406 	wakeup_one(&swdev_syscall_active);
2407 	mtx_unlock(&Giant);
2408 }
2409 
2410 void
2411 swap_pager_status(int *total, int *used)
2412 {
2413 	struct swdevt *sp;
2414 
2415 	*total = 0;
2416 	*used = 0;
2417 	mtx_lock(&sw_dev_mtx);
2418 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2419 		*total += sp->sw_nblks;
2420 		*used += sp->sw_used;
2421 	}
2422 	mtx_unlock(&sw_dev_mtx);
2423 }
2424 
2425 int
2426 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2427 {
2428 	struct swdevt *sp;
2429 	const char *tmp_devname;
2430 	int error, n;
2431 
2432 	n = 0;
2433 	error = ENOENT;
2434 	mtx_lock(&sw_dev_mtx);
2435 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2436 		if (n != name) {
2437 			n++;
2438 			continue;
2439 		}
2440 		xs->xsw_version = XSWDEV_VERSION;
2441 		xs->xsw_dev = sp->sw_dev;
2442 		xs->xsw_flags = sp->sw_flags;
2443 		xs->xsw_nblks = sp->sw_nblks;
2444 		xs->xsw_used = sp->sw_used;
2445 		if (devname != NULL) {
2446 			if (vn_isdisk(sp->sw_vp, NULL))
2447 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2448 			else
2449 				tmp_devname = "[file]";
2450 			strncpy(devname, tmp_devname, len);
2451 		}
2452 		error = 0;
2453 		break;
2454 	}
2455 	mtx_unlock(&sw_dev_mtx);
2456 	return (error);
2457 }
2458 
2459 static int
2460 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2461 {
2462 	struct xswdev xs;
2463 	int error;
2464 
2465 	if (arg2 != 1)			/* name length */
2466 		return (EINVAL);
2467 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2468 	if (error != 0)
2469 		return (error);
2470 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2471 	return (error);
2472 }
2473 
2474 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2475     "Number of swap devices");
2476 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2477     "Swap statistics by device");
2478 
2479 /*
2480  * vmspace_swap_count() - count the approximate swap usage in pages for a
2481  *			  vmspace.
2482  *
2483  *	The map must be locked.
2484  *
2485  *	Swap usage is determined by taking the proportional swap used by
2486  *	VM objects backing the VM map.  To make up for fractional losses,
2487  *	if the VM object has any swap use at all the associated map entries
2488  *	count for at least 1 swap page.
2489  */
2490 long
2491 vmspace_swap_count(struct vmspace *vmspace)
2492 {
2493 	vm_map_t map;
2494 	vm_map_entry_t cur;
2495 	vm_object_t object;
2496 	long count, n;
2497 
2498 	map = &vmspace->vm_map;
2499 	count = 0;
2500 
2501 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2502 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2503 		    (object = cur->object.vm_object) != NULL) {
2504 			VM_OBJECT_WLOCK(object);
2505 			if (object->type == OBJT_SWAP &&
2506 			    object->un_pager.swp.swp_bcount != 0) {
2507 				n = (cur->end - cur->start) / PAGE_SIZE;
2508 				count += object->un_pager.swp.swp_bcount *
2509 				    SWAP_META_PAGES * n / object->size + 1;
2510 			}
2511 			VM_OBJECT_WUNLOCK(object);
2512 		}
2513 	}
2514 	return (count);
2515 }
2516 
2517 /*
2518  * GEOM backend
2519  *
2520  * Swapping onto disk devices.
2521  *
2522  */
2523 
2524 static g_orphan_t swapgeom_orphan;
2525 
2526 static struct g_class g_swap_class = {
2527 	.name = "SWAP",
2528 	.version = G_VERSION,
2529 	.orphan = swapgeom_orphan,
2530 };
2531 
2532 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2533 
2534 
2535 static void
2536 swapgeom_close_ev(void *arg, int flags)
2537 {
2538 	struct g_consumer *cp;
2539 
2540 	cp = arg;
2541 	g_access(cp, -1, -1, 0);
2542 	g_detach(cp);
2543 	g_destroy_consumer(cp);
2544 }
2545 
2546 static void
2547 swapgeom_done(struct bio *bp2)
2548 {
2549 	struct swdevt *sp;
2550 	struct buf *bp;
2551 	struct g_consumer *cp;
2552 
2553 	bp = bp2->bio_caller2;
2554 	cp = bp2->bio_from;
2555 	bp->b_ioflags = bp2->bio_flags;
2556 	if (bp2->bio_error)
2557 		bp->b_ioflags |= BIO_ERROR;
2558 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2559 	bp->b_error = bp2->bio_error;
2560 	bufdone(bp);
2561 	mtx_lock(&sw_dev_mtx);
2562 	if ((--cp->index) == 0 && cp->private) {
2563 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) {
2564 			sp = bp2->bio_caller1;
2565 			sp->sw_id = NULL;
2566 		}
2567 	}
2568 	mtx_unlock(&sw_dev_mtx);
2569 	g_destroy_bio(bp2);
2570 }
2571 
2572 static void
2573 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2574 {
2575 	struct bio *bio;
2576 	struct g_consumer *cp;
2577 
2578 	mtx_lock(&sw_dev_mtx);
2579 	cp = sp->sw_id;
2580 	if (cp == NULL) {
2581 		mtx_unlock(&sw_dev_mtx);
2582 		bp->b_error = ENXIO;
2583 		bp->b_ioflags |= BIO_ERROR;
2584 		bufdone(bp);
2585 		return;
2586 	}
2587 	cp->index++;
2588 	mtx_unlock(&sw_dev_mtx);
2589 	if (bp->b_iocmd == BIO_WRITE)
2590 		bio = g_new_bio();
2591 	else
2592 		bio = g_alloc_bio();
2593 	if (bio == NULL) {
2594 		bp->b_error = ENOMEM;
2595 		bp->b_ioflags |= BIO_ERROR;
2596 		bufdone(bp);
2597 		return;
2598 	}
2599 
2600 	bio->bio_caller1 = sp;
2601 	bio->bio_caller2 = bp;
2602 	bio->bio_cmd = bp->b_iocmd;
2603 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2604 	bio->bio_length = bp->b_bcount;
2605 	bio->bio_done = swapgeom_done;
2606 	if ((bp->b_flags & B_UNMAPPED) != 0) {
2607 		bio->bio_ma = bp->b_pages;
2608 		bio->bio_data = unmapped_buf;
2609 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2610 		bio->bio_ma_n = bp->b_npages;
2611 		bio->bio_flags |= BIO_UNMAPPED;
2612 	} else {
2613 		bio->bio_data = bp->b_data;
2614 		bio->bio_ma = NULL;
2615 	}
2616 	g_io_request(bio, cp);
2617 	return;
2618 }
2619 
2620 static void
2621 swapgeom_orphan(struct g_consumer *cp)
2622 {
2623 	struct swdevt *sp;
2624 	int destroy;
2625 
2626 	mtx_lock(&sw_dev_mtx);
2627 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2628 		if (sp->sw_id == cp) {
2629 			sp->sw_flags |= SW_CLOSING;
2630 			break;
2631 		}
2632 	}
2633 	cp->private = (void *)(uintptr_t)1;
2634 	destroy = ((sp != NULL) && (cp->index == 0));
2635 	if (destroy)
2636 		sp->sw_id = NULL;
2637 	mtx_unlock(&sw_dev_mtx);
2638 	if (destroy)
2639 		swapgeom_close_ev(cp, 0);
2640 }
2641 
2642 static void
2643 swapgeom_close(struct thread *td, struct swdevt *sw)
2644 {
2645 	struct g_consumer *cp;
2646 
2647 	mtx_lock(&sw_dev_mtx);
2648 	cp = sw->sw_id;
2649 	sw->sw_id = NULL;
2650 	mtx_unlock(&sw_dev_mtx);
2651 	/* XXX: direct call when Giant untangled */
2652 	if (cp != NULL)
2653 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2654 }
2655 
2656 
2657 struct swh0h0 {
2658 	struct cdev *dev;
2659 	struct vnode *vp;
2660 	int	error;
2661 };
2662 
2663 static void
2664 swapongeom_ev(void *arg, int flags)
2665 {
2666 	struct swh0h0 *swh;
2667 	struct g_provider *pp;
2668 	struct g_consumer *cp;
2669 	static struct g_geom *gp;
2670 	struct swdevt *sp;
2671 	u_long nblks;
2672 	int error;
2673 
2674 	swh = arg;
2675 	swh->error = 0;
2676 	pp = g_dev_getprovider(swh->dev);
2677 	if (pp == NULL) {
2678 		swh->error = ENODEV;
2679 		return;
2680 	}
2681 	mtx_lock(&sw_dev_mtx);
2682 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2683 		cp = sp->sw_id;
2684 		if (cp != NULL && cp->provider == pp) {
2685 			mtx_unlock(&sw_dev_mtx);
2686 			swh->error = EBUSY;
2687 			return;
2688 		}
2689 	}
2690 	mtx_unlock(&sw_dev_mtx);
2691 	if (gp == NULL)
2692 		gp = g_new_geomf(&g_swap_class, "swap");
2693 	cp = g_new_consumer(gp);
2694 	cp->index = 0;		/* Number of active I/Os. */
2695 	cp->private = NULL;	/* Orphanization flag */
2696 	g_attach(cp, pp);
2697 	/*
2698 	 * XXX: Everytime you think you can improve the margin for
2699 	 * footshooting, somebody depends on the ability to do so:
2700 	 * savecore(8) wants to write to our swapdev so we cannot
2701 	 * set an exclusive count :-(
2702 	 */
2703 	error = g_access(cp, 1, 1, 0);
2704 	if (error) {
2705 		g_detach(cp);
2706 		g_destroy_consumer(cp);
2707 		swh->error = error;
2708 		return;
2709 	}
2710 	nblks = pp->mediasize / DEV_BSIZE;
2711 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2712 	    swapgeom_close, dev2udev(swh->dev),
2713 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2714 	swh->error = 0;
2715 }
2716 
2717 static int
2718 swapongeom(struct thread *td, struct vnode *vp)
2719 {
2720 	int error;
2721 	struct swh0h0 swh;
2722 
2723 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2724 
2725 	swh.dev = vp->v_rdev;
2726 	swh.vp = vp;
2727 	swh.error = 0;
2728 	/* XXX: direct call when Giant untangled */
2729 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2730 	if (!error)
2731 		error = swh.error;
2732 	VOP_UNLOCK(vp, 0);
2733 	return (error);
2734 }
2735 
2736 /*
2737  * VNODE backend
2738  *
2739  * This is used mainly for network filesystem (read: probably only tested
2740  * with NFS) swapfiles.
2741  *
2742  */
2743 
2744 static void
2745 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2746 {
2747 	struct vnode *vp2;
2748 
2749 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2750 
2751 	vp2 = sp->sw_id;
2752 	vhold(vp2);
2753 	if (bp->b_iocmd == BIO_WRITE) {
2754 		if (bp->b_bufobj)
2755 			bufobj_wdrop(bp->b_bufobj);
2756 		bufobj_wref(&vp2->v_bufobj);
2757 	}
2758 	if (bp->b_bufobj != &vp2->v_bufobj)
2759 		bp->b_bufobj = &vp2->v_bufobj;
2760 	bp->b_vp = vp2;
2761 	bp->b_iooffset = dbtob(bp->b_blkno);
2762 	bstrategy(bp);
2763 	return;
2764 }
2765 
2766 static void
2767 swapdev_close(struct thread *td, struct swdevt *sp)
2768 {
2769 
2770 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2771 	vrele(sp->sw_vp);
2772 }
2773 
2774 
2775 static int
2776 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2777 {
2778 	struct swdevt *sp;
2779 	int error;
2780 
2781 	if (nblks == 0)
2782 		return (ENXIO);
2783 	mtx_lock(&sw_dev_mtx);
2784 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2785 		if (sp->sw_id == vp) {
2786 			mtx_unlock(&sw_dev_mtx);
2787 			return (EBUSY);
2788 		}
2789 	}
2790 	mtx_unlock(&sw_dev_mtx);
2791 
2792 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2793 #ifdef MAC
2794 	error = mac_system_check_swapon(td->td_ucred, vp);
2795 	if (error == 0)
2796 #endif
2797 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2798 	(void) VOP_UNLOCK(vp, 0);
2799 	if (error)
2800 		return (error);
2801 
2802 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2803 	    NODEV, 0);
2804 	return (0);
2805 }
2806 
2807 static int
2808 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2809 {
2810 	int error, new, n;
2811 
2812 	new = nsw_wcount_async_max;
2813 	error = sysctl_handle_int(oidp, &new, 0, req);
2814 	if (error != 0 || req->newptr == NULL)
2815 		return (error);
2816 
2817 	if (new > nswbuf / 2 || new < 1)
2818 		return (EINVAL);
2819 
2820 	mtx_lock(&pbuf_mtx);
2821 	while (nsw_wcount_async_max != new) {
2822 		/*
2823 		 * Adjust difference.  If the current async count is too low,
2824 		 * we will need to sqeeze our update slowly in.  Sleep with a
2825 		 * higher priority than getpbuf() to finish faster.
2826 		 */
2827 		n = new - nsw_wcount_async_max;
2828 		if (nsw_wcount_async + n >= 0) {
2829 			nsw_wcount_async += n;
2830 			nsw_wcount_async_max += n;
2831 			wakeup(&nsw_wcount_async);
2832 		} else {
2833 			nsw_wcount_async_max -= nsw_wcount_async;
2834 			nsw_wcount_async = 0;
2835 			msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2836 			    "swpsysctl", 0);
2837 		}
2838 	}
2839 	mtx_unlock(&pbuf_mtx);
2840 
2841 	return (0);
2842 }
2843